ORACLE

JavaFX

Adding HTML Content to JavaFX Applications
Release 8.0 Developer Preview

E47849-01

September 2013

This tutorial introduces the WebView component and
HTMLS5 features that it supports, teaches how to embed
WebView into JavaFX application, and provides instructions
to enable basic browsing functionality.

JavaFX/Adding HTML Content to JavaFX Applications, Release 8.0 Developer Preview
E47849-01

Copyright © 2011, 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Alla Redko

Contributor: Peter Zhelezniakov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Part1 About This Tutorial
1 What Is New

2 Overview of the JavaFX WebView Component

2.1 WebEngine Classcccoceiieiiiiiiicecc e
22 WEDVIEW ClasSovviiiiiiiiiie et
2.3 PopupFeatures Classccccooviiiiiiiiiiiin i
2.4 Other Featuresccccoviviiiiiiniiicii e,

3 Supported Features of HTML5

3.1 Canvas and SVG ..o
3.2 Media Playbackcccocoiiiiiiiiiii
3.3 Form Controlscccoviiiiiiiiiiiii
3.4 History Maintenanceccccocieiiiiiiiiiiiicccc e,
3.5 Support for Interactive Element Tagscccevvveriiiiininiieienee,
3.6 Document Object Modelccocoiiiiiiiiiiiiie e
3.7 WED SOCKELS ..o
3.8 WED WOTKETS ..o
3.9 Web Font SUPPOrtccooeviiiiiiiiiic

4 Adding a WebView Component to the Application Scene

4.1 Creating an Embedded Browser ...,
4.2 Creating an Application Toolbarccccoooiiii

5 Processing JavaScript Commands

5.1 Understanding the executeScript method ...
5.2 Calling JavaScript Commands from JavaFX Codecc.ccceeernnn.

6 Making Upcalls from JavaScript to JavaFX

6.1 Using a JavaScript Command to Exit JavaFX Application
6.2 Adding an Exit Command to the HTML Pagec......

Contents

7 Managing Web Pop-Up Windows

7.1 Using Pop-Up Windows to Set

8 Managing Web History

8.1 Obtaining the List of Visited Pages

9 Printing HTML Content

9.1 Using the Printing API ...

9.2 Adding a Context Menu to Enable Printing

9.3 Processing a Print Jobccccooi,

Part |

About This Tutorial

This tutorial introduces the JavaFX embedded browser, a user interface component
that provides a web viewer and full browsing functionality through its API. The
document contains the following chapters:

What Is New
Describes the new and changed features in the current release.
Overview of the JavaFX WebView Component

Lists the basic features of the WebView component and introduces classes of the
javafx.scene.web package.

Supported Features of HTML5
Describes the HTMLS5 features supported by the Webview component.
Adding a WebView Component to the Application Scene

Provides instructions on how to embed a browser based in the WebView
component into the application scene.

Processing JavaScript Commands

Explains how to run a particular JavaScript command for the document currently
loaded into the browser.

Making Upcalls from JavaScript to JavaFX

Provides instructions on how to implement calling from web content to JavaFX
application.

Managing Web Pop-Up Windows

Teaches how to use the PopupFeatures class to set an alternative WebView object for
the documents that will be opened in a separate window.

Managing Web History

Explains how to obtain the list of visited pages by using the WebHistory class.
Printing HTML Content

Provides a code pattern for printing HTML content of the embedded browser.

This tutorial provides the WebViewSample application so that you better learn the
features described in each chapter. By the end of your study, you will have the
complete version of the WebViewSample application with all functional code fragment
integrated.

You can also find the source files of the application and the corresponding NetBeans
project in the Application Files section.

1

What Is New

This chapter introduces enhancements and additions available in the WebView
component with JavaFX 8.

The following changes were made since the previous releases of JavaFX

= Support for additional HTML5 features including Web Sockets, Web Workers, and
Web Fonts. See Supported Features of HTML5 for more information.

= Printing capabilities. Lean how to print HTML page loaded in the embedded
browser in Printing HTML Content.

What Is New 1-1

1-2 JavaFX/Adding HTML Content to JavaFX Applications

2

Overview of the JavaFX WebView
Component

This chapter introduces the JavaFX embedded browser, a user interface component
that provides a web viewer and full browsing functionality through its API.

The embedded browser component is based on WebKit, an open source web browser
engine. It supports Cascading Style Sheets (CSS), JavaScript, Document Object Model
(DOM), and HTMLS.

The embedded browser enables you to perform the following tasks in your JavaFX
applications:

s Render HTML content from local and remote URLs
= Obtain Web history

= Execute JavaScript commands

s Perform upcalls from JavaScript to JavaFX

= Manage web pop-up windows

= Apply effects to the embedded browser

The embedded browser inherits all fields and methods from the Node class, and
therefore, it has all its features.

The classes that constitute the embedded browser reside in the javafx.scene.web
package. Figure 2-1 shows the architecture of the embedded browser and how it
relates to other JavaFX classes.

Figure 2—1 Architecture of the Embedded Browser

Scene Graph

|Group ‘ ‘ Node ‘ ‘Web\ﬁew)(—Q}WebEngiHE‘

Overview of the JavaFX WebView Component 2-1

WebEngine Class

2.1 WebEngine Class

The WebEngine class provides basic web page functionality. It supports user interaction
such as navigating links and submitting HTML forms, although it does not interact
with users directly. The WebEngine class handles one web page at a time. It supports
the basic browsing features of loading HTML content and accessing the DOM as well
as executing JavaScript commands.

Two constructors enable you to create a WebEngine object: an empty constructor and a
constructor with the specified URL. If you instantiate an empty constructor, the URL
can be passed to a WebEngine object through the 1oad method.

Starting JavaFX SDK 2.2, developers can enable and disable JavaScript calls for a
particular web engine and apply custom style sheets. User style sheets replace the
default styles on the pages rendered in this WebEngine instance with user-defined ones.

2.2 WebView Class

The WebView class is an extension of the Node class. It encapsulates a WebEngine object,
incorporates HTML content into an application's scene, and provides properties and
methods to apply effects and transformations. The getEngine () method called on a
WebView object returns a web engine associated with it.

Example 2-1 shows the typical way to create WebView and WebEngine objects in your
application.

Example 2-1 Creating WebView and WebEngine Objects

WebView browser = new WebView();
WebEngine webEngine = browser.getEngine();
webEngine.load ("http://mySite.com") ;

2.3 PopupFeatures Class

The PopupFeatures class describes the features of a web pop-up window as defined by
the JavaScript specification. When you need to open a new browser window in your
application, the instances of this class are passed into pop-up handlers registered on a
WebEngine object by using the setCreatePopupHandler method as shown in

Example 2-2.

Example 2-2 Creating a Pop-Up Handler
webEngine.setCreatePopupHandler (new Callback<PopupFeatures, WebEngine>() {
@Override public WebEngine call (PopupFeatures config) {

// do something
// return a web engine for the new browser window

IO

If the method returns the web engine of the same WebView object, the target document
is opened in the same browser window. To open the target document in another
window, specify the WebEngine object of another web view. When you need to block
the pop-up windows, return the null value.

2-2 JavaFX/Adding HTML Content to JavaFX Applications

Other Features

2.4 Other Features

When working with the WebView component, you should remember that it has the
default in-memory cache. It means that any cached content is lost once the application
containing the WebView component is closed. However, developers can implement
cache at the application level by means of the java.net.ResponseCache class. From
WebKit perspectives, the persistent cache is a property of the network layer similar to
connection and cookie handlers. Once some of those are installed, the WebView
component uses them in transparent manner.

Overview of the JavaFX WebView Component 2-3

Other Features

2-4 JavaFX/Adding HTML Content to JavaFX Applications

3

Supported Features of HTML5

This chapter describes the scope of HTMLS5 features supported by the JavaFX web
component. The majority of the supported functionally is part of the WebEngine class
and WebView class implementations, and this functionality does not have any public
APIs.

The current implementation of the JavaFX web component provides support for the
following HTMLS5 features:

= Canvas and SVG

= Media playback

= Form controls

» History maintenance

= Interactive element tags
= DOM

= Web workers

= Web sockets

= Web fonts

3.1 Canvas and SVG

Support for the canvas and svg element tags enables basic graphical functionality
including rendering graphics, building shapes by using Scalable Vector Graphics
(SVG) syntax, and applying color settings, visual effects, and animations. Example 3-1
provides a simple test of using the <canvas> and <svg> tags to render the web
component.

