Oracle® Java ME Embedded
Developer's Guide

Release 8.1

E52611-02

November 2014

This document is a resource for software developers and
release engineers who want to build applications for the
Oracle Java ME Embedded software for embedded devices.

ORACLE

Oracle Java ME Embedded Developers Guide, Release 8.1
E52611-02
Copyright © 2012, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...ttt XV
AUAIEIICE ...ttt ettt et be e te e be e e e beesbesbeess e beessebeesseeseesseeseesseeseesbeersebeeseentearaans XV
Documentation ACCeSSIDILIEYcccuiuiiiiiiiiiiiiiiiccc e XV
Related DOCUIMENESccouieiiiiiiiiieieietetet ettt ettt st et sb e b e b esbesb e st esaesaesaeseesassessessessessessessassassessases XV
Operating System COmMmAaNS...........cccouiiiiiriiieicc e XV
SRELL PTOIMIPES ..ottt XV
CONVEINTIONS ...vvevieiieeeieiietteteetesteetesteestesseessesseessesssesseessesseessesseessesssessesseessesssessesssessesssensesssenseensenseensenses Xvi

1 Developer Migration Guide

OVEIVIEW ..ottt 1-1
Modified Permission Modelcccocoviiiiiiiiiiiiiiii 1-1
Device I/O NAMESPACEc.coimiiiiiiiiiiiiiiecce e 1-2
Generic Connection Framework Changes...............ccccccovniiiiniiicns 1-2

2 Java Embedded VM Proxy and Console

DIESIGIL. ..ot 2-1
Starting the VM Proxy on the DesKtopcccccoviiiiiiiniiiiiiiin 2-2
Server MOde CONNECHON.cciiiiereeteeeeete ettt ettt et et e re et e ereeseereeeseessesseeasesseessesseessenseenseeseenes 2-2
Client MOAE CONMECHONc.veieeieeieiieietietiete ettt et esessestessessesteseeseesaesessessassessessassassassassessessessases 2-3
VM ProXy OPtiONSocooviiiiiiiiiitiiietcct ettt e 2-3
Using the Command Line Interface..............cccccoooiiiiiiiiccccccccennes 2-3
AMIS-INSTALL ..eotiiiiiicie ettt ettt et et s b st e be bt ebaebe et e et e be et e b e besbesbesbenterteseanes 2-5
AINIS-LEST ettt b e e rb e b e et et e e b e re et e ere e be e st e beera e beeraebeesaereenseereenes 2-6
AMS-UPAALE. ...t 2-7
QNS TEITIOVE ... eeuveeereeeenrersersesseassesseeseaseessesseesseaseessesssessesssessesssesseessessesssenseessenseessenseessesssessesssessesseenses 2-8
QTTIS TUT e nutteeeuiteeeiteeesutteeetteesauteeeaabeeesasaeeeasaeesabeeessseeeaasteesnssaeenaseeeassseesasbaeenaseeeansteesasbaeesseesnasaeesseaenn 2-9
AINIS=SEOP v eueeteeietitete ettt a e e ne e 2-9
DIACKIISE ...cvvevveeietieiieiteeettee ettt ettt ettt s et e et e ebe et e e beebe e b e b e besbesbassassessessessessasaesaesearaesansenrens 2-10
PIOPEItI@S-liStoecvtiiee s 2-10
OE-PIOPEILY 1ot 2-11
SEE-PIOPEILY ..ottt 2-12
SAVE-PIOPEITIES ...viiiiiiieictetetet e 2-13
TIEE-INIEO 1.ttt ettt ettt et et e et et e e ab e teetteebeetbeebeenteeae e beeba e beers e beers e teeaseteeaseereenes 2-13
V=] T <1 TSRS 2-13
TEE-TECOMNIIECEeieiiiieeeiiee ettt ettt e et e e et e e sttt e e bt essabaeesabteeeaabeesasaeesabaeeesseessnaesnabeasnnne 2-14

T (314 Ta <] SRR 2-15

AeVICE-ChANGEcocviiiiii s 2-15
SIULAOWIL . ittt sttt et et e st et e s e et e e s e ss e st e s e sassessessessessessessaseesensensensenses 2-16
ettt ettt ettt ettt ettt et e te et e b e be b et e st e st e st etaers et s eteeteebe et e b e be b et esbestestetsersereereereereeters 2-16
AELETE ..ttt ettt et e et et be et e be et e be st e be et e be et e ere et e ereenteeaeebeereereereas 2-17
BB o 2-17
LS ittt ettt ettt ettt et e et e b e b e b et a b e st ertetteraers et e eteebe et e b e b e b e b eabesbertessersersereereereeters 2-18
KT ottt ettt ettt ettt ettt et e ae e eaeeteeteete et et e et e et et et et et easereeneeteereereereeras 2-19
PWe e 2-19
PUL e 2-19
KS=AELELE ...ttt ettt et et et et e et e be e b e be et e eae et e ereenteeaeebeersebeenean 2-20
KS-@XPIOTE .. 2-20
KS-IMPOTE w.eoiee e 2-21
S TAST 1ttt ettt et e e b e be st e ba et e be et e be et e ere et e ereenteeaeebeereebeeaeas 2-22
el 1 T<3 4 = U U U U U RSP 2-22

3 Security

Overview of Oracle Java ME Embedded PermisSsions.............ccccuecveeveieieincinininenenesieieseessesnenees 3-1
Accessing Peripherals.............cccoooiiiiiiiiiiiii 3-3
Signing the Application with API PErmissionscccccccevviriniiiiinininininiiiiiiincinnns 3-3
Method #1: Signing Application Using the NetBeans IDEccccccoceeiiivnnniinnnnnne 3-4
Method #2: Signing Application Using a Command Line..........ccccccevvvinniiiiiinnnnns 3-4
Method #3: Using NullAuthenticationProvider...........ocooceioioiiiiiiiiiicc, 3-5

CLDC POIMISSIONScoovieuiieeieieeiieiesteteetteteestesteestesseestesseessesseessesseessesseessesssesesssessesssensesssessesssesseessenss 3-5
FAlEPOIINISSION. ... cvveuveeiteiieteetteteett e et e e et ete st ete et e tesstesbeessesseessessaessesseessasssasseaseansesseassesssensenssesees 3-5
RESOUICE INAIME.....c.ctiiiiciieeeeeee ettt et te et e et e e te e ssbeessaeesbe e saassseesaessseensaennsenn 3-5
1 0) 1= TSRS 3-6
RUNEMEPEIMISSION ...ccutiiiieeiieeiieeteeit ettt sttt e st estesbe e st e ssbeebaesssaesseesssesssaesssesseenssenns 3-6
RESOUICE INAIME......c.ctiiiiiciieeeeeee ettt et e te et e e te e te e s sbeessaeesbe e sbaesseesaesnsaensaennsenn 3-6
LoggingPermiSSion ..o s 3-7
PropertyPermiSSioncocceieieiiieiiieiiieiii 3-7
RESOUICE INAIME.....c.ciiiiiicieee ettt ettt te et e et e e be e ssbeessaeesba e saasssaeseesnsaansaennsenn 3-7
1 0) 1= TSP 3-7
Keystore PermiSSionscccooiiiiiiiiiiiiiicc s 3-8
KeyStorePermiSsion.........cciiiiiiiiiiiiiiicc s 3-8
RESOUICE INAIMIE. ...ttt ettt ettt e s st et e sseessesseesseensesseensesseensenseensens 3-8

Device I/O PermuSSIONScceccuieieiieeietieierteeteste e e steetesteesesseessesseessesseessesseessesssessesssessesssessesssessesssens 3-8
ADCPEITNISSION ...vieeveeiiieeieesieeeteesee ettt et e eteeeteessteesseessseessaaesseesseesssessseeasseesssessseesssanssesnseessseesseesnseen 3-8
RESOUICE INAIME. ...ttt ettt e s e et e s seessesseesseessessesnsesseensenseensens 3-8
AACHIONIS .ttt ettt ettt e s e st e st e st e e st e et e e st b e et e e at e et e e bt e e b e etae e ba e seeenteebaenateens 3-8
ATPEIMNISSION ..vviiuviiiieeiieeieesteeete et e et erteeete et esbeesteesbe e baeesbeesseessseassaaasseesssessseesssassseeseesnseensaesnsen 3-9
RESOUICE INAIME. ...ttt st s s et e s se e s e ese e sesnsessesnsesseensenseensens 3-9
AACHIONIS .ttt ettt ettt e s e st e sttt st e st b e st e e s st e et e e h b e et e e bt e e b e entee s baenseeenteebaennteens 3-9
COUNEEIPEIMUISSION ...vecuviiiiieiiieciiieieeete et e ete et e ete e st e ste e baeeaeesseessseessaeesseesssessseesssaesseenssessseesseesssen 3-9
RESOUICE INAIME. ...ttt ettt e s se et e s seessesseessesnsesseensesseensenseensens 3-9
ALCHIONIS .ttt ettt ettt e s e st e st e st e e st e s be e st e et e e a b e et e e bt e et e entae s baenseeenteebaennteens 3-9

D A CPEITNISSION ...vieiveeiiieeiieeeieecte et e ete et e e teeeteessteesteessseessaeesseesseessseassaaasseesssessseesssassseenssesssessseensseen 3-9

RESOUTCE INAITIE....eeei ittt eertae e e e e et e e e e e eeabareeeseeaaseeeeeesnrereeeenns 3-10

Aot (o) 4 =TT TP U USROS 3-10
DeviceMgmtPermiSSiOncouviiiiuiiiiiiiiiiiiccc s 3-10
RESOUICE INAIME.....c.eiiiiiieiieiiieeee ettt ettt st e e st e s te e st e esbeesssessbeesssesnbaesssesnseenns 3-10

Aot (o) 4 =TRSOOSR 3-10
GENETICPEITNISSIONvvetieiieiieieeieeieettete et et et e ste et et et e st et e seessesseensesseensesseensesseensesnnessesnsensennen 3-11
RESOUICE INAIME.....c.eiiiiiieiieiiieeee ettt ettt st e e st e s te e st e esbeesssessbeesssesnbaesssesnseenns 3-11
Aot o) 4 =T U UUSOROURUSURRTIPS 3-11
GPIOPINPEIMNISSIONeeuvieeveiieiieeiieieetete et et etesteste e e te st estessesssesseessesseensesseensesseessesneessesssessesnees 3-11
RESOUICE INAIME.....c.eiiiiiieiieiiieeee ettt ettt st e e st e s te e st e esbeesssessbeesssesnbaesssesnseenns 3-11
Aot (o) 4 =TRSOOSR 3-11
GPIOPOItPEITNISSION. ...c.vteevetieieeiieieeteteetesteetesteste st e tesseesesseessesseensesseensesseensesseessesnsessesssessennes 3-11
RESOUICE INAIME.....c.eiiiiiieiieiiieeee ettt ettt st e e st e s te e st e esbeesssessbeesssesnbaesssesnseenns 3-12

Aot (o) 4 =TT TP U SO PURUSRRPTIPSR 3-12

T2 C P IINISSION . .veeteeteeiieteeiesteete et est et e et e et et e tesntesseensesesnsessesssesseansenseensenseensenssensesnsensesnsensennen 3-12
RESOUICE INAIME.....c.eiiiiiieiieiiieeee ettt ettt st e e st e s te e st e esbeesssessbeesssesnbaesssesnseenns 3-12

Aot (o) 4 =TRSOOSR 3-12
IMMIOPEITISSION <. evevieiieteeieeeteteeseeteetesteseessesseesseessessesssessesssesseensesseensesseensesseesesnsessessessennees 3-12
RESOUICE INAIME.....c.eiiiiieeieeieeeee ettt st e s b e s be e s st e esbeesssessbaesssesnbaesssesnsaenns 3-12

Aot (o) 4 =TRSO UURUSRRTITSN 3-12
PWIMPEITNISSIONcuvteitetieieeiieieeiteteetteteetesteetestesaeessesssesseessesesssessesnsenseensenseensesseensesssensesnsensennes 3-13
RESOUICE INAIME.....c.eiiiiieeieeieeeee ettt st e s b e s be e s st e esbeesssessbaesssesnbaesssesnsaenns 3-13

AN ad 0] 4 =TT SO UURUSRRPTIPSN 3-13
SPIPEITISSIONevveuvieiiestieieeteeieeeteteesteteetestesstessesaeesseessessesssessesssesseensesseensenseensesseensesneensesnsensennen 3-13
RESOUICE INAIME. ...ttt ettt et be e st e e be e st e ebeessteesbeesssessbaesssesnsaenns 3-13
Aot (o) 4 =T USROS 3-13
UARTPEIMNISSION....cuvieuiieeieieriieieeeeteeteieesteteestesteeseesseestessaessesseensesseessesssessesssensesssensesssensessensennes 3-13
RESOUICE INAIME......c.eiiiiiieiieiieeeete ettt ettt e sbe e s b e e be e st e ebeesssessbeesssessbaesssesnsaenns 3-13
Aot (o) 4 =TRSOOSR 3-14
Watchdog TimerPermiSSioncccuoiiiiiniiiiii e 3-14
RESOUICE INAIME......c.etiiiiieiieieeeee ettt ettt e st e s b e s te e st e ebeesasessbeesssessbaesssesnsaenns 3-14
Aot (o) 4 1= TP U USROS 3-14

1S3 1 0 T N A G e -SSR 3-14
APDUPEIINISSION ..eeuvteeiieriiieieeniieesieenteerteesteeteestessseesssessseesssessseesssessseesssesssessssesssessssesssessssesssessns 3-14
RESOUICE INAIME........oiiiiecieeeeeee ettt e te et e b e et e e st eebeessbeesseessaeessaessaeenseanns 3-14
CRITULAL ...ttt ettt et e et e st e s e e st e s e et e e st et e et e se s e s essassassessassessassesseseassasensensensenses 3-15
CellUlarPermISSIONvectieteetieieeeeeieeteerteeee e e testeetesseesesbeesbesseessesseessesssessesseessesseessesssessesssessensees 3-15
RESOUICE INAIME........oiiiiecieeeeeee ettt et te et sae e te e st eebeessbeeseessaessbaessaaenseanns 3-15
GENETIC EVENLS ..ottt ettt ettt e st et e s st e saesseesseeseensesnsensasssenseensensesnsensennes 3-15
BV Nt P OIMISSION ... eeuteeiiiiiieieeie ettt ettt e st e s be e st e sbeesabeebeessseessaesssesssaesssesnseesssesseens 3-15
RESOUICE INAIME........oiiiiicieee ettt et te st e st e et e e st e ebeessbeeseessaeesseessaeenseanns 3-15

N 5 o) 1= USROS 3-15
COMM PIOEOCOL........ocuiieieieeieete ettt ettt e et et e et e s teestesseessesseessesseessesssessasssessasssensanssansenssensennes 3-16
CoOmMMPTOtOCOIPEITIISSIONevvivieetietieteeteeeteeteeeteeeeete et e teeaesbeessesbeessesseesseeseessesssenseeseeseesseseeseas 3-16
RESOUICE INAIMIE. ...ttt ettt ettt et e e esae s e e sesnsesseensessaensenseens 3-16
COMMECEOT ...c.eeiiiieeieeieee ettt et e e et e st e s be e s s beebe e s s b e e seenssesnbaesssesabeesssaensaesnsessseenssesnsaenssesnses 3-16
CBS ettt et re et ettt e e aa e be et e beert e ba et eabe et e be e beeaeebeereenteereeteersebeeaean 3-17

vi

RESOUTCE INAITIE. ..ottt e et e e et e e e e e eeabareeeseeabseeeeeesnsereeeenns 3-17

Aot (o) 4 =TRSOOSR 3-17

FILE REAM ..oeviveiiieieietetetete ettt sttt ettt ettt e e et e e te s e sse st e b e sassessessessessessessaseasansensensensn 3-17
RESOUICE INAIME.....c.uiiiiiieieeieeeee ettt ettt ste s be e st e s be e st e ebeesssessbeesssesnbaessnesnsaenns 3-17

A Nad (0] 4 =TSPTSRO SRR 3-17

FALE WITIEE 1ottt ettt e s et e st et e s e ss e et e b e s e sessessessessessessaseesensensensenss 3-17
RESOUICE INAIME.....c.eiiiiieeiieiietee ettt ettt et st e s b e s be e st e ebeesssessbeesssessbaesssesnsaens 3-17

ALCHIONS .ttt ettt et e et e st e et e e st e e be e tae e beeesbe e beeesbe e beeessaebeeesteeseeesaeearaeanaeensaanns 3-17

RTISP ettt ettt ettt e st et e st e s e et e s e e st e s e e st eseenseaseensenseensesaeensesneensennnensennean 3-18
RESOUICE INAIME.......eiiiiiieiieieetee ettt ettt e st e e be e st e ebeesatesbeessnessbaesssesnseens 3-18

Aot (o) 4 1= TP UR SO USURRTIPSN 3-18

b 1Y/ I TSP 3-18
RESOUICE INAIMNE.....c.eiiiiiieiieieeeee ettt ettt e st e s be e st e ebeesatesbeesssesabaesssesnsaenns 3-18

Aot o) 4 1= USRS 3-18
Datagram Protocol............ccccoooiiiiiiiiiiiii s 3-18
DatagramProtocOIPermiSSiONccoicueieiiiicieieiicieiecc e 3-18

DT LSPrOtOCOIPEITNISSION «....vvevvievieerietietieteeete et eeteeeesteetesteetesbeesesseesesseesseeseessesssessesssesesssessesseas 3-19
FALE PrOtOCOL ...ttt ettt ettt et e e se et e s b e e s e s s e s essessessessessessessesseseaseasensensensensenns 3-20
FilePrOtOCOIPEIMISSIONvectieiiieeeeiietieteeeesteeeesteetesteetesbeesbessesssesseessesseessesseessesseessesseessesseessenses 3-20
RESOUICE INAIME........oiiiiecieee ettt et te et e s tbe e te e s sbeebeessbeesaessaeesbaessaesnseanns 3-20

5 0) 1= ST SPTRRP 3-20
Hypertext Transfer Protocols ... 3-20
HT TP ProtOCOIPEITISSION. ... ecutivieerietietieteeeteeeeeteeeesteeaesteesaesbeessesbeessesseesseeseessesssenseeseesesssesesnnas 3-20
HTTPSProtOCOIPEIMMISSION ...cvvevievieiiriisiisieieteieietesteeteteseeseesessessessessessessessessessessessessesensessessenses 3-21

11 (TSRS 3-21
IMCPrOtOCOIPEITIISSION ...viuvieivirieerieteeteeteeste et e eteeeesteeaesbeesbesbeessesseessesseessesseessesssenseessesesssensesseas 3-21
RESOUICE INAIME........eoeiieiieieceeee ettt sttt e e e st e ae s e e sesnsesseessesseensensnens 3-22
MULEICASE PrOTOCOLS........oocuiiiiiiieiieiieieeeete ettt ettt ettt ettt e et et e sse e se s st essesssesseessesseessessanssensenns 3-22
MulticastProtOCOIPEITNISSION.ccuieieeiierieeie ettt ettt te et e et e se et eereeseeseeaeessesseennas 3-22
PUSIH PIOtOCOIS ...ttt ettt ettt s te et e s e b e st e b e s essesbessessessessessassasensensensenses 3-23
PushRegistryPermiSSioNccoccueiiiiurieiiiicieie ettt 3-23
Aot (o) 4 1= TP U SR UURUSRRPTIPSRN 3-23

SOCKEL PIOtOCOIS........ooeiieieieeiieeeeeeee ettt ettt et e st e s e s st e s e essensesnsenseensenseensensennes 3-24
SOCKEtPIOtOCOIPEIMNISSION. ... eeutivieiietieiiettete et este ettt e e et e te et e s teessesseessesseessesseessesseessesssessenseas 3-24
SSLPIOtOCOIPEITISSION.vivieititieerietieteeteeete et et eeeete et e beesbesbeessesbeessesseesseeseessesseenseesseseessensessnas 3-25

| 0 T s (o) 4 TSR 3-26
LOCAtIONPEITNISSION. .. ceeutiiiiieiieiieeitente ettt e ettt e et e st e sbeestessbeesasesseessbesssaesssesnseesssesseesssesnseens 3-26
IMLEAIAA ..ottt ettt e he et e be et e be et e eba et e ts e beeaa e beertebeerbenbeenaesteessenreentenraan 3-26
RECOTACONTTOL. ... c.teeieeieeieieietetet ettt ettt et et ete et e sse st e s e sessessessessessessessaseesensensensenss 3-26

74T =T [@e 1 o) FE USROS 3-26
AEO-SEATL ..ot ettt e et e st e et e et e e te e e b e et e e erae e b e e erba e bt eesteebaeenaeebeeanbeebaens 3-26
AULOSTATtPEIMNISSION....c.viiieiieieeiieieeete ettt ettt e e e et e s se e tesseensesseensessnensesnnensesnsensennees 3-27
AULOSTATTPEIMNISSION....c.uiiiiitieiiciieteeeete ettt et et e ste et e be e b e beessesseesseeseessesseessesseessesssassenses 3-27
RESOUICE INAIMESoeiiieeieeiieeeee ettt ettt te et estae e te e s b e ebeessbeeaeessaesssaessaesnseanns 3-27

POWEE ...ttt ettt et e st e et e e st et e e st e s st e st e sse e st e sseessesneenseestensenneenseentenseensenseensenseenes 3-27
POWEIStatePerMISSION .. ecvveveeiiiceieiietiete et este ettt et e ste et e te e s e beessesseessesseessesseessesseessesssessensens 3-27
RESOUICE INAIMESoeiiiieiieieeeee ettt et tte et estbe e te e st eebeessteessessaesssaessaesnseanns 3-27

Software Managementcccooviviiiiiiiiiii s 3-27

SWIMPEITIUISSION «..vvvvvieeietieeeee ettt ettt eeeete e e e e eeaaae e e e e seeateeeeessenaaaeeeessssaseeessesasssessssnnnreeeeessnnnes 3-27
RESOUTCE INAIMNES ...t e e e e et e ee e e eenaeeeeaeeeensneeeennneeenneeean 3-27
F AN 5 (o) 1= USROS 3-28

4 Software Management

SuiteInstallListener INTEIfACEccoovieieiieiiicieeeee ettt se e e esse e s e reenne e 4-1
SuiteListener INTEITACEcoveiiiiiiieeeceeeee ettt ettt e et e reebe e ebe b ebeennens 4-2
SuiteManager INtErface.............c.oooiiiiiiiiii e 4-2
TaSKLIStener INEEIaCe.........ccvcovieieiieiee ettt ettt e b e s reesaeesaesaeesaesseessesseessenseansens 4-2
TaskManager INterface............ccccooiiiiiiiiiii 4-3
ManagerFactory Class............ccccociiiiiiiiiii s 4-3
THe SUIEE CLASSoovieiiiiieiitieteeeete ettt et e et e et e e b e te e s s e s seesseeseassesseesseessessesssesseessesseessanseassens 4-4
SUILEINSTALLET CLASSoviiiiiieieeecteceteeeee ettt ettt ettt e e et e e ra et e easesbeeasesseessesssenbesssensenseens 4-5
SUILEINSTALLET CLASSoveovieiieiieiieiieieteee ettt e e e ese et e se et e et essesse s essessessessensessessesseseaseesenses 4-6
SWMPErmMiSSIiON CLaSSccccuiiiiiiiieiieieeeteteet et e steete e et e s reesaesreessesseessesssessesssessasssessesssessesssenes 4-7
TASK CLASS ...ttt ettt ettt ettt et e e e e te et e beesa e beesb e beess e beeasabeesseeseassesseensesssensesssensesssesenseans 4-7
INSTALIETEITOICOME.oceeeeieiiieieeeeeee ettt ettt e et e et e b e b e b e b essessesbessessesaesseseasensenss 4-8

5 General Purpose Input/Output

Setting a GPIO Output Pin..........ccccooiiiiiiiiiiii s 5-1
Working with a Breadboard..............cccccooiiiiiiiii 5-5
Blinking an LED ..o 5-8
Testing Output and Input Pins............cccoviiiiiii s 5-10

6 Working with the 12C Bus

Experimenting with a 7-Segment Display............cccccocoiniiiiiiiiiinccreceeee 6-1
Experimenting with a 16x2 LCD Displayccccccvviiiiniiiniiiiiiiiiiccca 6-7

7 The Serial Peripheral Interface (SPI) Bus
Using the SPI Bus to Communicate with an ADC...............ccccooiiiiiiiiii, 7-1

8 Working with Java ME Encryption

Connecting t0 an SSL SeIVeT...........ccccoviiiiiiiiiiiiiiiii 8-1
Authenticating an SSL SerVer............ccccccoiiiiiiiiiii e 8-4
Accessing the Keystore............ccccooiiiiiiiiiiiiiiiicece et 8-6
Configuring the Board as a Secure Server..............coooooiiiiiiicicc 8-8

A Java ME Optimization Techniques

DIESIGIN....ocviiiiiii s A-1
IMEINIOTY .ottt A-1
TRIAAS .. A-1
System CallDaCKS.........cucuiieiieiiiiicii e A-2

INPUH/OULPUL ... s A-2

vii

viii

General TIPS ..o s A-2

APPLCAHON SIZe ... A-3
B Java ME Embedded Properties
Modifying the Properties File.............cccccooiiiiiiniiiiiiiiiic s B-1
Using the Command-Line Interface ..o B-1
C Signing an IMlet Suite's JAR File
Instructions for Using JAdT0Olccccoviiiiiiiiiiiiiircr s C-1
Using the JadTool Utlity ... C-2
Handling Expired Certificatesccccocoiiiiiiiiiiiiiiiiiiiiiiii s C-3
OPHONS SUIMIMATY ..o C-3
D Managing Keys and Certificates
Running MEKEYTOOLccooiiiiiiiiccrre s D-1
Using the MEKeyTool Utilityccccocooiiiiiiiiiiiiicccccccs D-2
ME K@YSTOTESoovviniiiiiiiiictci sttt D-2
Working Directory for the EMulator...........ccoiiiiiiiiiiiccecccecc e D-2
Creating and Managing Multiple ME Keystores...........ccooeueuiiiiiiiiiiiiccc i, D-3
Creating Alternate ME Keystores..........cccocoviiiiiiiiiiiiiiiininiiiiiinnccssss D-3
Managing Alternate ME KEYStOTESc.ccccueuiuiiriiiiiiiiiiiriiicccreeeeeeeeeeeeeeee s D-3
IMpPorting @ Keyccooiiiiiiiiiiii s D-3
Listing Available Keyscccccoiiiiiiiiiiiiii s D-4
Deleting @ KeY.......c.coiiiiiiiiiiiiiiciccee s D-5
Replacing @ Key ..o D-6
MEKeYTo0l SUMMATYcccouiiiiiiiiiiiiiiii s D-6
E OEM Extensions
Using OEM EXteNSIONSccoooiiiiiiiiiiiiiccc e E-1
F Encryption Algorithms
Supported Algorithms for Windows, Raspberry Pi, and Qualcomm Platforms F-1
TLSVI.0 - TLSVIL.2 oo F-1
Glossary
Index

List of Examples

5-1
5-2
6-1
6-2
6-3
6—4
6-5
7-1
8-1
8-2
8-3
84

Setting @ GPIO PNc.coiiiiiiiiiic e 5-2
Creating a GPIO Pin LiStenercccoiuiiiiiiiiiiiiiicccccrc e 5-10
HT16K33 12C Driver for 7-Segment Display..........cccccecvuviviniiiiiniiiiiiiiiiiiiicininiinnns 6-2
IMlet to Write to the 7-Segment Displaycccccceviviiivinininiiiiiiiiiiiiicins 6-5
Testing the PCF8574N I/0 Expander Chipcccccccovvininiiiiiniiiiiiccccccies 6-10
LCD Diriver Class to Control the HD44780 Chipccccevuviiiiiiivininiiiiiiiiiiccnicne 6-11
IMlet to Write to the 16x2 LCD Displaycccccevuviiiiiiiviviiiiiiiiiciriciiicccnnccccseeas 6-13
Testing Out the SPI Bus CONNECLIONc.couiuiiiiiiiiiiiiiiiiicccicceenas 7-3
Connecting to an SSL SEIVET ... 8-1
Authenticating an SSL SEIVET........ccccoiiiiiiiiiiiiiiiiiic e 8-4
Accessing the Embedded Keystore ..o 8-6
ISTS) <) ot Te LSl @ Yo [PR ORURRUUPURUSURRRR 8-9

