
Oracle® Java Micro Edition Software Development
Kit
Developer’s Guide

Release 8.3

E73094-02

July 2016

Describes how to use the Oracle Java Micro Edition Software
Development Kit (Java ME SDK) on Windows and Linux.

Oracle Java Micro Edition Software Development Kit Developer’s Guide, Release 8.3

E73094-02

Copyright © 2012, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. ix

Audience ... ix

Conventions.. ix

1 About Oracle Java ME SDK

What Is Oracle Java ME SDK .. 1-1

Supported Application Programming Interfaces... 1-2

Required Specifications ... 1-2

Optional Specifications.. 1-2

Oracle APIs.. 1-2

2 Setting Up the Development Environment

System Requirements... 2-1

Removing Previous Versions of Java ME SDK... 2-2

Installing the Java SE Development Kit... 2-2

Installing Oracle Java ME SDK ... 2-3

Installing Oracle Java ME SDK on Windows ... 2-3

Installing Oracle Java ME SDK on Linux.. 2-3

Installing 32-bit Support Libraries on 64-bit Linux ... 2-4

Enabling Access to Serial Ports on Linux.. 2-4

Installing NetBeans IDE .. 2-4

Installing the Java ME SDK Plug-ins for NetBeans IDE ... 2-5

Installing Eclipse IDE .. 2-7

Installing the Java ME SDK Plug-ins for Eclipse IDE.. 2-7

Installing Mobile Tools for Java Extensions.. 2-9

Installing JavaCard Emulator.. 2-9

Updating Oracle Java ME SDK... 2-10

Starting the Java ME SDK Update Center .. 2-10

The Java ME SDK Update Center Window.. 2-10

3 Installation and Configuration Directories

The Oracle Java ME SDK Installation Directory Structure... 3-1

iii

The Oracle Java ME SDK Configuration Directory Structure.. 3-2

4 About Java ME Embedded Applications

Structure of Java ME Embedded Application .. 4-1

Procedures to Develop a Java ME Application .. 4-2

Source Code for a Sample IMlet ... 4-3

Developing a Sample Java ME Embedded Application in NetBeans IDE 4-4

Creating the IMletDemo Project in NetBeans IDE .. 4-4

Running the IMletDemo Project in NetBeans IDE .. 4-5

Developing a Sample Java ME Embedded Application in Eclipse IDE ... 4-5

Creating the IMletDemo Project in Eclipse IDE... 4-6

Running the IMletDemo Project in Eclipse IDE... 4-6

Developing a Sample Java ME Embedded Application Without an IDE .. 4-7

Creating the IMletDemo Source Code File ... 4-7

Building the IMletDemo Class File From the Command Line .. 4-8

Packaging the IMletDemo Application From the Command Line ... 4-8

Running the IMletDemo Application From the Command Line.. 4-9

5 Java ME Embedded Application Projects in NetBeans IDE

Basic Information About Project Management in IDE.. 5-1

Creating a Java ME Embedded Application Project in NetBeans IDE ... 5-2

Adding an IMlet to a Java ME Embedded Application Project ... 5-2

Managing Java ME Embedded Application Project Sources in NetBeans IDE............................... 5-2

Managing the List of Source Package Folders ... 5-3

Setting the Source and Target Versions .. 5-3

Setting the Encoding of Source Files ... 5-3

Including and Excluding Source Files... 5-3

Related Topics... 5-4

Selecting Java ME Embedded Application Project Platform in NetBeans IDE 5-4

Managing Platforms in NetBeans IDE .. 5-4

Configuring the Emulation Environment... 5-4

Managing Java ME Embedded Application Project Libraries in NetBeans IDE............................. 5-5

Managing Java ME Embedded Application Descriptor Attributes in NetBeans IDE 5-6

Configuring Java Compiler Settings in NetBeans IDE.. 5-7

Generating Debugging Information .. 5-8

Reporting Deprecated API Usage.. 5-8

Tracking Java Dependencies... 5-8

Processing Annotations ... 5-9

Configuring Additional Java Compiler Settings ... 5-9

Related Topics... 5-9

About Signing Java ME Embedded Applications in NetBeans IDE ... 5-10

Signing a Java ME Embedded Application Project in NetBeans IDE 5-10

Importing a New Certificate to the Keystore ... 5-10

iv

Registering the Certificate on a Device ... 5-10

Obfuscating Java ME Embedded Applications in NetBeans IDE.. 5-10

Configuring Project Documentation Settings in NetBeans IDE... 5-11

Related Topics... 5-12

Configuring Java ME Embedded Emulator Settings in NetBeans IDE .. 5-12

About Ant, Gradle, and Maven Support... 5-13

Exporting Java ME Embedded Projects in NetBeans IDE .. 5-13

6 Java ME Embedded Application Projects in Eclipse IDE

Basic Information About Project Management in IDE.. 6-1

Creating a Java ME Project in Eclipse IDE .. 6-2

Adding an IMlet to a Java ME Application Project ... 6-2

Importing an Existing Project into Eclipse IDE.. 6-2

Managing Java ME Project Device Configurations in Eclipse IDE.. 6-3

Performing Code Validation for a Java ME Project in Eclipse IDE ... 6-3

Managing Java ME Project Libraries in Eclipse IDE.. 6-4

Obfuscating Java ME Embedded Applications in Eclipse IDE.. 6-4

Setting Java ME Project Packaging Attributes in Eclipse IDE.. 6-5

Signing Java ME Embedded Applications in Eclipse IDE.. 6-6

About Ant, Gradle, and Maven Support... 6-7

Exporting Java ME Embedded Projects in Eclipse IDE... 6-7

7 Debugging Java ME Embedded Applications

Basics of Debugging ... 7-1

Accomplishing Interactive Debugging.. 7-1

Profiling Java ME Embedded Applications.. 7-2

Monitoring Memory Usage of Java ME Embedded Applications... 7-3

Monitoring Network Activity of Java ME Embedded Applications .. 7-4

Filtering and Sorting Connections ... 7-5

Logging Capabilities Provided by Oracle Java ME SDK .. 7-5

Enabling Logging for a Device ... 7-6

8 About Java ME Embedded Devices

Emulated Devices ... 8-1

Managing Devices .. 8-1

Connecting an External Device... 8-2

About Managing External Device Connections From the Command Line............................. 8-3

Troubleshooting Device Connection Issues ... 8-3

Creating and Managing Custom Emulated Devices ... 8-4

About Managing Custom Emulated Devices From the Command Line................................. 8-5

Viewing and Editing Device Properties .. 8-5

v

9 About the Java ME Embedded Emulator

What is Java ME Embedded Emulator .. 9-1

Running the Java ME Embedded Emulator.. 9-2

Java ME Embedded Emulator’s Main Window... 9-2

Installing and Running IMlet Suites Using the Java ME Embedded Emulator 9-3

Viewing Device Output and Logs.. 9-4

Viewing Messages .. 9-4

Managing Landmarks .. 9-5

Managing the File System ... 9-6

Managing the Connectivity Configuration... 9-6

Managing Access Points.. 9-6

Managing Network Interfaces.. 9-7

Managing Cellular Networks ... 9-7

Managing Subscribers.. 9-8

Generating External Events... 9-8

Generating Analog Input .. 9-8

Generating Button Events ... 9-9

Generating Input From Emulated Peripheral Devices ... 9-9

Generating Location Provider Information.. 9-9

Generating Input From Memory-Mapped Peripherals .. 9-11

Generating Power Management Events ... 9-11

Generating Pulses Counters Tab.. 9-12

10 About the Java ME Embedded Security Model

Java ME Embedded Profile Specification.. 10-1

General Schema of the Security Model.. 10-1

Supported Security Providers... 10-2

Configuring the Security Policy for a Device ... 10-2

Signing a Project.. 10-3

Managing Keystores and Key Pairs ... 10-4

Managing Root Certificates ... 10-5

Command-Line Security Features.. 10-6

Sign IMlet Suites (jadtool) ... 10-6

Manage Certificates (mekeytool) ... 10-7

Custom Security Policy and Authentication Providers .. 10-9

Sample Custom Security Policy Provider... 10-9

Sample Custom Authentication Provider... 10-10

Installing Custom Providers ... 10-11

11 About Java ME Sample Applications

Installed Java ME Sample Applications .. 11-1

Running Sample Applications .. 11-2

vi

Configuring the Web Browser and Proxy Settings.. 11-3

Troubleshooting .. 11-3

A Java ME Embedded Emulator Command-Line Reference

Starting the Java ME Emulator from the Command Line .. A-1

List of Commands to Pass to the Java ME Emulator .. A-1

Options to Adjust the Behavior of the Emulator ... A-2

Examples.. A-3

B Installation and Runtime Security Guidelines

Potential Security Issues .. B-1

About Maintaining Optimum Network Security .. B-1

vii

viii

Preface

This guide describes how to use the Oracle Java Micro Edition Software Development
Kit (Oracle Java ME SDK) to develop Java ME Embedded applications. You can use
the standalone Oracle Java ME SDK or install plug-ins for NetBeans IDE or Eclipse
IDE and take advantage of the benefits provided by the IDE.

Audience
This document is intended for developers of Java ME Embedded software who want
to develop applications using Oracle Java ME SDK 8.3 on Windows and Linux. It
assumes basic knowledge of the Java programming language and platform.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

1
About Oracle Java ME SDK

Oracle Java ME SDK provides a set of tools for rapid development of embedded
software. You can use it to write, edit, compile, package, sign, test, and debug
embedded applications. Oracle Java ME SDK 8.3 supports integration with NetBeans
IDE 8.1 and Eclipse IDE 4.5 by installing a set of plug-ins that enable all features to be
used from within the popular IDE.

This chapter contains the following sections:

• What Is Oracle Java ME SDK

• Supported Application Programming Interfaces

What Is Oracle Java ME SDK
Oracle Java ME Embedded 8.3 is a platform for running intelligent and connected
services on resource-constrained devices, such as those found in wireless modules,
building and industrial controllers, smart meters, tracking systems, environmental
monitors, healthcare equipment, home automation devices, vending machines, and so
on. Oracle Java ME SDK 8.3 provides a complete development environment for the
Oracle Java ME Embedded 8.3 platform.

Oracle Java ME SDK 8.3 includes the Java ME Embedded 8.3 runtime as a device
emulation environment for Windows and Linux desktop computers. The emulation
environment uses the same code base that Oracle licenses to device manufacturers for
use on real devices. This enables you to perform extensive testing of your embedded
applications on an emulated device before deploying them on a real device.

There are several default emulated embedded devices included with Oracle Java ME
SDK. Using the Custom Device Editor, you can create a customized emulated device
that mimics the target device. This enables you to start developing and testing your
application without the final hardware being available.

At the heart of Oracle Java ME SDK is the Device Manager that registers all available
emulated devices and connected external devices. The Device Selector can then be
used to switch between target devices on which you want to run the application.

Oracle Java ME SDK provides application management functionality both through a
graphical user interface (GUI) and through a command-line interface (CLI). You can
use it to install, update, remove, start, and stop applications. You can view the state of
applications and control the behavior of the system.

Oracle Java ME SDK can communicate with the on-device tooling (ODT) agent running
on the Java Virtual Machine (JVM) on the device. The ODT agent provides breakpoint
functionality, access to variables and data structures, and other runtime information.
This enables live testing, analysis, and debugging of applications at the Java source
level on the target device.

About Oracle Java ME SDK 1-1

Oracle Java ME SDK enables you to emulate realistic network properties and events
for testing purposes. You can use the Connectivity Emulation Tool to configure the
number and type of network interfaces, switch between network modes, set wireless
signal strength, and so on.

Built-in profiling and monitoring utilities enable you to investigate application
performance, optimize memory use, which is critical for resource-constrained devices,
and minimize the impact of limited network connectivity.

Supported Application Programming Interfaces
Oracle Java ME SDK 8.3 supports various standard application programming
interfaces (APIs) defined through the Java Community Process (JCP) program. JCP
APIs are often referred to as JSRs, named after the Java Specification Request process.

You can download the specification documents for all JSRs on the JCP website at
https://www.jcp.org.

Required Specifications
The Java ME Embedded 8.3 platform (included with Oracle Java ME SDK 8.3) is an
implementation of the following specifications:

• JSR 360: Connected Limited Device Configuration 8 (CLDC 8)

• JSR 361: Java ME Embedded Profile (MEEP 8)

Optional Specifications
The following optional specifications (often referred to as optional packages) are also
supported by Oracle Java ME SDK 8.3:

• JSR 75: PDA Optional Packages for the J2ME Platform

• JSR 120: Wireless Messaging API

• JSR 172: J2ME Web Services Specification

• JSR 177: Security and Trust Services API for J2ME

• JSR 179: Location API for J2ME

• JSR 280: XML API for Java ME

Oracle APIs
As part of Java ME Embedded 8.3, Oracle also provides the following additional APIs
for embedded software development:

• Device I/O API

• JSON API

• HTTP Client API

• OAuth 2.0 API

• Configuration API

• Security API

Supported Application Programming Interfaces

1-2 Developer’s Guide

https://www.jcp.org

• Security and Trust Services Extension API

• SSL Extension API

Supported Application Programming Interfaces

About Oracle Java ME SDK 1-3

Supported Application Programming Interfaces

1-4 Developer’s Guide

2
Setting Up the Development Environment

Before you can start developing Java ME Embedded applications, set up the
development environment.

• System Requirements

• Removing Previous Versions of Java ME SDK

• Installing the Java SE Development Kit

• Installing Oracle Java ME SDK

• Installing NetBeans IDE

• Installing the Java ME SDK Plug-ins for NetBeans IDE

• Installing Eclipse IDE

• Installing the Java ME SDK Plug-ins for Eclipse IDE

• Installing Mobile Tools for Java Extensions

• Installing JavaCard Emulator

• Updating Oracle Java ME SDK

System Requirements
There are no hardware limitations for installing and running Oracle Java ME SDK as
long as all software requirements are met.

The following table lists the software requirements for installing Oracle Java ME SDK
8.3.

Table 2-1 Software Requirements for Oracle Java ME SDK 8.3

Component Requirement

Operating System Microsoft Windows 7 or Windows 10 64-bit

Linux/x86, for example Ubuntu 15.10 Unity 64 bit

Java Platform Java Platform, Standard Edition (Java SE) Development Kit
version 8 with the latest updates

Integrated Development
Environment

• NetBeans IDE 8.1 or later is required if you want to install
the Oracle Java ME SDK plug-ins for NetBeans IDE

• Eclipse IDE 4.5 or later is required if you want to install the
Oracle Java ME SDK plug-ins for Eclipse IDE

Setting Up the Development Environment 2-1

Removing Previous Versions of Java ME SDK
It is possible to run several instances of Java ME SDK, but you may want to remove
previous versions when installing a new one.

Tip:

Before removing Java ME SDK, copy any related data that you want to save to
a separate folder.

1. Stop the Device Manager as follows:

• Right-click the Device Manager icon in the system tray, and select Exit.

2. Run the Java ME SDK Installation Wizard in any one of the following ways:

• Open the Java ME SDK installation directory and run remove.exe for
Windows, remove.sh for Linux.

• On Windows, open the Windows Start menu, select All Programs, then open
the Java ME SDK folder, and click Uninstall.

• On Windows, open the Windows Start menu, select Control Panel, then
Programs, then Programs and Features, then select Java ME SDK in the list and
click Uninstall.

3. On the first step of the wizard, click Yes to confirm that you want to uninstall Java
ME SDK. Then follow the steps of the wizard.

Installing the Java SE Development Kit
The Java Platform, Standard Edition (Java SE) Development Kit (JDK) includes a
complete Java Runtime Environment (JRE) and tools for developing, debugging, and
monitoring Java applications. As an implementation of the Java SE platform, the JDK
is required for alignment of Java ME Embedded features and APIs through a unified
development model.

Oracle Java ME SDK 8.3 requires JDK 8 with the latest updates.

To install the JDK:

1. Download the JDK installer from the Java SE Downloads page at

http://www.oracle.com/technetwork/java/javase/downloads

Note:

You must accept the Oracle Technology Network (OTN) License Agreement
to download this software.

2. Double-click the executable file and follow the steps of the JDK Installation Wizard.

For information about installing the JDK, refer to the Java Platform, Standard Edition
Installation Guide at

http://docs.oracle.com/javase/8/docs/technotes/guides/install

Removing Previous Versions of Java ME SDK

2-2 Developer’s Guide

http://www.oracle.com/technetwork/java/javase/downloads
http://docs.oracle.com/javase/8/docs/technotes/guides/install

Installing Oracle Java ME SDK
The base Oracle Java ME SDK 8.3 package includes a set of tools for developing Java
ME Embedded applications, and the Java ME Embedded 8.3 runtime as a device
emulation environment for Windows and Linux.

Tip:

Before installingOracle Java ME SDK 8.3, you may want to remove any
previous versions. For more information about removing previous versions of
Java ME SDK, see Removing Previous Versions of Java ME SDK.

Installing Oracle Java ME SDK on Windows
To install Oracle Java ME SDK 8.3:

1. Make sure that JDK 8 with the latest updates is installed.

For more information about how to find the version of Java installed, see the Java
Help Center article at

https://www.java.com/en/download/help/version_manual.xml

For more information about installing the JDK, see Installing the Java SE
Development Kit.

2. Download the Oracle Java ME SDK 8.3 installer as an executable file at

http://www.oracle.com/technetwork/java/javame/javamobile/
download/sdk

Note:

You must accept the Oracle Technology Network (OTN) License Agreement
to download this software.

3. Double-click the executable file and follow the steps of the Java ME SDK
Installation Wizard.

Installing Oracle Java ME SDK on Linux
To install Oracle Java ME SDK 8.3:

1. Make sure that JDK 8 with the latest updates is installed.

For more information about how to find the version of Java installed, see the Java
Help Center article at

https://www.java.com/en/download/help/version_manual.xml

For more information about installing the JDK, see Installing the Java SE
Development Kit.

2. Download the Oracle Java ME SDK 8.3 installer as a Shell script file at

http://www.oracle.com/technetwork/java/javame/javamobile/
download/sdk

Installing Oracle Java ME SDK

Setting Up the Development Environment 2-3

https://www.java.com/en/download/help/version_manual.xml
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk
https://www.java.com/en/download/help/version_manual.xml
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

Note:

You must accept the Oracle Technology Network (OTN) License Agreement
to download this software.

3. Change to the directory where you saved the script, set the execution permission,
and run it from the command line as follows:

./oracle-jmesdk-8-3-rr-linux-bin.sh

4. Follow the steps of the Java ME SDK Installation Wizard.

Installing 32-bit Support Libraries on 64-bit Linux
Because Oracle Java ME runtime is a 32-bit application that cannot be easily ported to
a 64-bit architecture, you need to manually install 32-bit support libraries on a 64-bit
Linux machine for starting Java ME SDK.

E.g., to install 32-bit support libraries on Ubuntu 15.10, perform the following
commands:

1. sudo dpkg --add-architecture i386

2. sudo apt-get update

3. sudo apt-get install libc6:i386 libncurses5:i386 libstdc+
+6:i386

4. Reboot the machine.

Enabling Access to Serial Ports on Linux
If you want to work with UART using Device I/O APIs, with COM ports via Generic
Connection framework, or connect boards to Java ME SDK via USB/COM interface,
you need to run Java ME SDK under the user that has permissions to access serial
ports.

To grant the user access to serial ports, add the user to the corresponding group (e.g.,
on Ubuntu 15.10, add the user to dialout group.)

Installing NetBeans IDE
NetBeans IDE is a free and open source integrated development environment (IDE)
that facilitates the development of Java applications. Oracle Java ME SDK plug-ins for
NetBeans IDE enable all features to be used from within the IDE.

NetBeans IDE 8.1 or later is required if you want to use the Oracle Java ME SDK plug-
ins.

To install NetBeans IDE 8.1:

1. Download the NetBeans IDE 8.1 installer from the downloads page at

https://netbeans.org/downloads/

There are several installers available, depending on the bundle that you need. The
Java ME tools pack is included in the full download option, so you should
download the installer under the All column.

Installing NetBeans IDE

2-4 Developer’s Guide

https://netbeans.org/downloads/

2. Double-click the executable file and follow the steps of the NetBeans IDE Installer
Wizard.

After you install NetBeans IDE, start it and check for updates. If updates are available,
a corresponding indicator will be available in the status bar at the bottom right of the
main window. To start the check manually, open the Help menu and select Check for
Updates.

For detailed information about installing NetBeans IDE, refer to the installation
instructions page at

https://netbeans.org/community/releases/80/install.html

Installing the Java ME SDK Plug-ins for NetBeans IDE
Plug-ins for NetBeans IDE enable all features of Oracle Java ME SDK to be used from
within the IDE.

Oracle Java ME SDK 8.3 provides the following plug-ins for working with NetBeans
IDE 8.1:

• Java ME SDK Tools: Integrates the Oracle Java ME SDK tools into the IDE.

• Java ME SDK Demos: Provides demo Java ME Embedded applications.

The Oracle Java ME SDK plug-ins for NetBeans IDE are distributed as NetBeans
module (NBM) files in a ZIP archive. The NBM files are recognized by the NetBeans
Plugin Manager. You can configure the Plugin Manager to automatically install the
plug-ins by pointing it to the updates.xml file that is available in the archive.

To install the Oracle Java ME SDK plug-ins for NetBeans IDE:

1. Download the ZIP archive with the Java ME SDK plug-ins at

http://www.oracle.com/technetwork/java/javame/javamobile/
download/sdk

Note:

You must accept the Oracle Technology Network (OTN) License Agreement
to download this software.

2. Extract the ZIP archive with the plug-ins to a directory on your computer.

3. Start NetBeans IDE, open the Tools menu, and select Plugins.

4. If you have a previous version of the Java ME SDK plug-ins installed, remove
them as follows:

a. On the Installed tab, select Show Details (if available), then select Java ME
SDK Tools and Java ME SDK Demos in the list, and click Uninstall.

b. Follow the steps in the NetBeans IDE Installer Wizard. On the last step of the
wizard, select to restart NetBeans IDE now, and click Finish.