Example 3—1 Use of Canvas and SVG Elements

<!DOCTYPE HTML>
<html>
<head>
<title>Canvas and SVG</title>
<canvas style="border:3px solid darkseagreen;" width="200" height="100">
</canvas>
<svg>
<circle cx="100" cy="100" r="50" stroke="black"
stroke-width="2" fill="red"/>
</svg>
</body>
</html>

Supported Features of HTML5 3-1

Media Playback

When you load a page by using the HTML code from Example 3-1 into a
WebViewSample application, it renders the graphics shown in Figure 3-1.

Figure 3—1 Rendering Graphics

-

’
1" Web View Sample =NACN X

3.2 Media Playback

The WebView component enables you to play video and audio content within a loaded
HTML page. The following codecs are supported:

= Audio: AIFE, WAV(PCM), MP3, and AAC
s Video: VP6, H264
= Media containers: FLV, FXM, MP4, and MpegTS (HLS)

For more information about embedding media content, see the HTMLS5 specification
for the video and audio tags.

3.3 Form Controls

The JavaFX web component enables rendering forms and processing data input. The
supported form controls include text fields, buttons, checkboxes, and other available
input controls. Example 3-2 provides a simple set of the controls that enable you to
enter an issue summary and specify its priority.

Example 3-2 Form Input Controls

<!DOCTYPE HTML>

<html>

<form>

<p><label>Login: <input></label></p>

<fieldset>
<legend> Priority </legend>
<p><label> <input type=radio name=size> High </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Low </label></p>
</fieldset>

</form>

</html>

3-2 JavaFX/Adding HTML Content to JavaFX Applications

Support for Interactive Element Tags

When the HTML content from Example 3-2 is uploaded in the WebView component, it
produces the output shown in Figure 3-2.

Figure 3-2 Rendering Form Elements

1 Web View Sample |I=l S |5

Issue Summary: [Incorrecd

— Priority

® High
Medium

Low

For more information about how users can submit data and process it using the form
controls, see the HTMLS5 specification.

3.4 History Maintenance

You can obtain a list of visited pages by using the WebHistory class available in the
javafx.scene.web package. The WebHistory class represents the session history
associated with a WebEngine object.

This functionality is enabled in the WebViewSample application that you will use to
learn the capabilities of the JavaFX web component. See the Managing Web History
chapter for the implementation details.

3.5 Support for Interactive Element Tags

The webview component provides support for interactive HTML5 elements such as
details, summary, command, and menu. Example 3-3 shows how the details and
summary elements can be rendered in the web component. The sample also uses the
progress and meter control elements.

Example 3-3 Use of Details, Summary, Progress, and Meter Elements
<!DOCTYPE HTML>

<html>

<hl>Download Statistics</hl>

<details>
<summary>Downloading... <progress max="100" value="25"></progress> 25%</summary>

Size: 1,7 MB
Server: oracle.com</1li>
Estimated time: 2 min</1li>

</details>

<hl>Hard Disk Availability</hl>

Supported Features of HTML5 3-3

Document Object Model

System (C:) <meter value=240 max=326></meter> </br>
Data (D:) <meter value=101 max=130></meter>
</html>

When this page is loaded in the web component, the WebViewSample application
looks as shown in Figure 3-3.

Figure 3-3 Rendering Interactive HTML5 Elements

57 Web View Sample == &1
Download Statistics

¥ Downloading,,. s 25%

e Size: 1,7TMB
Server: oracle.com
& Estimated time: 2 min

Hard Disk Availability

System (C:) S
Data (D:) eo—

See the HTMLS5 specification for more information about properties of the interactive
elements.

3.6 Document Object Model

A WebEngine object, a nonvisual part of the JavaFX web component, can create and
provide access to a Document Object Model (DOM) of a web page. The root element of
the document model can be accessed by using the getDocument () method of the
WebEngine class. Example 3-4 provides a code fragment to implement some simple
tasks: obtaining a URI of the web page and displaying it in the title of the application
window.

Example 3—-4 Deriving a URI from a DOM

WebView browser = new WebView() ;
WebEngine webEngine = browser.getEngine();
stage.setTitle (webEngine.getDocument () .getDocumentURI()) ;

Additionally, the document model event specification is supported to define event
handlers in JavaFX code. See the specification of the WebEngine class for the example
that attaches an event listener to an element of a web page.

3.7 Web Sockets

The WebView component supports the WebSocket interface to enable JavaFX
applications to establish bidirectional communication with server processes. The
WebSocket interface is described in detail in the WebSocket API specification.
Example 3-5 shows a common model for using web sockets.

3-4 JavaFX/Adding HTML Content to JavaFX Applications

Web Font Support

Example 3-5 Using Web Sockets in HTML Code

<!DOCTYPE HTML>

<html>

<head>

<title>Web Worker</title>

</head>

<body>

<script>
socketConnection = new WebSocket ('ws://example.com:8001");
socketConnection.onopen = function () {

// do some stuff

Yi

</script>

</body>

</html>

3.8 Web Workers

The JavaFX web component supports running web worker scripts in parallel to
activities on the loaded web page. This functionality enables long-running scripts to be
executed without a need to wait for user interaction.

Example 3-6 shows a web page that uses the myWorker script for a long-running task.

Example 3-6 Using a Web Worker Script

<!DOCTYPE HTML>

<html>

<head>

<title>Web Worker</title>

</head>

<body>

<script>
var worker = new Worker ('myWorker.js');
worker.onmessage = function (event) {

document .getElementById('result').textContent = event.data;

}i

</script>

</body>

</html>

Learn more about the web worker script from the HTML5 specification.

3.9 Web Font Support

The JavaFX web component supports web fonts declared with the @font-face rule.
This rule enables linking fonts that are automatically downloaded when needed.
According to the HTMLS5 specification, this functionality provides the capability to
select a font that closely matches the design goals for a given page. The HTML code in
Example 3-7 uses the @font-face rule to link a font specified by its URL.

Example 3-7 Using a Web Font

<!DOCTYPE HTML>
<html>
<head>

Supported Features of HTML5 3-5

Web Font Support

<title>Web Font</title>
<style>
@font-face {
font-family: "MyWebFont";
src: url("http://example.com/fonts/MyWebFont.ttf")
}
hl { font-family: "MyWebFont", serif;}
</style>
</head>
<body>
<hl> This is a H1 heading styled with MyWebFont</hl>
</body>
</html>

When this HTML code is loaded into the WebViewSample application, it is rendered
as shown in Figure 3-4.

Figure 3—-4 Rendering a Web Font

("7 Web View Sample = | B [t |

This is a H1 heading styled with MyWebFont

3-6 JavaFX/Adding HTML Content to JavaFX Applications

Adding a WebView Component to the
Application Scene

This chapter introduces the WebViewSample application and explains how to
implement the task of adding a WebView component to the scene of a JavaFX
application.

The WebViewSample application creates the Browser class that encapsulates both the
WebView object and the toolbar with UI controls. The WebviewSample class of the
application creates the scene and adds a Browser object to the scene.

4.1 Creating an Embedded Browser

Example 4-1 shows how to add the WebView component to the application scene.

Example 4-1 Creating a Browser by Using the WebView and WebEngine Classes

import javafx.application.Application;
import javafx.geometry.HPos;

import javafx.geometry.VPos;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.paint.Color;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class WebViewSample extends Application {

private Scene scene;

@override public void start(Stage stage) {
// create the scene
stage.setTitle("Web View");
scene = new Scene(new Browser(),900,600, Color.web("#666970"));
stage.setScene (scene) ;
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
stage.show () ;

public static void main(String[] args){
launch (args) ;

Adding a WebView Component to the Application Scene 4-1

Creating an Embedded Browser

class Browser extends Region {

final WebView browser = new WebView();
final WebEngine webEngine = browser.getEngine();

public Browser () {
//apply the styles
getStyleClass () .add("browser") ;
// load the web page
webEngine.load ("http://www.oracle.com/products/index.html");
//add the web view to the scene
getChildren() .add (browser) ;

}

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
return spacer;

@Override protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
layoutInArea (browser,0,0,w,h,0, HPos.CENTER, VPos.CENTER) ;

@Override protected double computePrefWidth(double height) {
return 900;

@Override protected double computePrefHeight (double width) {
return 600;

}

In this code, the web engine loads a URL that points to the Oracle corporate web site.
The WebView object that contains this web engine is added to the application scene by
using the getChildren and add methods.

