

Oracle® Java ME Embedded
Getting Started Guide for the Reference Platform (Qualcomm
IoE)

Release 8

E48513-03

July 2014

This guide describes how to install and run the Oracle Java
ME Embedded software on the Qualcomm IoE reference
platform.

Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Qualcomm IoE), Release 8

E48513-03

Copyright © 2013, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Shell Prompts .. vii
Conventions ... viii

1 Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board

Setting Up the Qualcomm IoE Board ... 1-1
Installing the Qualcomm IoE USB Drivers ... 1-2
Downloading and Installing the Brew MP SDK Tools .. 1-3
Copying Files to the Qualcomm IoE Board... 1-3
Downloading and Installing the PuTTY Terminal Emulator Program ... 1-5
Installing and Configuring the Oracle Java ME SDK 8.. 1-5

2 Installing and Running Applications on the Qualcomm IoE Board

Tooling Overview ... 2-1
Starting the Developer Agent Program Manually ... 2-2
Java Logging Interface Using the Developer Agent Program ... 2-2
Using the Command-Line Interface ... 2-2
AMS and System Commands .. 2-4
Virtual Root Paths .. 2-7
Configuring Wi-Fi Networking ... 2-7
IP Address Periodic Logging.. 2-8
Setting Up the System Time... 2-8
Reconnecting to Access Points .. 2-9
Using NetBeans with the Qualcomm IoE Board ... 2-10

Installing the Oracle Java ME SDK 8 Plug-in for NetBeans .. 2-10
Assigning the Qualcomm IoE Board to Your Project .. 2-10
Sample Source Code ... 2-11

Debugging an IMlet on the Qualcomm IoE Board... 2-12
Accessing Peripherals... 2-13

Signing the Application with API Permissions .. 2-13
Method #1: Signing Application Using the NetBeans IDE .. 2-14
Method #2: Signing Application with a Local Certificate .. 2-16

iv

Method #3: Using NullAuthenticationProvider .. 2-17
Installing and Running an IMlet Using the AMS CLI .. 2-17
Obtaining Java Logs from a Device ... 2-18

3 Troubleshooting

Starting Oracle Java ME Embedded Software on the Board ... 3-1
Using the Board with the Oracle Java ME SDK and the NetBeans IDE ... 3-2

A Device I/O Preconfigured List

AT Devices .. A-1
Analog-to-Digital Converter (ADC) Devices... A-2
Digital-to-Analog Converter (DAC) Devices... A-3
GPIO Pins ... A-3
GPIO Ports .. A-9
I2C .. A-10
Pulse Counter ... A-10
SPI .. A-11
UART Devices .. A-12
Watchdog... A-12

B Configuring the Java Runtime Properties

Modifying the jwc_properties.ini File .. B-1
Using the CLI set-property Command .. B-1
Using CLI Commands to Alter Network-Related Settings ... B-1
Restarting Java on the Qualcomm IoE Board .. B-2

Glossary ..

v

List of Figures

1–1 Device Manager with Qualcomm IoE USB Device Drivers Loaded 1-2
1–2 Brew SDK Loader Connection Manager .. 1-3
1–3 Brew SDK Logger Application.. 1-5
1–4 Oracle Java ME SDK Device Connections Manager .. 1-6
1–5 Registering the External Device.. 1-7
2–1 PuTTY Configuration for CLI Connection .. 2-3
2–2 Oracle Java ME Embedded Command-Line Interface .. 2-3
2–3 NetBeans Platform Properties Dialog ... 2-11
2–4 Debugging an IMlet on the Qualcomm IoE Board Using NetBeans 2-13
2–5 Adding API Permissions with NetBeans ... 2-14
2–6 Signing Application JAR with NetBeans.. 2-15
2–7 Keystores Manager Window.. 2-15
2–8 Exporting Key on a Device ... 2-16
2–9 Java Logging Through the SDK Output Console Using NetBeans IDE 2-18
2–10 Java Logging Using the SDK Output Console .. 2-19
2–11 Java Logging Using a Console Application ... 2-20

vi

List of Tables

2–1 AMS CLI Commands .. 2-4
2–2 Security and Properties Commands.. 2-4
2–3 File System Commands... 2-5
2–4 Device Commands... 2-5
2–5 Keystore Commands ... 2-5
2–6 Qualcomm IoE Specific Commands.. 2-6
2–7 Virtual Root Paths Mapped to Physical Directories ... 2-7
3–1 Problems and Solutions: Starting Oracle Java ME Embedded Software on the Board ... 3-1
3–2 Problems and Solutions: Oracle Java ME SDK and the NetBeans IDE.............................. 3-3

vii

Preface

This guide describes how to install and configure Oracle Java ME Embedded software
onto a Qualcomm Internet-of-Everything (IoE) embedded device. In addition, it
contains troubleshooting information and Device I/O API specifications useful for
Java developers.

Audience
This guide is for developers who want to run Oracle Java ME Embedded software on a
Qualcomm IoE device.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
This guide frequently references the Qualcomm IoE Development Platform User Guide,
which can be downloaded at:

https://developer.qualcomm.com/mobile-development/development-de
vices-boards/development-boards/internet-of-everything-developme
nt-platform/tools-and-resources

For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Shell Prompts

Shell Prompt

Windows directory>

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

viii

Conventions
The following text conventions are used in this guide:

Linux $

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Shell Prompt

1

Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board 1-1

1Installing Oracle Java ME Embedded
Software on the Qualcomm IoE Board

This chapter demonstrates how to install the Oracle Java ME Embedded software on
the Qualcomm Internet-of-Everything (IoE) board. The following items are required
for installing and developing on the Qualcomm IoE board:

■ Qualcomm IoE board running the Brew MP operating system

■ Desktop PC running Microsoft Windows 7

■ USB cable with a micro-B connector that can link the Qualcomm IoE board to your
desktop PC

■ Qualcomm IoE USB drivers

■ Qualcomm Brew MP SDK tools

■ Terminal emulator program, such as PuTTY.

■ Oracle Java ME Embedded 8

■ Oracle Java ME SDK 8

■ NetBeans IDE 8.0

Setting Up the Qualcomm IoE Board
Download the Qualcomm IoE Development Platform User Guide in PDF format from:

https://developer.qualcomm.com/mobile-development/development-de
vices-boards/development-boards/internet-of-everything-developme
nt-platform/

This guide contains important information about the Qualcomm IoE board and its
hardware.

Perform the following steps.

1. Assemble and connect the board's components as listed in Chapter 3, "IoE
Development Platform Hardware," and Chapter 5, "Hardware Configuration," of
the Qualcomm IoE Development Platform User Guide.

2. Connect the power supply as shown in the Qualcomm IoE Development Platform
User Guide and power on the board. Follow the instructions in these sections:

■ To use an AC power source, see Section 5.3.5.5, "AC-powered operation."

■ To use a battery source, see Section 5.3.5.4, "Battery-powered operation."

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

Installing the Qualcomm IoE USB Drivers

1-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Installing the Qualcomm IoE USB Drivers
To develop on the Qualcomm IoE board, you must first install the Windows USB
drivers for the board. To install the drivers, follow these steps:

1. Download the Qualcomm IoE USB drivers from the following site:

https://developer.qualcomm.com/mobile-development/development
-devices-boards/development-boards/internet-of-everything-dev
elopment-platform/tools-and-resources

2. Ensure that the Qualcomm IoE board is powered on by pressing the PWR KEY
button on the board. Then, follow the instructions in Chapter 2, "Software Setup,"
of the Qualcomm IoE Development Platform User Guide to properly install the USB
drivers on Windows.

3. Open the Windows Device Manager (by clicking Start then Device Manager).

4. Ensure that the drivers are successfully installed by verifying the following
hardware ports, as shown in Figure 1–1:

■ HS-USB modem port

■ HS-USB serial port

■ HS-USB diagnostics port

■ HS-USB NMEA port

■ HS-USB RmNet port (optional and reserved)

Figure 1–1 Device Manager with Qualcomm IoE USB Device Drivers Loaded

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

Copying Files to the Qualcomm IoE Board

Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board 1-3

Downloading and Installing the Brew MP SDK Tools
Download the Brew MP SDK tools from the following site:
https://developer.brewmp.com/tools/brew-mp-sdk

The version used in this documentation is 7.12.5. Double-click the installer executable
file, and install the application on your Windows platform desktop as per the
instructions. You will need the Loader and Logger applications that are installed with
the Brew MP SDK Tools in later sections.

Copying Files to the Qualcomm IoE Board
You must install the Oracle Java ME Embedded software on the Qualcomm IoE board
using the Loader and Logger applications. To copy the appropriate files to the board:

1. Download and uncompress Oracle Java ME Embedded 8 for the Qualcomm IoE
board.

2. Get the latest java.sig signature file from the Qualcomm IoE website:

https://developer.qualcomm.com/mobile-development/development
-devices-boards/development-boards/internet-of-everything-dev
elopment-platform/tools-and-resources

3. Start the Loader application that was installed with the Brew MP SDK.

4. When the Loader application starts, connect to the board using the Connection
type: Brew Devices (COM/DIAG), and whichever port matches the Qualcomm
HS-USB Diagnostics Port, as shown in Figure 1–2.

