
Sun Microsystems, Inc.
www.sun.com

CDC Build System Guide

Java™ Platform, Micro Edition

Connected Device Configuration, Version 1.1.2

Foundation Profile, Version 1.1.2

Optimized Implementation

December 2008

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris and HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. or its
subsidiaries in the United States and other countries.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
États - Unis et dans les autres pays.

Droits du gouvernement des États-Unis ? Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux États-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris et HotSpot sont des marques de fabrique ou des marques déposées enregistrées de Sun
Microsystems, Inc. ou ses filiales aux États-Unis et dans d’autres pays.

Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matière de
contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des États-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine sur le contrôle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE À LA QUALITE MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIERE OU À
L’ÀBSENCE DE CONTREFAÇON.

Contents

Preface xi

1. Introduction 1–1

1.1 Host Development Environment 1–2

1.2 Target Platforms 1–2

1.3 Build Options 1–2

1.4 Java ME Standard API Choices 1–3

1.5 Application Development 1–3

1.6 CDC Build Process Overview 1–4

2. Installation 2–1

2.1 Host Development System Requirements 2–1

2.2 Build Tools 2–2

2.2.1 Host Build Tools 2–3

2.2.2 Java Build Tools 2–3

2.2.3 Target Build Tools 2–4

2.3 Build System Setup Examples 2–6

3. Build System Layout 3–1

3.1 Relationship to the phoneME Open Source Project 3–1

3.2 cdc Component 3–2
 iii

3.2.1 build Directory Structure 3–3

3.2.2 Makefile Hierarchy 3–3

3.3 secop Component 3–4

3.4 Generated Files for the CDC Java Runtime Environment 3–5

3.4.1 Development Files 3–5

3.4.2 Test and Demo Programs 3–5

3.4.3 Other Generated Files 3–6

4. Build System Procedures 4–1

4.1 The Build Cycle 4–1

4.1.1 Performing a Test Build 4–1

4.1.2 Selecting a Target Device 4–2

4.1.3 Standard API Choices: Profiles and Optional Packages 4–2

4.1.4 Selecting Testing and Performance Features 4–3

4.1.5 Quick Rebuilds 4–3

4.1.6 Generating Verbose Build Logs 4–4

4.1.7 Creating a Runtime Bundle 4–4

4.1.8 Testing the Build 4–5

4.2 JVMTI Support 4–5

4.3 Building a Development Version of the CDC Java Class Library 4–6

4.4 Preloading Java Class Files with JavaCodeCompact 4–7

4.4.1 Linking Java Programs 4–8

4.4.2 Lazy Linking Support 4–8

4.4.3 Preloaded Builds 4–9

4.4.4 Adding Classes to Preloaded Builds 4–10

A. Build Option Reference A–1

A.1 Build Option Categories A–1

A.2 Guidelines for Overriding Build Options A–2
iv CDC Build System Guide • December 2008

A.3 Build Option Descriptions A–2

A.3.1 Supported Build Options A–3

A.3.2 Limited Support Build Options A–6

B. JavaCodeCompact Reference B–1

B.1 Description B–1

B.2 Options B–2

B.3 Opcode Transformations B–3

B.4 Output B–4

5. Legacy JVMPI Support C–1
Contents v

vi CDC Build System Guide • December 2008

Figures

FIGURE 1-1 CDC Build System 1–4
 vii

viii CDC Build System Guide • December 2008

Tables

TABLE 1-1 Standard Java ME API Features 1–3

TABLE 2-1 Linux PC Host Requirements 2–2

TABLE 2-2 Host Build Tool Macros 2–3

TABLE 2-3 Java SE Build Tools Macros 2–4

TABLE 2-4 Target Build Tool Macros 2–5

TABLE 3-1 phoneME Source Repository Components 3–1

TABLE 3-2 Commercial Source Repository Components 3–2

TABLE 3-3 build Directory 3–3

TABLE 3-4 CDC Build System Makefiles in build/share 3–4

TABLE 3-5 Generated Development Files 3–5

TABLE 3-6 Test and Demo Files 3–6

TABLE 3-7 Other Generated Files 3–6

TABLE 4-1 CVM_PRELOAD_SET Build Option Flags 4–9

TABLE A-1 Supported Build Options A–3

TABLE A-2 Limited Support Build Options A–6

TABLE A-3 Legacy Build Options A–9

TABLE B-1 JavaCodeCompact Options B–2
 ix

x CDC Build System Guide • December 2008

Preface

This guide describes the build system shared by various implementations of
technology based on the Connected Device Configuration (CDC) and its related
profiles and optional packages. The CDC build system can generate an executable
binary image containing a CDC Java runtime environment.

