Oracle® Java ME Embedded

Getting Started Guide for the Reference Platform (Raspberry
Pi)

Release 8

E48512-03

April 2014

This guide describes how to install and run the Oracle Java
ME Embedded software on the Raspberry Pi reference
platform.

ORACLE

Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi), Release 8
E48512-03
Copyright © 2013, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...ttt ix
AUAIEIICE ...ttt ettt ettt e e e te e ae et e e st e beesseebeesbesbeessesbaesbenseess et e esbeeseenteereenteereenseareas ix
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e ix
Related DOCUIMENLESccviuiriiiiieieieieietieitetee et e st b e beste st esaeseesesseasessassesessassessassessessassasansessensensenes iX
SREIL PIOMIPES ..ottt iX
CONVEINTIONS ...vviivieiieeiieeieeieeste et estee st esteeete e saeasseeseesssaasseesssaesseaasseasssasssessssessensseesssessseasassssesssennseennses iX

1 Installing Oracle Java ME Embedded Software on the Raspberry Pi Board

Downloading and Installing the PuTTY Terminal Emulator Programc.ccooeninnni. 1-1
Preparing the Raspberry Pi Board............ccooiiiiiiiiiis 1-2
Installing the Oracle Java ME Embedded Software...............cccccooviniinninninnii, 1-2

Adding an HTTP Proxy for Network Connections on Raspberry Piccccovvvvvnninnnnnnnes 1-4

2 Installing and Running Applications on the Raspberry Pi Board

Using the Java Runtime on the Raspberry Pi ..., 2-1
Running IMlets on Raspberry Pi Using the Command Shell................ccccooiiinn 2-1
Starting the Developer Agent Program on the DesKtop.............cccccoeiiviviiiiiiiniiiii, 2-2
Server Mode CONNECHION ..ottt ettt nene 2-3
Client Mode CONNECHIONcoviiiiiiiiiiiiiiiiiciicicc s 2-3
Running IMlets on Raspberry Pi Using the AMS CLIcccccccoviiiininnnniici 2-3
Using NetBeans with the Raspberry Pi Board...............cccoooiiiiiccccce, 2-7
Adding the Raspberry Pi Board to the Device Connection Managercccooevvniniinininnnnen. 2-8
Assigning the Raspberry Pi Board to Your Project ..o, 2-9
Using an Existing NetBeans Project ... 2-9
Creating a New NetBeans Project ... 2-10
Sample SOUICE COAE ..ot 2-11
Debugging an IMlet on the Raspberry Pi Board...............cccooviniiiiiiiiincn 2-12
Accessing Peripherals.............ccoooiiiiiiiiii s 2-12
Signing the Application with API Permissionsccccceeueicueieiiicicieieiccieeccie e 2-12
Method #1: Signing Application Using the NetBeans IDEccccccccoociiiiniiinnns 2-13
Method #2: Signing Application Using a Command Lineccccccoeveveiiieniiiiiennns 2-16
Method #3: Using NullAuthenticationProvider ... 2-17

3 Troubleshooting
Installing Linux on the Raspberry Pi Board ... 3-1

Starting Oracle Java ME Embedded Software on the Boardccccccciiiiiiiiiii 3-1
Using the Board with the Oracle Java ME SDK and the NetBeans IDE ... 3-2

A Device I/0 Preconfigured List

GPIO PINS ..ttt ettt et e st e et e e tee s teesaee s et e e ssaeesbee bt aasseessaeassaenseeassaensaassseenseessseenseansseensaensss A-2
T2C ettt ettt e b et e b e b e b e st es b e Rt e Rt e Rt et e e Rt s e b e s e s ea b e s b e s b esbeste st eRt et teseeteesebese s ensenes A-6
117 11 1 2 TSRS TP A-6
SPI .ttt e et et e e be et e e b e te e beeta e beete e beart e be et s enteerseteera e beereeabeeraebeersenteeraenraas A-7
UART ..ottt ettt ettt ettt e st ett et e et e et e b e s e s b e s s assessestessassaseeseasasseesessassessensassessaseasaaseaseaseasessessensensansans A-7
WaALCRAOG ..o A-8
AT CINADEVICE......c.eiciiitieececeeteee ettt ettt ettt et e e te et e e e e sseersasbeesaesbeessassaasseseessanseessesseessasseensesens A-9

B Configuring the Java Runtime Properties

Direct Modification of the jwc_properties.ini File.............cccccocovnniinn, B-1
Using the CLI set-property Commandccccooiiiiiiiiiiiiiiii s B-1
€] o T T T

List of Figures

1-1 Raspberry Pi Bin Dir€CtOrycooceioiirieiiiicicieeecc et 1-4
2-1 Using PuTTY to Connect to the Command-Line Interface...........cccocoooooiiinnni 2-4
2-2 Command-Line Interface to Raspberry Pi........cccccoooiiiiiii 2-4
2-3 Device Connections Manager Windowcccceuiiiiiiiiiiiicicciccc 2-8
2-4 Device Connections Manager Window with Raspberry Pi Connected...............cccccueeee. 2-9
2-5 Adding a Device to YOUTI Projectc.cocooviuiiiiiiiiiccc 2-10
2-6 Creating a New Project ... 2-11
2-7 Adding API Permissions with NetBeans ... 2-13
2-8 Signing Application JAR with NetBeans...........ccoooooiii 2-14
2-9 Keystores Manager WindOWcooueuiiiiiiiiiiiicec e 2-14
2-10 Exporting Key on a Devicecciiuiiiiiiiiiiiiiiiiiii 2-15
2-11 Editing Security POLICYcooiiiieiiiciei s 2-16

List of Tables

2-1 Raspberry Pi Shell Commands ..o 2-1
2-2 AMS CLI COMMANGSoorviviiiiiieiiecici ittt st 2-5
2-3 Security and Properties Commands............coueeueiiiiiiiiniiicc 2-6
2-4 File System CommAnds...........ccourueuiiiiiiieiiicice e 2-6
2-5 Device COMMANS........ooiiiiiiiiiicie ettt 2-7
2-6 Keystore ComMmMANASceuoiiiriiiiiiieicic 2-7
3-1 Problems and Solutions: Installing Linux on the Board...........cccoooeiiiii 3-1
3-2 Problems and Solutions: Starting Oracle Java ME Embedded Software on the Board ... 3-2
3-3 Problems and Solutions: Oracle Java ME SDK and the NetBeans IDE..............cccecceueue... 3-2

vii

List of Examples

viii

Audience

Preface

This guide describes how to install Oracle Java ME Embedded software onto a
Raspberry Pi embedded device.

This guide is for developers who want to run Oracle Java ME Embedded software on a
Raspberry Pi device.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For a complete list of documents for the Oracle Java ME Embedded software, see the
Release Notes.

Shell Prompts

Shell Prompt

Windows directory>

Linux $
Conventions

The following text conventions are used in this guide:

Convention

Meaning

boldface

italic

monospace

Boldface type indicates graphical user interface elements associated
with an action.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Installing Oracle Java ME Embedded
Software on the Raspberry Pi Board

This chapter describes installing the Oracle Java ME Embedded 8 software on the
Raspberry Pi board, installing and using the Developer Agent program on the desktop
host, configuring the Oracle Java ME Embedded system, connecting to the Raspberry
Pi using a secure shell, and installing and running an Oracle Java ME Embedded
application.

The following items are required for developing on the Raspberry Pi board:
= Raspberry Pi Rev. B 512 MB board
s Oracle Java ME Embedded 8 distribution

= Micro-USB power supply of .7 or greater amps, and 5 volts. Note that the power
supply must have a micro-USB type B connector, not a regular USB or mini-USB
connector.

= USB keyboard and mouse, as well as a monitor. If necessary for your monitor, use
an HDMI-to-DVI video cable or adapter.

s SD card of 4 GB or greater. An SD-HC class 10 card is recommended. Do not use a
high-speed SD card, because it may be too fast for the Raspberry Pi board.