Figure 1–2 Brew SDK Loader Connection Manager

5. If you are upgrading from an earlier release, such as Oracle Java ME Embedded
3.4, or Oracle Java ME Embedded 8 EA or EA2, then you must delete all the files in
the /sys/mod/java and /sys/mod/netsetup directories, including the.sig file.
After deleting the files, reboot the board.

6. If it does not exist, then create the /sys/mod/java directory and drag and drop the
following files from the Oracle Java ME Embedded distribution’s java folder into
that directory.

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

Copying Files to the Qualcomm IoE Board

1-4 Getting Started Guide for the Reference Platform (Qualcomm IoE)

■ appdb (folder)

■ java.mif

■ java.mod

■ jwc_properties.ini

■ watchdog.ini

7. Copy the java.sig signature file obtained from Qualcomm to the /sys/mod/java
directory.

8. If you want to enable support for a Java soft reboot on your Qualcomm IoE board,
then create the /sys/mod/reboot_java directory and drag and drop the following
files from the Oracle Java ME Embedded distribution’s reboot_java folder into
that directory.

■ reboot_java.mif

■ reboot_java.mod

9. Copy the reboot_java.sig file obtained from Qualcomm to the sys/mod/reboot_
java directory.

10. Reset the board by pressing the RESET KEY on the board, then wait
approximately 40 seconds for the Java VM to start.

11. Start the Logger application.

12. Connect to the board using the Connection type: Brew Devices (COM/DIAG),
and whichever port matches the Qualcomm HS-USB diagnostics port. Press the
Start Logging button, and verify that the Java VM is sending logging information
to the Logger application by checking for messages that come from the
[JVMStdout] file name. See Figure 1–3.

Installing and Configuring the Oracle Java ME SDK 8

Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board 1-5

Figure 1–3 Brew SDK Logger Application

13. After Java is successfully running on the Qualcomm IoE board, go to the
Chapter 2, "Installing and Running Applications on the Qualcomm IoE Board"
chapter to learn how to use the tooling features of the Oracle Java ME Embedded
software on the board. If Java is not running, then see Chapter 3,
"Troubleshooting" to diagnose possible problems.

Downloading and Installing the PuTTY Terminal Emulator Program
Download the PuTTY terminal emulator program (putty.exe) from the following site:

http://www.putty.org/

The terminal emulator executable file is directly downloadable as putty.exe. The
terminal emulator is used to connect to the Application Management System (AMS)
command-line interface (CLI) that sends commands to the board.

Installing and Configuring the Oracle Java ME SDK 8
Download and install the Oracle Java ME SDK 8 distribution onto your Windows
desktop platform from the Oracle Technology Network website.

Note: Using the PuTTY terminal emulator program is highly
recommended. You can use any terminal program to connect to the
CLI, however, Oracle cannot guarantee that other terminal programs
work with the CLI in the same manner as PuTTY.

Installing and Configuring the Oracle Java ME SDK 8

1-6 Getting Started Guide for the Reference Platform (Qualcomm IoE)

http://www.oracle.com/technetwork/java/javame/javamobile/downloa
d/sdk/index.html

To start the Java ME SDK:

1. Run the Oracle Java ME SDK Device Manager (located at <SDK Installation
Folder>/bin/device-manager.exe) by right-clicking its icon in the taskbar and
selecting Manage Device Connections to display the Device Connections
Manager as shown in Figure 1–4.

Figure 1–4 Oracle Java ME SDK Device Connections Manager

2. Restart the Java runtime on the Qualcomm IoE board. At this point, the Oracle
Java ME SDK Device Connections Manager should locate the device and report
that an EmbeddedExternalDevice1 has now become registered as shown in
Figure 1–5.

http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk/index.html

Installing and Configuring the Oracle Java ME SDK 8

Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board 1-7

Figure 1–5 Registering the External Device

Note that you can freely reboot the board or restart Java on the board without
rebooting the Oracle Java ME SDK Device Connections Manager. However, if you
reboot the Device Connections Manager, you must reboot Java or the board as well. If
you have problems with the Device Connections Manager connecting to the board, see
Chapter 3, "Troubleshooting."

Installing and Configuring the Oracle Java ME SDK 8

1-8 Getting Started Guide for the Reference Platform (Qualcomm IoE)

2

Installing and Running Applications on the Qualcomm IoE Board 2-1

2Installing and Running Applications on the
Qualcomm IoE Board

This chapter describes how to install and run an IMlet on the board, as well as how to
debug an IMLet in NetBeans.

Tooling Overview
The Oracle Java ME Embedded platform offers the following tools for managing and
monitoring the Qualcomm IoE board:

■ A CLI via a terminal emulator program for Application Management System
(AMS) commands and for system configuration commands

■ A logging interface for obtaining JVM diagnostic information using a console
window

■ On-Device Tooling (ODT): the ability to install, run, and debug applications from
the desktop using the NetBeans IDE

The CLI is integrated in the Developer Agent program that can be found as a JAR file
inside the util directory of the Oracle Java ME Embedded distribution, named
proxy.jar. The Developer Agent program can also be used to access the Java Logger
output.

There are two options for tooling with the Qualcomm IoE embedded board.

1. Start the Developer Agent program manually as described in Starting the
Developer Agent Program Manually.

■ The CLI is available through a PuTTY terminal window on port 65002 (see
Using the Command-Line Interface.)

■ The Java Logging is available through a console window used for running the
Developer Agent (see Obtaining Java Logs from a Device.)

2. Start the Oracle Java ME Embedded SDK (see Installing and Configuring the
Oracle Java ME SDK 8.)

■ The CLI is available through a PuTTY terminal window on port 65002 (see
Using the Command-Line Interface.)

Note: The term IMlet, in the context of the Oracle Java ME
Embedded command-line interface (CLI) and references in this
chapter, is synonymous with MIDlet.

Starting the Developer Agent Program Manually

2-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

■ The Java Logging is available via the Output window of the Oracle Java ME
Embedded Emulator included with the Oracle Java ME Embedded SDK (see
Obtaining Java Logs from a Device.)

Note that tooling works over one physical channel. However, the CLI, logging, and
ODT functions all use different ports. The ports for CLI and logging are available to
the user, and will be discussed later in this chapter. However, the ports used for ODT
are invisible to the user, and used by external development tools.

Starting the Developer Agent Program Manually
Start the Developer Agent program manually only if you want to use the CLI or
connect to the Java Logger and do not wish to use the Oracle Java ME Embedded SDK.

1. Open a console window and go to the util directory of the Oracle Java ME
Embedded distribution.

2. Enter the following command, specifying the COM port that corresponds to the
Qualcomm IoE HT-USB Serial Port, as reported earlier by the Windows Device
Manager:

java -jar proxy.jar -serial COM22

If you have trouble with running the Device Manager, please see Chapter 3,
"Troubleshooting."

Java Logging Interface Using the Developer Agent Program
To connect to the Java logger, start the Developer Agent program on your desktop
computer as described in Starting the Developer Agent Program Manually.

After you are connected, you should see output from the Java Logger.

Connecting to the Java logger displays the logging information from only the Oracle
Java ME Embedded platform. However, you can use the Brew MP SDK Logger
application, as shown in Chapter 1, to capture logging output from both the Oracle
Java ME Embedded system and the Qualcomm IoE board.

Using the Command-Line Interface
The command-line interface is used to issue commands directly to Java runtime.

Note that only one instance of the Developer Agent program must be running.

If you are using the Oracle Java ME Embedded SDK, then ensure that the Oracle Java
ME SDK 8 Device Connections Manager has already successfully detected the device,
as shown earlier in Figure 1–5.

If you do not use the Oracle Java ME Embedded SDK, start the Developer Agent
program as described in Starting the Developer Agent Program Manually.

To use the command-line interface, start a PuTTY executable file on your desktop
computer. Use this to create a Raw network connection to the address 127.0.0.1 with
the port 65002, as shown in Figure 2–1.

Using the Command-Line Interface

Installing and Running Applications on the Qualcomm IoE Board 2-3

Figure 2–1 PuTTY Configuration for CLI Connection

The window from the connection provides a CLI, and is shown in Figure 2–2.

Figure 2–2 Oracle Java ME Embedded Command-Line Interface

Caution: The CLI feature in this Oracle Java ME Embedded software
release is provided only as a concept for your reference. It uses
connections that are not secure, without encryption, authentication, or
authorization.

AMS and System Commands

2-4 Getting Started Guide for the Reference Platform (Qualcomm IoE)

AMS and System Commands
You can use the command-line interface to run numerous AMS and system
commands, as shown in Table 2–1, Table 2–2, and Table 2–3.

You can use the properties commands summarized in Table 2–2 and file system
commands summarized in Table 2–3.