This guide contains task descriptions for installing, configuring, testing and using
the CDC build system as well as build option descriptions for controlling
functionality, testability and performance features.

The companion document CDC Runtime Guide describes how to use a CDC Java
runtime environment. It focuses on runtime issues like installation, configuration,
testing and running Java™ technology-based application software as well as
developer issues like compiling, debugging and profiling. This guide focuses on
how to enable these features at build-time.

Who Should Read This Guide
This guide is intended for software engineers who need to build a CDC Java runtime
environment for one of the following purposes:

■ Porting the CDC HotSpot Implementation Java virtual machine.
■ Porting one of the CDC profile class libraries.
■ Testing a CDC Java runtime environment.
■ Developing applications.
■ System integration.

The reader should be familiar with Java and UNIX build tools as well as embedded
software development. Before using the CDC build system, it is helpful to spend
some time learning how to use a CDC Java runtime environment. See the CDC
Runtime Guide for more details.
 xi

How This Book Is Organized
■ Chapter 1 describes the concepts behind the CDC build system.
■ Chapter 2 describes how to install and configure the CDC build system.
■ Chapter 3 describes the organization of the CDC build system.
■ Chapter 4 describes how to use the CDC build system to perform a test build and

create a runtime environment deployment bundle.
■ Appendix A describes the configuration options for the CDC build system.
■ Appendix B describes the JavaCodeCompact build tool that is used for

preloading system and application classes.
■ Appendix C describes how to enable legacy profiling support for a CDC Java

runtime environment.

CDC Software Releases
CDC technology is delivered by Sun through different kinds of software releases.
The following technology releases are relevant to this guide:

■ A reference implementation (RI) demonstrates CDC technology. CDC RIs are based
on a common desktop development environment like Suse Linux 9.1.

■ An optimized implementation (OI) supports strategic platforms and provide the
basis for porting projects. The supported optimized implementation is based on
the Linux platform and several embedded processors, including ARM and MIPS.
Starter ports for other OS/CPU combinations are available from Java Partner
Engineering (JPE).

This build guide describes the build system common to both of these source releases.

phoneME Open Source Project
Sun makes Java ME technology available through both a commercial license and the
open source phoneME project (https://phoneme.dev.java.net). The main
differences between the commercial and open source versions are:

■ The commercial version is a superset of the open source version and contains
additional security features that cannot be made available in source form as well
as third-party components that may have restrictions on redistribution.
xii CDC Build System Guide • December 2008

■ The commercial version has had more rigorous software testing.

■ The open source version represents active engineering development and so may
have new features that have not been tested to the level that the commercial
version requires.

The phoneME project includes several subprojects including phoneME Advanced,
which corresponds with CDC technology and phoneME Feature, which corresponds
with CLDC technology. See the phoneME Advanced Twiki at
http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced
for the latest information about the phoneME Advanced open source project.

Accessing Sun Resources Online
Sun provides online documentation resources for developers and licensees.

TABLE P-1 Sun Documentation Resources

URL Description

http://docs.sun.com Sun product documentation

http://java.sun.com/javame/reference
/index.jsp

Java ME technical documentation

http://developer.java.sun.com Java Developer Services

https://java-partner.sun.com Java Partner Engineering

http://java.net An open community that facilitates
Java technology collaboration.

http://wiki.java.net/bin/view/Mobile
andembedded/PhoneMEAdvanced

phoneME Advanced Twiki
Preface xiii

Related Documentation
TABLE P-2 Related Documentation

Title Description

CDC Runtime Guide Runtime-oriented information for developers and testers.

CDC Porting Guide Procedures and interface definitions for porting the CDC
Java virtual machine and class library to an alternate
target platform.

• CDC Technology Compatibility
Kit User’s Guide

• Foundation Profile Technology
Compatibility Kit User’s Guide

• Security Optional Package
Technology Compatibility Kit
User’s Guide

User documentation for running the TCK validation
suites.

Java Virtual Machine Specification,
Second Edition

Defines the Java class format and the virtual machine
semantics for class loading, which are the basis for the
operation of the Java runtime environment and its ability
to execute Java application software on a variety of
different target platforms. See
http://java.sun.com/docs/books/vmspec.

Java Native Interface:
Programmer's Guide and
Specification

Describes the native method interface used by the CDC
HotSpot Implementation Java virtual machine.
http://java.sun.com/docs/books/jni.