5. When NetBeans IDE restarts, open the Tools menu, select Plugins, and add an
update center for Java ME SDK plug-ins as follows:

a. On the Settings tab, click Add.

Installing the Java ME SDK Plug-ins for NetBeans IDE

Setting Up the Development Environment 2-5

https://netbeans.org/community/releases/80/install.html
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

b. In the Name field, enter Java ME SDK Plug-ins Update Center.

c. Select Check for updates automatically.

d. In the URL field, use the file uniform resource locator (URL) scheme to
point to the location where you extracted the Java ME SDK plug-ins, for
example:

file:///C:/My_Update_Center_Plugins/updates.xml

e. Click OK.

f. Ensure that the Java ME SDK Plug-ins Update Center is active by selecting
the corresponding check box in the list on the Settings tab.

6. Install the Java ME SDK plug-ins as follows:

a. On the Available Plugins tab, select Java ME SDK Tools and Java ME SDK
Demos in the list, and click Install. The two plug-ins are in the Java ME SDK
Tools category.

b. Follow the steps in the NetBeans IDE Installer Wizard. On the last step of the
wizard, select to restart NetBeans IDE now, and click Finish.

Note:

If the Java ME SDK plug-ins are not in the list on the Available Plugins tab, it
is likely that you specified the wrong URL to the updates.xml file in the
update center.

If you are not able to get the Plugins Manager to recognize the Java ME SDK
plug-ins, install them manually. To install the plug-ins manually:

a. On the Downloaded tab, click Add Plugins.

b. Browse to the directory where you extracted the archive with the Java ME
SDK plug-ins, select all NBM files and click Open.

c. Follow the steps of the NetBeans IDE Installer Wizard. On the last step of
the wizard, select to restart NetBeans IDE now, and click Finish.

7. When NetBeans IDE restarts, open the Tools menu, select Plugins, and verify that
the Java ME SDK plug-ins are active as follows:

a. On the Installed tab, select Show Details (if available), then find the Java ME
SDK Tools and Java ME SDK Demos plug-ins in the list. If they are not
active, then select them and click Activate.

b. When the Java ME SDK plug-ins are active, click Close to close the Plugins
window.

If the plug-ins were installed successfully, the Java ME SDK Start Page tab should be
open in NetBeans IDE. To view this tab, select Java ME SDK Start Page on the Help
menu.

Installing the Java ME SDK Plug-ins for NetBeans IDE

2-6 Developer’s Guide

Installing Eclipse IDE
Eclipse IDE is a free and open source integrated development environment (IDE) that
facilitates the development of Java applications. Oracle Java ME SDK plug-ins for
Eclipse IDE enable all features to be used from within the IDE.

Eclipse IDE 4.5 or later is required if you want to use the Oracle Java ME SDK plug-
ins.

To install Eclipse IDE 4.5:

1. Download the ZIP file (tar.gz for Linux) with the Eclipse IDE 4.5 package from the
downloads page at

https://www.eclipse.org/downloads/

There are several packages available, depending on the bundle that you need.
Eclipse IDE for Java Developers package should be sufficient to develop Java ME
applications.

2. Extract the downloaded ZIP file to a directory of your choice (for example, on
Windows, C:\Eclipse, on Linux /home/<user name>/eclipse). On
Windows, you can optionally create a shortcut to the executable file
(eclipse.exe) in this directory.

For detailed information about installing Eclipse IDE, refer to the installation
instructions page at

https://wiki.eclipse.org/Eclipse/Installation

Installing the Java ME SDK Plug-ins for Eclipse IDE
Plug-ins for Eclipse IDE enable all features of Oracle Java ME SDK to be used from
within the IDE.

Oracle Java ME SDK 8.3 provides the following plug-ins for working with Eclipse IDE
4.5:

• Java ME SDK Tools: Integrates the Oracle Java ME SDK tools into the IDE.

• Java ME SDK Demos: Provides demo Java ME Embedded applications.

Note that to use the Java ME SDK plug-ins, you must run Eclipse IDE on top on GTK2
rather than the default GTK3.

The Java ME SDK plug-ins are distributed as JAR files archived inside a ZIP file. The
JAR files contain platform extensions for Eclipse IDE that are recognized by the Install
New Software Wizard.

In order to install the Java ME SDK plug-ins, you need the Mobile Tools for Java (MTJ)
extensions. They are also distributed as JAR files, but in a separate ZIP file. When you
install the Java ME SDK plug-ins, MTJ extensions should install automatically.
However, you can download and install them separately. For more information, see
Installing Mobile Tools for Java Extensions.

To install the Java ME SDK plug-ins for Eclipse IDE:

1. Download the ZIP files with the Java ME SDK plug-ins from

http://www.oracle.com/technetwork/java/javame/javamobile/
download/sdk

Installing Eclipse IDE

Setting Up the Development Environment 2-7

https://www.eclipse.org/downloads/
https://wiki.eclipse.org/Eclipse/Installation
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

Note:

You must accept the Oracle Technology Network (OTN) License Agreement
to download this software.

2. Start Eclipse IDE and uninstall the previous versions of Java ME SDK plug-ins as
follows:

a. Open the Help menu and click Installation Details.

b. On the Installed Software tab, select Java ME SDK Tools, and Java ME SDK
Demos in the list, and click Uninstall.

c. On the Uninstall Details window, click Finish.

d. When prompted, click Yes to restart Eclipse IDE.

3. Install the Java ME SDK plug-ins as follows:

a. Open the Help menu and select Install New Software.

b. At the top of the Available Software window, click Add.

c. In the Add Repository dialog, click Archive.

d. In the file-system explorer window, browse to the ZIP file with the Java ME
SDK plug-ins and click Open.

e. In the Add Repository dialog, click OK.

f. On the Available Software window, select Java ME SDK Tools and Java ME
SDK Demos in the list, and click Next.

g. On the Install Details window, click Next.

h. Accept the terms of the license agreement and click Finish.

i. When the installation process completes, restart Eclipse IDE.

When you start Eclipse IDE, to develop Java ME Embedded applications, activate the
Java ME perspective as follows:

1. Open the Window menu, select Perspective, select Open Perspective, then Other.

2. In the Open Perspective window, select Java ME and click OK.

To use the Java ME SDK plug-ins for Eclipse IDE on Linux platform, you must install
the WebKit engine for GTK+. The version of the WebKit must be compatible with the
GTK+ library used to render Eclipse IDE.

E.g., on Ubuntu 15.10, download WebKit 1.0-0 and perform the following command:

sudo apt-get install libwebkitgtk-1.0-0

Note that only Eclipse rendered by GTK2 is currently supported. To enable running
Eclipse IDE on top of GTK2, set the SWT_GTK3 environment variable to 0.

E.g., on Ubuntu 15.10, use the following command:

export SWT_GTK3=0

Installing the Java ME SDK Plug-ins for Eclipse IDE

2-8 Developer’s Guide

Installing Mobile Tools for Java Extensions
When you install the Java ME SDK plug-ins, Mobile Tools for Java (MTJ) extensions
should install automatically. However, you can download and install them separately
as follows:

1. Download the ZIP file with the MTJ 2.0.1 extensions from

http://www.eclipse.org/mtj/

2. Start Eclipse IDE and uninstall the previous versions of MTJ extensions as follows:

a. Open the Help menu and click Installation Details.

b. On the Installed Software tab, select Mobile Tools for Java, and click
Uninstall.

c. On the Uninstall Details window, click Finish.

d. When prompted, click Yes to restart Eclipse IDE.

3. Install the MTJ plug-ins as follows:

a. Open the Help menu and select Install New Software.

b. At the top of the Available Software window, click Add.

c. In the Add Repository dialog, click Archive.

d. In the file-system explorer window, browse to the ZIP file with the MTJ plug-
ins and click Open.

e. In the Add Repository dialog, click OK.

f. On the Available Software window, select Mobile Tools for Java in the list,
and click Next.

g. On the Install Details window, click Next.

h. Accept the terms of the license agreement and click Finish.

i. When the installation process completes, restart Eclipse IDE.

Installing JavaCard Emulator
Oracle Java ME SDK supports JSR 177 Security and Trust Services APIs. If you want to
work with the APDU emulation, you must download and install JavaCard SDK 2.2.1
from

http://www.oracle.com/technetwork/java/embedded/javacard/
downloads/index.html

You need only JavaCard emulator (cref.exe) to enable APDU emulation in Java ME
SDK 8.3.

Installing Mobile Tools for Java Extensions

Setting Up the Development Environment 2-9

http://www.eclipse.org/mtj/
http://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html
http://www.oracle.com/technetwork/java/embedded/javacard/downloads/index.html

Updating Oracle Java ME SDK
Oracle Java ME SDK is constantly being developed. New releases may include new
features, support for new APIs, fixes of known issues, and so on. You should always
use the latest available version of Oracle Java ME SDK.

For minor releases, it is possible to update your instance of Oracle Java ME SDK.
However, in case of a major release, you have to install the new version of Oracle Java
ME SDK.

The Java ME SDK Update Center provides notifications when updates to the core
Oracle Java ME SDK components, tools, or the Java ME Embedded runtime become
available. This ensures that developers are working with the latest version of Oracle
Java ME SDK.

• Starting the Java ME SDK Update Center

• The Java ME SDK Update Center Window

Starting the Java ME SDK Update Center
The Java ME SDK Update Center is a standalone tool, but it can also be started from
the NetBeans IDE or Eclipse IDE if you have the Java ME SDK plug-ins installed.

To start the standalone Java ME SDK Update Center:

• Launch update-center.exe for Windows (update-center for Linux) under
bin in the Oracle Java ME SDK installation directory.

To start the Java ME SDK Update Center from NetBeans IDE:

• Open the Tools menu, select Java ME, and then Java ME SDK Update Center.

To start the Java ME SDK Update Center from Eclipse IDE, you need to be in a Java
ME Perspective.

• Open the Help menu and select Java ME SDK Update Center.

The Java ME SDK Update Center Window
The Java ME SDK Update Center window is separated into the following tabs:

• Available: Contains a list of Java ME SDK packages available on the update server
that you can install.

• Installed: Contains a list of installed Java ME SDK packages that you can uninstall.

• Updates: Contains a list of installed Java ME SDK packages for which updates are
available on the update server.

• Settings: Contains a list of update servers that you can customize.

Note:

You cannot remove or edit the default Java ME SDK Update Server.

Updating Oracle Java ME SDK

2-10 Developer’s Guide

3
Installation and Configuration Directories

When using Oracle Java ME SDK, you need to understand the structure of directories
that are installed. Knowing the location of specific files can help you with
troubleshooting, maintenance, and advanced configuration.

You can run Oracle Java ME SDK from different user accounts on the host machine.
This feature is called Multiple User Environment (MUE). MUE does not support
multiple users accessing Oracle Java ME SDK simultaneously. When you switch users,
you must close Oracle Java ME SDK and exit the Device Manager. A different user can
then start Oracle Java ME SDK as the owner of all processes.

During installation of Oracle Java ME SDK, a user-specified location is used as the
main distribution directory, where various executable, source, and documentation
files reside. A separate location, which is fixed relative to the user's home directory, is
used for setup, configuration, and log files.

The following sections describe the structure of each directory:

• The Oracle Java ME SDK Installation Directory Structure

• The Oracle Java ME SDK Configuration Directory Structure

The Oracle Java ME SDK Installation Directory Structure
The location of the Oracle Java ME SDK installation directory is specified by the user
during the installation process. This directory is referred to as JAVAME_SDK_HOME. By
default, Oracle Java ME SDK 8.3 is installed to the C:\Program Files
\Java_ME_platform_SDK_8.3 directory on Windows and to ~/
Java_ME_platform_SDK_8.3 on Linux.

The Oracle Java ME SDK installation directory structure conforms to the Unified
Emulator Interface (UEI) Specification version 1.0.2 available at

http://www.oracle.com/technetwork/java/javame/documentation/
ueispecs-187994.pdf

This structure is recognized by all IDEs and other tools that work with the UEI.

The root of the JAVAME_SDK_HOME directory contains the remove.exe file on
Windows (remove.sh - on Linux) that starts the Java ME SDK Installer Wizard for
removing Oracle Java ME SDK. It also contains subdirectories listed in Table 3-1.

Table 3-1 The Structure of the Oracle Java ME SDK Installation Directory

Folder Description

bin Contains executable files and dynamic-link libraries for running
various Oracle Java ME SDK utilities

Installation and Configuration Directories 3-1

http://www.oracle.com/technetwork/java/javame/documentation/ueispecs-187994.pdf
http://www.oracle.com/technetwork/java/javame/documentation/ueispecs-187994.pdf

Table 3-1 (Cont.) The Structure of the Oracle Java ME SDK Installation Directory

Folder Description

docs Contains documentation for standard JSR APIs and Oracle APIs
supported by Oracle Java ME SDK

flash Contains runtime binaries that can be flashed to a device.

legal Contains a text file with legal information about third-party
software

lib Contains JAR files with standard JSR APIs and Oracle APIs
required for compilation of Java ME Embedded applications

runtimes Contains the Java ME Embedded Profile (MEEP) runtime files

toolkit-lib Contains files for configuration and definition of devices and UI
elements, executable and configuration files for the Device
Manager and other Oracle Java ME SDK services and utilities

The Oracle Java ME SDK Configuration Directory Structure
The location of the Oracle Java ME SDK configuration directory is relative to the user's
home directory. This location is referred to as JAVAME_SDK_USER. The Oracle Java
ME SDK 8.3 configuration directory is located in the <user.home>\.javame-sdk
\8.3 directory. If you delete this directory, it is re‐created automatically when the
Device Manager is restarted.

The root of the JAVAME_SDK_USER directory is used for temporary lock files and the
rmi-registry.port file that defines the remote method invocation (RMI) registry
port number. It also contains subdirectories listed in Table 3-2.

Table 3-2 The Structure of the Oracle Java ME SDK Configuration Directory

Folder Description

device-detection Contains information about the devices detected by the Device
Connections Manager

help-cache Contains cached Oracle Java ME SDK help pages (for NetBeans
IDE plug-ins, Eclipse IDE plug-ins, and the Java ME Embedded
Emulator)

log Contains log files of all Oracle Java ME SDK tools (such as
Device Manager, Device Selector, Custom Device Editor, and so
on)

updates Contains downloaded updates for Oracle Java ME SDK

work Contains folders with configuration and log files for all
connected devices (both emulated and real devices)

The Oracle Java ME SDK Configuration Directory Structure

3-2 Developer’s Guide

4
About Java ME Embedded Applications

Java ME Embedded applications run on small devices, with either a simple or no
display at all, with low power consumption, and with limited network connectivity.
Target devices include wireless modules, smart meters, industrial controllers, home
automation systems, and so on.

The chapter contains the following topics:

• Structure of Java ME Embedded Application

• Procedures to Develop a Java ME Application

• Source Code for a Sample IMlet

• Developing a Sample Java ME Embedded Application in NetBeans IDE

• Developing a Sample Java ME Embedded Application in Eclipse IDE

• Developing a Sample Java ME Embedded Application Without an IDE

Structure of Java ME Embedded Application
Each Java ME Embedded application consists of an IMlet and other classes and
resources as may be needed by the application. An IMlet is a class that extends the
javax.microedition.midlet.MIDlet class and conforms to the Java ME
Embedded Profile 8 (MEEP 8) specification. The methods of this class enable the
application management software (AMS) on an embedded device to create, start, pause,
and destroy an IMlet. Several IMlets can be packaged into a Java Archive (JAR) file
along with a manifest file to form an IMlet suite. A Java Application Descriptor (JAD)
file is used to describe the IMlet suite. Figure 4-1 shows the structure of a Java ME
Embedded Application.

About Java ME Embedded Applications 4-1

Figure 4-1 Structure of a Java ME Embedded Application

For more information about the javax.microedition.midlet.MIDlet class, see
the API documentation at

http://docs.oracle.com/javame/8.0/api/meep/api/javax/
microedition/midlet/MIDlet.html

Note:

Although an IMlet is a type of MIDlet, in the context of the Java ME
Embedded platform, both terms are used interchangeably. They both refer to
an application that conforms to the MEEP 8 specification.

Procedures to Develop a Java ME Application
You can develop a Java ME Embedded application either with or without using an
IDE.

The general procedure for developing a Java ME Embedded application includes the
following steps:

1. Create an IMlet source code file that extends the
javax.microedition.midlet.MIDlet class.

2. Compile the IMlet into a binary class file.

Procedures to Develop a Java ME Application

4-2 Developer’s Guide

http://docs.oracle.com/javame/8.0/api/meep/api/javax/microedition/midlet/MIDlet.html
http://docs.oracle.com/javame/8.0/api/meep/api/javax/microedition/midlet/MIDlet.html

3. Create a manifest file.

4. Package the IMlet class and manifest into a JAR file.

5. Create a JAD file associated with the JAR.

The JAD file and the associated JAR file form an IMlet suite that can be deployed on
an embedded device.

An Integrated Development Environment (IDE) automates most tasks involved in the
development of applications. For instance, an IDE manages source code and resource
files, parses code to highlight syntax errors, and configures the necessary settings to
build, package, run, and debug an application. Source files and settings are combined
by the IDE into a project.

Developing a Java ME Embedded application using an IDE includes the following
steps:

1. Create a Java ME Embedded Application project.

2. Add one or more IMlet source files along with any other necessary resource files
to the project.

3. Build the project.

The IDE automatically compiles the IMlet class and other necessary classes,
creates the manifest file, packages it all into a JAR file, and creates a JAD file to
complete the IMlet suite.

Oracle Java ME SDK provides plug-ins for NetBeans IDE and Eclipse IDE that enable
you to use all features of the SDK from within the IDE.

Creating and running a sample Java ME Embedded application is a good way to learn
the basics of Oracle Java ME SDK. You can create an application either with or without
an Integrated Development Environment (IDE), run it on a real connected device or an
emulated device.

Source Code for a Sample IMlet
The following example shows the source code for a sample IMlet. You can use this
source code to create a sample Java ME Embedded application.

package imletdemo;
import javax.microedition.midlet.MIDlet;

public class IMletDemo extends MIDlet {

 public void startApp() {
 try {
 // Add startup operations here
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 System.out.println("IMletDemo is started...");
 // Add application code here
 }

 public void destroyApp(boolean unconditional) {
 // Add operations to close all resources that have been opened

Source Code for a Sample IMlet

About Java ME Embedded Applications 4-3

 }
}

Developing a Sample Java ME Embedded Application in NetBeans IDE
NetBeans IDE automates the process of building, packaging and running Java ME
Embedded applications by providing a standard Java ME Embedded Application
project. A Java ME Embedded Application project contains a fully functional template
IMlet, and is configured in such a way that you only have to click one button to run it.

You can edit the provided IMlet source code, add other resource files to the project,
and configure the project settings as needed. NetBeans IDE will ensure that all source
files, resources, and settings are managed properly.

When you run a Java ME Embedded Application project, NetBeans IDE automatically
builds, packages, and runs the application on the default emulated EmbeddedDevice1
or on another available device. You can choose to run it on another emulated device,
or a real connected device.

Developing a sample Java ME Embedded application in NetBeans IDE using Oracle
Java ME SDK involves the following procedures:

1. “Creating the IMletDemo Project in NetBeans IDE”

2. “Running the IMletDemo Project in NetBeans IDE”

Creating the IMletDemo Project in NetBeans IDE
A project combines source files and settings that are necessary to build, run, and
debug an application. Without an IDE, there are a lot more manual actions required to
manage all project files and settings.

NetBeans IDE includes various project types that are preconfigured for developing
Java SE, JavaFX, Java ME, and many other types of applications. To create a Java ME
Embedded Application project in NetBeans IDE:

1. On the File menu, select New Project.

2. On the Choose Project step, select Java ME Embedded from the Categories list
and Java ME Embedded Application from the Projects list. Click Next.

3. On the Name and Location step, enter IMletDemo in the Project Name field. Click
Finish.

You should see the created IMletDemo project in the Projects tab of NetBeans IDE.
The IMletDemo.java source file from the imletdemo package should be open in a
separate tab.

If everything is correct, you should be able to build and run the IMletDemo project
generated from the standard Java ME Embedded Application template in NetBeans
IDE. However, the application will not do anything, because methods do not contain
any code.

Copy the code shown in “Source Code for a Sample IMlet” into the IMletDemo.java
file. This will make the application print IMletDemo is started... to the output
console when you run the application.

Developing a Sample Java ME Embedded Application in NetBeans IDE

4-4 Developer’s Guide

Running the IMletDemo Project in NetBeans IDE
Oracle Java ME SDK 8.3 provides the Java ME Embedded 8.3 emulation environment
that enables you to duplicate (or emulate) an embedded device and run the application
without the actual device. By default, when you run a Java ME Embedded Application
project in NetBeans IDE, it is started on the emulated device EmbeddedDevice1.

To run the IMletDemo project, do one of the following:

• Select the IMletDemo project in the Projects tab and click the green right-arrow
icon in the NetBeans IDE toolbar.

• Select the IMletDemo project in the Projects tab and press F6 on the keyboard.

• Select the IMletDemo project in the Projects tab, open the Run menu and select
Run Project (IMletDemo).

• Right-click the IMletDemo project name in the Projects tab and select Run.

If successful, the EmbeddedDevice1 emulator starts with the IMletDemo suite
running. If you used the code from “Source Code for a Sample IMlet”, you should see
the following line in the Output tab of NetBeans IDE:

IMletDemo is started...

To open the Output tab in NetBeans IDE, select Output on the Window menu, or
press Ctrl+4 on the keyboard.

You can run the IMletDemo project on a device other than the default emulated
EmbeddedDevice1 (for example, another emulated device, or a real connected device).
To run the IMletDemo project on a specific device:

1. Open the Device Selector tab in NetBeans IDE as follows:

• On the Tools menu, select Java ME, and then Device Selector.

2. On the Device Selector tab, right-click the device on which you want to run the
IMletDemo project, select Run Project, and then IMletDemo.