» Ethernet cable with an R]-45 connection, as well as a connection to a network with
a DHCP server.

= A terminal emulator program, such as PuTTY, if you wish to connect to the board
using the Application Management System (AMS) interface.

Downloading and Installing the PuTTY Terminal Emulator Program
Download the PuTTY terminal emulator program (putty.exe) from the following site:
http://www.putty.org/

The terminal emulator executable file is directly downloadable as putty.exe. The
terminal emulator is used to connect to the AMS command-line interface (CLI) that
sends commands to the board.

NOTE: Using the PuTTY terminal emulator program is highly
recommended. You can use any terminal program to connect to the
CLI, however, Oracle cannot guarantee that other terminal programs
work with the CLI in the same manner as PuTTY.

Installing Oracle Java ME Embedded Software on the Raspberry Pi Board 1-1

Preparing the Raspberry Pi Board

Preparing the Raspberry Pi Board

To develop applications on the Raspberry Pi board, you must first download and
install the Wheezy variant of Raspbian Debian Linux on the Raspbian Pi board. To do
this, follow these steps:

1. Download the Raspbian Wheezy hard-float (Debian Linux) raw image ZIP file to
your desktop from the following site:

http://www.raspberrypi.org/downloads
2. Unzip the distribution file, which creates a single disk image (. img) file.

3. Mount the SD card to the desktop, and use a utility to write the disk image file to
the SD card. Note that this is not the same as copying the file to the base-level
directory on the SD card. Instead, it is similar to burning a disk image onto a
CD-ROM or DVD-ROM. There are a number of utilities that will perform this
action:

= For the Windows operating system, you can use the Disk Image Writer utility
located at https://launchpad.net/win32-image-writer.

= For the Mac platform, use the RPi-sd Card Builder located at
http://alltheware.wordpress.com/2012/12/11/easiest-way-sd-
card-setup.

s For Linux, use the dd command. For more information, see
http://en.wikipedia.org/wiki/Dd_ (Unix).

Eject or unmount the SD card from the desktop computer.
Connect the R]-45 network cable, monitor, keyboard, and mouse.

Install the SD card in the Raspberry Pi board.

N o a &

Connect power to the Raspberry Pi board. The red light on the Raspberry Pi board
should glow, then in a few seconds, the green light should blink. The blinking
green light indicates that the Raspberry Pi board is booting Linux.

8. If the Linux installation was successful, the Raspberry Pi board will start and
obtain a DHCP address.

9. A configuration program (raspi-config) runs, which helps you expand the file
system partition on the SD card, configure the keyboard and time zone, reset the
default password, and so on. Use the up and down arrow keys to make a menu
choice. Use the left or right arrow keys to select OK or Cancel. Press Return to run
your choice. Note that the default user name is pi, and the default password is
raspberry.

10. You can perform an update, start the ssh server, and set the graphical desktop to
automatically start, then click Finish. At this point, the board should reboot.

11. Log in if necessary, and if you are using the desktop, start an LXTerminal.

12. Run the ifconfig command to display the Raspberry Pi IP address. This is
necessary so you can access and control the board remotely. Remember this IP
address; it will be used in the next set of steps.

Installing the Oracle Java ME Embedded Software

Version 8 of the Oracle Java ME Embedded software contains a different architecture
than previous versions. With version 8, the user has the option to run a Developer
Agent program on the desktop under Windows. Commands that are sent to the board

1-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Installing the Oracle Java ME Embedded Software

from the Windows desktop are no longer sent directly across the network. Instead,
they are sent to the Developer Agent program, which transmits all communication to
and from the Oracle Java ME Embedded executable file on the Raspberry Pi board.

The Oracle Java ME Embedded ZIP archive consists of the following directories:

/appdb: This directory is used on the Pi and contains internal Java libraries

/bin: This directory is used on the Pi and contains executables and the jwc_
properties.ini file

/legal: This directory contains important legal documentation

/1ib: This directory contains the files needed to compile IMlets on the Raspberry
Pi board.

/util: This directory contains the Developer Agent program.

You must make two copies of the Oracle Java ME Embedded ZIP archive file. The first
remains on the Windows desktop, while the second must be transferred to the
Raspberry Pi board.

1.

Use an sftp client or scp command to transfer one copy of the Oracle Java ME
Embedded ZIP archive to the Raspberry Pi board. For example, on a UNIX or Mac
system, you can transfer the ZIP file using a command similar to the following:

$sftp pi@[IP address of board]

Windows users can download the psftp.exe to obtain a free SFTP client; it is
available from the same address as the PuTTY executable:
http://www.putty.org/

After the ZIP archive is transferred, either go directly to the keyboard and the
mouse connected to the Raspberry Pi board, or start a secure shell script on your
desktop to connect to the board using the following command:

Sssh -1 pi [IP address of board]

Unzip the archive on the Raspberry Pi board and perform the following
command:

Schmod -R 755 appdb bin

cd to the bin directory. The contents of the bin directory are shown in Figure 1-1.

Installing Oracle Java ME Embedded Software on the Raspberry Pi Board 1-3

Installing the Oracle Java ME Embedded Software

Figure 1-1 Raspberry Pi Bin Directory

-
B3 Bitvise xterm | = | B |

Last login: Sat Sep 28 17:18:688 2813

m| »

pilBraspherrypi cd bin

pifraspberrypi e

installMidlet.sh listMidlets.sh runMidlet runSuite.sh
jwc_properties.ini removeMidlet.sh run.sh usertest.sh
pilraspherrypi

Adding an HTTP Proxy for Network Connections on Raspberry Pi

If an HTTP proxy server is required for the Java IMlets on Raspberry Pi to make
network connections (such as for HTTP or apt-get), then Oracle Java ME Embedded
on Raspberry Pi can be configured by adding the following lines to the end of the
bin/jwc_properties.ini file:

com.sun.midp.io.http.proxy.host
com.sun.midp.io.http.proxy.port

Proxy .mycompany . com
80

1-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

2

Installing and Running Applications on the
Raspberry Pi Board

Developers can run and debug IMlets on the Raspberry Pi board directly from the
NetBeans IDE 8.0 Patch 1 or using the Oracle Java ME SDK 8.0. This chapter describes
how to add the board to the Device Connections Manager in the Oracle Java ME SDK
8.0 and how to debug an IMlet on the board from the NetBeans IDE 8.0.

Using the Java Runtime on the Raspberry Pi

There are several ways to use the Oracle Java ME Embedded platform on the
Raspberry Pi board.

1. Directly run commands using an LXTerminal command-line shell interface or
logging in using the ssh protocol.

2. Manually start a Developer Agent program on the desktop host and run
commands using the Application Management System (AMS).

3. Run NetBeans IDE 8.0.

Running IMlets on Raspberry Pi Using the Command Shell

If you want to run IMlets directly on the Raspberry Pi board without a Developer
Agent program, then you can use the commands shown in Table 2-1.

Table 2-1 Raspberry Pi Shell Commands

Syntax Description

listMidlets.sh [SUITE_ID or NAME] List all installed IMlet suites and their
status or show the detail of a single suite.

installMidlet.sh <URL> [<URL label>] Install an IMlet using the specified JAR
file.

removeMidlet.sh <SUITE_ID> Remove an installed IMlet.

sudo runSuite.sh <SUITE_ID or NAME> [IMLET Run the specified IMlet or the default if

ID or classname] none is specified. All logging
information from the IMlet appears in
the standard output of this command.

Note: The term IMlet, in the context of the Oracle Java ME
Embedded command-line interface (CLI) and references in this
chapter, is synonymous with MIDlet.

