

Oracle® Java ME Embedded
Getting Started Guide for the Reference Platform
(STM32429I-EVAL)

Release 8.1 Developer Preview

E61129-01

April 2015

This book describes how to install and run the Oracle Java
ME Embedded software on the ST Micro STM32429I-EVAL
reference platform.

Beta Draft

Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL), Release 8.1
Developer Preview

E61129-01

Copyright © 2012, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It
may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

Beta Draft iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Operating System Commands ... vii
Shell Prompts .. vii
Conventions ... viii

1 Installing on the ST Micro STM32429I-EVAL Board

Downloading and Installing the MDK-ARM Lite Development Kit.. 1-1
Downloading and Installing the PuTTY Terminal Emulator Program ... 1-2
Preparing the ST Micro STM32429I-EVAL Board.. 1-3
Connecting the ST Micro STM32429I-EVAL Board to the Computer.. 1-3
Exploring the Oracle Java ME Distribution Bundle.. 1-4
Setting Up the MicroSD Card .. 1-5

Network Configuration ...1-6
Setting the Runtime Clock ..1-7

Installing the Firmware on the Evaluation Board.. 1-7
Connecting to Logging Ports.. 1-9
Using the Display... 1-9

2 Installing and Running Applications on the STM32429I-EVAL Board

Installing the Oracle Java ME SDK 8.1 .. 2-1
Connecting to the ST Micro STM32429I-EVAL Embedded Board ... 2-1

Server Mode Connection ...2-1
Client Mode Connection ...2-2

Running IMlets on STM32429I-EVAL Using the AMS CLI .. 2-2
Using NetBeans with the STM32429I-EVAL Board... 2-7
Adding the STM32429I-EVAL Board to the Device Connection Manager 2-7
Assigning the STM32429I-EVAL Board to Your Project ... 2-8

Using an Existing NetBeans Project ..2-9
Creating a New NetBeans Project ..2-9
Sample Source Code ... 2-10

Accessing Peripherals... 2-11
Adding API Permissions .. 2-11

iv Beta Draft

Signing Applications .. 2-12
Signing Application Using the NetBeans IDE ... 2-12
Method #2: Signing an Application Using the Command Line .. 2-14

3 Troubleshooting

Installing the Firmware on the Board .. 3-1
Working with Oracle Java ME Embedded on the Board .. 3-1
Using the Board with the Oracle Java ME SDK and the NetBeans IDE ... 3-2
Development Log ... 3-3
Output Stream Buffering .. 3-3

A ST Micro STM32429I-EVAL Board Peripheral List

Analog-to-Digital Converter (ADC) .. A-1
GPIO Pins ... A-1
GPIO Ports .. A-4
Inter-Integrated Circuit (I2C) .. A-4
SPI .. A-5
UART ... A-5
Watchdog... A-6

Glossary ..

 Beta Draft v

List of Figures

1–1 Driver Pack for the STM32429I-EVAL Embedded Board. .. 1-2
1–2 ST Link Dongle Driver Installation .. 1-3
1–3 The ST Micro STM32429I-EVAL Board ... 1-4
1–4 Windows Formatter Settings... 1-6
1–5 The ST Micro STM32429I-EVAL Touchscreen After Installing Java ME Embedded 1-8
2–1 Using PuTTY to Connect to the Command-Line Interface... 2-3
2–2 Command-Line Interface to STM32429I-EVAL.. 2-3
2–3 Device Connections Manager Window ... 2-8
2–4 Device Connections Manager Window with STM32429I-EVAL Connected..................... 2-8
2–5 Adding a Device to Your Project .. 2-9
2–6 Creating a New Project ... 2-10
2–7 Adding API Permissions with NetBeans ... 2-12
2–8 Signing Application JAR with NetBeans.. 2-13
2–9 Keystores Manager Window.. 2-13
2–10 Exporting Key on a Device ... 2-14

vi Beta Draft

List of Tables

1–1 Ethernet Initialization Parameters... 1-6
1–2 Logging Methods for the STM32429I-EVAL ... 1-9
2–1 AMS CLI Commands .. 2-4
2–2 Security and Properties Commands.. 2-5
2–3 File System Commands... 2-6
2–4 Networking Commands ... 2-6
2–5 Device Commands... 2-6
2–6 Keystore Commands ... 2-6
3–1 Problems and Solutions - Installing the Firmware on the Board.. 3-1
3–2 Problems and Solutions - Starting Oracle Java ME Embedded on the Board................... 3-2
3–3 Problems and Solutions - Oracle Java ME SDK and the NetBeans IDE 3-2

Beta Draft vii

Preface

This book describes how to install Oracle Java ME Embedded software onto an ST
Micro STM32429I-EVAL embedded device.

Audience
This document is intended for developers who want to run Oracle Java ME Embedded
software on embedded devices.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands
This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

Shell Prompts

Shell Prompt

Bourne shell and Korn shell $

viii Beta Draft

Conventions
The following text conventions are used in this document:

Windows directory>

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Shell Prompt

1

Beta Draft Installing on the ST Micro STM32429I-EVAL Board 1-1

1Installing on the ST Micro STM32429I-EVAL
Board

This chapter documents how to install the Java ME Embedded software onto an ST
Micro STM32429I-EVAL board, including configuring the Java ME Embedded system,
connecting to the command-line and logging interfaces, and performing basic
configuration tasks.

The following items are required for developing on the ST Micro STM32429I-EVAL
board:

■ An ST Micro STM32429I-EVAL Embedded Board

■ The Oracle Java ME Embedded Software Distribution for the ST Micro
STM32429I-EVAL board, Version 8.1

■ A desktop computer running Windows 7 or later with at least one USB port

■ A 2GB or greater MicroSD card (with an SD adapter, if necessary, for connecting to
the desktop computer)

■ A USB-A to USB-B cable to flash the embedded board

■ A networking LAN cable with RJ-45 interface, if you wish to communicate with
the embedded board over a TCP/IP network

■ A USB-A to MicroUSB cable, if you wish to communicate with the embedded
board over a serial connection.

■ A terminal emulation program, such as PuTTY

Downloading and Installing the MDK-ARM Lite Development Kit
To install the Oracle Java ME Embedded software on the reference board, first
download and install version 5.12 or above of the MDK-ARM development kit. The
MDK-ARM Core Version 5 development kit can be obtained from the following site:

http://www2.keil.com/mdk5/install

Once downloaded, install the MDK-ARM tool by double-clicking on the executable.
Example projects do not need to be installed. If the application starts after installation,
close it down.

WARNING: The MDK-ARM Development Kit must be installed in
a new directory, or previous versions of the software must be
removed. Otherwise, the software may not be able to read older
driver pack descriptions.

Downloading and Installing the PuTTY Terminal Emulator Program

1-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Next, install the ST-Link drivers to connect to the board. This is mandatory if the
drivers are not already installed on your system. The ST-Link drivers can be obtained
from the following site:

http://www.st.com/web/catalog/tools/FM147/SC1887/PF258168#

When the installation of both packages is complete, run the Keil uVision 5 application.
Open the Pack Installer tool using the Project->Manage->Pack Installer... menu item, if
it does not appear automatically, and install the Keil::STM32F4xx_DFP driver pack, as
shown in Figure 1–1. Once this is completed, shut down the Keil uVision 5 application.