When you add, compile, and run this code fragment, it produces the application
window shown in Figure 4-1.

4-2 JavaFX/Adding HTML Content to JavaFX Applications

Creating an Application Toolbar

Figure 4-1 WebView Object in an Application Scene

- .
57 Web View = @
ORACLE Sign In/Register for Account Help Select CountryiRegion Cor

PRODUCTS AND SERVICES SOLUTIONS DOWNLOADS STORE SUPPORT TRAINING |

Oracle Products and Services

Qracle provides the world's most complete, open, and
integrated business software and hardware systems.

Operati

Middleware Syste

7 What's New - B 7 Top Trends
Forbes Forbes BrandVoice: Orade’s . g Oracle Cloud
=

Software on Silicon, by Bob Evans

. Applications | Database El;glr:eered “Enterprlse‘ Java
¥

4.2 Creating an Application Toolbar

Add a toolbar with four Hyperlink objects to switch between different Oracle web
resources. Study the modified code of the Browser class shown in Example 4-2. It adds
URL: for alternative web resources including Oracle products, blogs, Java
documentation, and the partner network. The code fragment also creates a toolbar and
adds the hyperlinks to it.

Example 4-2 Creating a Toolbar

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.geometry.HPos;

import javafx.geometry.VPos;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.control.Hyperlink;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.paint.Color;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class WebViewSample extends Application {
private Scene scene;

@Ooverride public void start(Stage stage) {

Adding a WebView Component to the Application Scene 4-3

Creating an Application Toolbar

// create scene

stage.setTitle("Web View");

scene = new Scene(new Browser(),900,600, Color.web("#666970"));
stage.setScene (scene) ;
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage

stage.show () ;

public static void main(String[] args){
launch (args) ;

}
class Browser extends Region {
private HBox toolBar;

final private static String[] imageFiles = new String[]({
"product.png",
"blog.png",
"documentation.png",
"partners.png"

Yi
final private static String[] captions = new String[]({
"Products",
"Blogs",
"Documentation",
"Partners"
Yi

final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html"

}i

final ImageView selectedImage = new ImageView();

final Hyperlink[] hpls = new Hyperlink[captions.length];
final Image[] images = new Image[imageFiles.length];
final WebView browser = new WebView() ;

final WebEngine webEngine = browser.getEngine();

public Browser() {
//apply the styles
getStyleClass () .add("browser") ;

for (int i = 0; i < captions.length; i++) {
final Hyperlink hpl = hpls[i] = new Hyperlink(captions[i]);
Image image = images[i] =
new Image(getClass().getResourceAsStream(imageFiles[i]));
hpl.setGraphic (new ImageView (image));
final String url = urls[il];

hpl.setOnAction(new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent e) {
webEngine.load(url);

4-4 JavaFX/Adding HTML Content to JavaFX Applications

Creating an Application Toolbar

// load the home page
webEngine.load("http://www.oracle.com/products/index.html") ;

// create the toolbar
toolBar = new HBox();
toolBar.getStyleClass() .add("browser-toolbar");
toolBar.getChildren() .addAll (hpls);

//add components
getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
return spacer;

@Override protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w);
layoutInArea (browser,0,0,w,h-tbHeight, 0, HPos.CENTER, VPos.CENTER);
layoutInArea (toolBar, 0, h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@0Override protected double computePrefWidth (double height) {
return 900;

@Override protected double computePrefHeight (double width) {
return 600;

This code uses a for loop to create the hyperlinks. The setOnAction method defines
the behavior of the hyperlinks. When a user clicks a link, the corresponding URL value
is passed to the 1load method of the webEngine. When you compile and run the
modified application, the application window changes as shown in Figure 4-2.

Adding a WebView Component to the Application Scene 4-5

Creating an Application Toolbar

Figure 4-2 Embedded Browser with the Navigation Toolbar

(57 Web View =8

ORACLE
["pARTNERNETWORK

Home How to do Business OPN Program Knowledge Zones

PN WEBSITE REDESIGN

The OPN Website is Getting a New Look!
Get a sneak peak of our streamlined site launching later this month

4-6 JavaFX/Adding HTML Content to JavaFX Applications

O

Processing JavaScript Commands

This chapter extends the WebViewSample application and explains how to call
JavaScript commands from JavaFX code.

The WebEngine class provides API to run a script within the context of the current
HTML page.

5.1 Understanding the executeScript method

The executeScript method of the WebEngine class enables executing any JavaScript
commands declared in the loaded HTML page. Use the following string to call this
method on a web engine: webEngine.executeScript ("<function name>");.

The method execution result is converted to a java.lang.Object instance by using
the following rules:

= JavaScript Int32 is converted to java.lang.Integer

= JavaScript numbers are converted to java.lang.Double

= JavaScript string values are converted to java.lang.String

= JavaScript boolean values are converted to java.lang.Boolean

Refer to the API documentation for the WebEngine class for more information about
the conversion results.

5.2 Calling JavaScript Commands from JavaFX Code

Extend the WebViewSample application to execute a JavaScript command that toggles
the list of documents on the Java SE documentation page.

The modified application code shown in Example 5-1 creates an additional button to
hide and show the Java SE documentation for the previous releases. The button is
added to the toolbar only when the Documentation page is selected.

Example 5-1 Adding the Toggle Previous Docs button

import javafx.application.Application;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Worker.State;
import javafx.event.ActionEvent;

import javafx.event.Event;

import javafx.event.EventHandler;

import javafx.geometry.HPos;

import javafx.geometry.Pos;

Processing JavaScript Commands 5-1

Calling JavaScript Commands from JavaFX Code

import javafx.geometry.VPos;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Hyperlink;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.paint.Color;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class WebViewSample extends Application {
private Scene scene;

@Ooverride

public void start(Stage stage) {
// create scene
stage.setTitle("Web View");
scene = new Scene(new Browser(), 900, 600, Color.web("#666970"));
stage.setScene(scene) ;
// apply CSS style
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage
stage.show() ;

public static void main(String[] args) {
launch(args) ;

class Browser extends Region {

private HBox toolBar;
final private static String[] imageFiles = new String[]{
"product.png",
"blog.png",
"documentation.png",
"partners.png",

Yi
final private static String[] captions = new Stringl[]{
"Products",
"Blogs",
"Documentation",
"Partners",
}i

final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html",

Yi

final ImageView selectedImage = new ImageView();

final Hyperlink[] hpls = new Hyperlink[captions.length];

final Image[] images = new Image[imageFiles.length];

5-2 JavaFX/Adding HTML Content to JavaFX Applications

Calling JavaScript Commands from JavaFX Code

final WebView browser = new WebView() ;

final WebEngine webEngine = browser.getEngine();

final Button showPrevDoc = new Button("Toggle Previous Docs");
private boolean needDocumentationButton = false;

public Browser() {

//apply the styles
getStyleClass () .add("browser") ;

for (int i = 0; 1 < captions.length; i++) {
// create hyperlinks
Hyperlink hpl = hpls[i] = new Hyperlink(captions[il]);
Image image = images[i] =
new Image (getClass().getResourceAsStream(imageFiles[i]));
hpl.setGraphic (new ImageView (image));
final String url = urls[i];
final boolean addButton = (hpl.getText().equals("Documentation"));

// process event
hpl.setOnAction(new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent e) {
needDocumentationButton = addButton;
webEngine.load(url);

});

// create the toolbar

toolBar = new HBox();

toolBar.setAlignment (Pos.CENTER) ;
toolBar.getStyleClass () .add("browser-toolbar") ;
toolBar.getChildren() .addAll (hpls);
toolBar.getChildren() .add(createSpacer()) ;

//set action for the button
showPrevDoc.setOnAction(new EventHandler() {
@Override
public void handle(Event t) {
webEngine.executeScript ("toggleDisplay('PrevRel')");

})i

// process page loading
webEngine.getLoadWorker () .stateProperty() .addListener (
new ChangeListener<State>() {
@Override
public void changed(ObservableValue<? extends State> ov,
State oldState, State newState) {
toolBar.getChildren() .remove (showPrevDoc) ;
if (newState == State.SUCCEEDED) {
if (needDocumentationButton) {
toolBar.getChildren() .add(showPrevDoc) ;

Processing JavaScript Commands 5-3

Calling JavaScript Commands from JavaFX Code

// load the home page
webEngine.load ("http://www.oracle.com/products/index.html");

//add components
getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
return spacer;

@Ooverride
protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w) ;
layoutInArea (browser, 0,0,w,h-tbHeight, 0, HPos.CENTER, VPos.CENTER) ;
layoutInArea (toolBar, 0, h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@Override
protected double computePrefWidth (double height) {
return 900;

@Override
protected double computePrefHeight (double width) {
return 600;

}

Loading always happens on a background thread. Methods that initiate loading return
immediately after scheduling a background job. The getLoadWorker () method
provides an instance of the Worker interface to track the loading progress. If the
progress status of the Documentation page is SUCCEEDED, the Toggle Previous Docs
button is added to the toolbar, as shown in Figure 5-1.