Developing a Sample Java ME Embedded Application in Eclipse IDE
Eclipse IDE automates the process of building, packaging and running Java ME
Embedded applications by providing standard Java ME Project and Java ME MIDlet
templates. A Java ME project is configured in such a way that you only have to click
one button to run it.

The standard MIDlet template can be used to create the IMlet source code. You can
also add other resource files to the project, and configure the project settings as
needed. Eclipse IDE will ensure that all source files, resources, and settings are
managed properly.

When you run a Java ME project, Eclipse IDE automatically builds, packages, and runs
the application on the default emulated EmbeddedDevice1 or on another available
device. You can choose to run it on another emulated device, or a real connected
device.

Developing a sample Java ME Embedded application in Eclipse IDE using Oracle Java
ME SDK involves the following procedures:

Developing a Sample Java ME Embedded Application in Eclipse IDE

About Java ME Embedded Applications 4-5

1. “Creating the IMletDemo Project in Eclipse IDE”

2. “Running the IMletDemo Project in Eclipse IDE”

Creating the IMletDemo Project in Eclipse IDE
A project combines source files and settings that are necessary to build, run, and
debug an application. Without an IDE, there are a lot more manual actions required to
manage all project files and settings.

To create a Java ME project in Eclipse IDE:

1. Ensure that the Java ME perspective is active as follows:

a. Open the Window menu, select Perspective, select Open Perspective, and
then Other.

b. In the Open Perspective window, select Java ME and click OK.

2. On the File menu, select New and then Java ME Project.

3. In the New Java ME Project dialog, enter IMletDemo in the Project name field.
Click Finish.

You should see the created IMletDemo project in the Package Explorer tab of
Eclipse IDE.

4. Right-click the IMletDemo project in the Package Explorer tab, select New and
then Java ME MIDlet.

5. In the New Java ME MIDlet dialog, enter imletdemo in the Package field and
IMletDemo in the Name field. Click Finish.

You should see the created IMletDemo.java source file open in a separate tab in
Eclipse IDE. The source file should be located in the imletdemo package under
src in the IMletDemo project in the Package Explorer tab of Eclipse IDE.

If everything is correct, you should be able to build and run the IMletDemo project in
Eclipse IDE. However, the application will not do anything, because methods do not
contain any code.

Copy the code shown in “Source Code for a Sample IMlet” into the IMletDemo.java
file. This will make the application print IMletDemo is started... to the output
console when you run the application.

Running the IMletDemo Project in Eclipse IDE
Oracle Java ME SDK 8.3 provides the Java ME Embedded 8.3 emulation environment
that enables you to duplicate (or emulate) an embedded device and run the application
without the actual device. By default, when you run a Java ME project in Eclipse IDE,
it is started on the emulated device EmbeddedDevice1.

To run the IMletDemo project, do one of the following:

• Select the IMletDemo project in the Projects tab and press Ctrl+F11 on the
keyboard.

• Select the IMletDemo project in the Projects tab, open the Run menu and select
Run.

Developing a Sample Java ME Embedded Application in Eclipse IDE

4-6 Developer’s Guide

• Right-click the IMletDemo project name in the Projects tab and select Run As,
then Emulated Java ME JAD.

If successful, the EmbeddedDevice1 emulator starts with the IMletDemo suite
running. If you used the code from “Source Code for a Sample IMlet”, you should see
the following line in the Console tab of Eclipse IDE:

IMletDemo is started...

To open the Console tab in Eclipse IDE, open the Window menu and select Show
View, then Console, or press Alt+Shift+Q and then C on the keyboard.

You can run the IMletDemo project on a device other than the default emulated
EmbeddedDevice1 (for example, another emulated device, or a real connected device).
To run the IMletDemo project on a specific device:

1. Open the Device Selector tab in Eclipse IDE as follows:

• On the Window menu, select Show View, and then Device Selector.

2. On the Device Selector tab, right-click the device on which you want to run the
IMletDemo project, select Run Project, and then IMletDemo.

Developing a Sample Java ME Embedded Application Without an IDE
An IDE automates most tasks involved in the development of applications to increase
speed and efficiency. However, understanding how to develop a Java ME Embedded
application without an IDE can help you realize what those tasks are, how and why
they are performed.

To develop a sample Java ME Embedded application without an IDE:

1. Create a sample IMlet source code file that extends the
javax.microedition.midlet.MIDlet class using any text editor.

See Creating the IMletDemo Source Code File.

2. Build the sample application by compiling the sample IMlet source code file using
the javac command-line tool.

See Building the IMletDemo Class File From the Command Line.

3. Package the sample application by creating a Java Archive (JAR) file with the
compiled sample IMlet class file and manifest file using the jar command-line
tool, and a Java Application Descriptor (JAD) file with the description of the JAR
file using any text editor.

See Packaging the IMletDemo Application From the Command Line.

4. Run the sample application by starting the Java ME Embedded Emulator using the
emulator command-line tool with the -Xdescriptor command that specifies
the JAD file.

See Running the IMletDemo Application From the Command Line.

Creating the IMletDemo Source Code File
An IMlet is a class that extends the javax.microedition.midlet.MIDlet class
and conforms to the Java ME Embedded Profile 8 (MEEP 8) specification. You can use
any text editor to create the IMlet source code file.

Developing a Sample Java ME Embedded Application Without an IDE

About Java ME Embedded Applications 4-7

To create a sample IMlet source code file:

1. Create an empty text file using any text editor.

2. Copy the code shown in “Source Code for a Sample IMlet” into this file.

3. Save the file as IMletDemo.java.

Building the IMletDemo Class File From the Command Line
Building an application involves compiling source code files into bytecode class files.
This is done using the standard Java SE Development Kit javac compiler.

Use the -bootclasspath option to specify the location of the CLDC and MEEP 8
APIs that are necessary to compile an IMlet. You can also use the -d option to specify
where to place the compiled class files.

For example, if the IMletDemo.java source file is located in the C:\meApp\src
directory, the Oracle Java ME SDK installation directory is set to the
JAVAME_SDK_HOME environment variable, Java SE Development Kit installation
directory is set to the JAVA_HOME environment variable, and you would like to place
the compiled class files to the C:\meApp\classes directory, then on the Windows
Command Prompt, change to the C:\meApp directory, and run the following
command:

C:\meApp>%JAVA_HOME%\javac -bootclasspath %JAVAME_SDK_HOME%\lib\cldc_1.8.jar;
%JAVAME_SDK_HOME%\lib\meep_8.0.jar -d classes src\IMletDemo.java

As a result of this command, the following class file should be created: C:\meApp
\classes\imletdemo\IMletDemo.class

For more information about the javac compiler, see the corresponding section of the
JDK Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javac.html

Packaging the IMletDemo Application From the Command Line
Java ME Embedded applications are deployed as IMlet suites. An IMlet suite contains
at least one IMlet class file, any number of additional resource files, and a manifest file
packaged in a Java Archive (JAR). It also includes a separate Java Application
Descriptor (JAD) file to describe the IMlet suite.

To package the sample IMletDemo application:

1. Create a manifest file as follows:

a. Create an empty text file using any text editor.

b. Copy the following text into the file:

MIDlet-Name: IMletDemo
MIDlet-Version: 1.0
MIDlet-Vendor: Company Inc.
MIDlet-1: IMletDemo,,imletdemo.IMletDemo
MicroEdition-Configuration: CLDC-1.8
MicroEdition-Profile: MEEP-8.0

These are the required attributes for any IMlet suite JAR manifest file as
specified by the MEEP 8 specification.

Developing a Sample Java ME Embedded Application Without an IDE

4-8 Developer’s Guide

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

c. Save the file as manifest.mf.

2. Create a JAR file that contains the manifest and the IMletDemo.class file using
the standard Java SE Development Kit jar tool. Use the c option to create a new
JAR, the f option to specify the name of the JAR, and the m option to specify the
name of the manifest file to include.

For example, if the IMletDemo.class file is located in the C:\meApp\classes
\imletdemo directory, the manifest.mf file is located in the C:\meApp
directory, Java SE Development Kit installation directory is set to the JAVA_HOME
environment variable, and you want to create the IMletDemo.jar file in the C:
\meApp\dist directory, then on the Windows Command Prompt, change to the
C:\meApp directory, and run the following command:

C:\meApp>%JAVA_HOME%\jar cfm dist\IMletDemo.jar manifest.mf -C classes .

As a result of this command, the following JAR file should be created: C:\meApp
\dist\IMletDemo.jar

For more information about the jar tool, see the corresponding section of the JDK
Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/
windows/jar.html

3. Create a JAD file as follows:

a. Create an empty text file using any text editor.

b. Copy the following text into the file:

MIDlet-Name: IMletDemo
MIDlet-Version: 1.0
MIDlet-Vendor: Company Inc.
MIDlet-1: IMletDemo,,imletdemo.IMletDemo
MIDlet-Jar-Size: 933
MIDlet-Jar-URL: IMletDemo.jar

These are the required attributes for any IMlet suite JAD file as specified by
the MEEP 8 specification.

Note:

You must set the MIDlet-Jar-Size attribute value to the size of the JAR file
in bytes.

c. Save the file as IMletDemo.jad to the C:\meApp\dist directory.

Running the IMletDemo Application From the Command Line
Oracle Java ME SDK 8.3 provides the Java ME Embedded 8.3 emulation environment
that enables you to duplicate (or emulate) an embedded device and run the application
without the actual device using the Java ME Embedded Emulator.

The Java ME Embedded Emulator executable (emulator) is located under bin in the
Oracle Java ME SDK installation directory JAVAME_SDK_HOME.

You should use the -Xdescriptor command to specify the location of the JAD file
associated with the Java ME Embedded application (IMlet suite) that you want to run.

Developing a Sample Java ME Embedded Application Without an IDE

About Java ME Embedded Applications 4-9

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jar.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jar.html

By default, the application starts on the EmbeddedDevice1 emulator, unless you use
the -Xdevice option that enables you to specify the name of the emulated device on
which you want to run the application.

For example, if you want to run the IMletDemo application packaged in the
IMletDemo.jar file with the IMletDemo.jad file in the C:\meApp\dist
directory, then on the Windows Command Prompt, change to the bin directory in the
Oracle Java ME SDK installation directory (JAVAME_SDK_HOME), and run the
following command:

JAVAME_SDK_HOME>bin>emulator -Xdescriptor:C:\meApp\dist\IMletDemo.jad

If successful, the EmbeddedDevice1 emulator starts with the IMletDemo suite
running.

Developing a Sample Java ME Embedded Application Without an IDE

4-10 Developer’s Guide

5
Java ME Embedded Application Projects in

NetBeans IDE

An Integrated Development Environment (IDE) uses projects to combine source files
and settings that are necessary to build, run, and debug applications. Without an IDE,
there are a lot more manual actions required to manage all the files and settings.

The chapter contains the following topis:

• Basic Information About Project Management in IDE

• Creating a Java ME Embedded Application Project in NetBeans IDE

• Adding an IMlet to a Java ME Embedded Application Project

• Managing Java ME Embedded Application Project Sources in NetBeans IDE

• Selecting Java ME Embedded Application Project Platform in NetBeans IDE

• Managing Java ME Embedded Application Project Libraries in NetBeans IDE

• Managing Java ME Embedded Application Descriptor Attributes in NetBeans IDE

• Configuring Java Compiler Settings in NetBeans IDE

• About Signing Java ME Embedded Applications in NetBeans IDE

• Obfuscating Java ME Embedded Applications in NetBeans IDE

• Configuring Project Documentation Settings in NetBeans IDE

• Configuring Java ME Embedded Emulator Settings in NetBeans IDE

Basic Information About Project Management in IDE
The development and configuration of an application in the IDE takes place in the
context of a project. It is the highest level of organization for the application that you
are developing.

When you create a project in an IDE, it generates an Ant script to build the application.
Alternatively, IDEs also support Maven. For more information about Ant and Maven,
see their respective official web sites:

• http://ant.apache.org/

• http://maven.apache.org/

For more information about NetBeans IDE projects, see Developing Applications with
NetBeans IDE at

http://docs.oracle.com/cd/E50453_01/doc.80/e50452/toc.htm

Java ME Embedded Application Projects in NetBeans IDE 5-1

http://ant.apache.org/
http://maven.apache.org/
http://docs.oracle.com/cd/E50453_01/doc.80/e50452/toc.htm

For more information about Eclipse IDE projects, see Eclipse Documentation at

http://help.eclipse.org

NetBeans IDE includes various project types that are preconfigured for developing
Java SE, JavaFX, Java ME, and many other types of applications. Each type includes
template source files and settings that are specific to the development platform.

You can initially define some of the more important settings when the project is
created. Other settings are preconfigured with default values, however, you can
change them at any time.

Creating a Java ME Embedded Application Project in NetBeans IDE
To create a Java ME Embedded Application project in NetBeans IDE:

1. On the File menu, select New Project.

2. On the Choose Project step, select Java ME Embedded from the Categories list
and Java ME Embedded Application from the Projects list. Click Next.

3. On the Name and Location step, specify initial settings as necessary and click
Finish.

When you create a project in NetBeans IDE, you can view it in one of two ways:

• The Projects tab provides a logical view of the project

• The Files tab provides a physical view of the project

To rename, move, copy, or delete an existing project in NetBeans IDE, right-click the
project on the Projects tab, and select Rename, Move, Copy, or Delete.

Adding an IMlet to a Java ME Embedded Application Project
To add an IMlet to a Java ME Embedded Application project:

1. Right-click the project on the Projects tab, select New, then MIDlet.

2. On the Name and Location step of the New MIDlet window, specify the name and
location as necessary and click Finish.

To configure the settings of an existing project in NetBeans IDE, right-click the project
on the Projects tab, and select Properties.

Managing Java ME Embedded Application Project Sources in NetBeans
IDE

When creating a project in NetBeans IDE, you specify the location and name of the
project folder. By default, the src folder is created inside the project folder for all
source packages. You can add other folders with source code files and packages that
you want to be part of the project.

To manage the project sources in NetBeans IDE, right-click the project, select
Properties, and then open the Sources category.

Creating a Java ME Embedded Application Project in NetBeans IDE

5-2 Developer’s Guide

http://help.eclipse.org

Managing the List of Source Package Folders
The sources for a project are maintained in the form of a list of folders with source
code files and packages. The order of the folders in the list defines the order in which
the folders are processed (that is, source files are compiled).

• To add a folder with sources that you want to be part of the project, click Add
Folder.

• To remove a folder, select it in the list and click Remove.

• To define the order in which folders are processed, use the Move Up and Move
Down buttons.

For each source package folder, you can define a label that is displayed in the Projects
view. For example, the default src folder is labeled Source Packages. By default,
all added folders are labeled with the name of the folder. To change a label, double-
click it, enter a name, and press Enter.

Setting the Source and Target Versions
If you are developing an application that must be compatible with previous versions
of Java, you can set the version of the source code that the compiler should expect, and
the target runtime version for which you want to compile.

To set the source and target version:

• Select it in the Source/Binary Format drop-down list under the list of source
package folders.

This setting defines the -source and -target options of the javac Java compiler.

Setting the Encoding of Source Files
If development occurs in multiple countries, encoding of source files in projects may
vary. You need to make sure that the Java compiler knows the encoding.

To set the encoding of source files in a project:

• Select it in the Encoding drop-down list under the list of source package folders.

This setting defines the -encoding option of the javac Java compiler.

Including and Excluding Source Files
The defined source package folders may contain files that you want to exclude from
the project.

To configure which files to included and exclude:

1. Click the Includes/Excludes button under the list of source package folders.

2. Specify regular expressions to filter out files you want to include and files you want
to exclude.

3. Check the lists of included and excluded files based on the regular expressions to
make sure that the expressions are correct and click OK.

Managing Java ME Embedded Application Project Sources in NetBeans IDE

Java ME Embedded Application Projects in NetBeans IDE 5-3

Related Topics
For more information about the javac Java compiler, see the Java Platform, Standard
Edition Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javac.html

Selecting Java ME Embedded Application Project Platform in NetBeans
IDE

The Java SE Development Kit (JDK) is used to compile and package a Java ME
Embedded application, while the Java ME Embedded platform included with Oracle
Java ME SDK provides an emulation environment for Windows to run the application
on an emulated device.

You can select both the JDK and the Java ME platform for a Java ME Embedded
Application project when creating the project. To select the JDK and the Java ME
platform for an existing Java ME Embedded Application project:

1. Right-click the project and select Properties.

2. Open the Platform category.

3. In the JDK Path and Java ME Platform drop-down lists select the JDK and Java
ME platform and click OK.

The JDK Path and Java ME Platform drop-down lists contain only those JDK versions
and Java ME platforms that are registered with NetBeans IDE.

Managing Platforms in NetBeans IDE
When you install NetBeans IDE, it automatically detects and registers all Java
platforms on your computer. You can use the Java Platform Manager to manually
register other platforms in NetBeans IDE as necessary. To access the Java Platform
Manager do one of the following:

• On the Tools menu, select Java Platforms.

• When creating a project, click Manage Platforms.

• In the Platform category of the Project Properties window for an existing project,
click Manage Platforms.

Configuring the Emulation Environment
The Java ME platform includes an emulation environment that provides
implementations of the device's APIs. For example, Oracle Java ME SDK8.3 includes
the Java ME Embedded 8.3 runtime as an emulation environment for Windows and
Linux.

To select the default device on which to run the Java ME Embedded Application
project, use the Device drop-down list. In case of Oracle Java ME SDK 8.3,
EmbeddedDevice1 is selected by default.

Because Java ME Embedded 8.3 implements only JSR 360: Connected Limited Device
Configuration 8 (CLDC 8) and JSR 361: Java ME Embedded Profile (MEEP 8), the
Configuration and Profile options do not provide any alternatives.

Selecting Java ME Embedded Application Project Platform in NetBeans IDE

5-4 Developer’s Guide

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

Various devices may implement optional application programming interfaces (APIs)
to provide specific functionality (for example, wireless communication or physical
location tracking). By default, all optional packages available to the platform are
selected for a project. However, if a device does not support some of the APIs, you can
exclude corresponding packages to reduce the size of the application.

Managing Java ME Embedded Application Project Libraries in NetBeans
IDE

A project may depend on classes, associated source files, annotation processors, and
Javadoc documentation from another project, library, Java Archive (JAR), or any other
location. These dependencies (also known as libraries) are added to the class path so
that they can be accessed during compilation. The list of libraries defines the -
classpath, -sourcepath, and -processorpath options of the javac Java
compiler.

To manage these libraries for an existing Java ME Embedded Application project,
right-click the project, select Properties, and then open the Libraries category. The
following tabs are available in the Libraries category:

• Compile: This tab is used to manage the list of compile-time libraries that define
the location of general dependencies required during compilation. These are
propagated to other library types.

• Processor: This tab is used to manage the list of processor-path libraries that define
the location of the annotation processors used in the project. If no libraries are
specified or the processor is not available in the specified libraries, then the general
compile-time class path is searched for annotation processors.

• LIBlets: This tab is used to manage the list of shareable software components that a
Java ME Embedded application may use at runtime. To customize LIBlet-specific
options in this tab, add LIBlets of type liblet as compile-time libraries on the
Compile tab.

A project can have dependencies in another project, in a library, in a JAR file, or in a
folder. To add the dependency, click the corresponding button (Add Project, Add
Library, or Add JAR/Folder).

To edit a library, select it in the list and click Edit. To remove a library, select it in the
list and click Remove. If there are multiple libraries on which a project depends, you
can define the order in which they are searched for the corresponding dependencies
using the Move Up and Move Down buttons.

If there are source code files in the libraries that are associated with a project, they
have to be built to be used. The Build Projects on Classpath check box is selected by
default to enable all project dependencies to be built if they are on the class path. If
you know that your project does not require any of the source files in the dependent
libraries, you can deselect this check box to decrease the time of compilation.

For more information about the javac Java compiler, see the Java Platform, Standard
Edition Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javac.html

Managing Java ME Embedded Application Project Libraries in NetBeans IDE

Java ME Embedded Application Projects in NetBeans IDE 5-5

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

Managing Java ME Embedded Application Descriptor Attributes in
NetBeans IDE

The basic components of a Java ME Embedded application are the Java Application
Descriptor (JAD) file and the Java Archive (JAR) file. Together, these two files form an
IMlet suite. Application descriptor attributes define metadata that represents the
application's properties and configuration.

Attributes are contained in a JAD file, and include information, such as the name,
vendor, and version of the IMlet suite, the location and size of the JAR file, and the
configuration and profile requirements. The JAD file may contain any number of
attributes defined by JSR 361: Java ME Embedded Profile (MEEP 8), as well as custom
attributes defined by the developer of the application.

A manifest file contained in a JAR file has the same syntax as the JAD file and it may
share the same attributes. Attributes in the JAD file must agree with those in the
manifest file.

For more information about the application descriptor attributes, see the Application
Packaging document of the Java ME Embedded Profile Specification at

http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/
doc-files/packaging.html

To manage application descriptor attributes for an existing Java ME Embedded
Application project in NetBeans IDE, right-click the project, select Properties, and then
open the Application Descriptor category. The following tabs are available in the
Application Descriptor category:

• Attributes: This tab is used to manage the list of name and value pairs for general
attributes. If you are creating a Java ME Embedded application, select MIDlet
Suite as the packaging model. If you are creating a shareable software component
that an application will use during runtime, select LIBlet as the packaging model.

There are three default attributes defined that are required and cannot be removed
from the list. For a MIDlet, the default attributes are MIDlet-Name, MIDlet-
Vendor, and MIDlet-Version. For a LIBlet, the default attributes are LIBlet-
Name, LIBlet-Vendor, and LIBlet-Version.

By default, the JAR file is located in the same folder as the JAD file. To specify a
different location for the JAR file that is specified in the JAD file, select Override
JAR URL in JAD under the list of general attributes, and enter an absolute or
relative URL that will be used as the value for the MIDlet-Jar-URL or LIBlet-
Jar-URL attribute.