Java Virtual Machine Tools
Interface (JVMTI)

Defines an interface that allows developer tools like jdb
and third-party debuggers to interact with a debugger-
capable Java runtime environment. See
http://java.sun.com/j2se/1.5.0/docs/guide/
 jvmti/index.html.

Inside Java 2 Platform Security Describes the Java security framework, including
security architecture, deployment and customization. See
http://java.sun.com/docs/books/security.
xiv CDC Build System Guide • December 2008

Typographic Conventions
TABLE P-3 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized

Command-line variable;
replace with a real name or
value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Terminology
These terms related to the Java™ platform and Java™ technology are used
throughout this manual.

Java technology level (Java level)

Java technology based (Java based)

class contained in a Java
class file (Java class)

Java programming
language profiler (Java profiler)

Java programming
language debugger (Java debugger)

thread in a Java virtual
machine representing a
Preface xv

Java programming
language thread (Java thread)

stack used by a Java
thread (Java thread stack)

application based on Java
technology (Java application)

source code written in the
Java programming

language (Java source code)

object based on Java
technology (Java object)

method in an object based
on Java technology (Java method)

field in an object based on
Java technology (Java field)

a named collection of
method definitions and

constant values based on
Java technology (Java interface)

a group of types based on
Java technology (Java package)

an organized collection of
packages and types based

on Java technology (Java namespace)

constructor method in an
object based on Java

technology (Java constructor)

exception based on Java
technology (Java exception)

an application
programming interface

(API) based on Java
technology (Java API)

a service providers
interface (SPI) based on

Java technology (Java API)

developer tool based on
Java technology (Java developer tool)
xvi CDC Build System Guide • December 2008

system property in a Java
runtime environment (Java system property)

security framework for the
Java platform (Java security framework)

security architecture of the
Java platform (Java security architecture)

Feedback
Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-comments@java.sun.com

You can send comments and suggestions regarding this guide by sending email to:

docs@java.sun.com
Preface xvii

xviii CDC Build System Guide • December 2008

CHAPTER 1

Introduction

The CDC build system is a set of makefiles, scripts and tools that constructs a CDC
Java runtime environment. The CDC build system uses commonly available Java
and UNIX build tools to compile Java, C and assembly language source code and
generate an executable image for a specific target platform. Build options control
features of the generated CDC Java runtime environment that range from debugging
capabilities and performance characteristics to optional functionality.

This chapter introduces the concepts and procedures of the CDC build system. The
CDC build system has several purposes:

■ Building different implementations of the CDC Java runtime environment for
target platforms.

■ Supporting application and runtime development.

The CDC build system can also be adapted to support different purposes. It can be:

■ Configured to enable/disable functionality, testing and performance features.

■ Extended to support optional packages, applications and class libraries.

■ Ported to support new target platforms and devices.

Once built, the CDC Java runtime environment can be used in several different
contexts:

■ Runtime testing.

■ TCK verification.

■ Application development and testing.

■ Product deployment.

The CDC build system operates on several host development platforms, including
Solaris and Linux. The CDC build system uses cross-compilation to generate an
executable image that can be transferred to a target platform for testing or
deployment. For example, the CDC Java runtime environment can be built on a
Linux-based x86/PC and then run on a Linux-based test device with an embedded
RISC CPU like ARM or MIPS.
1-1

1.1 Host Development Environment
The CDC build system is based on commonly available software development tools.
These include both Java development tools like javac, the Java compiler and UNIX
development tools like gcc, make and lex. The UNIX development tools are further
divided between host build tools that generate objects and resources for use within
the CDC build system and target build tools that generate objects and resources for
the target platform.

FIGURE 1-1 describes the basic workflow of the CDC build system and how it
constructs a CDC Java runtime environment for a target platform. Chapter 2
describes the system requirements for the CDC build system.

1.2 Target Platforms
The implementations of the CDC Java runtime environment described in this guide
are based on the Linux platform and ARM and MIPS CPUs. For help with starter
ports that support other operating systems and CPUs, contact Java Partner
Engineering (http://www.sun.com/software/jpe).

1.3 Build Options
The CDC build system has a variety of build options described in Appendix A that
control different features of the CDC Java runtime environment:

■ Target devices. At the top-level, the CDC build system supports several different
target devices like PDAs or network routers.

■ Performance and testability. Some build options control developer features or
performance tradeoffs.