Figure 1–1 Driver Pack for the STM32429I-EVAL Embedded Board.

Downloading and Installing the PuTTY Terminal Emulator Program
Download the PuTTY Terminal Emulator Program (putty.exe) from the following
site:

http://www.putty.org/

The terminal emulator executable is directly downloadable as putty.exe. The terminal
emulator is used to connect to two separate sockets: one for the command-line
interface (CLI) that issues commands to the board, and one for the logging or system
output provided by the board.

http://www.st.com/web/catalog/tools/FM147/SC1887/PF258168#

Connecting the ST Micro STM32429I-EVAL Board to the Computer

Beta Draft Installing on the ST Micro STM32429I-EVAL Board 1-3

Preparing the ST Micro STM32429I-EVAL Board
In order to use the ST Micro STM32429I-EVAL board for Java development, first
prepare the board using the following steps:

■ Set the JP12 jumper to the "PSU" state, which indicates that the board will be
powered from the external adapter "PSU DC5V".

■ Set the JP8 jumper to 3V3 position and ensure the LI-ION battery is inserted into
the board's socket. Otherwise the system time and log setting will be reset every
time the board is turned off.

■ Connect the board to the computer using a USB-A to USB-B cable, connecting to
the USB port next to the power connector.

■ Connect an ethernet cable to the RJ-45 port on the board.

■ Plug in the external power adapter delivered with the board to the "PSU DC5V"
connector. The board should power up, and the LEDs and display should turn on.
At this point, Windows will attempt to locate a compatible ST Link device driver.
After searching the Windows Update drivers, it should eventually locate the
version installed on the disk and present the dialog shown in Figure 1–2.

Figure 1–2 ST Link Dongle Driver Installation

■ Finally, ensure that the "STMicroelectronics STLink dongle" device appears in
Windows Device Manager under Universal Serial Bus controllers or devices. The
Device Manager can be accessed using the Windows Control Panel.

Connecting the ST Micro STM32429I-EVAL Board to the Computer
Ensure that the board is receiving power by verifying that the touchscreen is active.
See Figure 1–3.

Exploring the Oracle Java ME Distribution Bundle

1-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Figure 1–3 The ST Micro STM32429I-EVAL Board

When the board is first powered on, the touchscreeen may request a calibration from
the user. It is not necessary to complete this calibration in order to use Java ME
Embedded on the board.

Exploring the Oracle Java ME Distribution Bundle
At this point, unzip the Oracle Java ME Embedded Distribution 8.1 for the
STM32429I-EVAL Embedded Board. The distribution bundle contains four directories
that consist of the following important files:

/java/deploy.bat
The deploy.bat file is a Windows script file that invokes the uVision MDK-ARM tool
to flash the board with the contents of the Oracle Java ME Emebedded binary file. You
must edit this file to point to the installation directory of the Keil MDK-ARM tools
directory (typically C:\Keil_v5) before flashing the embedded board.

/java/java.uvoptx, /java/java.uvprojx
These are uVision project files that are used by the Keil uVision MDK-ARM tool. You
should not modify these files.

/java/jmee.axf
This is the Oracle Java ME Embedded binary file that will be flashed on the ST Micro
board, stored in an ARM executable format. Do not modify this file.

Setting Up the MicroSD Card

Beta Draft Installing on the ST Micro STM32429I-EVAL Board 1-5

/lib/classes.zip
This ZIP file contains the Java class structures for all publicly reachable classes used by
the Java ME executable.

/sd_card/java/jwc_prop.ini
This is the main properties file for the Java ME binary executable. Modify this file
before copying the /sd_card directory to the SD card that is inserted into the
embedded board to control various runtime elements of the Oracle Java ME
Embedded binary.

/sd_card/java/appdb/_main.ks
This the Java security keystore file that is used by the Java ME binary executable on
the board. Do not attempt to modify this file directly. Instead, use the CLI keystore
commands to access keys and certificates in this file. See Chapter 2 for more
information on using the CLI proxy.

/sd_card/java/appdb/_policy.txt
This is the security policy file that defines policy groups for the Java ME binary
executable on the board. Modify this file as needed to create your own security
policies.

/sd_card/java/appdb/root
The root filesystem is a user-accessible directory that can be used to store and retrieve
files and data through programs running on the board. Note that data above this
directory is inaccessible by user programs.

/util/proxy.jar
This is an executable JAR file that can be used to connect to the CLI proxy to issue
commands to the board. See Chapter 2 for more information on using the CLI proxy.

/util/AutoTestWrapper.jar
This is an executable JAR file that can be used to perform automatic testing when the
Oracle Java ME Embedded binary is first booted. See the README in this directory for
more information on performing automatic testing.

Setting Up the MicroSD Card
The MicroSD card contains configuration files used by the Java ME Embedded native
distribution, including the initialization properties and security policy files. Ensure
that you are using an SD card that is compatible with the embedded board.

Follow these steps to prepare the card:

1. Insert the card on the Windows desktop computer, select the card in the My
Computer window, and right-click and select Format...

2. Select File System as FAT32, Allocation Unit Size as the default allocation unit size,
and ensure that Quick Format is not selected, as shown in Figure 1–4. The Volume
label is optional. Press the Start button. Once the formatting is completed, move to
the next step.

Setting Up the MicroSD Card

1-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Figure 1–4 Windows Formatter Settings

3. Copy the java/ folder inside the sd_card/ directory of the Oracle Java ME
Embedded distribution to the root directory of the SD card. Do not eject the SD
card yet.

Note that the Oracle Java ME Embedded runtime only supports 8.3 filenames on the
SD card of the device.

Network Configuration
When the board boots, basic network initialization is performed using DHCP.
However, if you wish to specify your own network configuration, you can modify the
following parameters in the java/jwc_prop.ini file on the SD card.

Table 1–1 Ethernet Initialization Parameters

Parameter Description

system.network.ethernet.macaddress The MAC address that is assigned to the connected
Ethernet device

system.network.ethernet.ipmethod The method of obtaining an IP address for the
configuration of the Ethernet interface, one of
"static" or "dhcp". "dhcp" is used as the default.

system.network.ethernet.ipaddress The IP address which is assigned to the device if a
static IP method is chosen

Installing the Firmware on the Evaluation Board

Beta Draft Installing on the ST Micro STM32429I-EVAL Board 1-7

Setting the Runtime Clock
To set up the Runtime Clock (RTC) in STM32429I-EVAL board, the rtc.time.value
property in the java/jwc_prop.ini file on the SD card must be set in the following
format:

rtc.time.value = 2013/12/22 12:25:33 GMT

Installing the Firmware on the Evaluation Board
The Java ME Embedded distribution contains a utility that uses the MDK-ARM
software to erase and flash the Oracle Java ME Embedded binary onto the evaluation
board. Use the following procedure to prepare the SD card and install the firmware:

1. Use the Safely Remove Hardware and Eject Media function on the Windows
desktop to remove the SD card from the computer. (In Windows, for example, the
Safely Remove Hardware and Eject Media tool is present in the lower right system
tray near the clock.) Alternatively, you can select the SD card in the My Computer
window, right click and select Eject. If necessary, remove the MicroSD card from
the SD card housing.