Caution:

Attributes beginning with MIDlet-, LIBlet-, or MicroEdition- are
reserved for use by the application management software (AMS) on the device.
Do not use these for custom user-defined attributes!

• MIDlets: This tab is used to manage the list of MIDlets in the suite, with a class
name, a displayed name, and a displayed icon for each. At least one entry is
necessary. By default, it is the main IMlet class.

Managing Java ME Embedded Application Descriptor Attributes in NetBeans IDE

5-6 Developer’s Guide

http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/doc-files/packaging.html
http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/doc-files/packaging.html

The first entry in the list defines the MIDlet-1 attribute, the second entry defines
the MIDlet-2 attribute, and so on. You can change the order using the Move Up
and Move Down buttons.

• Push Registry: This tab is used to manage the list of MIDlets that are registered for
push notifications, with a class name, an IP address of the sender, and a connection
string that identifies the protocol and port number. When you install your
application on a device, the application management software (AMS) listens for
incoming connections from MIDlets specified in the push registry. If a registered
MIDlet connects from a matching IP address over the specified protocol to the
specified port number, the AMS launches the application.

The first entry in the list defines the MIDlet-Push-1 attribute, the second entry
defines the MIDlet-Push-2 attribute, and so on. You can change the order using
the Move Up and Move Down buttons.

For more information about the push registry, see the Javadoc for the
javax.microedition.io.PushRegistry class in the Java ME Embedded Profile
Specification at

http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/
meep/api/javax/microedition/io/PushRegistry.html

Note:

To use the push registry in your application, you must set the
javax.microedition.io.PushRegistryPermission attribute on the
API Permissions tab.

• API Permissions: This tab is used to manage the list of permission attributes for
protected APIs that the application uses. When you install your application on a
device, the AMS compares the permissions requested with the permissions in the
destination protection domain. If a required permission is denied, the installation
terminates and an exception is returned. If an optional permission is denied, the
application may install, but will run with limited functionality.

For a MIDlet, the first required permission entry in the list defines the MIDlet-
Permission-1 attribute, the second required permission entry defines the
MIDlet-Permission-2 attribute, and so on. Optional permission entries define
the MIDlet-Permission-Opt-1 attribute, the MIDlet-Permission-Opt-2
attribute, and so on. For a LIBlet, corresponding attributes begin with the LIBlet-
Permission-1 attribute and the LIBlet-Permission-Opt-1 attribute.

For more information about permissions, see the Security for Applications
document of the Java ME Embedded Profile Specification at

http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/
meep/api/doc-files/security_framework.html

On each tab, to add an attribute, click Add, provide the necessary data, and click OK.
To edit an attribute, select it and click Edit. To remove an attribute, select it and click
Remove.

Configuring Java Compiler Settings in NetBeans IDE
When building a Java ME Embedded Application project, NetBeans IDE automatically
compiles the main IMlet class and any other necessary classes. To do this, NetBeans
IDE uses the javac Java compiler from the Java SE Development Kit (JDK).

Configuring Java Compiler Settings in NetBeans IDE

Java ME Embedded Application Projects in NetBeans IDE 5-7

http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/javax/microedition/io/PushRegistry.html
http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/javax/microedition/io/PushRegistry.html
http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/doc-files/security_framework.html
http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/meep/api/doc-files/security_framework.html

The javac command has many options that allow you to configure how the Java
compiler produces bytecode class files. These options can be configured in the
NetBeans IDE project properties.

To configure Java compiler settings for an existing Java ME Embedded Application
project in NetBeans IDE:

1. Right-click the project and select Properties.

2. Under Build Open the Compiling category.

3. Select options and click OK.

Generating Debugging Information
The Java compiler can generate debugging information into the output class files. This
information can then be used by debugging tools during run time.

By default, a project is configured to generate all debugging information, which is
defined by the -g option of the javac command. This includes information about line
numbers, source files, and local variables. However, once your application is fully
debugged, you should recompile it without any debugging information to make the
class files smaller and harder to reverse engineer.

To build your project without any debugging information:

• Deselect Generate Debugging Info.

This sets the -g:none option for the javac command.

Reporting Deprecated API Usage
As Java classes are updated, their APIs change. New methods, constructors, and fields
are added, existing ones can sometimes be renamed for consistency. Some classes and
interfaces can replace existing ones when a better approach is found.

Java supports a deprecation mechanism to let the developers know when an API they
are using is deprecated. To deprecate a class, method, or member field, an annotation
is added to it, as well as a Javadoc tag with comments. The comment is generated in
the Javadoc for the API, warning the user and suggesting alternatives. The annotation
causes the javac Java compiler to produce a warning, although existing calls to
deprecated APIs continue to work, and classes are still compiled.

To see the exact class, method, or member field that is deprecated:

• Select Report Uses of Deprecated APIs.

This behavior is defined by the -deprecation option of the javac command.
Without this option, the Java compiler shows only a summary of the source file names
that use or override deprecated classes, methods, or fields.

Tracking Java Dependencies
If your project depends on external classes, it is important to track modifications to the
dependencies. The ability to track this is a feature of the build system used by
NetBeans IDE.

To automatically recompile any class in your project that depends on a class that has
been modified:

Configuring Java Compiler Settings in NetBeans IDE

5-8 Developer’s Guide

• Select Track Java Dependencies.

This ensures that the latest version of any project dependency is used by NetBeans
IDE when you build and run the project.

Processing Annotations
Annotations are metadata in the source code that provide information about the code
and do not affect the operation of the application. Some annotations are used by the
Java compiler to detect errors or suppress warnings. Other annotations are processed
at the beginning of compilation to generate additional source code files, XML files, and
so on. And there are certain annotations that are accessible at run time.

To enable annotation processing during compilation:

• Select Enable Annotation Processing

This is the default behavior of the Java compiler.

If you deselect this option, annotations will not be processed, which is defined by the
-proc:none option of the javac command.

To see the results of annotation processing directly in the Java Editor in NetBeans IDE:

• select Enable Annotation Processing in Editor.

You can specify custom annotation processors that you want to use for building your
project in the Annotation Processors list.

To add a processor:

1. Click Add next to the list.

2. Enter the fully qualified name (FQN) of the processor and click OK.

This list defines the -processor option of the javac command.

If the annotation processor associated with your project excepts command-line
options, you can specify the ones that you want to pass to it in the Processor Options
list.

To add an option:

1. Click Add next to the list.

2. Enter a key and its value, and click OK.

This list defines the -A option of the javac command. It is specified in the form -
Akey[=value].

Configuring Additional Java Compiler Settings
To configure additional Java compiler settings, enter the corresponding javac
command options in the Additional Compiler Options field. Use the exact syntax that
you would use when entering them after the javac command.

Related Topics
For more information about the javac Java compiler, see the Java Platform, Standard
Edition Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javac.html

Configuring Java Compiler Settings in NetBeans IDE

Java ME Embedded Application Projects in NetBeans IDE 5-9

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html

About Signing Java ME Embedded Applications in NetBeans IDE
Signing a Java ME Embedded application allows MEEP devices to verify the integrity
and origin of the IMlet suite. Signing information is used to check an application's
source and validity before allowing it to access certain protected APIs. The certificate
that is used to sign your application designates a security domain that defines the
permitted protected APIs.

You should sign your applications for security reasons, to protect them from being
tampered by malicious third parties, and to increase their acceptance by distribution
channels.

Oracle Java ME SDK provides a built-in keystore whose certificates can be used for
testing purposes. When you are ready to distribute your application, you should buy a
signing key pair from a reputable certificate authority (CA), import it to a keystore and
use it to sign the application. Note that the certificate must be registered on a device.

Signing a Java ME Embedded Application Project in NetBeans IDE
To sign a Java ME Embedded Application project in NetBeans IDE:

1. Right-click the project and select Properties.

2. Open Signing under the Build category and select Sign JAR.

By default, the built-in keystore provided by Oracle Java ME SDK is selected, with
the minimal certificate, which denies all permissions to protected APIs.

Importing a New Certificate to the Keystore
To be able to select a non-default key pair with which to sign your application, import
it to an existing keystore or create a new keystore. This can be done in the Keystores
Manager.

To open the Keystores Manager window, click Open Keystores Manager.

Registering the Certificate on a Device
Besides selecting the certificate for signing your application, you have to make sure
that the corresponding key is registered on the device.

To export the selected key to a specific device registered with Oracle Java ME SDK:

1. In the Signing category of the project properties, click Export Key into Java ME
SDK Platform Emulator.

Alternatively, you can click Export in the Keystores Manager window.

2. Select the device and one of the security clients available on the device.

3. Click Export.

Obfuscating Java ME Embedded Applications in NetBeans IDE
Obfuscation refers to deliberately making program code harder to understand,
decompile, and reverse-engineer. Obfuscators are programs that transform readable
code into obfuscated code.

About Signing Java ME Embedded Applications in NetBeans IDE

5-10 Developer’s Guide

Oracle Java ME SDK includes ProGuard, which is a Java bytecode obfuscator. It first
shrinks, optimizes, and preverifies Java class files to make them more compact. Then it
transforms the bytecode to make it almost impossible to reverse-engineer. This is an
important security measure, because raw bytecode produced by the Java compiler
contains much of the source code information, which is your intellectual property. Size
optimization is also crucial for Java ME Embedded applications, which are designed
for resource-constrained devices.

To enable obfuscation for an existing Java ME Embedded Application project in
NetBeans IDE, right-click the project, select Properties, open Obfuscating under the
Build category, and click Install ProGuard Obfuscator.

If you can't install ProGuard Obfuscator, ensure that your computer is online, all
servers in the Update Center are checked, and proxy settings are set as required.

When ProGuard is installed, select the level of obfuscation using the Obfuscation
Level slider. You can see the impact of the selected obfuscation level on bytecode in
the Level Description field. This field also lists the arguments passed to ProGuard
when it is launched. To configure additional settings for ProGuard, specify the
corresponding options in the Additional Obfuscation Settings field.

For more information about command-line options of ProGuard, see the ProGuard
Reference Card at

http://proguard.sourceforge.net/#manual/refcard.html

Configuring Project Documentation Settings in NetBeans IDE
For each of your applications, you can produce a set of Javadoc HTML pages that
describe the project's classes, inner classes, interfaces, constructors, methods, and
fields. The Javadoc is constructed from the structure of your code and the Javadoc
comments embedded in your code. To do this, NetBeans IDE uses the javadoc tool
from the Java SE Development Kit (JDK).

The javadoc command has many options that allows you to configure how Javadoc
files are produced, what information they include, and so on. These options can be
configured in the NetBeans IDE project properties.

To configure Javadoc settings for an existing Java ME Embedded Application project
in NetBeans IDE, right-click the project, select Properties, and then open the
Documenting category under the Build category.

By default, Javadoc generates documentation only for protected and public classes and
members. If you want to document all classes and members, including those with the
private and package-private access levels, select Include Private and Package Private
Members. This behavior is defined by the -private option of the javadoc
command.

Javadoc can generate some additional pages to aid with navigation. By default,
NetBeans IDE is configured to generate the class hierarchy tree pages, the class and
package usage pages, the navigation bar, and index with a separate page for each
letter.

To omit the class hierarchy tree pages, deselect Class Hierarchy Tree. This starts the
javadoc tool with the -notree option.

To omit the usage pages, deselect Class and Package Usage Pages. This removes the -
use option from the javadoc command.

To omit the navigation bar, header and footer, deselect Navigation BarNavigation
Bar. This starts the javadoc tool with the -nonavbar option.

Configuring Project Documentation Settings in NetBeans IDE

Java ME Embedded Application Projects in NetBeans IDE 5-11

http://proguard.sourceforge.net/#manual/refcard.html

To omit the index, deselect Index. This starts the javadoc tool with the -noindex
option.

To generate the index on a single page, deselect Separate Index per Letter. This
removes the -splitindex option from the javadoc command.

By default, Javadoc does not process the @author and @version tags. To include
information about the author or version, select the corresponding check box under
Document Additional Tags. This is defined by the -tag option of the javadoc
command.

To set the browser window title (that is, the <title> tag in the HTML code of the
generated pages), enter it in the Browser Window Title field. This is defined by the -
windowtitle option of the javadoc command. If the window title is not set
explicitly, the value of the -doctitle option is used, which is by default set to the
name of the NetBeans IDE project.

To configure additional Javadoc tool settings, enter the corresponding javadoc
command options in the Additional Javadoc Options field. Use the exact syntax that
you would use when entering them after the javadoc command.

To open the generated Javadoc in your default browser after completion, select
Preview Generated Javadoc.

Related Topics
For more information about the javadoc tool, see the Java Platform, Standard Edition
Tools Reference at

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javadoc.html

Configuring Java ME Embedded Emulator Settings in NetBeans IDE
After the project is built, you can use NetBeans IDE to run your Java ME Embedded
application. The Java ME Embedded Emulator is used to install and start the IMlet
suite on the device.

To configure settings for running your Java ME Embedded Application project in
NetBeans IDE, right-click the project, select Properties, and then open the Run
category.

To configure the Java ME Embedded Emulator settings, enter the corresponding
options in the Emulator Command Line Options field. Use the exact syntax that you
would use when entering them after the emulator command.

By default, Regular Execution is selected under Run Method. This option means that
the IMlet suite is executed on the device. To simulate the process of deploying the
application from a server to a remote device, select Execute through OTA. This option
means that only the JAD file is executed and the JAR is provisioned over the air (OTA).

Note:

When debugging, the application is always executed regularly, no OTA is
used.

Configuring Java ME Embedded Emulator Settings in NetBeans IDE

5-12 Developer’s Guide

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

To set the delay for which NetBeans IDE should wait before attaching a debugger,
enter a value in milliseconds in the Debugger timeout field. By default, this value is
30000.

About Ant, Gradle, and Maven Support
Oracle Java ME SDK supports export of a Java ME Embedded project to a standalone
Ant, Gradle, or Maven project to enable further building of the Java ME Embedded
project without use of an IDE.

The exported project contains the source code for the Java ME Embedded application,
build scripts, and build configuration. Note that the exported project provides only
building and cleaning capabilities.

Exporting Java ME Embedded Projects in NetBeans IDE
In NetBeans IDE, you can export a Java ME Embedded project to a standalone Ant,
Gradle, or Maven project to enable further building of the Java ME Embedded project
without use of an IDE.

To export a Java ME Embedded project to a standalone Ant, Gradle, or Maven project
in NetBeans IDE:

1. Select the Java ME Embedded project on the Projects tab.

2. On the File menu, select Export Project, and then Export Java ME Project.

The Generate Standalone Java ME Embedded Project window opens up.

3. In the Project Type drop-down list, choose the type of the project: Ant, Maven, or
Gradle.

4. In the Destination Folder text field, specify the project location directory by
browsing to it on your file system.

5. In the Dependencies Location group, select a radio button to specify the location of
Java ME libraries.

Java ME libraries are necessary for building the Java ME Embedded application.
With a remote repository chosen, the Java ME Embedded application can be built
without Java ME SDK installed.

• Select Locally installed Java ME SDK to enable building a Java ME application
using Java ME SDK.

• Select Remote Maven Repository to enable building a Java ME application
without using Java ME SDK.

– In the Repository URL text field, specify the URL for the Java ME libraries.

– In the Maven ant tasks path text field, which is available only for the Ant
project, specify the path to the Maven ant tasks.

About Ant, Gradle, and Maven Support

Java ME Embedded Application Projects in NetBeans IDE 5-13

Exporting Java ME Embedded Projects in NetBeans IDE

5-14 Developer’s Guide

6
Java ME Embedded Application Projects in

Eclipse IDE

An Integrated Development Environment (IDE) uses projects to combine source files
and settings that are necessary to build, run, and debug applications. Without an IDE,
there are a lot more manual actions required to manage all the files and settings.

The chapter contains the following topis:

• Basic Information About Project Management in IDE

• Creating a Java ME Project in Eclipse IDE

• Adding an IMlet to a Java ME Application Project

• Importing an Existing Project into Eclipse IDE

• Managing Java ME Project Device Configurations in Eclipse IDE

• Performing Code Validation for a Java ME Project in Eclipse IDE

• Managing Java ME Project Libraries in Eclipse IDE

• Obfuscating Java ME Embedded Applications in Eclipse IDE

• Setting Java ME Project Packaging Attributes in Eclipse IDE

• Signing Java ME Embedded Applications in Eclipse IDE

Basic Information About Project Management in IDE
The development and configuration of an application in the IDE takes place in the
context of a project. It is the highest level of organization for the application that you
are developing.

When you create a project in an IDE, it generates an Ant script to build the application.
Alternatively, IDEs also support Maven. For more information about Ant and Maven,
see their respective official web sites:

• http://ant.apache.org/

• http://maven.apache.org/

For more information about NetBeans IDE projects, see Developing Applications with
NetBeans IDE at

http://docs.oracle.com/cd/E50453_01/doc.80/e50452/toc.htm

For more information about Eclipse IDE projects, see Eclipse Documentation at

http://help.eclipse.org

Java ME Embedded Application Projects in Eclipse IDE 6-1

http://ant.apache.org/
http://maven.apache.org/
http://docs.oracle.com/cd/E50453_01/doc.80/e50452/toc.htm
http://help.eclipse.org

NetBeans IDE includes various project types that are preconfigured for developing
Java SE, JavaFX, Java ME, and many other types of applications. Each type includes
template source files and settings that are specific to the development platform.

You can initially define some of the more important settings when the project is
created. Other settings are preconfigured with default values, however, you can
change them at any time.

Creating a Java ME Project in Eclipse IDE
Eclipse IDE with Mobile Tools for Java (MTJ) extensions includes a project type that is
preconfigured for developing Java ME Embedded applications. The project defines
settings that are specific to Java ME Embedded.

You can initially define some of the more important settings when the project is
created. Other settings are preconfigured with default values, however, you can
change them at any time.

To create a Java ME project in Eclipse IDE:

1. Ensure that the Java ME perspective is active as follows:

a. Open the Window menu, select Perspective, select Open Perspective, and
then Other.

b. In the Open Perspective window, select Java ME and click OK.

2. On the File menu, select New and then Java ME Project.

3. In the New Java ME Project dialog, specify initial settings as necessary. You can
click Next and Back to navigate the wizard. When you are done, click Finish.

When you create a project in Eclipse IDE, you can view it in one of two ways:

• The Package Explorer tab provides a logical view of the project

• The Navigator tab provides a physical view of the project

To configure the settings of an existing project in Eclipse IDE, right-click the project on
the Package Explorer tab, and select Properties.

Adding an IMlet to a Java ME Application Project
To add an IMlet to a Java ME Embedded Application project:

1. Right-click the project on the Package Explorer tab, select New, then Java ME
MIDlet.

2. In the New Java ME MIDlet dialog, specify initial settings as necessary. You can
click Next and Back to navigate the wizard. When you are done, click Finish.

To configure the settings of an existing project in Eclipse IDE, right-click the project on
the Package Explorer tab, and select Properties.

Importing an Existing Project into Eclipse IDE
To import an existing project into Eclipse IDE:

1. Open the File menu and select Import.

Creating a Java ME Project in Eclipse IDE

6-2 Developer’s Guide

2. In the list, expand the General node and select Existing Project into Workspace.
Click Next.

3. Select the root directory of the project or an archive if you previously saved your
project into an archive.

4. Select the project name in the list and click Finish.

To configure the settings of an existing project in Eclipse IDE, right-click the project on
the Package Explorer tab, and select Properties.

Managing Java ME Project Device Configurations in Eclipse IDE
The Java ME Embedded platform included with Oracle Java ME SDK provides an
emulation environment for Windows to run Java ME Embedded applications on an
emulated device.

To manage the device configurations on which you want to run the project:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Java ME category.

The Configurations list contains a list of devices that are available to the project.

To add a device to the Configurations list:

1. Click Add.

2. Select the Java ME SDK platform and device that you want to add.

3. Optional: Specify a name for the configuration. By default, the name of the device
is used.

4. Click Finish to add the configuration to the project.

To edit the configuration, select it in the list and click Edit. To remove a configuration
from the project, select it in the list and click Remove.

Below the configuration list, you can specify names of generated JAR and JAD files.

Performing Code Validation for a Java ME Project in Eclipse IDE
Code validation is the process of checking that the source code of your application
complies with standards and recommendations for Java ME. Clean sources can help
you maintain your code base efficiently.

Code validation settings in Eclipse IDE are configured globally (for all projects), but
you can also override some of the settings for a specific project. To configure global
code validation settings for all projects in Eclipse IDE:

1. Open the Window menu and select Preferences.

2. In the left pane of the Preferences window, expand the Java ME category and
select Code Validation.

3. Select the language constructs that you would like to be warned about or that you
want to ignore when compiling.

To configure project-specific code validation settings for an existing Java ME project in
Eclipse IDE:

Managing Java ME Project Device Configurations in Eclipse IDE

Java ME Embedded Application Projects in Eclipse IDE 6-3

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Code Validation category
under Java ME.

3. Select Enable project specific settings.

4. Select the language constructs that you would like to be warned about or that you
want to ignore when compiling.

Managing Java ME Project Libraries in Eclipse IDE
A project may depend on external libraries of classes and source files. These
dependencies are added to the class path so that they can be accessed during
compilation and included into the JAR file. The list of libraries defines the -
classpath option of the javac Java compiler.

To manage these libraries for an existing Java ME project in Eclipse IDE:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Library category under Java
ME.

3. Select the libraries to be included from the list of available libraries.

Java ME Embedded applications may use LIBlets, which are a special type of shareable
software components used at runtime. To add LIBlets to a Java ME project in Eclipse
IDE:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, expand the Java Build Path category and
select LIBlets.

3. Click Add and configure the LIBlets that you want to add to the project build path.

Obfuscating Java ME Embedded Applications in Eclipse IDE
Obfuscation refers to deliberately making program code harder to understand,
decompile, and reverse-engineer. Obfuscators are programs that transform readable
code into obfuscated code.