Table 2–1 AMS CLI Commands

Syntax Description

ams-list [INDEX or NAME|VENDOR] List all installed IMlet suites and their
status or MIDlets in a specific suite.

ams-install <URL>
[username:password][hostdownload]

Install an IMlet using the specified
JAR or JAD file, specified as a URL.
An optional user name and password
can be supplied for login information
either in the URL or by the auth
parameter. When run without the
hostdownload option, only http://
URLs must be specified. The
hostdownload option enables you to
install an IMlet using the JAR file
specified by the file:// URL. Note
that the JAR file must be located on
the host.

ams-update <INDEX or NAME|VENDOR>
[auth=username[:password]]

Update the specified suite.

ams-remove <INDEX or NAME|VENDOR> Remove the specified suite.

ams-run <INDEX or NAME|VENDOR> [MIDLET_ID] Run a default suite’s MIDlet or the
MIDlet specified with MIDLET_ID
parameter.

ams-stop <INDEX or NAME|VENDOR> [MIDLET_ID] Stop a default suite’s MIDlet or the
MIDlet specified with the MIDLET_ID
parameter.

ams-info <INDEX or NAME|VENDOR> Show information about the specific
MIDlet.

Table 2–2 Security and Properties Commands

Syntax Description

help [command name] List the available commands or detailed usages for a single
command.

properties-list Show the list of names of properties which control the Oracle
Java ME Embedded runtime (properties that are set in the
properties.ini file)

set-property <NAME>
<VALUE>

Set a property identified by <NAME> with the value <VALUE>.

get-property <NAME> [i] Return a value of the property identified by <NAME>.

save-properties Save properties to an internal storage.

blacklist -client <NAME>

blacklist -app
<NAME|VENDOR>

Blacklist clients and applications.

AMS and System Commands

Installing and Running Applications on the Qualcomm IoE Board 2-5

The CLI supports working with multiple devices. You can use the device commands
summarized in Table 2–4

You can use the keystore commands summarized in Table 2–5.

Qualcomm IoE board supports the following network related commands, as shown in
Table 2–6.

Table 2–3 File System Commands

Syntax Description

cd <deviceDirectoryName> Change the working directory on the device.

delete <deviceFileName> Delete a file on the device.

get <deviceFileName>
<hostFileName>

Copy a file from the device to the host.

ls
[<deviceDirectoryName>]

Display a list of files and subdirectories in a device directory. In
a result listing, subdirectories are marked with a trailing file
separator symbol, such as "\" on Windows.

mkdir
<deviceDirectoryName>

Create a directory on the device.

pwd Write the current working directory on the device.

put <hostFileName>
<deviceFileName>

Copy a local host file to the device.

Table 2–4 Device Commands

Syntax Description

device-list List all connected devices.

device-change <INDEX> Make the specified device current.

shutdown [-r] Perform either a shutdown of the board or a reboot if the -r
parameter has been passed.

exit Terminate the current CLI session.

Table 2–5 Keystore Commands

Syntax Description

ks-delete (-owner <owner
name> | -number <key
number>)

Delete a key from a ME store.

ks-export -number <key
number> -out <full file
name>

Export a key from a device keystore by index.

ks-import [-keystore
<filename>] [-storepass
<password>] [-keypass
<password>] [-alias <key
alias>]

Import a public key from a JCE keystore into a ME keystore.

ks-list List the owner and validity period of each key in a ME keystore.

AMS and System Commands

2-6 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Here is a typical example of using the AMS to install, list, run, and remove an Oracle
Java ME Embedded application on the board. Note that /Shared is a root directory
name that can be accessed from Java. Files can be placed in this directory with the help
of Qualcomm's Loader tool. However, in the Loader tool, this directory is named
shared. For more information about mapping the virtual root directory names, see
Virtual Root Paths.

COM22@115200>> ams-install file:////Shared/hello.jar
<<ams-install,start install,file:///Shared/hello.jar
<<ams-install,install status: stage 0, 5%
<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

COM22@115200>> ams-install http://www.example.com/netdemo.jar
<<ams-install,start install,http://www.example.com/netdemo.jar
<<ams-install,install status: stage 0, 5%
<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

COM22@115200>> ams-install http://www.example.com/notthere.jar
<<ams-install,start install,http://www.example.com/notthere.jar
<<ams-install,FAIL,errorCode=103 (OTHER_ERROR)

Note that the final installation example failed with an error code and matching
description.

Similarly, install an additional IMlet: rs232dem. After an IMlet is installed, verify it
using the ams-list command. Each IMlet has been assigned a number by the AMS for
convenience.

COM22@115200>> ams-list
<<ams-list,0.hello|Oracle,STOPPED
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,3 suites are installed

Table 2–6 Qualcomm IoE Specific Commands

Syntax Description

net-info Show the network information of the system.

net-set ssid <SSID> Set the SSID value for WiFi access.

net-set passwd <PASSWD> Set the password for WiFi access.

net-set pref
<0|1|2|3|4|5>

Set the network mode preferences. Possible values are:

0: AUTO, 1: NO OP, 2: WLAN Only, 3: GSM/WCDMA only,

4: WCDMA only, 5: GSM/WCDMA/WLAN

net-set apn <APN> Set the APN.

net-set pdp_authtype
<0|1|2>

Set the APN's auth type: 0: NONE, 1: PAP, 2: CHAP

net-set pdp_username
<USERNAME>

Reset the PDP user name.

net-set pdp_password
<PASSWORD>

Reset the PDP password.

net-reconnect Reconnect the network and reboots Java.

Configuring Wi-Fi Networking

Installing and Running Applications on the Qualcomm IoE Board 2-7

You can use the ams-remove command to remove any installed IMlet.

COM22@115200>> ams-remove 0
<<ams-remove,OK,hello removed

The results can again be verified with the ams-list command.

COM22@115200>> ams-list
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

Finally, start the IMlet using the ams-run command. The application can be terminated
with the ams-stop command.

COM22@115200>> ams-run 1
<<ams-run,OK,started

COM22@115200>> ams-list
<<ams-list,1.netdemo|Oracle,RUNNING
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

To check the current WiFi settings of the board, use the net-info command.

COM22@115200>> net-info
<<net,info,Address=192.168.1.103
<<net,info,SSID=network001
<<net,info,Preference=0
<<net,info,PDP APN=wap.cingular
<<net,info,PDP Auth Type=0
<<net,info,PDP Auth Username=user
<<net,info,PDP Auth Password=password
<<net,info,OK,success getting info

Virtual Root Paths
Virtual root paths are used for access from IMlets. To get access from the Qualcomm
tools, these root names are mapped to physical directories as shown in Table 2–7.

Configuring Wi-Fi Networking
WiFi access must first be configured using the CLI. Connect to the CLI using the
instructions in the section Using the Command-Line Interface and perform the
following steps:

1. Set the SSID of the WiFi network using the command: net-set ssid {SSID Name}

Table 2–7 Virtual Root Paths Mapped to Physical Directories

Virtual Root Name Physical Directory Name

Root/ fs:/sys/mod/java/appdb/root

Shared/ fs:/shared/

MemoryCard/ fs:/mmc1/

IP Address Periodic Logging

2-8 Getting Started Guide for the Reference Platform (Qualcomm IoE)

2. Set the security password of the SSID network using the command net-set
passwd {WiFi Password}. This is necessary only if the security of the WiFi network
is enabled.

3. Enter the net-reconnect command to apply the settings. Note that the Oracle Java
ME SDK 8 Device Connections Manager will temporarily lose its connection to the
Qualcomm IoE device while it resets.

After you have completed these steps, you can verify the settings on the board by
connecting to the CLI and performing the following command: net-info

If the IP address is 0.0.0.0, then the connection to the WiFi network was not
established successfully; check the network settings and try again. If the SSID and
password of the network are correct, then try to reset the board to reinitialize the WiFi.
You can use "IP Address Periodic Logging" feature to see the IP address that has been
assigned.

If you see a valid IP address, then the network is configured successfully.

Finally, restart Java again using the net-reconnect command and connect to port
65000 and 65002 using the IP address that has been assigned to the board.

IP Address Periodic Logging
The Oracle Java ME Embedded implementation has the ability to log the IP address
that has been assigned to the board. The log can be seen through a console window
and Brew MP Logger application.

The behavior of this feature is controlled by the
com.oracle.periodic.logging.interval property that accepts the values counter in
milliseconds. By default, the logging period is set to 10 seconds (10000 milliseconds.)
To disable the periodic logging, set the value of the property to 0.

Setting Up the System Time
To run the signed IMlets on the IoE board, ensure that the system time is set on the
board.

By default, the system time on the IoE board is set automatically by the operating
system. Because the current time is obtained from a cellular network, a SIM card must
be plugged in to the board’s SIM-card slot.

However, an automatic setup does not work in the following cases:

■ A SIM card is not available.

■ A network carrier does not provide the current time data.

If there are any problems with the automatic setup, then set the system time manually
either by using the CLI or editing the jwc_properties.ini file.

Note: Each time you make a connection to the Java Logger with the
Developer Agent program, you will see logs labeled with the
[NetSetup] channel. The logs contain information about a connection
result to a WiFi access point. If you cannot connect to the Java Logger,
try connecting to the board with Brew MP Loader to find the same
logs in the /shared/netlog.txt file.