5-4 JavaFX/Adding HTML Content to JavaFX Applications

Calling JavaScript Commands from JavaFX Code

Figure 5-1 Toggle Previous Docs Button

.
7 Web View =8

T

ORACLE'

Dracle Technology N etwork > Java SE > Java SE Documentation

Java SE Technical Documentation

Java Platform, Standard Edition (Java SE)

& Jaasel
Java SE T is the current release of the Java SE platform.

wn

EE

A practical guide to the Java language containing hundreds of complete d

sunrlinan sl

u Products N Blogs Documentation f; Partners Toggle Previous Docs

The setOnAction method shown in Example 5-2 defines behavior for the Toggle
Previous Docs button.

Example 5-2 Executing a JavaScript Command
showPrevDoc.setOnAction (new EventHandler () {
@override
public void handle(Event t) {

webEngine.executeScript ("toggleDisplay('PrevRel')");
}
)

When the user clicks the Toggle Previous Doc button, the executeScript method runs
the toggleDisplay JavaScript function for the Documentation page, and the
documents for the previous Java releases appear, as shown in Figure 5-2. When the

user performs another click, the toggleDisplay function hides the lists of the
documents.

Processing JavaScript Commands 5-5

Calling JavaScript Commands from JavaFX Code

Figure 5-2 Showing the Java SE Documentation

5 Web View

ht

&

JavaTutorials

A practical guide to the Java language containing hundreds of complete q
working examples, 1

= Previous Releases

Java SE for Embedded
Java SE for Embedded is based on Java SE and provides specific features and
technical documentation.

support for embedded systems. View

RELATED TEC 3 RELATED

Documentation “V Partners Togqle Previous Docs

5-6 JavaFX/Adding HTML Content to JavaFX Applications

Making Upcalls from JavaScript to JavaFX

Now you know how to invoke JavaScript from JavaFX. In this chapter, you can explore
the opposite functionality — calling from web content to JavaFX.

The general concept is to create an interface object in the JavaFX application and make
it known to JavaScript by calling the JSObject . setMember () method. After that, you
can call public methods and access public fields of this object from JavaScript.

6.1 Using a JavaScript Command to Exit JavaFX Application

For the WebViewSample application, you create the Help toolbar item that leads to the
help.html file, where a user can preview reference material about Oracle web sites. By
clicking the Exit the Application link in the help.html file, the user exits the
WebViewSample application. Modify the application, as shown in Example 6-1, to
implement this functionality.

Example 6—1 Closing JavaFX Application by Using JavaScript

import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Worker.State;
import javafx.event.ActionEvent;
import javafx.event.Event;

import javafx.event.EventHandler;
import javafx.geometry.HPos;

import javafx.geometry.Pos;

import javafx.geometry.VPos;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Hyperlink;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.paint.Color;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

import netscape.javascript.JSObject;

public class WebViewSample extends Application {

Making Upcalls from JavaScript to JavaFX 6-1

Using a JavaScript Command to Exit JavaFX Application

private Scene scene;

@override

public void start(Stage stage) {
// create scene
stage.setTitle("Web View");
scene = new Scene(new Browser (), 900, 600, Color.web("#666970"));
stage.setScene(scene) ;
// apply CSS style
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage
stage.show() ;

public static void main(String[] args) {
launch (args) ;

class Browser extends Region {

private HBox toolBar;
final private static String[] imageFiles = new String[]{
"product.png",
"blog.png",
"documentation.png",
"partners.png",
"help.png"
}i
final private static String[] captions = new String[]({
"Products",
"Blogs",
"Documentation",
"Partners",
"Help"
}i
final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html",
WebViewSample.class.getResource("help.html").toExternalForm()
Y
final ImageView selectedImage = new ImageView();
final Hyperlink[] hpls = new Hyperlink[captions.length];
final Image[] images = new Image[imageFiles.length];
final WebView browser = new WebView();
final WebEngine webEngine = browser.getEngine();
final Button showPrevDoc = new Button("Toggle Previous Docs");
private boolean needDocumentationButton = false;

public Browser() {
//apply the styles
getStyleClass () .add("browser") ;

for (int 1 = 0; i < captions.length; i++) {
// create hyperlinks
Hyperlink hpl = hpls[i] = new Hyperlink(captions[il]);
Image image = images[i]
new Image(getClass().getResourceAsStream(imageFiles[i]));

6-2 JavaFX/Adding HTML Content to JavaFX Applications

Using a JavaScript Command to Exit JavaFX Application

hpl.setGraphic (new ImageView (image));
final String url = urls[i];
final boolean addButton = (hpl.getText().equals("Documentation"));

// process event
hpl.setOnAction (new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent e) {
needDocumentationButton = addButton;
webEngine.load(url) ;

// create the toolbar

toolBar = new HBox();

toolBar.setAlignment (Pos.CENTER) ;
toolBar.getStyleClass () .add("browser-toolbar") ;
toolBar.getChildren() .addAll (hpls);
toolBar.getChildren() .add(createSpacer());

//set action for the button
showPrevDoc.setOnAction (new EventHandler () {
@override
public void handle(Event t) {
webEngine.executeScript ("toggleDisplay('PrevRel')");

i

// process page loading
webEngine.getLoadWorker () .stateProperty () .addListener (
new ChangeListener<State>() {
@Override
public void changed(ObservableValue<? extends State> ov,
State oldState, State newState) {
toolBar.getChildren() .remove (showPrevDoc) ;
if (newState == State.SUCCEEDED) {
JSObject win =
(JSObject) webEngine.executeScript ("window");
win.setMember ("app", new JavaApp());
if (needDocumentationButton) {
toolBar.getChildren () .add(showPrevDoc) ;

)

// load the home page
webEngine.load ("http://www.oracle.com/products/index.html");

//add components

getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

// JavaScript interface object
public class JavalApp {

Making Upcalls from JavaScript to JavaFX 6-3

Adding an Exit Command to the HTML Page

public void exit() {
Platform.exit();

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow (spacer, Priority.ALWAYS);
return spacer;

@Override
protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w);
layoutInArea (browser,0,0,w, h-tbHeight, 0, HPos.CENTER, VPos.CENTER) ;
layoutInArea (toolBar, 0, h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@override
protected double computePrefWidth (double height) {
return 900;

@Ooverride
protected double computePrefHeight (double width) {
return 600;

}

Examine the bold lines in Example 6-1. The exit () method of the JavaApp interface is
public; therefore, it can be accessed externally. When this method is called, it causes
the JavaFX application to terminate.

6.2 Adding an Exit Command to the HTML Page

The Javaapp interface in Example 6-1 is set as a member of the JSObject instance, so
that JavaScript becomes aware of that interface. It becomes known to JavaScript under
the name window.app, or just app, and its only method can be called from JavaScript as
app.exit (). See Example 6-2 to evaluate how this call is implemented in the help.html
file.

Example 6—2 Making a Call to the WebViewSample Application from the Help File

<html lang="en">
<body>
<p>Help</p>

Products - Extensive overview of Oracle hardware and software products,
and summary Oracle consulting, support, and educational services. </1i>
<1i>Blogs - Oracle blogging community (use the Hide All and Show All buttons
to collapse and expand the list of topics).</1i>
Documentation - Landing page to start learning Java. The page contains
links to the Java tutorials, developer guides, and API documentation.
various Oracle products and solution.
Partners - Oracle partner solutions and programs. Popular resources and
membership opportunities.