Oracle Java ME SDK includes ProGuard, which is a Java bytecode obfuscator. It first
shrinks, optimizes, and preverifies Java class files to make them more compact. Then it
transforms the bytecode to make it almost impossible to reverse-engineer. This is an
important security measure, because raw bytecode produced by the Java compiler
contains much of the source code information, which is your intellectual property. Size
optimization is also crucial for Java ME Embedded applications, which are designed
for resource-constrained devices.

Obfuscation settings in Eclipse IDE are configured globally (for all projects), but you
can also override some of the settings for a specific project. To configure global
obfuscation settings for all projects in Eclipse IDE:

1. Open the Window menu and select Preferences.

2. In the left pane of the Preferences window, expand the Java ME category, then
expand Packaging, and select Obfuscation.

Managing Java ME Project Libraries in Eclipse IDE

6-4 Developer’s Guide

3. If you want to set command-line options for running ProGuard, select Use
specified arguments and enter the options in the field that follows the check box.

4. You can use the Proguard Keep Expressions list to define the list of classes and
class members to be preserved as entry points to the application. By default, all
public classes that extend the javax.microedition.midlet.MIDlet class are
preserved from obfuscation. Click Add to add more regular expressions to the list.
Double-click existing expressions to modify them. Select an expression and click
Remove to remove it from the list.

To configure project-specific obfuscation settings for an existing Java ME project in
Eclipse IDE:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Obfuscation category under
Java ME.

3. Select Enable project specific settings.

4. If you want to set command-line options for running ProGuard, select Use
specified arguments and enter the options in the field that follows the check box.

5. You can use the Proguard Keep Expressions list to define the list of classes and
class members to be preserved as entry points to the application. By default, all
public classes that extend the javax.microedition.midlet.MIDlet class are
preserved from obfuscation. Click Add to add more regular expressions to the list.
Double-click existing expressions to modify them. Select an expression and click
Remove to remove it from the list.

For more information about command-line options of ProGuard, see the ProGuard
Reference Card at

http://proguard.sourceforge.net/#manual/refcard.html

Setting Java ME Project Packaging Attributes in Eclipse IDE
Java ME Embedded applications are packaged into JAR files with corresponding
descriptor JAD files. The manifest in the JAR and the JAD file contain attributes that
describe the application.

Packaging settings in Eclipse IDE are configured globally (for all projects), but you can
also override some of the settings for a specific project. To configure global packaging
settings for all projects in Eclipse IDE:

1. Open the Window menu and select Preferences.

2. In the left pane of the Preferences window, expand the Java ME category and
select Packaging.

3. If you want the version to automatically increment every time you build a project,
select Increment Version Automatically. This option sets the MIDlet-Version
attribute (or LIBlet-Version if you are building a LIBlet).

4. You can use the Excluded Manifest Entries list to define the list of attributes that
should be excluded from the manifest. By default, the following attributes are
excluded:

• MIDlet-Jar-URL: Points to the location of the JAR file.

Setting Java ME Project Packaging Attributes in Eclipse IDE

Java ME Embedded Application Projects in Eclipse IDE 6-5

http://proguard.sourceforge.net/#manual/refcard.html

• MIDlet-Jar-Size: Specifies the size of the JAR file.

• LIBlet-Jar-URL: Points to the location of the JAR file.

• LIBlet-Jar-Size: Specifies the size of the JAR file.

Click Add to add more attributes to the list. Click existing attributes to modify
them. Select an attribute and click Remove to remove it from the list.

To configure project-specific packaging attributes for an existing Java ME project in
Eclipse IDE:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Packaging category under Java
ME.

3. Select Enable project specific settings.

4. If you want the version to automatically increment every time you build the
project, select Increment Version Automatically. This option sets the MIDlet-
Version attribute (or LIBlet-Version if you are building a LIBlet).

5. You can use the Excluded Manifest Entries list to define the list of attributes that
should be excluded from the manifest. By default, the following attributes are
excluded:

• MIDlet-Jar-URL: Points to the location of the JAR file.

• MIDlet-Jar-Size: Specifies the size of the JAR file.

• LIBlet-Jar-URL: Points to the location of the JAR file.

• LIBlet-Jar-Size: Specifies the size of the JAR file.

Click Add to add more attributes to the list. Double-click existing attributes to
modify them. Select an attribute and click Remove to remove it from the list.

Signing Java ME Embedded Applications in Eclipse IDE
Signing a Java ME Embedded application allows MEEP devices to verify the integrity
and origin of the IMlet suite. Signing information is used to check an application's
source and validity before allowing it to access certain protected APIs. The certificate
that is used to sign your application designates a security domain that defines the
permitted protected APIs.

You should sign your applications for security reasons, to protect them from being
tampered by malicious third parties, and to increase their acceptance by distribution
channels. Security aware vendors always have more credibility in the industry.

Signing in Eclipse IDE is configured globally (for all projects), but you can also
override some of the settings for a specific project. To configure global signing settings
for all projects in Eclipse IDE:

1. Open the Window menu and select Preferences.

2. In the left pane of the Preferences window, expand the Java ME category and
select Signing.

3. Specify the location of the key store.

Signing Java ME Embedded Applications in Eclipse IDE

6-6 Developer’s Guide

4. Select whether you want to enter the password when it is required or save it in the
current Eclipse IDE workspace keyring.

5. To create a new key pair in the specified key store, click Create New Key Pair to
the right of the Key Aliases list.

To remove a key pair from the key store, select it in the list and click Delete Entry.

To import a certificate from a certificate authority (CA), click Import Certificate.

To import a response to your certificate signing request (CSR), click Import CSR
Response.

6. If you do not want to use Java defaults, configure additional settings under
Advanced Settings.

To configure project-specific signing settings for an existing Java ME project in Eclipse
IDE:

1. Right-click the project on the Package Explorer tab, and select Properties.

2. In the left pane of the Properties window, select the Signing category under Java
ME.

3. Select Enable project specific settings.

4. Specify the location of the key store.

5. Select whether you want to enter the password when it is required, save it in the
current Eclipse IDE workspace keyring, or save it as part of the project.

6. To create a new key pair in the specified key store, click Create New Key Pair to
the right of the Key Aliases list.

To remove a key pair from the key store, select it in the list and click Delete Entry.

To import a certificate from a certificate authority (CA), click Import Certificate.

To import a response to your certificate signing request (CSR), click Import CSR
Response.

7. If you do not want to use Java defaults, configure additional settings under
Advanced Settings.

About Ant, Gradle, and Maven Support
Oracle Java ME SDK supports export of a Java ME Embedded project to a standalone
Ant, Gradle, or Maven project to enable further building of the Java ME Embedded
project without use of an IDE.

The exported project contains the source code for the Java ME Embedded application,
build scripts, and build configuration. Note that the exported project provides only
building and cleaning capabilities.

Exporting Java ME Embedded Projects in Eclipse IDE
In Eclipse IDE, you can export a Java ME Embedded project to a standalone Ant,
Gradle, or Maven project to enable further building of the Java ME Embedded project
without use of an IDE.

To export a Java ME Embedded project to a standalone Ant, Gradle, or Maven project
in Eclipse IDE:

About Ant, Gradle, and Maven Support

Java ME Embedded Application Projects in Eclipse IDE 6-7

1. On the File menu, select Export .

The Export window opens up.

2. In the Export window, select the folder with the type of the project: Ant Project,
Maven Project, or Gradle Project.

The Generate Standalone <Type> Project window opens up.

3. In the Destination Folder text field, specify the project location directory by
browsing to it on your file system.

4. In the Dependencies Location group, select a radio button to specify the location of
Java ME libraries.

Java ME libraries are necessary for building the Java ME Embedded application.
With a remote repository chosen, the Java ME Embedded application can be built
without Java ME SDK installed.

• Select Locally installed Java ME SDK to enable building a Java ME application
using Java ME SDK.

• Select Remote Maven Repository to enable building a Java ME application
without using Java ME SDK.

– In the Repository URL text field, specify the URL for the Java ME libraries.

– In the Maven ant tasks path text field, which is available only for the Ant
project, specify the path to the Maven ant tasks.

Exporting Java ME Embedded Projects in Eclipse IDE

6-8 Developer’s Guide

7
Debugging Java ME Embedded

Applications

Stable operation of an application depends on the ability to avoid as many errors
during development as possible. Debugging aims at extensive diagnostics and
detecting errors both in the code and during runtime before your application is
released.

The chapter contains the following topics:

• Basics of Debugging

• Accomplishing Interactive Debugging

• Profiling Java ME Embedded Applications

• Monitoring Memory Usage of Java ME Embedded Applications

• Monitoring Network Activity of Java ME Embedded Applications

• Logging Capabilities Provided by Oracle Java ME SDK

Basics of Debugging
Debugging in general refers to a complex set of methods for extensive diagnostics and
troubleshooting of applications both at the source code level and during runtime.
Besides interactive debugging, this may include analyzing log files, monitoring the
application at runtime, and collecting profiling information.

The Java Platform, Standard Edition Development Kit (JDK) provides various
diagnostic and monitoring tools, such as the jdb Java Debugger. There are also tools
that are specific to various operating systems (OS), such as the userdump utility on
Windows and dbx on Solaris.

For more information about debugging Java applications, see the Java Platform,
Standard Edition Troubleshooting Guide at

http://docs.oracle.com/javase/8/docs/technotes/guides/
troubleshoot

Oracle Java ME SDK maintains several logs and includes dedicated monitoring and
profiling tools specifically for Java ME Embedded applications. You can also use
general Java debugging and profiling features, as well as those provided by the IDE
and the OS.

Accomplishing Interactive Debugging
Interactive debugging is accomplished by setting breakpoints and watchpoints in the
source code and running the application with a debugger. This enables you to execute

Debugging Java ME Embedded Applications 7-1

http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot
http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot

your code one line at a time and examine the state of your application to discover
problems.

By default, both NetBeans IDE and Eclipse IDE use the Java Debugger based on the
Java Platform Debugger Architecture (JPDA). Before debugging a project, connect the
device on which you want to perform debugging and select it as the default for this
project.

To debug a project in NetBeans IDE, right-click the project name and select Debug.

To debug a project in Eclipse IDE, select the project name in the Package Explorer
view, open the Run menu, and select Debug.

Profiling Java ME Embedded Applications
Profiling refers to collecting information about the runtime behavior of an application.
Oracle Java ME SDK provides a dedicated CPU profiler that keeps track of every
method in your Java ME Embedded application.

As data is collected during the emulation session, the profiler figures out how much
time was spent in each method. After you close the emulator, you can export the data
to an NPS file (from NetBeans IDE) or to a PRF file (from Eclipse IDE) that you can
load and view later. As you view the snapshot, you can investigate particular
methods, classes, and packages, and save a customized snapshot (as a PNG file) for
future reference.

Note:

The profiling values obtained from the emulator do not reflect the actual
values on an external device, because the emulator does not represent the
actual device, it is one possible implementation of its supported APIs.

Before profiling a project, connect the device on which you want to perform profiling
and select it as the default for this project.

Note:

The profiler collects large amounts of data, so profiled IMlets require a larger
heap to run on the device. To increase the heap size, configure the Heapsize
property for the device. For more information about device properties, see
Viewing and Editing Device Properties.

To profile a Java ME Embedded Application project in NetBeans IDE:

1. In the Projects view, right-click the project and select Profile.

If this is the first time profiling this project, you are prompted to integrate the
profiler. Click Yes to perform the integration.

2. Select CPU Profiler and click Run.

When the application stops, profiling data is displayed in a tab labeled cpu with
the time when the data was displayed.

To profile a Java ME project in Eclipse IDE:

Profiling Java ME Embedded Applications

7-2 Developer’s Guide

1. In the Package Explorer view, select the project.

2. Open the Run menu and select Profile.

3. Select CPU Profiler and click OK.

When the application stops, profiling data is displayed in a tab labeled CPU with
the time and date when the data was collected.

In NetBeans IDE, to export the profile data to an NPS file, click the Export to button in
the CPU Profiler tab and specify the file name and location. This data can be loaded at
a later time.

In Eclipse IDE, to export the profile data to a PRF file, open the File menu and select
Save As, then specify the file name and location. This data can be loaded at a later
time.

Monitoring Memory Usage of Java ME Embedded Applications
The Java ME SDK plug-ins include a Memory Monitor that shows memory usage of a
running Java ME Embedded application from within the IDE. It displays a dynamic
detailed listing of the current memory usage per object in table form, and a graphical
representation of the memory usage over time.

You can take a snapshot of the Memory Monitor data (as an MMS file, short for
memory monitor snapshot). Snapshots can be loaded and analyzed later.

Note:

The memory usage values obtained from the emulator do not reflect the actual
values on an external device, because the emulator does not represent the
actual device, it is one possible implementation of its supported APIs.

To monitor memory usage of a Java ME Embedded Application project in NetBeans
IDE:

1. In the Projects view, right-click the project and select Profile.

If this is the first time profiling this project, you are prompted to integrate the
profiler. Click Yes to perform the integration.

2. Select Memory Monitor and click Run.

The Memory Monitor tab opens in the main working area of NetBeans IDE.

To monitor memory usage of a Java ME project in Eclipse IDE:

1. In the Package Explorer view, select the project name.

2. Open the Run menu and select Profile .

3. Select Memory Monitor and click OK.

The Memory Monitor view opens in the main working area of Eclipse IDE.

The top part of the Memory Monitor tab contains a graph, while the bottom part of
the tab contains an object table. To the left of the graph is the current memory usage in
bytes. The green line plots this values over time. The red line is the maximum amount

Monitoring Memory Usage of Java ME Embedded Applications

Debugging Java ME Embedded Applications 7-3

of memory used since program execution, corresponding to the maximum size in
bytes on the left.

Beneath the object table you see counters that display the total number of objects, the
amount of memory used, the amount of free memory, and the total amount of heap
memory on the device.

To sort the data in the object table, click a column header. Sorting is case sensitive.

To display the call stack tree, click a row in the object table. The call stack is displayed
in a window to the right of the table. You can browse the call stack tree to see the
methods that created the object by selecting the corresponding folder in the call stack.

Because data changes rapidly, it is convenient to take several snapshots of the memory
monitor data and review them later. To save a snapshot, open the File menu and select
Save As, then specify an MMS file name and location.

The graph data you see is cumulative for this emulator session. The Memory Monitor
plots session data for any IMlet run on the current emulator until you exit the
application and close the emulator.

To load a memory monitor snapshot:

1. On the File menu, select Open File.

2. Browse to find the necessary MMS file.

The Memory Monitor opens in its own tab in the main window. Note that the tab
displays the time when the snapshot was saved.

Monitoring Network Activity of Java ME Embedded Applications
The Java ME SDK plug-ins include a Network Monitor that provides a convenient way
to see the data that your Java ME Embedded application is sending and receiving on
the network. This is helpful if you are debugging network interactions or looking for
ways to optimize network traffic through HTTP and other protocols.

You can take a snapshot of the Network Monitor data (as an NMD file, short for
network monitor data). Snapshots can be loaded and analyzed later.

To monitor network activity of a Java ME Embedded Application project in NetBeans
IDE:

1. In the Projects view, right‐click the project and select Profile.

If this is the first time profiling this project, you are prompted to integrate the
profiler. Click Yes to perform the integration.

2. Select Network Monitor and click Run.

The Network Monitor tab opens in the main working area of NetBeans IDE.

To monitor network activity of a Java ME project in Eclipse IDE:

1. In the Package Explorer view, select the project name.

2. Open the Run menu and select Profile.

3. Select Network Monitor and click OK

The Network Monitor view opens in the main working area of Eclipse IDE.

When the application makes a network connection, information about the connection
is captured and displayed in the table in the top frame. Click a connection to display

Monitoring Network Activity of Java ME Embedded Applications

7-4 Developer’s Guide

its details in the bottom frame. Under Hex View, raw connection data is shown as raw
hexadecimal values with the equivalent text.

Note:

To avoid memory issues, the Hex view display is currently limited to 16
kilobytes of data.

To save your network monitor session, open the File menu and select Save As, then
specify an NMD file name and location.

To load a network monitor session:

1. On the File menu, select Open File.

2. Browse to find the necessary NMD file.

Filtering and Sorting Connections
Filters are used to examine a subset of the total network traffic.

• In the Select Devices list, select only the devices you want to view.

• In the Select Protocols list, select only the protocols you want to view. The list
contains protocols that are available on the device.

• In the URL Filter field, you can specify the URL for which you want to view
connection data.

Click on a table header to sort the message data:

• No.: Connections are sorted sequentially (according to the time when they were
started).

• Protocol: Connections are sorted by protocol name.

• Device: Connections are sorted by device name.

• URL: Connections are sorted by URL.

• Time: Connections are sorted by duration.

• Size: Connections are sorted by the size of data.

• Active: Connections are sorted based on whether it is currently active.

Logging Capabilities Provided by Oracle Java ME SDK
Oracle Java ME SDK relies on a set of tools that help you with development, such as
the Device Manager, Device Selector, Custom Device Editor, and so on. Each tool
maintains a separate log file to record errors, warnings, and informational events.
When you experience problems with any of the tools, you can review its log file to
understand which events caused a particular issue.

These log files are located in the Oracle Java ME SDK user configuration directory
under log. For example, the Device Manager saves logging data to
JAVAME_SDK_USER\log\device-manager.log.

Logging Capabilities Provided by Oracle Java ME SDK

Debugging Java ME Embedded Applications 7-5

The Java ME Embedded Emulator maintains a separate log file for each device. The
device log is named device.log and is located in the device's configuration
directory. For example, the logging data for the default EmbeddedDevice1 is saved to
JAVAME_SDK_USER\work\EmbeddedDevice1\device.log.

For more information about the Oracle Java ME SDK user configuration directory, see
Installation and Configuration Directories.

Enabling Logging for a Device
By default, device logs record high-level program usage events. Debugging may
require lower-level information about the operation of the underlying runtime.
Recording this tracing data in a device's log file can be enabled using the device
properties.

To enable tracing for a device:

1. Open the Device Selector and select the device. For more information about the
Device Selector and device properties, see Viewing and Editing Device Properties.

2. Expand the Monitor node of the device properties and select the desired trace
properties:

• Trace GC: Tracing garbage collection information can help you determine object
health. The garbage collector cannot delete objects that do not have a null
reference. Null objects are garbage collected and not reported as active.

• Trace Class Loading: Tracing class initialization and loading is useful for
determining dependencies among classes.

• Trace Exceptions: Tracing caught exceptions can be used for debugging when
analyzing the log file.

• Trace Method Calls: Tracing called and returned methods is useful to
understand the operational sequence of the application. The output for this
option is very verbose, and it can affect performance.

3. (Optional) Verbose tracing output may cause your application to run out of
memory on the device. To increase the device's heap memory size, expand the
General node of the device properties and specify the value for the Heapsize
property.

Logging Capabilities Provided by Oracle Java ME SDK

7-6 Developer’s Guide

8
About Java ME Embedded Devices

Java ME Embedded applications run on small devices, with either a simple or no
display at all, with low power consumption, and with limited network connectivity.
Target devices include wireless modules, smart meters, industrial controllers, home
automation systems, and so on.

The chapter contains the following topis:

• Emulated Devices

• Managing Devices

• Connecting an External Device

• Creating and Managing Custom Emulated Devices

• Viewing and Editing Device Properties

Emulated Devices
Oracle Java ME SDK includes the Java ME Embedded runtime as a device emulation
environment for Windows and Linux desktop computers. The emulation environment
uses the same code base that Oracle licenses to device manufacturers for use on real
devices. This enables you to perform extensive testing of your embedded applications
on an emulated device before deploying them on a real device.

By default, Oracle Java ME SDK includes two generic emulated devices
(EmbeddedDevice1 and EmbeddedDevice2), and an emulation of the Qualcomm
Internet-of-Everything (IoE) embedded device (Qualcomm_IoE_Device). For more
information about the Qualcomm IoE device, see Oracle Java ME Embedded Getting
Started Guide for the Reference Platform (Qualcomm IoE).

You can also use Oracle Java ME SDK to connect a real external device and run your
Java ME Embedded application on it. In this case, the Java ME Embedded Emulator
provides an implementation of the device's APIs for testing, logging, and debugging
using the tools available with Oracle Java ME SDK.

Managing Devices
During development, you may be required to run your Java ME Embedded
application on several emulated and real devices. Oracle Java ME SDK includes the
Device Manager to facilitate you with managing all the various devices.

The Device Manager is a process named device-manager. On Windows, it starts
automatically and always runs in the background after you install Oracle Java ME
SDK. The Device Manager automatically detects and registers all available emulated
devices. It also allows you to connect and register external devices (see Connecting an
External Device).

About Java ME Embedded Devices 8-1

When the Device Manager is running, you can see its icon in the system tray. To stop
the Device Manager, right-click its icon and select Exit. To start the Device Manager
manually, run the device-manager file under bin in the Oracle Java ME SDK
installation directory.

To see the list of registered devices, right-click the Device Manager icon and select
Device Selector. This list contains details about emulated and real external devices
that were registered by the Device Manager and are available to Oracle Java ME SDK.

If you have multiple instances of Oracle Java ME SDK installed, you should see
multiple Device Manager processes running.

When working with Java ME SDK plug-ins for NetBeans IDE, you can switch between
the Device Manager processes to define the instance of Oracle Java ME SDK that
should be used. To select the active Device Manager process in NetBeans IDE, open
the Tools menu, select Java ME, and then make your choice under Active Device
Manager.

To define the active instance of Oracle Java ME SDK in Eclipse IDE:

1. Open the Window menu and select Preferences.

2. In the left pane, select Device Management under Java ME.

Connecting an External Device
The Device Manager can detect and register external embedded devices with an active
Java ME Embedded runtime on specific IP addresses and serial ports. Device
connections are managed in the Device Connections Manager window.

To open the Device Connections Manager window, right click the Device Manager
icon in the system tray and select Manage Device Connections. The Device
Connections Manager window contains a list of IP addresses and COM ports that the
Device Manager scans to detect and register available devices. By default, there are no
IP addresses or COM ports in the list.