Reconnecting to Access Points

Installing and Running Applications on the Qualcomm IoE Board 2-9

Manual Setup of the System Time Using CLI

1. Open the CLI.

2. Run the following commands:

set-property system.time.value yyyy/mm/dd hh:mm:ss GMT
set-property system.time.update true

3. Execute either the save-properties with a subsequent board restart or shutdown
-r command. In the latter case, the property values will be saved automatically.

Manual Setup of the System Time in the jwc_properties.ini file

1. Edit the following properties:

system.time.value = yyyy/mm/dd hh:mm:ss GMT
system.time.update = true

2. Restart Java on the Qualcomm IoE board.

Reconnecting to Access Points
You can configure a network type of an access point to connect to and other specific
access point preferences by using the system.network.*, system.wlan.*, and
system.netsetup.* properties.

An ability to reconnect to a WiFi access point is controlled by the following WiFi
rescanning process properties:

■ system.netsetup.wifi.rescan.enabled

– if true, then Java starts rescanning the WLAN to find an access point with the
SSID specified by the system.wlan.ap.ssid property in the following cases:

* upon the board’s startup, if the access point with specified SSID is not
available and system.network.pref property is set to 2

* when an access point with the specified SSID becomes unavailable and
system.network.pref property is set to 5, 2, or 0 (AUTO)

– if false, the Java makes no attempts to reconnect to an access point. However,
the Brew MP operating system might try to reconnect to the previously
connected access point at some unknown time.

■ system.netsetup.wifi.rescan.timeout: a frequency in millis with which the
WiFi rescanning occurs if the access point with the specified SSID is not available

■ system.netsetup.wifi.rescan.attempts: a number of attempts during which
Java tries to reconnect to the access point with the specified SSID

After the connection to a 3GPP network was lost and then restored, there is no
guarantee that the 3GPP network becomes available to the application. An ability to
reconnect to a 3GPP system access point is a network carrier-specific.

Note that Java starts with a delay that depends on a network initialization.

Note: The dates before the GPS epoch, such as 06.01.1980 00:00:00,
are not supported due to the Brew MP API restrictions.

Using NetBeans with the Qualcomm IoE Board

2-10 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Using NetBeans with the Qualcomm IoE Board
Installing and running IMlet projects on the Qualcomm IoE board using the NetBeans
IDE requires the following software:

■ NetBeans IDE 8.0 with Oracle Java ME, which can be downloaded from
https://netbeans.org/.

■ Oracle Java ME SDK 8

■ Oracle Java ME SDK 8 NetBeans Plug-in

Installing the Oracle Java ME SDK 8 Plug-in for NetBeans
After installing NetBeans, follow these steps to install the remaining software:

1. Ensure that Oracle Java ME is enabled in NetBeans. This can be done by clicking
Tools then Plugins and clicking the Installed pane. Activate the Java ME plugin if
it is not already activated.

2. Install the Oracle Java ME SDK 8 distribution, if you have not done so already. See
the Oracle Java ME SDK Developer’s Guide for details.

3. Install the Oracle Java ME SDK 8 NetBeans plug-in. This is a downloadable ZIP
file that consists of a number of NetBeans modules (.nbm files) that can be added
by clicking Tools then Plugins. Select the Downloaded pane. Unzip the plugin
file, and add all of the.nbm files to NetBeans. The Oracle Java ME SDK 8 NetBeans
plug-ins are required to interface with the Device Selector and connect to the
board.

4. Ensure that the Oracle Java ME SDK 8 appears in the list of Java ME platforms. In
the NetBeans IDE, click Tools then Java Platforms. If the Oracle Java Platform
Micro Edition SDK 8 does not appear in the list of Java ME platforms, then follow
these steps:

1. Click Add Platform.

2. Select Java ME CLDC Platform Emulator and click Next.

3. Select the folder where the Oracle Java ME SDK 8 distribution resides and
follow the instructions to install it. Then, click Finish to close the dialog.

5. Ensure that the Qualcomm IoE board has the Oracle Java ME Embedded
distribution. See Chapter 1, "Installing Oracle Java ME Embedded Software on the
Qualcomm IoE Board" for more information about how to install the runtime
distribution on the Qualcomm IoE board.

Assigning the Qualcomm IoE Board to Your Project
If you already have an existing NetBeans project with an IMlet that you want to run or
debug on the board, then follow these steps:

1. Right-click your project and select Properties.

2. Select the Platform category on the properties window.

3. Select the entry that represents the board (EmbeddedExternalDevice1) from the
device list.

If you are creating a new NetBeans project, then follow these steps:

1. Click File then New Project.

Using NetBeans with the Qualcomm IoE Board

Installing and Running Applications on the Qualcomm IoE Board 2-11

2. Select the Java ME Embedded category and Java ME Embedded Application in
the Projects list. Click Next.

3. Provide a project name and click Next. Ensure that the Create MIDlet option is
selected.

4. Ensure that the Java ME platform is Oracle Java Micro Edition SDK 8.0. Then,
select the entry that represents the board (EmbeddedExternalDevice1) from the
device list and click Finish.

The configured Platform dialog is shown in Figure 2–3. After you assign the board to
your project, the IMlets run on the board instead of on the emulator when you click
Run Project on the NetBeans IDE.

Figure 2–3 NetBeans Platform Properties Dialog

Sample Source Code
After the project is created, use the following source code for the default IMlet.java
source file.

package embeddedapplication1;

import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;
import java.io.IOException;
import javax.microedition.midlet.*;

public class EmbeddedApplication1 extends MIDlet {

 public void startApp() {

 try {

Debugging an IMlet on the Qualcomm IoE Board

2-12 Getting Started Guide for the Reference Platform (Qualcomm IoE)

 GPIOPin pin = (GPIOPin)DeviceManager.open(14);
 for (int i = 0; i < 10; i++) {
 pin.setValue(true);
 Thread.sleep(1000);
 pin.setValue(false);
 Thread.sleep(1000);
 }

 pin.close();

 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

This sample code gets an object that represent GPIO pin 14 from the DeviceManager
instance, and sets it from low to high at intervals of one second. This has the effect of
blinking one of the LEDs on the Qualcomm IoE board. For more information about
using the Device I/O APIs, see the Device I/O API 1.0 specification at:

http://docs.oracle.com/javame/8.0/api/dio/api/index.html

Debugging an IMlet on the Qualcomm IoE Board
Follow these steps to debug an IMlet using NetBeans:

1. Open your IMlet class on the NetBeans editor.

2. Click once directly on the line number where you want to set a breakpoint. The
line number is replaced by a red square and the line is highlighted in red.

3. Click Debug then Debug Project or use the Debug button on the toolbar.

The debugger connects to the debug agent on the board and the program stops
running at your breakpoint, as shown in Figure 2–4.

http://docs.oracle.com/javame/embedded/embedded.html

Accessing Peripherals

Installing and Running Applications on the Qualcomm IoE Board 2-13

Figure 2–4 Debugging an IMlet on the Qualcomm IoE Board Using NetBeans

Figure 2–4 shows an entire NetBeans debugging environment that allows the
programmer to run a program step-by-step, as well as add and remove variables from
a watch list on the bottom of the screen.

For more information about using the Device I/O APIs, see the Device I/O API 1.0
specification at:

http://docs.oracle.com/javame/8.0/api/dio/api/index.html

Accessing Peripherals
Applications that require access to Device I/O APIs must request appropriate
permissions in JAD files. For more information about using the Device I/O APIs,
please see the Device I/O API 1.0 specification at:

http://docs.oracle.com/javame/8.0/api/dio/api/index.html

Signing the Application with API Permissions
First, the JAD file must have the proper API permissions. Follow these steps how to
sign the application both in NetBeans and without an IDE:

1. In NetBeans, right-click the project name (ME8EmbeddedApplication1 in this
example) and select Properties.

2. Click Application Descriptor, then in the resulting pane, click API Permissions.

3. Click the Add button, and add the jdk.dio.DeviceMgmtPermission API, as shown
in Figure 2–5.

"http://docs.oracle.com/javame/embedded/embedded.html
http://docs.oracle.com/javame/embedded/embedded.html

Accessing Peripherals

2-14 Getting Started Guide for the Reference Platform (Qualcomm IoE)

4. Click OK to close the project properties dialog.

Figure 2–5 Adding API Permissions with NetBeans

5. If you are not using an IDE, then manually modify the application descriptor file
to contain the following permission:

MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "*:*" "open"

Method #1: Signing Application Using the NetBeans IDE
This NetBeans IDE enables developers both to sign the applications with a local
certificate and upload the certificate on the device. Use the following procedure.

1. Right-click the project name and select Properties.

2. Under the Build category, click Signing.

3. Select the Sign JAR check box and specify a certificate to sign with as shown in
Figure 2–6.

Accessing Peripherals

Installing and Running Applications on the Qualcomm IoE Board 2-15

Figure 2–6 Signing Application JAR with NetBeans

4. Click the Open Keystores Manager button.

5. Select the key and click Export as shown in Figure 2–7.

Figure 2–7 Keystores Manager Window

Note: The selected certificate must be uploaded on the device and
associated with the security client.