2. Ensure that the board is not powered up by temporarily disconnecting the USB
and power cables. Insert the MicroSD card into the SD card slot on the board.

3. Connect the board to the Windows desktop computer as you did previously,
including the including the power cable, the network cable, and the USB-A to
USB-B cable. The board should now be receiving power.

system.network.ethernet.mask The IP address mask which is assigned to the
Ethernet device if a static IP method is chosen

system.network.ethernet.gateway The IP address of gateway which is assigned to
Ethernet device if a static IP method is chosen. By
default, the current IP address is used;

system.network.dnsaddress The DNS server IP address which is used to resolve
DNS requests during network activities, such as
Connector.open() methods.

system.network.secdnsaddress An alternative DNS server IP address used to
resolve DNS requests during network activities,
such as Connector.open() methods.

Note: Due to the persistent character of information storage in the
RTC registers (including RTC settings), the board may occasionally
hang during RTC initialization. To solve the problem, it is necessary to
do the following when installing Java ME to the board:

1. Switch J8 jumper to the 3V3 position

2. Switch the STM32429I-EVAL board off

3. Disconnect all cables from the board (this is necessary as the board may
take its power supply from the signal lines).

4. Wait 5 seconds

5. Reconnect all necessary cables and switch the board on again. Note that
you may need to reset the time again.

Table 1–1 (Cont.) Ethernet Initialization Parameters

Parameter Description

Installing the Firmware on the Evaluation Board

1-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

4. On the desktop, edit the file deploy.bat inside the directory java/ in the Oracle
Java ME Embedded software. Ensure that the KEIL_SDK variable contains the
correct path to the MDK-ARM tool binary. For example:

set KEIL_SDK=C:\Keil_v5

5. With the board connected, run the batch file deploy.bat to download the
distribution to the evaluation board. The touchscreen display on the device should
go blank, and the COM LED should quickly flash red and green.

6. Once completed, push the Reset button on the board to start the Java ME
Embedded native platform. The runtime will then use the configuration files on
the MicroSD card to initialize itself. If successful, the touchscreen on the device
should look similar to Figure 1–5.

7. If desired, disconnect the USB-A to USB-B cable and plug a USB-A to MicroUSB
cable into the OTG-HS connector, which is labeled as connector CN9 on the board,
just below the large black DB9 connecter in Figure 1–5.

Figure 1–5 The ST Micro STM32429I-EVAL Touchscreen After Installing Java ME
Embedded

Using the Display

Beta Draft Installing on the ST Micro STM32429I-EVAL Board 1-9

Connecting to Logging Ports
Logging from the board can be enabled by setting the log.method setting in jwc_
prop.ini file in the /java directory of the SD card. The possible values for this
property are the default value of NONE, as well as UART and ITM. Table 1–2 gives a
description of each of the values. Note that the UART and ITM values are mutually
exclusive; only one method may be used at a time.

The log method value is obtained using the following procedure:

■ The Oracle Java ME Embedded runtime will first read the setting from backup
SRAM powered from Vbat (if possible) and then initialize the logging with that
value. Note that JP8 must be properly set to use Vbat, otherwise the settings will
be lost. In the event of data loss, the Oracle Java ME Embedded runtime uses ITM
for this stage as a default.

■ The Oracle Java ME Embedded runtime will read the setting from the jwc_
prop.ini file and compare it with the value loaded from SRAM. If the values do
not match, or there is no saved setting, then the current value is changed to what
was read from the jwc_prop.ini file. The SRAM value is then rewritten to this
value in all cases.

If you wish to use UART logging, either connect an RS-232 cable or a USB-to-Serial
adapter to the DB9 connector labeled CN8 on the STM32 board (which uses an RS-232
voltage level). Do not connect to the DB9 connected labeled CN22 on the board. Once
the serial connection is made, use PuTTY to connect to the appropriate COM port
using the following configuration:

■ Speed 115200

■ 8 bits

■ No parity

■ 1 stop bit

If you are using a USB-to-Serial adapter, you may be required to install a USB-to-COM
driver that will map the USB port to a virtual COM port.

To use the ITM option, you will need either an external hardware debugger or the
STM32 ST-LINK utility, which uses a Serial Wire Output (SWO) interface in
conjunction with a built-in debugger.

Using the Display
The Oracle Java ME Embedded runtime can be used to display text only on the
touchscreen display of the STM32429I-EVAL board. Access to the display can be
obtained using the javax.microedition.lui package, with the following constraints:

■ The id is "LCD Display"

Table 1–2 Logging Methods for the STM32429I-EVAL

Log Method Value Description

NONE No logging information is produced

UART Logging information is sent using the RS-232 connector marked
CN8 on the board

ITM Logging information is sent using the RS-232 ITM (Instrument
Trace Macrocell).

Using the Display

1-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

■ Vertical and horizontal scrolling are not supported

■ Adjustments to the lighting are not supported

■ The default background color is black

■ The default text color is green

■ The number of lines supported is 15

■ The maximum number of characters per line is 52

2

Beta Draft Installing and Running Applications on the STM32429I-EVALBoard 2-1

2Installing and Running Applications on the
STM32429I-EVAL Board

Developers can run and debug IMlets on the ST Micro STM32429I-EVAL board
directly from the NetBeans IDE 8.0.2, or by using the Oracle Java ME SDK 8.1. This
chapter describes how to add the board to the Device Connections Manager of the
Oracle Java ME SDK 8.1 as well as how to program an IMlet for the board.

Installing the Oracle Java ME SDK 8.1
Before developing for the ST Micro STM32429I-EVAL board, a modified version of the
Oracle Java ME SDK 8.1 must be installed in two steps.

1. Install the Oracle Java ME SDK 8.1 distribution.

2. Install the Oracle Java ME STM Update Package version 8.1 using the Update
Manager application of the Oracle Java ME SDK 8.1. You must install this update
or the Java ME SDK tools will not be able to communicate with the ST Micro
STM32429I-EVAL board using either a TCP/IP or serial connection.

Connecting to the ST Micro STM32429I-EVAL Embedded Board
There are two different ways to connect to the STM32429I-EVAL board.

1. Run NetBeans IDE 8.0.2, which will use the Oracle Java ME SDK. If you wish to
use the NetBeans IDE, skip to the Section , "Using NetBeans with the
STM32429I-EVAL Board" below.

2. Manually start a Developer Agent program on the desktop host and run
commands using the Application Management System (AMS) CLI.

The Developer Agent program is a JAR file inside the util directory of the Oracle Java
ME Embedded distribution, and is named proxy.jar. You can start the Developer
Agent program on the desktop host computer either in a server or a client mode. After
the Developer Agent program starts, you can use the AMS CLI to communicate with
the board.

Server Mode Connection
The server mode is used by default. In this mode, start the Java runtime on the
STM32429I-EVAL board. Then do the following.

1. Shut down the Oracle Java ME SDK Device Manager, if it is already running.

2. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

Running IMlets on STM32429I-EVAL Using the AMS CLI

2-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

C:\stm\util> java -jar proxy.jar -socket <BOARD IP ADDRESS>
Trying to open socket connection with device: <IP Address>:2201
Connected to the socket Socket[addr=/<IP address>, port=2201, localport=54784]
Open channel 8 with hash 0x390df07e
notifyResponse AVAILABLE_RESPONSE on channel 8
Channel 8 CLOSED -> AVAILABLE
Open channel 9 with hash 0x0

Client Mode Connection
To switch to a client mode connection, perform the following steps.