To add a connection that you would like the Device Manager to scan, click Add. You
can add a connection by IP address, host name, or COM port. If there are no serial
ports on you computer, then the COM Port option is not available. You can enter an IP
address, host name or COM port explicitly, or select it from the corresponding drop-
down list. The drop-down lists contain IP addresses on your network and COM ports
where the Device Manager detected a running instance of the Java ME Embedded
runtime. To rescan the network and COM ports, click Refresh. After you enter or
select an address or COM port, click OK to add it to the list. COM port devices can be
automatically added to the Device Connections Manager window if an option to
automatically establish connection is turned on.

All connections in the Device Connections Manager list have one of the following
statuses:

• Trying to connect...: Means that the Device Manager is attempting to
establish a connection and register the device with Oracle Java ME SDK. This is the
initial status for any newly added connection.

• Connected: Means that the Device Manager registered the device with Oracle Java
ME SDK. If there are several instances of the Java ME Embedded runtime started
on the device, each one is added as a separate device.

Connecting an External Device

8-2 Developer’s Guide

• Device is already in use by: <address of another Java ME SDK
host that is connected to this device>: Means that the device is
already registered with another Oracle Java ME SDK.

• Incompatible Java Runtime detected (<additional info>): Means
that the device is running a version of the Java ME Embedded runtime that is not
supported by the current version of Oracle Java ME SDK.

• Disconnected: Means that the Device Manager is currently not connected to a
given device.

Click Setup new device to install Java ME Embedded Runtime on your Raspberry Pi
or Freescale FRDM-64K board.

Click Options and check the Establish Connection check box to enable automatically
connection to COM port devices.

To remove a connection from the list in the Device Connections Manager window,
select it and click Remove.

About Managing External Device Connections From the Command Line
The command line utility device-connection is designed to manage external
device connections from the command line.

The device-connection utility is located in the bin folder in the Oracle Java ME
SDK installation directory and has a built-in help.

To get more information about the device-connection utility syntax, type the
following command:

device-connection -help

Troubleshooting Device Connection Issues
If the IP address of a device with a running Java ME Embedded runtime instance is
not available in the corresponding drop-down list when adding a device connection,
see the Device Manager log file. It is located under logs in the Oracle Java ME SDK
configuration directory.

The Device Connection log file (device-manager.log) contains errors, warnings,
and informational events that you can review in order to find the cause of the
problem. The following are some of the common messages that you may encounter:

WARN - .vmagent.proxy.DeviceDetection - UDP device detection failed
java.net.BindException: Address already in use: Cannot bind
Cause: The device detection ports are used by another application on the host
computer. By default, these ports are 55208 and 55209.

Action: The best solution is to stop the application that uses these ports or configure it
to use different ports.

Alternatively, you can configure the device and Device Manager to use different ports
as follows:

1. Change the ports specified by the
proxy.udp_device_detection_request_port and
proxy.udp_device_detection_response_port properties in
jwc_properties.ini on the device.

Connecting an External Device

About Java ME Embedded Devices 8-3

2. Create a file named proxyOptions.txt under toolkit-lib/lib in the
Oracle Java ME SDK installation directory and add the following line to it:

-bcastports <request> <response>

The <request> and <response> port numbers must match those specified in
the device properties (see Step 1).

Creating and Managing Custom Emulated Devices
By default,Oracle Java ME SDK includes two generic emulated devices
(EmbeddedDevice1 and EmbeddedDevice2), and an emulation of the Qualcomm
Internet-of-Everything (IoE) embedded device (Qualcomm_IoE_Device). You can
use the Custom Device Editor to create and manage custom emulated devices.

The appearance of a custom emulated device is generic, but the functionality can be
configured according to your specifications. Each emulated device should have a
name and optionally a description. By default, Oracle Java ME SDK 8.3 supports
devices based on the MEEP 8.0 profile and the CLDC 1.8 configuration. You can define
the set of optional packages that the emulated device should support, as well as
various protocols and interfaces that the device should emulate (for example, the pins
and ports, channels, pulse counters, and other features).

You must have a write access to the Java ME installation directory to be able to use the
Custom Device Editor. To start the Custom Device Editor, run the device-editor
file under bin in the Oracle Java ME SDK installation directory.

Alternatively, if you have the Java ME SDK plug-ins installed, you can start the
Custom Device Editor in the IDE.

To start the Custom Device Editor in NetBeans IDE:

• Open the Tools menu, select Java ME, and then Custom Device Editor.

To start the Custom Device Editor in Eclipse IDE:

• Open the Run menu and select Custom Device Editor.

The Custom Device Editor contains a list of custom emulated devices that are
available, separated by platform. Oracle Java ME SDK 8.3 supports only the Java ME
Embedded Profile (MEEP) platform. The three default emulated devices cannot be
customized by the user, so initially the list is empty.

The Custom Device Editor maintains configurations of custom devices, referred to as
devices.

Caution:

You should manage custom devices only using the Custom Device Editor. Do
not change the configuration directly in the files.

To create a new custom device, select the platform and click New.

To edit an existing custom device, select it and click Edit.

To create a new custom device by cloning an existing one, select it and click Clone.

To remove a custom device, select it and click Remove.

Creating and Managing Custom Emulated Devices

8-4 Developer’s Guide

To import a custom device defined by its skin, click Import and select the
corresponding ZIP file.

To export a custom device skin as a ZIP file, select the device and click Export.

About Managing Custom Emulated Devices From the Command Line
The command line utility device-editor-cli is designed to manage custom
emulated devices from the command line.

The device-editor-cli utility is located in the bin folder in the Oracle Java ME
SDK installation directory and has a built-in help.

To get more information about the device-editor-cli utility syntax, type the
following command:

device-editor-cli -help

Viewing and Editing Device Properties
When the Device Manager registers a device, it appears in the Device Selector, which
enables you to view and edit the device properties. You can also use the Device
Selector to configure the security settings for an emulated device, and select the device
on which to run your Java ME Embedded application.

To start the Device Selector, run the device-selector file under bin in the Oracle
Java ME SDK installation directory. Alternatively, if you have the Java ME SDK plug-
ins installed, you can start the Device Selector as follows:

• In NetBeans IDE, open the Tools menu, select Java ME, and then Device Selector.

• In Eclipse IDE, open the Window menu, select Show View, and then Device
Selector.

Caution:

You should edit device properties only using the Device Selector. Do not
change them directly in the files, where properties are contained.

The Device Selector contains a list of devices that were registered by the Device
Manager, grouped by platform. When you select a device, its information and
properties are displayed in the corresponding panes.

Tip:

You can also view and edit some of the platform properties.

Properties displayed in gray font or on a gray background cannot be changed. You can
adjust properties displayed in black font on a white background.

Viewing and Editing Device Properties

About Java ME Embedded Devices 8-5

Viewing and Editing Device Properties

8-6 Developer’s Guide

9
About the Java ME Embedded Emulator

The Java ME Embedded Emulator provides an implementation of the APIs supported
by an emulated or real device that is registered with Oracle Java ME SDK. This enables
you to perform extensive testing, logging, and debugging of Java ME Embedded
applications.

This chapter contains the following topics:

• What is Java ME Embedded Emulator

• Running the Java ME Embedded Emulator

• Java ME Embedded Emulator’s Main Window

• Installing and Running IMlet Suites Using the Java ME Embedded Emulator

• Viewing Device Output and Logs

• Viewing Messages

• Managing Landmarks

• Managing the File System

• Managing the Connectivity Configuration

• Generating External Events

What is Java ME Embedded Emulator
The Java ME Embedded Emulator uses the Java ME Embedded runtime as a device
emulation environment for Windows and Linux desktop computers. The emulation
environment has the same code base that Oracle licenses to device manufacturers for
use on real devices.

By default, Oracle Java ME SDK includes two generic emulated devices
(EmbeddedDevice1 and EmbeddedDevice2), and an emulation of the Qualcomm
Internet-of-Everything (IoE) embedded device (Qualcomm_IoE_Device). For more
information about the Qualcomm IoE device, see Oracle Java ME Embedded Getting
Started Guide for the Reference Platform (Qualcomm IoE).

When developing a Java ME Embedded application in an IDE, you can select the
default device on which you want to run the project.

For more information about selecting the default device for a project in NetBeans IDE,
see Selecting Java ME Embedded Application Project Platform in NetBeans IDE.

For more information about selecting the default device for a project in Eclipse IDE,
see Managing Java ME Project Device Configurations in Eclipse IDE.

About the Java ME Embedded Emulator 9-1

Running the Java ME Embedded Emulator
When you run a Java ME Embedded application using Oracle Java ME SDK, the Java
ME Embedded Emulator is started automatically. To start the Java ME Embedded
Emulator manually, run emulator with the -Xjam option under bin in the Java ME
SDK installation directory.

The title of the Java ME Embedded Emulator window shows the name of the device
that is being emulated. By default, the Java ME Embedded Emulator runs
EmbeddedDevice1. You can specify a different device to run using the Device
Selector or by specifying it in the -Xdevice option for emulator.

For more information about running the Java ME Embedded Emulator from the
command line, see Java ME Embedded Emulator Command-Line Reference.

Java ME Embedded Emulator’s Main Window
The appearance of the main window of the Java ME Embedded Emulator can vary
depending on the protocols, interfaces, and various features that the device supports.
At a minimum, every Java ME Embedded device includes the application management
software (AMS) as part of the runtime. It is represented in the Java ME Embedded
Emulator window by the Application Management tab, and enables you to install,
run, and manage IMlet suites. You can also view the output console of the device and
the log that the Java ME Embedded Emulator maintains. Other devices may include
various pins and ports, channels, pulse counters, and other features represented by
separate tabs:

• Application Management: Used to install, run, and manage IMlet suites on the
emulated device.

• GPIO Pins: Used to view the state of the General Purpose Input/Output (GPIO)
pins.

• GPIO Ports: Used to view the state of the GPIO ports, and which pins are bound to
each port.

• I2C: Used to view the data sent to and received from a peripheral serial slave
device through the Inter-Integrated Circuit (I2C) bus.

• SPI: Used to view the data sent to and received from a peripheral serial slave
device through the Serial Peripheral Interface (SPI) bus.

• MMIO: Used to view the memory configuration and memory content for a
peripheral device connected through the Memory-Mapped Input/Output (MMIO)
interface bus.

• ADC: Used to view the signals sent to the Analog-to-Digital Converter (ADC)
through the specified channel.

• DAC: Used to view the signals sent to the Digital-to-Analog Converter (DAC)
through the specified channel.

• PWM: Used to view the signals sent to the Pulse Width Modulation (PWM) output
signal through the specified channel.

• Pulse Counters: Used to view the state of the pulse counters.

Running the Java ME Embedded Emulator

9-2 Developer’s Guide

• UART: Used to view information about available serial ports.

• Displays and Input Devices: Used to view information about displays and
headless input devices attached to your emulated device, including both primary
and auxiliary displays.

For some devices you can view the message inbox, manage landmarks, the file system,
and network interfaces, and generate external events (for example, simulate various
sensor readings).

To force the Java ME Embedded Emulator window to always show on top of the
others, click the Emulator window always on top button on the Java ME Embedded
Emulator window toolbar, or select Always On Top on the View menu.

Installing and Running IMlet Suites Using the Java ME Embedded
Emulator

Java ME Embedded applications are distributed as IMlet suites that consist of a JAR
file described by a JAD file. When you run a Java ME Embedded application using
Oracle Java ME SDK, the corresponding IMlet suite is automatically installed and
started on the emulated device.

When the Java ME Embedded Emulator is running, you can also install and run IMlet
suites manually. One device can have several IMlet suites installed and running at the
same time. To manage IMlet suites for a device, open the Application Management
tab.

To install an IMlet suite:

1. On the Application Management tab, click Install.

2. Specify the path or URL to the corresponding JAR or JAD file, or click Browse to
select it in the file explorer window.

3. Click OK and wait for the IMlet suite to install.

The installed IMlet appears in the list with the status Not Running.

To reinstall an IMlet suite, select it in the list and click Reload.

To remove an IMlet, select it in the list and click Remove.

To view the manifest file information about the IMlet, select it in the list and click Info.

To run an IMlet from an installed IMlet suite:

1. Select it in the list and click Run.

2. Select the options for debugging, profiling, and monitoring if necessary.

3. Click OK.

The IMlet status changes to Running.

To automatically install and run an IMlet suite:

1. Click the Run IMlet Suite button on the Java ME Embedded Emulator window
toolbar, or select Run IMlet Suite on the Application menu.

2. Specify the path or URL to the corresponding JAR or JAD file, or click Browse to
select it in the file explorer window.

Installing and Running IMlet Suites Using the Java ME Embedded Emulator

About the Java ME Embedded Emulator 9-3

3. Select the options for debugging, profiling, and monitoring if necessary.

4. Click OK and wait for the IMlet suite to install and start.

The installed IMlet appears in the list with the status Running.

To stop a running IMlet, select it in the list and click Stop.

Viewing Device Output and Logs
The Java ME Embedded Emulator maintains a separate log file for each device to
record errors, warnings, and informational events. A running Java ME Embedded
application may write data to the standard output stream (stdout) or standard error
stream (stderr). This information can be used for troubleshooting and debugging.

To view the device log file, open the View menu and select Device Log. You can select
the level of detail that you would like to view among the following:

• Trace: Displays all logged events, including low-level tracing data.

• Debug: Displays all high-level events, including debugging data.

• Info: Displays high-level informational events and more severe ones.

• Warn: Displays high-level warning events that may possibly indicate a problem
and more severe ones.

• Error: Displays high-level events that indicate an error, including fatal ones.

• Fatal: Displays only high-level fatal error events.

To save the output to a LOG file, click Save. To clear the log file, click Clear.

To view the device output console, open the View menu and select Output Console.
You can select the streams that you would like to view among the following:

• All: Displays all console messages produced by the application.

• Standard Output: Displays messages printed to the stdout stream.

• Standard Error: Displays messages printed to the stderr stream.

To save the output to a LOG file, click Save. To clear the console output produced by
the device, click Clear.

Viewing Messages
Some devices support wireless communication through JSR 120: Wireless Messaging
API (WMA), which enables Java ME Embedded applications to send and receive
messages. Any messages that are not addressed to a specific application on the device
are stored in the inbox.

To see the messages in the inbox using the Java ME Embedded Emulator, open the
Device menu and select Messages. The Messages window contains a list of messages
in the inbox with the type, sender, timestamp, subject, encoding, and contents of each
message.

Viewing Device Output and Logs

9-4 Developer’s Guide

Managing Landmarks
Some devices support location tracking through JSR 179: Location API for J2ME,
which enables Java ME Embedded applications to use information about the physical
location of the device. Such devices also maintain a database of landmarks that
applications may rely on for guidance.

A landmark is identified by a name, and may be placed in a category that groups
landmarks by type (for example, shops, restaurants, gas stations, and so on). A
landmark can have a description, and it must define the location using the latitude
and longitude. You can also define the altitude and accuracy of positioning. A
landmark may contain data about the street address, phone number, URL, and so on.

To manage the landmarks that are known to the device in Java ME Embedded
Emulator, open the Tools menu and select Manage Landmarks. Landmarks are stored
in a landmark store. You can use the default landmark store or add several named
stores.

Note:

Although you may create separate landmark stores for separate applications,
all landmark stores are always available to all applications on the device.

To add a new landmark store, in the Landmark Stores drop-down list, select Add new
landmark store. To manage available landmark stores (add new ones or remove
existing ones), click Manage Landmark Stores next to the drop-down list.

To add a category to the selected landmark store, click Add Category. To remove a
category, select it and click Remove Category.

Note:

Category names must be unique, case sensitive.

By default, the list of landmarks contains all available landmarks in the selected
landmark store. To show only landmarks from certain categories, select the
corresponding check boxes in the categories list.

To add a landmark, click Add. To edit a landmark, select it and click Edit. To remove a
landmark, select it and click Remove. To assign a landmark to categories, select it and
click Assign Categories.

Note:

Landmarks can have similar names, coordinates, and other information.

When you select a landmark, you can preview the defined location information in the
pane below the landmarks list.

Managing Landmarks

About the Java ME Embedded Emulator 9-5

Managing the File System
Some devices can interact with the file system resources using the FileConnection
package which is part of JSR 75: PDA Optional Packages for the J2ME Platform. The
FileConnection package gives Java ME Embedded applications access to the file
system of the device, including external memory cards.

The Java ME Embedded Emulator enables IMlets to access files stored on your
computer's hard disk as if they are in the device's storage or attached memory card. To
manage the device's file system, open the Tools menu and select Manage File System.
Mounted root directories are displayed in the top list, and unmounted root directories
are displayed in the bottom list. Mounted root directories and their subdirectories are
available to applications that implement the FileConnection interface.

Mounted root directories are located in the device's configuration folder of the Oracle
Java ME SDK user configuration directory. For example, the root directories for
EmbeddedDevice1 are located under

JAVAME_SDK_USER\work\EmbeddedDevice1\appdb\filesystem

The default root directory folder is named root1. You cannot unmount the default
root directory.

To create a new empty root directory, click Mount Empty, specify a name and click
OK. A new folder is created in the device's filesystem folder and it is mounted as
another root directory in addition to the default.

To create a root directory by copying an existing folder on your computer, click
Mount Copy and select the necessary folder. This folder and its subfolders is copied to
the device's filesystem folder and it is mounted as another root directory in
addition to the default.

To make a directory inaccessible to the FileConnection API, select it in the list of
mounted root directories and click Unmount. The selected root directory is
unmounted and moved to the bottom list. To completely remove a mounted directory,
select it and click Unmount & Delete.

To remount an unmounted root directory, select it in the list of unmounted root
directories and click Remount. The root directory is moved to the top list.

To delete an unmounted root directory, select it in the list of unmounted root
directories and click Delete. The selected root directory is removed from the list.

Managing the Connectivity Configuration
Some devices can communicate over a wired, wireless, or cellular network. They can
establish and accept connections to other devices, servers, and so on. There are several
APIs that are used to provide this functionality to Java ME Embedded applications.

The Java ME Embedded Emulator enables you to set up the connectivity configuration
of the running device, which you would like to emulate. To manage the connectivity
configuration, open the Tools menu and select Connectivity. The Connectivity
window is separated into several tabs.

Managing Access Points
An access point is a network connectivity configuration of a TCP/IP network interface
that is defined on a device using the javax.microedition.io.AccessPoint
class.

Managing the File System

9-6 Developer’s Guide

Use the Access Points tab of the Connectivity window to view and manage available
access points. This tab contains a table that lists access points with the following
columns:

• Id: Numeric identifier of the access point

• Access Point Name: Name of the access point

• Connected: Whether the access point is connected to a network

• Default: Whether this is the default access point

When you select an access point in the table, you can view and configure additional
settings for the access point. Additional settings are displayed in the bottom panel of
the Access Points tab. For any access point you can specify a name and select a
network interface from the drop-down list. Other settings depend on the selected
network interface (for example, the SSID for a WiFi access point).

Click Add Access Point below the table of access points to add a new access point. To
remove an access point, select it in the table and click Remove Access Point.

Managing Network Interfaces
A network interface represents the network connection spot for an access point. It is
defined on a device using the javax.microedition.io.NetworkInterface
class.

Use the Network Interfaces tab of the Connectivity window to view and manage
available network interfaces. This tab contains a table that lists network interfaces with
the following columns:

• Id: Numeric identifier of the network interface

• Network Interface Name: Name of the network interface

• IP Address: Address of the device in the IP network

• Connected: Whether the interface is connected to a network

When you select a network interface in the table, you can view and configure
additional settings for the network interface. Additional settings are displayed in the
bottom panel of the Network Interfaces tab. For any network interface you can specify
a name, select a type from the drop-down list, and map it to any physical network
interface on the host machine.

Click Add Network Interface below the table of network interfaces to add a new
network interface. To remove a network interface, select it in the table and click
Remove Network Interface.

Managing Cellular Networks
A cellular network is a 3GPP or CDMA network that the device is registered on. It is
defined on a device using the
javax.microedition.cellular.CellularNetwork class.

Use the Cellular Networks tab of the Connectivity window to view and manage
available cellular network. This tab contains a table that lists cellular networks with
the following columns:

• Id: Numeric identifier of the cellular network

Managing the Connectivity Configuration

About the Java ME Embedded Emulator 9-7

• Cellular Network Name: Name of the cellular network

When you select a cellular network in the table, you can view and configure additional
settings for the cellular network. Additional settings are displayed in the bottom panel
of the Cellular Networks tab. For any cellular network you can specify a name, select
a network interface from the drop-down list, toggle roaming on and off, and so on.

Click Add Cellular Network below the table of cellular networks to add a new
cellular network. To remove a cellular network, select it in the table and click Remove
Cellular Network.

Managing Subscribers
A subscriber of a cellular network is represented by an identity, such as SIM, R-UIM,
CSIM, and so on. Subscribers resides on the device in a physical or virtual slot exposed
as a subscriber identifier. The primary subscriber always resides in slot number 1. A
subscriber is defined on a device using the
javax.microedition.cellular.Subscriber class.

Use the Subscribers tab of the Connectivity window to view and manage available
subscribers. This tab contains a table that lists subscribers with the following columns:

• Slot Number: Numeric identifier of the subscriber slot number

• Phone Number: Phone number of the subscriber

• Registered Cellular Network: The cellular network of the subscriber

When you select a subscriber in the table, you can view and configure additional
settings for the subscriber. Additional settings are displayed in the bottom panel of the
Subscribers tab. For any subscriber you can specify the operator, phone number, and
select the type of cellular network from the drop-down list. Other settings depend on
the selected cellular network.

Click Add Subscriber below the table of subscribers to add a new subscriber. To
remove a subscriber, select it in the table and click Remove Subscriber.

Generating External Events
Java ME Embedded devices are designed to interact with various external events.
These events can include power management signals, location information, pulses,
and so on. The Java ME Embedded Emulator enables you to simulate such events
using the External Events Generator to see how your Java ME Embedded application
processes them.