Installing and Running Applications on the Raspberry Pi Board 2-1

Starting the Developer Agent Program on the Desktop

The following is a typical example of using the commands to install, list, run, and
remove an Oracle Java ME Embedded application on the Raspberry Pi board. Note
that the runSuite. sh shell command must be preceded by the sudo request to ensure
that the command can run with superuser privileges and access all the peripherals on
the board. Note also that either all commands must be preceded by the sudo request or
none of them. Most commands can be terminated with the Ctrl-C key combination if
they become unresponsive.

First, install the application using the installMidlet.sh command, specifying its
location on the local file system.

pi@raspberrypi ~/bin $ sudo ./installMidlet.sh /home/pi/EmbeddedTestProject.jar
Java 1s starting. Press Ctrl+C to exit
The suite was successfully installed, ID: 2

After an IMlet is installed, note its ID: in this case, it is 2. Next, verify it using the
listMidlets.sh command.

pi@raspberrypi ~/bin $ sudo ./listMidlets.sh
Java 1s starting. Press Ctrl-C to exit
Suite: 2

Name: EmbeddedTestProject

Version: 1.0

Vendor: Vendor

MIDlets:

MIDlet: GPIODemo

You can run any installed IMlet using the sudo runSuite.sh command. This
command runs the IMlet that was just installed, passing any logging information to
the standard output of this command. Note that you can press the Ctrl-C key to exit
from this command, which will terminate the application.

pi@raspberrypi ~/bin $ sudo ./runSuite.sh 2
Java 1is starting. Press Ctrl-C to exit
Starting - GPIODemo

You can use the removeMidlet.sh command to remove any installed IMlet.

pi@raspberrypi ~/bin $ sudo ./removeMidlet.sh 2
Java 1s starting. Press Ctrl-C to exit

Suite removed

pi@raspberrypi ~/bin $

You can verify the results by using the 1istMidlets.sh command.

pi@raspberrypi ~/bin $ sudo ./listMidlets.sh
Java 1s starting. Press Ctrl-C to exit
No suites installed

Starting the Developer Agent Program on the Desktop

If you want to use the Developer Agent program, then extract files from the copy of
the Oracle Java ME Embedded ZIP archive on the Windows desktop and delete the
/appdb and the /bin directories. The Developer Agent program is a JAR file inside the
util directory of the Oracle Java ME Embedded distribution, and is named
proxy.jar. You can start the Developer Agent program on the desktop host computer
either in a server or a client mode. After the Developer Agent program starts, use the
AMS CLI.

2-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Running IMlets on Raspberry Pi Using the AMS CLI

Server Mode Connection

A server mode is used by default. In this mode, start the Java runtime on the
Raspberry Pi board to allow access to the AMS, then start the Developer Agent
program. You must start the Java runtime on the Raspberry Pi board with the
usertest.sh command in the command-line shell interface. Run the command using
the sudo program to obtain superuser privileges to access all the peripherals on the
board.

1. Change to the bin directory on the Raspberry Pi board and run the sudo
. /usertest.sh command:

pi@raspberry ~ /pi/bin $ sudo ./usertest.sh

2. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar -socket <RPI IP ADDRESS>

Trying to open socket connection with device: <IP Address>:2201

Connected to the socket Socket[addr=/<IP address>, port=2201, localport=54784]
Open channel 8 with hash 0x390df07e

notifyResponse AVAILABLE_RESPONSE on channel 8

Channel 8 CLOSED -> AVAILABLE

Open channel 9 with hash 0x0

Client Mode Connection

To switch to a client mode connection, perform the following steps.

1. Edit the jwc_properties.ini file in the bin directory on the Raspberry Pi board as
follows:

» Set the proxy_connection_mode property to the client value.

» Set the proxy.client_connection_address property to the IP address of the
host running the Developer Agent program.

2. Run the sudo usertest.sh command in the /bin directory:

pi@raspberry ~ /bin $ sudo ./usertest.sh

3. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar

Starting with default parameters: -ServerSocketPort 2200 -jdbport 2801
Channel 8 CLOSED -> AVAILABLE

Waiting for device connections on port 2200

Running IMlets on Raspberry Pi Using the AMS CLI

The next step is to make a raw connection to the AMS CLI. Note, however, you must
first run the Developer Agent program on the desktop host and the Java runtime - on
the Raspberry Pi board as described in Starting the Developer Agent Program on the
Desktop unless the Developer Agent was started automatically by Java ME SDK.

At this point, you can start a PuTTY executable file on your desktop computer. Use
this to create raw socket connections to the IP address of the host running the
Developer Agent, and port 65002. For example, a connection to localhost and the port
65002 is shown in Figure 2-1.

Installing and Running Applications on the Raspberry Pi Board 2-3

Running IMlets on Raspberry Pi Using the AMS CLI

Figure 2—-1 Using PuTTY to Connect to the Command-Line Interface

ﬁ PuTTY Configuration I,i:?-]
Categony:
| B- Sgssinn | Basic options for your PuTTY session
et I_.Dglging Specify the destination you want to connect to
Tm}é;?rbnard Host Mame (or IP address) Port
. Bell localhost 6h002
- Features Connection type:
= Window @) Raw Telnet Rlogin S5H Serial
f-‘-.ppea!ance Load, save or delete a stored session
- Behawiour
. Translation Saved Sessions
- Selection
- Colours : rmer—
Default Settings
—J- Connection |ﬂ|
.. Data | P |
- Prowy O—
... Telnet | Delete |
Rlagin
+- 55H
""" eunl Cloge window on ext:
Always Mewver @ Onby on clean exit
| About | l Open] | Cancel

[]

The window from port 65002 provides a CLI as shown in Figure 2-2.

Figure 2-2 Command-Line Interface to Raspberry Pi

B RASP - PuTTY ESRE)

Caution: The CLI feature in this Oracle Java ME Embedded software
release is provided only as a concept for your reference. It uses
connections that are not secure, without encryption, authentication, or
authorization.

2-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Running IMlets on Raspberry Pi Using the AMS CLI

You can use the command-line interface to run the AMS commands shown in
Table 2-2.

Table 2-2 AMS CLI Commands

Syntax Description

ams-list [INDEX or NAME|VENDOR] List all installed IMlet suites and their
status or show the detail of a single
suite.

ams-install <URL> Install an IMlet using the specified

[username:password] [hostdownload] JAR or JAD file, specified as a URL.

An optional user name and password
can be supplied for login information
either in the URL or by the auth
parameter. When run without the
hostdownload option, only http://
URLSs must be specified. The
hostdownload option enables you to
install an IMlet using the JAR file
specified by the file:// URL. Note
that the JAR file must be located on

the host.

ams-update <INDEX or NAME|VENDOR> Update the installed IMlet.

ams-remove <INDEX or NAME|VENDOR> Remove an installed IMlet.

ams-run <INDEX or NAME|VENDOR> [IMLET ID] Run the specified IMlet or the default

[-debug] if none is specified. You can specify
optional debug parameter to run the
IMlet in debug mode.

ams-stop <INDEX or NAME|VENDOR> [IMLET_ID] Stop the specified IMlet or the default
if none is specified.

ams-info <INDEX or NAME|VENDOR> Show information about the installed
IMlet.

Here is a typical example of using the AMS to install, list, run, and remove an Oracle
Java ME Embedded application on the board:

oracle>> ams-install file:///C:/some/directory/hello.jar hostdownload
<<ams-install,start install,file:///C:/some/directory/hello.jar
<<ams-install,install status: stage DONE, 0%

<<ams-install,install status: stage DONE, 100%

<<ams-install,OK, Install success

oracle>> ams-install http://www.example.com/netdemo.jar
<<ams-install,start install,http://www.example.com/netdemo.jar
<<ams-install,install status: stage DONE, 0%
<<ams-install,install status: stage DONE, 100%
<<ams-install,OK, Install success

oracle>> ams-install http://www.example.com/notthere.jar
<<ams-install,start install,http://www.example.com/notthere.jar
<<ams-install, FAIL, errorCode=103 (OTHER_ERROR)

Note that the final installation example failed with an error code and matching
description.