List of Figures

2-1
2-2

VM Proxy and Agent Design for Java Embeddedcccoooooi 2-2
PUTTY Configurationccccciuiuiiiiiiiiiiiiiiiiiii s 2-4
Command-Line INTOITACEccvveeeiierieeeeeceeeeeeeeee ettt et e e eeaeeeteeereeeaeeenreas 2-5
Adding Permissions Using the NetBeans IDE.............ccccccccoeviininiinnnniiininns 3-4
API Permissions in the Application Descriptor in NetBeanscccccccovvviniiinnnnnns 5-3
Raspberry Pi Pin 7 with Low (0V) Voltageccccoovvvvininiiiiiiniiiiicicncciiiinis 5-4
Raspberry Pi Pin 7 with High (3.3V) Voltageccccccovvviiiiiiiiiniiicncins 5-5
A Typical Breadboard ... 5-6
Wiring Pattern for a Typical Breadboardccccccoeiviviiiiiiiniiiiiiiis 5-6
T-Cobbler Extension Board for the Raspberry Pi..........ccccoooiiiii, 5-7
Schematic for Wiring an LED to GPIO 7cccccoiiiiiiiininininiiiiiniicns 5-9
Wiring an LED to GPIO PIN 7 ..ot 5-9
Output of Example 1-2ccccoiiiiiiiiiiiiiiiiii s 5-12
Binary Encoding for 7-Segment Displayccccccoviiiiiiiiiiniiiiiiiniiiiiininiis 6-5
Result of Running the 7-Segment Display IMIet............ccooooiiiiiiiiiii 6-7
Pinout Diagram for PCE8574N ICccccccoiiiiiiininiiiiiiiiiiiccs 6-8
Running the i2cdetect Commandcooiiiiiiiiiii s 6-9
I/0 Data Bus with the PCF8574IN Chipccccceceuviniiiiiiiiiiiiiiiiiciciniiciccccs 6-11
LCD Display after Running Exampleccccccovuviiiiiiinininiiiiiiiiiccccies 6-14
Pinouts for TLC549CP Analog-to-Digital Converter Chip.......cccocooiiiiiiiiiiiiciee, 7-2
Breadboard with the Analog-to-Digital Converter Circuit........cccoooveireiiiiiiiceieieicciene, 7-3
API Permissions in the Project Properties Dialog in NetBeans...........ccccccovviviiiinnnninns 8-3
Installing the ProGuard Obfuscator Library...........cccccovvviivnininnnniiininiins A-4
Choosing an Obfuscation Level ... A-4

xi

List of Tables

Xii

3-1
3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
4-1

4-2

Oracle Java ME Embedded PermiSsionsccceoeieirieeninenienieeiesie ettt 3-1
FilePermiSSion ACHONScuiiiiiiiieeieeeie et eee et e eeeeeteeetaeeeaeeeteeeebeeeteeebeeesseeaseeesseeassenseesaseensens 3-6
RuntimePermiSSion ACHONSooiiiiiiieeeciee ettt eeiteeeete e e s teeeeireeeeaveeeseveeeebaeeessesensseaanns 3-6
PropertyPermission ACHONS.......c.ccciiiiiiiiiiiiiiiiiniiiii s 3-8
KeyStorePermission Resource Namesccceueiiiiiiiiiiiiicicicc s 3-8
ADCPEIMISSION ACHOISvveevieiiiieieeeieeeteeeteeeteeeteeereesbeeeseesteeeeteeesseeseeesseeseesssesssenseesssensens 3-9
ATPErmiSSION ACHONS.ccciieeiiiiieiieeccteeeeieecete e e eteeeeetveeeeaeeesbaeeetseeesssaeeseseseessssesssseeenssesans 3-9
CounterPermiSSIiON ACHONS.ccuiieuieeiieeiieeie et ete et ereeereeeteeeeteeeeeeeveeetaeereeetaeessenseesaseesens 3-9
DACPEIrMISSION ACHONS ...cuveeevveeiiectieeteeeieeceteeeteeeteeeeeeeteesaeeeseeereeeteesassenteeeseensesseseeessesases 3-10
DeviceMgmtPermission ACHONSccoviiiiiiiiiiiiiiniii i 3-11
GenericPermiSSION ACHONS.iicuiicieecieetie et eeee et eteeeteeeeeeeteeereeeteesasseereeeaseenseesaseenseesases 3-11
GPIOPINPermiSSion ACHOIScccvveevieiiieeieeiteeeeeeeteeeeeeeteeereeeseeereeeseesasseeteeeseensesseseesseesases 3-11
GPIOPOrtPermiSSion ACHONSc..ccvieeiieeieeeieeeeeceteeete et e eeeeeteeereeeteeeeeeeveeeaeeeseesereeeseeeanen 3-12
T2CPermiSSION ACHONSeeeuvietieeieectie ettt et eeteeeteeeeeeeteestveeeteeeareeeteesaseebeeeaseesesseseenseenareen 3-12
MMIOPEIrMISSION ACHONS ..veecvvievieciieeiieetteeeteeeee et eteeeteeeteeeteeereeeteesaseesteeeseensessaseeessesaseas 3-12
PWMPermission ACHONScoiuiiieiiieecieeeeieeeeite et e et e eeteeeetaeeesabeeeeveeesasaeesssseenssesennsens 3-13
SPIPEIrmMiSSION ACHOINS ...vvieviietieeiieetieecte ettt et eeteeeteeeeeeeteeetaeeeseeetreeeseesaseereeesseesessaseeeseenaseas 3-13
UARTPErmission ACHONSccocuiiiiiiiiicieeeeiee ettt eeveeeetee e etaeeesereeeevaeessaeesesseenssesennnes 3-14
WatchdogTimerPermission ACHONSccoiiieiiiiiciciiicc e, 3-14
APDUPermission Target NameSs ...t 3-14
CellularPermission ReSOUIce INAMEScouveeiiiiriieiecieeceecieeeee et e eve et v eeve e s 3-15
EventPermission ACHONScooviiiiiiiiciie ettt ee e ette e e v e e e e vee e saaeeeeaeeesseeesaneas 3-15
CellularPermission ReSoOUIce INAMEScouveeeiiiiiieieeiee ettt et eere e e v eeve e s 3-16
CoNNECTOr CBS ACHONSccviiiieeieeeeeeeeeee ettt ettt eete e e eeeteeereeeteeease e beeeaseebeeseseesaenarean 3-17
Connector File REAd ACHONScc.vecvieieieeiieeeieeeee ettt ettt ettt et eeeeeveeeaeeeteesereeereeeane s 3-17
WatchdogTimerPermission ACHONSccooirieiiiicicieiicccc e 3-17
WatchdogTimerPermission ACHONScociiiiiiiiciciiiiccccc e 3-18
WatchdogTimerPermission ACHONScooiuiieiiicieiiiicc e 3-18
FileProtocolPermiSSion ACHONScciieeiiiiireeieeereeeeeeeteeereeeteeereeeveeeaaeesveeeseenseeseseeeseesanees 3-20
IMCProtocolPermission Resource Name Rulesccccoovvveeiiieiiiciieeiiccieceeiee e 3-22
MulticastProtocolPermission Resource Name Rules..........cccoevvievviieiieciiecciecceecieeereeene 3-22
PushRegistryPermission ACHONS.........ccceuiiiiiiiiiiicicce e 3-24
SocketProtocolPermission Resource Name Rules..........ccovevvveeiiiciieniicniieciecciee e 3-24
SSLProtocolPermission Resource Name Rules...........ccvevvieiiieeiieciieeiecceeeeecevee e 3-25
AutoStartPermiSSioN ACHONScc.viivieeiieeiiecereeeee ettt et e eteeereeereeeteeeaeeteeeaeeeseesereeeseeearean 3-27
PowerStatePermission ACHONSc.eoiieiiiiiieeeie ettt ettt eeeeveeeaeeeteesreeereeeanen 3-27
SWMPermission ReSOUICe INAIMEScoviiivieeiiiiieeiecieecee ettt ettt et eae et sveeeveeeane s 3-28
SWMPErmiSSIiON ACHONSeeeuveeiieeiiieitieeire et eeteeeteeeteeeteeeeeeeteeereeeteesaseenteeeaseensesseseeeseesasees 3-28
SUILEINSEALISTALE ...ttt ettt et e et et eeebeeete e ebeeeaseeabeestaeeasseteeeaseensens 4-1
SuiteType ENUMETationccooiiiiiiiiiic s 4-4
SuiteStageFlag ENUMETationccoouiiiiiiiiiiiii s 4-4
INStAller EXTor COAeS. . .ooviiiiieiieceieeteeee ettt ettt ettt et taeete e etaeearseteeeaseenseas 4-8
Hardware for Example 1-1ccoooiiiiiiiiieiicc e 5-1
Permissions for Example 1-1cccccoiiiiiiieiiieeiie e 5-3
Broadcom GPIO to T-Cobbler CONVEISION........cccueeirieiieeieeeieeeereeeeeeereeereeeereeereeeersesseeeseensens 5-7
Equipment Needed for Blinking LED Examplec.ccccccooiiiiinimiiiiiccee 5-8
Hardware for Example 1-1ccooooiiiiiii e 5-10
Permissions for Example 1-2ccccoeiiiiiiiiniicc e 5-11
Hardware for 7-Segment Display Examplec.ccooovriiiiiiiiiniiiccccece e 6-1
Raspberry Pi to HT16K33 Jumper Connectionscoceueueiiinieieiiiciceeccceeeies 6-1
HT16K33 7-Segment Display Addresses..........c.cccoiiurieieiiiicieiiiicceceece s 6-5
API Permissions for 7-Segment Display Project........ccccoceeuiiiiniciicniicniceececees 6-6
Hardware for EXample 2-2cooooiiiiiieiiec s 6-7

6-6
6-7
6-8
7-1
7-2
7-3
8-1
8-2
8-3
8-4
8-5
D-1

Raspberry Pi to PCF8574N Jumper Connectionscoccueueviinicieiiicicieecciee s 6-8
Connections to PCF8574N and HD44780 Chipcccceuoiiiiiieiiineecc e 6-9
API Permissions for LCD EXampleccccoiiniiiiininiiccc e 6-14
Hardware for EXample 3-1ccoooiiiiiiieiiii e 7-1
Raspberry Pi to TLC549CP SPIPINs.......coouoiiiiiieieiiiieieci s 7-2
TLC549CP to Analog Signal Pins ...t 7-2
Hardware for Example 1-1ccoooiiiiiiiiec e 8-1
Permissions for Example 4-1ccccoeiiiiiiiiiiiiiecc e 8-2
Permissions for EXxample 4-2ccooiiiiiiiniieie 8-5
Permissions for Example 4-3............ccoooiiiiiiiiiiiii e 8-8
Permissions for Example 4-3............ccoooiiiiiiiiiiiii e 8-9
Location of KeYStOrescocuiiiiuiiiiiiiiicicciec e D-2

Xiii

Xiv

Preface

This book describes how to create and build Oracle Java ME Embedded software from
its source code.

Audience

This document is intended for developers who want to build Oracle Java ME
Embedded software for embedded devices.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands

This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

Shell Prompts

Shell Prompt
Bourne shell $
Windows directory>

XV

Conventions

The following text conventions are used in this document:

XVi

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Overview

Developer Migration Guide

This chapter discusses the changes between version 3.4 of the Oracle Java ME
Embedded and the current instance, version 8. It is designed as a guide to help
application developers port earlier applications to the latest version of the Oracle Java
ME Embedded runtime. If you have not developed IMlets using version 3.4 or earlier
of the Oracle Java ME Embedded platform, you can safely skip this chapter.

Java ME 8 is an umbrella terms for two new JSRs: CLDC 8 and MEEP 8. CLDC 8 is a
major evolution of CLDC 1.1, while MEEP 8 is a major evolution of IMP-NG. Java ME
8 also includes support for the new Device I/O API.

CLDC 8 is backwards compatible with CLDC 1.1, but includes alignment with the Java
SE 7 and 8 language, core APIs, and VM functionality, Java SE-style class-based

fine-grain permissions, as well as a significantly enhanced Generic Connection
Framework (GCF).

MEEDP 8 allows execution of most IMP-NG applications, and includes significant
enhancements by leveraging the CLDC 8 features, improvements in the application
platform, improved software provisioning and management, footprint scalability
through optional APIs, improved connectivity options, and more flexible
authentication and authorization mechanisms.

The Device 1/0O API defines an API that allows Java applications running on small
embedded devices to access peripheral devices, from a peripheral device external to
the host device to a peripheral chip embedded in the host device.

It is strongly recommended that developers familiarize themselves with the CLDC 8
specification and API, the MEEP 8 specification and API, and the Device I/O APL

Modified Permission Model

There are a number of new permissions that object methods must obtain before they
can successfully access peripherals. These permissions are covered in more detail in
Chapter 2. However, developers should be aware of the following:

= Java ME 8 now uses Java SE-style class-based fine-grain permissions.

= Applications should request the jdk.dio.DeviceMgmtPermission permission
when accessing any devices connected to the board through protocols such as
GPIO, I12C, SP1, or MMIO, in addjition to the permissions required by the
communication bus they are using.

Developer Migration Guide 1-1

Device 1/0 Namespace

The syntax for the permissions request has changed. The request now includes the
device identifier and any specific actions that are requested, if applicable. Device
identifiers (e.g., GPIO7, SPI) are listed in the appropriate appendix of the Getting
Started Guide for that development board.

A single request cannot be used for multiple devices; each permissions must be
listed separately. For example, you cannot do the following;:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7,GPIO8" "open"

Instead, you must do this:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7" "open"
MIDlet-Permission-2: jdk.dio.GPIOPinPermission "GPIO8" "open"

In some cases, you can use an asterisk as a wildcard.

Device I/O Namespace

The Device Access API of the Oracle Java ME Embedded platform is now referred to
as the Device I/O API, and is no longer part of the com.oracle.deviceaccess
package. Instead, all classes now use the jdk.dio namespace. In addition:

Classes that contain "Peripheral” have been changed to "Device." So, for example,
PeripheralManager has been replaced by DeviceManager, and
PeripheralPermission has been replaced by DevicePermission.

Support now exists for pulse width modulation (PWM) on all platforms.

Almost all of the individual class methods are unchanged.

Generic Connection Framework Changes

The IMP-NG javax.microedition classes are now replaced by the Generic Connection
Framework (GCF) with JSR-360 and Java ME Embedded Profile classes (MEEP) with
JSR-361. There are a large number of changes that are included in these new profiles.
See the specification pages online for more information on each of these classes.

1-2 Oracle Java ME Embedded Application Management System API Guide

2

Design

Java Embedded VM Proxy and Console

In a typical profiling and monitoring session, the Java virtual machine must do a large
amount of extra work: collecting, storing, and analyzing data, as well as replying to
requests from external tools. When this is done on embedded devices, possibly using a
slower CPU or constrained memory, development can become an unacceptably
sluggish experience.

For this reason, version 8 of the Oracle Java ME Embedded software moves as much
CPU intensive processing away from the embedded Java VM as possible. Instead, a
separate application running on the host side will interact across the network with the
internals of the Java VM. With this design, the VM only sends low-level events to the
host application, such as state change information, methods transition, and objects
information. The information is then stored and analyzed on host side, and the host
application in turn provides the information to all external profilers, monitors, and
managers.

External tools can treat the Java SE host application as if it was the VM itself. Besides
performance and footprint goals, this approach minimizes development efforts on
porting different component communications to new physical transport such as USB,
serial, or Bluetooth. Instead, this VM proxy application and the VM proxy channel
becomes the inter-component tool, and Javacall, CLDC, MEEP, JSRs and SDK
components can all take advantage of it.

The VM proxy uses a single transport connection to transmit all data for any
subsystem. See Figure 2-1 for an illustration of this design; the VM proxy is the middle
component.

Java Embedded VM Proxy and Console 2-1

Starting the VM Proxy on the Desktop

Figure 2-1 VM Proxy and Agent Design for Java Embedded

Device | Desktop
IDE |
VMAgent: SDK
- multiplexor Monitoring
- buffer manager TCP/COM/USB s 4 TcP plugin
- AP G | Model | T [Debugger
~transport Helviceimg: Console
- VM instrumentation debug proxy
VM Debugger “,ﬁ|EZH CLI
System.out z
Session log .

Be sure not to confuse the VM proxy with the VM agent. The VM agent consists of
native code and is located on the embedded device. The VM proxy is written in Java
SE and is launched on the desktop host.

The proxy also provides a software management (SWM) API, similar to the
javax.microedition.swm package, as declared in the Java ME Embedded Profile
(MEEP) specification. This APl is an extension of the previous Application
Management System (AMS) API of previous versions of the Oracle Java ME
Embedded platform, and can be leveraged by ME SDK, IDEs, and the CLI to manage
applications with any connected device.

The transport layer between the VM proxy (desktop) and the VM agent (device) is
protocol-agnostic by design. However, it is currently implemented for TCP, Serial
(COM port), and USB. The transport can initiate connection establishment in any
direction, either from device to host or vise versa. The current supported platforms
are: Win32 (the emulator), RPi (Raspberry Pi with an embedded Linux OS), Keil (RTX
OS), Orion (Brew MP OS), and STMicro Discovery.

Starting the VM Proxy on the Desktop

To use the VM Proxy, extract the files from your copy of the Oracle Java ME Embedded
ZIP archive on the Windows desktop. The VM Proxy program is found as a JAR file
inside the util directory of the Oracle Java ME Embedded distribution, named
proxy.jar. You can start the VM Proxy on the desktop host computer either in a
server or a client mode as described below.

Server Mode Connection

The server mode is used by default. In this mode, the VM Proxy must be started after
the Java runtime is started on the embedded board. Then do the following.

1. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar -socket <Raspberry Pi IP Address>

Channel 8 CLOSED -> AVAILABLE

Trying to open socket connection with device: <IP Address>:2201

Connected to the socket Socket[addr=/<IP address>, port 2201, localport=54784]
Debugger Connection initialized

Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Client Mode Connection

To switch to a client mode connection, perform the following steps.
1. Edit the jwc_properties.ini file on the embedded board as follows:
= Set the proxy.connection_mode property to the client value.

» Set the proxy.client_connection_address property to the IP address of the
host running the Developer Agent.

2. Start the Java runtime on the embedded board.

3. Change to the 1ib directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar

Starting with default parameters: -ServerSocketPort 2200 -jdbport 2801
Channel 8 CLOSED -> AVAILABLE

Waiting for device connections on port 2200

By default, the proxy listens for CLI connections at 65002 port on the host. The port
can be changed by passing the -cliport option while launching the proxy.

VM Proxy Options

The following options are available when starting the VM Proxy using the java -jar
proxy.jar command.

no options - runs proxy with default transport. The host opens a server socket and
waits for a connection from the embedded device. This means the Java Embedded
runtime should be started on the device with its jwc_properties.ini file containing
the following settings:

proxy.connection_mode=client
proxy.client_conncetion_address=(IP address of VM Proxy)

-socket <IpAddress> - runs the proxy as a client. This means that the device should
open a server socket and wait for a connection from the host. The Java Embedded
runtime should be started on the device with its jwc_properties.ini file containing
the following setting:

proxy.connection_mode=server
-serial <COM_PORT?> - runs the proxy with a serial transport. This means that the
VM proxy communicates with device across the specified serial port.

-debug - Adds additional debugging information when the VM proxy is running.

Using the Command Line Interface

Once the VM proxy is running on the desktop, you can use the AMS CLI. The easiest
way to do this is to start a PuTTY executable on your desktop computer, and connect
to localhost at port 65002. This is shown in Figure 2-1. See the appropriate Getting
Started Guide for your embedded board for platform-specific information on using the
Command Line Interface.

Java Embedded VM Proxy and Console 2-3

Using the Command Line Interface

Figure 2-2 PuTTY Configuration

- ﬁ PuTTY Configuraticn ‘ u 1

Categony:
=~ Sfassinn | Basic options for your PuTTY session |
""" Logging Specify the destination you want to connect to
=)~ Terminal
Host Mame (or IP address) Port
- Keyboard L i =
- Bell localhost 65002
- Features Connection type:
= Window @ Raw () Telnet) Rlogin () S5H () Seral
EEEEE!E”CE Load, save or delete a stored session
- Behaviour
-~ Translation Saved Sessions
- Selection
- Colours s
Default Settings
[=)- Connection Lo
... Data r—
e
... Telnet Delete
- Flogin
- 55H
Close window on ext:
(7 Mways () Never @ Only on clean exit

v p——

The window from port 65002 provides a command-line interface (CLI), and is shown
in Figure 2-2:

2-4 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Figure 2-3 Command-Line Interface

(& rase- puTTy E=SRE)

WARNING: The command-line interface (CLI) feature in this
Oracle Java ME Embedded software release is provided only as a
concept for your reference. It uses insecure connections with no
encryption, authentication, or authorization.

The following CLI commands are available for developers. When a command is only
available for a specific embedded platform, it is shown in the description.

ams-install
Installs IMlets on the embedded device.

Usage
ams-install <URL> [auth=<username>:<password>] [hostdownload]

Parameters
This command takes the following parameters:

Parameter Description

<URL> Specifies the JAD/JAR location. The URL may contain
credentials to access the JAD/JAR server (e.g.
http://username:password@host/...).

hostdownload Downloads the JAR file using HTTP and then installs it to
device via the tooling channel. Applicable for JAR files
only.

auth Specifies the user credentials to access the JAD/JAR server.

Responses

This command may return the following responses:

Java Embedded VM Proxy and Console 2-5

Using the Command Line Interface

ams-list

Response

Description

<<ams-install,start install, <URL>

<<ams-install, install status: stage stage ,
%percentage%

<<ams-install, OK,install success

<<ams-install, FAIL,missing parameters. see help.

<<ams-install, ERROR,unknown parameter:
unexpected. see help.

<<ams-install, ERROR,duplicate parameter: auth. see
help.

<<ams-install,FAIL,credentials must be specified
once: in url or in auth parameter

<<ams-install,FAIL,can’t download jar data from
<URL>

<<ams-install, FAIL,errorCode errorcode,
errorMessage : message

<<ams-install, FAIL, error occurred exception

Information message about the start
of the installation process.

Information message about the
installation progress

Information message about the
installation completing.

The URL is not specified.

An unexpected parameter was found.

One or more parameters were found
two or more times.

Credential info specified twice: in
<URL> and in <auth> parameter.

An error occurred while
downloading the JAR in
hostdownload mode.

Installation was aborted for some
reason, described in error message.

An unexpected error occurred. Note
that this response is added for
debugging purposes and to avoid
confusion.

Shows a list of installed IMlets on the device or in the specified suite. If no arguments
are specified, the ams-1ist command will return a list of all installed suites. If a suite’s
index or name/vendor combination are used, the command will list the suite’s

midlets.

Usage
ams-list [<index> or <name>|<vendor>]

Parameters
This command takes the following parameters:

Parameter Description

<index>

<name> | <vendor>

Specifies the suite via its index number.

Specified the suite via its name and vendor

Responses

This command may return the following responses:

Response

Description

<<ams-list,FAIL,invalid parameters

<<ams-list,OK,0 suites are installed

Unexpected parameters were found

No suites were found on the device

2-6 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Response

Description

<<ams-list,0.name | vendor,status

List of installed suites with details

<<ams-list,N.name | vendor,status

<<ams-list, OK,N suites are installed

<<ams-list,FAIL,invalid parameter Parsing the suite’s index failed or the

| character was missed

<<ams-list,FAIL,not found The suite was not found

List of the installed midlets in the
suite. Note that each suite status can
be RUNNING or STOPPED.

<<ams-list,1.midlet,status

<<ams-list,N.midlet,status

<<ams-list, OK,N midlets are installed in
suiteName | suiteVendor

ams-update
Updates the specified suite.

Usage
ams-update <index> or <name | vendor> [auth=<username>[:<password>]]

Parameters
This command takes the following parameters:

Parameter Description

<index> The index of the suite to be updated. To obtain the suite
index, use the ams-1ist command.
<name>| <vendor> Specifies the suite to be updated via its name and vendor.

auth Specifies the user credentials to access the JAD/JAR server.

Note: The suite’s <index> or <name | vendor> combination is mandatory and must be
placed first.

Responses
This command may return the following responses:

Response Description

<<ams-update,FAIL, missing parameters. see help. Missing parameters (the suite’s index
or name | vendor combination is not
specified)

<<ams-update, ERROR,unknown parameter:
parameter. see help.

An unexpected parameter was found.

<<ams-update, ERROR,duplicate parameter:
parameter. see help.

A duplicate parameter was found

<<ams-update, ERROR,Can't update suite suiteIndex The download URL is not specified.

(suiteName | suiteVendor): download url is not For suites, installed in hostdownload

specified. mode, see the ams-install
command.

Java Embedded VM Proxy and Console 2-7

Using the Command Line Interface

ams-remove

Response

Description

<<ams-update,FAIL,not found

<<ams-update,start install, <URL>
<<ams-update, install status: stage stage ,
percentage %

<<ams-update, OK,install success

<<ams-update,FAIL, errorCode errorcode,
errorMessage : message

<<ams-update,FAIL, error occurred exception

Suite not found. Either the suite was
removed or the index /

name | vendor identifier was
specified incorrectly.

Information message about the
update process starting.

Information message about the
update progress

Information message about the
update process completing.

The update was aborted for some
reason, as described in the error
message.

An unexpected error occurred. Note
that this response is added for
debugging purposes and to avoid
confusion.

Removes the specified suite from device.

Usage
ams-remove <index or name | vendor>

Parameters

This command takes the following parameters:

Parameter Description

<index>

The index of the suite to be removed. To obtain the suite

index, use the ams-1ist command.

<name> | <vendor>

Specifies the suite to be removed via its name and vendor

Responses

This command may return the following responses:

Response

Description

<<ams-update, FAIL,missing parameters. see help.

<<ams-remove,OK, removed

<<ams-remove,FAIL, not found

<<ams-remove,FAIL,locked

<<ams-remove,FAIL,not allowed

Missing parameters (suite’s index or
name | vendor not specified)

The suite was successfully removed:

The suite was not found. Either the
suite has been already removed, or
the <index>/<name | vendor>

identifier was specified incorrectly.

The suite is locked and cannot be
removed. The suite is likely in the
RUNNING state. The ams-stop
command must be called first.

The user doesn’t have permissions to
remove suites.

2-8 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

ams-run
Run default suite’s MIDlet or MIDlet, specified wit [MILET_ID] parameter
Usage
ams-run <index or name | vendor> [<id>]
Parameters
This command takes the following parameters:
Parameter Description
<index> Index of suite to be run. To obtain the suite index, use the
ams-1ist command.
<name> | <vendor> Specifies the suite to be launched via its name and vendor
<id> The index of midlet in the suite to be run.
Responses
This command may return the following responses:
Response Description
<<ams-run,FAIL,invalid parameters Unexpected parameters were found.
<<ams-run,FAIL, failed to start Cannot start the midlet. The index of
the suite or midlet was specified
incorrectly.
<<ams-run,FAIL,already started The suite has been already started.
<<ams-run,OK started The suite was started successfully.
ams-stop

Stops the default MIDlet, or the MIDlet with the specified ID if given.

Usage
ams-stop <index or name | vendor> [id]

Parameters
This command takes the following parameters:

Parameter Description

<index> Index of suite to be stopped. To obtain the suite index, use
the ams-1ist command.

<name> | <vendor> Specified the suite to be stopped via its name and vendor

<id> The ID of midlet in the suite to be stopped.

Responses

This command may return the following responses:

Response Description

<<ams-stop,FAIL,invalid parameters Unexpected parameters were found

Java Embedded VM Proxy and Console 2-9

Using the Command Line Interface

Response Description

<<ams-stop,FAIL,not found Cannot stop the midlet. The index of
the suite or midlet was specified
incorrectly.

<<ams-stop,OKstarted The suite was stopped successfully

blacklist

Blacklists clients and applications.

Usage
blacklist -client <name>

blacklist -app <name |vendor>

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the client to be blacklist.

<name> | <vendor> Specifies the suite to be blacklisted via its name and
vendor

Responses

This command may return the following responses:

Response Description
<<blacklist,FAIL,invalid parameters Unexpected parameters were found
<<blacklist status OK The command was successful.

properties-list
Shows the list of names of properties which control Java ME runtime, common to the
java_properties.ini file. Note that a property type may be only INT, STRING or
BOOL. The read/write flag value may be only read /write or read only, and a BOOL
property value may be only true or false.

Usage
properties-list [-1]

Parameters
This command takes the following parameters:

Parameter Description

-1 Use the long listing format with properties' types, values
and readonly flags.

Responses

This command may return the following responses:

2-10 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Response Description

<<properties-list, AMS_MEMORY_LIMIT_MVM The response without the long listing

AMS_MEMORY_RESERVED_MVM flag. Shows property names

AuthenticationName AuthenticationPwd btgoep separated by a space.

btl2cap btspp cbs ...

<<properties-list, OK The response with the long listing
flag.

read/write INT AMS_MEMORY_LIMIT_MVM = -1

read/write INT AMS_MEMORY_RESERVED _MVM
=100

read/write STRING AuthenticationName = user
read/write STRING AuthenticationPwd = password

read only BOOL microedition.deviceid.isunique =
false

read only BOOL
microedition.devicevendor.isunique = false

<<properties-list, FAIL,invalid parameters An unexpected parameter was found
<<properties-list,Usage: properties-list [-1]

<<properties-list list of properties which control
Java ME runtime

<<properties-list, -1 use a long listing format

<<properties-list,OK,there is no property found An empty list of properties was
found.
<<properties-list,FAIL,connection is closed An I0Exception has occurred.

get-property
Shows the value of requested property. If the property is not defined, the command
shows an empty string as its value.

Usage
get-property <name> [-i]

Parameters
This command takes the following parameters:

Parameter Description
-i Displays additional property information
Responses

This command may return the following responses:

Response Description
<<get-property,OK,imc = The property was found (without
com.sun.midp.io.j2me.imc.ProtocolPushImpl displaying additional information)
<<get-property,OK,dummy.property = The property value is empty or not a

set (without additional information)

<<get-property,OK, read/write STRING imc = The property is found (with -1 flag)
com.sun.midp.io.j2me.imc.ProtocolPushImpl

Java Embedded VM Proxy and Console 2-11

Using the Command Line Interface

set-property

Response

Description

<<get-property,OK, read/write STRING
dummy-property =

<<get-property,FAIL,invalid parameters
<<get-property,Usage: get-property name [-i]

<<get-property,shows value of string property
'name’

<<get-property, -i display property info
<<get-property,FAIL,illegal argument [info]
<<get-property,Usage: get-property name [-i]

<<get-property,shows value of string property
'name’

<<get-property, -i display property info

<<get-property,FAIL,connection is closed

The property value is empty or not a
set (with -1 flag)

An unexpected parameter was found

The wrong flag format was used(e.g.
using -info instead of -1)

An TOException has occurred.