■ Standard API Features. Java ME standards provide a flexible mechanism for
constructing different yet conforming versions of a Java runtime environment.
API choices balance the needs of product designers and application developers.
Product designers can select standard API features that match the capabilities of
their devices while application developers can use standard APIs shared by a
range of different target devices.
1-2 CDC Build System Guide • December 2008

1.4 Java ME Standard API Choices
The standard API choices available in Java ME technology are based on
configurations, profiles and optional packages described in TABLE 1-1. To construct a
conforming CDC Java runtime environment, a product designer chooses a
configuration, a profile and any number of optional packages.

TABLE 1-1 Standard Java ME API Features

Configuration Profile Optional Package

CDC Foundation
Personal Basis
Personal

RMI
JDBC
Security

For example, a product designer could choose the Connected Device Configuration
(CDC), the Personal Profile and the RMI and JDBC optional packages. See
Section 4.1.3, “Standard API Choices: Profiles and Optional Packages” on page 4-2
for information about how to use build options to select standard API features. See
Section 4.3, “Building a Development Version of the CDC Java Class Library” on
page 4-6 for information about how to build a target development version of the
CDC Java class library.

1.5 Application Development
The CDC application developer compiles Java source code against a CDC Java class
library and then runs the compiled application with a CDC Java runtime
environment for testing and debugging. The companion document CDC Runtime
Guide describes how to compile, run, debug and profile Java applications for the
CDC platform using conventional Java SE tools and the CDC Java runtime
environment.

In general, CDC application development is separate from runtime development.
But there is one scenario where they cross paths. The CDC build system can be used
as part of an application development workflow to bundle Java applications directly
into a CDC Java runtime environment for the purposes of both performance and
convenience. This capability is based on the preloading mechanism described in
Section 4.4, “Preloading Java Class Files with JavaCodeCompact” on page 4-7.
Chapter 1 Introduction 1-3

1.6 CDC Build Process Overview

CDC

CDC Java runtime environment

(target: Linux, RTOS...)

VM Source
(C/assembly)

Native Method
Source (JNI)

Class Library
Source (Java)

javac

JavaCodeCompact

*.class

gcc/as

romjava*.c

gcc

romjava.o

ar/ld

target build tools

*.o

build
system

system
libraries

jar

FIGURE 1-1 CDC Build System
1-4 CDC Build System Guide • December 2008

CHAPTER 2

Installation

This chapter shows how to install and configure the build system and source code in
a CDC source release. The goals here are to:

■ Download and install a CDC source release.
■ Set up the host and target build tools.
■ Configure the CDC build system.
■ Test the build system

Chapter 3 describes the contents of the CDC build system. Chapter 4 provides an
overview of basic CDC build system procedures. Appendix A provides complete
descriptions of the various CDC build options.

2.1 Host Development System
Requirements
The CDC build system is based on standard open source and Java build tools,
typically hosted on an x86-based PC. In addition, target-specific build tools must be
acquired and integrated with the CDC build system. The following subsections
describe the system requirements of the CDC build system.

The CDC build system can run on most recent Linux distributions, so this chapter
focuses on using the Linux platform as a host development system. Other UNIX
platforms can be used without much effort.
2-1

TABLE 2-1 describes the basic hardware requirements for the CDC build system on a
Linux PC.

TABLE 2-1 Linux PC Host Requirements

Component Recommended

memory 1-2 GB

disk space 100 GB

In addition to these host requirements, the CDC build system requires a mechanism
for downloading a runtime executable to the target device. These mechanisms range
from a serial or USB interface to TCP/IP networking.

2.2 Build Tools
The CDC build system is based on commonly available open source and Java build
tools. The open source build tools are divided into three categories:

■ Java build tools are provided by the Java SE SDK and used to build the CDC class
libraries as well as some internal build tools like JavaCodeCompact and
JavaCodeSelect.

■ Host build tools are provided by the host development system for building a few
internal build tools and driving the CDC build system.

■ Target build tools are specific to the target platform.

FIGURE 1-1 describes how these tools are used to build a target-specific version of the
CDC Java runtime environment.

The CDC build system was designed to simplify the process of integration with
target build tools. If the target build tools are organized and located using common
Linux conventions, it should be easy to integrate them with the CDC build tool with
the help of a few build options. The easiest way to do this is with the high-level
macros PATH, JDK_HOME and CVM_TARGET_TOOLS_PREFIX.

The examples described in the phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
contain show how to use these basic macros with open source platforms like
OpenWRT and commercial platforms like Windows Mobile.