Similarly, install an additional IMlet: rs232dem. After an IMlet is installed, verify it
using the ams-1ist command. Each IMlet has been assigned a number by the AMS for
convenience.

Installing and Running Applications on the Raspberry Pi Board 2-5

Running IMlets on Raspberry Pi Using the AMS CLI

oracle>> ams-list
<<ams-list,0.hello|Oracle, STOPPED
<<ams-1list,1l.netdemo | Oracle, STOPPED
<<ams-1list,2.rs232dem|Oracle, RUNNING
<<ams-1list,OK,3 suites are installed

You can use the ams-remove command to remove any installed IMlet.

oracle>> ams-remove 0
<<ams-remove, OK,hello removed

The results can again be verified with the ams-1ist command.

oracle>> ams-list

<<ams-1list,1l.netdemo|Oracle, STOPPED
<<ams-1list,2.rs232dem|Oracle, RUNNING
<<ams-list,O0K,2 suites are installed

Finally, start the IMlet using the ams-run command. The application can be terminated
with the ams-stop command.

oracle>> ams-run 1
<<ams-run, OK, started

oracle>> ams-list

<<ams-list,l.netdemo|Oracle, RUNNING
<<ams-list,2.rs232dem|Oracle, RUNNING
<<ams-1list,OK,2 suites are installed

You can use the properties commands summarized in Table 2-3 and file system
commands summarized in Table 2—4.

Table 2-3 Security and Properties Commands

Syntax Description

help [command name] List the available commands or detailed usages for a single
command.

properties-list Show the list of names of properties which control the Java ME

runtime (properties that are set in the properties.ini file).

get-property <NAME> [-i] Return a value of the property identified by <NAME>.

set-property <NAME> Set a property identified by <NAME> with the value <VALUE>.
<VALUE>
save-properties Save properties to an internal storage.

blacklist -client <NAME> Blacklist clients and applications.

blacklist -app
<NAME | VENDOR>

Table 2-4 File System Commands

Syntax Description

cd <deviceDirectoryName> Change the working directory on the device.
delete <deviceFileName> Delete a file on the device.

get <deviceFileName> Copy a file from the device to the host.
<hostFileName>

2-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Using NetBeans with the Raspberry Pi Board

Table 2-4 (Cont.) File System Commands

Syntax Description

1s Display a list of files and subdirectories in a device directory. In

[<deviceDirectoryName>] aresult listing, subdirectories are marked with a trailing file
separator symbol, such as "\" on Windows and "/" on the
Raspberry Pi board.

mkdir Create a directory on the device.

<deviceDirectoryName>

pwd Write the current working directory on the device.

put <hostFileName> Copy a local host file to the device.

<deviceFileName>

The CLI supports working with multiple devices. You can use the device commands
summarized in Table 2-5.

Table 2-5 Device Commands

Syntax Description

device-list List all connected devices.

device-change <INDEX> Make the specified device current.

shutdown [-r] Perform either a shutdown of the board or a reboot if the -r

parameter has been passed.

exit Terminate the current CLI session.

You can use the keystore commands summarized in Table 2-6.

Table 2-6 Keystore Commands

Syntax Description

ks-delete (-owner <owner Delete a key from a ME store.
name> | -number <key

number>)

ks-export -number <key Export a key from a device keystore by index.
number> -out <full file

name>
ks-import [-keystore Import a public key from a JCE keystore into a ME keystore.
<filename>] [-storepass

<password>] [-keypass

<password>] [-alias <key

alias>]

ks-list List the owner and validity period of each key in a ME keystore.

Using NetBeans with the Raspberry Pi Board

Running and debugging IMlet projects on the Raspberry Pi board using the NetBeans
IDE 8.0 requires the following software:

= NetBeans IDE 8.0 with Java ME 8 support
s Oracle Java ME SDK 8.0
s Oracle Java ME SDK 8.0 plugins

Installing and Running Applications on the Raspberry Pi Board 2-7

Adding the Raspberry Pi Board to the Device Connection Manager

For complete instructions about installing Oracle Java ME SDK 8.0, the NetBeans IDE
8.0, and Oracle Java ME SDK 8.0 plug-ins for NetBeans, see Oracle Java ME SDK
Developer’s Guide.

Note: This chapter assumes that the Raspberry Pi board is already
set up and connected to the Windows platform running Oracle Java
ME SDK 8.0 and that NetBeans IDE 8.0 has already been started.

Adding the Raspberry Pi Board to the Device Connection Manager

Follow these steps to add the Raspberry Pi board to the Device Connections Manager
in Oracle Java ME SDK 8.0:

1. Ensure that the sudo. /usertest.sh scriptin the /bin directory is running on the
Raspberry Pi board.

2. Ensure that the Developer Agent program does not run on the desktop computer.

3. Start the Oracle Java ME SDK 8.0 Device Connections Manager (located at <SDK
Installation Folder>/bin/device-manager.exe) and click its icon in the taskbar. A
Device Connections Manager window is shown in Figure 2-3.

Figure 2-3 Device Connections Manager Window

(Device Connections Manager [—Ehr
Connection : Status
Add] [Remaove] [Close] [Help
L. "

4. C(lick the Add button, ensure that the IP Address or Host Name list contains the
correct IP address of the Raspberry Pi board, and click OK.

5. After the Raspberry Pi board is registered, its IP address is listed on the Device
Connections Manager list and its status is Connected as shown in Figure 2—4.

2-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Assigning the Raspberry Pi Board to Your Project

Figure 2-4 Device Connections Manager Window with Raspberry Pi Connected

i H
Device Connections Manager @

~

Connection Status

[Add H Remove] [Close |[Help]

Assigning the Raspberry Pi Board to Your Project
There are two ways to assign the Raspberry Pi board to your project:
» Using an existing NetBeans Project with an IMlet you want to run or debug.
s Creating a new NetBeans project.

After you assign the board to your project, clicking Run Project in the NetBeans IDE
8.0 runs your IMlets on the board instead of on the emulator.

Using an Existing NetBeans Project

If you already have an existing NetBeans project with an IMlet that you want to run or
debug on the board, follow these steps:

1. Right-click your project and select Properties.
2. Select the Platform category on the properties window.

3. Select the Platform Type (CLDC) and ensure that Oracle Java(TM) Platform Micro
Edition SDK 8.0 is selected in the Java ME Platform list.

4. Select EmbeddedExternalDevicel from the Device drop-down list, as shown in
Figure 2-5. Select (or deselect) from the list of Optional Packages as needed for
your project, and click OK.

Installing and Running Applications on the Raspberry Pi Board 2-9

Assigning the Raspberry Pi Board to Your Project

Figure 2-5 Adding a Device to Your Project

O Project Properties - GPIODemo &J
Categories:
- @ Sources oK Path: JDK 1.8 (Default) -
- @ Platform
& Lbraries Java ME Flatform: | Orade Java(TM) Platform Micro Edition SDK 8.0 - Manage Platforms. ..
- @ Application Descriptor
- @ Buid . =
X Configuration: <default config> Delete
o Conping -
> 2 Signing
i @ Obfuscating Device: -
e @ Documenting
@ Run Configuration: @ CLDC-1.3
Profile: @ MEEP-8.0

Optional Packages:
Application Protocol Data Unit APIs 1.0 o

[Configuration API 1.0

Device If0 1.0 =
FileConnection Optional Package 1.0

Generic Connection Framework 1.8

[F] HTTP Client 1.0

[7] 350N 1.0

|:| Java Cryptographics Extension APIs 1.0

Java ME Web Services 1.0

[FFl1 arabion @onad A0I2 1 0

OK][Cancel H Help

Creating a New NetBeans Project
If you are creating a new NetBeans project, follow these steps:

1.