Sets the new value for the requested property. If the property controls the Java ME
Runtime (i.e., it is defined in the java_properties.ini file), it cannot be rewritten
unless the read-only flag is disabled. Note that properties are verified for type

correctness. The value of a BOOL property may be any string. However, only "true"
(case insensitive) is considered a true value; any other string is considered to be false.

The new value for a property that controls the Java ME Runtime will be applied only
after a VM reboot. In this case, only the latest set-property command will have an
effect after reboot. New values for other properties can be read just after the
get-property command has finished.

Usage
set-property <name> <value>

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the requested property
<value> The new value for the property.
Responses

This command may return the following responses:

Response Description

<<set-property,OK,imc = new.value The operation completed

successfully.

<<set-property,FAIL,illegal number [hello]. The value type is not a number when

<<set-property,Usage: set-property name value property type is INT:

<<set-property,sets 'value' to property 'name'

2-12 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Response

Description

<<set-property,FAIL,illegal argument

[microedition.devicevendor.isunique] or [true].

<<set-property,Usage: set-property name value
<<set-property,sets 'value' to property 'name'
<<set-property,FAIL,invalid parameters.
<<set-property,Usage: set-property name value
<<set-property,sets 'value' to property 'name'

<<set-property,FAIL,connection is closed

The property is read-only:

Wrong number of parameters:

An TO0Exception has occurred

save-properties

net-info

net-set

Saves properties to an internal storage.

Usage
save-properties

Parameters
This command takes no parameters:

Responses

This command may return the following responses:

Response

Description

<<save-properties,OK,success

<<save-properties, FAIL

Properties have been successfully
saved to the internal storage

An I0Exception has occurred.

Show the network information of the system. This command only works on

Qualcomm IoE devices.

Usage
net-info

Parameters
This command takes no parameters:

Responses

This command may return the following responses:

Response

Description

<<net-info,OK,success getting info

<<net-info,FAIL, connection is closed

Shows network information in the
format <name>=<value>

An I0Exception has occurred.

Sets a new value for the requested property of the network system. The property is
verified for type correctness. This command only works on Qualcomm IoE devices.

Java Embedded VM Proxy and Console 2-13

Using the Command Line Interface

Usage
net-set <name> <value>

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the requested property
<value> The new value for the property.
Responses

This command may return the following responses:

Response Description

<<net-set, OK,<NAME> = <VALUE> The operation completed
successfully.

<<net-set,FAIL,illegal first argument [<NAME>] An illegal type of property was

<<net-set ssid <SSID>:set value for WIFI access encountered. The response dictates
the correct syntax and property type.
<<net-set passwd <PASSWD>:set password for WIFI

access

<<net-set pref <011121314|5>:set network mode
preference 0:AUTO, 1:NO OF, 22WLAN Only,
3:GSM/WCDMA only, $WCDMA only,
5:GSM/WCDMA/WLAN

<<net-set apn <APN>:set APN

<<net-set pdp_authtype <011|2>:set APN's auth
type 0:NONE, 1:PAP, 2:CHAP

<<net-set pdp_username <USERNAME>:set pdp
username

<<net-set pdp_password <PASSWORD>:set pdp

password

<<net-set,FAIL,illegal value [<VALUE>] The value type was not a number
when the property type is INT.

<<net-set,FAIL,illegal argument [<NAME>] or This is returned if any of arguments

[<VALUE>] are null or if the property.name has
an incorrect property type.

<<net-set,FAIL,connection is closed An I0Exception has occurred.

net-reconnect

Reconnects the network and reboots Java. This command only works on Qualcomm
IoE devices.

Usage
net-reconnect

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

2-14 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Response Description
<<net-reconnect,OK,VM will reboot. Device will The network reconnect command
reconnect to the network completed successfully. The device

will be rebooted and reconnected to
the network.

<<net-reconnect,FAIL Cannot reconnect the device to the
network
<<net-reconnect,FAIL, connection is closed An I0Exception has occurred.

device-list

Prints a list of all connected devices at the current time.

Usage

device-list

Parameters

This command takes no parameters.

Responses

This command may return the following responses:

Response Description

< <<device-list,0,<IP0>:<port0>,CURRENT Printed list of devices. The "CURRENT"

<<device-list 1. <IP1>:<portl> annotation indicates the currently

i <P seleted device that all device-related

CLI command are addressed to.

<<device-list,<N-1>,<IPN-1>:<portN-1>

<<device-list, OK,N devices are connected

<<device-list,FAIL,invalid parameters Unexpected parameters were found.
In this case, the command has no
parameters, but the user has specified
some:

device-change

Switches the currently-selected device. Once changed, all further device-related
commands will be address to the newly selected device.

Usage
device-change <index>

Parameters
This command takes the following parameters:

Parameter Description

<index> An integer index of device, as printed by the device-1list
command.

Responses

This command may return the following responses:

Java Embedded VM Proxy and Console 2-15

Using the Command Line Interface

shutdown

cd

Response

Description

<<device-change,OK,current device is changed

<<device-change, FAIL,invalid parameters

<<device-change,FAIL,incorrect device index
<<device-change,FAIL,device not found

<<device-change, FAIL,the device is already current

The command has been processed
successfully; the current device was
changed.

An invalid number of parameters
have been specified (either no
parameters or more than one
parameter).

The index is not an integer.
There is no such device.

An attempt was made to switch to a
device that is already the current
device.

Shutdown or restart the device.

Usage
shutdown [-r]

Parameters
This command takes the following parameters:

Parameter Description

-r Restart the device. Note that restart is not supported on
Win32 platform.

Responses

This command may return the following responses:

Response

Description

<<shutdown,OK,device will shutdown!

<<shutdown,OK,device will reboot!

<<shutdown,FAIL,can't reboot device
<<shutdown,FAIL,wrong parameters. see help.

<<shutdown,FAIL,<Error message>

The shutdown command was
processed successfully. The device
will be shutdown soon.

The shutdown command was
processed successfully, device will be
restarted soon.

Cannot restart the device
Unexpected parameters were found.

Shutdown command failed due an
unknown reason.

Changes the working directory on the device.

Usage
cd <deviceDirectoryName>

Parameters
This command takes the following parameters:

2-16 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Parameter Description

<deviceDirectoryName> This specifies the directory on the device to which you
want to change. The <deviceDirectoryName> can be relative
to the current working directory, or an absolute path

Responses
This command may return the following responses:

Response Description

<<cd,OK The command completed
successfully

<<cd,FAIL,invalid parameters Missing or excess parameters were
encountered

<<cd,FAIL,directory not found Incorrect <deviceDirectoryName>

<deviceDirectoryName> specified

<<cd,FAIL,connection is closed An TOException has occurred

delete
Deletes file on the device.
Usage
delete <deviceFileName>
Parameters
This command takes the following parameters:
Parameter Description
<deviceFileName> Specifies the file to delete. <deviceFileName> can be relative
to the current working directory, or an absolute path.
Responses
This command may return the following responses:
Response Description
<<delete, OK The command completed
successfully
<<delete,FAIL,invalid parameters Missing or excess parameters were
encountered.
<<delete, FAIL, file not found <deviceFileName> Incorrect <deviceFileName> specified
<<delete,FAIL, connection is closed An I0Exception has occurred
get

Copies a device file to the host.

Usage
get <deviceFileName> <hostFileName>

Parameters
This command takes the following parameters:

Java Embedded VM Proxy and Console 2-17

Using the Command Line Interface

Parameter Description

<deviceFileName> Specifies the file to copy. <deviceFileName> can be relative
to the current working directory, or an absolute path.

<hostFileName> Specifies the name of the file to use on the host.

Responses

This command may return the following responses:

Response Description

<<get,OK The command completed
successfully

<<get,FAIL,invalid parameters Missing or excess parameters were
encountered

<<get,FAILfile not found <deviceFileName> Incorrect <deviceFileName> specified

<<get,FAIL,unable to write into file <hostFileName> Incorrect <hostFileName> specified

<<get,FAIL,connection is closed

An I0Exception has occurred

Displays a list of files and subdirectories in a device directory.

Usage

1s [<deviceDirectoryName>]

Parameters

This command takes the following parameters:

Parameter

Description

<deviceDirectoryName>

Specifies the directory for which you want to see a listing.
<deviceDirectoryName> can be relative to the current
working directory, or an absolute path. If no directory is
specified, the current working directory on the device is
used. In the result listing, subdirectories are marked by a
trailing device file separator symbol (for example, "\" on
Windows, "/" on RPi).

Responses

This command may return the following responses:

Response

Description

<<ls,OK
alljavalist.txt
all_classes.zip
appdb\

bin\

classes\

classes.zip

<<ls,FAIL,invalid parameters

The command completed
successfully

Excess or invalid parameters were
encountered

2-18 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

Response Description
<<ls,FAIL,directory not found Incorrect <deviceDirectoryName>
<deviceDirectoryName> specified

mkdir

Creates a directory on the device.

Usage

mkdir <deviceDirectoryName>

Parameters

This command takes the following parameters:

Parameter Description

<deviceDirectoryName> Specifies the name of the new device directory.

<deviceDirectoryName> can be relative to the current
working directory, or an absolute path.

Responses

This command may return the following responses:

Response Description

<<mkdir,OK The command completed

successfully
<<mkdir,FAIL,invalid parameters Missing or excess parameters were
encountered

<<mkdir,FAIL,directory not found Incorrect <deviceDirectoryName> was

<deviceDirectoryName> specified

<<mkdir,FAIL,connection is closed An TO0Exception has occurred
pwd

Prints the current working directory on the device.

Usage

pwd

Responses

This command may return the following responses:

Response Description

<<pwd,OK The command processed successfully

c:\Users\abc\javame-sdk\8.0_

ea\work\EmbeddedDevicel\appdb

<<pwd,FAIL,invalid parameters Excess parameters were encountered
put

Copies a local host file to the device.

Java Embedded VM Proxy and Console 2-19

Using the Command Line Interface

Usage
put <hostFileName> <deviceFileName>

Parameters
This command takes the following parameters:

Parameter Description
<hostFileName> Specifies the local host file to copy.
<deviceFileName> Specifies the name to use on the device. <deviceFileName>

can be relative to the current working directory, or an
absolute path.

Responses
This command may return the following responses:

Response Description

<<put,OK The command processed successfully
<<put,FAIL,invalid parameters Missing or excess parameters
<<put,FAIL,unable to read file <hostFileName> Incorrect <hostFileName> specified
<<put,FAIL,file not found <deviceFileName> Incorrect <deviceFileName> specified
<<put,FAIL,connection is closed An TOException has occurred

ks-delete
Deletes a key from the ME device keystore, identified either by its owner or the key
number.
Usage
ks-delete (-owner <ownerName> | -number <keyNumber>)
Parameters
This command takes the following parameters:
Parameter Description
<ownerName> The name of the owner of an ME key.
<keyNumber> The key number (starting at 1) of an ME key currently in
the device keystore.
Responses
This command may return the following responses:
Response Description
<<ks-delete,OK The command processed successfully
<<ks-delete, FAIL,bad command or missing An error occurred, either with the
parameters. Type help for assistance. command itself or one of the
parameters.
ks-export

Exports a key from the device keystore identified by its index.

2-20 Oracle Java ME Embedded Application Management System API Guide

Using the Command Line Interface

ks-import

Usage
ks-export -number <keyNumber> -out <filename>

Parameters
This command takes the following parameters:

Parameter Description

<keyNumber> The key number (starting at 1) of an ME key currently in
the device keystore.

<filename> The complete filename to save the exported key as.

Responses

This command may return the following responses:

Response Description

<<ks-export,OK The command processed successfully

<<ks-export,FAIL,bad command or missing An error occurred, either with the

parameters. Type help for assistance. command itself or one of the
parameters.

Imports a public key from a JCE keystore or a key file into a ME device keystore.

Usage
ks-import [-keystore <filename>] [-storepass <storepass>] [-keypass <keypass>]
[-alias <keyAlias>]

Parameters
This command takes the following parameters:

Parameter Description

<filename> The complete filename of the JCE keystore or the key file.
The keystore file may be in the following formats: jks,
pkes12,pem,der

<storepass> The password for the JCA keystore This parameter is not

required when the source file is in the pem or der format.

<keypass> The password for the private key in a JCA or PKCS12
keystore. This parameter is not required if the command is
importing only a public certificate.

<keyAlias> The short string ID of a key in a JCA keystore. This
parameter is not required when the source file is in the pem
or der format.

Responses
This command may return the following responses:

Response Description

<<ks-import,OK The command processed successfully

Java Embedded VM Proxy and Console 2-21

Using the Command Line Interface

Response Description

<<ks-import,FAIL,bad command or missing An error occurred, either with the

parameters. Type help for assistance. command itself or one of the
parameters.

ks-list
Lists the owner and validity period of each key in the ME device keystore.

Usage
ks-1list

Responses
This command may return the following responses:

Response Description
<<ks-list [<number>]=Owner:<Owner distinguished A list of each of the installed keys,
name> Valid from <date> to <date> following this format.

ks-clients
Presents a list of all the security clients defined in the system that can accept public
keys.

Usage
ks-clients

Responses
This command may return the following responses:

Response Description

<<ks-list [<number>]=<Client name> A list of each of the clients, following
this format.

2-22 Oracle Java ME Embedded Application Management System API Guide

3

Security

This chapter discusses security with the Oracle Java ME Embedded environment. Note
that with version 8 of the OJMEE, the security system was changed considerably, and
now uses Java SE-style fine-grain permissions. In addition, a security policy must be
chosen and JAR files, if applicable, must be digitally signed in order for peripherals to
be accessed.

Overview of Oracle Java ME Embedded Permissions

Applications that require access to peripherals or resources must request appropriate
permissions in the JAD file. For more information on using the Device I/O APlIs,
please see the Device I/O API Proposal for Java ME 8 specification and the associated
Javadocs at the following site:

http://docs.oracle.com/javame/
Table 3-1 gives a list of all permissions that can be requested in the Oracle Java ME

Embedded environment, as well as a description of when they are applicable.

Table 3-1 Oracle Java ME Embedded Permissions

Permission Description

com.oracle.crypto.keystore.KeyStorePermission Allows access to the keystore

java.io.FilePermission Accessing files

java.lang.RuntimePermission Accessing runtime properties

java.util.logging.LoggingPermission Use of log files

java.util.PropertyPermission Accessing system properties

javax.microedition.apdu.APDUPermission Access to smartcards using the
APDU protocol

javax.microedition.cellular.CellularPermission Use of cellular telephone
functionality on a board.

javax.microedition.event.EventPermission Reading and posting system-level
events

javax.microedition.io.AccessPointPermission Use of access points for network
connections.

javax.microedition.io.CommProtocolPermission Use of the COMM serial port
protocol

javax.microedition.io.Connector.cbs Use of a Cell Broadcast Service
(CBS) Connector

javax.microedition.io.Connector.file.read Use of a file read Connector

Security 3-1

http://docs.oracle.com/javame/

Overview of Oracle Java ME

Embedded Permissions

Table 3-1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description
javax.microedition.io.Connector.file.write Use of a file write Connector
javax.microedition.io.Connector.rtsp Use of a real-time streaming
protocol (RTSP) Connector
javax.microedition.io.Connector.sms Use of an SMS Connector
javax.microedition.io.DatagramProtocolPermissi Use of the datagram protocol
on
javax.microedition.io.DTLSProtocolPermission Use of the Datagram Transport
Layer Security (DLTS) protocol
javax.microedition.io.FileProtocolPermission Use of a file protocol
javax.microedition.io.HttpProtocolPermission Use of the HTTP protocol
javax.microedition.io.HttpsProtocolPermission Use of the HTTPS protocol
javax.microedition.io.IMCProtocolPermission Use of the Inter-MIDlet
communication protocol
javax.microedition.io.MulticastProtocolPermiss Use of a multicast protocol
ion
javax.microedition.io.PushRegistryPermission Use of a push registry
javax.microedition.io.SocketProtocolPermission Use of a socket protocol
javax.microedition.io.SSLProtocolPermission Use of the Secure Sockets Layer
(SSL) protocol
javax.microedition.location.LocationPermission Obtain the current location
javax.microedition.media.control.RecordControl Use of a recording feature on the

javax.

microedition.media.control.VideoControl.

getSnapshot

javax.

javax.

javax.

javax.

javax.

microedition.

microedition.

microedition.

midlet.AutoStartPermission

power .PowerStatePermission

swm.SWMPermission

wireless.messaging.cbs.receive

wireless.messaging.sms.receive

javax.wireless.messaging.sms.send

jdk.dio.adc.ADCPermission

jdk.dio
jdk.dio
jdk.dio

jdk.dio

.atcmd.ATPermission
.counter.CounterPermission

.dac.DACPermission

.DeviceMgmtPermission

device

Use of a video snapshot feature on
the device

A permission to autostart an IMlet
suite on a device

Access the current power state of
the device

Access the software management
features of the Java ME Embedded
runtime

Receive a Cell Broadcast Service
(CBS) message

Receive an SMS message
Send an SMS message

Use of analog-to-digital converter
(ADC)

Use of AT communication line
Use of the hardware counter

Use of digital-to-analog converter
(DAQC)

Opening of any Device I/O
peripheral.

3-2 Oracle Java ME Embedded Application Management System API Guide

Accessing Peripherals

Table 3-1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description
jdk.dio.generic.GenericPermission Use of generic Device I/O
connections
jdk.dio.gpio.GPIOPinPermission Use of a General Purpose I/O
(GPIO) pin
jdk.dio.gpio.GPIOPortPermission Use of a General Purpose I/0O
(GPIO) port
jdk.dio.i2cbus.I2CPermission Use of the 12C bus on the board
jdk.dio.mmio.MMIOPermission Use of the Memory-Mapped I/O
(MMIO) capabilities on the board
jdk.dio.pwm.PWMPermission Use of the Pulse Width Modulation
(PWM) capabilities on the board
jdk.dio.spibus.SPIPermission Use of the SPI bus on the board
jdk.dio.uart.UARTPermission Use of the UART bus on the board
jdk.dio.watchdog.WatchdogTimerPermission Use of the watchdog timer on the
board

Accessing Peripherals

Applications that require access to Device I/O APIs must request appropriate
permissions in JAD files. For more information on using the Device I/O APIs, please
see the Device I/O API 1.0 specification and the associated Javadocs at the following
site:

http://docs.oracle.com/javame/

Signing the Application with API Permissions

First, the JAD file must have the proper API permissions. Here is how to sign the
application both in NetBeans and without an IDE.

= In NetBeans, right-click the project name and choose Properties. Select
Application Descriptor, then in the resulting pane, select API Permissions. Click
the Add... button, and add the appropriate permissions, as shown in Figure 3-1.
Click OK to close the project properties dialog.

Security 3-3

http://docs.oracle.com/javame/

Accessing Peripherals

Figure 3—1 Adding Permissions Using the NetBeans IDE

O Project Properties - TestforGA I&J
Categories:
2 Sources Attributes I MIDlets I Push Registry | API Permissions
- @ Platform .
.. @ Libraries Requested Permissions:
Sl <M /pplication Descriptor API Required Add...
2 Build jdk. dio. DeviceMgmtPermission ™27 ™ |
i @ Compiling e

e @ Signing
@ Obfuscating
i @ Documenting

If you are not using an IDE, you can manually modify the application descriptor
file to contain the following permissions.

MIDlet-Permission-1: com.oracle.dio.DeviceMgmtPermission "*:*" "open"

Method #1: Signing Application Using the NetBeans IDE

The NetBeans IDE enables developers both to sign the applications with a local
certificate and upload the certificate on the device. See the appropriate Getting Started
Guide for your embedded platform to learn how to use the NetBeans IDE to sign your
application.

Method #2: Signing Application Using a Command Line

This method is more complex, but is the preferred route for applications that are
widely distributed. Here are the instructions on how to setup a keystore with a local
certificate that can be used to sign the applications.:

1.

Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Oracle Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

Copy the certs directory from the board over to the desktop using an sftp client
or scp command, change into the certs directory, and perform the following
command using the mekeytool.exe command (or alternatively java -jar

3-4 Oracle Java ME Embedded Application Management System API Guide

CLDC Permissions

MEKeyTool.jar. .. if your distribution contains only that) that ships with the
Oracle Java ME SDK 8 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

This command imports the information in mykeystore.ks that you just created to
the _main.ks keystore. After this is completed, copy the certs directory back to
the board by using an sftp client or scp command.

Use the following commands to sign your application before deploying it to the board:

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks
-storepass spass -inputkad myjad.jad -outputjad myjad.jad

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias -keystore
mykeystore.ks -storepass spass -keypass kpass -inputjad myjad.jad
-outputjad myjad.jad

Method #3: Using NullAuthenticationProvider

This method allows to bypass a certificate check and execute unsigned applications as
if they were signed and given all requested permissions. This method should be used
only for development and debugging. Final testing must be done using a real
certificate as described in method #1.

To use NullAuthenticationProvider, set the following property in the jwe_
properties.ini file on the board:

[internal]
authentication.provider = com.oracle.meep.security.NullAuthenticationProvider

Note that the Java runtime must not be running when editing the jwc_properties.ini
file.

CLDC Permissions

The following permissions are available that affect the use of portions of the CLDC
libraries.

FilePermission

The java.io.FilePermission controls access to a file or directory. A FilePermission
consists of a pathname and a set of actions that are valid for the resource specified by
that pathname.

Resource Name

The resource name is simply the pathname of the file or directory granted the specified
actions. A pathname that ends in "/*" (where "/" is the file separator character,
File.separatorChar) indicates all the files and directories contained in that directory.
A pathname that ends with "/-" indicates all files and all recursive subdirectories
contained in that directory. A pathname consisting of the special token "<<ALL
FILES>>" matches any file.

Security 3-5

CLDC Permissions

Note: A pathname need not have a leading "/". A pathname
consisting of a single "*" indicates all the files in the current directory,
while a pathname consisting of a single "-" indicates all the files in the
current directory and recursively all files and subdirectories contained
in the current directory.

Actions

Table 3-5 shows the actions can be requested with this permission, as a list of
comma-separated keywords:

Table 3-2 FilePermission Actions

Value Meaning

read Read permission

write Write permission

execute Execute permission

delete Permission to delete the resource

readlink Read a link permission. This is retained for SE compatibility but

is not currently used.

RuntimePermission

The java.lang.RuntimePermission represents runtime permissions. A
RuntimePermission contains a resource name, but no actions list.

Resource Name

The resource name is the name of the runtime permission. The naming convention
follows the hierarchical property naming convention. Also, an asterisk may appear at
the end of the name, following a ".", or by itself, to signify a wildcard match. For
example: "loadLibrary.*" and "*" signify a wildcard match, while "*loadLibrary"

and "a*b" do not.

Table 3-3 shows the possible runtime permissions that are allowed, as well as their
effects and possible risks of using them.

Table 3-3 RuntimePermission Actions

Value Effect Risks

exitVM. {exit status} Halting of the Java Virtual This allows an attacker to mount
Machine (JVM) with the a denial-of-service attack by
specified exit status automatically forcing the virtual

machine to halt. Note that the
"ex1tVM.*" permission is
automatically granted to all code
loaded from the application class
path, thus enabling applications
to terminate themselves. Also, the
"ex1tVM" permission is equivalent
to "exitvM. *".

3-6 Oracle Java ME Embedded Application Management System API Guide

CLDC Permissions

Table 3-3 (Cont.) RuntimePermission Actions

Value Effect

Risks

setSecurityManager Setting of the security manager
(possibly replacing an existing
security manager)

createSecurityManager Creation of a new security
manager

setIO Setting of System.out and
System.err

modifyThread Modification of threads,
possibly via calls to perform
thread interrupts, or
setPriority() and setName ()
methods

The security manager is a class
that allows applications to
implement a security policy.
Granting the setSecurityManager
permission would allow code to
change which security manager is
used by installing a different,
possibly less restrictive security
manager, thereby bypassing
checks that would have been
enforced by the original security
manager.

This gives code access to
protected, sensitive methods that
may disclose information about
other classes or the execution
stack.

This allows changing the value of
the standard system streams. An
attacker may set System.err to a
null outputStream, which would
hide any error messages sent to
System.err.

This allows an attacker to modify
the behavior of any thread in the
system.

LoggingPermission

The java.util.logging.LoggingPermission is a permission which the security
manager will check when code that is running with a security manager calls one of the

logging control methods, such as Logger.setLevel().

Currently there is only one over-arching LoggingPermission, without resources or
actions. This permission simply grants the ability to control the logging configuration,
for example by adding or removing handlers, by adding or removing filters, or by

changing logging levels.

PropertyPermission

The java.util.PropertyPermission is for general Java property permissions.

Resource Name

The resource name is the name of the property (for example, "java.home" or
"os.name"). The naming convention follows the hierarchical property naming
convention. Also, an asterisk may appear at the end of the name, following a ".", or by

itself, to signify a wildcard match. For example: "java
match, while "*java" and "a*b" do not.

Actions

"non

.*"and "*" signify a wildcard

Table 3—4 shows the actions can be requested with this permission, as a list of

comma-separated keywords:

Security 3-7

Keystore Permissions

Table 3-4 PropertyPermission Actions

Value Meaning
read Read permission
write Write permission

Care should be taken before granting code permission to access certain system
properties. For example, granting permission to access the "java.home" system
property gives potentially malevolent code sensitive information about the system
environment, such as the Java installation directory. Also, granting permission to
access the "user.name" and "user.home" system properties gives potentially
malevolent code sensitive information about the user environment, including the
user's account name and home directory.

Keystore Permissions

The following permissions are available that allow access to the Java ME keystore.

KeyStorePermission

The com.oracle.crypto.keystore.KeyStorePermission controls the type of access
allowed to the key store.

Resource Name
Table 3-5 shows the resource names that can be requested with this permission:

Table 3-5 KeyStorePermission Resource Names

Value Meaning
client_only Access to client certificates only
* Access to the entire certificate storage.

Device I/0 Permissions

The following are among the more common permissions that can be requested from
most Oracle Java ME Embedded devices, depending on whether the functionality is
supported by the underlying board. See the Getting Started Guide for your embedded
board to determine which Device I/O permissions and resources are available for use.

ADCPermission

The jdk.dio.adc.ADCPermission class defines permissions for Analog-to-Digital
channel access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for ADC
control.

Actions
Table 3—-6 shows the actions can be requested with this permission:

3-8 Oracle Java ME Embedded Application Management System API Guide

Device 1/0 Permissions

ATPermission

Table 3-6 ADCPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of a device.

The jdk.dio.atcmd.ATPermission class defines permissions AT device access.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channels are available for AT control.

Actions
Table 3-7 shows the actions can be requested with an ATPermission:

Table 3-7 ATPermission Actions

Value Meaning

open Open AT functions

data Open data connections

powermanage Manage the power saving mode of a device.

CounterPermission

The jdk.dio.counter.CounterPermission class defines permissions for pulse counter
access.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channels are available for pulse counter
control.

Actions
Table 3-8 shows the actions can be requested with an ATPermission:

Table 3-8 CounterPermission Actions

Value Meaning
open Open and access pulse counter functions
powermanage Manage the power saving mode of a device.

DACPermission

The jdk.dio.dac.DACPermission class defines permissions for Digital-to-Analog
channel access on an embedded board.

Security 3-9

Device 1/0 Permissions

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for DAC
control.

Actions
Table 3-9 shows the actions can be requested with this permission:

Table 3-9 DACPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of a device.

DeviceMgmtPermission

The jdk.dio.DeviceMgmtPermission class defines permissions for registering and
un-registering devices as well as opening devices using their registered configurations.

Resource Name

The resource name is a combination of a device name and of a device ID or range of
device IDs. It takes the following form:

{device-name-spec/ [":"{device-id-spec}]
{device-name-spec}
The {device-name-spec} string takes the following form:
{device-name} | "+" | ™

The {device-name/ string is a device name that is returned by a call to
DeviceDescriptor.getName ().

A {device-name-spec} specification consisting of the asterisk ("*") matches all device
names. A {device-name-spec} specification consisting of the empty string (") designates
an undefined device name that may only be matched by an empty string or an
asterisk.

{device-id-spec}
The {device-id-spec} string takes the following form:
{device-id} | "-"{device-id} | {device-id}"-"[{device-id]] | "*"

The {device-id} string is a device ID that is returned by a call to
DeviceDescriptor.getID(). Note that the characters in the string must all be decimal
digits.

A {device-id-spec} specification of the form "n-" (where 7 is a device ID) signifies all
device IDs numbered n and above, while a specification of the form "-n" indicates all
device IDs numbered n and below. A single asterisk in the place of the {device-id-spec}
field matches all device IDs.

The name "*: *" matches all device names and all device IDs, as is the name "*".

Actions
Table 3-10 shows the actions can be requested with this permission:

3-10 Oracle Java ME Embedded Application Management System API Guide

Device 1/0 Permissions

Table 3-10 DeviceMgmtPermission Actions

Value Meaning

open Open a device using its device name or ID
register Register a new device.

unregister Un-register a new device

GenericPermission

The jdk.dio.generic.GenericPermission class defines permissions for generic
device access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for
generic devices.

Actions
Table 3-11 shows the actions can be requested with this permission:

Table 3-11 GenericPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of a generic device.
GPIOPinPermission

The jdk.dio.gpio.GPIOPinPermission class defines permissions for General Purpose
I/0 (GPIO) pin access on an embedded board.