Accessing Peripherals

2-16 Getting Started Guide for the Reference Platform (Qualcomm IoE)

6. In the Export Key window, select the EmbeddedExternalDevice1, select the
certificate, and click Export as shown in Figure 2–8.

Figure 2–8 Exporting Key on a Device

7. Download the _policy.txt file from the /sys/mod/java/appdb directory of the
Qualcomm IoE board and add a section with the client name and a set of
permissions. For more information about the policy file format, see the External
Client Policy Format section in the Java ME Embedded Profile 8 specification.

8. Ensure that the certificate with the specified common name (CN) is associated
with the client by adding a section similar to the following one.

client Signed [C=US,O=manufacturer CA,OU=TCK,CN=thehost]

9. Copy the modified _policy.txt file back to the /appdb directory on the
Qualcomm IoE board.

Method #2: Signing Application with a Local Certificate
This method is the preferred route for applications that are widely distributed. Follow
these steps to set up a keystore with a local certificate that can be used to sign the
applications:

1. Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Java SE JDK:

Installing and Running an IMlet Using the AMS CLI

Installing and Running Applications on the Qualcomm IoE Board 2-17

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

2. Copy the appdb/_main.ks keystore file from the Qualcomm IoE over to the
desktop using the Loader tool. Run the following command with the
mekeytool.exe command (or alternatively java -jar MEKeyTool.jar... if your
distribution contains only that) that ships with the Oracle Java ME SDK 8
distribution:

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

This command imports the information in mykeystore.ks that you just created to
the _main.ks keystore. After this is completed, copy the certs directory back to
the Qualcomm IoE board using the Loader tool.

Use the following commands to sign your application before deploying it to the
Qualcomm IoE board:

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks
-storepass spass -inputkad myjad.jad -outputjad myjad.jad

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias -keystore
mykeystore.ks -storepass spass -keypass kpass -inputjad myjad.jad
-outputjad myjad.jad

Method #3: Using NullAuthenticationProvider
This method allows you to bypass a certificate check and run unsigned applications as
if they were signed and given all requested permissions. This method should be used
only for development and debugging. Final testing must be done using a real
certificate as described in method #1.

1. To use NullAuthenticationProvider, set the following property in the jwc_
properties.ini file on the Qualcomm IoE board:

[internal]
authentication.provider = com.oracle.meep.security.NullAuthenticationProvider

2. Restart the Java runtime.

Installing and Running an IMlet Using the AMS CLI
If you are not using an IDE, then you can still use the Oracle Java ME Embedded 8 CLI
to install an application. Connect to the device at port 65002, and install and run the
IMlet manually. For example:

COM22@115200>> ams-install file:///Shared/hello.jar
<<ams-install,start install,file:///Shared/hello.jar
<<ams-install,install status: stage 0, 5%

Note: You must specify the full host name in the CN=thehost
parameter.

Obtaining Java Logs from a Device

2-18 Getting Started Guide for the Reference Platform (Qualcomm IoE)

<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

COM22@115200>> ams-list
<<ams-list,0.hello|Oracle,STOPPED
<<ams-list,OK,1 suites are installed

COM22@115200>> ams-run 0
<<ams-run,OK,started

COM22@115200>> ams-list
<<ams-list,o.hello|Oracle,RUNNING
<<ams-list,OK,1 suites are installed

See "Using the Command-Line Interface" for more details.

Obtaining Java Logs from a Device
There are multiple ways in Oracle Java ME 8 to obtain a device log. Three ways to
view the device log are:

1. Using an SDK Output Console window.

■ Using the NetBeans IDE:

– Run the NetBeans IDE.

– Select an IMlet in the Projects window and run it.

The NetBeans IDE opens the EmbeddedExternalDevice1 window.

– Click the Output button. The log is available in the SDK
EmbeddedExternalDevice1 Output Console window shown in Figure 2–9.

Figure 2–9 Java Logging Through the SDK Output Console Using NetBeans IDE

Obtaining Java Logs from a Device

Installing and Running Applications on the Qualcomm IoE Board 2-19

■ Without the NetBeans IDE:

– Run the SDK Device Connections Manager located at <SDK Installation
Folder>/bin/device-manager.exe.

– Wait until the device connection status displays Connected.

– Run the SDK EmbeddedExternalDevice1 by using the following
command:

emulator.exe -Xjam -Xdevice:EmbeddedExternalDevice1

– Install and run an IMlet using the GUI of the SDK
EmbeddedExternalDevice1 window.

– Click the Output button. The log is available in the SDK
EmbeddedExternalDevice1 Output Console window shown in
Figure 2–10.

Figure 2–10 Java Logging Using the SDK Output Console

2. Using a console application such as Windows Command Line or Far. In this case,
you must run the Developer Agent program manually (see Starting the Developer
Agent Program Manually.)

Obtaining Java Logs from a Device

2-20 Getting Started Guide for the Reference Platform (Qualcomm IoE)

■ Start a console application and enter the following command specifying the
COM port that corresponds to the Qualcomm IoE HS-USB serial port:

java -jar proxy.jar -serial COM22

■ Install and run IMlets using the CLI.

■ The log will be available in the same console window shown in Figure 2–11.

Figure 2–11 Java Logging Using a Console Application

3. Using the Brew MP Logger application.

■ Start the Brew MP Logger application.

■ When the Logger application starts, connect to the board using the Connection
type: Brew Devices (COM/DIAG), and whichever port matches the
Qualcomm HS-USB diagnostics port.

■ Connect to the board, click the Start Logging button, and verify that the Java
VM is sending logging information to the Logger application by checking for
messages that come from the [JVMStdout] file name.

Obtaining Java Logs from a Device

Installing and Running Applications on the Qualcomm IoE Board 2-21

Note: Options 1 and 2 are mutually exclusive because only one
instance of the Developer Agent program can be run. Option 3 can be
used both independently and in parallel with either option 1 or 2.

Obtaining Java Logs from a Device

2-22 Getting Started Guide for the Reference Platform (Qualcomm IoE)

3

Troubleshooting 3-1

3Troubleshooting

This chapter contains a list of common problems that you may encounter while
installing and running the Oracle Java ME SDK and embedded software on the
Qualcomm IoE board. This chapter provides information on the causes of these
problems and possible solutions for them.

The common problems in this chapter are grouped in two categories:

■ Starting Oracle Java ME Embedded Software on the Board

■ Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Starting Oracle Java ME Embedded Software on the Board
Table 3–1 contains information about problems and solutions when starting the
runtime on the board.

Table 3–1 Problems and Solutions: Starting Oracle Java ME Embedded Software on the Board

Problem Cause Solution

Windows does not
recognize the board when
connected using USB.

The USB drivers are not
loaded.

See Chapter 1, "Installing Oracle Java ME Embedded
Software on the Qualcomm IoE Board" for more information
about installing the USB drivers for the Qualcomm IoE
board.

Windows does not
recognize the board when
connected using USB.

The board is not
powered on.

Press the PWR KEY button on the board.

Oracle Java ME Embedded
fails to initialize the
network on the board.

The network
configuration is
incorrect.

Verify that the network connection on the board is correct.
Ensure that the board is using DHCP to obtain an IP
address.

(continued) The network
configuration on the
WiFi access point is
incorrect or
unsupported.

Verify that WiFi SSID broadcasting is enabled on the router.

(continued) The WPA2-PSK
authentication
algorithm is not
working correctly on
some routers.

Try to manually set the authentication algorithm to
WPA-PSK or disable the security checking.

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

3-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Using the Board with the Oracle Java ME SDK and the NetBeans IDE
Table 3–2 contains information about problems and solutions when using the board
with the Oracle Java ME SDK and the NetBeans IDE:

There are no Java logs in
the Brew MP Logger
application. However, the
device has been
recognized successfully by
the Logger and Loader
applications.

The Oracle Java ME
Embedded platform
did not start. The
java.sig file was not
updated or is invalid
for Oracle Java ME
Embedded 8.

Examine the netsetup logs. See Configuring Wi-Fi
Networking in Chapter 2 for additional information. If there
is no netlog.txt file or it is incorrect, then ensure that the
Oracle Java ME Embedded application has been updated
and the java.sig file is valid. The signature file from
previous versions of the Oracle Java ME Embedded
platform will not work correctly.

If the netlog.txt file is present and is correct, then ensure
that the Oracle Java ME Embedded application in the
/sys/mod/java directory has been updated and the
java.sig file is valid. The Java signature file from the
previous version must also be updated for version 8.

The board is not detected
by the Device Connections
Manager when connecting
to the board in serial
mode.

Varies. See Solution
column.

If you have some issues with connecting to the Device
Connections Manager and the board, then examine the file
<USER_HOME_
DIR>/javame-sdk/8.0/log/sos-proxy.log.

1. If the last line in the output looks similar to "Open
COM{Number}", then ensure that you have specified the
correct COM port. If the port is incorrect, then select the
proper one by specifying it in Device Connections
Manager and restart the board. Note that is sometimes
take a minute or more to boot Java after the board is
powered on. This is because of WiFi related settings
that are performed during the launch time.