1. Edit the jwc_prop.ini file in the bin directory on the SD card of the board as
follows:

■ Set the proxy_connection_mode property to the client value.

■ Set the proxy.client_connection_address property to the IP address of the
host running the Developer Agent program.

2. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar
Starting with default parameters: -ServerSocketPort 2200 -jdbport 2801
Channel 8 CLOSED -> AVAILABLE
Waiting for device connections on port 2200

Running IMlets on STM32429I-EVAL Using the AMS CLI
The next step is to make a raw connection to the AMS CLI. Note, however, you must
first run the Developer Agent program on the desktop host and the Java runtime on
the board as described above, unless the Developer Agent was started automatically
by Java ME SDK Device Manager.

At this point, you can start a PuTTY executable file on your desktop computer. Use
this to create Raw socket connections to the IP address of the host running the
Developer Agent (typically localhost), and port 65002. For example, a connection to
localhost and the port 65002 is shown in Figure 2–1. Be sure that the socket
connection type is set to Raw and not SSH.

Running IMlets on STM32429I-EVAL Using the AMS CLI

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-3

Figure 2–1 Using PuTTY to Connect to the Command-Line Interface

The window from port 65002 provides a CLI as shown in Figure 2–2.

Figure 2–2 Command-Line Interface to STM32429I-EVAL

Caution: The CLI feature in this Oracle Java ME Embedded software
release is provided only as a concept for your reference. It uses
connections that are not secure, without encryption, authentication, or
authorization.

Running IMlets on STM32429I-EVAL Using the AMS CLI

2-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

You can use the command-line interface to run the AMS commands shown in
Table 2–1. For a complete list of CLI commands, see the Oracle Java ME Embedded
Developer’s Guide at
https://docs.oracle.com/javame/8.1/me-dev-guide/agentconsole.htm#sthref26

Here is a typical example of using the AMS to install, list, run, and remove an Oracle
Java ME Embedded application on the board:

192.168.1.12:2201>> ams-install file:///C:/some/directory/hello.jar hostdownload
<<ams-install,start install,file:///C:/some/directory/hello.jar
<<ams-install,install status: stage DONE, 0%
<<ams-install,install status: stage DONE, 100%
<<ams-install,OK,Install success

192.168.1.12:2201>> ams-install http://www.example.com/netdemo.jar hostdownload
<<ams-install,start install,http://www.example.com/netdemo.jar
<<ams-install,install status: stage DONE, 0%
<<ams-install,install status: stage DONE, 100%
<<ams-install,OK,Install success

192.168.1.12:2201>> ams-install http://www.example.com/notthere.jar hostdownload
<<ams-install,start install,http://www.example.com/notthere.jar
<<ams-install,install status: stage DONE, 100%

Table 2–1 AMS CLI Commands

Syntax Description

ams-info <INDEX> Show information about the installed
IMlet. To determine the index of a
specific IMlet, use the ams-list
command.

ams-install <URL>
[auth=username:password][hostdownload]

Install an IMlet using the specified
JAR or JAD file, specified as a URL.
An optional user name and password
can be supplied for login information
either in the URL or by using the auth
parameter. When run without the
hostdownload option, only http://
URLs must be specified. The
hostdownload option enables you to
install an IMlet using the JAR file
specified by the file:// URL. Note
that the JAR file must be located on
the host.

ams-list [INDEX or NAME|VENDOR] List all installed IMlet suites and their
status or show the detail of a single
suite.

ams-remove <INDEX or NAME|VENDOR> Remove an installed IMlet.

ams-run <INDEX or NAME|VENDOR> [IMLET_ID] Run the specified IMlet or the default
if none is specified. You can specify
optional debug parameter to run the
IMlet in debug mode.

ams-stop <INDEX or NAME|VENDOR> [IMLET_ID] Stop the specified IMlet or the default
if none is specified.

ams-update <INDEX or NAME|VENDOR>
[auth=username:password]

Update the installed IMlet. An
optional user name and password can
be supplied for login information by
using the auth parameter.

Running IMlets on STM32429I-EVAL Using the AMS CLI

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-5

<<ams-install,FAIL,errorCode=JAR_NOT_FOUND, Invalid JAD Exception, reason: 20
(JAR_NOT_FOUND), message: Reason = 20, extra data:
http://www.example.com/notthere.jar

Note that the final installation example failed with an error code and matching
description.

Similarly, install an additional IMlet: rs232dem. After an IMlet is installed, verify it
using the ams-list command. Each IMlet has been assigned a number by the AMS for
convenience.

192.168.1.12:2201>> ams-list
<<ams-list,0.hello|Oracle,STOPPED
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,3 suites are installed

You can use the ams-remove command to remove any installed IMlet.

192.168.1.12:2201>> ams-remove 0
<<ams-remove,OK,removed

The results can again be verified with the ams-list command.

192.168.1.12:2201>> ams-list
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

Finally, start the IMlet using the ams-run command. The application can be terminated
with the ams-stop command.

192.168.1.12:2201>> ams-run 1
<<ams-run,OK,started

192.168.1.12:2201>> ams-list
<<ams-list,1.netdemo|Oracle,RUNNING
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

You can use the commands summarized in Table 2–2 to modify system properties.

Table 2–2 Security and Properties Commands

Syntax Description

help [command name] List the available commands or detailed usages for a single
command.

properties-list [-l] Show the list of names of properties which control the Java ME
runtime (properties that are set in the jwc_prop.ini file). Use
the -l parameter to show a long-listing format including the
property types, values, and readonly flags.

get-property <NAME> [-i] Return a value of the property identified by <NAME>.

set-property <NAME>
<VALUE>

Set a property identified by <NAME> with the value <VALUE>.

save-properties Save properties to an internal storage.

blacklist -client <NAME>

blacklist -app
<NAME|VENDOR>

Blacklist clients and applications.

Running IMlets on STM32429I-EVAL Using the AMS CLI

2-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

File system commands are summarized in Table 2–3. Note that the system can only
access files inside of the /java/appdb directory, and cannot use relative paths that shift
the current location outside of this directory (for example, using ".." in the path).

Network commands are shown in Table 2–4.

The CLI supports working with multiple devices. You can use the device commands
summarized in Table 2–5.

You can use the keystore commands summarized in Table 2–6.

Table 2–3 File System Commands

Syntax Description

cd <deviceDirectoryName> Change the working directory on the device.

delete <deviceFileName> Delete a file on the device.

get <deviceFileName>
<hostFileName>

Copy a file from the device to the host.

ls
[<deviceDirectoryName>]

Display a list of files and subdirectories in a device directory. In
a result listing, subdirectories are marked with a forward slash.

mkdir
<deviceDirectoryName>

Create a directory on the device.

pwd Write the current working directory on the device.

put <hostFileName>
<deviceFileName>

Copy a local host file to the device.

rmdir
<deviceDirectoryName>

Deletes an empty directory on the device.

Table 2–4 Networking Commands

Syntax Description

net-info Show the networking information of the system.

net-reconnect Reconnects the network and reboots Java.