Resource Name

The resource name is a numerical pin number. Refer to the Getting Started Guide of
your embedded board to determine which pin numbers are available for GPIO control.

Actions
Table 3-12 shows the actions can be requested with this permission:

Table 3-12 GPIOPinPermission Actions

Value Meaning

open The requested channel is opened and available for use.

setdirection Request permission to change the GPIO pin direction

powermanage Manage the power saving mode of a GPIO pin.
GPIOPortPermission

The jdk.dio.gpio.GPIOPortPermission class defines permissions for General
Purpose 1/0 (GPIO) port access on an embedded board. A GPIO port is made up of
several (typically eight) GPIO pins.

Security 3-11

Device 1/0 Permissions

Resource Name

The resource name is a numerical port number. Refer to the Getting Started Guide of
your embedded board to determine which port numbers are available for GPIO
control.

Actions
Table 3-13 shows the actions can be requested with this permission:

Table 3-13 GPIOPortPermission Actions

Value Meaning

open The requested channel is opened and available for use.
setdirection Request permission to change the GPIO port direction
powermanage Manage the power saving mode of a GPIO port.

I2CPermission

The jdk.dio.i2cbus.I2CPermission class defines permissions for I2C bus access on
an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for I2C control.

Actions
Table 3-14 shows the actions can be requested with this permission:

Table 3-14 I2CPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of an I2C bus.

MMIOPermission

The jdk.dio.mmio.MMIOPermission class defines permissions for MMIO bus access on
an embedded board.

Resource Name

The resource name is a memory-address (in hexadecimal format) returned by a call to
MMIODeviceConfig.getAddress (). The characters in the string must all be hexadecimal
digits. Refer to the Getting Started Guide of your embedded board to determine which
addresses are available for MMIO use.

Actions
Table 3-15 shows the actions can be requested with this permission:

Table 3-15 MMIOPermission Actions

Value Meaning

open The requested channel is opened and available for use.

3-12 Oracle Java ME Embedded Application Management System API Guide

Device 1/0 Permissions

Table 3—-15 (Cont.) MMIOPermission Actions

Value Meaning

powermanage Manage the power saving mode of an MMIO bus.

PWMPermission

The jdk.dio.pwn. PiiMPermission class defines permissions for Pulse Width
Modulation (PWM) channel access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for PWM
control.

Actions
Table 3-16 shows the actions can be requested with this permission:

Table 3-16 PWMPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of a device.

SPIPermission

The jdk.dio.spibus.SPIPermission class defines permissions for SPI bus access on
an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for SPI control.

Actions
Table 3-17 shows the actions can be requested with this permission:

Table 3-17 SPIPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of an SPI bus.
UARTPermission

The jdk.dio.uart.UARTPermission class defines permissions for UART bus access on

an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for UART control.

Security 3-13

Smart Cards

Actions
Table 3-18 shows the actions can be requested with this permission:

Table 3-18 UARTPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of an UART bus.

WatchdogTimerPermission

The jdk.dio.watchdog.WatchdogTimerPermission class defines permissions for the
watchdog timer on an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for the watchdog
timer.

Actions
Table 3-19 shows the actions can be requested with this permission:

Table 3-19 WatchdogTimerPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of the watchdog timer..

Smart Cards

The following permission allows access to smart cards on Java ME embedded devices.

APDUPermission

The javax.microedition.apdu.APDUPermission class represents access to a smart
card using the APDU protocol. An APDUPermission contains a resource name (also
called a target name) but no actions list. The target name is the symbolic name of the
APDUPermission.

Resource Name
The resource name can be one of two items, as shown in Table 3-20.

Table 3-20 APDUPermission Target Names

Target Name Permission Allows

aid The ability to communicate with a smart card application
identified by an AID target.

sat The ability to communicate with a (U)SAT application on
channel 0.

3-14 Oracle Java ME Embedded Application Management System API Guide

Generic Events

Cellular

The following permissions deal with embedded devices that can connect to a cellular
network.

CellularPermission

The javax.microedition.cellular.CellularPermission class defines permissions
for cellular network resources on an embedded board. It consists only of a resource
name.

Resource Name
The resource name can be one of three items, as shown in Table 3-21.

Table 3-21 CellularPermission Resource Names

Resource Meaning

subscriber Resources that access or modify the cellular subscriber identity,
which is often recorded on a SIM, R-UIM, or CSIM.

network Resources that access the cellular network.

* All available cellular resources.

Generic Events

The following permissions deal with generic events that can be sent from the
underlying runtime operating system to the Oracle Java ME Embedded runtime.

EventPermission

The javax.microedition.event.EventPermission class defines permissions that
allow applications to receive events from the underlying runtime operating system.

Resource Name

The resource name is the name of the event, such as "BATTERY_LEVEL" or
"com.MyCompany .MyEvent". The naming convention follows a hierarchical property
naming convention. Also, an asterisk may appear at the end of the name, following a

.", or by itself, to signify a wildcard match. For example, "com.MyCompany. *" or "+" is
valid, while "*MyCompany" or "a*b" is not valid.

Actions

The actions to be granted are a list of comma-separated keywords. The possible
keywords are "post", "postsystem"”, "read" and "register". Table 3-22 gives more
details on these keywords.

Table 3-22 EventPermission Actions

Value Meaning
post Permission to post an event.
postsystem Permission to post a system event. To see which system events

are supported, call EventManager .getSystemEventNames ().

read Permission to read an event.

Security 3-15

COMM Protocol

Table 3-22 (Cont.) EventPermission Actions

Value Meaning

readregister Permission to register and un-register applications to launch in
response to events.

COMM Protocol

The following permissions deal with embedded devices that can use a COMM
protocol through a serial port.

CommProtocolPermission

Connector

The javax.microedition.io.CommProtocolPermission class defines permissions for
COMM resources on an embedded board. It consists only of a resource name.

Resource Name
The resource name is a base connection string and is typically formatted as:

comm: <port identifier>[<optional parameters>]

An exact BNF grammar for the COMM protocol URI is given in Table 3-23.

Table 3-23 CellularPermission Resource Names

Resource Meaning

base connection string "comm: "<port_id>[<options_list>] | "comm:"<wildcarded_port_id>

<port_id> A non-empty case-sensitive string of alphanumeric characters

<wildcarded_port_id> All available cellular resources.

<options_list> *(<baud_rate_string>| <bitsperchar>| <stopbits>| <parity> |
<blocking>| <autocts>| <autorts>)

<baud_rate_string> ";baudrate="<baud_rate>

<baud_rate> non-empty string of digits

<bitsperchar> ":;bitsperchar="<bit_value>

<bit_value> AN

<stopbits> "; stopbits="<stop_value>

<stop_value> R I

<parity> ";parity="<parity_value>

<parity_value> "even" | "odd" | "none"

<blocking> ";blocking="<on_off>

<autocts> ";autocts="<on_off>

<autorts> ";autorts="<on_off>

<on_off> "on" | "off"

The following permissions deal with those associated with the
javax.microedition.io.Connector class, a factory class for creating new Connection
objects.

3-16 Oracle Java ME Embedded Application Management System API Guide

Connector

CBS

File Read

File Write

The javax.microedition.io.Connector.cbs defines permissions for cellular
broadcast service.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for the CBS.

Actions
Table 3-24 shows the actions can be requested with this permission:

Table 3-24 Connector CBS Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of the CBS..

The javax.microedition.io.Connector.file.read defines permissions for
connections that read files.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for reading files.

Actions
Table 3-25 shows the actions can be requested with this permission:

Table 3-25 Connector File Read Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of the file read..

The javax.microedition.io.Connector.file.write defines permissions for
connections that write files.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available.

Actions
Table 3-26 shows the actions can be requested with this permission:

Table 3-26 WatchdogTimerPermission Actions

Value Meaning

open The requested channel is opened and available for use.

Security 3-17

Datagram Protocol

RTSP

SMS

Table 3-26 (Cont.) WatchdogTimerPermission Actions

Value Meaning

powermanage Manage the power saving mode of the file write..

The javax.microedition.io.Connector.rtsp defines permissions for connections
that use the real-time streaming protocol (RTSP).

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available.

Actions
Table 3-27 shows the actions can be requested with this permission:

Table 3-27 WatchdogTimerPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of the RTSP..

The javax.microedition.io.Connector.sms defines permissions for SMS messaging.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for SMS.

Actions
Table 3-28 shows the actions can be requested with this permission:

Table 3-28 WatchdogTimerPermission Actions

Value Meaning
open The requested channel is opened and available for use.
powermanage Manage the power saving mode of the SMS..

Datagram Protocol

The following permissions deal with embedded devices that can use datagram
protocols.

DatagramProtocolPermission

The javax.microedition.io.DatagramProtocolPermission class represents access
rights to connections via the Datagram protocol. A DatagramProtocolPermission
consists of a URI string, but no actions.

The URI string specifies a connection for sending and receiving datagrams. It takes the
following general form:

3-18 Oracle Java ME Embedded Application Management System API Guide

Datagram Protocol

datagram: //{host}:{portspec} | datagram://[:{portspec}]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires an IPv6Address to bew
surrounded with square brackets ([1). Note that IPvFuture addresses from RFC 3986
are not currently supported.

The {host} field is omitted to indicate an inbound, server-mode connection.
Server-mode URIs may also omit the {portspec} field to request a system-assigned port
number. In such a case, the DatagramProtocolPermission is normalized to the
equivalent URI: datagram: //:1024-65535.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of 1 or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.con" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts in outbound, client-mode connections.

The {portspec} string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} of the form "n-" (where 1 is a port number) signifies all ports numbered n
and above, while a specification of the form "-n" indicates all ports numbered 1 and
below. A single asterisk in the place of the {portspec} field matches all ports. Therefore,
the URI "datagram: //: *" matches server-mode datagram connections to all ports, and
the URI "datagram: //*:*" matches client-mode datagram connections to all hosts on
all ports.

DTLSProtocolPermission

The javax.microedition.io.DTLSProtocolPermission class represents access rights
to connections that use the Datagram Transport Layer Security (DTLS) protocol. A
DTLSProtocolPermission consists of a URI string but no actions list.

The URI string specifies a connection for sending and receiving datagrams. It takes the
following general form:

dtls://{host}:{portspec]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires an IPv6Address to be
surrounded with square brackets ([]). Note that IPvFuture addresses from RFC 3986
are not supported.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of 1 or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.con" is valid, but "*oracle.con" is not. An
asterisk by itself matches all hosts in outbound, client-mode connections.

The {portspec} string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} of the form "n-" (where 1 is a port number) signifies all ports numbered n
and above, while a specification of the form "-n" indicates all ports numbered n and
below. A single asterisk in the place of the {portspec} field matches all ports. Therefore,
the URI "dtls://*:*" matches client-mode datagram connections to all hosts on all
ports.

Security 3-19

File Protocol

File Protocol

The following permissions deal with embedded devices that can use files.

FileProtocolPermission

The javax.microedition.io.FileProtocolPermission class represents access rights
to connections via the "file" protocol. A FileProtocolPermission consists of a URI
string indicating a fully-qualified, absolute pathname as well as a set of actions desired
for that pathname.

Resource Name
The URI string takes the following general form:

file://[{host{]{absolute_path} | file:{absolute_path}

The exact syntax is given by RFCs 1738 and 2396. In addition, a pathname that ends in
"/*" matches all the files and directories contained in that directory. A pathname that
ends with "/-" recursively matches all files and subdirectories contained in that
directory.

In addition to the syntax defined by RFC 1738, FileProtocolPermission must accept
and normalize URIs of the form file:{abs_path}. If {host} is omitted, it is equivalent to
using localhost. Also, note that {absolute_path} follows the syntax defined for {fpath}in
RFC 1738.

Actions

Table 3-29 shows the actions can be requested with this permission. Note that multiple
actions can be requested by separating keywords with commas.

Table 3-29 FileProtocolPermission Actions

Value Meaning
read The file can be read from using the protocol.
write The file can be written to using the protocol.

Hypertext Transfer Protocols

The following permissions deal with embedded devices that can use HTTP or HTTPS
protocols.

HTTPProtocolPermission

The javax.microedition.io.HTTPProtocolPermission class represents access rights
to connections via the HTTP protocol. An HttpProtocolPermission consists of a URI
string, but no actions list.

The URI string specifies a data resource accessible via HTTP. It takes the following
general form:

http: //{host][:{portspec]|[{ pathname][2{ query[|[#{fragment]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires IPv6Address to be
surrounded with square brackets ([]). IPvFuture addresses from RFC 3986 are not
supported.

3-20 Oracle Java ME Embedded Application Management System API Guide

IMC

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.con" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts.

The {portspec} string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | * | empty string

A {portspec} specification of the form "n-" (where 1 is a port number) signifies all ports
numbered 1 and above, while a specification of the form "-n" indicates all ports
numbered 1 and below. A single asterisk in the place of the {portspec} field matches all
ports; therefore, the URI "http: //*: *" matches HTTP connections to all hosts on all
ports. If the {portspec} field is omitted, default port 80 is assumed.

HTTPSProtocolPermission

IMC

The javax.microedition.io.HTTPSProtocolPermission class represents access rights
to connections via the HTTPS protocol. A HttpsProtocolPermission consists of a URI
string, but no actions list.

The URI string specifies a data resource accessible via secure HTTPS. It takes the
following general form:

http: //{host}[: {portspec[{pathnamel][2{ query [#{fragment |]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires IPv6Address to be
surrounded with square brackets ([]). IPvFuture addresses from RFC 3986 are not
supported.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.con" is valid, but "*oracle.con" is not. An
asterisk by itself matches all hosts.

The {portspec} string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | * | empty string

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered 7 and above, while a specification of the form "-n" indicates all ports
numbered 7 and below. A single asterisk in the place of the {portspec} field matches all
ports; therefore, the URI "https://*: *" matches HTTPS connections to all hosts on all
ports. If the {portspec} field is omitted, default port 443 is assumed.

The following permissions deal with embedded devices that use the Inter-MIDlet
Communication (IMC) protocol.

IMCProtocolPermission

The javax.microedition.io.IMCProtocolPermission class defines permissions for
inter-MIDlet communication on an embedded board. IMC uses a low-level
asynchronous bi-directional stream connection for communication between
applications. The permission consists only of a resource name.

Security 3-21

Multicast Protocols

Resource Name

The resource name consists of a number of rules to create a base client connection
string; these rules are shown in Table 3-30.

Table 3-30 IMCProtocolPermission Resource Name Rules

Rule Meaning

Base client connection string "imc:// ”"(<"Application UID> | "*")":" <server name>":" <server
version>";

<Application UID> <Application suite vendor>":" <Application suite name>":"
<Application suite version>

<Application suite vendor> :The application suite vendor

<Application suite name> The application suite name

<Application suite version> Formatted application suite version or wildcard character "*"

<server name> IMC server name following the class naming syntax

<server version> The version of the IMC server. Version backward compatibility

is assumed. Versioning follows the format defined for the
MIDlet-Version attribute.

Note that in the first rule, the wildcard "*" may be used instead of a specific
<Application UID> when opening an IMC client connection. When the wildcard
character is used, it allows the client to connect to any applications (even those from
different vendors) if they all provide the same IMC service and meet the authorization
requirements. However, which application's IMC server the client will be connected to
is implementation specific.

Multicast Protocols

The following permissions deal with embedded devices that use the multicast
protocols.

MulticastProtocolPermission

The javax.microedition.io.MulticastProtocolPermission class represents access
rights to connections via the "multicast” protocol. A MulticastProtocolPermission
consists of a URI string but no actions list.

The exact syntax for the MulticastProtocolPermission URI is provided by rules
shown in Table 3-31.

Table 3-31 MulticastProtocolPermission Resource Name Rules

Rule Meaning

base multicast connection <inbound_connection> | <outbound_connection>
string

<inbound_connection> "multicast://: [<portnumber>][<auto_join>]
<outbound_connection> "multicast://" <host>":" <portnumber>
<multicast_permission> "multicast://"[<hostspec>]":" <portspec>
<host> <host name> | <ipaddr>

<ipaddr> IPv4 address | '[' IPv6 address ']’

<hostspec> <host> | "*".

3-22 Oracle Java ME Embedded Application Management System API Guide

Push Protocols

Table 3-31 (Cont.) MulticastProtocolPermission Resource Name Rules

Rule Meaning

<auto_join> "?join="<host>

<portspec> <portnumber> | <portrange> | "*"

<portnumber> numeric port number

<portrange> <portnumber>"-" | "-" <portnumber> | <portnumber>"-"
<portnumber>

The value of the {host} field must be a symbolic hostname, a literal IPv4 multicast
address or a literal IPv6 address surrounded by square brackets ([1), as specified by
RFC 3986. The {hostspec} may be "*" to allow connection to any multicast host group.
The {hostspec} field may also be omitted to indicate an inbound, server-mode
connection.

Server-mode URIs may also omit the <portspec> field to request a system-assigned port
number. In such a case, the MulticastProtocolPermission is normalized to the
equivalent URI "multicast://:1024-65535".

The <portspec> string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | "*"

A <portspec> specification of the form "n-" (where n is a port number) signifies all ports
numbered 7 and above, while a specification of the form "-n" indicates all ports
numbered 7 and below. A single asterisk in the place of the <portspec> field matches all
ports. Therefore, the URI "multicast://<ipaddr>:" matches multicast a host group to
all ports, and the URI "multicast://*:*" matches multicast connections to all host
groups on all ports.

Push Protocols

The following permissions deal with embedded devices that use push protocols.

PushRegistryPermission

The javax.microedition.io.PushRegistryPermission class is used to check the static
and dynamic registration of push connections and for registration of an alarm. The
permission covers static registration via application attributes, and dynamic
registration via PushRegistry.registerConnection(...) and alarm registration with
PushRegistry.registerAlarm().

For the purposes of Push Registration permission, the URI MUST consist only of the
scheme and delimiter (":") as defined by RFC-3986. The scheme may contain the
wildcard character "*", which allows registration of all schemes. For alarm registration,
the URI is "*" and the action is alarm. Push registration and alarm registration can be
combined in a single permission. For example, the resource is "file:" and the actions
are "static,dynamic,alarm".

Actions

Table 3-32 shows the actions can be requested with this permission. Note that multiple
actions can be requested by separating keywords with commas.

Security 3-23

Socket Protocols

Table 3-32 PushRegistryPermission Actions

Value Meaning

static Allows registration of a Push Connection in the packaging of the
application suite

dynamic Allows registration of a Push Connection using
PushRegistry.registerConnection

alarm Allows registration of an alarm using

PushRegistry.registerAlarm

Socket Protocols
The following permissions deal with embedded devices that can use HTTP or HTTPS

protocols.

SocketProtocolPermission

The javax.microedition.io.SocketProtocolPermission class represents access
rights to connections via the "socket" protocol. A SocketProtocolPermission consists
of a URI string but no actions list.

The URI string specifies a socket stream connection. It takes the following general

form:

socket: //{host}:{portspec} | socket://[:{portspec}]

The exact syntax for the SocketProtocolPermission URI is given by the grammar in

Table 3-33.

Table 3-33 SocketProtocolPermission Resource Name Rules

Rule

Meaning

base socket connection
string

<inbound_connection>
<outbound_connection>
<host>

<ipaddr>
<wildcarded_DNS>

<domainlabel>
<portspec>
<portnumber>

<portrange>

"socket://"<inbound_connection> | "socket://"<outbound_
connection>
o

" [<porspec>] | empty string

non

<host>":" <portspec>
<host name> | <ipaddr> | <wildcarded DNS>
IPv4 address | '[' IPv6 address ']’

"R H(" "<domainlabel>) | "*" followed by zero or more internet

domain labels, separated by " .
internet domain label
<portnumber> | <portrange> | "*"
numeric port number

<portnumber>"-" | "-" <portnumber> | <portnumber>"-"
<portnumber>

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal with an IPv6Address as specified by RFC 3986. An IPv6Address must be
surrounded with square brackets ([1). Note that IPvFuture addresses are not currently

supported.

The {host} field may be omitted to indicate a server-mode connection. Server-mode
URIs may also omit the {portspec} field to indicate a system-assigned port number. In

3-24 Oracle Java ME Embedded Application Management System API Guide

Socket Protocols

such a case, the SocketProtocolPermission is normalized to the equivalent URI
"socket://:1024-65535".

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted, therefore "*.oracle.com"is valid, but "*oracle.com" is not. An asterisk
by itself matches all hosts in client-mode connections;

The {portspec} string takes the following form:

"non

portnumber | "-" portnumber | portnumber "-" [portnumber] | "*"

A {portspec} specification of the form "n-" (where 1 is a port number) signifies all ports
numbered 1 and above, while a specification of the form "-n" indicates all ports
numbered 1 and below. A single asterisk may be used in place of the {portspec/ field to
indicate all ports. Therefore, the URI "socket://:*" matches server-mode socket
connections to all ports, and the URI "socket://*:*" matches client-mode socket
connections to all hosts on all ports.

Note: The syntax of URLs accepted by Connector.open () for sockets
differs from the syntax for SocketProtocolPermission. In the socket:
protocol, the ":" delimiter must always be present even if there is no
port number, whereas the delimiter must not be present unless there is
a port number in SocketProtocolPermission.

SSLProtocolPermission

The javax.microedition.io.SSLProtocolPermission class represents access rights to
connections that use the Secure Sockets Layer (SSL) protocol. A
SSLProtocolPermission consists of a URI string but no actions list.

The URI string specifies a secure socket stream connection. It takes the following
general form:

ssl://{host}:{portspec} | ssl://[:{portspec}]

The exact syntax for the SSLProtocolPermission URIis given in Table 3-34.

Table 3-34 SSLProtocolPermission Resource Name Rules

Rule Meaning

base SSL connection string ~ "ssl1://"<inbound_connection> | "ssl://"<outbound_connection>

<inbound_connection> " """ [<portspec>] | empty string

<outbound_connection> <host>":" <portspec>

<host> <host name> | <ipaddr> | <wildcarded DNS>

<ipaddr> IPv4 address | '[' IPv6 address ']’

<wildcarded_DNS> "R A", "<domainlabel>) | "*" followed by zero or more internet
domain labels, separated by "."

<domainlabel> internet domain label

<portspec> <portnumber> | <portrange> | "*"

<portnumber> numeric port number

<portrange> <portnumber>"-" | "-" <portnumber> | <portnumber>"-"
<portnumber>

Security 3-25

Location

Location

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IPv6Address must be surrounded with square
brackets ([1). Note that IPvFuture addresses are not supported.

The {host} field is omitted to indicate a server-mode connection. Server-mode URIs
may also omit the {portspec/ field to indicate a system-assigned port number. In such a
case, the SSLProtocolPermission is normalized to the equivalent URI
"ssl://:1024-65535".

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted, therefore "*.oracle.com"is valid, but "*oracle.com" is not. An asterisk
by itself matches all hosts.

The {portspec} string takes the following form:
portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered 1 and above, while a specification of the form "-n" indicates all ports
numbered 1 and below. A single asterisk in the place of the {portspec} field matches all
ports. Therefore, the URI "ss1://:*" matches secure server connections to all ports,
and the URI "ss1://*:*" matches secure connections to all hosts on all ports.

The following permissions allow location functionality on an embedded device.

LocationPermission

Media

The javax.microedition.LocationPermission class is used to allow access to the
location functionality of an embedded device. This permission consists of only the
class, but no targets or actions.

The following permissions deal with embedded devices that have the ability to record
or playback media.

RecordControl

VideoControl

Auto-Start

The javax.microedition.media.RecordControl class allows Java ME embedded
applications to control audio recording on an embedded device. This permission
consists of only the class, but no targets or actions.

The javax.microedition.media.VideoControl.getSnapshot permissions grants Java
ME embedded applications the ability to take snapshot pictures on an embedded
device. This permission consists of only the class, but no targets or actions.

The following permissions allow auto-start functionality on an embedded device.

3-26 Oracle Java ME Embedded Application Management System API Guide

Software Management

AutoStartPermission

The javax.microedition.midlet.AutoStartPermission allows applications in an
application suite to assume the Auto Start application behavior. AutoStartPermission
has only two resources: allowed or not allowed. AutoStartPermission class does not
support any actions.

AutoStartPermission

Power

The javax.microedition.midlet.AutoStartPermission allows applications in an
application suite to assume the auto-start application behavior.

Resource Names
Table 3-35 shows the names that are allowed with this permission.

Table 3-35 AutoStartPermission Actions

Value Meaning
allowed Auto-start of the application is allowed
not allowed Auto-start of the application is not allowed

The following permission allows applications to access the power state functionality of
an embedded device.

PowerStatePermission

The javax.microedition.power.PowerStatePermission allows calls to
PowerManager .setPowerState () method.

Resource Names
Table 3-36 shows the names that are allowed with this permission.

Table 3-36 PowerStatePermission Actions

Value Meaning
set Calls to setPowerState(..., false) are allowed
setUrgent Calls to setPowerState(..., true) are allowed

Software Management

The following permissions allow applications to use of the software management
(SWM) APIs on an embedded device.

SWMPermission

The javax.microedition.power.SWMPermission provides permission handling for
SWM API permissions. An SWMPermission object contains a resource and actions.

Resource Names
Table 3-37 shows the resource names that are allowed with this permission.

Security 3-27

Software Management

Table 3-37 SWMPermission Resource Names

Value Meaning

client Permission to perform the listed actions only for applications

assigned to the same client

crossClient Permission to perform the listed actions also for applications
assigned to other clients. Usually this is a permission reserved
for the root client. Granting this permissions to other clients
should carefully considered to avoid security breaches.

Actions

The actions to be granted are a list of comma-separated keywords, as shown in
Table 3-38, as well as whether they are permitted on a trusted and non-trusted client.

Table 3-38 SWMPermission Actions

Name and Action Assigned to Trusted Client Assigned to Non-Trusted Client
client, manageSuite Permitted Not Permitted.

client, installation Permitted. Not Permitted.

client, manageTask Permitted. Not Permitted.

crossClient, Permitted, but not Not Permitted.

manageSuite recommended

crossClient, Permitted, but not Not Permitted.

installation recommended

crossClient, Permitted, but not Not Permitted.

manageTask recommended

3-28 Oracle Java ME Embedded Application Management System API Guide

4

Software Management

This chapter introduces the Software Management (SWM) APIs of the Java ME
Embedded Profile (MEEP) version 8. These APIs provided extended software
management features for Oracle Java ME Embedded applications, as given in the
javax.microedition.swm package. There are five interfaces and six classes in this
package that can be used by applications to enhance software management. In
addition, there are a number of enumerations that are present in the package; these are
documented near the classes and methods that use them throughout this chapter.

SuitelnstallListener Interface

SuiteInstallListener is a sub-interface that provides progress data for an installer
that is downloading an app or a link.

The interface consists of two methods, both of which are called at certain times during
installation. One is the installationDone () method, which provides only a single
code, the definitions of which can be found in the InstallerErrorCode interface. The
other is the updateStatus () method, which identifies the current task as one of the
SuiteInstallStage constants that are shown in Table 4-1, and provides an integer
percentage of completeness.

Table 4-1 SuitelnstallState

Name Description

DONE Installation has completed

DOWNLOADING_BODY Install stage: downloading application body.

DOWNLOADING_DATA Install stage: downloading additional application
data.

DOWNLOADING_DESCRIPTOR Install stage: downloading application descriptor.

STORING Install stage: storing application.

VERIFYING Install stage: verifying downloaded content.

Here are the two method defined in the SuiteInstallListener interface:
s void installationDone (int errorCode)

This method is called by the installer to report that the installation has completed.
The resulting integer code is contained in the InstallerErrorCode class. See
"InstallerErrorCode" on page 4-8 for more information on installation error codes.

s void updateStatus(SuiteManagementTracker tracker,
SuiteInstallStage status, int percent)

Software Management 4-1

SuiteListener Interface

This method is called by the installer to inform the listener of the current status of
the install. The stage is given by an integer constant as shown in Table 4-1. The
percent is an integer between 0 and 100.

SuiteListener Interface

SuiteListener is an interface that provides a notification that the current state of a
suite has changed.

There is only one method defined in the SuiteListener interface:

s void notifySuiteStateChanged(SuiteManagementTracker tracker,
SuiteState newState)

This method is called to notify a listener that the current state of a suite has
changed. A reference to the current SuiteManagementTracker is included, as well
as an instance of SuiteState, which indicates the new state.

SuiteManager Interface

The suiteManager interface consists of only seven methods that add or remove suites,
add or remove suite listeners, retrieve a list of the currently installed suites, or retrieve
the current SuiteInstaller.

m void addSuiteListener (SuiteListener thelListener)
This method adds a SuiteListener object to the current SuiteManager.
m Suite getSuite(java.lang.String vendor, java.lang.String name
This method returns an instance of the currently installed Suite.

m SuiteInstaller getSuiteInstaller(byte[] instData, int offset, int
length, boolean ignoreUpdateLock)

This method returns the current Suitelnstaller.

m SuiteInstaller getSuiteInstaller(java.lang.String locationUrl, boolean
ignoreUpdateLock)

This method returns the current Suitelnstaller
m Jjava.util.List<Suite> getSuites(SuiteType type)
This method requests a list of installed suites of specified type.
s void removeSuite(Suite suite, boolean ignoreRemoveLock)
This method removes a Suite.
m void removeSuitelListener (SuitelListener thelListener)

This method removes a SuiteListener.

TaskListener Interface

The TaskListener interface is an interface used to receive updates about a task that is
currently running.

s void notifyStatusUpdate(Task task, TaskStatus newStatus)

This method is called when the current task has a new status update to report. The
method passes a reference to the Task in question, as well as a TaskStatus object
reporting the new status.