If you do not use WiFi (3G), then you can disable the
network setup with net-related commands. In addition,
there is a "system.netsetup.timeout" property that
configures the timeout to start Java after the network
initialization has been started. If the COM port is
correct and more than a minute has passed after the
board is powered on, then try to reboot both Device
Connections Manager and the board

2. If the last line in the output is not "Open COM{Number}",
verify that you specified the correct port numbers to
connect to the CLI or the logger, then try to reboot both
the Device Connections Manager and the board

The Developer Agent does
not start manually and
throws a BindException:
"Address already in use:
JVM_Bind"

The NetBeans IDE or
the Device Connection
Manager is running on
your desktop host
computer.

1. Close the NetBeans IDE.

2. Close the Device Connections Manager.

3. Start the Developer Agent program again.

Table 3–1 (Cont.) Problems and Solutions: Starting Oracle Java ME Embedded Software on the Board

Problem Cause Solution

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Troubleshooting 3-3

Table 3–2 Problems and Solutions: Oracle Java ME SDK and the NetBeans IDE

Problem Cause Solution

The debugging session
freezes, disconnects
unexpectedly, or shows
error messages.

The firewall on the
computer is blocking
some debugging traffic.

Thunderbird is using a
port that is needed for
communication with
the board.

Open TCP port 2808 on your firewall configuration settings.
The exact procedure to open a port differs depending on
your version of Windows or your firewall software.

Close thunderbird.exe during the debugging session.

The current time and date
are invalid.

The time and date on
the Qualcomm IoE
board are configured
automatically only if a
valid SIM card is
inserted and a carrier
provides current time
data.

Insert a valid SIM card. If the date and time are still wrong,
see Chapter 2, "Setting Up the System Time" to set the
system time manually.

A signed IMlet will not
install. The AMS gives a
return code that the
certificate or the
authentication is invalid.

The certificate is invalid
or it is not added to the
keystore.

Check the certificate. Refer to Signing the Application with
API Permissions in Chapter 2, "Installing and Running
Applications on the Qualcomm IoE Board" for details.

(continued) The date and time on
the board were
configured incorrectly.

Insert a valid SIM card. If the date and time are still wrong,
see Chapter 2, "Setting Up the System Time", to set the
system time manually.

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

3-4 Getting Started Guide for the Reference Platform (Qualcomm IoE)

A

Device I/O Preconfigured List A-1

ADevice I/O Preconfigured List

This appendix provides information about the various peripheral ports and buses for
the Qualcomm IoE embedded board, as well as device mappings and important notes,
which are accessible using the Device I/O APIs.

Note that any IMlet that accesses the Device I/O APIs must be digitally signed using a
trusted certificate authority. An IMlet that is not signed will encounter an
authentication error when attempting to access the Device I/O APIs.

To access any device from the preconfigured peripheral list, the following permission
is required:

jdk.dio.DeviceMgmtPermission(%Name%:%ID%);

The names and IDs for specific devices can be found in the tables below in this
appendix. You must also specify an action. An empty string means open.

The tables use the following legend:

■ Device ID - an integer identifier that can be used to open the peripheral with a
DeviceManager.

■ Device Name - the string name of a peripheral that can be used to open it by name
with DeviceManager.

■ Mapped - all hardware related information regarding a peripheral, such as
physical location, mapping, or port. This information enables the user to find out
the peripheral's location on a target board. See the following site for more
information:

https://developer.qualcomm.com/mobile-development/development-devices-b
oards/development-boards/internet-of-everything-development-platform/to
ols-and-resources

■ Configuration - properties that are passed to the specific DeviceConfig
constructor in order to open the peripheral by ID or name. The configuration can
be used to open the peripheral using the DeviceManager with the appropriate
configuration.

AT Devices
The following AT devices are pre-configured.

Note: Power Management, and MMIO are not supported on the
Qualcomm IoE embedded board.

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

Analog-to-Digital Converter (ADC) Devices

A-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

For a complete list of AT commands that can be used, see the Qualcomm IoE
Development Platform User Guide.

Please note the following when using AT commands:

■ Some AT commands require a SIM card to test. (for example, "AT+CPBW" or
"AT+CMUX")

■ With the AT+CPBW command, the valid form is "AT+CPBW=?" or "AT+CPBW=<num>".
"AT+CPBW?" is an invalid form.

■ UnsolicitedResponseHandler is not supported.

Analog-to-Digital Converter (ADC) Devices
The following Analog-to-Digital (ADC) devices are pre-configured.

Note the following:

■ The channel number set as DeviceConfig.DEFAULT is interpreted as 1, that is, the
ADC channel connected to a multiplexer on the Qualcomm IoE board will be
opened by default.

■ The resolution and controller number are not supported. You can use
DeviceConfig.DEFAULT for those values. The resolution of ADC is 8 bits.

■ The default value for samplingInterval is 500000 microseconds (500 ms). The
value can be changed immediately during acquisition. This is a platform-specific
behavior.

■ The sampling time can be also configured. The samplingTime value of
DeviceConfig.DEFAULT is interpreted as 10 usec.

Device ID Device Name Mapped Configuration

800 DEFAULT Brew’s AT
command
interface

controllerNumber =
DeviceConfig.DEFAULT

channelNumber = DeviceConfig.DEFAULT

Device ID Device Name Mapped Configuration

100 VTHERM_N ADT7481 controllerNumber =
DeviceConfig.DEFAULT

channelNumber = 0

resolution = DeviceConfig.DEFAULT

samplingInterval =
DeviceConfig.DEFAULT

samplingTime = DeviceConfig.DEFAULT

101 HKAIN1 Any pin from
J10 header.

Pin number is
chosen
according to

the
configuration
of ADC
multiplexer

controllerNumber =
DeviceConfig.DEFAULT

channelNumber = 1

resolution = DeviceConfig.DEFAULT

samplingInterval =
DeviceConfig.DEFAULT

samplingTime = DeviceConfig.DEFAULT

GPIO Pins

Device I/O Preconfigured List A-3

■ The maximum possible sampling interval is 5000 milliseconds or 5 sec.

Digital-to-Analog Converter (DAC) Devices
The following Digital-to-Analog (DAC) devices are preconfigured.

Note the following:

■ The channelNumber parameter can be set to 0, 1, or DeviceConfig.DEFAULT, which
is interpreted as 0.

■ Both the resolution and controllerNumber values are ignored. You can only use
DeviceConfig.DEFAULT for those values.

■ The default samplingInterval value is 500000 microseconds (500 ms). The value
can be changed immediately during generation. This is a platform-specific
behavior.

■ The DAC signal is represented as a PDM (pulse density modulation) signal, so the
DAC output value affects only the frequency of output signal, not the voltage
level. As such, there is no resolution of the DAC signal in the current
implementation; only the min and max values can be used for calculation of output
voltage on the DAC channel.

For calculation of the output voltage, the following formula can be used: vOutput
= (value * vRef) / (maxValue - minValue + 1). Note that (max - min) ==
(2^n - 1) is not applicable.

GPIO Pins
The following GPIO pins are preconfigured.

Device ID Device Name Mapped Configuration

700 PDM0 Header J5 pin
18

controllerNumber =
DeviceConfig.DEFAULT

channelNumber = 0

resolution = DeviceConfig.DEFAULT

samplingInterval =
DeviceConfig.DEFAULT

701 PDM1 Reserved for
future use; not
available on
Qualcomm
IoE

deviceNumber = DeviceConfig.DEFAULT

channelNumber = 1

resolution = DeviceConfig.DEFAULT

samplingInterval =
DeviceConfig.DEFAULT

GPIO Pins

A-4 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Device ID Device Name Mapped Configuration

0 GPIO0 Header J5 pin
3

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 26

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
RISING_EDGE

initValue - ignored

1 GPIO1 Header J5 pin
5

JP7 ADC
MUX 0

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 25

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
RISING_EDGE

initValue - ignored

2 GPIO2 Header J5 pin
7

JP8 ADC
MUX 1

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 31

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
FALLING_EDGE

initValue - ignored

3 GPIO3 Header J5 pin
9

JP9 ADC
MUX 2

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 17

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
HIGH_LEVEL

initValue - ignored

4 GPIO4 Header J5 pin
11

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 32

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
HIGH_LEVEL

initValue - ignored

GPIO Pins

Device I/O Preconfigured List A-5

5 GPIO5 Header J6 pin
3

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 28

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
HIGH_LEVEL

initValue - ignored

6 GPIO6 Header J6 pin
5

JP11 pin 2 (to
connect to
G-sensor
interrupt)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 27

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
RISING_EDGE

initValue - ignored

7 GPIO7 Header J6 pin
7

JP12 pin 2 (to
connect to
light sensor
interrupt)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 30

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
FALLING_EDGE

initValue - ignored

8 GPIO8 Header J6 pin
7

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 38

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_LOW_
LEVEL

initValue - ignored

9 GPIO9 Header J6 pin
11

JP13 pin 1(to
connect to
temperature
sensor
interrupt)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 33

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
FALLING_EDGE

initValue - ignored

Device ID Device Name Mapped Configuration

GPIO Pins

A-6 Getting Started Guide for the Reference Platform (Qualcomm IoE)

10 GPIO10 Header J7 pin
1

Relay 1

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 18

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

11 GPIO11 Header J7 pin
3

Relay 2

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 24

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

12 GPIO12 Header J7 pin
5

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 29

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

13 GPIO13 Header J7 pin
7

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 35

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

14 GPIO14 Header J7 pin
9

Jumper P2 pin
2

(Used by LED)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 13

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

Device ID Device Name Mapped Configuration

GPIO Pins

Device I/O Preconfigured List A-7

15 GPIO15 Header J7 pin
11

Jumper P3 pin
2

(Used by LED)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 34

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

16 GPIO16 Header J7 pin
13

Jumper P4 pin
2

(Used by LED)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 12

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

17 GPIO17 or

LED2

Header J7 pin
15

Jumper P5 pin
2

(Used by LED)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 16

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

18 GPIO18 Header J7 pin
17

Jumper P6 pin
2

(Used by LED)

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 36

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

19 GPIO19 Header J7 pin
19

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 15

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

Device ID Device Name Mapped Configuration

GPIO Pins

A-8 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Note the following:

■ pinNumber set to DeviceConfig.DEFAULT is interpreted as 34, that is, the GPIO pin
connected to the LED using the P3 jumper will be opened by default.