Table 2–5 Device Commands

Syntax Description

device-list List all connected devices.

device-change <INDEX> Make the specified device current.

shutdown [-r] Perform either a shutdown of the board or a reboot if the -r
parameter has been passed.

exit Terminate the current CLI session.

Table 2–6 Keystore Commands

Syntax Description

ks-delete (-owner <owner
name> | -number <key
number>)

Delete a key from a ME store.

Adding the STM32429I-EVAL Board to the Device Connection Manager

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-7

Using NetBeans with the STM32429I-EVAL Board
Running and debugging IMlet projects on the ST Micro STM32429I-EVAL board using
the NetBeans IDE 8.0.2 requires the following software:

■ NetBeans IDE 8.0.2

■ Oracle Java ME SDK 8.1 with STM32429I-EVAL Update

■ Oracle Java ME SDK 8.1 plugins for NetBeans

To install the Java ME SDK 8.1 toolkit in NetBeans 8.0.2, follow these instructions:

1. Select Tools->Plugins, and raise the Plugins dialog. Select the Installed tab, and
activate the Java ME plugin.

2. Extract the Java ME NetBeans plugins from the ZIP file, placing them in their own
directory.

3. Select the Downloaded tab in the Plugins dialog, and press the Add Plugins...
button. Browse to the directory containing the NetBeans Java ME plugins, and
select all the files with a .nbm extension, press the Open button to choose them,
then press the Install button to install each of the plugins. You can safely ignore
any warnings about the updates not being digitally signed. After the plugins are
installed, restart the IDE.

Adding the STM32429I-EVAL Board to the Device Connection Manager
Follow these steps to add the STM32429I-EVAL board to the Device Connections
Manager in Oracle Java ME SDK 8.1:

1. Ensure that the Developer Agent program is not running on the desktop
computer.

2. Start the Oracle Java ME SDK 8.1 Device Connections Manager (located at <SDK
Installation Folder>/bin/device-manager.exe) and click its Device Manager icon in
the taskbar. A Device Connections Manager window is shown in Figure 2–3.

ks-import [-keystore
<filename>] [-storepass
<password>] [-keypass
<password>] [-alias <key
alias>]

Import a public key from a JCE keystore into a ME keystore.

ks-list List the owner and validity period of each key in a ME keystore.

Table 2–6 (Cont.) Keystore Commands

Syntax Description

Assigning the STM32429I-EVAL Board to Your Project

2-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Figure 2–3 Device Connections Manager Window

3. Click the Add button, ensure that the IP Address or Host Name list contains the
correct IP address of the ST Micro STM32429I-EVAL board, and click OK. You can
verify the current IP address of the board by checking the touchscreen on the
STM32429I-EVAL embedded board.

4. After the STM32429I-EVAL board is registered, its IP address is listed on the
Device Connections Manager list and its status is Connected as shown in
Figure 2–4.

Figure 2–4 Device Connections Manager Window with STM32429I-EVAL Connected

Assigning the STM32429I-EVAL Board to Your Project
There are two ways to assign the STM32429I-EVAL board to your project:

■ Using an existing NetBeans Project with an IMlet you want to run or debug.

■ Creating a new NetBeans project.

After you assign the board to your project, clicking Run Project in the NetBeans IDE
runs your IMlets on the board instead of on the emulator.

Assigning the STM32429I-EVAL Board to Your Project

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-9

Using an Existing NetBeans Project
If you already have an existing NetBeans project with an IMlet that you want to run or
debug on the board, follow these steps:

1. Right-click your project and select Properties.

2. Select the Platform category on the properties window.

3. Select the Platform Type (CLDC) and ensure that Oracle Java(TM) Platform Micro
Edition SDK 8.1 is selected in the Java ME Platform list.

4. Select EmbeddedExternalDevice1 from the Device drop-down list, as shown in
Figure 2–5. Select (or deselect) from the list of Optional Packages as needed for
your project, and click OK.

Figure 2–5 Adding a Device to Your Project

Creating a New NetBeans Project
If you are creating a new NetBeans project, follow these steps:

1. Select File then New Project.

2. Select the Java ME Embedded category and Java ME Embedded Application in
Projects pane. Click Next.

3. Provide a project name, for example, ME8EmbeddedApplication1. Ensure that the
Java ME Platform is Oracle Java(TM) Platform Micro Edition SDK 8.1 and the
Create Midlet option is selected.

4. Select EmbeddedExternalDevice1 from the Device drop-down list and click
Finish, as shown in Figure 2–6.

Assigning the STM32429I-EVAL Board to Your Project

2-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Figure 2–6 Creating a New Project

When the new project is created, it is displayed in NetBeans IDE with the name
GPIOExample1.

Sample Source Code
Now you can update the generic project that you created with the sample code shown
in the following example. This sample application obtains an object for GPIO pins 1
through 4 (representing four LEDs on the board) from the DeviceManager object, and
repeatedly toggles their high/low values.

package gpioexample1;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;

public class GPIOExample1 extends MIDlet {

 GPIOPin pin1;
 GPIOPin pin2;
 GPIOPin pin3;
 GPIOPin pin4;

 @Override
 public void startApp() {

 try {

Accessing Peripherals

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-11

 pin1 = (GPIOPin) DeviceManager.open(1);
 pin2 = (GPIOPin) DeviceManager.open(2);
 pin3 = (GPIOPin) DeviceManager.open(3);
 pin4 = (GPIOPin) DeviceManager.open(4);

 for (int i = 0; i < 20; i++) {
 System.out.println("Setting pins to true...");
 pin1.setValue(true);
 pin2.setValue(true);
 pin3.setValue(true);
 pin4.setValue(true);
 Thread.sleep(2000);
 System.out.println("Setting pins to false...");
 pin1.setValue(false);
 pin2.setValue(false);
 pin3.setValue(false);
 pin4.setValue(false);
 Thread.sleep(2000);
 }
 } catch (IOException | InterruptedException ex) {
 Logger.getLogger(GPIOExample1.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 @Override
 public void pauseApp() {
 }

 @Override
 public void destroyApp(boolean unconditional) {
 }
}

In the NetBeans Projects window, you see the sample project with the file
GPIOExample1.java. Follow these steps:

1. Double-click the GPIOExample1.java file in the Projects window.

2. Copy the sample code and paste it in the Source window.

3. Clean and build the GPIOExample1 project by clicking on the hammer-and-broom
icon in the NetBeans toolbar or by selecting Run then Clean and Build Project
(GPIOExample1).

4. Before running the example, we must add the appropriate permissions for the
Device I/O APIs to access the peripherals.

Accessing Peripherals
Applications such as the previous example that require access to Device I/O APIs
must request the appropriate permissions. For more information about the various
permissions required to access the Device I/O APIs, see the Device I/O API 1.0
specification at:

http://docs.oracle.com/javame/8.0/api/dio/api/index.html

Adding API Permissions
Follow these steps to add the necessary API permissions for the previous example:

Accessing Peripherals

2-12 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

1. In NetBeans, right-click the project name (GPIOExample1 in this example) and
select Properties.

2. Click Application Descriptor, then in the resulting pane, click API Permissions.

3. Click the Add button, and add the jdk.dio.DeviceMgmtPermission API, as shown
in Figure 2–7.

4. Click OK to close the project properties dialog.

Figure 2–7 Adding API Permissions with NetBeans

5. If you are not using an IDE, you can manually modify the application descriptor
file to contain the following permissions:

MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "LED_1:1" "open"
MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "LED_2:2" "open"
MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "LED_3:3" "open"
MIDlet-Permission-1: jdk.dio.DeviceMgmtPermission "LED_4:4" "open"

6. Compile and run the application.

Signing Applications
In a production environment, applications must be digitally signed in order to access
peripherals. The use of digital signatures requires trusted certificates that are shared
between both the NetBeans IDE and the embedded device.