4-2 Oracle Java ME Embedded Application Management System API Guide

ManagerFactory Class

TaskManager Interface

The SuiteInstaller interface is a sub-interface that consists of only two methods: one
that starts the installation and one that cancels the installation.

void addTaskListener (TaskListener) throws SecurityException
This method adds a TaskListener.

Task getCurrentTask() throws SecurityException

This method returns the current task that is running.
java.util.List<Task> getTaskList (boolean includeSystem)

This method obtains a list of Task objects. If system tasks are to be included, that
can be specified with the boolean parameter.

void removeTaskListener (TaskListener listener)
This method removes a TaskListener.

boolean setForegroundTask (Task task) throws
java.lang.IllegalArgumentException

This method assigns the specified task to be the currently running foreground
task. A task is said to be in the foreground if the LUI API or another UI APl is
supported and the task is visible on the display, or if the Key API is supported and
input device events will be delivered to it. If none of those packages is supported
by the implementation, a call to this method has no effect.

boolean setPriority(Task task, TaskPriority priority) throws
java.lang.IllegalArgumentException

Changes the priority for the given task. The method returns true if the change was
successful, or false otherwise.

Task startTask(Suite suite, String className) throws
java.lang.IllegalArgumentException, java.lang.IllegalStateException

Starts a Task from the given class name in the given Suite. This method throws an
exception if suite is a library and can therefore not be started. Calling this method
schedules a new application execution. The new task is created with
TaskStatus.STARTING on success or TaskStatus.START FAILED on failure.

More than one call to this method can be performed with the same arguments. In
this case subsequent calls lead to attempts to re-start the task. In case of
unsuccessful attempt to re-start the task, an appropriate exception is thrown or the
corresponding state TaskStatus.START_FAILED is set to the returned task object.

boolean stopTask(Task task) throws java.lang.lllegalArgumentException,
java.lang IllegalStateException

This method cancels an installation that is in progress. It returns true if the
cancellation was successful, or false otherwise.

ManagerFactory Class

The ManagerFactory class is a global factory that is used to obtain a SuiteManager or a
TaskManager implementation.

static SuiteManager getSuiteManager ()

This method returns an implementation of a SuiteManager.

Software Management 4-3

The Suite Class

m static TaskManager getTaskManager ()

This method returns an implementation of a TaskManager.

The Suite Class

All IMlet suites maintain a basic set of identification and state information that acts as
a descriptor. This descriptor is represented by the Suite class.

Suites can be one of four types, presented in the SuiteType enumeration, and shown
in Table 4-2:

Table 4-2 SuiteType Enumeration

Suite Type Description

ST_APPLICATION The suite contains one or more MIDlets with an entry point that
can be executed.

ST_LIBRARY The suite is a library that can be used by one or more
applications.

ST_SYSTEM The suite is a system-level application.

ST_INVALID The suite is invalid and cannot be found or executed.

In addition, suites contain binary flags that describe their state, presented in the
SuiteStateFlag enumeration, and shown in Table 4-3:

Table 4-3 SuiteStageFlag Enumeration

State Description

AVAILABLE The suite is available for use.

ENABLED The suite is enabled. When a suite is disabled, any attempt to
run application or use a library from this suite should fail.

SYSTEM The suite is a system-level suite.

PREINSTALLED The suite is hidden, and should not be visible to the user.

REMOVE_DENIED The suite should not be removed.

UPDATE_DENIED The suite should not be updated.

The following are method present in the Suite class.
m Jjava.lang.String getName/()
This method returns the name for the given suite.
s Jjava.lang.String getVendor ()
This method returns the vendor for the given suite.
m Jjava.lang.String getVersion()
This method returns the version of the given suite.
s Jjava.lang.String getDownloadUrl ()
This method returns the URL that the JAD or JAR was downloaded from.

m Jjava.util.Iteration<String> getAttributes()

4-4 Oracle Java ME Embedded Application Management System API Guide

Suitelnstaller Class

This method returns a String array that provides the names of the available
properties. The properties returned are those from the JAD file and the manifest
combined into a single array.

java.lang.String getAttributeValue(String name)

This method retrieves the value for the respective attribute name.
SuiteType getSuiteType ()

This method returns the suite type. See Table 4-2 for more information.
public boolean isSuiteState(SuiteStateFlag state)

This method checks the current state boolean to see if it is true.

public void setSuiteStateFlag(SuiteStateFlag state, boolean value)
throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException, java.lang.SecurityException

This method sets the specified flag to the specified value. If a Suite has been
created, SuiteStateFlag.ENABLED and SuiteStateFlag.AVAILABLE are always set
to true, while SuiteStateFlag.REMOVE_DENIED and SuiteStateFlag.UPDATE_
DENIED are set to false. These states can be changed by calling this method. The
SuiteStateFlag.SYSTEM and SuiteStateFlag.PREINSTALLED flags are only set for
system suites or pre-installed suites, respectively, and cannot be unset or set by
this method. To be able to set suite flags, caller application should request
javax.microedition.swm.SWMPermission("client", "manageSuite") or
javax.microedition.swm.SWMPermission ("crossClient", "manageSuite")
permission. See SiMPermission for more details.

public java.util.Iterator<java.lang.String> getMIDlets()

This method returns a list of the applications (application class names) in this
suite. The first application in the enumeration is the default application as
specified in the MIDlet-1 field of the descriptor.

public java.util.Iterator<Suite> getDependencies ()
This method returns a list of the shared libraries this Suite depends on
public boolean isTrusted()

Checks if this Suite is trusted or not. The return value is always true if it is a
SYSTEM_SUITE.

public boolean isInstalled()

Checks if this Suite is still installed or has been removed.

Suitelnstaller Class

The ManagerFactory class is a global factory that is used to obtain a SuiteManager or a
TaskManager implementation.

void addInstallationListener (SuiteInstallListener listener)

This method adds a SuiteInstallListener to this suite installer

void removeInstallationListener (SuitelInstallationListener listener)
This method removes a SuiteInstallListener to this suite installer.

SuiteManagementTracker start()

Software Management 4-5

Suitelnstaller Class

This method starts installation of the suite. The installation can be the first
installation of this suite, or a re-installation (update) of a suite that had been
installed before. A SuiteInstallListener must be added in order to handle
callback requests.

This method returns an instance of SuiteManagementTracker; the caller can
observe the progress of the installation via the SuiteInstallListener added.
Please note that the method may not return quickly. Depending on the
provisioning mechanism used in the implementation of MEEP 8, it may be
necessary to download the entire JAR data first in order to inspect the manifest of
the application suite in order to find out whether this is a new installation or an
update of an existing application suite. Depending on the network connection, this
may take some time.

In case the previous attempt to install this suite (initiated by a previous call of the
start () method) has not been finished at the time the new call takes place, the call
is queued and the new attempt to install (in case the first one failed) or the
re-installation (in case the first call was successful), respectively, starts as soon as
the first installation attempt or installation has been finished.

A new instance of SuiteManagementTracker will be created for every call to this
method and assigned to the Suite to be installed as soon as the installation has
been completed successfully. In case of an update of an existing Suite, the
SuiteManagementTracker instance is assigned to the existing Suite object from the
beginning.

If the initiating application does not have the right SWMPermission, the installation
will fail with InstallErrorCodes.UNAUTHORIZED INSTALL.

s void cancel()

Begins installation of the suite.

Suitelnstaller Class

An instance of this class is generated as soon as an installation or update of a Suite is
started using SuiteInstaller.start (). Invoking that method creates a new tracker
instance. Whether two trackers refer to the same Suite can be found out by calling
getSuite() for both and compare the returned Suite instances. The tracker instance
created for a management operation is passed to any call of
SuiteListener.notifySuiteStateChanged () in order to inform about the progress of
this operation.

For the installation of a new Suite, as long as the installation hasn't been successfully
completed, an instance of SuiteManagementTracker is not assigned to any Suite
instance yet, as it does not exit yet. In these cases, a call to getSuite() returns null. In
case of an update, the tracker is assigned to the existing Suite from the beginning,
though.

This class has one method.
m Suite getSuite()

This method returns the Suite that this tracker is assigned to, if the installation
has completed successfully

4-6 Oracle Java ME Embedded Application Management System API Guide

Task Class

SWMPermission Class

Task Class

The swWMPermission provides permission handling for SWM API permissions. An
SWMPermission object contains a scope and actions. The scope is the scope of the
permission. Valid scopes are

"client" stands for permission to perform the listed actions only for applications
assigned to the same Client.

"crossClient" stands for permission to perform the listed actions also for
applications assigned to other Clients. Usually this is a permission reserved for the
Root Client. Granting this permissions to other Clients should be figured out well in
order to avoid security breaches.

The actions to be granted are passed to the constructor in a non-empty string,
containing a list of comma-separated keywords. Trailing and leading white spaces as
well as those between the keywords and commas in the list are not allowed and lead
to an IllegalArgumentException. The possible values can be seen in this table in the
Security Policy Provider chapter of the spec. The actions string is converted to
lowercase before processing.

This class has one constructor and several methods.
m SWMPermission(java.lang.String scope, java.lang.String actions)

This method creates a new SWlMPermission object with the specified name and
actions.

m public boolean implies(java.security.Permission p)
This method checks if the specified permission is "implied" by this object.
m String getActions()

This method returns the permitted actions of this Permission as a comma
separated list in alphabetical order.

m Jjava.security.PermissionCollection newPermissionCollection/()

This method creates a new SWMPermissionCollection.

The Task class is, in effect, a simple task descriptor. A Task is the abstraction of the
execution of an application (see javax.microedition.midlet.MIDlet). Tasks are
started using the TaskManager.startTask () method, where the arguments specify the
application suite and the class within the suite being the starting point of the
application. Starting a new task attempts to execute corresponding application. A task
has a status, as described in the TaskStatus enumeration, that describes
corresponding application lifecycle state. A task has a priority with possible values as
described in TaskPriority. Depending on whether the implementation supports
multiple VMs, several tasks can run in parallel.

There are special tasks called system tasks. Those tasks cannot be started or stopped
via this API, but are started by the system. The isSystemTask () method can be used to
find out whether a task is a considered a system task.

The Task class contains the following methods.
m String getName ()

This is a convenience method for returning the name of the task. The returned
string is the name of the application running in this task.

Software Management 4-7

InstallerErrorCode

s TaskPriority getPriority()
This method returns the priority of given task.
s public int getHeapUse()
This method returns the heap use of given task.
s public TaskStatus getStatus()
This method returns the task's status.
m public Suite getSuite()
This method returns the suite information this task executed from.
s public boolean isSystemTask()

This method returns a boolean indicating whether a task is a system task.

InstallerErrorCode

The InstallerErrorCode provides several constants used by the installation routines.
These constants are shown in Table 4—4.

Table 4-4 Installer Error Codes

Constant Error Code Description

ALAA_ALIAS_NOT_FOUND 78 Application Level Access Authorization:
The alias definition is missing.

ALAA_ALIAS_WRONG 80 Application Level Access Authorization:
The alias definition is wrong.

ALAA_MULTIPLE_ALIAS 79 Application Level Access Authorization:
An alias has multiple entries that match.

ALAA_TYPE_WRONG 77 Application Level Access Authorization:
The MIDlet-Access-Auth-Type has
missing parameters.

ALREADY_INSTALLED 39 The JAD matches a version of a suite
already installed.

APP_INTEGRITY_FAILURE_ 69 Application Integrity Failure: two or

DEPENDENCY_CONFLICT more dependencies exist on the

component with the same name and
vendor, but have different versions or

hashs.
APP_INTEGRITY_ FAILURE_ 70 Application Integrity Failure: there is a
DEPENDENCY_MISMATCH component name or vendor mismatch

between the component JAD and IMlet
or component JAD that depends on it.

APP_INTEGRITY_ FAILURE_HASH_ 68 Application Integrity Failure: hash

MISMATCH mismatch.

ATTRIBUTE_MISMATCH 50 A attribute in both the JAD and JAR
manifest does not match.

AUTHORIZATION_FAILURE 49 Application authorization failure,
possibly indicating that the application
was not digitally signed.

CA_DISABLED 60 Indicates that the trusted certificate

authority (CA) for this suite has been
disabled for software authorization.

4-8 Oracle Java ME Embedded Application Management System API Guide

InstallerErrorCode

Table 4-4 (Cont.) Installer Error Codes

Constant Error Code Description

CANCELED 101 Canceled by user.

CANNOT_AUTH 35 The server does not support basic
authentication.

CIRCULAR_COMPONENT_DEPENDENCY 64 Circular dynamic component
dependency.

COMPONENT_DEPS_LIMIT_EXCEEDED 65 Dynamic component dependencies limit
exceeded.

COMPONENT_NAMESPACE_COLLISION 72 The namespace used by a component is
the same as another.

CONTENT_HANDLER_CONFLICT 55 The installation of a content handler
would conflict with an already installed
handler.

CORRUPT_DEPENDENCY_HASH 71 A dependency has a corrupt hash code.

CORRUPT_JAR 36 An entry could not be read from the
JAR.

CORRUPT_PROVIDER_CERT 5 The content provider certificate cannot
be decoded.

CORRUPT_SIGNATURE 8 The JAR signature cannot be decoded.

DEVICE_INCOMPATIBLE 40 The device does not support either the
configuration or profile in the JAD.

DUPLICATED_KEY 88 Duplicated JAD/manifest key attribute

EXPIRED_CA_KEY 12 The certificate authority's public key has
expired.

EXPIRED_PROVIDER_CERT 11 The content provider certificate has
expired.

INCORRECT_FONT_LOADING 82 A font that is contained with the JAR
cannot be loaded.

INSUFFICIENT STORAGE 30 Not enough storage for this suite to be
installed.

INVALID_CONTENT_HANDLER 54 The MicroEdition-Handler-<n>JAD
attribute has invalid values.

INVALID_JAD_TYPE 37 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_JAD_URL 43 The JAD URL is invalid.

INVALID_JAR_TYPE 38 The server did not have a resource with
the correct type or the JAR downloaded
has the wrong media type.

INVALID_JAR_URL 44 The JAR URL is invalid.

INVALID_KEY 28 A key for an attribute is not formatted
correctly.

INVALID_NATIVE_LIBRARY 85 A native library contained within the
JAR cannot be loaded.

INVALID_PACKAGING 87 A dependency cannot be satisfied.

Software Management 4-9

InstallerErrorCode

Table 4-4 (Cont.) Installer Error Codes

Constant

Error Code Description

INVALID_PAYMENT_INFO

INVALID_PROVIDER_CERT

INVALID_RMS_DATA_TYPE

INVALID_RMS_DATA_URL

INVALID_SERVICE_EXPORT

INVALID_SIGNATURE

INVALID_VALUE

INVALID_VERSION

IO_ERROR

JAD_MOVED

JAD_NOT_FOUND

JAD_SERVER_NOT_FOUND

JAR_CLASSES_VERIFICATION_FAILED

JAR_IS_LOCKED

JAR_NOT_FOUND

JAR_SERVER_NOT_FOUND

JAR_SIZE_MISMATCH

MISSING_CONFIGURATION

MISSING_DEPENDENCY_HASH
MISSING_DEPENDENCY_JAD_URL
MISSING_JAR_SIZE
MISSING_JAR_URL
MISSING_PROFILE

MISSING_PROVIDER_CERT

MISSING_SUITE_NAME

58

76

73
86

29

16
102

34

56

100

20

19

31

41

67
66
21
18
42

13

Indicates that the payment information
provided with the IMlet suite is
incomplete or incorrect.

The signature of the content provider
certificate is invalid.

The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

The RMS data file URL is invalid.

A LIBlet that exports a service with a
LIBlet Services attribute does not
contain the matching service provider
configuration information.

The signature of the JAR is invalid.

A value for an attribute is not formatted
correctly.

The format of the version is invalid.

A low-level hardware error has
occurred.

The JAD URL for an installed suite is
different than the original JAD URL.

The JAD was not found.
The server for the JAD was not found.

Not all classes within JAR package can
be successfully verified with class
verifier.

Component or MIDlet or IMlet suite is
locked by the system.

The JAR was not found at the URL given
in the JAD.

The server for the JAR was not found at
the URL given in the JAD.

The JAR downloaded was not the same
size as given in the JAD.

The configuration is missing from the
manifest.

A dependency hash code is missing.

A dependency JAD URL is missing.

The JAR size is missing.

The URL for the JAR is missing.

The profile is missing from the manifest.

The content provider certificate is
missing.

The name of MIDlet or IMlet suite is
missing.

4-10 Oracle Java ME Embedded Application Management System API Guide

InstallerErrorCode

Table 4-4 (Cont.) Installer Error Codes

Constant Error Code Description

MISSING_VENDOR 14 The vendor is missing.

MISSING_VERSION 15 The version is missing.

NEW_VERSION 32 This suite is newer that the one currently
installed.

NO_ERROR 0 No error.

NOT_YET_VALID_PROVIDER_CERT 89 A certificate is not yet valid.

NOT_YET_VALID_CA_ KEY 90 A CA’s public key is not yet valid.

OLD_VERSION 17 This suite is older that the one currently
installed.

OTHER_ERROR 103 Other errors.

PROXY_AUTH 51 Indicates that the user must first
authenticate with the proxy.

PUSH_CLASS_FAILURE 48 The class in a push attribute is not in
MIDlet-<n> attribute.

PUSH_DUP_FAILURE 45 The connection in a push entry is
already taken.

PUSH_FORMAT_FAILURE 46 The format of a push attribute has an
invalid format.

PUSH_PROTO_FAILURE 47 The connection in a push attribute is not
supported.

REVOKED_CERT 62 The certificate has been revoked.

RMS_DATA_DECRYPT_PASSWORD 83 Indicates that a password is required to
decrypt RMS data.

RMS_DATA_ENCRYPT_PASSWORD 84 Indicates that a password is required to
encrypt RMS data.

RMS_DATA_NOT_FOUND 75 The RMS data file was not found at the
specified URL.

RMS_DATA_SERVER_NOT_FOUND 74 The server for the RMS data file was not
found at the specified URL.

RMS_INITIALIZATION_FAILURE 81 Failure to import RMS data.

SUITE_NAME_MISMATCH 25 The MIDIlet or IMlet suite name does not
match the one in the JAR manifest.

TOO_MANY_PROPS 53 Indicates that either the JAD or manifest
has too many properties to fit into
memory.

TRUSTED_OVERWRITE_FAILURE 52 Indicates that the user tried to overwrite

a trusted suite with an untrusted suite
during an update.

UNAUTHORIZED 33 Web server authentication failed or is
required.

UNKNOWN_CA 6 The certificate authority (CA) that issued
the content provider certificate is
unknown.

UNKNOWN_CERT_STATUS 63 The certificate is unknown to OCSP
server.

Software Management 4-11

InstallerErrorCode

Table 4-4 (Cont.) Installer Error Codes

Constant Error Code Description

UNSUPPORTED_CERT 10 The content provider certificate has an
unsupported version.

UNSUPPORTED_CHAR_ENCODING 61 Indicates that the character encoding
specified in the MIME type is not
supported.

UNSUPPORTED_PAYMENT_INFO 57 Indicates that the payment information

provided with the MIDlet or IMlet suite
is incompatible with the current
implementation.

UNTRUSTED_PAYMENT_SUITE 59 Indicates that the MIDlet or IMlet suite
has payment provisioning information
but it is not trusted.

VENDOR_MISMATCH 27 The vendor does not match the one in
the JAR manifest.

VERSION_MISMATCH 26 The version does not match the one in
the JAR manifest.

4-12 Oracle Java ME Embedded Application Management System API Guide

O

General Purpose Input/Output

This chapter describes the General Purpose Input/Output (GPIO) functionality in the
Oracle Java ME Embedded product. GPIO typically refers a generic pin on an
embedded board whose behavior, including whether it is an input or output pin, can
be programmed by the user at runtime.

GPIO pins are often lined up in rows. By design, they have no dedicated purpose, and
are used by programmers for a wide variety of tasks. For example:

= GPIO pins can be enabled or disabled.
= GPIO pins can be configured to be input or output.

= Input values are readable, often with a 1 representing a high voltage, and a 0
representing a low voltage.

s Input GPIO pins can be used as "interrupt" lines, which allow a peripheral board
connected via multiple pins to signal to the primary embedded board that it
requires attention.

s Output pin values are both readable and writable.

WARNING: Be sure to observe manufacturer’s specifications and
warnings carefully. For example, with the Raspberry Pi board, the
voltage value that represents a "high" value on an input pin may be
3.3 volts (+3.3V). However, other pins may output 5 volts (+5V). Be
sure to check the manufacturer’s specifications to ensure that you
are not placing too much voltage on an input GPIO line, as the
board may not have an overvoltage protection.

GPIO pins have much greater functionality than this, but it is important to start with
the basics.

Setting a GPIO Output Pin

For this example, you will need the following hardware:

Table 5-1 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi512 MB Rev B Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

General Purpose Input/Output 5-1

Setting a GPIO Output Pin

Perhaps the simplest example of working with the GPIO functionality in the Oracle
Java ME Embedded product is to set the high/low value of an arbitrary output pin
and read its voltage with a multimeter. In this example, we set the value of GPIO pin 7
to alternate between high (3.3V) and low (0V) at intervals of 10 seconds and 5 seconds,
respectively. Example 5-1 shows the source code.

Example 5-1 Setting a GPIO Pin

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;

import jdk.dio.gpio.GPIOPin;

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.midlet.MIDlet;

public class GPIOExamplel extends MIDlet ({
GPIOPin pin;
public void startApp() {
try {

pin = (GPIOPin) DeviceManager.open(7);
System.out.println("---------------------- ")
Thread.sleep(5000) ;

for (int 1 = 0; 1 < 20; 1++) {
System.out.println("Setting pin to true...");
pin.setValue(true);
Thread.sleep(10000);
System.out.println("Setting pin to false...");
pin.setValue(false)
Thread.sleep(5000) ;
System.out.println("---------——————--mm ")

1

} catch (IOException ex) {
Logger.getLogger (GPIOExamplel.class.getName()) .
log (Level.SEVERE, null, ex);
} catch (InterruptedException ex) {
Logger.getLogger (GPIOExamplel.class.getName()) .
log(Level .SEVERE, null, ex);

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

try {
pin.close();
} catch (IOException ex) {
Logger.getLogger (GPIOExamplel.class.getName()) .
log (Level.SEVERE, null, ex);

5-2 Oracle Java ME Embedded Build Guide

Setting a GPIO Output Pin

}

The following permissions must be added to the Application Descriptor of the IMlet so
that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 5-2 Permissions for Example 1-1

Permission Device Operation

jdk.dio.DeviceMgmtPermission GPIO7:7 open

Note that if you're using an IDE such as NetBeans as the development environment,
you will need to access the project properties of the project and set API permissions
under the application descriptor, as shown in Figure 5-1.

Figure 5-1 API Permissions in the Application Descriptor in NetBeans

r -
O Project Properties - GPIOExamplel Li_:hJ
Categories:
- @ Sources Attributes I MIDlets I Push Registry | API Permissions
- @ Platform - o
- @ Lireies Requested Permissions:
Rl - Pplication Descriptor API Required Add...
Eh- @ Buid jdk. dio. DeviceMgmtPermission "GPIO7: 7" "open” | & —
i @ Compiling =t
b @ Signing

> 2 Obfuscating
o @ Documenting

- @ Run

[OK][Cancel][Help

After running the application, set your multimeter to read DC voltage with a
maximum of 20V, then connect one of the leads of the multimeter to GPIO 7, and the
other to GND (ground). As the application is running, note that the voltage that is read
by the multimeter will jump from its low value of around 0V after a call to
pin.setValue (false) to its high value of around 3.3V after a call to

pin.setValue (true). This is shown in Figure 5-2 and Figure 5-3.

WARNING: Remember that the GPIO pin assignments on the
Raspberry Pi do not match the pin numbers on the board. For
example, GPIO 7 is not mapped to pin 7, but instead pin 26. See
Appendix A (or the hardware-appropriate Getting Started Guide)
for the pin assignments for the target boards of the Oracle Java ME
Embedded software.

General Purpose Input/Output 5-3

Setting a GPIO Output Pin

Figure 5-2 Raspberry Pi Pin 7 with Low (0V) Voltage

ET 30B
DIGITAL
MULTIMETER

5-4 Oracle Java ME Embedded Build Guide

Working with a Breadboard

Figure 5-3 Raspberry Pi Pin 7 with High (3.3V) Voltage

DT-8

DIGITAL
MULTIMETER

Working with a Breadboard

When prototyping circuits, it is often helpful to have a way of connecting wires
without having to perform soldering. In some cases, if there are only a few
connections, you can use jumper wires. However, when layout out more complex
circuits, it’s helpful to use a breadboard. A typical breadboard is shown in Figure 5-4.

General Purpose Input/Output 5-5

Working with a Breadboard

Figure 5-4 A Typical Breadboard

A breadboard consists of a large number of holes, each of which are wired together on
the bottom using a standardized pattern, such as the one shown in Figure 5-5. Note
that the two columns on both the left and the right of the breadboard are wired
vertically--these provide power (+) and ground (-) connections that can be tapped into
to. The horizontal rows on either side of the center line, on the other hand, are used to
create circuits. Circuits can be created using small wires with metal tips on each end
that can "plug into" the holes.

Figure 5-5 Wiring Pattern for a Typical Breadboard

For the Raspberry Pi, we can connect the GPIO pins on the Pi to a breadboard using a
device called a T-Cobbler Extension Board. This device attaches a ribbon cable to the

5-6 Oracle Java ME Embedded Build Guide

Working with a Breadboard

GPIO pins, which in turn connects to the T-cobbler board. The T-cobbler board is then
inserted into the top of the breadboard, as shown in Figure 5-6.

Figure 5-6 T-Cobbler Extension Board for the Raspberry Pi

-
e
e
e
-
e
e
.
-
-
Ane
e
-
-

-

L

i

T asama

L
- s e
L
L
- . ae
- . = .
L
- ...
L
L
L L
L
L
-. e
- - a.

o

,‘HES r s e
A-<

Once connected to the Pi, you can use any of the holes running along the red stripe on
the left side of the breadboard to provide +3.3 volts (3V3), or any of the holes running
along the red stripe on the right side of the breadboard to provide +5 volts (5V0). In
addition, any of the holes running along the blue stripes on either side of the board

connect to the ground (GND) on the Raspberry Pi.

The GPIO pins on the Raspberry Pi map to the pins on the T-cobbler (and hence the
respective horizontal rows on the breadboard) as shown in Table 5-3.

Table 5-3 Broadcom GPIO to T-Cobbler Conversion

GPIO (Pi Pin Number)

Alternate Name

2 (Pin 3)
3 (Pin 5)
4 (Pin 7)
7 (Pin 26)

SDA
SCL
pP7
CE1

General Purpose Input/Output 5-7

Blinking an LED

Table 5-3 (Cont.) Broadcom GPIO to T-Cobbler Conversion

GPIO (Pi Pin Number)

Alternate Name

8 (Pin 24)

9 (Pin 21)

10 (Pin 19)
11 (Pin 23)
14 (Pin 8)

15 (Pin 10)
18 (Pin 12)
22 (Pin 15)
23 (Pin 16)
24 (Pin 18)
25 (Pin 22)
27 (Pin 13)

CEO
MISO
MOSI
SCLK
XD
RXD
P1

P3

P4

P5

P6

P2

Blinking an LED

We can use the code in Example 5-1 to create a small circuit on the breadboard that
turns on an off a light-emitting diode (LED). For this example, you will need the

following equipment.

Table 5-4 Equipment Needed for Blinking LED Example

Hardware

Where to Obtain

LED
1000 ohm resistor
T-Cobbler and Breadboard

Jumper Wires (Male to
Male)

Any electronics store
Any electronics store
Adafruit
Adafruit

Use the breadboard to connect one end of a 1000-ohm resistor to a row that connects to
GPIO7, which is marked on the T-Cobbler by CE1. Plug the other end of the 1000-ohm
resistor into an unused row further down the breadboard. Then, run an LED from that
row an adjacent row, and then connect that row to the ground (GND). The circuit
should look similar to the schematic in Figure 5-7.

5-8 Oracle Java ME Embedded Build Guide

Blinking an LED

Figure 5-7 Schematic for Wiring an LED to GPIO 7

LED

-~ 1K O
W —

When completed, you should have a prototype that looks like Figure 5-8. Run
Example 5-1 again, and you should see the LED light blinking off an on whenever the
setValue (true) call is made on the GPIOPin object.

Note: Remember that an LED is a diode, which by definition only
allows current to travel one way through it. If your LED does not light
up when the voltage is applied, try flipping the connections so that
the current travels the reverse direction through the diode.

Figure 5-8 Wiring an LED to GPIO Pin 7

{p-n--.
e w e
mmem.

General Purpose Input/Output 5-9

Testing Output and Input Pins

Testing Output and Input Pins

Our next GPIO example will take the output voltage from one pin and redirect it back
to an adjacent input pin, while creating a listener on the input pin that reacts
accordingly. For this example, you will need the following hardware:

Table 5-5 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

Here, we use GPIO 8 and 11 on the Raspberry Pi due to their proximity to each other.
These pins are right next to GPIO 7 and GND, which was used in the previous
example. In Example 5-2, we’ve added a listener to an input pin that will trigger
whenever the input voltage changes in both directions (high-to-low and low-to-high).