20 GPIO20 Header J7 pin
2

DB9 J12 lower
pin 3

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 10

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_LOW_
LEVEL

initValue - ignored

21 GPIO21 Header J7 pin
4

DB9 J12 lower
pin 2

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 14

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_LOW_
LEVEL

initValue - ignored

22 GPIO22 Header J7 pin
6

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 11

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

23 GPIO23 Header J7 pin
8

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 9

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

24 GPIO24 Header J7 pin
10

DB9 J10 lower
pin 2

controllerNumber =
DeviceConfig.DEFAULT

pinNumber = 37

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_NONE

initValue = false

Device ID Device Name Mapped Configuration

GPIO Ports

Device I/O Preconfigured List A-9

■ controllerNumber can be set only to DeviceConfig.DEFAULT, so pinNumber is the
unique identifier of the GPIO pin on the Brew MP platform.

■ Configuration of the GPIO mode is not supported by the Brew MP platform, so the
mode parameter can be set only as DeviceConfig.DEFAULT.

■ TRIGGER_BOTH_EDGES and TRIGGER_BOTH_LEVELS are not supported by the Brew
MP platform.

■ Some GPIO pins are mapped to several physical pins; this allows the programmer
to use a GPIO pin in different ways. For example:

– GPIO1, GPIO2, and GPIO3 can be used to control the ADC multiplexer. See
the Qualcomm IoE Development Platform User Guide at the following link for
more information.

https://developer.qualcomm.com/mobile-development/development-devic
es-boards/development-boards/internet-of-everything-development-pla
tform/tools-and-resources

– GPIO6, GPIO7, and GPIO9 can be used as interrupt pins for the onboard
sensors. For more information, see the Qualcomm IoE Development Platform User
Guide and the sensors data sheet.

– GPIO10 and GPIO11 can be used to control the state of the on-board relays.

– GPIO14, GPIO15, GPIO16, GPIO17, and GPIO18 can be used to drive a signal
to the on-board LEDs. The same is true for "LEDS" port. For more information,
please see the Qualcomm IoE Development Platform User Guide.

– GPIO20, GPIO21, and GPIO24 drive the signal to one of the DB9 connector
pins that is available onboard.

GPIO Ports
The following GPIO ports are preconfigured.

Device ID Device Name Mapped Configuration

200 LEDS Header J7 pin
9 and Jumper
P2 pin 2 (used
by LED)

Header J7 pin
11 and Jumper
P3 pin 2 (used
by LED)

Header J7 pin
13 and Jumper
P4 pin 2 (used
by LED)

Header J7 pin
15 and Jumper
P5 pin 2 (used
by LED)

Header J7 pin
17 and Jumper
P6 pin 2 (used
by LED)

direction = GPIOPortConfig.DIR_
OUTPUT_ONLY

initValue = false

pins = 13, 34, 12, 16, 36

mode of pins = DeviceConfig.DEFAULT

trigger of pins = GPIOPinConfig.TRIGGER_
NONE

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

I2C

A-10 Getting Started Guide for the Reference Platform (Qualcomm IoE)

I2C
The following configurations can be used to communicate to I2C slaves.

Note the following:

■ The protocol of the on-board battery gauge is unknown.

■ The default clock frequency is 400000 Hz, and is represented by
DeviceConfig.DEFAULT. 100000 Hz is also supported as a clockFrequency.

■ The I2C device number can be set only to 1, which is also represented by
DeviceConfig.DEFAULT.

■ addressSize must be set either to DeviceConfig.DEFAULT or to 7. 10-bit addressing
mode is not supported.

Pulse Counter
The pulse counter has the following configuration.

80 ADC-MUX-SEL Header J5 pin
5 and JP7
ADC MUX 0

Header J5 pin
7 and JP8
ADC MUX 1

Header J5 pin
9 and JP9
ADC MUX 2

direction = GPIOPortConfig.DIR_
OUTPUT_ONLY

initValue = false

pins = 25, 31, 17

mode of pins = DeviceConfig.DEFAULT

trigger of pins = GPIOPinConfig.TRIGGER_
NONE

Device ID Device Name Mapped Configuration

300 G-SENSOR BMA150 controllerNumber = 1

address = 56

addressSize = DeviceConfig.DEFAULT

clockFrequency = 400000

301 LIGHT-SENSOR ISL29011 controllerNumber = 1

address = 68

addressSize = DeviceConfig.DEFAULT

clockFrequency = 400000

302 TEMP-SENSOR ADT7481 controllerNumber = 1

address = 75

addressSize = DeviceConfig.DEFAULT

clockFrequency = 400000

303 BATTERY-GAU
GE

On-board
battery gauge
(specification
is unknown)

controllerNumber = 1

address = 85

addressSize = DeviceConfig.DEFAULT

clockFrequency = 400000

Device ID Device Name Mapped Configuration

SPI

Device I/O Preconfigured List A-11

Note the following:

■ Only the values TYPE_RISING_EDGE_ONLY and TYPE_FALLING_EDGE_ONLY are
supported for the type parameter on the Brew MP platform.

■ The controllerNumber and channelNumber parameters can be set only to
DeviceConfig.DEFAULT.

■ A minimum supported period is 1000 microseconds (1 millisecond). Values less
than 1000 microseconds cause exceptions.

SPI
The SPI has a single static configuration with the following parameters.

Note the following:

■ DeviceConfig.DEFAULT passed as controllerNumber is interpreted as 1 and
because only one SPI device with number 1 is presented on the Qualcomm IoE,
only 1 or the DeviceConfig.DEFAULT value of controllerNumber is supported.

■ clockFrequency set to DeviceConfig.DEFAULT is interpreted as 2000000 Hz.

■ wordLength and bitOrdering are ignored on the Qualcomm IoE board.

■ On the Qualcomm IoE board, address 0 is supported because there is only one CS
pin available. The address number can be passed only using the first byte of
address parameter of SPIDeviceConfig.

There are also some global SPI-related options that are set for all SPI slaves:

■ Chip select pin mode (0: chip select de-assert; 1: chip select keep asserted). This
value is set to 1 by default.

■ The minimal frequency value in Hz is set to 0.

■ The de-assertion time value is set to 1000 by default.

Device ID Device Name Mapped Configuration

600 COUNTER GPIO pin 35,
Header J7 pin
7

controllerNumber =
DeviceConfig.DEFAULT

channelNumber = DeviceConfig.DEFAULT

type = TYPE_RISING_EDGE_ONLY

GPIO controllerNumber =
DeviceConfig.DEFAULT

GPIO pinNumber = 35

Device ID Device Name Mapped Configuration

400 G-SENSOR BMA150 controllerNumber = 1

wordLength = 8

clockFrequency = 26000000

clockMode = 3

address = 0

bitOrdering = DeviceConfig.DEFAULT

UART Devices

A-12 Getting Started Guide for the Reference Platform (Qualcomm IoE)

If you must change any of these properties for some SPI device, you can add the
following in the jwc_properties.ini file:

deviceaccess.spi.{bus_id}.{slave_address}.csMode = {value}
deviceaccess.spi.{bus_id}.{slave_address}.minFreq = {value}
deviceaccess.spi.{bus_id}.{slave_address}.deassertionTime = {value}

There are restrictions on Java SPI API usage:

■ Only 32 bits per word

■ The CS active level cannot be managed with SPIDevice.begin() and
SPIDevice.end()methods.

■ The CS cannot be set to CS_NOT_CONTROLLED because it is always controlled by the
platform driver.

To connect to an external SPI device, remove JP17 jumper. See section 5.2.3, "SPI" in
Qualcomm IoE Development Platform User Guide for more information.

UART Devices
The following UART devices are preconfigured:

Note the following:

■ There is only one UART port available from the DeviceIO API with ID 40; it has
the name COM1.