To access the External Events Generator, open the Tools menu and select External
Events Generator. Alternatively, you can click the External Events Generator button
on the Java ME Embedded Emulator main window toolbar. The External Events
Generator window is separated into several tabs, depending on the configuration and
capabilities of the device.

Generating Analog Input
Some devices can read analog input signals and convert them to numerical values
using the Analog-to-Digital Converter (ADC). An ADC can have several channels,
each one sampling a separate continuous input voltage.

Generating External Events

9-8 Developer’s Guide

Use the ADC tab to specify the input voltage for an ADC channel that is configured on
the emulated device. Select the ADC channel from the drop-down list. Each ADC pin
is denoted by a pin number and a channel number (for example, ADC1.1).

Specify the input voltage for the selected ADC channel by entering the value in the
text field or using the slider.

Alternatively, you can set the output of an existing Digital-to-Analog Converter (DAC)
channel to be used as the input voltage for the selected ADC channel by selecting
DAC Input and using the drop-down list to choose the DAC channel.

Generating Button Events
Some devices have General-Purpose Input/Output (GPIO) pins that may be used as
additional digital control lines. They can be controlled and programmed at runtime,
and they are generally used for connecting buttons and light-emitting diodes (LEDs).

Use the GPIO tab to generate input events for the GPIO pins that are configured on
the emulated device. For each input pin, you can toggle the input value between Low
and High by clicking the corresponding button. This corresponds to pressing the
hardware analogy of the button connected to the pin, toggling it on and off.

Under Wave Generator, you can set the frequency (in hertz) and duration (in
milliseconds) of a more complex signal. To run and stop the wave generator for an
individual pin, supply frequency and duration values, and use the corresponding Run
and Stop buttons. You can also use the Run All or Stop All buttons to run or stop all
pins simultaneously.

Generating Input From Emulated Peripheral Devices
Some devices support Inter-Integrated Circuit (I2C) and Serial Peripheral Interface
(SPI) communication with peripheral devices, such as various sensors. To emulate a
peripheral slave device on either of these bus links, there are two options: you can add
a simple emulated device that echoes back any data that is sent to it, or add an
implementation of the device using the embedded support API.

If you implement an I2C or SPI peripheral device, you can use the I2C or SPI tabs to
generate events from it to the emulated device. For example, the default
Qualcomm_IoE_Device emulator implements three I2C peripherals (an
accelerometer, a light sensor, and a temperature sensor) and one SPI peripheral (an
accelerometer).

On the I2C tab and SPI tab, at the top of the G-Sensor group, you can see the range
and bandwidth of the emulated accelerometer implementation. Below you can use the
sliders to specify the acceleration of the device along the three axes (X, Y, and Z).

On the I2C tab, in the Light Sensor group, you can see the type, range, resolution,
illuminance limits, and whether the interrupt flag is set for the emulated light sensor
implementation. Below you can use the slider to set the current illuminance level in
lux.

On the I2C tab, in the Temperature Sensor group, you can see the temperature limits
of the emulated temperature sensor implementation. Below you can use the slider to
set the current temperature in degrees Celsius.

Generating Location Provider Information
Some devices support location tracking through JSR 179: Location API for J2ME,
which enables Java ME Embedded applications to use information about the physical

Generating External Events

About the Java ME Embedded Emulator 9-9

location of the device. A real device receives location information from a location
provider.

Use the Location tab to generate data received by an emulated device as if from a
location provider.

Set the following orientation measurements:

• Azimuth: Horizontal direction

• Pitch: Vertical elevation angle

• Roll: Rotation of the terminal around its longitudinal axis

By default, emulated devices have two location providers assigned to them. Select a
state from the drop-down lists under Location Provider #1 and Location Provider #2
to test how your Java ME Embedded application handles unexpected conditions (that
is, when location information is not available). The default state is Available. You can
change it to Temporarily Unavailable or Out of Service.

Specify the latitude, longitude, altitude, speed (ground speed), and course (degrees
relative to true north) for each location provider. Applications that use the Location
API retrieve these values as the location of the emulator. Click Send to transmit these
values to the emulator as if sent from a location provider.

You can also create a script to simulate the movement of the device by specifying
different locations for different times. Specify the path to the location script file in the
Script field, or click Browse and select the script file in the file explorer window.

Use the Time slider to change the starting point within the script. You can run the
script, pause it, or move to the beginning or end of the script by using the buttons
below the slider.

The script for the location provider is an XML file with the root <waypoints>
element and a series of child <waypoint> elements. Each <waypoint> element must
contain the time attribute that specifies the time in milliseconds from the previous
waypoint or from the beginning. Two optional attributes of the <waypoint> element
include course and isValid. The course is a terminal's course made good in
degrees relative to the true north. The isValid attribute specifies whether the
location is valid. Position is specified using the latitude, longitude, and
altitude attributes. You can specify the position for each provider separately. If only
one position is present, the other one is given the same position. You can also specify
the state of each provider using the state attribute with one of three values:

• off: means the provider is out of service

• available: means the provider is working and has data available

• unavailable: means the provider is working, but no data is available

The following example shows a sample script. The first waypoint is set to 1.5 seconds
after beginning, the position is set only for default provider, the other provider is
automatically set to the same position, both providers are available. The second
waypoint is set to 2 seconds after the first one (or 3.5 seconds after beginning), the
position is set only for the first provider, the second provider is automatically set to
the same position, but this time first provider is out of service, and only second is
available. The third waypoint is set to 3 seconds after the second one (or 6.5 seconds
after beginning), the position is set only for second provider, the first provider is
automatically set to the same position, but data from the first provider is not available,
and only the second provider is available.

Generating External Events

9-10 Developer’s Guide

<waypoints>
 <waypoint time=1500 latitude="14.4" longitude="50.1" altitude="310"
state1="available" state2="available" />
 <waypoint time=2000 latitude1="14.7" longitude1="49.7" altitude1="305"
state1="off" state2="available" />
 <waypoint time=2000 latitude="14.7" longitude="49.7" altitude="305" state1="off"
state2="available" />
</waypoints>

Generating Input From Memory-Mapped Peripherals
Some devices support communication with peripheral devices over the Memory-
Mapped Input/Output (MMIO) interface bus. The MMIO APIs enable low-level
control over the peripheral by reading from and writing to registers or memory blocks
of the peripheral mapped to the memory of the emulated device.

You can either create a simple emulated peripheral device that echoes back any data
that is sent to it, or add an implementation of the device using the Embedded Support
API.

If you implement an MMIO peripheral device, you can use the MMIO tab to generate
events from the peripheral to the embedded memory of the emulated device. On real
devices, these events are produced by the hardware of the peripheral device.

Select an MMIO device from the Device drop-down list. For example, in the default
implementation of the EmbeddedDevice1 emulator, BIG_ENDIAN_DEVICE is the
only possible choice.

Use the Block or Register drop-down list to select a memory block or register of the
selected device, from which the event is sent.

Specify an event identifier in the Event ID field.

Click Send event to send the event from the specified device.

You can add a listener in your application to capture events with a particular identifier
from a specific MMIO memory register or block. See the Javadoc for the Device I/O
API, specifically the MMIODevice.setMMIOEventListener() methods. By default,
Javadocs are located in the Oracle Java ME SDK installation directory under docs/
api.

Generating Power Management Events
Use the Power Management tab to configure power settings of the emulated device.
You can select between emulating an external power source or battery.

Under Power Source, select Battery to emulate a device powered by a battery, or
select External to emulate a device powered from an external power source. If you
select the battery as the power source, then specify the remaining time in seconds by
using either the slider or the numeric field. If you do not want to set a specific value as
the remaining time, then select Unknown.

Also, when the battery is selected as the power source, you can send power alerts.
Select an alert from the Power Alert drop-down list and click Send. The following
alerts are available:

• Battery level is critically low

• Battery level is getting low

• Battery level has returned to normal value

Generating External Events

About the Java ME Embedded Emulator 9-11

• Phone connection is about to be terminated due to insufficient power

• Infrared connection is about to be terminated due to insufficient power

• Network connection is about to be terminated due to insufficient power

Generating Pulses Counters Tab
Some devices can receive and count pulses (or events) sent on a digital input line,
including a GPIO pin. Use the Pulse Counters tab to generate pulses for an emulated
device with a pulse counter. The default implementation displays a counter name
followed by a Send Pulse button.

Counter names correspond to the counters on the emulator's Pulse Counters tab in the
main window of the Java ME Embedded Emulator. Click Send Pulse to send a pulse.

Generating External Events

9-12 Developer’s Guide

10
About the Java ME Embedded Security

Model

Java ME Embedded applications are installed, run, closed, and restarted according to
the IMlet suite life cycle described in the Java ME Embedded Profile specification. It
defines a comprehensive security model based on protection domains. IMlet suites are
installed into a protection domain that determines access to protected functions.

This chapter contains the following topics:

• Java ME Embedded Profile Specification

• General Schema of the Security Model

• Supported Security Providers

• Configuring the Security Policy for a Device

• Signing a Project

• Managing Keystores and Key Pairs

• Managing Root Certificates

• Command-Line Security Features

• Custom Security Policy and Authentication Providers

Java ME Embedded Profile Specification
You can find the Java ME Embedded Profile specification in the meep-8.0.zip file
located under docs\api in the Oracle Java ME SDK installation directory. In
particular, the following chapters in the specification are relevant for understanding
the security model:

• Security for Applications

• Security Authentication Providers

• Security Policy Providers

General Schema of the Security Model
The security model works as follows:

1. The author of the Java ME Embedded application, probably a software company,
buys a signing key pair from a certificate authority (CA) and signs the IMlet suite.

About the Java ME Embedded Security Model 10-1

2. When the IMlet suite is installed on a device, the authentication provider verifies
the author's certificate using its own copy of the CA's root certificate. Then the
authentication provider uses the author's certificate to verify the signature on the
IMlet suite.

3. After verification, the IMlet suite is assigned to one of the clients defined by the
security policy. The default authentication scheme (X.509-based certificate) uses
the certificate DN to determine to which client an application must be bound.

Supported Security Providers
Oracle Java ME SDK supports the following security provider clients by default:

• Manufacturer: This client is configured by the device vendor. You should not
modify the list of permissions.

• Operator: This client has all permissions granted by default, and you can modify
the list if necessary.

• untrusted: Defines the security policy for unsigned applications. According to
the X.509 authentication scheme, unsigned applications are bound to the
untrusted client.

Configuring the Security Policy for a Device
The security policy of a device defines clients to which an IMlet suite can be assigned
after authentication. Each client has an associated security protection domain that
defines the permissions that may be granted to an application assigned to this client.

To configure the security policy for a device:

• Right-click the device in the Device Selector tab and select Security Configuration.

Figure 10-1shows the Security Configuration window.

Supported Security Providers

10-2 Developer’s Guide

Figure 10-1 The Security Configuration Window

The options in the Security Providers group at the top of the Security Configuration
window can be used if you want to specify a custom security provider implementation
JAR file, and class names of your custom authentication provider and security policy
provider. For information about creating custom authentication and security policy
providers, see Custom Security Policy and Authentication Providers.

To add a client to the security policy:

• Click Add under the Clients list, specify a name and click OK.

When you select a client from the list, you can add, edit, and remove permissions for
the selected client.

To add a permission for a client:

• Select the client and click Add under the Permissions list.

• Select the permission from the list, specify the name of the protected resource (you
can use wildcards) and the requested actions separated by commas (for example,
read,write), and click OK.

To edit a permission, select it from the list of permissions, and click Edit under the
Permissions list. To remove a permission, select it in the list, and click Remove.

Signing a Project
Devices use signing information to verify an application's source and validity before
allowing it to access protected APIs.

Oracle Java ME SDK provides a default built-in keystore, but you can also create any
number of key pairs using the Keystores Manager as described in Managing Keystores
and Key Pairs.

Signing a Project

About the Java ME Embedded Security Model 10-3

The key pair consists of the following keys:

• A private key that is used to create a digital signature.

• A public key that anyone can use to verify the authenticity of the digital signature.

To sign a Java ME Embedded Application project with a key pair in NetBeans IDE:

1. Right-click a project and select Properties.

2. In the Signing category, select Sign JAR.

3. Select a keystore and a key pair alias.

4. Click OK.

To sign a Java ME project with a key pair in Eclipse IDE:

1. Right-click a project and select Properties.

2. In the Signing category, select Enable Project Specific Settings.

3. Click External and select a keystore on the file system.

4. Enter the keystore password.

5. Select Save password in workspace keyring.

6. Enter the keystore password and key password in the corresponding text boxes.

7. Click Apply.

For an emulated device, it is also necessary to export the root certificate to the device.
For more information, see Managing Root Certificates.

Managing Keystores and Key Pairs
For test purposes, you can create a signing key pair to sign an IMlet. In both NetBeans
IDE and Eclipse IDE, the Keystores Manager administers this task.

The instructions below relate to NetBeans IDE.

To deploy an IMlet on a device, you must obtain a signing key pair from a certificate
authority recognized by the device. You can also import keys from an existing Java SE
platform keystore.

To create a keystore in NetBeans IDE:

1. Open the Tools menu and select Keystore Management.

2. Click Add Keystore.

3. Select Create a New Keystore and specify a name, location, and password.

4. Click OK.

To add an existing keystore in NetBeans IDE:

1. Open the Tools menu and select Keystore Management.

2. Click Add Keystore.

Managing Keystores and Key Pairs

10-4 Developer’s Guide

3. Select Add Existing Keystore and specify the path to the keystore file. The default
location for user-defined keystores is the user's folder under C:\Users.

4. Click OK.

You might have to unlock this keystore and each key pair within it.

To create a new key pair in NetBeans IDE:

1. Open the Tools menu and select Keystore Management.

2. Select a keystore. If necessary, provide a password to unlock the keystore.

Note:

You cannot create key pairs in the default built-in keystore.

3. Click New.

4. Specify an alias used to refer to this key pair and at least one field under Certificate
Details. Optionally, you can also provide a password.

5. Click OK.

To remove a key pair, select it in the list and click Delete.

Managing Root Certificates
The Oracle Java ME SDK 8.3 command-line tools manage the emulator's list of root
certificates.

External devices have similar lists of root certificates. When you deploy your
application on an external device, you must use signing keys issued by a certificate
authority whose root certificate is on the device. This makes it possible for the device
to verify your application.

Each emulator instance has a shared keystore and one for each of the security clients.
The shared keystore file is named _main.ks and located under appdb\certs in the
device's configuration directory.

You can use the -import option to import certificates from these keystores as
described in Manage Certificates (mekeytool).

To export a certificate to an emulated device in NetBeans IDE:

1. Open the Tools menu and select Keystore Management.

2. Select a keystore, and then select a key.

3. Click Export.

4. Select an emulator and a client, then click Export.

Note:

Before exporting, you can modify the list of registered keys by selecting any
key and clicking Delete Key to delete it from the list.

Managing Root Certificates

About the Java ME Embedded Security Model 10-5

5. Click Close when you are done.

Command-Line Security Features
The full spectrum of the Oracle Java ME SDK 8.3 security features are available from
the command line. You can adjust the emulator's default protection domain, sign IMlet
suites, and manage certificates.

This section contains the following topics:

• Sign IMlet Suites (jadtool)

• Manage Certificates (mekeytool)

Sign IMlet Suites (jadtool)
jadtool is a command-line interface to sign IMlet suites using public key
cryptography according to the MEEP specification. Signing an IMlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. jadtool is also capable of signing payment update (JPP) files.

jadtool only uses certificates and keys from Java SE platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool.exe is located under bin in the Java ME SDK installation directory. For
more information about the jadtool, see Signing an IMlet Suite's JAR File in the
Oracle Java ME Embedded Developer’s Guide.

The following options can be used with the jadtool command:

-help
Prints usage instructions for jadtool.

-addcert
Adds the certificate of the key pair from the given keystore to the JAD file or JPP file.
This option has the following syntax:

-addcert -alias <key_alias> [-storepass <password>] [-keystore <keystore>] [-certnum
<number>] [-chainnum <number>] [-encoding <encoding>] -inputjad <filename> -
outputjad <filename>

-addjarsig
Adds a digital signature of the input JPP file to the specified output JPP file. The -
useSha256 argument changes the default signature algorithm to SHA256withRSA. If
not present, SHA1withRSA signature algorithm is used. This option has the following
syntax:

-addjarsig [-jarfile <filename>] -keypass <password> -alias <key_alias> -storepass
<password> [-keystore <keystore>] [-chainnum <number>] [-encoding <encoding>] -
inputjad <filename> -outputjad <filename> [-useSha256]

-showcert
Displays information about certificates in JAD files. This option has the following
syntax:

Command-Line Security Features

10-6 Developer’s Guide

-showcert [([-certnum <number>] [-chainnum <number>]) | [-all]] [-encoding
<encoding>] -inputjad <filename>

Manage Certificates (mekeytool)
mekeytool manages the public keys and key pairs provided by certificate authorities
(CAs). It is functionally similar to the keytool utility that comes with the Java SE
Development Kit (JDK). The purpose of the public keys is to facilitate secure HTTP
communication over SSL (HTTPS).

Before using mekeytool, you must have access to a DER, PKCS12, PEM, or JKS
keystore. You can create one using the Java SE keytool utility (found in the bin
directory under the JDK installation location) or OpenSSL.

The -Xdevice option can be used with any command to run it on the specified device.
Note that not every device supports all of the mekeytool commands. Specify the
device name after a colon. For example, to list the shared public keys (used only for
SSL/HTTPS connections) in the keystore of EmbeddedDevice1, run the following
command:

> mekeytool.exe -Xdevice:EmbeddedDevice1 -list

The following commands can be used with the mekeytool utility:

-help
Prints usage instructions for mekeytool.

-import
Imports a public key from the source keystore to the device's keystore (with or
without private key).

Note:
Oracle Java ME SDK 8 supports RSA encoded public keys stored in DER,
PKCS12, PEM, and JKS formats, and key pairs stored in PKCS12, PEM, and
JKS formats.

This command has the following syntax:

-import [-keystore <filename>] [-storepass <password>] [-keypass <password>] [-
alias <key_alias>] [-client <name>]

Option Description Default

-keystore Path to the DER,
PKCS12, PEM, or JKS
keystore file or file that
contains the certificate

<user.home>

\.keystore.ks

-storepass Password to unlock the
input DER, PKCS12,
PEM, or JKS keystore

N/A

-keypass Private key password
for the PKCS12, PEM,
or JKS keystore

N/A

Command-Line Security Features

About the Java ME Embedded Security Model 10-7

Option Description Default

-alias The key pair alias in
the input JKS keystore

N/A

-client The name of the target
security client

N/A

-list
Lists the keys in the Java ME keystore, including the owner and validity period for
each. This command has the following syntax:

-list [-client <name>]

You can specify the name of the target security client using the -client option.

-delete
Deletes a key from the given Java ME keystore with the given owner. This command
has the following syntax:

-delete (-owner <owner> | -number <number>) [-client <name>]

Option Description Default

-number The key number in the
keystore. Keys are
numbered starting
from 1. To view the key
number, use the -list
option.

N/A

-owner The key owner. N/A

-client The name of the target
security client

N/A

-export
Exports the key from the keystore. If only public certificate is present, it is exported in
PEM format. If there is a public certificate with a private key, it is exported in PKCS12
format. This command has the following syntax:

-export -number <number> -out <filename> [-client <name>]

Option Description Default

-number The key number in the
keystore. Keys are
numbered starting
from 1. To view the key
number, use the -list
option.

N/A

-out Name of the output
file.

N/A

Command-Line Security Features

10-8 Developer’s Guide

Option Description Default

-client The name of the target
security client

N/A

-clients
Prints the list of security clients that can accept public keys.

Custom Security Policy and Authentication Providers
Device emulators in Oracle Java ME SDK are bundled with default security policy and
authentication providers that can be used without any modification or configured to
your needs, as described in Configuring the Security Policy for a Device. You can also
create custom security policy and authentication providers, as defined in the MEEP
specification.

The classes necessary to create custom security policy and authentication providers
are defined in the com.oracle.meep.security package. You can find a detailed
Javadoc of this package in the security_api_javadoc.zip file located under
docs\api in the Java ME SDK installation directory.

• Sample Custom Security Policy Provider

• Sample Custom Authentication Provider

• Installing Custom Providers

Sample Custom Security Policy Provider
The purpose of a security policy provider is to define the list of clients and their
protection domains. A protection domain of a client is a set of permissions that can be
granted to the Java ME Embedded application bound to this client.

A custom security policy provider must extend the Policy class and implement the
Policy.initialize() abstract method. This method is called by the security
framework and is responsible for security policy initialization. During initialization,
the custom security policy provider must use the
Policy.addClient(com.oracle.meep.security.Client) helper method to
create the list of clients.

The following example shows how to create a custom security policy provider that
defines two clients with different protection domains and specifies a separate
protection domain for the virtual untrusted client.

package com.company.security;

import com.oracle.meep.security.Client;
import com.oracle.meep.security.Policy;

public class PolicyProvider extends Policy {
 public void initialize() {
 Client clientA = new Client("clientA", null);
 clientA.addPermissions(new
javax.microedition.io.HttpProtocolPermission("http://locahost:80/"),
 new javax.microedition.io.SSLProtocolPermission("ssl://:*"));
 addClient(clientA);

 Client clientB = new Client("clientB", null);
 clientB.addPermissions(new

Custom Security Policy and Authentication Providers

About the Java ME Embedded Security Model 10-9

javax.microedition.io.PushRegistryPermission("*", "static,dynamic,alarm"));
 addClient(clientB);

 getUntrustedClient().addPermissions(new
javax.microedition.location.LocationPermission("location", "location"));
 }
}

Sample Custom Authentication Provider
The purpose of an authentication provider is to verify a Java ME Embedded
application or LIBlet and return the list of appropriate clients. A custom authentication
provider must extend the AuthenticationProvider class and implement the
following abstract methods:

• AuthenticationProvider.initialize()

• AuthenticationProvider.authenticateApplication(com.oracle.mee
p.security.MIDletProperties, java.io.InputStream)

The authenticateApplication() method should either return the list of clients to
which an application or LIBlet is bound, or report an authentication error by throwing
AuthenticationProviderException.