2.

Select File then New Project.

Select the Java ME Embedded category and Java ME 8 Embedded Application in
Projects pane. Click Next.

Provide a project name, for example, ME8EmbeddedApplicationl. Ensure that the
Java ME Platform is Oracle Java(TM) Platform Micro Edition SDK 8.0 and the
Create Midlet option is selected.

Select EmbeddedExternalDevicel from the Device drop-down list and click
Finish, as shown in Figure 2-6.

2-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Assigning the Raspberry Pi Board to Your Project

Figure 2-6 Creating a New Project

r ~
O New Java ME Embedded Application &J
Steps Mame and Location
1. Choose Project Project Name: MESEmbeddedApplication1

2. Name and Location

Project Location: |C:\NetBeansProjects

Project Folder: C:\NetBeansProjects\MESEmbeddedApplication 1

DK Path: IDK. 1.8 (Default) -]

Java ME Platform: .Orade Java(TM) Platform Micro Edition SDK 8.0 - Manage Platforms...
Device: :EmbeddedDevicel -

Configuration: @ CLDC-1.8

Profile: @ MEEP-8.0

[Use Dedicated Folder for Storing Libraries

Libraries Folder: FOWSE. ..

m

Different users and projects can share the same compilation libraries (see Help for
details).

Create Midet |me8embeddedapplication 1. MESEmbeddedApplication 1

Mext = Einish H Cancel H Help

When the new project is created, it is displayed in NetBeans IDE with the name
ME8EmbeddedApplicationl.

Sample Source Code

Now you can update the generic project that you created with the sample code shown
in the following example. This sample application obtains an object representing GPIO
pin 2 from the DeviceManager object, and tries to obtain its high/low value.

package me8embeddedapplicationl;

import jdk.dio.DeviceManager;

import jdk.dio.UnavailableDeviceException;
import jdk.dio.gpio.GPIOPin;

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.midlet.*;

public class ME8EmbeddedApplicationl extends MIDlet {

@override
public void startApp() {

try {
GPIOPin pin = (GPIOPin)DeviceManager.open(2);
boolean b = pin.getValue();

} catch (UnavailableDeviceException ex) {

} catch (IOException ex) {

Installing and Running Applications on the Raspberry Pi Board 2-11

Debugging an IMlet on the Raspberry Pi Board

Logger .getLogger (ME8EmbeddedApplicationl.class.getName()) .log(

Level.SEVERE, null, ex);

}

}
}

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

}

In the NetBeans Projects window, you see the sample project with the file
ME8EmbeddedApplicationl.java. Follow these steps:

1.
2
3.

Double-click the ME8EmbeddedApplicationl. java file in the Projects window.
Copy the sample code and paste it in the Source window.

Clean and build the ME8EmbeddedApplicationl project by clicking on the
hammer-and-broom icon in the NetBeans toolbar or by selecting Run then Clean
and Build Project (MES8EmbeddedApplication1).

Run the newly cleaned and built MESEmbeddedApplicationl project by selecting
the green right-arrow icon in the NetBeans toolbar or by selecting Run then Run
Project (MES8EmbeddedApplication1).

When the run is successful, the EmbeddedExternalDevicel emulator starts with
the ME8EmbeddedApplicationl suite running.

Debugging an IMlet on the Raspberry Pi Board

Follow these steps to debug an IMlet using NetBeans:

1.
2.

3.

Open your IMlet class on the NetBeans editor.

Click once directly on the line number where you want to set a breakpoint. The
line number is replaced by a red square and the line is highlighted in red.

Select Debug then Debug Project or use the Debug button on the toolbar.

The debugger connects to the debug agent on the board and the program stops at your
breakpoint.

Accessing Peripherals

Applications that require access to Device I/O APIs must request appropriate
permissions in JAD files. For more information about using the Device I/O APlIs, see
the Device I/O API 1.0 specification at:

http://docs.oracle.com/javame/8.0/api/dio/api/index.html

Signing the Application with API Permissions

The JAD file must have the proper API permissions. Follow these steps to sign the
application both in NetBeans and without an IDE:

1.

2.

In NetBeans, right-click the project name (MES8EmbeddedApplication1 in this
example) and select Properties.

Click Application Descriptor, then in the resulting pane, click API Permissions.

2-12 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

"http://docs.oracle.com/javame/embedded/embedded.html

Accessing Peripherals

3. C(lick the Add button, and add the jdk.dio.DeviceMgmtPermission API, as shown

in Figure 2-7.
4. Click OK to close the project properties dialog.

Figure 2-7 Adding API Permissions with NetBeans

O Project Properties - JavaMEApplicationl @
Categories:
@ Sources I} | Attributes | MiDlets I Push Registry | AP Permissions
@ Platform .
& Libraries Requested Permissions:
- & Application Descriptor API Required Add...
E @ Buld idk.dio. DeviceMgmtPermission ™*:*" "open”

- @ Signing
- @ Obfuscating

2 Documenting
Run

OK. \[Cancel][Help]

4

5. If you are not using an IDE, then manually modify the application descriptor file

to contain the following permissions:

MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "*:*" "open"

Method #1: Signing Application Using the NetBeans IDE

The NetBeans IDE enables developers both to sign the applications with a local
certificate and upload the certificate on the device. Follow these steps:

1. Right-click the project name and select Properties.
2. Under the Build category, click Signing.
3. Select Sign JAR and specify a certificate to sign with as shown in Figure 2-8.

Installing and Running Applications on the Raspberry Pi Board

2-13

Accessing Peripherals

Figure 2-8 Signing Application JAR with NetBeans

J Project Properties - MEBEmbeddedApplicationl [
Categories:
- @ Sources
& Platform Open Keystores Manager...]
o O Lbraries Keystore: | {5 Bult-n Keysto | [Unlock
- Application Descriptor ystore: uilt-n Keystore | nlock. ..
- @ Buid 1
: Alias: inimal Unlock...
h Compiling [minimai e
Signing Certificate Details
Obfuscating minimal
Documenting Subpect: CN=minimal
Issuer; CN=minimal

Vadig: 17.01.2014 - 16.07.2014

Export Key into Java ME SDK PlatformEmulator. ..

Note: The selected certificate must be uploaded on the device and
associated with the security client.

4. Click Open Keystores Manager.
5. Select the key and click Export as shown in Figure 2-9.

Figure 2-9 Keystores Manager Window

(0 Keystores Manager M1

Keystores:
Built-n Keystore Keystore File: | \AppData'Roaming\MetBeans\s. 0\config\j2mebuiltin, ks
Keys:
Unlock. ..
New...
Delete

[] Show Details

2-14 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Accessing Peripherals

6. In the Export Key window, select the EmbeddedExternalDevicel in the Emulator
drop-down list, select the certificate in the Security Domain drop-down list, and
click Export as shown in Figure 2-10.

Figure 2-10 Exporting Key on a Device

i '
0 Export Key into Java ME SDK/Platform/Emulator M

Keystore File: |C:\Users \AppData'RoamingiNetBeans\g. 0Yconfighj2me\builtin ks
key Pair Alias: minimal

Certificate Details
minimal
Subfect: CM=minimal
Tesuier: CM=minimal
Vg 21.03.2014 - 17.09, 2014

Emulator: iEmbeddedEntemaIDevicel -

Keys Registered in the Emulator:

Key:1 Delete Key
Owner CM=AddTrust External CA Root,OU=AddTrust External TTP Network{jm

valid from Tue May 30 03:48:38 PDT 2000 till Sat May 30 03:48:38 PDT 2021
Key: 2

Owner CM=GlobalSign Root CA,0U=Root CA,D=Global3ign nv-sa,C=BE
valid from Tue Sep 01 05:00:00 POT 1998 till Fri Jan 28 04:00:00 PST 2028
Key:3

Owner CM=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutionsl, Inc
valid from Wed Aug 12 17:29:00 PDT 1995 til Mon Aug 13 16:59:00 POT 20:
Key:4

Cwner CN=Entrust.net Secure Server Certification Authority,OU=(c) 1999F _

walid froam Tis Mase 96 0000040 DOT 1000 Hll 2= Mas 76 003040 DRT W01
4 i F

»

[Export H Close H Help]

4

7. Select Tools then Java ME and then Device Selector. The Device Selector window
opens.

8. In the Device Selector window, right-click EmbeddedExternalDevicel and select

Edit Security Policy. This opens the Security Policy window shown in
Figure 2-11.