■ The INPUT_DATA_AVAILABLE and OUTPUT_BUFFER_EMPTY events are supported on
the Qualcomm IoE board.

■ controllerNumber can be set only to 1, which is the value presented by
DeviceConfig.DEFAULT.

■ Only the dataBits values DATABITS_5, DATABITS_6, DATABITS_7, and DATABITS_8
are supported.

■ STOPBITS_1, STOPBITS_2 are supported

■ The following baud rates are supported [bps]: 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200, 230400, 460800, 500000, 921600, 1000000

Watchdog
The following watchdog devices are preconfigured:

Device ID Device Name Mapped Configuration

40 COM1 DB9 J10 upper
port

controllerNumber
=DeviceConfig.DEFAULT

baudRate = 19200

dataBits = DATABITS_8

parity = PARITY_NONE

stopBits = STOPBITS_1

flowcontrol = FLOWCONTROL_NONE

inputBufferSize - ignored

outputBufferSize - ignored

Watchdog

Device I/O Preconfigured List A-13

Watchdog peripheral with the name WDG is a basic platform WatchdogTimer while
with the name WWDG is a WindowedWatchdogTimer.

Device ID Device Name Mapped Configuration

500 WDG Platform
Watchdog

N/a

501 WWDG N/a

Watchdog

A-14 Getting Started Guide for the Reference Platform (Qualcomm IoE)

B

Configuring the Java Runtime Properties B-1

BConfiguring the Java Runtime Properties

There are several ways to change the value of a property that affects Java's
configuration or behavior at runtime.

Modifying the jwc_properties.ini File
The jwc_properties.ini file contains all the properties that affect Java configuration
and behavior at runtime. In order to edit this file, do the following:

1. Open the jwc_properties.ini that is a part of the Oracle Java ME Embedded
bundle (or download it from the board using the Brew MP SDK Loader tool), find
the property that should be changed, and modify its value.

2. Copy the modified version of the jwc_properties.ini file to the /sys/mod/java
directory on the Qualcomm IoE board using the Brew MP SDK Loader tool.

3. If there is a jwc_properties.inix file located in this directory, delete it.

4. Restart Java on the Qualcomm IoE board.

Using the CLI set-property Command
To modify a property using the set-property command in the command-line interface
(CLI), do the following.

1. Connect to the board using command-line interface (CLI)

2. Execute the "set-property <property_name> <desired_property_value>" command.

3. Restart Java on the board.

Note, that by executing the "set-property" command, the jwc_properties.ini file is
always updated automatically.

Using CLI Commands to Alter Network-Related Settings
To alter the network-related settings, do the following:

1. Connect to the board using command-line interface (CLI)

2. Execute a command that starts with the prefix "net" to apply a network-related
change.

3. Apply the network-related change and restart Java.

Restarting Java on the Qualcomm IoE Board

B-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Restarting Java on the Qualcomm IoE Board
You can use any of the following methods to restart Java on the Qualcomm IoE board.

1. Use the CLI "shutdown -r" command. If the "vmconfig.reboot_type" property is
set to "soft" (the default) and the reboot_java application has been deployed on
your Qualcomm IoE board, then only Java will be rebooted. Otherwise, if the
"vmconfig.reboot_type" property is set to "hard" or there is no reboot_java
application deployed, then the board will be rebooted. Note that the
"vmconfig.reboot_type" property also affects Device I/O API watchdog's reboot
type.

2. Using the CLI "net-reconnect" command. This command reconfigures the
network and performs a soft Java reboot.

3. Press the "RESET KEY" located on the board, or cycle the power to the board.

Glossary-1

Glossary

access point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or Bluetooth.

ADC

Analog-to-digital converter. A hardware device that converts analog signals (time and
amplitude) into a stream of binary numbers that can be processed by a digital device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM cards and
smart cards to communicate with card reader software or a card reader device.

API

Application programming interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set computing (RISC) CPU technology, developed by ARM Holdings. ARM is a
licensable instruction set architecture (ISA) used in the majority of embedded
platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set. AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
Virtual Machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java Virtual Machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-analog converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, nonprofit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, ETSI carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A Java ME API consisting of a hierarchy of interfaces
and classes to create connections (such as HTTP, datagram, or streams) and perform
I/O.

GPIO

general purpose I/O. Unassigned pins on an embedded platform that can be assigned
or configured as needed by a developer.

GPIO port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Sockets Layer (SSL) technology.

I2C

Inter-Integrated Circuit. A multimaster, serial computer bus used to attach low-speed
peripherals to an embedded platform

Java ME platform

Glossary-3

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM card.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet cannot refer to MIDP classes that are not part of
IMP-NG. An IMlet can use only the APIs defined by the IMP-NG and CLDC
specifications.

IMlet suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMP-NG

Information Module Profile Next Generation. A profile for embedded headless devices,
the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages many of the
APIs of MIDP 2.0, including the latest security and networking, but does not include
graphics and user interface APIs.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by the application management system (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java ARchive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Oracle Java ME platform consists

JCP

Glossary-4

of a configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to
a specific class of device.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

JVM

Java Virtual Machine. A software execution engine that safely and compatibly runs the
byte codes in Java class files on a microprocessor.

KVM

A Java Virtual Machine designed to run in a small, limited-memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
liquid crystal display (LCD) screens in small devices. More generally, a shorthand way
of referring to the MIDP user APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java Application Aescriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java ARchive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
card in a cell phone and used for voice, FAX, SMS, and data services.

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

RMS

Glossary-5

obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

optional package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

preverification

A process of verifying Java technology classes. Due to limited memory and processing
power on small devices, the process of verifying Java technology classes is split into
two parts. The first part is preverification which is done off-device using the preverify
tool. The second part, which is verification, occurs on the device at runtime.

profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

pulse counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

push registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced instruction set computing. A CPU design based on simplified instruction sets
that provide higher performance and faster accomplishment of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library ARM. A group of tightly coupled libraries designed to solve the
real-time and communication challenges of embedded systems based on ARM
processor-based microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Glossary-6

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multitasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real-Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM card)
that allows HTTP transactions with the card.

SD card

Secure Digital card. A nonvolatile memory card format for use in portable devices,
such as cell phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

smart card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely used data application in
the world.

SMSC

Short Message Service Center. Routes messages and regulates SMS traffic. When an
SMS message is sent, it goes to an SMS center first, and then gets forwarded to the
destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), then the message is stored in the SMSC until the recipient
becomes available.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

USAT

Glossary-7

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

task

At the platform level, each separate application that runs within a single Java Virtual
Machine. The API used to instantiate each task is a stripped-down version of the
Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

terminal profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
card along with the IMEI at SIM card initialization. The terminal profile tells the SIM
card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy-related applications.

USB

Glossary-8

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of details including subscriber information, contact details, and
other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

watchdog timer

A dedicated piece of hardware or software that watches an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, then the watchdog timer initiates a reboot procedure or takes
other steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a cell
phone communicates with the tower, how its signals are modulated, how datagrams
are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Shell Prompts
	Conventions

	1 Installing Oracle Java ME Embedded Software on the Qualcomm IoE Board
	Setting Up the Qualcomm IoE Board
	Installing the Qualcomm IoE USB Drivers
	Downloading and Installing the Brew MP SDK Tools
	Copying Files to the Qualcomm IoE Board
	Downloading and Installing the PuTTY Terminal Emulator Program
	Installing and Configuring the Oracle Java ME SDK 8

	2 Installing and Running Applications on the Qualcomm IoE Board
	Tooling Overview
	Starting the Developer Agent Program Manually
	Java Logging Interface Using the Developer Agent Program
	Using the Command-Line Interface
	AMS and System Commands
	Virtual Root Paths
	Configuring Wi-Fi Networking
	IP Address Periodic Logging
	Setting Up the System Time
	Reconnecting to Access Points
	Using NetBeans with the Qualcomm IoE Board
	Installing the Oracle Java ME SDK 8 Plug-in for NetBeans
	Assigning the Qualcomm IoE Board to Your Project
	Sample Source Code

	Debugging an IMlet on the Qualcomm IoE Board
	Accessing Peripherals
	Signing the Application with API Permissions
	Method #1: Signing Application Using the NetBeans IDE
	Method #2: Signing Application with a Local Certificate
	Method #3: Using NullAuthenticationProvider

	Installing and Running an IMlet Using the AMS CLI
	Obtaining Java Logs from a Device

	3 Troubleshooting
	Starting Oracle Java ME Embedded Software on the Board
	Using the Board with the Oracle Java ME SDK and the NetBeans IDE

	A Device I/O Preconfigured List
	AT Devices
	Analog-to-Digital Converter (ADC) Devices
	Digital-to-Analog Converter (DAC) Devices
	GPIO Pins
	GPIO Ports
	I2C
	Pulse Counter
	SPI
	UART Devices
	Watchdog

	B Configuring the Java Runtime Properties
	Modifying the jwc_properties.ini File
	Using the CLI set-property Command
	Using CLI Commands to Alter Network-Related Settings
	Restarting Java on the Qualcomm IoE Board

	Glossary