TABLE 2-2 and TABLE 2-4 also describe lower-level macros that define individual tools.
These can be used in situations where the high-level macros are insufficient. If the
shell locates these tools in PATH, only the tool name is needed. Otherwise, it’s best to
use a full pathname for these macros. Again, the easiest place to define these macros
is in the top-level GNUmakefile.
2-2 CDC Build System Guide • December 2008

2.2.1 Host Build Tools
Host development build tools are used by the CDC build system to build certain
host-based CDC build tools. Because these build tools are host-based, they do not
create code that is linked into the target runtime system which is usually based on a
different target CPU.

Note that in general, the host build tools required by the CDC build system are
commonly available on most Linux distributions. In some cases, it may be necessary
to download additional packages through a package management system.

TABLE 2-2 describes the macros defined in build/share/defs.mk and
build/share/top.mk that define host build tools.

TABLE 2-2 Host Build Tool Macros

Macro Default Description

HOST_CC $(CC) Host C compiler.

HOST_CCC $(CXX) Host C++ compiler.

LEX lex Lexical analyzer.

BISON bison Parser generator.

MAKE make Make utility.

ZIP
UNZIP

zip Zip compression utilities.

SHELL sh Bourne compatible shell

1 See the note in build/share/defs.mk about the options for using ksh or sh.

1

2.2.2 Java Build Tools
The Java build tools are usually located with the JDK_HOME build option. The CDC
build system can use the Java SE SDK, version 1.4.2 or later. Sun provides versions
of these tools for various development platforms at
http://java.sun.com/j2se/downloads.html. The CDC build system requires
the Java SE version 1.4.2 SDK or later.
Chapter 2 Installation 2-3

TABLE 2-3 describes the standard Java SE build tools and their associated CDC build
system macros.

TABLE 2-3 Java SE Build Tools Macros

Macro Default Description

JDK_HOME unset Location of the Java build tools.

CVM_JAVA if $(JDK_HOME) is set:
 $(JDK_HOME)/bin/java
otherwise search $(PATH) for
 java

Java application launcher.

CVM_JAVAC if $(JDK_HOME) is set:
 $(JDK_HOME)/bin/javac
otherwise search $(PATH) for
 javac

Java compiler.

CVM_JAVAH if $(JDK_HOME) is set:
 $(JDK_HOME)/bin/javah
otherwise search $(PATH) for
 javah

JNI C header and stub file generator.

CVM_JAR if $(JDK_HOME) is set:
 $(JDK_HOME)/bin/jar
otherwise search $(PATH) for
 jar

Java archive tool.

2.2.3 Target Build Tools
The target build tools include a C/C++ compiler, various binary utilities like an
assembler and linker, header files and libraries. The target build tools are usually
provided by the CPU/development board vendor or, in cases like OpenWRT, the
open source build system generates a custom toolchain for a target device.

Describing how to acquire or build these tools is beyond the scope of this guide,
though the phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
contains concrete examples of how to setup the CDC build system based on open
source and commercial platforms.
2-4 CDC Build System Guide • December 2008

TABLE 2-4 describes the top-level and tool-specific macros for the CDC build system.

TABLE 2-4 Target Build Tool Macros

Macro Default Description

CVM_TARGET_TOOLS
_PREFIX

unset Prefix for the UNIX target build tools.

TARGET_CC
TARGET_CCC

$(CVM_TARGET_TOOLS_PREFIX)gcc The target C/C++ compilers.
Note that TARGET_CC and
TARGET_CCC are set to HOST_CC and
HOST_CCC if
CVM_TARGET_TOOLS_PREFIX is not set
(or is not valid).
The CDC-HI Java virtual machine has
been compiled with several versions of
the gcc C/C++ compiler.

TARGET_AS $(TARGET_CC) The assembler translates assembly
language source into a binary format
suitable for use by the linker.
Note that the assembly language source
code provided in the CDC source release
is based on the GNU assembler and may
need modification to work with a
different target assembler.

TARGET_LD $(TARGET_CC) The linker combines object and archive
files, relocates their data and resolves
symbol references.

TARGET_AR $(CVM_TARGET_TOOLS_PREFIX)ar The archive utility creates, modifies and
extracts object code archives.

TARGET_AR_CREATE $(TARGET_AR) rc $(1) Archive creator.

TARGET_AR_UPDATE $(TARGET_RANLIB) $(1) Archive updater.

TARGET_RANLIB $(CVM_TARGET_TOOLS_PREFIX)ranlib The archive indexer generates an index
of an archive’s contents and stores it in
the archive.