Example 5-2 Creating a GPIO Pin Listener

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;

import jdk.dio.gpio.GPIOPin;

import jdk.dio.gpio.PinEvent;

import jdk.dio.gpio.PinListener;

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.midlet.MIDlet;

public class GPIOExample2 extends MIDlet {

GPIOPin pin8;
GPIOPin pinll;

public void startApp() {
try {

pin8 = (GPIOPin) DeviceManager.open(8); // Output pin by default
pinll = (GPIOPin) DeviceManager.open(ll); // Input pin by default
pinll.setInputListener (new MyPinListener());

System.out.println("-------------------- ")
Thread.sleep(5000) ;

for (int 1 = 0; 1 < 20; 1i++) {
System.out.println("Setting pin 8 to true...");
pin8.setValue (true) ;
Thread.sleep(10000);
System.out.println("Setting pin 8 to false...");
pin8.setValue (false);
Thread.sleep(5000) ;
System.out.println("--------------""""--o ")

} catch (IOException ex) {
Logger.getLogger (GPIOExample2.class.getName()) .
log (Level.SEVERE, null, ex);

5-10 Oracle Java ME Embedded Build Guide

Testing Output and Input Pins

} catch (InterruptedException ex) {
Logger.getLogger (GPIOExample2.class.getName()) .
log(Level.SEVERE, null, ex);

}

public void pauselpp() {
}

public void destroyApp (boolean unconditional) {

try {
pin8.close();
pinll.close();
} catch (IOException ex) {
Logger.getLogger (GPIOExample2.class.getName()) .
log(Level .SEVERE, null, ex);

}

class MyPinListener implements PinListener {

@Override
public void valueChanged(PinEvent event) {
try {
System.out.println("Pin listener for pin 11 has been called!");
System.out.println("Pin 11 is now " + pinll.getValue());
} catch (IOException ex) {
Logger .getLogger (GPIOExample2.class.getName()) .
log(Level.SEVERE, null, ex);

}

Table 5-6 shows the permission that must be added to the Application Descriptor of
the IMlet so that it will execute without any security exceptions from the Oracle Java
ME Embedded runtime.

Table 5-6 Permissions for Example 1-2

Permission Device Operation

jdk.dio.DeviceMgmtPermission * % open

After running the application, either connect one of the leads of the multimeter to the
GPIO 8 pin and the other to the GPIO 11 pin of the Raspberry Pi (or create a
compatible circuit on a breadboard). Set your multimeter to read DCV with a
maximum of 200 mV. As the application is running, note that the voltage that is read
by the multimeter will jump from its low value to its high voltage, although the
voltages will be much smaller than that from GPIO 7. Try disconnecting the lead from
GPIO 11 momentarily and reconnecting it when GPIO 8 is high. The output of the
program should reflect that the listener is called both when the lead is released, and
when it is reconnected.

General Purpose Input/Output 5-11

Testing Output and Input Pins

WARNING: Remember that the GPIO pin assignments on the
Raspberry Pi do not match the pin numbers on the board. For
example, GPIO 8 is not mapped to pin 8, but instead pin 24.
Likewise, GPIO 11 is mapped to pin 23. See Appendix A and
Appendix B for the pin assignments for the target boards of the
Oracle Java ME Embedded software.

The output of the application when running in NetBeans is shown in Figure 5-9.

Figure 5-9 Output of Example 1-2

Output - GPIOExample2 (run) |
u> Setting pin 8 to true

Pin 11 is now true
H> Setting pin 8 to false
Pin 11 is now false

%& Setting pin 8 to true
Pin 11 is now true
Pin 11 is now false I
Pin 11 is now true
Pin 11 is now false
Pin 11 is now true
Setting pin 8 to false
Pin 11 is now false

Setting pin 8 to true
Pin 11 is now true

5-12 Oracle Java ME Embedded Build Guide

6

Working with the 12C Bus

The I2C bus, often referred to as "i-2-c" or "i-squared-c", is a low-speed bus frequently
used between micro-controllers and peripherals. I2C uses only two bi-directional lines,
Serial Data Line (SDA) and Serial Clock (SCL), often pulled-up with resistors. Typical
voltages used are +5 V or +3.3 V, although systems with other voltages are permitted.

When using the Raspberry Pi, be sure to check the manufacturer’s specifications as to
which voltages are acceptable for powering the peripheral. The Raspberry Pi provides
both 3.3V and 5V pins.

To enable I2C on the Raspberry Pi, add the following lines to the /etc/modules files
and reboot. Note that the file will need to be edited with root privileges.

12¢c-bcm2708
i2c-dev

Experimenting with a 7-Segment Display

For this exercise, you will need the following hardware:

Table 6-1 Hardware for 7-Segment Display Example

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Adafruit .56" 4-digit Adafuit or Amazon. Requires a small amount of soldering of the
7-segment display with LED display unit to I2C logic board, as well as 4 I12C connector
HT16K33 12C Backpack pins.

Jumper Wires - Female to Electronics store. We used SchmartBoard P/N 920-0065-01 Rev
Female (x4) A

Our first example allows us to use the GPIO2 and GPIO3 pins for the I12C data and
clock connections. Using these connections, we will write a simple program that
allows us to set the display using an I2C connection.

In order to hook up the 7-Segment display to the Raspberry Pi properly, the jumper
wires must be connected as shown in Table 6-2. Note that because there are only four
connections, we opted not to use a T-cobber and a breadboard in this example.

Table 6-2 Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board
5V (Pin 2) vVCC
Ground (Pin 6) GND

Working with the 12C Bus 6-1

Experimenting with a 7-Segment Display

Table 6-2 (Cont.) Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board
GPIO 2 (Pin 3) SDA (Serial Data)
GPIO 3 (Pin 5) SCL (Serial Clock)

First, we need a basic class that communicates with the HT16K33 "LED backpack" that
is soldered to the actual 7-segment LED display. Example 61 shows the source code
for the 7-segment I2C display driver.

Example 6—-1 HT16K33 I12C Driver for 7-Segment Display

import jdk.dio.DeviceManager;

import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;

import java.nio.ByteBuffer;

import java.util.logging.Level;

import java.util.logging.Logger;

public class LEDBackpack {

I2CDeviceConfig LEDBackpackConfig;
int[] displaybuffer = new int[10];

byte[] OSCILLATOR_ON = {0x21};
byte BRIGHTNESS = (byte) O0xEO;

static byte HT16K33_BLINK CMD = (byte) 0x80;
static byte HT16K33_BLINK_DISPLAYON = (byte) 0x01;

static byte HT16K33_BLINK_OFF = (byte) 0;
static byte HT16K33_BLINK_2HZ = (byte) 1;
static byte HT16K33_BLINK_1HZ = (byte) 2;
static byte HT16K33_BLINK_HALFHZ = (byte) 3;

static byte LETTER_J = 0x1E;
static byte LETTER_A = 0x77;
static byte LETTER_V = 0x3E;

static final byte numbertable[] = {
0x3F, /* 0 */
0x06, /* 1 */
0x5B, /* 2 */
0x4F, /* 3 */
0x66, /* 4 */
0x6D, /* 5 */
0x7D, /* 6 */
0x07, /* 7 */
0x7F, /* 8 */
0x6F, /* 9 */
0x77, /* a */
0x7C, /* b */
0x39, /* C */
0x5E, /* d */
0x79, /* E */
0x71, /* F */};

public LEDBackpack() {

6-2 Oracle Java ME Embedded Build Guide

Experimenting with a 7-Segment Display

LEDBackpackConfig = new I2CDeviceConfig(l, 0x70, 7, 100000);

void begin() {

try (I2CDevice slave = DeviceManager.open (LEDBackpackConfig)) {

ByteBuffer oscOnCmd = ByteBuffer.wrap (OSCILLATOR_ON) ;
slave.write(oscOnCmd) ;
slave.close();

} catch (IOException ioe) {

Logger.getLogger (LEDBackpack.class.getName()) .
log (Level .SEVERE, null, ioe);

setBlinkRate (HT16K33_BLINK_OFF) ;
setBrightness(15);

void setBrightness(int b) {

if (b > 15) {

b = 15;
} else if (b < 0) {
b =0;

byte[] ea = {(byte) (BRIGHTNESS | b)};
try (I2CDevice slave = DeviceManager.open (LEDBackpackConfig)) {

ByteBuffer brightnessCmd = ByteBuffer.wrap(ea);
slave.write (brightnessCmd) ;
slave.close();

} catch (IOException ioe) {
Logger.getLogger (LEDBackpack.class.getName()) .
log (Level.SEVERE, null, ioe);

void setBlinkRate(int b) {

if (b > 3) {
b =0; // turn off if not sure

} else if (b < 0) {
b =0;

bytel[] ea =
{(byte) (HT16K33_BLINK_CMD | HT16K33_BLINK_DISPLAYON | (b << 1))};

try (I2CDevice slave = DeviceManager.open (LEDBackpackConfig)) {
ByteBuffer blinkRateCmd = ByteBuffer.wrap(ea);

slave.write (blinkRateCmd) ;
slave.close();

Working with the 12C Bus 6-3

Experimenting with a 7-Segment Display

} catch (IOException ioe) {
Logger.getLogger (LEDBackpack.class.getName()) .
log(Level .SEVERE, null, ioe);

}
void writeDisplay() {
try (I2CDevice slave = DeviceManager.open (LEDBackpackConfig)) {
byte start[] = {0x00};

ByteBuffer startCmd = ByteBuffer.wrap(start);
slave.write(0x00, 1, startCmd);

for (int i = 0; i < displaybuffer.length; i++) {

byte bla[] = {(byte) (displaybuffer[i] & OxFF)};
ByteBuffer blCmd = ByteBuffer.wrap(bla);
slave.write(i, 1, blCmd);

}
slave.close();

} catch (IOException ioe) {
Logger.getLogger (LEDBackpack.class.getName()) .
log (Level.SEVERE, null, ioe);

}

void clear() {
for (int i = 0; i < displaybuffer.length; i++) {
displaybuffer([i] = 0;
}

)

This driver class contains five methods: begin (), setBrightness (), setBlinkRate(),
writeDisplay (), and clear (). Let’s cover each of these in more detail.

The begin () method will initialize the display. There are three operations that must be
performed to do this properly. First, the oscillator on the HT16K33 LED backboard
must be turned on. We can do this by sending a byte value of hex 0x21 across the bus.
Next, we set the blink rate of the 7-segment display to one of four values: OFF, 2 Hz, 1
Hz, or .5 Hz. Finally, we can set the brightness of the display using a value of 1 to 15.
For the latter two operations, we make use of the next two methods which can also be
called independently.

The setBlinkRate () and setBrightness () methods simply take an input value,
perform bounds checking, and calculate the correct byte value to send across the bus.
Just like turning on the oscillator, we only need to send one byte across the bus to
modify the blink rate or brightness to any level we choose.

The writeDisplay () method, on the other hand, is a little more complex. Here, the
class makes use of an array of 10 integers, declared as a field, that serves as a display
buffer. In reality, the writeDisplay () method will truncate any value larger then 255

6-4 Oracle Java ME Embedded Build Guide

Experimenting with a 7-Segment Display

before sending it across the bus, but making it an array of integers is helpful for the
user.

Each of the entries in the array will map to an address on the HT16K33 "LED
backpack” that can be written to using the 12C bus. The purpose of each of the
addresses is shown in Table 6-3. Note that since the HT16K33 can drive different types
of LED displays, several of the addresses are ignored when using this particular
4-character 7-segment display.

Table 6-3 HT16K33 7-Segment Display Addresses

Address Purpose

0x00 7-Segment Display Character 1 and Period
0x01 Ignored

0x02 7-Segment Display Character 2 and Period
0x03 Ignored

0x04 Colon (0xFF for colon on; 0x00 for colon off)
0x05 Ignored

0x06 7-Segment Display Character 3 and Period
0x07 Ignored

0x08 7-Segment Display Character 4 and Period
0x09 Ignored

Each address can have one byte written to it. The contents of each byte is mapped out
in binary as shown in Figure 6-1. As such, the number 7 with a decimal point is
represented in binary as 10000111, which is equal to 0x87 in hexadecimal. Note that
address 0x04 is reserved for the colon that appears between the first two numbers and
the second two numbers in the display; it does not represent character 3.

Figure 6—-1 Binary Encoding for 7-Segment Display

A The blnary representation Is:
&) i d PGFE DCBA
—h— P = Declmal Point
=l ' The number 7 with a decimal point Is
D 1000 0111 = 0x87

Example 6-2 shows a sample IMlet that will write the word "JAVA", without any
decimal points or colon, to the display (even though the "V" looks the same as a "U" in
the 7-segment display).

Example 6-2 IMlet to Write to the 7-Segment Display

import javax.microedition.midlet.MIDlet;
public class I2CExamplel extends MIDlet {
public void startApp() {

LEDBackpack backpack = new LEDBackpack();

Working with the 12C Bus 6-5

Experimenting with a 7-Segment Display

backpack.begin() ;
backpack.setBrightness (10) ;
backpack.setBlinkRate (LEDBackpack.HT16K33_BLINK_OFF) ;

backpack.clear();
backpack.writeDisplay() ;

backpack.displaybuffer
backpack.displaybuffer

[0] LEDBackpack.LETTER_J;

[2]
backpack.displaybuffer[4]

[6]

[8]

)

LEDBackpack.LETTER_A;
0x00; // No colon
LEDBackpack.LETTER_V;
LEDBackpack.LETTER_A;

backpack.displaybuffer
backpack.displaybuffer
backpack.writeDisplay (

1

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
}
}

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 6-4 API Permissions for 7-Segment Display Project

Permission Device Operation
jdk.dio.DeviceMgmtPermission * ok open
jdk.dio.i2cbus.I2CPinPermission * % open

After running the application, you should see the display as shown in Figure 6-2.

6-6 Oracle Java ME Embedded Build Guide

Experimenting with a 16x2 LCD Display

Figure 6-2 Result of Running the 7-Segment Display IMlet

Experimenting with a 16x2 LCD Display

For this exercise, you will need the following hardware:

Table 6-5 Hardware for Example 2-2

Hardware Where to Obtain

Raspberry Pi512 MB Rev B Various third-party sellers

16x2 LCD Display withan ~ Amazon. Requires a small amount of soldering for the 16

HD44780 Controller connector pins that run on the top of the logic board.
PCF8574N 8-bit I/O Mouser Electronics.
Expander Chip

T-Cobbler and Breadboard Electronics store.

Jumper Wires Electronics store

This example uses the I2C bus to interface to an LCD display with a Hitachi HD44780
backboard. The HD44780-based 16x2 character LCDs are inexpensive and widely
available. However, in addition to the LCD display, we must also use a PCF8574-based
IC, which is an general purpose bidirectional 8 bit I/O port expander that uses the 12C
protocol.

The first step is to hook up the Raspberry Pi to the PCF8574 chip. Typically, an IC chip
is installed on a breadboard vertically along the center aisle, with the pins from the IC
connecting to the holes adjacent to the center. The pinouts for the PCF8574N IC are
shown in Figure 6-3.

Working with the 12C Bus 6-7

Experimenting with a 16x2 LCD Display

Figure 6-3 Pinout Diagram for PCF8574N IC

Al [1 \J 16]‘uf.:{_';

Al 15[] SDA
A2 [14[] SCL
PO [l 13[] INT
P1lls 12l P7
P2] 1|1 P8
pafl7 10flPs
GND [8 1 P4

= o R

w3

{fm]

Once the chip is on the breadboard, there are several pins on the chip that must be
connected to the T-Cobbler using jumper wires, as shown in Table 6-6.

Table 6-6 Raspberry Pi to PCF8574N Jumper Connections

Pins on T-Cobbler (Pi) PCF8574N Pins
+5V (Pin 2) VCC

GND (Pin 6) GND

SDA / GPIO 2 (Pin 3) SDA (Serial Data)
SCL / GPIO 3 (Pin 5) SCL (Serial Clock)
GND (Pin 6) A0

GND (Pin 6) Al

GND (Pin 6) A2

The first four pins shown in are the standard I2C connections that are required of any
slave device that wishes to use the I12C bus. However, the remaining 3 pins are used to
set the slave address on I2C bus #1, represented as a binary digit from 0-7 (A0=1,
Al=2, A2=4) that is added to the hexidecimal value of 0x20. Because we are not
running voltage on any of these pins, the address of the PCF8574N chip on the I12C bus
should remain 0x20. If you'd like to verify this, login to the Raspberry Pi and issue the
command shown in Figure 6—4. Here, the i2cdetect command shows that on bus 1
there is a device at address 0x20. To change the address, try connecting a 10K resistor
between the 5V pin and one of the Ax pins and rerunning the command. The address
that is reported should change accordingly.

6-8 Oracle Java ME Embedded Build Guide

Experimenting with a 16x2 LCD Display

Figure 6-4 Running the i2cdetect Command

@ pi@raspberrypi: ~ | S S

The remaining pins PO-P7 and INT (high) on the PCF8574N are used to communicate
with other devices, in this case the HD44780 chip that drives the 16x2 LCD display.
Table 6-7 shows the connections to and from the PCF8574N chip and the HD44780
controller.

Table 6-7 Connections to PCF8574N and HD44780 Chip

Raspberry Pi (T-Cobbler) PCF8574N HD44780
SCL / GPIO 3 (Pin 5) SCL
SDA / GPIO 2 (Pin 3) SDA
GND (Pin 6) A0 (see discussion on 12C
address above)
GND (Pin 6) Al
GND (Pin 6) A2
+5V (Pin 2) VDD
GND (Pin 6) VSS
PO DB4
P1 DB5
P2 DB6
P3 DB7
P4 RS
P5 R/W
P6 E
P7 (unused)
INT (unused)
+5V (Pin 2) VDD
0to +5V VO (variable resistor if desired

for dimming backlit display)

Working with the 12C Bus 6-9

Experimenting with a 16x2 LCD Display

Table 6-7 (Cont.) Connections to PCF8574N and HD44780 Chip

Raspberry Pi (T-Cobbler) PCF8574N HD44780

GND (Pin 6) VSS

Before connecting the Px lines on the IC, try placing a resistor and an LED on a line
coming from the PO pin. Then, run the code shown in Example 6-3.

Example 6-3 Testing the PCF8574N I/O Expander Chip

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;

import jdk.dio.i2cbus.I2CDevice;

import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;

public class IOExpanderExample extends MIDlet {
public void startApp() {

LEDBackpackConfig = new I2CDeviceConfig(l, 0x20, 7, 100000);
try (I2CDevice slave = DeviceManager.open (LEDBackpackConfig))

{
slave.write((byte)0x01);

} catch (IOException ex) {
// Handle exception

}
}
public void pauseApp() {
}

public void destroyApp (boolean unconditional) {

}

}

To understand this example, it helps to look at the data line dialog, as shown in
Figure 6-5. Each of the Px lines can be activated or deactivated by writing a binary
number to the slave device, where P7 represents the most-significant digit and P0
represents the least-significant digit. Writing a value of 0x01 to the slave device will
activate only the PO line, which should in turn make the LED that is connected to it
light up (be sure that the LED’s cathode and anode connected are the right direction
and that there is a resistor in line so the LED does not burn out!). Note that the LED
will remain lit until a new value is written to the bus, or the PCF8574N chip loses
power.

6-10 Oracle Java ME Embedded Build Guide

Experimenting with a 16x2 LCD Display

Figure 6-5 I/O Data Bus with the PCF8574N chip

BIT
7 (MSB) 6 5 4 3 2 1 0 (LSB)
/O data bus P7 PE P5 P4 P3 P2 P1 PO

| BYTE

Next, complete the circuit according to Table 6-7. Example 6—4 shows a sample driver
class that will control the HD44780.

Example 6-4 LCD Driver Class to Control the HD44780 Chip

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;

import jdk.dio.i2cbus.I2CDevice;

import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

public class LCDDisplay {

I2CDeviceConfig LEDBackpackConfig;
I2CDevice slave;

public LCDDisplay ()
throws InterruptedException, IOException {

LEDBackpackConfig = new I2CDeviceConfig(l, 0x20, 7, 100000);
slave = DeviceManager.open (LEDBackpackConfig) ;

public void begin()
throws InterruptedException, IOException {

slave.write(0x03);
byte resultl = (byte) slave.read();
Thread.sleep(5);

slave.write(0x03);
byte result2 = (byte) slave.read();

Thread.sleep(1);
slave.write(0x03);
byte result3 = (byte) slave.read();

Thread.sleep(1);

slave.write (0x02);
byte resultd = (byte) slave.read();

writeCommand ((byte) 0x28);
writeCommand ((byte) 0x08);
writeCommand ((byte) 0x01);
writeCommand ((byte) 0x06);
writeCommand ((byte) 0x0C);

Thread.sleep(l);
byte result5 = (byte) slave.read();

Working with the 12C Bus 6-11

Experimenting with a 16x2 LCD Display

public void writeCharacter (byte charvalue)
throws InterruptedException, IOException ({

slave.write((byte) (0x10 | (charvalue >> 4)));
strobe () ;

slave.write((byte) (0x10 | (charvalue & 0x0F)));
strobe () ;

slave.write(0x00);
Thread.sleep(l);

public void writeCommand (byte value)
throws InterruptedException, IOException ({

slave.write((byte) (value >> 4));
strobe() ;

slave.write((byte) (value & 0x0F));
strobe();

slave.write(0x00);

Thread.sleep(5);

public void writeString(int line, String string)
throws InterruptedException, IOException ({

if (line == 1) {
writeCommand ((byte) 0x80);
} else if (line == 2) {
writeCommand ((byte) 0xCO);
} else if (line == 3) {
writeCommand ((byte) 0x94);
} else if (line == 4) {
writeCommand ((byte) 0xD4);

char[] chars = string.toCharArray();

for (int 1 = 0; 1 < chars.length; i++) {
writeCharacter ((byte) chars[i]);

public void strobe()
throws InterruptedException, IOException {

Thread.sleep(1);

byte readResult = (byte) slave.read();
readResult |= 0x40;

slave.write (readResult) ;

Thread.sleep(1);

readResult = (byte) slave.read();
readResult &= 0xBF;

6-12 Oracle Java ME Embedded Build Guide

Experimenting with a 16x2 LCD Display

slave.write(readResult);

public void clear()
throws InterruptedException, IOException {

Thread.sleep(5);

writeCommand ((byte) 0x01);
Thread.sleep(5);

writeCommand ((byte) 0x02);
Thread.sleep(5);

public void end()
throws IOException {

slave.close();

}

To use the driver class, run the IMlet shown in Example 6-5.

Example 6-5 IMlet to Write to the 16x2 LCD Display

import java.io.IOException;
import javax.microedition.midlet.MIDlet;

public class I2CExample2 extends MIDlet ({
public void startApp() {

LCDDisplay display;

try {
display = new LCDDisplay();
display.begin();
display.clear();
display.writeString(l, "Java ME");
display.writeString (2, "Embedded");
display.end() ;

} catch (InterruptedException ex) {
ex.printStackTrace() ;

} catch (IOException ex) {
ex.printStackTrace() ;

public void pauselpp() {
}

public void destroyApp (boolean unconditional) {
}

Working with the 12C Bus 6-13

Experimenting with a 16x2 LCD Display

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 6-8 API Permissions for LCD Example

Permission Device Operation
jdk.dio.DeviceMgmtPermission * ok open
jdk.dio.i2cbus.I2CPinPermission * % open

After running the application, you should see the display as shown in Figure 6-6.

Figure 6-6 LCD Display after Running Example

6-14 Oracle Java ME Embedded Build Guide

7

The Serial Peripheral Interface (SPI) Bus

The Serial Peripheral Interface or SPI bus is a synchronous serial data link that
operates in full duplex mode. In other words, data can be sent and received at the
same time. Devices communicate in master/slave mode, where the master device
initiates the data exchange with one or more slaves. Multiple slave devices are allowed
with individual slave select lines.

The SPI bus specifies four logic signals:

s SCLK: Serial Clock (a clock signal that is sent from the master).

= MOSI : Master Output, Slave Input (data sent from the master to the slave).
s MISO : Master Input, Slave Output (data sent from the slave to the master).

= S5:Slave Select (sent from the master, active on low signal). Often paired with the
Chip Select (CS) line on an integrated circuit that supports SPL

In order to enable the SPI bus on the Raspberry Pi, uncomment the entry spi_bcm2708
in the file /etc/modprobe.d/raspi-blacklist.conf. Note that you will need to have
root privileges to edit the file.

Using the SPI Bus to Communicate with an ADC

Because the Raspberry Pi board does not come with a analog-to-digital converter, the
SPIbus can be used to communicate with a peripheral analog-to-digital converter chip
that is reading an analog signal.

For this exercise, you will need the following hardware:

Table 7-1 Hardware for Example 3-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Texas Instruments Various electronics suppliers. We used mouser.com.
TLC549CP 8-bit ADC

T-Cobbler and Breadboard = Adafuit. See Chapter 1 for more information.

Potentiometer Electronics store
Jumper Wires (M/M and Electronics store.
F/F)

The data sheet of the TLC549CP shows 8 pins, as shown in Figure 7-1. Note that the
SPI connections reside on the right side of the chip, while the connections for
measuring the analog signal are on the left side of the chip.

The Serial Peripheral Interface (SPI) Bus 7-1

Using the SPI Bus to Communicate with an ADC

Figure 7-1 Pinouts for TLC549CP Analog-to-Digital Converter Chip

— Vreft Vee —
Analog
™ CLKE ——
—— Vref- Data ——
—— Gnd CSH—
TLC549CP
g bit ADC

In order to connect the TLC549CP chip to the Raspberry Pi, the SPI connections must
be connected as shown in Table 7-2.

Table 7-2 Raspberry Pi to TLC549CP SPI Pins

Pins on Raspberry Pi TLC549CP ADC Board Pins (Right Side)
3.3V vCC

SCLK (GPIO 11 / Pin 23) CLK

MISO (GPIO 9/ Pin 21) Data

CEO (GPIO 8 / Pin 24) CS

The other four pins must be connected to provide the analog voltage to measure. In
this example, we are using a potentiometer (in effect, a variable resistor) to vary the
amount of voltage being sent into the Analog In pin.

Table 7-3 shows how to connect the remaining pins on the TCL549CP chip.

Table 7-3 TLC549CP to Analog Signal Pins

TLC549CP ADC Board

Pins (Left Side) Analog Signal

Vref+ Voltage (Side Pin on Potentiometer) / 3.3V

Analog In Variable Voltage Signal (Middle Pin on Potentiometer)
Vref- Voltage (Other Side Pin on Potentiometer)

GND To Ground

Note that in order to complete our circuit and provide power to the potentiometer, the
Vref+ must be also connected to a 3.3V input, and the Vref- must be connected to a
ground. The chip does not provide voltage. You can test the voltage that is being sent
through the potentiometer with a voltmeter to ensure that the circuit is working
properly. The completed circuit on the breadboard is shown in Figure 7-2.

7-2 Product Title/BookTitle as a Variable

Using the SPI Bus to Communicate with an ADC

Figure 7-2 Breadboard with the Analog-to-Digital Converter Circuit

Once this is completed, we can use the source code in Example 7-1 to test out the ADC

chip.

Example 7-1 Testing Out the SPI Bus Connection

import
import
import
import
import
import
import
import
import

jdk.dio.
jdk.dio.
jdk.dio.
jdk.dio.
java.io.

Device;

DeviceManager;
spibus.SPIDevice;
spibus.SPIDeviceConfig;
IOException;

java.nio.ByteBuffer;
java.util.logging.Level;
java.util.logging.Logger;
javax.microedition.midlet.MIDlet;

public class SPIExamplel extends MIDlet {

public void startApp() {

System.

out.println("Preparing to open SPI device...");

SPIDeviceConfig config = new SPIDeviceConfig(0, 0,

SPIDeviceConfig.CS_ACTIVE_LOW,
500000,

3,

8,

Peripheral .BIG_ENDIAN) ;

The Serial Peripheral Interface (SPI) Bus 7-3

Using the SPI Bus to Communicate with an ADC

try (SPIDevice slave = (SPIDevice)DeviceManager.open(config)) {
System.out.println("SPI device opened.");

for (int 1 = 1; 1 < 200; i++) {
ByteBuffer sndBuf = ByteBuffer.wrap(new byte[]{0x00});
ByteBuffer rcvBuf = ByteBuffer.wrap(new byte[l]);
slave.writeAndRead (sndBuf, rcvBuf) ;
System.out.println("Analog to digital conversion at " +
i+ " is: " + rcvBuf.get(0));
Thread.sleep(1000);

}

} catch (IOException ioe) {
// handle exception
} catch (InterruptedException ex) {
Logger.getLogger (SPIExamplel.class.getName()) .
log (Level.SEVERE, null, ex);

}

public void pauseApp() {
}

public void destroyApp (boolean unconditional) {
}
}

This program is very simple: it opens up a connection to the Raspbeery Pi SPI bus
using a SPIDeviceConfig and writes a byte to the peripheral device: the ADC chip.
Since there is no input connection being sent from the master (the Raspberry Pi) to the
slave (the ADC chip), this data is effectively ignored. The SPI bus will, concurrently,
attempt to retrieve a byte of data from the chip. This byte is passed along the MISO
line, which returns an 8-bit number that represents the current voltage level. This
process will be repeated 200 times, with a one-second delay between each sampling on
the bus.

The program output looks like the following. As the program is running, try turning
the dial on the potentiometer to vary the voltage that is being sent into the chip. Here,
we are turning the voltage from higher to lower, and the ADC chip is representing this
with a steady drop in the 8-bit value that is returned.

Starting emulator in execution mode
About the open device

Device opened...
Value for 1 is: 145

Value for 2 is: 143
Value for 3 is: 120
Value for 4 is: 113
Value for 5 is: 90
Value for 6 is: 75
Value for 7 is: 63

7-4 Product Title/BookTitle as a Variable

8

Working with Java ME Encryption

This chapter introduces the encryption functionality available to the Java ME
Embedded programmer with the Oracle Java ME Embedded 8.1 release.