Installing and Running Applications on the Raspberry Pi Board 2-15

Accessing Peripherals

Figure 2-11 Editing Security Policy

p
@) Security Policy

Clients:

untrusted

java.io.FilePermission "<<ALL FILES > >" "read write, delete execute, readlink™ -

Permissions:

java.lang.RuntimePermission =" [
java.util.logging. LoggingPermission “control™ null

java,util. PropertyPermission ™" read, write”

javax. microedition.apdu, APDUPermission "aid”

javax.microedition.apdu, APDUPermission "sat”

javax.microedition. cellular, CellularPermission ™=~

javax.microedition.event. EventPermission **" "post, postsystem,read, register”

rar

izvay mirrneditinn in ArcessPrintPermissinn

Certificates:
C=US,0=manufacturer CA,QU=TCK,CN=thehost
Ch=thehost,OU=1CT,O=dummy CA L=Santa Clara,5T=CA,C=U5

Add...][Remaove Remave

Changes to security policy will take effect on the next emulator startup. [QK] [Cancel]

10.

Ensure that the certificate is associated with the security client. Select the security
client or click Add to add the security client.

For the selected security client, ensure that the certificate with the specified
common name (CN) is listed on the list of certificates. If not, click Add to add the
certificate.

Method #2: Signing Application Using a Command Line

If you are not using the NetBeans IDE, then you can sign your application using the
command line. Follow the instructions on how to set up a keystore with a local
certificate that can be used to sign the applications:

1.

Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Oracle Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

Copy the certs directory from the Raspberry Pi board over to the desktop using
an sftp client or scp command, change into the certs directory, and perform the
following command using the mekeytool.exe command (or alternatively java
-jar MEKeyTool.jar... if your distribution contains only that) that ships with the
Oracle Java ME SDK 8 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

2-16 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Accessing Peripherals

This command imports the information in mykeystore.ks that you just created to
the _main.ks keystore. After this is completed, copy the certs directory back to
the Raspberry Pi board by using an sftp client or scp command.

Use the following commands to sign your application before deploying it to the
Raspberry Pi board:

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks
-storepass spass -inputkad myjad.jad -outputjad myjad.jad

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias -keystore
mykeystore.ks -storepass spass -keypass kpass -inputjad myjad.jad
-outputjad myjad.jad

Method #3: Using NullAuthenticationProvider

This method allows you to bypass a certificate check and run unsigned applications as
if they were signed and given all requested permissions. Use this method only for
development and debugging. Perform final testing using a real certificate as described
in method #1 or #2.

1. Stop the Java runtime.

2. To use NullAuthenticationProvider, set the following property in the jwc_
properties.ini file on the Raspberry Pi board:

[internal]
authentication.provider = com.oracle.meep.security.NullAuthenticationProvider

3. Restart the Java runtime.

Installing and Running Applications on the Raspberry Pi Board 2-17

Accessing Peripherals

2-18 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

3

Troubleshooting

This chapter contains a list of common problems that you may encounter while
installing and running the Oracle Java ME SDK and embedded software on the
Raspberry Pi board. This chapter provides information on the causes of these problems

and possible solutions for them.

The common problems in this chapter are grouped in the following categories:

s Installing Linux on the Raspberry Pi Board

» Starting Oracle Java ME Embedded Software on the Board
= Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Installing Linux on the Raspberry Pi Board

Table 3-1 contains information about problems and solutions when installing Linux on

the board.

Table 3-1 Problems and Solutions: Installing Linux on the Board

Problem Cause Solution

Red power LED is The power supply is Replace the power supply.

blinking. malfunctioning.

Red power LED is on, but The Raspberry Pi Use a special disk image utility to write the Wheezy disk

there is no activity from board cannot find a image onto the SD card. Do not copy the IMG file onto the

the green LED. valid disk image on the SD card and attempt to use that to power up the board.
SD card.

Green LED blinks witha A file needed by the Replace the following files:

specific pattern Raspberry Pi board is

. . n
missing or corrupted.

3 flashes: loader.bin not found
4 flashes: 1loader.bin not started
5 flashes: start.elf not found

6 flashes:start.elf not started

7 flashes: kernel . img not found

Starting Oracle Java ME Embedded Software on the Board

Table 3-2 contains information about problems and solutions when starting the

runtime on the board.

Troubleshooting 3-1

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Table 3-2 Problems and Solutions: Starting Oracle Java ME Embedded Software on the Board

Problem Cause Solution

Oracle Java ME Embedded The permissions on the Reset the permissions on all files in the distribution to 777.
applications will not start. distribution files are
not set correctly.

Oracle Java ME Embedded The network Verify that the network connection is correct. Ensure that the
fails to initialize the configuration is board is using DHCP to obtain an IP address.
network on the board. incorrect.

The Raspberry Pi desktop The board does not Use the Raspberry Pi setup application to set the desktop to
does not start after have the startup activate at startup.
booting. sequence activated.

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Table 3-3 contains information about problems and solutions when using the board
with the Oracle Java ME SDK and the NetBeans IDE:

Table 3-3 Problems and Solutions: Oracle Java ME SDK and the NetBeans IDE

Problem Cause Solution

The board is not detected =~ LAN proxy settings of ~ The socket proxy needs to be disabled: Open the Proxy
when adding a new device the host might be a Settings window available by clicking the Advanced button
to the Device Selector. source of the problem. on the LAN Setting window. Ensure that the Socks field is

empty and the Use the same proxy server for all protocols

The proxy connection is check box is not selected.

not enabled or an

improper proxy host Ensure that the +UseProxy parameter is present in the
address is set up in the run.sh script. Also, if the Developer Agent program runs in
jwc_properties.ini a client mode, ensure that the proxy.client_connection_
file. address property is properly configured to use the
Developer Agent program’s host address.
The debugging session The firewall on the Open TCP port 2808 on your firewall configuration settings.
freezes, disconnects computer is blocking The exact procedure to open a port differs depending on
unexpectedly, or shows some debugging traffic. your version of Windows or your firewall software.

EITOr MESSages. Thunderbird is using a Close thunderbird. exe during the debugging session.

port that is needed for
communication with

the board.
Installation of a big MIDlet There is not enough It is recommended that you stop other applications that
results in the error "AMS ~ memory for AMS consume memory resources and then proceed with the
generated out of memory". operation. installation of a big MIDlet.

3-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

A

Device I/0 Preconfigured List

This appendix describes the proper ID and names for the various peripheral ports and
buses for the Raspberry Pi embedded board, which are accessible using the Device
I/0O APIs.

Note that any IMlet that accesses the Device I/O APIs must be digitally signed using a
trusted certificate authority. An IMlet that is not signed will encounter an
authentication error when attempting to access the Device 1/O APIs.

To access any device from the preconfigured peripheral list, the following permission
is required:

oe

:%ID

[

jdk.dio.DeviceMgmtPermission ($Name);

You can find the names and IDs for specific devices in the tables that follow in this
appendix. You must also specify an action. An empty string means open.

The tables use the following legend:

s Device ID: an integer identifier that can be used to open the device with the
methods of the DeviceManager class.

s Device Name: the string name of a device that can be used to open it by name
with the methods of the DeviceManager class.