The simplest method is with the CVM_TARGET_TOOLS_PREFIX build option. If the
target build tools use a regular naming convention, then the
CVM_TARGET_TOOLS_PREFIX build option can locate them for the CDC build system.
Note that this macro is not exactly a path. It is a prefix that includes a path and the
shared portion of the tool name that precedes the root tool name.
Chapter 2 Installation 2-5

The purpose of CVM_TARGET_TOOLS_PREFIX is to find target build tools with a
certain name scheme. For example, the following build option finds tools like arm-
linux-gcc and arm-linux-ar and match them to the internal macros used by the
CDC build system.

CVM_TARGET_TOOLS_PREFIX=/opt/arm-linux/bin/arm-linux-

Note the trailing ’-’.

If it is not possible to use CVM_TARGET_TOOLS_PREFIX, then the build options
described in TABLE 2-4 provide an override mechanism for more precisely specifying
the locations of the target build tools. TABLE 2-4 and TABLE 2-2 describe the macros
defined in build/share/defs.mk that define the target build tools.

2.3 Build System Setup Examples
The phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
contains concrete examples of how to use the CDC build system based on open
source platforms like OpenWRT and commercial platforms like Windows Mobile.
The Windows Mobile example demonstrates how to use a Windows-hosted build
toolchain based on Cygwin (http://www.cygwin.com).
2-6 CDC Build System Guide • December 2008

CHAPTER 3

Build System Layout

This chapter describes the contents of the CDC source release from the perspective
of the build system. The goals here are to describe the directory structure and
makefiles of the CDC build system.

3.1 Relationship to the phoneME Open
Source Project
Note that the CDC source code and build system hierarchies have been integrated
with the Java ME optional package and profile hierarchies. So the CDC source code
and build system are now components within a larger source code repository that is
is visible through the phoneME open source project.

The top-level components in the phoneME Project are described in TABLE 3-1.

TABLE 3-1 phoneME Source Repository Components

Component Description

cdc CDC libraries, VM and build system.

tools Build scripts and tools.

midp MIDP implementation.

pcsl PCSL implementation.

javacall JavaCall porting layer used by MIDP and optional packages.

jpeg JPEG implementation.

abstractions Abstractions shared by optional packages.

jsrnnn Each component for an optional package implementation has a
component name with the form jsrnnn.
3-1

In addition, the commercial version of CDC technology has a few source repository
components that are not available through the open source project. These are
described in TABLE 3-2.

TABLE 3-2 Commercial Source Repository Components

Component Description

cdc-com Contains a source code overlay for features that are not available
through the open source repository.

secop Contains source code and restricted binary implementations for the
Security Optional Packages.

legal Copyright and third-party license notices.

3.2 cdc Component
The CDC build system is contained in and driven from within the cdc component.
Inspecting its top-level directories shows how the source code and build system is
structured:

■ build - the CDC build system
■ src - shared and target-specific source code
■ test - miscellaneous test programs

This chapter focuses on the build directory. For a description of the src directory,
see the companion document CDC Porting Guide. For a description of the various
files generated for the CDC Java runtime environment, see the companion document
CDC Runtime Guide.
3-2 CDC Build System Guide • December 2008

3.2.1 build Directory Structure
The CDC build system is located in the build directory which contains a series of
subdirectories that follow the naming conventions described in TABLE 3-3. These
subdirectories have parallel organizations to ease navigation and support the
operation of the CDC build system.

TABLE 3-3 build Directory

Directory Example Description

portlibs - Makefile definitions for the shared JIT layer.

share - Shared makefiles.

<CPU> arm

mips

x86

CPU architecture-specific build options. These are
mostly JIT-related.

<OS> linux OS-specific build options for the VM, class library and
tools.

<OS>-<CPU> linux-x86

linux-arm

linux-mips

OS/CPU build options for the VM and tools.

<OS>-<CPU>-<DEVICE> linux-x86-suse

linux-arm-zaurus

linux-mips-openwrt

The main target build directory. It contains the top-level
makefile which can set or override build options used by
the shared makefiles. This is also where the generated
files are placed. These generated files include the
contents of the CDC Java runtime environment and other
generated files, depending on which build options are
selected.

3.2.2 Makefile Hierarchy
The CDC build system uses the naming convention described in TABLE 3-4 to specify
makefile names. The different directories listed above can contain makefiles with
identical names. In this case the share version will attempt to include the CPU, OS,
OS-CPU and OS-CPU-DEVICE versions, if they are present. For example,
share/defs.mk includes arm/defs.mk, linux/defs.mk, linux-arm/defs.mk
and linux-arm-zaurus/defs.mk.
Chapter 3 Build System Layout 3-3

Profile-based makefiles are chained together. For example, the top-level
share/top.mk includes share/defs_classlib.mk which then includes
share/defs_cdc.mk.