Signing Application Using the NetBeans IDE
The NetBeans IDE enables developers both to sign the applications with a local
certificate and then upload that certificate to the device. Follow these steps:

1. Right-click the project name and select Properties.

2. Under the Build category, click Signing.

Accessing Peripherals

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-13

3. Select Sign JAR and specify a certificate to sign with as shown in Figure 2–8.

Figure 2–8 Signing Application JAR with NetBeans

4. Click Open Keystores Manager.

5. Select the key and click Export as shown in Figure 2–9.

Figure 2–9 Keystores Manager Window

6. In the Export Key window, select the EmbeddedExternalDevice1 in the Emulator
drop-down list, and click Export as shown in Figure 2–10.

Accessing Peripherals

2-14 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Figure 2–10 Exporting Key on a Device

7. Edit the _policy.txt file from the /appdb directory of the SD card on the board
and add a section with the client name and a set of permissions. For more
information about the policy file format, see the External Client Policy Format
section in the Java ME Embedded Profile 8 specification.

8. Ensure that the certificate with the specified common name (CN) is associated
with the client by creating a section with a header that is identical to the certificate
that was just uploaded to the board. (Remove the untrusted section once it is
working). For example:

client Signed [C=US,O=manufacturer CA,OU=TCK,CN=thehost]

9. Copy the modified _policy.txt file back to the /appdb directory on the SD card.

Method #2: Signing an Application Using the Command Line
If you are not using the NetBeans IDE, then you can sign your IMlet using the
command line. Follow the instructions on how to set up a keystore with a local
certificate that can be used to sign the applications:

1. Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Oracle Java SE JDK.

Accessing Peripherals

Beta Draft Installing and Running Applications on the STM32429I-EVAL Board 2-15

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

2. Perform the following command using the mekeytool.exe command (or
alternatively java -jar MEKeyTool.jar... if your distribution contains only that)
that ships with the Oracle Java ME SDK 8.1 distribution. Note that the board must
be connected and recognized using the Oracle Java ME Device Manager. In this
example, it is referred to as ExternalEmbeddedDevice1.

{mekeytool} -import -keystore keystore.ks
-Xdevice:ExternalEmbeddedDevice1

This command imports the information in mykeystore.ks that you just created to
the device currently connected as ExternalEmbeddedDevice1. See Appendix D in
the Java ME Embedded Developers Guide for more information on using the
mekeytool.

Alternatively, the user can use the ks-import tool on the CLI to import
information into the device keystore.

3. Modify the _policy.txt file on the SD card so that the AMS on the embedded
board will accept the certificate, as in the previous method.

4. Use the jadtool command to sign your application before deploying it to the
STM32429I-EVAL board. If you would like more information about the jadtool
command, see Appendix D in the Java ME Embedded Developers Guide.

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks
-storepass spass -inputkad myjad.jad -outputjad myjad.jad

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias
-keystore mykeystore.ks -storepass spass -keypass kpass -inputjad
myjad.jad -outputjad myjad.jad

http://docs.oracle.com/javame/8.1/me-dev-guide/mekeytool.htm#sthref426
http://docs.oracle.com/javame/8.1/me-dev-guide/mekeytool.htm#sthref426

Accessing Peripherals

2-16 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

3

Beta Draft Troubleshooting 3-1

3Troubleshooting

This chapter contains a list of common problems that you may encounter while
installing and running the Oracle Java ME Embedded software on the ST Micro
STM32429I-EVAL board. This chapter provides information on the causes of these
problems and possible solutions for them.

The common problems in this chapter are grouped in four categories:

■ Installing the Firmware on the Board

■ Working with Oracle Java ME Embedded on the Board

■ Using the Board with the Oracle Java ME SDK and the NetBeans IDE

■ Development Log

Installing the Firmware on the Board
Table 3–1 contains information about problems and solutions when installing the
firmware on the board.

Working with Oracle Java ME Embedded on the Board
Table 3–2 contains information about problems and solutions when starting the
runtime on the board.

Table 3–1 Problems and Solutions - Installing the Firmware on the Board

Problem Cause Solution

The deploy.bat script
fails and the firmware is
not installed on the
board.

The correct drivers are
not installed into the
MDK-ARM software for
the board.

Ensure that the correct drivers for the board are downloaded
in the MDK-ARM tool.

MDK-ARM states "The
following Device Family
Pack(s) are required by
the project: Keil
STM32F4xx_DFP:2.3.0"

The Device Pack drivers
for the ST Micro board
have not been
downloaded and
installed into
MDK-ARM.

Use the Pack Installer tool in MDK-ARM to download and
install the proper drivers. See Chapter 1 for more details.

Pop-up windows at the
start of deployment
occurs with message
"Invalid ROM Table"

Problem with Keil
MDK-ARM tool.

See http://www.keil.com/support/docs/3566.htm for more
information.

http://www.keil.com/support/docs/3566.htm

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

3-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

Using the Board with the Oracle Java ME SDK and the NetBeans IDE
Table 3–3 contains information about problems and solutions when using the board
with the Oracle Java ME SDK and the NetBeans IDE.

Table 3–2 Problems and Solutions - Starting Oracle Java ME Embedded on the Board

Problem Cause Solution

Oracle Java ME
Embedded fails to start
on the board, even after
the firmware is installed
correctly.

The SD card is not
inserted correctly.

Eject the SD card from the board, insert it again and press
the Reset button.

(continued) The SD card is not
formatted correctly using
FAT32.

Format the SD card using the Windows format tool and copy
the files from the Oracle Java ME Embedded distribution.
See the section Setting Up the MicroSD Card in Chapter 1.
Insert the SD card on the board and press the Reset button.

(continued) Some files in the SD card
are marked as read only.

Change the attributes of all files in the SD card and assign
them write permissions. Insert the SD card on the board and
press the Reset button.

(continued) In rare cases, the file
system of the SD card
may be corrupted.

Re-format and re-install the contents of the SD card. See the
section Setting Up the MicroSD Card in Chapter 1. Insert the
SD card on the board and press the Reset button.

Oracle Java ME
Embedded fails to
properly set the clock
on the board.

The jwc_prop.ini
configuration file was not
configured prior to board
initialization.

Configure the date and time in the jwc_prop.ini file on the
SD card and reset the board.

(continued) The JP8 jumper on the
board is set to VBAT, not
3V3

Set the jumper to 3V3.

Table 3–3 Problems and Solutions - Oracle Java ME SDK and the NetBeans IDE

Problem Cause Solution

The Java ME menu does
not appear; unable to
find the Device Selector.

The Oracle Java ME SDK
plugin for the IDE is not
installed.

Install the Oracle Java ME SDK plugin that is specifically for
your development IDE, as described in Chapter 2.

The runtime on the
board has problems
accessing files or it is
unstable.