Connecting to an SSL Server

Creating a connection to an SSL server only requires the programmer to include an
appropriate ConnectionOption object in the call to Connector.open (). This example
requires the following hardware:

Table 8—-1 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

In this example, we use the Oracle Java ME Embedded runtime to connect to a server
on the network that is running SSLv3 on port 443. Note that this example requires the
user to configure a web server that will accept an incoming connection on that port
and uses the proper protocol and is properly signed by a valid certificate authority.
After this is setup, the value of the sTestServeraddr variable should be changed
accordingly. Example 8-1 shows the source code.

Note: At the time of release, Oracle Java ME Embedded 8.1 has
removed support for SSLv3 due to a widely-publicized security
vulnerability. However, the source code example is applicable to other

forms of transport-layer security included with Oracle Java ME
Embedded 8.1.

Example 8-1 Connecting to an SSL Server

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;

import javax.microedition.io.SecureConnection;
import javax.microedition.midlet.MIDlet;

public class SSLConnect extends MIDlet {

Working with Java ME Encryption 8-1

Connecting to an SSL Server

@override
public void startApp() {

SecureConnection sc;
ConnectionOption<String> protocol;
InputStream is;

OutputStream os;

DataInputStream dis;
DataOutputStream dos;

String sTestServerAddr = "example.com:443";

try {
protocol = new ConnectionOption<>("Protocol", "SSLv3");
sc = (SecureConnection) Connector.open("ssl://" +

sTestServerAddr, protocol);

System.out.println("Connection successful to:");
System.out.println("Address: " + sc.getAddress());
System.out.println("Port: " + sc.getPort());
System.out.println("Cipher Suite: " +
sc.getSecurityInfo().getCipherSuite());
System.out.println("Protocol Name: " +
sc.getSecurityInfo().getProtocolName()) ;
System.out.println("Protocol Version: " +
sc.getSecurityInfo().getProtocolVersion());

} catch (IOException ex) {
ex.printStackTrace() ;

@override
public void pauselpp() {
}

@override
public void destroyApp (boolean unconditional) {

}

The following permissions must be added to the Application Descriptor of the IMlet so
that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 8-2 Permissions for Example 4-1

Permission Device
javax.microedition.io.SSLProtocolPermission ssl://:*
javax.microedition.io.SSLProtocolPermission ssl://*:*
javax.microedition.io.SocketProtocolPermission socket://*:*

Note that if you're using an IDE such as NetBeans as the development environment,
you will need to access the project properties of the project and set API permissions
under the application descriptor, as shown in Figure 8-1.

8-2 Product Title/BookTitle as a Variable

Connecting to an SSL Server

Figure 8—1 API Permissions in the Project Properties Dialog in NetBeans

r A
[Project Properties - 55LConnect Ié]
Categories:
Sources Attributes I MIDlets | Push Registry | API Permissions
Platform .
Libraries Requested Permissions:
[Application Descriptor APIL Required Add...
. Build javax.microedition.io, SSLProtocolPermission “ssl: ff; =" Il =
@ Compiing avax.microedition.io, SocketProtocolPermission “socket: ff*:*" ¥ —
] @ Signing javax.microedition.io. SSLProtocolPermission “ssl: /= =" El
| @ Obfuscating
@ Documenting
Run
|
OK] [Cancel] [Help

Tip: If your server does not currently use a certificate from a signed
certificate authority (CA), you can import a self-signed certificate to
the Java ME Embedded device. Locate the MEKeytool executable in
the bin directory of the Oracle Java ME Embedded SDK distribution,
and enter the following command using a Windows command
prompt.

C:\SDK\bin> mekeytool.exe -import -Xdevice:EmbeddedExternalDevicel
-keystore myCert.crt

This command will connect to the keystore on the embedded device
currently recognized by the Device Manager as
"EmbeddedExternalDevicel" and install the certificate with the
filename myCert .crt. Note that this certificate must be identical to the
one residing on the server that is authenticating SSL/TLS connections,
or the Java embedded runtime will throw a
javax.microedition.pki.CertificateException when attempting a
secure connection. See Appendix D for more information on using the
MEKeyTool utility.

After running the application, you should see output that identifies a successful
connection to the server at the address and port specified. The program will then
output the address and port, as well as the security connection parameters that were
used to make the connection.

Connection successful to:

Address: 192.168.1.125

Port: 443

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA
Protocol Name: TLS

Protocol Version: 3.1

Working with Java ME Encryption 8-3

Authenticating an SSL Server

Authenticating an SSL Server

In this example, we expand on the ConnectionOption objects to provide an option to
authenticate an HTTPS server. As with the previous example, the value of the
serverAddr variable should be modified to point to a properly configured server.
Example 8-2 shows the source code.

Note: At the time of release, Oracle Java ME Embedded 8.1 has
removed support for SSLv3 due to a widely-publicized security
vulnerability. However, the source code example is applicable to other
forms of transport-layer security included with Oracle Java ME
Embedded 8.1.

Example 8-2 Authenticating an SSL Server

import java.io.DataInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import javax.microedition.io.HttpsConnection;
import javax.microedition.midlet.MIDlet;
import javax.microedition.rms.RecordStore;

/**
public class AuthenticateServer extends MIDlet ({

public static final int PASSED = 1;
public static final int FAILED = -1;

@override
public void startApp() {

String serverAddr = "https://example.com:443";

HttpsConnection hc;

ConnectionOption<String> auth;
ConnectionOption<String> protocol;

int response = HttpConnection.HTTP_NOT_ FOUND;

try {
auth = new ConnectionOption<>("AuthenticateServer", "TRUE");
protocol = new ConnectionOption<>("Protocol", "SSLv3");
hc = (HttpsConnection) Connector.open (serverAddr,

Connector.READ_WRITE, auth, protocol);
response = sendRegAndgetResp(hc); //request GET

if (response == PASSED) {
System.out.println("Pass");

} else {
System.out.println("Failed");

8-4 Product Title/BookTitle as a Variable

Authenticating an SSL Server

} catch (IOException ex) {
ex.printStackTrace() ;

} catch (SecurityException ex) {
ex.printStackTrace();

} catch (RuntimeException ex) {
ex.printStackTrace() ;

@override
public void destroyApp (boolean unconditional) {

}

private int sendRegAndgetResp (HttpsConnection hc) {

int resCode = -1;
boolean pass = true;

OutputStream os;

try {
((HttpsConnection) hc).setRequestMethod (HttpConnection.GET) ;
resCode = ((HttpsConnection) hc) .getResponseCode() ;
System.out.println("Response code is: " + resCode);

if (resCode == HttpConnection.HTTP_OK) {
return PASSED;

} else {
return FAILED;

} catch (IOException ex) {
ex.printStackTrace() ;
return FAILED;

} finally {
try {

hc.close();
} catch (IOException ex) {
}

The following permissions must be added to the Application Descriptor of the IMlet.
Note that because we are using HTTPS, we require the HTTPS protocol permission,
even through the implementing protocol we requested for HTTPS (SSLv3) is the same.

Table 8-3 Permissions for Example 4-2

Permission Device

javax.microedition.io.HTTPSProtocolPermission https://*:*

This example is similar to Example 8-1. Here, however, we create an HTTPS
connection with requests and responses (instead of a direct SSL connection). An
additional ConnectionOption object also instructs the Java ME example to authenticate
the server.

auth = new ConnectionOption<>("AuthenticateServer", "TRUE");

Working with Java ME Encryption 8-5

Accessing the Keystore

Enabling this option will verify that the server certificate is valid and has been signed
by a valid certificate authority, as well as performing a number of verification steps
against the data presented by the certificate. If the test is successful, you should see
output that identifies a connection to the HTTPS server at the address and port
specified.

Pass

Accessing the Keystore

Each Java ME Embedded implementation has one or more keystores, typically located
under the appdb/certs directory. There is one keystore for each application privilege
level (such as untrusted or operator). In order to programmatically access the
keystore, use the classes in the com.oracle.crypto.keystore package.

Example 8-3 shows source code used to create five certificates, store them in the
keystore, and then iterate over the contents of the keystore when completed.

Example 8-3 Accessing the Embedded Keystore

import java.io.DataInputStream;

import com.oracle.crypto.cert.X509Certificate;

import com.oracle.crypto.cert.X509CertificateBuilder;
import com.oracle.crypto.keypair.KeyPair;

import com.oracle.crypto.keypair.KeyPairGenerator;
import com.oracle.crypto.keypair.PrivateKey;

import com.oracle.crypto.keypair.spec.RSAKeyGenParameterSpec;
import com.oracle.crypto.keystore.KeyStore;

import com.oracle.crypto.keystore.KeyStoreEntry;
import com.oracle.crypto.keystore.KeyStoreException;
import java.security.spec.AlgorithmParameterSpec;
import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.midlet.MIDlet;

public class GenerateKeystore extends MIDlet {

@override
public void startApp() {

try {

HashMap<String, KeyStoreEntry> shadow = new HashMap() ;
KeyStore ks = KeyStore.getInstance (KeyStore.STORAGE.CLIENT) ;

for (int 1 = 0; 1 < 5; 1++) {
KeyStoreEntry kse = generateRandomKeyStoreEntry();
System.out.println("Add entry with certificate serial number: " +

kse.getCertificate().getSerialNumber());
ks.addEntry (kse) ;

List<KeyStoreEntry> list = ks.getEntries();

8-6 Product Title/BookTitle as a Variable

Accessing the Keystore

Iterator<KeyStoreEntry> iter = list.iterator();

while (iter.hasNext()) {
KeyStoreEntry kse = iter.next();
String subject = kse.getCertificate().getSubject();
System.out.println("Certificate Subject: " + subject);

PrivateKey entryKey = kse.getPrivateKey();
byte[] entryEncoded = entryKey.getEncoded() ;

System.out.println("Private Key: " + entryEncoded.toString());

} catch (SecurityException ex) {
// Handle exception

} catch (KeyStoreException ex) {
// Handle exception

@override

public void destroyApp (boolean unconditional) {

}

private KeyStoreEntry generateRandomKeyStoreEntry () {

KeyStoreEntry entry = null;
try {

AlgorithmParameterSpec param;
param = new RSAKeyGenParameterSpec (512, 3);

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
kpg.initialize (param) ;

KeyPair kp = kpg.generateKeyPair () ;

int serialNumber = (int) (Math.random() * 1000000);

System.out.println("Create X509 Certificate serial: " + serialNumber) ;

X509CertificateBuilder builder = new X509CertificateBuilder (kp);

builder.setSerialNumber ("" + serialNumber) ;
builder.setSubject ("C=JP; ST=NE;L=Menlo;0=0racle;0U=Java;CN=Test." +
serialNumber) ;

builder.setValidityInDays (365);
X509Certificate cert = builder.create();

entry = new KeyStoreEntry(cert, kp.getPrivate(), "test");
} catch (Throwable ex) {

ex.printStackTrace() ;

}

return entry;

The following permissions must be added to the Application Descriptor of the IMlet to
access the keystore on the Java ME Embedded device.

Working with Java ME Encryption 8-7

Configuring the Board as a Secure Server

Table 8-4 Permissions for Example 4-3

Permission Device

com.oracle.crypto.keystore.KeyStorePermission client_only

This example will access the local keystore on the embedded board (client) with the
following call:

KeyStore ks = KeyStore.getInstance (KeyStore.STORAGE.CLIENT) ;

Note that the keystore that is accessed will depend on the trust level of the application.
If the Java ME embedded application is not signed, it will fall into the untrusted
security domain by default.

We can access the keystore similar to accessing it with the Java SE environment. First,
we create a KeyStoreEntry object and populate it with a certificate. This is, in turn,
added to the embedded keystore via a simple loop and iterated over later in the
program. Here is the output after running the program:

Creating X509 Certificate with serial number: 798364

Add keystore entry with certificate serial number: 4F:53:40
Creating X509 Certificate with serial number: 67079

Add keystore entry with certificate serial number: 43:07:09
Creating X509 Certificate with serial number: 723418

Add keystore entry with certificate serial number: 48:22:12
Creating X509 Certificate with serial number: 792956

Add keystore entry with certificate serial number: 4F:1D:38
Creating X509 Certificate with serial number: 661145

Add keystore entry with certificate serial number: 42:0B:2D

Certificate Subject: C=JP,ST=NE,L=Menlo,0=0racle,OU=Java,CN=Test.798364
Private Key: [B@fcddcfc2

Certificate Subject: C=JP,ST=NE,L=Menlo,0=0Oracle,OU=Java,CN=Test.67079
Private Key: [B@lclcclab

Certificate Subject: C=JP,ST=NE,L=Menlo,0=0racle,OU=Java,CN=Test.723418
Private Key: [B@e854blic

Certificate Subject: C=JP,ST=NE,L=Menlo,0=0racle,OU=Java,CN=Test.792956
Private Key: [B@1d69c567

Certificate Subject: C=JP,ST=NE,L=Menlo,0=0Oracle,QU=Java,CN=Test.661145
Private Key: [B@la5796e6

Configuring the Board as a Secure Server

The Java ME Embedded binary contains functionality that allows an embedded board
to function as a server using secure protocols. The functionality is identical to the
configuration of a Java SE server.

Example 8—4 shows source code used to setup the embedded board as a server.

Note: At the time of release, Oracle Java ME Embedded 8.1 has
removed support for SSLv3 due to a widely-publicized security
vulnerability. However, the source code example is applicable to other

forms of transport-layer security included with Oracle Java ME
Embedded 8.1.

8-8 Product Title/BookTitle as a Variable

Configuring the Board as a Secure Server

Example 8-4 Server-Side Code

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;

import javax.microedition.io.SecureConnection;
import javax.microedition.io.SecureServerConnection;
import javax.microedition.midlet.MIDlet;

public class EmbeddedServer extends MIDlet {

@override
public void startApp() {

String PORT = "10005";

SecureServerConnection ssc = null;
ConnectionOption<String> protocol = null;

try {
protocol = new ConnectionOption<>("Protocol", "SSLv3");
ssc = (SecureServerConnection) Connector.open("ssl://:"+PORT,

protocol) ;

System.out.println("Connection listening on:");
System.out.println("Address: " + ssc.getLocalAddress());
System.out.println("Port: " + ssc.getLocalPort());

ssc.acceptAndOpen () ;
System.out.println("Connection made!");

} catch (SecurityException ex) {
ex.printStackTrace() ;

} catch (RuntimeException ex) {
ex.printStackTrace();

} catch (IOException ex) {
ex.printStackTrace() ;

@override
public void destroyApp (boolean unconditional) {

}

The following permissions must be added to the Application Descriptor of the IMlet to
access the keystore on the Java ME Embedded device.

Table 8-5 Permissions for Example 4-3

Permission Device
javax.microedition.io.SSLProtocolPermission ssl://*:*
javax.microedition.io.SocketProtocolPermission socket://*:*

Working with Java ME Encryption 8-9

Configuring the Board as a Secure Server

This example uses a SecureServerConnection object, which creates a socket at port
10005 using the SSL protocol. It is essential to include the following line as well:

ssc.acceptAndOpen () ;

Without this line, the secure socket will never accept an incoming connection, and any
attempt to make a connection will result in a runtime exception. Note that a call to this
method will block until a successful connection is made.

As with the previous examples, the Java ME Embedded keystore must have a valid
server certificate for the trust-level that the application is running under, which will be
validated upon any secure connection. If the certificate is absent, or is not valid, an
exception will be thrown on the server.

The client-side code to make the connection is nearly identical to Example 8-1, with a
slight change to the port and the protocol. A successful connection should output the
following:

Address: 192.168.1.80
Port: 10005
Connection made!

8-10 Product Title/BookTitle as a Variable

A

Design

Memory

Threads

Java ME Optimization Techniques

This appendix covers common optimization techniques when working with Java ME
Embedded devices. Many of these techniques are common to the CLDC VM in both
Java Embedded and traditional Java ME.

Embedded systems are typically designed to perform a specific task, unlike a
general-purpose computer that strives to handle multiple tasks with equal efficiency.
Some embedded systems also have real-time performance constraints for safety and
usability; others may have little or no performance requirements, allowing the system
hardware to be simplified to reduce costs. As such, developers should use the simplest
application design possible to avoid overtaxing the embedded system.

Resources are frequently limited in embedded devices. Often memory is the most
valuable resource. Many embedded devices have memory that is measured in
megabytes (MB), and some of it is used by the Runtime Operating System (RTOS),
leaving the remainder for use by the Java VM and its applications.

Be aware of how much memory is typically used by your application, the RTOS, and
the Java VM. This will vary from one embedded board to another. By the time a Java
ME embedded application exhausts all memory and is subject to an
OutOfMemoryError, there are few options left: the application must either force the VM
to free any unnecessary memory using a System.gc () call, or if that doesn’t work,
crash.

Java threads are often an expensive resource with embedded Java VMs. Java
embedded applications work best when using minimal application threads. If you
must create multi-threaded code, be sure to minimize the use of synchronized code,
which can be expensive on embedded devices. As a general rule, avoid using the
Timer class, as an extra thread is created for each timer.

A common technique for creating Java ME embedded applications is to create a
background thread in the startApp () method of the MIDlet class and reuse it
throughout the IMlet lifecycle.

Java ME Optimization Techniques A-1

Input/Output

System Callbacks

System callback functions should never block and should return as soon as possible to
avoid slowing down the CLDC VM. Pay special attention to the following MIDlet
methods:

m startApp()
s pauselpp()

m MIDlet constructor

Input/Output

The Record Management System (RMS) is an I/O resource that should be used
carefully. With any application that uses RecordStore objects, opening and closing
operations should be minimized. In addition, strive to group reads and writes in one
section of code as much as possible. Spreading RecordStore read and writes across the
application can slow down the application.

Another common strategy when working with RecordStore objects is to use buffers,
which reside in memory and are often faster. This is a common technique:

» For reading record stores, read the entire record into a buffer, then parse the buffer.

» For writing record stores, write to a single buffer, then write the buffer to a record.

General Tips

Here are some other general hints for optimizing your code that are pervasive
throughout the industry for Java ME code:

= Object creation is very costly with respect to memory and performance overhead.
Create objects only when needed, and reuse any object instances that are created in
a cache.

= Use lazy instantiation if appropriate. However, many Java ME developers will
create all objects outside the main loop of the program and reuse them as the
application runs. With reusable objects, be sure to include a method that returns
them to the original state, independent of the object constructor.

= Avoid auto-boxing when possible.
= Do not perform assertions in tight loops.
= Avoid using variable-length arguments (varargs).

= Use local variables instead of global variables when you can. Local variables are
faster and generate less bytecode.

s Only include system classes that you need. Avoid using wild character imports
like import java.util.* Instead, import classes directly, such as import
java.util.Date.

= Don't perform string concatenations using the "+" operator. Use the StringBuffer
class instead. For example, don’t do the following:

String str = new String ("Hello ");
str += "World";

Instead, do this:

StringBuffer str = new StringBuffer ("Hello ");

A-2 Product Title/BookTitle as a Variable

Application Size

str.append ("World") ;

Remember that in Java, String objects are immutable, so performing
concatenation with the "+" operator will in fact create a StringBuffer, copy the
contents of the String over, append the other String, then copy the result back
into a different immutable String object.

= Divide your multi-dimensional arrays into single-dimensional arrays.
Multidimensional arrays take more time to calculate the proper index in memory.

= Avoid any unnecessary creation and disposal of objects and variables inside loops.
For example, avoid a construct like this:

for (int 1 = 0; i < length; i++) {
MyConstantClass ¢ = new MyConstantClass();
results[i] = c.doSomething();

}

» Use a switch-case construct instead of if blocks, as they are compiled into more
optimized bytecode. Remember that starting with Java 8, the switch keyword can
handle strings, which is more efficient that creating a large number of if blocks
that test using the equals () method.

= Use public variables directly instead of using get/set accessors.

= Setvariables to null when you don't need them anymore to assist with garbage
collection.

Application Size

Aside from minimizing the number of classes in your application, developers can also
make use of obfuscator tools, which are present in NetBeans and other IDEss. The
original purpose of an obfuscator is to make reverse engineering bytecode more
difficult. However, it can also create smaller and often faster class files. In fact,
obfuscators typically reduce Java ME embedded class file size by 25% to 35%.

The NetBeans IDE contains an option to install the ProGuard obfuscator library. You
can choose this option by right-clicking on your project and bringing up the Project
Properties. Next, expand the Build leaf and select Obfuscating. If ProGaurd is not
already installed, press the button to download and install the NetBeans module, as
shown in Figure A-1.

Java ME Optimization Techniques A-3

Application Size

Figure A-1 Installing the ProGuard Obfuscator Library

({J Project Properties - GPSDatalMC £

Categories:

@ Sources

Platform () NetBeans IDE Installer i

Libraries

Application Descriptor
Build

Compiing

Signing
Obfuscating
Documenting

=]
=]
=]
@ Welcome to the NetBeans IDE Plugin Installer

The instaler wil dowriload, verify and then install the selected plugins.

o o

©

The follawing plugins will be installed:

©

ProGuard Obfuscator Library [1.14]

Once the obfuscator is installed, choose an obfuscation level by moving the slider
anywhere from Level 1 and Level 9. As shown in Figure A-2, each level presents a
detailed description in the window below that shows what operations the obfuscator
is performing.

Figure A-2 Choosing an Obfuscation Level

. N
{J Project Properties - GPSDatalMC |
Categories:
Souces Obfuscation Level: [l
Platform
st Off 1 % 3 4 5 [7 8 High
Libraries
Application Descriptor Level Description:
Build

Level 9 - Everything except public methods of MIDlet dasses.
Compiling Mainly for applications.

Signing
Obfuscator arguments:

Ebiiecatmg -dontusemixedcasedassnames
Documenting -defaultpackage "
-overloadaggressively
~+eep public dass ** extends javax.microedition.midlet MIDlet {
public *;
¥

Additional Obfuscation Settings:

oK ” Cancel H Help

A-4 Product Title/BookTitle as a Variable

B

Java ME Embedded Properties

This appendix documents the configurable options that are found in many ports of the
Oracle Java ME Embedded product. System properties in the Oracle Java ME
Embedded distribution can be configured in one of two ways: by modifying the jwc_
properties.ini file (if available), or by using the VM proxy command-line interface
(CLI).

Modifying the Properties File

Most platforms have a jwc_properties.ini file that can be modified with a text
editor. The jwc_properties.ini file has two distinct sections:

. [application]

Properties that are used by Java applications that are running on the board.
s [internal]

Properties used for internal system configuration.

In addition, each jwc_properties.ini file contains comments that help describe the
purpose of each entry.

It is highly recommend that you read through the original jwc_properties.ini file for
your target embedded board, as it contains essential information about each property.
Note that the Oracle Java ME Embedded runtime may alter the values inside of the
jwc_properties.ini file at any time (especially if the set-property and
save-properties commands are issued in the CLI), and typically without comments,
so it helps to study the original version that comes with each distribution bundle.

Using the Command-Line Interface

In addition to specifying properties in the jwc_properties.ini file, system properties
can also be modified on the fly using the CLI set-property command. The
set-property command uses the following syntax:

set-property <key> <value>

If you wish to examine the current value of any property, use the get-property
command.
get-property <key>

Note that after any property change, the VM state is unpredictable, and it is necessary
to issue the save-properties command and 'shutdown -r'(or, depending on the
embedded board, cycle the power) to activate the changes. See Chapter 2 for more
information on using the VM proxy CLIL

Java ME Embedded Properties B-1

Using the Command-Line Interface

The list of configurable system properties differs extensively on each platform and
with each release, and may be retrieved by issuing the following command via the CLI

proxy:
> properties-list

For example, the properties list that is generated for the Raspberry Pi would look
similar to the following:

read only STRING xml.rpc.subset.version = 1.0

read/write STRING xml.jaxp.subset.version = 1.0

read/write BOOL vmconfig.system_reboot = false

read only STRING system.storage_root = ../appdb

read/write BOOL system.network.reconnect = false

read/write INT system.jam_space = 4096000

read only STRING system.default_storage = ../appdb

read only STRING socket = com.sun.midp.io.j2me.socket.ProtocolPushImpl
read/write STRING security.providers.jar = null

(several lines omitted)

read/write INT AMS_MEMORY_LIMIT MVM = -1

B-2 Product Title/BookTitle as a Variable

C

Signing an IMlet Suite's JAR File

Establishing trust is important for IMlet suites that use security-sensitive APIs. Signing
an IMlet suite's JAR file allows the suite to be trusted. A JAR file is signed with the
JadTool utility. A copy of the JadTool utility is provided with the Oracle Java ME
Embedded software bundle.

The JadTool utility signs a JAR file by adding a certificate and the JAR file's digital
signature to a Java Application Descriptor (JAD) file. Adding a certificate and a JAR
file's digital signature to a JAD file are separate steps. You must complete both steps to
sign a JAR file. The steps are in "Instructions for Using JadTool" on page C-1.

You can also use the JadTool utility to obtain information about a certificate in a JAD
file. The information can include the name of the entity that issued the certificate, the
certificate's serial number, the dates between which it is valid, and its Message Digest
Algorithm 5 (MD5) and Secure Hash Algorithm (SHA) fingerprints.

Instructions for Using JadTool

This section explains how to use the JadTool utility through an example that signs a
hypothetical IMlet suite named ImaginaryIMlet.

Note: ImaginaryIMlet is not an actual IMlet suite. No
ImaginaryIMlet files are included with this release.

The example uses the key pair provided with the software. The key pair is in the j2se_
test_keystore.bin file, which is a keystore managed with the Java SE platform's
keytool utility. For information on the keytool utility, see
http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.h
tml.

After you build an implementation of the software, j2se_test_keystore.bin is
located in this directory:

{OUTPUT-Dir}/meep/bin/i386
Where {OUTPUT-Dir} is the directory that contains the output of your builds of the
Oracle Java ME Embedded software.

The password for the file is keystorepwd. The alias of the key pair is dummyca. The
private key password is keypwd. The file is provided for testing purposes.

For IMlet suites on end-user devices, use an RSA key pair backed by a certificate or
certificate chain from a certificate authority. You must import the certificate or

Signing an IMlet Suite's JAR File C-1

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Using the JadTool Utility

certificate chain into a Java SE platform's keystore with the Java SE platform's keytool
utility.

The JadTool utility is packaged in a JAR file named JadTool. jar in this directory
where {OJMEE-Dir} is the base directory of the Oracle Java ME Embedded installation:

{OJMEE-Dir}\toolkit-lib\process\jadtool\code

Using the JadTool Utility

1.
2.

Open a Windows command prompt.

Change your current directory to the directory that holds your IMlet's JAR and
JAD files.

Add the certificate for your public key pair to the JAD file using the JadTool
utility.

The JadTool utility adds the certificate as the value of an attribute named
MIDlet-Certificate-m-n, where m is the number of the certificate chain (it
defaults to one but you can provide a different number with the -chainnum
switch), and # is an integer that, for new certificates, begins at one and increments
by one each time you add a new certificate to the JAD file.

For example, if {OUTPUT-Dir}/binaries is C:\jme\src\output\binaries, the
following command adds the certificate as the value of the attribute
MIDlet-Certificate-1-1 to the example JAD file:

C:\myIMlets>java -jar $O0JMEE_
HOME%\toolkit-lib\process\jadtool\code\JadTool.jar -addcert -alias
dummyca -storepass keystorepwd -keystore
C:\jme\src\output\midp\bin\i386\j2se_test_keystore.bin -inputjad
ImaginaryIMlet.jad -outputjad ImaginaryIMlet.jad

(Optional) Verify that the certificate is added to the JAD file by using the JadTool
utility to list the certificate in the JAD file.

C:\myIMlets>java -jar $OJMEE_
HOME%\toolkit-lib\process\jadtool\code\JadTool.jar -showcert -certnum
1 -inputjad ImaginaryIMlet.jad

Subject: C=US, ST=CA, L=Santa Clara, O=dummy CA, OU=JCT, CN=thehost
Issuer : C=US, ST=CA, L=Santa Clara, O=dummy CA, OU=JCT, CN=thehost
Serial number: 3d3ece8a
Valid from Wed Jul 24 08:58:02 PDT 2002 to Sat Jul 21 08:58:02 PDT 2012
Certificate fingerprints:

MD5: 87:7f:5e:64:c8:dd:b4:bf:35:39:76:87:99:9b:68:82

SHA: 9d:c0:88:ce:08:83:cd:eb6:fe:13:8b:26:f6:bd:df:e2:da:3c:25:98

If you have a key pair backed by a certificate chain, import the intermediate
certificates.

Import the intermediate certificates using the JadTool utility with the -addcert
switch shown in Step 3, taking care to use the correct chain order.

For example:

The XXXX company provides a certificate that vouches for your key pair, the
WidgetCertificates company vouches for the XXXX certificate, and VeriSign
vouches for the WidgetCertificates certificate.

C-2 Product Title/BookTitle as a Variable

Options Summary

Import the XXXX certificate followed by the WidgetCertificate. The XXXX
certificate is MIDlet-Certificate-1-2 and the WidgetCertificate certificate is
MIDlet-Certificate-1-3.

Note: You do not import the certificate of the root CA. In this
example, the certificate is from VeriSign. The root certificate is on the
device.

Sign the JAR file using the JadTool utility.

The JadTool utility signs the JAR file, base64 encodes the signature, and stores it
as the value of the MIDlet-Jar-RSA-SHAL attribute of the output JAD file.

Note: The key used to sign the JAR file must be from the same Java
SE keystore entry as key pair specified in Step 3. The JadTool utility
does not check that the JAR file is signed with a keystore entry that
has a certificate in the JAD file.