TABLE 3-4 CDC Build System Makefiles in build/share

File Description

GNUmakefile The top-level makefile for building a runtime environment for a target device.

defs.mk
defs_profile.mk
defs_profile_option.mk
defs_package_pkg.mk

Build option definitions.

rules.mk
rules_profile.mk
rules_profile_option.mk
rules_package_pkg.mk

Makefile rule definitions.

defs_zoneinfo.mk
rules_zoneinfo.mk

javazic utility and TimeZone resource files.

id_profile.mk Build identification string definitions.

jvmti.mk Builds JVMTI.

jcc.mk Builds and runs JavaCodeCompact.

jcs.mk Builds and runs JavaCodeSelect.

testgc.mk GC test framework.

top.mk Top-level shared makefile included by GNUmakefile that includes all the other
makefiles.

3.3 secop Component
The secop component contains the source and build system for the Security
Optional Packages, which are defined in JSR 219 Foundation Profile.

The secop component has two top-level directories:

■ build - Contains a makefile for building the Security Optional Packages.
■ src - Contains the source code for the Security Optional Package framework as

well as binary plug-ins for the various provider implementations.

The Security Optional Packages are included in a build with the USE_SECOP and
SECURITY_PKGS build options described in Appendix A.

See the CDC Runtime Guide for more information about security features.
3-4 CDC Build System Guide • December 2008

3.4 Generated Files for the CDC Java
Runtime Environment
After a build successfully completes, the target device build directory (e.g.
build/linux-x86-suse) contains a collection of generated files like object files,
executable binaries, Java class files, Zip and jar archives. A subset of these files
represents a CDC Java runtime environment that can be deployed on a target device
while other files contain runtime and application development resources. See
Section 4.1.7, “Creating a Runtime Bundle” on page 4-4 for instructions on how to
create a bundle containing the CDC Java runtime environment.

The most important runtime files are located in the bin and lib directories. These are
described in the companion document CDC Runtime Guide which also describes
command-line arguments, system properties and other runtime features.

3.4.1 Development Files
The CDC build system generates both a target CDC Java runtime environment and
development resources for that target. The table below describes the development
resources generated for the target platform.

TABLE 3-5 Generated Development Files

File/Directory Description

btclasses.zip
btclasses/

btclasses.zip contains a version of the CDC class library that can be used for
compiling application source code. Since the contents of btclasses can vary
depending on the selected build options, application development should be based
on a target development version of the CDC Java class library. See Section 4.3,
“Building a Development Version of the CDC Java Class Library” on page 4-6 for
more information.

3.4.2 Test and Demo Programs
A CDC source release includes source code for a collection of test and demo
programs that can quickly test the functionality of a CDC Java runtime environment.
By default, the CDC build system compiles these test programs and places the
compiled class files in the testclasses and democlasses subdirectories in the
Chapter 3 Build System Layout 3-5

target build directory. For convenience, the build system also creates Zip archives
named testclasses.zip and democlasses.zip that can be easily moved onto a
target device for testing.

TABLE 3-6 Test and Demo Files

File/Directory Description

democlasses.zip
democlasses/

Demo applications that demonstrate profile-based functionality. The source code for
these programs is located in src/share/personal/demo,
src/share/basis/demo and src/share/cdc/demo.

testclasses.zip
testclasses/

Test applications that can be used to quickly test the CDC Java runtime environment.
The source code for these programs is located in src/share/javavm/test. The
easiest test programs to use are HelloWorld and Test.

3.4.3 Other Generated Files
In addition, the CDC build system generates other internal object files that are part
of the build process.

TABLE 3-7 Other Generated Files

File/Directory Description

classes.jcc/ Compiled class files for JavaCodeCompact.

classes.tools/ Compiled class for GenerateCurrencyData tool.

generated/ Miscellaneous generated files.

jcs/ JavaCodeSelect generated files.

obj/ Compiled object files for the VM and class library JNI code.
3-6 CDC Build System Guide • December 2008

CHAPTER 4

Build System Procedures

Once installed, the CDC build system can perform a variety of functions. The
procedure below describes a simple method for performing a test build to make sure
that the CDC build system is correctly installed. Chapter A describes the build
options that are available in the CDC build system.

4.1 The Build Cycle
The basic work flow for using the CDC build system is:

Edit source code --> Build with options --> Test

1. Edit source code. In this step, you create or modify source code within the target-
specific (non-shared) portion of the implementation source code. See the companion
document CDC Porting Guide for information about how to modify the
implementation source code.