6-4 JavaFX/Adding HTML Content to JavaFX Applications

Adding an Exit Command to the HTML Page

<p>Exit the Application</p>

</body>
</html>

When you compile and run the WebViewSample application, the new icon appears, as

shown in Figure 6-1.

Figure 6—1 Help Icon

B Web View

ORACLE’

PRODUCTS AND SERVICES SOLUTIONS DOWNLOADS

Oracle provides the world's most complete, open, and
integrated business software and hardware systems.

= o Engineered Enterprise
. Applications | Database | SYEtE (il et
7 What's New >
_ Tosdooo | =

STORE

Oracle Products and Services

Java

.‘ 7 Top Trends

SUPPORT

TRAINING

PARTNE

|

. Operating
Middleware Systems

Stora

Documentation

E Products m Blogs

Al
>

Partners

Help

Click Help to load the help.html file. Examine the content of the file, then click the Exit
the Application link, shown in Figure 6-2, to close the WebViewSample application.

Figure 6-2 Help.html file

17 Web View

Help

consulting, support, and educational services.

list of topics).

developer guides, and APl documentation.

Esi oy

Products m Blogs

Decumentation fh" Partners

Products - Extensive overview of Oracle hardware and software products, and summary Oracle
Blogs - Oracle blogging community (use the Hide All and Show All buttons to collapse and expand the
Documentation - Landing page to start learning Java. The page contains links to the Java tutorials,

Partners - Oracle partner solutions and programs. Popular resources and membership opportunities.

==)

Making Upcalls from JavaScript to JavaFX 6-5

Adding an Exit Command to the HTML Page

6-6 JavaFX/Adding HTML Content to JavaFX Applications

Managing Web Pop-Up Windows

This chapter explains how to work with pop-up windows in the browser created by
using the WebView component and how to implement this functionality in the
WebViewSample application.

When you need to open a new browser window in your application, the instances of
the PopupFeatures class are passed into pop-up handlers registered on a WebEngine
object by using the setCreatePopupHandler method.

7.1 Using Pop-Up Windows to Set

In the WebViewSample application, you can set an alternative WebView object for the
documents that will be opened in a separate window. Figure 7-1 shows a context
menu a user can open by right-clicking any link.

Figure 7-1 Pop-Up Window

[~
17 Web View [E=E] =
TUIDES Forves Brandvoice: Orade’s T < ;m Oracle Cloud .. I?

- 7] |

Software on Silicon, by Bob Evans

More 7 More 7

Products + See All Products A-Z + View Products by Acquired Companies

> Applications » Operating Systems

Orade Applications oeovide comnlete choice and 3 secure path for Oradle Solaris, the #1 enterprise UNIX operating system, and Or;
customers Open Link ooy advances. Through Linuz, svallable with Oracle’s Unbreakable Enterprise Kemel,
the Oracle o " Orade has comrittad o provide high pefforrmance, scalability, and relabdity. Both are
custorner chigal] w“i' Rl R il =it and innovation in optirrized to run Orade hardware, databases, and middleware
current apol o0 | T to Clipboard b next-generation Fusion

Applicationg b drive better business > Servers

performance.

Oracle's SPARC, Sun 186, Sun Blade 3nd Sun Netra carier-gra

See 3l applications SerVers afe engineered 1o defiver necord-breaking performance.
simplified management, high availability, and cost-saving

» Database afficiencies. Thess industry-leading systems nclude built-in

Oradle Databases help customers lower IT costs and deliver a viitualization and are optirrized to run Oracle Solaris, Oracle Liny

higher quality of saivica by enabling consolidation onto database Oracle VM. and cther leacing operating systems to suppart Oracy

dlowds and engineered systems like Oracle Exadata and Oradle and non-Oracle applications and sohutions

Database Appliance. Proven 1o be fast, reliable, secure and easy 1o See ol sewvers

manane Orade Dalahase 1108 ideally suited for sl enes of 1=

al J e

! Products a Blogs W Documentation :: Partners

To specify a new browser window for the target document, use the PopupFeatures
instance as shown in the modified application code in Example 7-1.

Example 7-1 Processing a Command of a Pop-Up Window

import javafx.application.Application;
import javafx.application.Platform;

Managing Web Pop-Up Windows 7-1

Using Pop-Up Windows to Set

import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Worker.State;
import javafx.event.ActionEvent;
import javafx.event.Event;

import javafx.event.EventHandler;
import javafx.geometry.HPos;

import javafx.geometry.Pos;

import javafx.geometry.VPos;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Hyperlink;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.paint.Color;
import javafx.scene.web.PopupFeatures;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

import javafx.util.Callback;

import netscape.javascript.JSObject;

public class WebViewSample extends Application {
private Scene scene;

@override

public void start(Stage stage) {
// create scene
stage.setTitle("Web View");
scene = new Scene(new Browser(), 900, 600, Color.web("#666970"));
stage.setScene (scene) ;
// apply CSS style
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage
stage.show() ;

public static void main(String[] args) {
launch(args) ;

class Browser extends Region {

private HBox toolBar;
final private static String[] imageFiles = new String[]{
"product.png",
"blog.png",
"documentation.png",
"partners.png",

"help.png"

}i

final private static String[] captions = new Stringl[]{
"Products",
"Blogs",

7-2 JavaFX/Adding HTML Content to JavaFX Applications

Using Pop-Up Windows to Set

"Documentation",
"Partners",
"Help"

}i

final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html",
WebViewSample.class.getResource ("help.html") .toExternalForm()

Yi

final ImageView selectedImage = new ImageView();

final Hyperlink[] hpls = new Hyperlink[captions.length];

final Image[] images = new Image[imageFiles.length];

final WebView browser = new WebView() ;

final WebEngine webEngine = browser.getEngine();

final Button showPrevDoc = new Button("Toggle Previous Docs");

final WebView smallView = new WebView();

private boolean needDocumentationButton = false;

public Browser () {
//apply the styles
getStyleClass () .add("browser") ;

for (int 1 = 0; i < captions.length; i++) {
// create hyperlinks
Hyperlink hpl = hpls[i] = new Hyperlink(captions[i]);
Image image = images[i] =
new Image(getClass().getResourceAsStream(imageFiles[i]));
hpl.setGraphic (new ImageView(image));
final String url = urls[i];
final boolean addButton = (hpl.getText().equals("Documentation"));

// process event
hpl.setOnAction (new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent e) {
needDocumentationButton = addButton;
webEngine.load(url) ;

// create the toolbar

toolBar = new HBox();

toolBar.setAlignment (Pos.CENTER) ;
toolBar.getStyleClass () .add("browser-toolbar") ;
toolBar.getChildren() .addall (hpls);
toolBar.getChildren() .add(createSpacer());

//set action for the button
showPrevDoc.setOnAction (new EventHandler() {
@override

public void handle(Event t) {
webEngine.executeScript ("toggleDisplay('PrevRel')");

i

smallView.setPrefSize (120, 80);

Managing Web Pop-Up Windows 7-3

Using Pop-Up Windows to Set

//handle popup windows
webEngine.setCreatePopupHandler (
new Callback<PopupFeatures, WebEngine>() {
@Override public WebEngine call (PopupFeatures config) {
smallView.setFontScale(0.8);
if (!toolBar.getChildren().contains(smallView)) {
toolBar.getChildren() .add(smallView);

}
return smallView.getEngine();

// process page loading
webEngine.getLoadWorker () .stateProperty () .addListener (
new ChangeListener<State>() {
@Override
public void changed(ObservableValue<? extends State> ov,
State oldState, State newState) {
toolBar.getChildren () .remove (showPrevDoc) ;
if (newState == State.SUCCEEDED) ({
JSObject win =
(JSObject) webEngine.executeScript ("window") ;
win.setMember ("app", new JavalApp());
if (needDocumentationButton) {
toolBar.getChildren () .add(showPrevDoc) ;

)

// load the home page
webEngine.load("http://www.oracle.com/products/index.html") ;

//add components
getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

// JavaScript interface object
public class JavaApp {

public void exit() {
Platform.exit () ;

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
return spacer;

@override
protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w);

7-4 JavaFX/Adding HTML Content to JavaFX Applications

Using Pop-Up Windows to Set

layoutInArea (browser,0,0,w, h-tbHeight, 0, HPos.CENTER, VPos.CENTER);
layoutInArea (toolBar, 0,h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@Override
protected double computePrefWidth (double height) {
return 900;

@override
protected double computePrefHeight (double width) {
return 600;

When a user selects the Open Link in New Window option from the pop-up menu, the
smallView browser is added to the application toolbar. This behavior is defined by the
setCreatePopupHandler method, which returns the web engine of an alternative
browser to notify the application where to render the target page. The result of
compiling and running the modified application is shown in Figure 7-2.