The SD card is not
supported or it is not
formatted correctly.

Ensure that you are using a supported SD card and that you
format it using the Windows formatting tool. See the section
Setting Up the MicroSD Card in Chapter 1. Insert the SD
card on the board and press the Reset button.

(continued) Thunderbird is using a
port that is needed for
communication with the
board.

Close thunderbird.exe during the debugging session.

An authorization failure
is given when an IMlet
attempts to install or
access any Device
Access API.

The IMlet is not signed. Sign the IMlet using a keystore with a trusted certificate
authority (CA), or run the IMlet in the untrusted security
zone.

(continued) The proper Device I/O
API permissions have not
been requested.

See Chapter 2 for information on how to add API
permissions to a project.

Output Stream Buffering

Beta Draft Troubleshooting 3-3

Development Log
The development log of the Oracle Java ME Embedded software can help you
diagnose problems that arise when running IMlets on the board. The development log
is covered in the section Connecting to Logging Ports in Chapter 1.

1. Connect a serial cable from the computer to the board. Use the CN8 connector.

2. Ensure that the log.method property from the jwc_prop.ini file contains the value
UART in its list.

3. Open a terminal emulator on the computer, such as PuTTY.

4. Choose a serial connection and set the following options:

■ Speed: 115200

■ Data bits: 8

■ Stop bits: 1

■ Parity: None

■ Flow control: XON/XOFF

In PuTTY these options are in the category Connection > Serial.

5. Open the connection. The system log appears on the terminal.

Output Stream Buffering
For optimization reasons, this implementation of the Oracle Java ME Embedded
runtime does not provide OutputStreamWriter buffering. As such, the network layer
on this platform does not provide OutputStream buffering for sockets. Consequently,
any applications that are writing strings to a socket will have poor performance.

To solve this problem, simply wrap a socket's OutputStream with an additional
ByteArrayOutputStream, as shown in this example:

final OutputStream socketOutputStream = socketConnection.openOutputStream();

// Socket performance workaround:

(continued) The date on the board
may invalidate the
certificate used to
authenticate the digital
signature.

See Chapter 1 for the procedure on how to reset the RTC
clock on the board.

Only four commands
are available in the AMS
CLI after connecting to
the board.

The CLI proxy did not
successfully connect to
the board.

Ensure that an instance of the CLI proxy is not already
running. Shut down any instances of the Oracle Java ME
SDK Device Manager, which contains its own proxy and
may already be using that port.

IMLet installation fails
with a JAD_NOT_FOUND
error

Firewall on a host which
is sharing a JAD and JAR
files is blocking an
incoming HTTP or other
requests.

Disable the firewall.

(continued) Proxy issue. Ensure proxy is disabled in Java Control panel and in
Windows System Network settings

Table 3–3 (Cont.) Problems and Solutions - Oracle Java ME SDK and the NetBeans IDE

Problem Cause Solution

Output Stream Buffering

3-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

// make additional buffering around socket's output stream

OutputStream bufferedOutputStream = new ByteArrayOutputStream() {
 public void flush() {
 try {
 writeTo(socketOutputStream);
 reset();
 socketOutputStream.flush();
 } catch (IOException ioe) {}
 }
};

Writer writer = new OutputStreamWriter(bufferedOutputStream);

A

Beta Draft ST Micro STM32429I-EVAL Board Peripheral List A-1

AST Micro STM32429I-EVAL Board Peripheral
List

This appendix describes the proper ID and names for the various peripheral ports and
buses for the ST Micro STM32429I-EVAL embedded board, which are accessible using
the Device Access APIs. Note that any IMlet that accesses the Device Access APIs must
be digitally signed using a trusted certificate authority. An IMlet that is not signed will
encounter an authentication error when attempting to access the Device Access APIs.

Analog-to-Digital Converter (ADC)
The following ADC channels are pre-configured.

Additional notes:

■ Potentiometer (RV1) is connected to ADC3 channel 8 via GPIO PF10

■ For the sampling interval, only a limited set of values are supported: 11810, 14857,
or 46857 usec. Setting the sampling interval to any other value will force it to be
reset to the closest legal value.

■ After a call to ADCChannel.startMonitoring(), a MonitoringListener cannot be
called more than one time around the boundary because of jitter.

■ Note the following conditions on ADCChannelConfig parameters: the resolution is
a 12-bit fixed value regardless of the input parameter, and the sampling interval
and the sampling time are the same internally. PERIPHERAL_CONFIG_DEFAULT is
supported, and the default value is 46857 usec.

GPIO Pins
The following GPIO pins are pre-configured:

DAAPI Peripheral ID
DAAPI Peripheral
Name Mapped To Configuration

3000 Potentiometer PF10 controllerNumber = 2

channelNumber = 8

resolution = 12

samplingInterval =
46857

samplingTime = 46857

GPIO Pins

A-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

1 LED_1 Green LED
(R192)

controllerNumber = 6

pinNumber = 6

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
NONE

initValue = false

2 LED_2 Orange LED
(R191)

controllerNumber = 6

pinNumber = 7

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
NONE

initValue = false

3 LED_3 Red LED
(R190)

controllerNumber = 6

pinNumber = 10

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
NONE

initValue = false

4 LED 4 Blue LED
(R189)

controllerNumber = 6

pinNumber = 12

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
NONE

initValue = false

5 BUTTON 1 Wake up
Button (B2)

controllerNumber = 0

pinNumber = 0

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT_
PULL_DOWN

trigger = GPIOPinConfig.TRIGGER_
RISING_EDGE

initValue = ignored

GPIO Pins

Beta Draft ST Micro STM32429I-EVAL Board Peripheral List A-3

Additional notes:

■ If the controllerNumber is set as GPIOPinConfig.DEFAULT, it is interpreted as 6.
The pinNumber in this case is 6 as well, this a GPIOPin connected to the Green LED
will be opened by default.

■ If the mode is set as GPIOPinConfig.DEFAULT and direction is set as INPUT then the
default mode is interpreted as MODE_INPUT_PULL_DOWN. If the direction is set as
OUTPUT, then the default mode is interpreted as MODE_OUTPUT_OPEN_DRAIN.

■ The following GPIO pins cannot be opened because they are mapped to other
resources. For more information, refer to evaluation board schematics from ST
Micro.

– SPI bus: PF9, PF8, PF7, PF6

– ADC: PF10

– UART: PA9, PA10

– SDHC: PC8, PC9, PC10, PC11, PD2

– I2C: PB6, PB9

– Ethenet: PC3, PG13, PG14, PC2, PB8, PG11, PA1, PC4, PC5, PH6, PH7, PA7,
PB10, PA3

– JTAG/SWO: PA13, PA14

6 BUTTON 2 Tamper/Key
(B3)

controllerNumber = 2

pinNumber = 13

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT_
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
FALLING_EDGE

initValue = ignored

50 IO_EXPANDER_
INT

Interrupt pin
for on-board
STMPE1600

controllerNumber = 8

pinNumber = 8

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT_
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
FALLING_EDGE

WARNING: The information in this appendix is presented in
addition to the board schematics provided by the manufacturer. Be
sure to familiarize yourself with the manufacturer’s documentation
for all of the GPIO pins. Failure to do so can result in damaged
peripherals or even a damaged embedded board.