For example:

C:\myIMlets>java -jar $O0JMEE_
HOME%\toolkit-lib\process\jadtool\code\JadTool.jar -addjarsig
-keystore C:\jme\src\output\midp\bin\i386\j2se_test_keystore.bin
-alias dummyca -storepass keystorepwd -keypass keypwd -jarfile
ImaginaryIMlet.jar -chainnum 2 -inputjad ImaginaryIMlet.jad -outputjad
ImaginaryIMlet.jad

Handling Expired Certificates

A JAD file can have multiple certificate, but it can hold the signature for only one JAR
file. When a certificate in the JAD file expires, you must add a new certificate and
re-sign the JAR file. When re-signing the JAR file, the JadTool utility overwrites the
current digital signature with the new one.

Options Summary
The JadTool utility supports the following options:

none
Running the tool without options returns the same information as the -help
option.

-addcert -alias keyAlias [-keystore keystore] [-storepass password] |[
-chainnum chainNumber | [-certnum certNumber] [-encoding encoding]
-inputjad inputjadFile -outputjad outputfadFile

Adds a certificate to a JAD file. To add a certificate, this utility first creates the
certificate from the entry identified by keyAlias in keystore. The keystore, if provided,
must be a Java Cryptography Architecture keystore (a file containing data such as key
entries in a format that the Java SE platform can use). If keystore is not provided, its
default, {User_Home_Dir}/ .keystore, is used. If keystore requires a password to access
its contents, password must be provided.

After creating the certificate and attribute name, this utility concatenates the contents
of inputjadFile with the new certificate and writes it as outputfadFile.

Signing an IMlet Suite's JAR File C-3

Options Summary

You can use the same file for the inputfadFile and outputjadFile.

The certificate is in the JAD file as the value of an attribute named
MIDlet-Certificate-m-n, where:

m is chainNumber, or 1 if it is not provided. A JAD file can contain multiple
certificate chain.

n is certNumber. The value certNumber depends on whether the new certificate
replaces an existing certificate. If the certificate is a replacement, then certNumber
must be the number of the certificate to replace. For example, if the new certificate
would replace the one stored as the value of attribute MIDlet-Certificate-1-3,
then certNumber must be 3. If the certificate is new, certNumber is ignored.

If inputfadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. This utility uses the same encoding for reading
inputJadFile and writing outputjadFile.

-addjarsig [-jarfilejarFile] -alias keyAlias [-keystore keystore]
-storepass storePassword -keypass keyPassword [-encoding encoding]
[-chainnum chainNumber 1 -inputjad inputjadFile -outputjad outputjadFile

Creates a digital signature for jarFile. If jarFile is not specified, the value of the
MIDlet-Jar-URL attribute from inputjadFile is used. The attribute's value must be a
valid HTTP URL.

This utility creates a digital signature for the JAR file using the private key
identified by keyAlias in keystore. If keystore is not provided, its default is {User_
Home_Dir}/.keystore. This utility gets the key from keystore using storePassword
and keyPassword, and creates the signature with it using the EMSA-PKCS1-v1_5
encoding method of PKCS #1, version 2.0. See RFC 2437 at
http://www.ietf.org/rfc/rfc2437.txt

After creating the signature, this utility concatenates the contents of inputjadFile
with the signature, and writes it as outputjadFile. The signature is base64 encoded,
and is in the output JAD file as the value of the MIDlet-Jar-RSA-SHAL-m attribute
where m is chainNumber, or 1 if it is not provided. This number corresponds to
the value for m in the MIDlet-Certificate-m-n attribute.

If inputfadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. This utility uses the same encoding for reading
inputJadFile and writing outputjadFile.

-help
Prints a usage summary.

-showcert [([-certnum certNumber] [-chainnum chainNumber 1) | -all]
[-encoding encoding 1 -inputjad inputjadFile

Prints information about either all certificates, or the certificate that corresponds to
the given certNumber and chainNumber in the inputjadFile. The option -all cannot
be combined with the -certnum and -chainnum options.

The chainNumber of a certificate is the m in the JAD file's
MIDlet-Certificate-m-n attribute, while the certNumber is the n. For example, to
show the certificate that is the value of attribute MIDlet-Certificate-2-3, the
chainNumber must be 2 and certNumber must be 3. If certNumber or chainNumber are
not provided (and the -all option is not used), the utility uses a 1.

The information printed includes the certificate's subject, issuer, serial number,
dates between which it is valid, and fingerprints (md5 and SHA). The attributes in
the subject and issuer names are shown in reverse order from what is in the

C-4 Product Title/BookTitle as a Variable

Options Summary

certificate (a side effect of using the Java SE platform certificate API). As a result,
the names might not match what is returned from other tools that display a
certificate's subject and issuer names.

If inputfadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. The tool uses the same encoding for reading
inputJadFile and writing outputjadFile.

Signing an IMlet Suite's JAR File C-5

Options Summary

C-6 Product Title/BookTitle as a Variable

D

Managing Keys and Certificates

The Oracle Java ME Embedded platform uses public keys from a Certificate Authority
(CA) to validate Web sites and signed IMlet suites. The Oracle Java ME Embedded
implementation also uses private keys from certificates to establish secure connections
with client authentication. When the platform uses a secure protocol to access a Web
site, the site provides a certificate which is typically signed by a CA. In the same
manner, signed IMlet suites also contain a certificate that is signed by a CA. The Oracle
Java ME Embedded platform checks the validity of a certificate by using the CA's
public key. By signing a certificate, a CA certifies the identify of the owner of the Web
site or IMlet suite.

You can manage the CA certificates, public keys, and private keys on the embedded
board by using the MEKeyTool utility. The MEKeyTool utility is provided with the Java
ME SDK distribution, and is similar to the keytool utility provided with the Java SE
platform, except that MEKeyTool will also operate across a network on the keystores of
an embedded device that is currently recognized by the Oracle Java ME Embedded
Device Manager.

This chapter describes how to use MEKeyTool to manage keystores that are used by the
Oracle Java ME Embedded Emulator or recognized by the Oracle Java ME SDK Device
Manager.

Running MEKeyTool
MEKeyTool is an executable that can be found in the following location:
{ME-SDK_Home-Dir}\bin\MEKeyTool .exe
Where ME-SDK-Home-Dir is the base directory of the Oracle Java ME Embedded
installation.

To connect to a keystore on an embedded board instead of the emulator, add the
-Xdevice option to reference a device currently recognized by the Oracle Java ME
Embedded Device Manager:

MEKeyTool.exe -Xdevice:EmbeddedExternalDevicel

WARNING: Each embedded board may only accept a limited subset
of commands, depending on the functionality offered. To list the
functionality supported by the device EmbeddedExternalDevicel, for
example, you can use the emulator’s Xquery option:

emulator.exe -Xquery -Xdevice:EmbeddedExternalDevicel

Managing Keys and Certificates D-1

Using the MEKeyTool Utility

Using the MEKeyTool Utility

1. Open a command prompt or terminal window.

2. Change your current directory to the location of the EXE file shown above, or add
the directory to your current %PATH%.

3. Run MEKeyTool with the options needed.
For example, use the following command to display help:

MEKeyTool.exe -help

ME Keystores

The MEKeyTool utility keeps the CA certificates, public keys, and private keys in an ME
keystore. Depending on the device, the keystore is at the following locations, where
base-dir is the base directory of the Oracle Java ME Embedded or Oracle Java ME SDK
installation.

Table D-1 Location of Keystores

Device Location
Emulator {base_dir}/runtimes/meep/appdb/certs
Embedded Boards [base_dir}/appdb/certs (if file system is accessible)

This keystore directory contains an index file named _main.ks and a set of certificate
files. The platform includes the key of one CA.

WARNING: Oracle does not recommend modifying the default
keystore, but instead modifying a copy, either one that is
user-generated or in the working directory for the appropriate
device.

Working Directory for the Emulator

When the Oracle Java ME Embedded emulator is first started, it creates a working
directory in {User_Home_Dir}/ javame_sdk/{Version}/work/{device}/appdb/certs.
(Note that this is only the case for emulated devices, such as EmbeddedDevicel, not
devices that map to actual embedded boards such as EmbeddedExternalDevicel.)
Next, it copies all certificates and several other important files there. Be aware that
deleting the working directory removes all device settings and, of course, any
additions to the local keystore.

Note: The MEKeytool utility enables you to import keys from Java SE
keystores. However, you cannot use the MEKeytool utility directly on a
Java SE keystore. For example, if you try to use the MEKeytool utility
to view public keys in a Java SE keystore, the utility displays an error
message that the keystore is corrupted. An ME keystore has a different
format Java SE platform keystores, which have a format in accordance
with the Java Cryptography Architecture specification.

D-2 Product Title/BookTitle as a Variable

Importing a Key

Creating and Managing Multiple ME Keystores

In addition to managing the public keys in the ME keystore, you can use the
MEKeytool utility to manage additional ME keystores, both with the emulator and
some embedded boards that contain an accessible filesystem. For example, during
testing you might want to have multiple keystores to run against. One keystore could
contain all the necessary testing keys, a second keystore could contain a subset of the
testing keys, and a third keystore could contain an expired key.

Creating Alternate ME Keystores

The MEKeytool utility does not create a new ME keystore directory. The developer
must create an empty keystore first, consisting of a directory and an empty _main.ks
file, which can be copied from the keystore provided with the distribution bundle. See
"Importing a Key" on page D-3 for instructions on how to import a key.

Managing Alternate ME Keystores
To manage a keystore other than the default, use the -import -MEkeystore option:

MEKeyTool.exe -import -MEkeystore keystoreName ...

For example, if you created an ME keystore, { User_Home_Dir/\myKeys\set2_test_
keys.ks, that contains the keys that are needed to run a particular set of tests, use the
MEKeyTool command to manage that keystore:

MEKeyTool .exe -import -MEkeystore {User_Home_Dir}/myKeys/set2_test_keys.ks

For all MEKeyTool commands, you receive an error message if the file that you provide
as an argument to -MEkeystore does not exist.

Importing a Key

You can add a key to an ME keystore by importing it from the Java Cryptography
Architecture keystore that comes with the Java SE platform or from a keystore that you
create. For more information on the keystore that comes with the Java SE platform, see
http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.h
tml.

The file name for the Java SE keystore is .keystore and the default location is in your
home directory. This file is created if you use the Java SE platform's keytool utility to
create keys and you do not specify a different location. The MEKeyTool utility
references this keystore unless you use the -keystore argument to specify a different
keystore.

Note: If you use a Java SE keystore other than the default, the new
keystore might require a password.

The -import option imports a key. For example, to add a key with an alias dummyca
from the Java SE keystore j2se_test_keystore.bin that has a password, keystorepwd,
to the ME keystore at { User_Home_Dir}/myKeys/set2_test_keys.ks:

C:\>MEKeyTool.exe -import -alias dummyca -keystore j2se_test_keystore.bin
-storepass keystorepwd -MEkeystore myKeys/set2_test_keys.ks

Managing Keys and Certificates D-3

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Listing Available Keys

If it is necessary to import a certificate with a private key from a file in PKCS12 format
(for example, cert_with_key.pl2) with the keystore password storepwd and the key
password keypwd, use the command:

C:\>MEKeyTool.exe -import -keystore cert_with_key.pl2 -storepass storepwd -keypass
keypwd -MEkeystore myKeys\set2_test_keys.ks

Listing Available Keys

An ME keystore organizes the keys that it contains by giving each one a number. For
each key, the keystore also holds the name of the entity to whom the public key
belongs, the time over which the key is valid, and the domain associated with the key.
The MEKeyTool -1ist command displays information for each key in a particular
keystore.

The following example lists the contents of the ME keystore { User_Home_
Dir}/myKeys/setl_test_keys.ks:

C:\>MEKeyTool.exe -list -MEkeystore myKeys/setl_test_keys.ks

Key 1
Owner: C=US;0=VeriSign, Inc.;0U=Class 3 Public Primary Certification Authority
Valid from Mon Jan 29 03:00:00 MSK 1996 to Wed Aug 02 03:59:59 MSD 2028
Security Domain: identified_third_party
Enabled: true

Key 2
Owner: O=Oracle;C=myserver
Valid from Sat Aug 03 00:43:51 PDT 2002 to Tue Jul 31 00:43:51 PDT 2012
Security Domain: operator
Enabled: true

The following example lists of the contents of the ME keystore on a Raspberry Pi
device currently listed as EmbeddedExternalDevicel. Again, note that the device must
already be registered with the device manager.

C:>MEKeyTool.exe -list -Xdevice:EmbeddedExternalDevicel

[1]

Owner CN=AddTrust External CA Root,OU=AddTrust External TTP Network, O=AddTrust
AB,C=SE valid from Tue May 30 03:48:38 PDT 2000 till Sat May 30 03:48:38 PDT 2020

[2]
Owner CN=GlobalSign Root CA,OQU=Root CA,0=GlobalSign nv-sa,C=BE valid from Tue Sep
01 05:00:00 PDT 1998 till Fri Jan 28 04:00:00 PST 2028

[3]

Owner CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\, Inc.,0=GTE
Corporation,C=US valid from Wed Aug 12 17:29:00 PDT 1998 till Mon Aug 13 16:59:00
PDT 2018

[4]

Owner CN=Entrust.net Secure Server Certification Authority,0U=(c) 1999 Entrust.net
Limited, OU=www.entrust.net/CPS incorp. by ref. (limits liab.),O0=Entrust.net,C=US
valid from Tue May 25 09:09:40 PDT 1999 till Sat May 25 09:39:40 PDT 2019

[5]
Owner OU=Class 3 Public Primary Certification Authority,0O=VeriSign\, Inc.,C=US
valid from Sun Jan 28 16:00:00 PST 1996 till Tue Aug 01 16:59:59 PDT 2028

(6]

Owner 0OU=VeriSign Trust Network,OU=(c) 1998 VeriSign\, Inc. - For authorized use
only,0U=Class 3 Public Primary Certification Authority - G2,0=VeriSign\, Inc.,C=US

D-4 Product Title/BookTitle as a Variable

Deleting a Key

valid from Sun May 17 17:00:00 PDT 1998 till Tue Aug 01 16:59:59 PDT 2028

[7]
Owner CN=thehost,0U=Unknown, O=TEST, L=Unknown, ST=Unknown, C=US valid from Wed Nov 16
11:40:27 PST 2005 till Sat Nov 14 11:40:27 PST 2015

[81]
Owner CN=GeoTrust CA for UTI,O=Unified Testing Initiative (UTI),C=US valid from
Thu Jan 22 21:00:00 PST 2004 till Tue Jan 23 20:55:00 PST 2024

[9]

Owner
1.2.840.113549.1.9.1=#16197072656d69756d2d736572766572407468617774652e636£64d,
CN=Thawte Premium Server CA,OU=Certification Services Division,O=Thawte Consulting
cc,L=Cape Town, ST=Western Cape,C=ZA valid from Wed Jul 31 17:00:00 PDT 1996 till
Thu Dec 31 15:59:59 PST 2020

[10]
Owner OU=Equifax Secure Certificate Authority,O=Equifax,C=US valid from Sat Aug 22
09:41:51 PDT 1998 till Wed Aug 22 09:41:51 PDT 2018

Deleting a Key

When keys expire, you must delete them from the keystore and add their
replacements. You can also delete unused keys. For example, if you added the public
key of a test site with a self-signed certificate during testing, you can delete that key
when testing is completed.

The -delete command to the MEKeyTool utility removes a key from an ME keystore.
The -delete command requires one of the following options:

s -owner ownerName

Sets the string that describes the owner of the public key in a given keystore. Use
the -1ist command to print information about each key in the keystore. The
string in the command must match the one printed when you use the -1ist
command to the MEKeyTool utility. See "Listing Available Keys" on page D-4 for
more information.

s -number keyNumber

Sets the number that a given keystore has assigned to each of its keys. The number
is greater than or equal to one. Use the -1ist command to print the number that
the keystore has assigned to each of its keys. See "Listing Available Keys" on

page D-4 for more information.

The following examples show two ways to delete a key from the ME keystore {User_
Home_Dir}/myKeys/setl_test_keys.ks (the keystore used in "Listing Available Keys"
on page D-4):

= Deleting a key by using its key number-

C:\>MEKeyTool.exe -delete -number 1 -MEkeystore myKeys\setl_ test_
keys.ks

= Deleting a key by using its owner name-

C:\>MEKeyTool.exe -delete -owner "C=US;0=VeriSign,\ Inc.;0U=Class 3
Public Primary Certification Authority" -\MEkeystore myKeys\setl_ test_
keys.ks

Managing Keys and Certificates D-5

Replacing a Key

Replacing a Key

Some situations require that you replace a key (such as when a key expires). To replace
a key, first delete the old key, then import the new key.

Note: If you import the new key before deleting the old one, the
MEKeyTool utility displays an error message that the owner of the key
has a key in the ME keystore.

MEKeyTool Summary

The MEKeyTool utility supports the following options:

no option

Runs the tool without options and returns the same information as the -help
option.

-help
Prints a usage summary.

-import [-alias keyAlias] [-keystore JavaSEKeystore | [-keypass keyPassword] [
-storepass storePassword | [-client clientName]

Imports a key identified by security client clientName or keyAlias from
JavaSEKeystore into the device keystore. If JavaSEKeystore is not provided, its
default, {User_Home_Dir}/ .keystore, is used (where {User_Home_Dir} is the user's
home directory).

If JavaSEKeystore requires a password, you must provide storePassword. If the
-keypass argument is provided, the private key will be imported to the ME
keystore together with public certificate.

-list [-client clientName]

Lists the number, owner, and validity period, and domain of the key identified by
security client clientName, or all keys if the option is omitted, in the device
keystore.

-delete [-client clientName] (-owner ownerName | -number keyNumber)

Deletes the key identified by security client clientName, ownerName or keyNumber
from the device keystore.

You can provide either ownerName or keyNumber, but not both. You can find the
valid values for them by running the MEKeyTool utility with the -1ist command.

-export [-client clientName] (-number keyNumber) (-out outputFile)

Exports a certificate, specified by security client clientName or keyNumber, from the
device keystore to the output file outputFile. The format of the outputFile is:

- PEM in the case of an extracted public key or certificate

- PKCS#12 in the case of an extracted certificate with a private key. The keystore
password of the PKCS#12 file is the same password that was used in the
-keypass parameter of the import command

-clients

Presents a list of all the security clients defined in the system that can accept public
keys.

D-6 Product Title/BookTitle as a Variable

E

OEM Extensions

This chapter describes the OEM Extensions, which provide a mechanism to add
extensions to the binary runtime of the Oracle Java ME Embedded software.

Using OEM Extensions

The Oracle Java ME Embedded software enables you to extend the binary runtime by
making your own Java packages available to IMlets as OEM extensions. You specify
the location of the JAR files that contain your packages in a configuration file and
IMlets can use those packages at run time.

To make your packages available to IMlets as OEM Extensions, follow these steps:

1.

2
3
4.
5

Write the Java classes in your package.

Compile your classes.

Preverify your classes.

Create a JAR file that contains your classes.

Add the JAR file to the configuration file jwc_properties.ini.

a. Edit the file jwc_properties.ini. This file is located in
runtimes/meep/bin/jwc_properties.ini in the Windows distribution and in
java/jwc_properties.ini in the distribution for the reference board.

b. Locate the line that contains the configuration setting extraclasspath.

c. Add the location of your JAR file. Use a semicolon between paths if you have
more than one JAR file, for example:

extraclasspath = C:/myjarl.jar;C:/myjar2.jar

Note: You must use forward slashes in the paths in extraclasspath.

Share the JAR file and the details of your packages with the IMlet programmers
that need to use your classes.

OEM Extensions E-1

Using OEM Extensions

E-2 Product Title/BookTitle as a Variable

Encryption Algorithms

The Java ME 8 product includes the following supported cipher suites and encryption
algorithms, with specified key lengths.

Supported Algorithms for Windows, Raspberry Pi, and Qualcomm

Platforms
TLSv1.0-1.2 are supported with the following configurations.

Note: The following cipher suites are disabled by default but can be
enabled in the jwc_properties.ini file by modifying the SSL_
FORBIDDEN_CIPHERS_FILTER property:

1) TLS_ECDH_anon_* : these are non-secure anonymous cipher suites.
In order to enable these, replace ": ! aNULL" with ":aNULL" in the
properties file.

2) *_WITH_NULL_* :these are non-secure unencrypted cipher suites.
In order to enable these, replace ": ! eNULL" with ": eNULL" in the
properties file.

TLSv1.0 -TLSv1.2

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_ECDH_anon_WITH_AES_256_CBC_SHA
TLS_DH_anon_WITH_AES_256_GCM_SHA384
TLS_DH_anon_WITH_AES_256_CBC_SHA256
TLS_DH_anon_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384

Encryption Algorithms F-1

Supported Algorithms for Windows, Raspberry Pi, and Qualcomm Platforms

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_ AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES 128 CBC_SHA
TLS_ECDH_anon_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_ AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA WITH AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDH_anon_WITH RC4_128_SHA
TLS_ECDH_RSA_WITH RC4_128_SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_ NULL_SHA
TLS_ECDHE_ECDSA_WITH_NULL_SHA
TLS_ECDH_anon_WITH NULL_SHA
TLS_ECDH_RSA WITH NULL_SHA
TLS_ECDH_ECDSA_WITH_NULL_SHA
TLS_RSA_WITH_NULL_SHA256

F-2 Product Title/BookTitle as a Variable

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time and
amplitude) into a stream of binary numbers that can be processed by a digital device.
AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.
AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF
ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

Glossary-1

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.
ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/0O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.
HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

JCP

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDIet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

12C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet suite that contains
attributes used by application management software (AMS) to manage the MIDlet's
life cycle, and other application-specific attributes used by the MIDlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet suite.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

Glossary-3

JDTS

Glossary-4

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MiDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (. jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (. jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

RMI

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

Glossary-5

RMS

Glossary-6

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

URI

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

uicC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

Glossary-7

USAT

Glossary-8

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

usB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices, which
leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

A

adding keys to ME keystores, D-3
app
descriptor, 4-4
attributes
MIDlet-Certificate-m-n, C-4
MIDlet-Jar-RSA-SHA1, C-3,C-4
MIDlet-Jar-URL, C-4

Cc

certificate authority keys
see public keys, D-3
certificate chain, C-2

D

digital signature, C-3,C-4
domains, security, D-4

E

EMSA-PKCS1-v1_5 encoding, C-4
encodings
EMSA-PKCS1-v1_5, C-4
UTF-8, C-4,C-5
Extensions, OEM, E-1

F

files
j2se_test_keystore.bin, C-1
JadTooljar, C-2,C-3

importing public keys, D-3
InstallerErrorCode, 4-1,4-8
intermediate certificates, C-2

J

j2se_test_keystore.bin file, C-1
JadTool utility

instructions, C-1
JadTool jar file, C-2,C-3

Index

K

keys

see public keys
keystores, D-2
keytool utility, C-1, D-1

L

library
descriptor, 4-4
link
descriptor, 4-4
listing keys in ME keystores, D-4
Locale Change Notifier, 1-1,2-1
LocaleChangeListener, 1-1
localeChanged, 1-1
LocaleChangeNotifier, 1-1,2-1
locking suites, 4-4

ME keystores, D-2

adding keys to, D-3

importing keys into, D-3

listing keys in, D-4

replacing keys in, D-6
MEKeyTool

instructions, D-1
MEKeyTool.exe file, D-1
MEKeyTooljar, D-1
MIDlet suites

signing, C-1
MIDIet-Certificate-m-n attribute, C-4
MIDlet-Jar-RSA-SHA1 attribute, C-3,C-4
MIDIlet-Jar-URL attribute, C-4

N

NetBeans
Accessing Peripherals, 3-3
Signing an Application with API Permissions, 3-3

P

public keys
adding, D-3

Index-1

importing, D-3
listing, D-4
replacing, D-6

R

replacing keys in ME keystores, D-6

S

security domains, D-4
signing MIDlet suites, C-1
SuiteIlnfo, 4-4
getAvailableProperties, 4-5
getDownloadURL, 4-4
getName, 4-4
getSuiteType, 4-5
getVendor, 4-5
remove, 4-5
setState, 4-5
Suitelnstaller, 4-2,4-3,4-5,4-6,4-7
cancel, 4-2,4-3
start, 4-2,4-3,4-4,4-5,4-6,4-7,4-8
SuiteInstallerProgressListener, 4-1,4-2
done, 4-1,4-2
updateStatus, 4-2
SuiteLockedException, 4-5

U

UTE-8 encoding, C-4,C-5

Index-2

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Operating System Commands
	Shell Prompts
	Conventions

	1 Developer Migration Guide
	Overview
	Modified Permission Model
	Device I/O Namespace
	Generic Connection Framework Changes

	2 Java Embedded VM Proxy and Console
	Design
	Starting the VM Proxy on the Desktop
	Server Mode Connection
	Client Mode Connection

	VM Proxy Options
	Using the Command Line Interface
	ams-install
	ams-list
	ams-update
	ams-remove
	ams-run
	ams-stop
	blacklist
	properties-list
	get-property
	set-property
	save-properties
	net-info
	net-set
	net-reconnect
	device-list
	device-change
	shutdown
	cd
	delete
	get
	ls
	mkdir
	pwd
	put
	ks-delete
	ks-export
	ks-import
	ks-list
	ks-clients

	3 Security
	Overview of Oracle Java ME Embedded Permissions
	Accessing Peripherals
	Signing the Application with API Permissions
	Method #1: Signing Application Using the NetBeans IDE
	Method #2: Signing Application Using a Command Line
	Method #3: Using NullAuthenticationProvider

	CLDC Permissions
	FilePermission
	Resource Name
	Actions

	RuntimePermission
	Resource Name

	LoggingPermission
	PropertyPermission
	Resource Name
	Actions

	Keystore Permissions
	KeyStorePermission
	Resource Name

	Device I/O Permissions
	ADCPermission
	Resource Name
	Actions

	ATPermission
	Resource Name
	Actions

	CounterPermission
	Resource Name
	Actions

	DACPermission
	Resource Name
	Actions

	DeviceMgmtPermission
	Resource Name
	Actions

	GenericPermission
	Resource Name
	Actions

	GPIOPinPermission
	Resource Name
	Actions

	GPIOPortPermission
	Resource Name
	Actions

	I2CPermission
	Resource Name
	Actions

	MMIOPermission
	Resource Name
	Actions

	PWMPermission
	Resource Name
	Actions

	SPIPermission
	Resource Name
	Actions

	UARTPermission
	Resource Name
	Actions

	WatchdogTimerPermission
	Resource Name
	Actions

	Smart Cards
	APDUPermission
	Resource Name

	Cellular
	CellularPermission
	Resource Name

	Generic Events
	EventPermission
	Resource Name
	Actions

	COMM Protocol
	CommProtocolPermission
	Resource Name

	Connector
	CBS
	Resource Name
	Actions

	File Read
	Resource Name
	Actions

	File Write
	Resource Name
	Actions

	RTSP
	Resource Name
	Actions

	SMS
	Resource Name
	Actions

	Datagram Protocol
	DatagramProtocolPermission
	DTLSProtocolPermission

	File Protocol
	FileProtocolPermission
	Resource Name
	Actions

	Hypertext Transfer Protocols
	HTTPProtocolPermission
	HTTPSProtocolPermission

	IMC
	IMCProtocolPermission
	Resource Name

	Multicast Protocols
	MulticastProtocolPermission

	Push Protocols
	PushRegistryPermission
	Actions

	Socket Protocols
	SocketProtocolPermission
	SSLProtocolPermission

	Location
	LocationPermission

	Media
	RecordControl
	VideoControl

	Auto-Start
	AutoStartPermission
	AutoStartPermission
	Resource Names

	Power
	PowerStatePermission
	Resource Names

	Software Management
	SWMPermission
	Resource Names
	Actions

	4 Software Management
	SuiteInstallListener Interface
	SuiteListener Interface
	SuiteManager Interface
	TaskListener Interface
	TaskManager Interface
	ManagerFactory Class
	The Suite Class
	SuiteInstaller Class
	SuiteInstaller Class
	SWMPermission Class
	Task Class
	InstallerErrorCode

	5 General Purpose Input/Output
	Setting a GPIO Output Pin
	Working with a Breadboard
	Blinking an LED
	Testing Output and Input Pins

	6 Working with the I2C Bus
	Experimenting with a 7-Segment Display
	Experimenting with a 16x2 LCD Display

	7 The Serial Peripheral Interface (SPI) Bus
	Using the SPI Bus to Communicate with an ADC

	8 Working with Java ME Encryption
	Connecting to an SSL Server
	Authenticating an SSL Server
	Accessing the Keystore
	Configuring the Board as a Secure Server
	Design
	Memory
	Threads
	System Callbacks

	Input/Output
	General Tips
	Application Size
	Modifying the Properties File
	Using the Command-Line Interface
	Instructions for Using JadTool
	Using the JadTool Utility
	Handling Expired Certificates
	Options Summary
	Running MEKeyTool
	Using the MEKeyTool Utility
	ME Keystores
	Working Directory for the Emulator
	Creating and Managing Multiple ME Keystores
	Creating Alternate ME Keystores
	Managing Alternate ME Keystores

	Importing a Key
	Listing Available Keys
	Deleting a Key
	Replacing a Key
	MEKeyTool Summary
	Using OEM Extensions
	Supported Algorithms for Windows, Raspberry Pi, and Qualcomm Platforms
	TLSv1.0 - TLSv1.2

	Glossary
	Index
	A
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	P
	R
	S
	U