Figure 7-2 Small Preview Browser

BT Web View

l'orbes Forbes BrandVolca: Oracle's

Software on Silicon, by Bob Evans

5 im Orace Cloud - 3
s 5

More 7 More 7

Products + See All Products A-Z + View Products by Acquired Comrpanies

» Applications » Operating Systems

Oracle Applications provide complete choice and a secure path for
customers to benefit from the latest technology advances. Through

the Oracle Applications Unlimited program, Oracle has committed to

custormer choice through cantinuous investment and innovation in

Qracle Solaris, the #1 enterprise UINIX operating system and Or
Linwe, available with Oracle’s Unbreakable Enferprise Kermel,
provide high performance, scalabiity. and reliabiity. Both are
optirrized to run Oracle hardware, databases, and middeware

current applications offerings. while Orade’s next-generation Fusion

Applications builds upon that commitment 1o diive betler business » Servers
formance.
o Oracle’s SPARC, Sun x86, Sun Blade and Sun Netra carriar-grad
See il appications SeIvers are engneered 1o delier record-breaking pedormance,
simplified management, high availabilty, and cost-saving
» Database

efficiencies. These industry-leading sy stems include built-in
virtualization and are optirrized to run Oracle Solaris, Oracle Lin
Oracle VM. and other leading operating svstems to sucoor Oracis

Oracle Databases help customers lower IT costs and deliver a
hinhar maslity of canira b anahling ik,

Documentation !;. Partners

Products Il Blogs

Note that context menus are enabled by default for all WebView objects. To disable a
context menu for a particular WebView instance, pass the false value to the
setContextMenuEnabled method: browser. setContextMenuEnabled (false) ;.

Managing Web Pop-Up Windows 7-5

Using Pop-Up Windows to Set

7-6 JavaFX/Adding HTML Content to JavaFX Applications

8

Managing Web History

This chapter introduces the WebHistory class and teaches how to obtain and show the
URLs of visited pages.

You can obtain the list of visited pages by using the WebHistory class. It represents a
session history associated with a WebEngine object. Use the WebEngine.getHistory ()
method to get the WebHistory instance for a particular web engine, as shown in the
following line: WebHistory history = webEngine.getHistory();.

The history is basically a list of entries. Each entry represents a visited page and it
provides access to relevant page info, such as URL, title, and the date the page was last
visited. The list can be obtained by using the getEntries () method.

The history list changes as users navigate through the web. Use the ObservableList
API to process the changes.

8.1 Obtaining the List of Visited Pages

You typically use a standard or custom UI control to display the history list.
Example 8-1 shows how to obtain a history items and present them in the ComboBox
control.

Example 8-1 Obtaining and Processing the List of Web History Items

final WebHistory history = webEngine.getHistory();
history.getEntries().addListener (new
ListChangelListener<WebHistory.Entry>() {

@Ooverride

public void onChanged(Change<? extends Entry> c) {
c.next();
for (Entry e : c.getRemoved()) {

comboBox.getItems () .remove (e.getUrl());
}
for (Entry e : c.getAddedSubList()) {
comboBox.getItems () .add(e.getUrl());
}

)i

comboBox.setPrefiWidth(60) ;
comboBox.setOnAction (new EventHandler<ActionEvent>() {
@override
public void handle(ActionEvent ev) {
int offset =
comboBox.getSelectionModel () .getSelectedIndex ()

Managing Web History 8-1

Obtaining the List of Visited Pages

- history.

getCurrentIndex () ;

history.go(offset);

I

The ListChangeListener object tracks the changes of history entries and adds the
corresponding URLs to the combo box.

When users select any item in the combo box, the web engine is navigated to the URL
defined by the history entry item, which position in the list is defined by the offset
value. A negative offset value specifies the position preceding the current entry, and
a positive of fset value specifies the position following the current entry.

Example 8-2 shows the complete code of the modified application.

Example 8-2

import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.
import javafx.

WebViewSample with the History Combo Box

application.
application.
beans.value.
beans.value.
collections
collections.

Application;
Platform;
ChangeListener;
ObservableValue;

.ListChangeListener;

ListChangeListener.Change;

concurrent.Worker.State;
event.ActionEvent;

event.Event;

event.EventHandler;
geometry.HPos;
geometry.Pos;
geometry.VPos;

scene.Node;
scene.Scene;

scene.control.Button;
scene.control.ComboBox;
scene.control .Hyperlink;

scene. image.
scene.image.

Image;
ImageView;

scene. layout.HBox;
scene.layout.Priority;
scene.layout.Region;

scene.paint.

Color;

scene.web.PopupFeatures;
scene.web.WebEngine;
scene.web.WebHistory;
scene.web.WebHistory.Entry;
scene.web.WebView;

stage.Stage;

util.Callback;
import netscape.javascript.JSObject;

public class WebViewSample extends Application {

private Scene scene;

@Ooverride

public void start(Stage stage) {
// create scene
stage.setTitle("Web View");

= new Scene (new Browser (), 900, 600, Color.web("#666970"));

stage.setScene (scene) ;

scene

8-2 JavaFX/Adding HTML Content to JavaFX Applications

Obtaining the List of Visited Pages

// apply CSS style
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage

stage.show() ;

public static void main(String[] args) {
launch(args) ;

}

class Browser extends Region {

private HBox toolBar;
final private static String[] imageFiles = new String[]{
"product.png",
"blog.png",
"documentation.png",
"partners.png",
"help.png"
i
final private static String[] captions = new String[]{
"Products",
"Blogs",
"Documentation",
"Partners",
"Help"
}i
final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html",
WebViewSample.class.getResource ("help.html") .toExternalForm()
}i
final ImageView selectedImage = new ImageView();
final Hyperlink[] hpls = new Hyperlink[captions.length];
final Image[] images = new Image[imageFiles.length];
final WebView browser = new WebView() ;
final WebEngine webEngine = browser.getEngine();
final Button showPrevDoc = new Button("Toggle Previous Docs");
final WebView smallView = new WebView() ;
final ComboBox comboBox = new ComboBox();
private boolean needDocumentationButton = false;

public Browser () {
//apply the styles
getStyleClass () .add("browser") ;

for (int 1 = 0; i < captions.length; i++) {
// create hyperlinks
Hyperlink hpl = hpls[i]
Image image = images[i]

new Image(getClass().getResourceAsStream(imageFiles[i]));

hpl.setGraphic (new ImageView(image));
final String url = urls[i];
final boolean addButton = (hpl.getText().equals("Documentation"));

new Hyperlink(captions[i]);

// process event
hpl.setOnAction (new EventHandler<ActionEvent>() {
@Override

Managing Web History 8-3

Obtaining the List of Visited Pages

public void handle(ActionEvent e) {
needDocumentationButton = addButton;
webEngine.load(url) ;

i

comboBox.setPrefWidth(60);

// create the toolbar

toolBar = new HBox();

toolBar.setAlignment (Pos.CENTER) ;
toolBar.getStyleClass () .add("browser-toolbar") ;
toolBar.getChildren () .add (comboBox) ;
toolBar.getChildren() .addAll (hpls);
toolBar.getChildren() .add(createSpacer()) ;

//set action for the button
showPrevDoc.setOnAction (new EventHandler () {
@Override
public void handle(Event t) {
webEngine.executeScript ("toggleDisplay ('PrevRel')");

i
smallView.setPrefSize (120, 80);

//handle popup windows
webEngine. setCreatePopupHandler (
new Callback<PopupFeatures, WebEngine>() {
@Override public WebEngine call (PopupFeatures config) {
smallView.setFontScale(0.8);
if (!toolBar.getChildren().contains (smallView)) {
toolBar.getChildren() .add(smallView) ;

}

return smallView.getEngine();

)