Application properties from JAD and JAR files can be used for authentication
purposes. To access the list of clients defined by the security policy, use the following
methods:

• Policy.getPolicy(): Access the security policy provider instance.

• Policy.getClients(): Get the list of all clients except for virtual clients.

• Policy.getClient(java.lang.String): Get the client by name.

• Policy.getRootClient(): Get the virtual root client.

• Policy.getUntrustedClient(): Get the virtual untrusted client.

The following example shows how to create a custom authentication provider that
selects clients depending on the application vendor property.

package com.company.security;

import com.oracle.meep.security.AuthenticationProvider;
import com.oracle.meep.security.AuthenticationProviderException;
import com.oracle.meep.security.Client;
import com.oracle.meep.security.MIDletProperties;
import com.oracle.meep.security.Policy;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;

public class AuthProvider extends AuthenticationProvider {
 public List<Client> authenticateApplication(MIDletProperties props, InputStream
in) throws AuthenticationProviderException {
 List<Client> result = new ArrayList<>();
 String vendor = props.getProperty("MIDlet-Vendor");

 switch (vendor) {
 case "Manufacturer":
 result.add(Policy.getPolicy().getRootClient());

Custom Security Policy and Authentication Providers

10-10 Developer’s Guide

 break;
 case "TrustedCompany":
 result.add(Policy.getPolicy().getClient("clientA"));
 result.add(Policy.getPolicy().getClient("clientB"));
 break;
 case "UntrustedCompany":
 result.add(Policy.getPolicy().getUntrustedClient());
 break;
 default:
 throw new
AuthenticationProviderException(AuthenticationProviderException.ErrorCode.AUTHENTICAT
ION_FAILURE);
 }

 return result;
 }

 public void initialize() {
 }
}

Installing Custom Providers
To install a custom security policy or authentication provider on an emulated device:

1. Build the provider into a single JAR file. You can find API stub files in the
security_api.jar archive under lib\ext in the Java ME SDK installation
directory. The default location is C:\Java_ME_platform_SDK_8.3\lib\ext
\security_api.jar

2. Right-click an emulated device in the Device Selector and select Security
Configuration.

3. Select the Custom Authentication Provider Class Name and Custom Security
Policy Provider Class Name check boxes and specify the path to the custom
security provider implementation JAR file, and the class names of the
authentication and security policy providers. For more information about using the
Security Configuration window, see Configuring the Security Policy for a Device.

To install custom security providers on a physical external device, see the
documentation for the device.

Custom Security Policy and Authentication Providers

About the Java ME Embedded Security Model 10-11

Custom Security Policy and Authentication Providers

10-12 Developer’s Guide

11
About Java ME Sample Applications

The Oracle Java ME SDK includes sample applications that introduce you to the
emulator's API features and the Oracle Java ME SDK features, tools, and utilities that
support the various APIs.

The chapter contains the following topics:

• Installed Java ME Sample Applications

• Running Sample Applications

• Configuring the Web Browser and Proxy Settings

• Troubleshooting

Installed Java ME Sample Applications
Sample applications are installed with the Java ME SDK plug-ins for NetBeans IDE
and Eclipse IDE. Additional sample applications may become available through the
update center. For more information about installing the plug-ins and the update
center, see Setting Up the Development Environment.

The following samples are available by default:

• APDU Sample: Demonstrates communication with smart cards using Application
Protocol Data Units (APDUs) from JSR 177 - Security and Trust Services API.

• Calculator Sample: Calculates several arithmetic expressions concurrently.
Demonstrates the following functionality: Multithreading, Service Loader.

• Crypto Sample: Demonstrates the general cryptographic features (SATSA-
CRYPTO package) of JSR 177 - Security and Trust Services API.

• Data Collection Demo: Reads data from peripheral devices using Device Access
API (DAAPI) and processes it. Demonstrates the following functionality: MVM,
Inter-IMlet communication using local datagrams, Device I/O pulse counter,
Device I/O SPI, Logging API.

• Data Forwarder Sample: Forwards text data received from a connected TCP client
to a set of applications. Demonstrates the following functionality: MEEP IMC,
MEEP Events, GCF Server Socket.

• Directory Files Tree Sample: Prints the tree of files and directories. Demonstrates a
part of CLDC NIO files functionality.

• GPIO Sample: Demonstrates usage of GPIO (General Purpose Input Output)
package of Device I/O API 1.1.

About Java ME Sample Applications 11-1

• I2C Accelerometer Sample: Demonstrates simple communication with triaxial
accelerometer via I2C using Device I/O API 1.1.

• Location Sample: Demonstrates features of JSR 179 - Location API.

• Network Info Sample: Displays information about available network interfaces,
access points, IP address and host reachability (ping). Demonstrates the following
functionality: GCF Network Interfaces, GCF Access Points, GCF NetworkUtilities.

• Simple LUI Sample: Demonstrates the following functionality: MEEP v.8 LUI,
MEEP v.8 Key, DIO v.1.1 I2C, DIO v.1.1 GPIO

• Socket Client Sample: Demonstrates how to establish a TCP connection with a
server and send messages to it. The sample can connect to any TCP server. See
SocketServerSample for a sample server written for Java ME Embedded
platform).

• Socket Server Sample: Demonstrates how to listen for incoming TCP connections,
accept and receive messages from the clients. The sample can work with any TCP
client such as like nc or telnet. See SocketClientSample for a sample client
written for Java ME Embedded platform.

• System Controller Sample: Displays the state of other applications, enables you to
run and stop them using a simple command-line interface, and does other
application management tasks. Demonstrates the following functionality: MEEP
Software Management (SWM), CLDC Logging, CLDC Timers, GCF Server Sockets,
DIO GPIO Pins, DIO Watchdog, MEEP Power, Application autostart.

• System Info Sample: Reads system properties and information about the amount
of memory used by the JVM, displays details about installed and running
applications. Demonstrates part of MEEP SWM functionality.

• Temperature Collector Sample: Measures temperature periodically and stores
results. When a remote client connects, it sends the average temperature to the
client. Demonstrates the following functionality: MEEP PushRegistry Alarm, MEEP
PushRegistry Push Notifications, MEEP Record Store Management (RMS), GCF
Server Socket, CLDC system time.

• Wireless Messaging Sample: Demonstrates features of JSR 120 - Wireless
Messaging API.

• XML API Sample: Demonstrates the general features of JSR 280 - XML API.

Running Sample Applications
You can run the default sample applications from NetBeans IDE or Eclipse IDE by
creating the corresponding project. Then you run the project to try out the features
that the demo was created for.

Note:

Before using the Oracle Java ME SDK sample applications, carefully read
Installation and Runtime Security Guidelines. Some demonstrations use
network access and open ports, and do not include protection against
malicious intrusion. If you run the sample projects, ensure that your
environment is secure.

Running Sample Applications

11-2 Developer’s Guide

To create a Java ME sample application project in NetBeans IDE:

1. Open the File menu and select New Project.

2. In the Categories list, expand Samples and select Java ME SDK 8.3.

3. Select the sample application from the Projects list and click Next.

4. Enter a name for the project or leave the default, change other settings as
necessary, and click Finish.

To create a Java ME sample application project in Eclipse IDE:

1. Open the File menu, select New, and then Example.

2. In the New Example wizard, select Java ME SDK 8.3 and click Next.

3. Select the sample application from the list and click Finish.

Configuring the Web Browser and Proxy Settings
If you are behind a firewall, you can configure the sample applications to use proxy
server settings that you define.

The sample application proxy server settings typically match the proxy server settings
used in your web browser. To manually set the proxy server settings for your sample
applications, do the following:

1. Open the Device Selector.

2. Select the platform name to view its properties.

3. Specify the HTTP Proxy Settings, HTTP Proxy Host, and HTTP Proxy Port fields
to match your network and browser settings.

Troubleshooting
Sometimes a sample application does not run successfully. Often, the problem is your
environment.

• Some demonstrations require specific setup and instructions. For example, see
Configuring the Web Browser and Proxy Settings

• Because sample programs can be started remotely, virus checking software can
sometimes prevent them from running. In the console, you see warnings that the
emulator cannot connect.

Consider configuring your antivirus software to allow access to sample application
directories and components.

Configuring the Web Browser and Proxy Settings

About Java ME Sample Applications 11-3

Troubleshooting

11-4 Developer’s Guide

A
Java ME Embedded Emulator Command-

Line Reference

The Java ME Embedded Emulator can be started from the Windows or Linux
command line.

Starting the Java ME Emulator from the Command Line
The Java ME Emulator can be started from the Windows or Linux command line.

To start the Java ME Emulator, run the following command:

emulator.exe command [option ...]

When you start the emulator, you can pass a command to it that defines what it
should do, and options that adjust the behavior.

List of Commands to Pass to the Java ME Emulator
The following commands can be used to define what the emulator should do:

-help
Prints the usage information.

-version
Prints the version information.

-Xautotest:<jad_file>
Runs the specified JAD file on the emulator in autotest mode. The following options
cannot be used with this command:

-Xdebug

-Xrunjdwp

-Xprofile

-Xnetmon

-Xdescriptor:<jad_file>
Installs and runs the specified JAD file on the emulator in normal mode, then
removes it when you close the emulator.

-Xi3test[:<option>[=<value>],...[,<testclass>]]
Runs tests on the emulator. You can specify the testclass argument to run just that
one test. Otherwise, it runs all known tests.

The following options are available:

-filter=<pattern>: Runs tests which names contain the specified pattern.
-timeout=<min>: Sets the maximum execution time in minutes.

Java ME Embedded Emulator Command-Line Reference A-1

-keyword=<key>: Runs tests which keywords contain the specified key.
-list: Lists all known tests.
-selftest: Runs the framework's self test.
-verbose: Enables verbose output.

-Xjam[:option]
Runs the interactive Java application manager. You can pass several -Xjam
commands with different options. The following options are available:

force: Can be used in conjunction with install to force the removal of an IMlet
that is already present in a storage name.
install=<jad_url>: Installs the IMlet from the specified URL.
list: Lists all installed IMlets and exits.
remove={<name>|<number>}: Removes the IMlet in the specified storage name
or number. The system-defined application all can be used to remove all IMlets.
run={<name>|<number>}: Runs the IMlet in the specified storage name or
number.
storagreNames: Lists all storage names in the order of assigned storage numbers
and exits.
transient=<jad_url>: Installs, runs, and removes the IMlet from the specified
URL.

-Xquery
Prints information about available devices and exits. If used with the -Xdevice
option, prints information only about the specified device.

-XshutdownAll
Closes the emulator frame and shuts down the device manager.

Options to Adjust the Behavior of the Emulator
The following options can be used to adjust the behavior of the emulator:

-D<property>=<value>
Sets the system property to a value. This option can be used during development to
pass parameters to an application without rebuilding and repackaging it.

-Xdebug
Enables runtime debugging. This option should be used with the -Xrunjdwp option
that runs and controls a Java Debug Wire Protocol (JDWP) session.

-Xdevice
Runs the specified device in the emulator. If this option is not specified, the default
device is used, except for the -Xquery command that prints information about all
available devices if -Xdevice is not present.

-Xmemmon
Enables the Memory Monitor.

-Xnetmon[:suspend=y|n]
Enables the Network Monitor. The suspend option means whether to suspend the
application run until the network monitor connects.

Starting the Java ME Emulator from the Command Line

A-2 Developer’s Guide

-Xprofile[:file=<file>]
Enables the CPU Profiler. You can use the file argument to specify the file to which
the snapshot should be stored. If you do not specify the file argument, profiler data
will be passed on to a connected profiler and not stored as a snapshot.

-Xrunjdwp:<name>=<value>,...
Runs and controls a Java Debug Wire Protocol (JDWP) session when the -Xdebug
option is enabled. You should specify at least one name and value pair. Multiple pairs
are separated by commas. The following names are available:

address: Specifies the address for the debugger connection. The value is specified
as a host name and port number separated by a colon. If you specify only the port
number, than localhost is assumed as the host name.
server: Specifies whether to start the debug agent as a server. The value is
specified as y or n. By default, it is set to n.
suspend: Specifies whether to suspend the JVM immediately after establishing a
connection with the debugger. The value is specified as y or n. By default, it is set
to n.
transport: Specifies the transport mechanism used to communicate with the
debugger. The default value is dt_socket.

Examples
The following example relates the Windows platform only. It shows how to run the
sample_imlet.jad file on EmbeddedDevice1, assuming Oracle Java ME SDK 8.3
was installed to the default location:

C:\Program Files\Java_ME_platform_SDK_8.3\bin> emulator.exe -Xdevice:EmbeddedDevice1
-Xdescriptor:C:\Program Files\Java_ME_platform_SDK_8.3\apps\sample\sample_imlet.jad

Starting the Java ME Emulator from the Command Line

Java ME Embedded Emulator Command-Line Reference A-3

Starting the Java ME Emulator from the Command Line

A-4 Developer’s Guide

B
Installation and Runtime Security

Guidelines

Precautions and guidelines outlined in this chapter aim at protecting your platform's
installation file system and its runtime environment.

Potential Security Issues
Oracle Java ME SDK requires an execution model that makes certain network
resources available for emulator execution. These required resources might include
(but are not limited to) a variety of communication capabilities between product
components.

Note:

The Oracle Java ME SDK installation and runtime system is a developer
system. It is not designed to guard against any malicious attacks from outside
intruders.

During execution, the Oracle Java ME SDK architecture can present an insecure
operating environment to the platform's installation file system, and its runtime
environment. For this reason, it is critically important to observe the precautions
outlined in these guidelines when you install and run Oracle Java ME SDK.

About Maintaining Optimum Network Security
To maintain optimum network security, Oracle Java ME SDK can be installed and run
in an isolated network environment, where the Oracle Java ME SDK system is not
connected directly to the Internet. It can also be connected to a secure company
intranet environment, which will reduce unwanted exposure to malicious intrusion.

An example of an Oracle Java ME SDK requirement for an Internet connection is when
wireless functionality requires a connection to the Internet to support communications
with the wireless network infrastructure that is part of an Oracle Java ME SDK
application execution process. Whether or not an Internet connection is required
depends on the particular application running on Oracle Java ME SDK. For example,
some applications can use an HTTP connection.

If Oracle Java ME SDK is open to any network access, then you must take the
following precautions to protect valuable resources from malicious intrusion:

• Installing the Java ME Demos plugin is optional. Some sample projects use
network access and open ports. Because the sample code does not include
protection against malicious intrusion, ensure that your environment is secure if
you install and run the sample projects.

Installation and Runtime Security Guidelines B-1

• Install Oracle Java ME SDK behind a secure firewall that strictly limits
unauthorized network access to the Oracle Java ME SDK file system and services.
Limit access privileges to those that are required for Oracle Java ME SDK usage
while allowing all the bidirectional local network communications that are
necessary for Oracle Java ME SDK functionality. The firewall configuration must
support these requirements to run the Oracle Java ME SDK while also addressing
them from a security standpoint.

• Follow the principle of least privileged by assigning the minimum set of system
access permissions required to install and execute Oracle Java ME SDK.

• Do not store any sensitive information on the same file system that is hosting
Oracle Java ME SDK.

• To maintain the maximum level of security, ensure that all the latest updates for
the operating system are installed.

About Maintaining Optimum Network Security

B-2 Developer’s Guide

	Contents
	Preface
	Audience
	Conventions

	1 About Oracle Java ME SDK
	What Is Oracle Java ME SDK
	Supported Application Programming Interfaces
	Required Specifications
	Optional Specifications
	Oracle APIs

	2 Setting Up the Development Environment
	System Requirements
	Removing Previous Versions of Java ME SDK
	Installing the Java SE Development Kit
	Installing Oracle Java ME SDK
	Installing Oracle Java ME SDK on Windows
	Installing Oracle Java ME SDK on Linux
	Installing 32-bit Support Libraries on 64-bit Linux
	Enabling Access to Serial Ports on Linux

	Installing NetBeans IDE
	Installing the Java ME SDK Plug-ins for NetBeans IDE
	Installing Eclipse IDE
	Installing the Java ME SDK Plug-ins for Eclipse IDE
	Installing Mobile Tools for Java Extensions
	Installing JavaCard Emulator
	Updating Oracle Java ME SDK
	Starting the Java ME SDK Update Center
	The Java ME SDK Update Center Window

	3 Installation and Configuration Directories
	The Oracle Java ME SDK Installation Directory Structure
	The Oracle Java ME SDK Configuration Directory Structure

	4 About Java ME Embedded Applications
	Structure of Java ME Embedded Application
	Procedures to Develop a Java ME Application
	Source Code for a Sample IMlet
	Developing a Sample Java ME Embedded Application in NetBeans IDE
	Creating the IMletDemo Project in NetBeans IDE
	Running the IMletDemo Project in NetBeans IDE

	Developing a Sample Java ME Embedded Application in Eclipse IDE
	Creating the IMletDemo Project in Eclipse IDE
	Running the IMletDemo Project in Eclipse IDE

	Developing a Sample Java ME Embedded Application Without an IDE
	Creating the IMletDemo Source Code File
	Building the IMletDemo Class File From the Command Line
	Packaging the IMletDemo Application From the Command Line
	Running the IMletDemo Application From the Command Line

	5 Java ME Embedded Application Projects in NetBeans IDE
	Basic Information About Project Management in IDE
	Creating a Java ME Embedded Application Project in NetBeans IDE
	Adding an IMlet to a Java ME Embedded Application Project
	Managing Java ME Embedded Application Project Sources in NetBeans IDE
	Managing the List of Source Package Folders
	Setting the Source and Target Versions
	Setting the Encoding of Source Files
	Including and Excluding Source Files
	Related Topics

	Selecting Java ME Embedded Application Project Platform in NetBeans IDE
	Managing Platforms in NetBeans IDE
	Configuring the Emulation Environment

	Managing Java ME Embedded Application Project Libraries in NetBeans IDE
	Managing Java ME Embedded Application Descriptor Attributes in NetBeans IDE
	Configuring Java Compiler Settings in NetBeans IDE
	Generating Debugging Information
	Reporting Deprecated API Usage
	Tracking Java Dependencies
	Processing Annotations
	Configuring Additional Java Compiler Settings
	Related Topics

	About Signing Java ME Embedded Applications in NetBeans IDE
	Signing a Java ME Embedded Application Project in NetBeans IDE
	Importing a New Certificate to the Keystore
	Registering the Certificate on a Device

	Obfuscating Java ME Embedded Applications in NetBeans IDE
	Configuring Project Documentation Settings in NetBeans IDE
	Related Topics

	Configuring Java ME Embedded Emulator Settings in NetBeans IDE
	About Ant, Gradle, and Maven Support
	Exporting Java ME Embedded Projects in NetBeans IDE

	6 Java ME Embedded Application Projects in Eclipse IDE
	Basic Information About Project Management in IDE
	Creating a Java ME Project in Eclipse IDE
	Adding an IMlet to a Java ME Application Project
	Importing an Existing Project into Eclipse IDE
	Managing Java ME Project Device Configurations in Eclipse IDE
	Performing Code Validation for a Java ME Project in Eclipse IDE
	Managing Java ME Project Libraries in Eclipse IDE
	Obfuscating Java ME Embedded Applications in Eclipse IDE
	Setting Java ME Project Packaging Attributes in Eclipse IDE
	Signing Java ME Embedded Applications in Eclipse IDE
	About Ant, Gradle, and Maven Support
	Exporting Java ME Embedded Projects in Eclipse IDE

	7 Debugging Java ME Embedded Applications
	Basics of Debugging
	Accomplishing Interactive Debugging
	Profiling Java ME Embedded Applications
	Monitoring Memory Usage of Java ME Embedded Applications
	Monitoring Network Activity of Java ME Embedded Applications
	Filtering and Sorting Connections

	Logging Capabilities Provided by Oracle Java ME SDK
	Enabling Logging for a Device

	8 About Java ME Embedded Devices
	Emulated Devices
	Managing Devices
	Connecting an External Device
	About Managing External Device Connections From the Command Line
	Troubleshooting Device Connection Issues

	Creating and Managing Custom Emulated Devices
	About Managing Custom Emulated Devices From the Command Line

	Viewing and Editing Device Properties

	9 About the Java ME Embedded Emulator
	What is Java ME Embedded Emulator
	Running the Java ME Embedded Emulator
	Java ME Embedded Emulator’s Main Window
	Installing and Running IMlet Suites Using the Java ME Embedded Emulator
	Viewing Device Output and Logs
	Viewing Messages
	Managing Landmarks
	Managing the File System
	Managing the Connectivity Configuration
	Managing Access Points
	Managing Network Interfaces
	Managing Cellular Networks
	Managing Subscribers

	Generating External Events
	Generating Analog Input
	Generating Button Events
	Generating Input From Emulated Peripheral Devices
	Generating Location Provider Information
	Generating Input From Memory-Mapped Peripherals
	Generating Power Management Events
	Generating Pulses Counters Tab

	10 About the Java ME Embedded Security Model
	Java ME Embedded Profile Specification
	General Schema of the Security Model
	Supported Security Providers
	Configuring the Security Policy for a Device
	Signing a Project
	Managing Keystores and Key Pairs
	Managing Root Certificates
	Command-Line Security Features
	Sign IMlet Suites (jadtool)
	Manage Certificates (mekeytool)

	Custom Security Policy and Authentication Providers
	Sample Custom Security Policy Provider
	Sample Custom Authentication Provider
	Installing Custom Providers

	11 About Java ME Sample Applications
	Installed Java ME Sample Applications
	Running Sample Applications
	Configuring the Web Browser and Proxy Settings
	Troubleshooting

	A Java ME Embedded Emulator Command-Line Reference
	Starting the Java ME Emulator from the Command Line
	List of Commands to Pass to the Java ME Emulator
	Options to Adjust the Behavior of the Emulator
	Examples

	B Installation and Runtime Security Guidelines
	Potential Security Issues
	About Maintaining Optimum Network Security