» Mapped: all hardware-related information regarding a peripheral, such as
physical location, mapping, or port. This information enables the user to
determine the peripheral's location on a target board. See the following site for
more information:

https://developer.qualcomm.com/mobile-development/development-devices-b
oards/development-boards/internet-of-everything-development-platform/to
ols-and-resources

= Configuration: properties that are passed to the specific DeviceConfig constructor
to open the peripheral by ID or name. The configuration can be used to open the
peripheral using the DeviceManager with the appropriate configuration.

Note the following items for Device I/O in the Raspberry Pi board:

s The interface DeviceConfig.HardwareAddressing does not support device names.
Do not use the DeviceConfig.HardwareAddressing.getDeviceName () method.

= The present implementation utilizes the I2C bus STOP-START sequence instead of
REPEATED START, keeping a combined message uninterrupted by another
transaction on the same I2C bus.

s The PulseCounter instance cannot be opened by the PulseCounterConfig instance
with the GPIOPinConfig instance specified.

Device 1/0O Preconfigured List A-1

https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources
https://developer.qualcomm.com/mobile-development/development-devices-boards/development-boards/internet-of-everything-development-platform/tools-and-resources

GPIO Pins

s The PiMChannel instance cannot be opened by the PWMChannelConfig class with
the GPIOPinConfig instance specified.

GPIO Pins

The following GPIO pins are preconfigured.

Devicel ID Device Name Mapped Configuration

2 GPIO2 GPIO 2 controllerNumber = 0
pinNumber = 2

direction = GPIOPinConfig. DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

3 GPIO3 GPIO 3 controllerNumber = 0
pinNumber = 3

direction = GPIOPinConfig.DIR_INPUT
ONLY

mode = GPIOPinConfig.MODE_INPUT
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

4 GPIO4 GPIO 4 controllerNumber = 0
pinNumber = 4

direction = GPIOPinConfig.DIR_INPUT
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored
7 GPIO7 GPIO 7 controllerNumber = 0
pinNumber = 7

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvValue = false

A-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

GPIO Pins

Devicel ID

Device Name

Mapped

Configuration

8

10

11

14

GPIOS8

GPIO9

GPIO10

GPIO11

GPIO14

GPIO 8

GPIO 9

GPIO 10

GPIO 11

GPIO 14

controllerNumber = 0
pinNumber = 8

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvValue = false

controllerNumber = 0
pinNumber = 9

direction = GPIOPinConfig.DIR_INPUT
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

controllerNumber = 0
pinNumber = 10

direction = GPIOPinConfig.DIR_INPUT
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvalue - ignored

controllerNumber = 0
pinNumber = 11

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvValue - ignored

controllerNumber = 0
pinNumber = 14

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

Device I/O Preconfigured List A-3

GPIO Pins

Devicel ID Device Name Mapped Configuration

15 GPIO15 GPIO 15 controllerNumber = 0
pinNumber = 15

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT_
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

17 GPIO17 GPIO 17 controllerNumber = 0
pinNumber = 17

direction = GPIOPinConfig.DIR_INPUT
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

18 GPIO18 GPIO 18 controllerNumber = 0
pinNumber = 18

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger - ignored

initvValue = false
22 GPIO22 GPIO 22 controllerNumber = 0

pinNumber = 22

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvalue - ignored

23 GPI1IO23 GPIO 23 controllerNumber = 0
pinNumber = 23

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

A-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

GPIO Pins

Devicel ID Device Name Mapped Configuration

24

25

27

GPIO24 GPIO 24 controllerNumber = 0
pinNumber = 24

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvValue = false

GPI1IO25 GPIO 25 controllerNumber = 0
pinNumber = 25

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_OUTPUT
PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

GPIO27 GPIO 27 controllerNumber = 0
pinNumber = 27

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = DeviceConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initvValue - ignored

Please note the following items concerning GPIO on the Raspberry Pi board.

The value of DeviceConfig.DEFAULT when applied to the controllerNumber is 0.

The value of DeviceConfig.DEFAULT when applied to the mode means that the
GPIO pin be configured in the default mode, as per the table above.

GPIO modes are not software-configurable. All GPIO pins in the preceding table
are given with the only mode that is supported on the Raspberry Pi. If an
application attempts to configure a GPIO pin to use an unsupportable mode, an
exception will be thrown.

To work with GPIO, you must run Java as the root superuser.

For GPIO pins that are configured as input pins, the initValue parameter is
ignored.

The trigger modes TRIGGER_HIGH_LEVEL, TRIGGER_LOW_LEVEL, and TRIGGER_BOTH_
LEVELS are not supported on the Raspberry Pi.

For all GPIO pins, the application should pass in a 0 for the GPIO port when
necessary.

The following diagram represents the pin positions of the Raspberry Pi, Revision
2.

Device I/O Preconfigured List A-5

12C

Ground
Ground
Ground

00000000 OOO®O®E
0000VEVPPO®O©O®@E

There is no static I2C configuration with the Raspberry Pi because there is no
connected hardware. In comparison with SPI, I2C does not allow any communication
with a loopback device.

Revision 2.0

Ground
3v3
Ground

12C

Device ID Device Name Mapped Configuration
NONE GPIO 2 (SDA)
GPIO 3 (SCL)

Please note the following items about I2C on the Raspberry Pi.
m I2CDevicePermission is necessary.

s For revision 1 boards, 12C is provided by default on GPIO 0 and 1 (bus 0), and for
revision 2 boards, 12C is provided on GPIO 2 and 3 (bus 1.)

» The value of DeviceConfig.DEFAULT when applied to the busNumber is 0.
» The value of DeviceConfig.DEFAULT when applied to the addressSizeis 7.
s The clockFrequency field is ignored.

= Before using I2C, you will have to load two I2C modules: 12c-bcm2708 and
i2c-dev. Add the following two lines to the /etc/modules file and reboot to apply
the changes.

12¢c-bcm2708

i2c-dev

s I2C can be used without administrative rights. To do so, you should have owner
or group rights to files /dev/i2c-*. This can easily done by installing the
i2c-tools package ($ sudo apt-get install i2c-tools)and adding the pi user
to the 12c group ($ sudo adduser pi i2c). Alternatively, you can use udev's
rules.

MMIO

The following MMIO peripherals are available:

A-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

UART

SPI

UART

Device ID Device Name Mapped Configuration

61 PWM

The MMIO peripherals include CTL, STA, RNG1, DAT1, and FIF1 registers (all of them
are of type INT) with no event support.

Due to nature of memory organization of the Raspberry Pi, programmers can create a
custom MMIODeviceConfig to access the memory range {0x20000000, 0x21000000}.
Please note that not all addresses are accessible in the range and some of them may
cause a board reboot. Please check the documentation for SFR addresses and its
behavior. The end addresses are not inclusive.

The SPI has a single static configuration with the following parameters:

Device ID Device Name Mapped Configuration
12 SPI_Slave GPIO10 SPI bus number: 0 (SPI1)
(MOSI) Chip Enable: 0 (CE0/GPIOS)
GPIO9 (MISO) The number of bit of slave's word: 8
(GSI(’:IE)KI)l Clock frequency in Hz: 2000000
GPIOS (CE0) Clock polarity and phase: 1 (CPOL_Low,

CPHA_2Edge)

Bit ordering of the slave device: 1 (BIG_
ENDIAN)

Please note the following items about SPI on the Raspberry Pi.
s The value of DeviceConfig.DEFAULT when applied to the busNumber is 0.

s The value of DeviceConfig.DEFAULT when applied to the clockFrequency is
2000000 Hz.

s The value of DeviceConfig.DEFAULT when applied to the wordLength is 8.

» The value of DeviceConfig.DEFAULT when applied to the bitOrdering is 1
(big-endian).