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

GPIO Ports

A-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

– USB (OTG-HS): PB0, PB1, PB5, PB10 ~ PB13, PA3, PI11

– LCD: PJ0 ~ PJ15, PK0~PK15, PI12~PI15

– FMC: PF0 ~ PF5, PF11 ~ PF15, PG0 ~PG5, PH8~PH15, PI0~PI3, PI9, PE0, PE1

– SDRAM: PH5, PG15, PF11, PH3, PH2, PG8

■ Onboard LEDs are connected with their anodes to 3v3. To turn them on, set the pin
to false.

GPIO Ports
The following GPIO ports are pre-configured:

Additional notes:

■ The following GPIO ports are supported: PA, PB, PC, PD, PE, PF, PG, PH, PI, PK

Inter-Integrated Circuit (I2C)
The following I2C devices are pre-configured:

The following additional hardware information is applicable for I2C devices:

■ The CMSIS I2C driver on this board only supports the following two types of
clock frequencies: 100kHz (ARM_I2C_BUS_SPEED_STANDARD), and 400kHz (ARM_I2C_
BUS_SPEED_FAST).

■ I2C1 controller information: I2C1_SCL maps to PB6, and I2C1_SDA maps to PB9.
The address capability is 7-bit only, the addresses used are 0x32 (on-board Audio)
and 0x42 (on-board IO Expander), and the clock frequency is either 100 KHz
(standard speed) or 400 KHz (fast speed).

The following additional information is applicable for I2C devices on the board itself:

■ For the IO Expander: the device is STMPE1600, which is a GPIO port expander that
is able to interface a main digital ASIC(MCU) via the two-line bidirectional bus
(I2C). The connected MCU's I2C Controller is: I2C1; applicable pins are I2C1_SCL :

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

8 LEDS Green LED, Orange
LED, Red LED, Blue
RED

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

initValue = 0

For each pin information are same
as the GPIO Pins section above.

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

500 IO_EXPANDER On-board IO Expander,
STMPE1600QTR. (Using
this IO Expander, the
on-board Joystick can be
accessed indirectly)

controllerNumber = 1

address = 66

addressSize = 7

clockFrequency = 100000

UART

Beta Draft ST Micro STM32429I-EVAL Board Peripheral List A-5

PB6, I2C1_SDA : PB9, and IO_EXPANDER_INT : PI8 (the IO Expander interrupt pin is
connected to the MCU). The clock frequency may be between: 0 and 400 kHz.

■ Joystick: Remember that the pins are not connected to MCU, but are instead
connected to the IO Expander. By reading and writing the registers of the IO
Expander, the joystick status can be monitored. Out of 16 pins of IO Expander, the
following 5 pins are connected to the joystick: EXP_IO14: SELECT; EXP_IO13:
DOWN; EXP_IO12: LEFT; EXP_IO11: RIGHT; EXP_IO10: UP.

SPI
SPI is currently supported, however there are no pre-configured SPI devices on the
board. However, the board is able to connect an external module to the pinout on the
board as a ad-hoc device, as follows.

■ SPI5 is the only connection supported, so the controllerNumber should be 5. This
is default value. Use the following SPI pins: MOSI: PF9; MOSI: PF8; CLK: PF7; CS:
PF6.

■ CS is available only as 'active low'

■ According to the ST Micro documentation, SPI5 can communicate at up to 45
Mbits/s.

■ The following are default parameters:

– controllerNumber : 5

– address: 0

– clockFrequency : 10000000 (10 MHz)

– wordLength : 8 bits

– bitOrdering : Big Endian

– csActive : ACTIVE_LOW

– clockMode : CPOL-High , CPHA-Even

UART
The following UART devices are pre-configured:

Note the following.

■ Supported UART: USART1 at onboard hardware connector CN8.

■ Hardware setting: jumper JP7 should be set to 1-2 (default setting)

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

5000 USART1 Onboard USART1
connector (CN8)

controllerName = USART1

baudRate = 115200

parity = 0

dataBits = 8

stopBits = 1

flowControl = 0

Watchdog

A-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (STM32429I-EVAL) Beta Draft

■ Supported parity: none, even and odd. mark and space are not supported

■ Supported databit: 5, 6, 7, 8 and 9

■ Supported stopbit: 1, 1_5 and 2

■ Hardware flow control is not supported

■ Log channel note: UART logging is disabled by default. If the internal property
log.method is set to UART, then USART1 is dedicated to logging and you cannot
use USART1 as the Device I/O UART

■ The following are default parameters:

– baudrate: 115200

– parity: none

– databit: 8

– stopbit: 1

– flow control: none

Watchdog
The following watchdog devices are pre-configured:

■ Note that the platform watchdog is not a DIO watchdog for Java application.
Instead, it's the platform's general watchdog.

■ The system.watchdog property must be enabled. This is an internal property for
platform watchdog in the jwc_prop.ini file. Note that the default value is false.

■ The timeout value is 4 seconds, which means the device will reboot if it is frozen
for more than 4 seconds.

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

60 WDG Platform Watchdog

Beta Draft Glossary-1

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time
and amplitude) into a stream of binary numbers that can be processed by a digital
device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2 Beta Draft

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

JCP

Beta Draft Glossary-3

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Glossary-4 Beta Draft

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

RMI

Beta Draft Glossary-5

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Glossary-6 Beta Draft

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

URI

Beta Draft Glossary-7

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Glossary-8 Beta Draft

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Operating System Commands
	Shell Prompts
	Conventions

	1 Installing on the ST Micro STM32429I-EVAL Board
	Downloading and Installing the MDK-ARM Lite Development Kit
	Downloading and Installing the PuTTY Terminal Emulator Program
	Preparing the ST Micro STM32429I-EVAL Board
	Connecting the ST Micro STM32429I-EVAL Board to the Computer
	Exploring the Oracle Java ME Distribution Bundle
	Setting Up the MicroSD Card
	Network Configuration
	Setting the Runtime Clock

	Installing the Firmware on the Evaluation Board
	Connecting to Logging Ports
	Using the Display

	2 Installing and Running Applications on the STM32429I-EVAL Board
	Installing the Oracle Java ME SDK 8.1
	Connecting to the ST Micro STM32429I-EVAL Embedded Board
	Server Mode Connection
	Client Mode Connection

	Running IMlets on STM32429I-EVAL Using the AMS CLI
	Using NetBeans with the STM32429I-EVAL Board
	Adding the STM32429I-EVAL Board to the Device Connection Manager
	Assigning the STM32429I-EVAL Board to Your Project
	Using an Existing NetBeans Project
	Creating a New NetBeans Project
	Sample Source Code

	Accessing Peripherals
	Adding API Permissions
	Signing Applications
	Signing Application Using the NetBeans IDE
	Method #2: Signing an Application Using the Command Line

	3 Troubleshooting
	Installing the Firmware on the Board
	Working with Oracle Java ME Embedded on the Board
	Using the Board with the Oracle Java ME SDK and the NetBeans IDE
	Development Log
	Output Stream Buffering

	A ST Micro STM32429I-EVAL Board Peripheral List
	Analog-to-Digital Converter (ADC)
	GPIO Pins
	GPIO Ports
	Inter-Integrated Circuit (I2C)
	SPI
	UART
	Watchdog

	Glossary