//process history
final WebHistory history = webEngine.getHistory();
history.getEntries().addListener (new
ListChangeListener<WebHistory.Entry> () {
@Override
public void onChanged(Change<? extends Entry> c) {
c.next();
for (Entry e : c.getRemoved()) {
comboBox.getItems () .remove(e.getUrl());
}
for (Entry e : c.getAddedSubList()) {
comboBox.getItems().add(e.getUrl());

});:
//set the behavior for the history combobox
comboBox.setOnAction(new EventHandler<ActionEvent>() {

@Override
public void handle(ActionEvent ev) {

8-4 JavaFX/Adding HTML Content to JavaFX Applications

Obtaining the List of Visited Pages

int offset =
comboBox.getSelectionModel () .getSelectedIndex()
- history.getCurrentIndex();
history.go(offset);

})i

// process page loading
webEngine.getLoadWorker () .stateProperty () .addListener (
new ChangeListener<State>() {
@Override
public void changed(ObservableValue<? extends State> ov,
State oldState, State newState) {
toolBar.getChildren () .remove (showPrevDoc) ;
if (newState == State.SUCCEEDED) ({
JSObject win =
(JSObject) webEngine.executeScript ("window") ;
win.setMember ("app", new JavalApp());
if (needDocumentationButton) {
toolBar.getChildren () .add(showPrevDoc) ;

)i

// load the home page
webEngine.load("http://www.oracle.com/products/index.html") ;

//add components
getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

// JavaScript interface object
public class JavaApp {

public void exit() {
Platform.exit () ;

private Node createSpacer() {
Region spacer = new Region();
HBox.setHgrow (spacer, Priority.ALWAYS);
return spacer;

@Ooverride
protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w);
layoutInArea (browser, 0,0,w,h-tbHeight, 0, HPos.CENTER, VPos .CENTER) ;
layoutInArea (toolBar, 0, h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@override
protected double computePrefWidth (double height) ({

Managing Web History 8-5

Obtaining the List of Visited Pages

return 900;

@override
protected double computePrefHeight (double width) {

return 600;

When you compile and run the application, it produces the window shown in
Figure 8-1.

Figure 8-1 Selecting URL from the History Combo Box

B Web View

ORACLE’

PRODUCTS AND SERVICES SOLUTIONS DOWMLOADS STORE SUPPORT TRAINING PARTNERS AB

Oracle Products and Services

Oracle provides the world's most complete, open, and
integrated business software and hardware systems.

R~ Engineared Enterprise - Operating Server and
. Applications_| Database | ooyese | Managements | 2 Middleware. | oo oris | Storage Systo

» What's New » Top Trends

FOl‘beS Fortes BrandVoice: Orade’s ’\m Ovacle Cloud

- w Products l‘L Blogs Documentation f;_ Partners
MM}M\{}amda.mm’un’proﬂm&ﬁnﬁmﬂ

httpfwww.gracle.comypartners/indexhtml

htps//blogs.oracle.com/

hittpe//www.oracle.com/us/products/indexchtrnl

8-6 JavaFX/Adding HTML Content to JavaFX Applications

9

Printing HTML Content

This chapter teaches you how to print a web page loaded in the WebView component.

With the printing API available in JavaFX 8, you can print graphical content of JavaFX
applications. The corresponding classes and enums are located in the javafx.print
package.

9.1 Using the Printing API

To enable the printing functionality in your JavaFX application, you must use the
PrinterJob class. This class represents a printer job that is associated with the default
system printer. Use the Printer class to alter a printer for a particular job. For each
print job, you can specify job settings by using the properties of the JobSettings class
such as collation, copies, pagelayout, pageRanges, paperSource, printColor,
printResolution, printQuality, and printSides.

You can print any node of the scene graph including the root node. You can also print
nodes that are not added to the scene. Use the printPage method to initiate a print job
for a particular node: job.printPage (node). See the to JavaFX 8 API specification for
more information about printing capabilities.

When working with the JavaFX web component, you typically need to print an HTML
page loaded into the browser rather than the application Ul itself. That is why the
print method was added to the WebEngine class. This method is geared toward
printing an HTML page that is associated with the web engine.

9.2 Adding a Context Menu to Enable Printing

Typically, you add a Print command to an application menu or assign printing to one
of the toolbar buttons. In the WebViewSample application, the toolbar is overloaded
with controls, which is why you add the Print command to the context menu that is
enabled by a right-click. Example 9-1 shows a code fragment that adds a context menu
with the Print command to the application toolbar.

Example 9-1 Creating a Toolbar Context Menu

//adding context menu

final ContextMenu cm = new ContextMenu();

MenuItem cmIteml = new Menultem("Print");

cm.getItems () .add(cmIteml) ;

toolBar.addEventHandler (MouseEvent .MOUSE_CLICKED,
new EventHandler<MouseEvent> () {

@Override
public void handle (MouseEvent e) {
if (e.getButton() == MouseButton.SECONDARY) {

Printing HTML Content 9-1

Processing a Print Job

cm.show(toolBar, e.getScreenX(), e.getScreenY());

)i

When you add the code fragment from Example 9-1 to the WebViewSample
application, run it, and right click the toolbar, the Print context menu appears, as
shown in Figure 9-1.

Figure 9—1 Print Context Menu

i1 Web View Sample =] o

ORACLE’

Oracle Technology Nefwork > Java SE > Java SE Documentation

Java SE Technical Documentation

«
Y
-t
—
Java Platform, Standard Edition (Java SE) —_—
@ savaSE7 Search
Java SE 7 is the current release of the Java SE platform.
Agvance
AP Documentation
z e Othel
« Java Language and Viftual Machine Specifications
» Deyeloper Guides @) Ja
« JDK [JRE Instaliaticn Instructions @ Ja
+ JDK Releaze Notes @
L] @ Ja
H Java Tutorials

A nractical auida ta the Java lannuane containing hundrads of comnlate

9.3 Processing a Print Job

After the Print context menu is added to the application U, you can define the
printing action. First, you must create a PrinterJob object. Then, you call the
WebEngine.print method passing the printer job as a parameter, as shown in
Example 9-2.

Example 9-2 Calling the WebEngine.print Method

//processing print job
cmIteml.setOnAction (new EventHandler<ActionEvent> () {
public void handle(ActionEvent e) {
PrinterJob job = PrinterJob.createPrinterJob();
if (job != null) {
webEngine.print (job) ;
job.endJob () ;

)i

It is important to check for non-null printer jobs, because the createPrinterJob
method returns null if there are no printers available in the system.

9-2 JavaFX/Adding HTML Content to JavaFX Applications

Processing a Print Job

Study Example 9-3 to evaluate the complete code of the WebViewSample application
with the enabled printing functionality.

Example 9-3 WebViewSample With the Enabled Printing Functionality

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

javafx.application.Application;
javafx.application.Platform;
javafx.beans.value.ChangelListener;
javafx.beans.value.ObservableValue;
javafx.collections.ListChangeListener;
javafx.collections.ListChangeListener.Change;
javafx.concurrent.Worker.State;
javafx.event.ActionEvent;
javafx.event.Event;
javafx.event.EventHandler;
javafx.geometry.HPos;
javafx.geometry.Pos;
javafx.geometry.VPos;
javafx.print.PrinterJob;
javafx.scene.Node;
javafx.scene.Scene;
javafx.scene.control.Button;
javafx.scene.control.ComboBox;
javafx.scene.control.ContextMenu;
javafx.scene.control.Hyperlink;
javafx.scene.control.Menultem;
javafx.scene.image.Image;
javafx.scene.image.ImageView;
javafx.scene.input.MouseButton;
javafx.scene.input.MouseEvent;
javafx.scene.layout.HBox;
javafx.scene.layout.Priority;
javafx.scene.layout.Region;
javafx.scene.paint.Color;
javafx.scene.web.PopupFeatures;
javafx.scene.web.WebEngine;
javafx.scene.web.WebHistory;
javafx.scene.web.WebHistory.Entry;
javafx.scene.web.WebView;
javafx.stage.Stage;
javafx.util.Callback;
netscape.javascript.JSObject;

class WebViewSample extends Application {

private Scene scene;

@Override
public void start(Stage stage) {

// create scene

stage.setTitle("Web View");

scene = new Scene(new Browser (), 900, 600, Color.web("#666970"));
stage.setScene (scene) ;