= Before using SPI, you will have to load the SPI modules by running the following
command: $sudo modprobe spi_bcm2708, or by using the same method as 12C:
uncomment the appropriate line in the etc/modprob.d/raspi-blacklist.conf file
and reboot the board.

s Only 8-bit word lengths are supported on the Raspberry Pi board.

= No real hardware is connected by default.

Note: You can connect MISO and MOSI pins to get a simple
loopback device for testing your code.

The following UART devices are preconfigured:

Device 1/O Preconfigured List A-7

Watchdog

Watchdog

Device ID Device Name Mapped Configuration

40 UART GPIO 14 uartNumber = 0
(TXD) baudRate = 19200
(GRI;(18)15 dataBits = DATABITS_8

parity = PARITY NONE

stopBits = STOPBITS_1
flowcontrol = FLOWCONTROL_NONE
inputBufferSize - ignored

outputBufferSize - ignored

Please note the following items about UART on the Raspberry Pi.

s Only the internal UART controller is supported (/dev/ttyAMAOD for revision 2).
Consequently, 0 is the only permissible value for the UARTConfig.uartNumber
parameter.

= By default, the Raspberry Pi uses the UART as a serial console. Before using
UART, make sure that /dev/ttyAMAQ isn't being used as a console. This can be
done by changing the boot command line by editing the /boot/cmdline.txt file
and removing the line "console=ttyAMAO, 115200 kgdboc=ttyAMAO,115200" from
the boot arguments. Also, comment out the following line:
"2:23:respawn:/sbin/getty -L ttyAMAO 115200 vt100"in the file /etc/inittab.

s By default, the pi user is in the dialout group. That gives pi the ability to access
/dev/ttyAMAO (and, consequently, UART from Java) without administrator rights.

s The deviceaccess.uart.prefix property in the jwc_properties.ini file may
contain a prefix for easy conversion of the UARTConfig.portNumber value to a
platform-specific port name. For example, the property may be set to "COM" in a
Windows environment, or "/dev/ttyS" in a Linux environment such that
appending on a port number will correctly map to the port name.

= The following parameters are supported in an ad-hoc configuration:
- baudRate - 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
— dataBits-7,8
- parity-PARITY_ODD, PARITY_EVEN, PARITY_NONE
— stopBits-1,2
— flowcontrol - FLOWCONTROL_NONE

The following watchdog devices are pre-configured:

Device ID Device Name Mapped Configuration
30 WDG Platform

Watchdog
31 WWDG

A-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

ATCmdDevice

ATCmdDevice

The following ATCmd device is preconfigured:

Device ID Device Name Mapped Configuration

13 EMUL A simple ATCmd device emulator.
Returns OK for every command request.
No async notification is supported. For
debug purpose only.

Device I/O Preconfigured List A-9

ATCmdDevice

A-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

B

Configuring the Java Runtime Properties

There are several ways to change the value of a property that affects Java's
configuration or behavior at runtime.

Direct Modification of the jwc_properties.ini File

The jwc_properties.ini file contains all the properties that affect Java configuration
and behavior at runtime. In order to edit this file, do the following:

1. Stop the Java runtime on the Raspberry Pi board.

2. Open the jwc_properties.ini thatis a part of the Oracle Java ME Embedded
bundle (or download it from the board), find the property that should be changed,
and modify its value.

3. Copy the modified version of the jwc_properties.ini file to the /bin directory on
the Raspberry Pi board using the sftp client program.

4. Restart Java on the Raspberry Pi board.

Using the CLI set-property Command

To modify a property using the set-property command in the command-line interface
(CLI), do the following.

1. Connect to the board using command-line interface (CLI).
2. Execute the "set-property <property_name> <desired_property_value>" command.
3. Restart Java on the board.

Note, that by executing the set-property command, the jwc_properties.ini fileis
always updated automatically.

Configuring the Java Runtime Properties B-1

Using the CLI set-property Command

B-2 Getting Started Guide for the Reference Platform (Qualcomm IoE)

Glossary

access point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or Bluetooth.

ADC

analog-to-digital converter. A hardware device that converts analog signals (time and
amplitude) into a stream of binary numbers that can be processed by a digital device.
AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM cards and
smart cards to communicate with card reader software or a card reader device.

API

application programming interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set. AT means attention.

AXF
ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

Glossary-1

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
Virtual Machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APISs for application services.

configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java Virtual Machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

digital-to-analog converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.
ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A Java ME API consisting of a hierarchy of interfaces
and classes to create connections (such as HTTP, datagram, or streams) and perform
I/0.

GPIO

general purpose I/O. Unassigned pins on an embedded platform that can be assigned
or configured as needed by a developer.

GPIO port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.
HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Sockets Layer (SSL) technology.

12C

Inter-Integrated Circuit. A multimaster, serial computer bus used to attach low-speed
peripherals to an embedded platform

Java ME platform

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM card.

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet cannot refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM card inside a phone
and is used to identify itself to the network.

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java ARchive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a

Glossary-3

JCP

Glossary-4

configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

JVM

Java Virtual Machine. A software “execution engine” that safely and compatibly
executes the byte codes in Java class files on a microprocessor.

KVM

A Java Virtual Machine designed to run in a small, limited-memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
liquid crystal display (LCD) screens in small devices. More generally, a shorthand way
of referring to the MIDP user interface APIs.

MIDlet
An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java Application Descriptor file (. jad), which lists the class names and
files names for each MIDlet, and a Java ARchive file (. jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM
Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

RTOS

optional package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

reduced instruction set computing. A CPU design based on simplified instruction sets
that provide higher performance and faster execution of individual instructions. The
ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

Glossary-5

RTSP

Glossary-6

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A nonvolatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

smart card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. Routes messages and regulates traffic. When an SMS
message is sent, it goes to an SMS center first, and then gets forwarded to the
destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

USB

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

task

At the platform level, each separate application that runs within a single Java Virtual
Machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
card along with the IMEI at SIM card initialization. The terminal profile tells the SIM
card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

uicC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy-related applications.

usB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

Glossary-7

USIM

Glossary-8

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of details including subscriber information, contact details, and
other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).
WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

watchdog timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, then the watchdog timer initiates a reboot procedure or takes
other steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Shell Prompts
	Conventions

	1 Installing Oracle Java ME Embedded Software on the Raspberry Pi Board
	Downloading and Installing the PuTTY Terminal Emulator Program
	Preparing the Raspberry Pi Board
	Installing the Oracle Java ME Embedded Software
	Adding an HTTP Proxy for Network Connections on Raspberry Pi

	2 Installing and Running Applications on the Raspberry Pi Board
	Using the Java Runtime on the Raspberry Pi
	Running IMlets on Raspberry Pi Using the Command Shell
	Starting the Developer Agent Program on the Desktop
	Server Mode Connection
	Client Mode Connection

	Running IMlets on Raspberry Pi Using the AMS CLI
	Using NetBeans with the Raspberry Pi Board
	Adding the Raspberry Pi Board to the Device Connection Manager
	Assigning the Raspberry Pi Board to Your Project
	Using an Existing NetBeans Project
	Creating a New NetBeans Project
	Sample Source Code

	Debugging an IMlet on the Raspberry Pi Board
	Accessing Peripherals
	Signing the Application with API Permissions
	Method #1: Signing Application Using the NetBeans IDE
	Method #2: Signing Application Using a Command Line
	Method #3: Using NullAuthenticationProvider

	3 Troubleshooting
	Installing Linux on the Raspberry Pi Board
	Starting Oracle Java ME Embedded Software on the Board
	Using the Board with the Oracle Java ME SDK and the NetBeans IDE

	A Device I/O Preconfigured List
	GPIO Pins
	I2C
	MMIO
	SPI
	UART
	Watchdog
	ATCmdDevice

	B Configuring the Java Runtime Properties
	Direct Modification of the jwc_properties.ini File
	Using the CLI set-property Command

	Glossary