// apply CSS style
scene.getStylesheets () .add("webviewsample/BrowserToolbar.css");
// show stage

stage.show() ;

public static void main(String[] args) {

Printing HTML Content

9-3

Processing a Print Job

launch(args) ;

}

class Browser extends Region {

private HBox toolBar;
final private static String[] imageFiles = new String[]{
"product.png",
"blog.png",
"documentation.png",
"partners.png",
"help.png"

Y

final private static String[] captions = new String[]{
"Products",
"Blogs",
"Documentation",
"Partners",
"Help"

Y

final private static String[] urls = new String[]{
"http://www.oracle.com/products/index.html",
"http://blogs.oracle.com/",
"http://docs.oracle.com/javase/index.html",
"http://www.oracle.com/partners/index.html",
WebViewSample.class.getResource("help.html") .toExternalForm()

}i

final
final
final
final
final
final
final
final

ImageView selectedImage = new ImageView();

Hyperlink[] hpls = new Hyperlink[captions.length];
Image[] images = new Image[imageFiles.length];

WebView browser = new WebView() ;

WebEngine webEngine = browser.getEngine();

Button showPrevDoc = new Button("Toggle Previous Docs");
WebView smallView = new WebView();

ComboBox comboBox = new ComboBox() ;

private boolean needDocumentationButton = false;

public Browser () {
//apply the styles
getStyleClass () .add("browser") ;

for (int i = 0; 1 < captions.length; i++) {

// create hyperlinks
Hyperlink hpl = hpls[i] = new Hyperlink(captions[i]);
Image image = images[i] =
new Image(getClass().getResourceAsStream(imageFiles[i]));
hpl.setGraphic (new ImageView(image));
final String url = urls[i];
final boolean addButton = (hpl.getText().equals("Documentation"));

// process the event
hpl.setOnAction (new EventHandler<ActionEvent>() {
@Override
public void handle(ActionEvent e) {
needDocumentationButton = addButton;
webEngine.load(url) ;

9-4 JavaFX/Adding HTML Content to JavaFX Applications

Processing a Print Job

comboBox.setPrefWidth (60) ;

// create the toolbar

toolBar = new HBox();

toolBar.setAlignment (Pos.CENTER) ;
toolBar.getStyleClass () .add("browser-toolbar") ;
toolBar.getChildren () .add (comboBox) ;
toolBar.getChildren() .addAll (hpls);
toolBar.getChildren() .add(createSpacer());

//set an ction for the button
showPrevDoc.setOnAction (new EventHandler () ({
@override
public void handle(Event t) {
webEngine.executeScript ("toggleDisplay('PrevRel')");

)
smallView.setPrefSize (120, 80);

//handle popup windows
webEngine. setCreatePopupHandler (
new Callback<PopupFeatures, WebEngine>() {
@Override public WebEngine call (PopupFeatures config) {
smallView.setFontScale(0.8);
if (!toolBar.getChildren().contains (smallView)) {
toolBar.getChildren() .add(smallView) ;

}

return smallView.getEngine();

)

//process the history

final WebHistory history = webEngine.getHistory();

history.getEntries().addListener (new
ListChangeListener<WebHistory.Entry> () {

@Override

public void onChanged(Change<? extends Entry> c) {
c.next () ;
for (Entry e : c.getRemoved()) {

comboBox.getItems () .remove (e.getUrl());
}
for (Entry e : c.getAddedSubList()) {
comboBox.getItems () .add(e.getUrl());

i

//set the behavior for the history combobox
comboBox.setOnAction (new EventHandler<ActionEvent> () {
@Override
public void handle(ActionEvent ev) {
int offset =
comboBox.getSelectionModel () .getSelectedIndex ()
- history.getCurrentIndex() ;
history.go(offset);

Printing HTML Content 9-5

Processing a Print Job

// process page loading
webEngine.getLoadWorker () .stateProperty () .addListener (
new ChangeListener<State>() {
@Override
public void changed(ObservableValue<? extends State> ov,
State oldState, State newState) {
toolBar.getChildren () .remove (showPrevDoc) ;
if (newState == State.SUCCEEDED) ({
JSObject win =
(JSObject) webEngine.executeScript ("window") ;
win.setMember ("app", new JavalApp());
if (needDocumentationButton) {
toolBar.getChildren () .add(showPrevDoc) ;

)i

//adding a context menu
final ContextMenu cm = new ContextMenu();
Menultem cmIteml = new Menultem("Print");
cm.getItems().add(cmIteml);
toolBar.addEventHandler (MouseEvent .MOUSE_CLICKED,
new EventHandler<MouseEvent>() {
@Override
public void handle(MouseEvent e) {
if (e.getButton() == MouseButton.SECONDARY) {
cm. show(toolBar, e.getScreenX(), e.getScreenY());

//processing a print job
cmIteml.setOnAction(new EventHandler<ActionEvent>() {
public void handle(ActionEvent e) ({
PrinterJob job = PrinterJob.createPrinterdob();
if (job != null) {
webEngine.print (job);
job.endJob() ;

// load the home page
webEngine.load("http://www.oracle.com/products/index.html") ;

//add components

getChildren() .add(toolBar) ;
getChildren() .add (browser) ;

// JavaScript interface object
public class JavaApp {

public void exit() {
Platform.exit () ;

9-6 JavaFX/Adding HTML Content to JavaFX Applications

Processing a Print Job

private Node createSpacer() ({
Region spacer = new Region();
HBox.setHgrow(spacer, Priority.ALWAYS);
return spacer;

@Ooverride
protected void layoutChildren() {
double w = getWidth();
double h = getHeight();
double tbHeight = toolBar.prefHeight (w);
layoutInArea (browser, 0,0,w,h-tbHeight, 0, HPos.CENTER, VPos .CENTER) ;
layoutInArea (toolBar, 0, h-tbHeight,w, tbHeight, 0, HPos.CENTER, VPos.CENTER) ;

@Override
protected double computePrefWidth(double height) {
return 900;

@Override
protected double computePrefHeight (double width) {
return 600;

}

To extend the printing capabilities of the WebViewSample application, use the classes
available in the javafx.print package.

In your JavaFX application, you can implement browser tabs by using the TabPane
class and create a new WebView object when a user adds a new tab.

To further enhance this application, you can apply effects, transformations, and
animated transitions. You can also add more WebView instances to the application
scene.

See the JavaFX API documentation and the JavaFX CSS specification for more
information about available features. You can also study the JavaFX in Swing tutorial
to learn how to add a WebView component in your existing Swing application.

Related API Documentation
m WebView

s WebEngine

s WebHistory

s Region

s Hyperlink

s Worker

Printing HTML Content 9-7

Processing a Print Job

9-8 JavaFX/Adding HTML Content to JavaFX Applications

	1 What Is New
	2 Overview of the JavaFX WebView Component
	3 Supported Features of HTML5
	4 Adding a WebView Component to the Application Scene
	5 Processing JavaScript Commands
	6 Making Upcalls from JavaScript to JavaFX
	7 Managing Web Pop-Up Windows
	8 Managing Web History
	9 Printing HTML Content
	Part I About This Tutorial
	1 What Is New
	2 Overview of the JavaFX WebView Component
	2.1 WebEngine Class
	2.2 WebView Class
	2.3 PopupFeatures Class
	2.4 Other Features

	3 Supported Features of HTML5
	3.1 Canvas and SVG
	3.2 Media Playback
	3.3 Form Controls
	3.4 History Maintenance
	3.5 Support for Interactive Element Tags
	3.6 Document Object Model
	3.7 Web Sockets
	3.8 Web Workers
	3.9 Web Font Support

	4 Adding a WebView Component to the Application Scene
	4.1 Creating an Embedded Browser
	4.2 Creating an Application Toolbar

	5 Processing JavaScript Commands
	5.1 Understanding the executeScript method
	5.2 Calling JavaScript Commands from JavaFX Code

	6 Making Upcalls from JavaScript to JavaFX
	6.1 Using a JavaScript Command to Exit JavaFX Application
	6.2 Adding an Exit Command to the HTML Page

	7 Managing Web Pop-Up Windows
	7.1 Using Pop-Up Windows to Set

	8 Managing Web History
	8.1 Obtaining the List of Visited Pages

	9 Printing HTML Content
	9.1 Using the Printing API
	9.2 Adding a Context Menu to Enable Printing
	9.3 Processing a Print Job

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