2. Build with options. In this step, you build a binary executable of the CDC Java
runtime environment based on a set of build options specified on the make
command line.

3. Test. In this step, you launch a Java application using the binary executable running
on a target platform.

4.1.1 Performing a Test Build
The target device build directory (e.g. build/linux-x86-suse) contains the top-
level makefile for building the CDC Java runtime environment for a target device.
The example below uses the default values for the build options described in
Chapter A.
4-1

1. Change the current directory to the target device build directory:

% cd build/target-platform

2. Create a build driver script:

#!/bin/sh
make \
 JDK_HOME=jdk-dir \
 CVM_TARGET_TOOLS_PREFIX=target-tools-dir
 J2ME_CLASSLIB=foundation

Usually, the CDC build options are either included in the GNUmakefile or the build
driver script.

3. Build the CDC Java runtime environment:

% sh < build-driver-script.sh

When the build is complete, the target device build directory contains the executable
binary files for the target platform and other generated files. These generated files
are described in Section 3.4, “Generated Files for the CDC Java Runtime
Environment” on page 3-5, Section 3.4.1, “Development Files” on page 3-5,
Section 3.4.2, “Test and Demo Programs” on page 3-5 and Section 3.4.3, “Other
Generated Files” on page 3-6.

You can override the default values described in Chapter A. For example,

% make CVM_DEBUG=true

generates the debug version of the build target. Note that CVM_DEBUG implicitly
selects a number of other build options. Section A.2, “Guidelines for Overriding
Build Options” on page A-2 shows how to override build options.

4.1.2 Selecting a Target Device
The CDC build system builds a CDC Java runtime environment for a specific target
device. The actual target device is determined by the main target build directory. For
example, to build a CDC Java runtime environment for an OpenWRT based router,
use build/linux-mips-openwrt as the target build directory.

4.1.3 Standard API Choices: Profiles and Optional
Packages
The standard API choices available in CDC technology are based on configurations,
profiles and optional packages. The Connected Device Configuration is chosen by using
the CDC build system. The CDC profiles are Foundation Profile, Personal Basis Profile
4-2 CDC Build System Guide • December 2008

or Personal Profile. One of these is chosen with the J2ME_CLASSLIB build option.
Finally, optional packages are integrated into the CDC build system with the
USE_optional-package build options.

Historically, the CDC build system had its own mechanism for integrating optional
packages based on the OPT_PKGS build option. The integration of CDC technology
with optional packages that were previously based on CLDC technology required
integration of the CDC build system with the optional package build systems.

Now including an optional package in a CDC build is very simple. For example, the
security optional package can be included with a single build option:

USE_SECOP=true

If the secop component is not in the same top-level directory as the cdc component
a second build option can be used to describe the location of the secop component:

SECOP_DIR=/home/developer/secop

The phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
has more information about building optional packages, including RMI and JDBC.

4.1.4 Selecting Testing and Performance Features
The CDC build system and source code has a number of testing and performance
options. These build options are described in detail in Chapter A.

4.1.5 Quick Rebuilds
The CDC build system maintains some state that can help perform quick rebuilds.
To rebuild using the same build flags as the previous build, use the CVM_REBUILD=
true option. This avoids the need to retype command-line options and avoids the
risk of a mistake that results in triggering cleanup actions.

Note – This option does not save the value of any options that specify where tools
are located, such as JDK_HOME and CVM_TARGET_TOOLS_PREFIX.
Chapter 4 Build System Procedures 4-3

4.1.6 Generating Verbose Build Logs
By default, the CDC build system prints a build log to the standard error output of
the shell. A verbose build log can be generated by setting the USE_VERBOSE_MAKE to
true. For example,

% make USE_VERBOSE_MAKE=true >& build.log

generates a more verbose build log and redirects it to the file build.log.

4.1.7 Creating a Runtime Bundle
After a successful build, the target build directory contains the generated files for a
CDC Java runtime environment. The contents of this directory vary according to the
build options selected, but for the default case the files described in Section 3.4,
“Generated Files for the CDC Java Runtime Environment” on page 3-5 are
important. See the companion document CDC Runtime Guide for more information
about the generated files for the CDC Java runtime environment.

Note – When using CDC build system with the bin target to create a runtime
bundle, the JAVAME_LEGAL_DIR must be set to refer to the top-level legal
directory.

1. Bundle the CDC Java runtime environment for deployment on the target device.

#!/bin/sh

make CVM_TARGET_TOOLS_PREFIX=/target-tools-dir/tool-string- \
 JDK_HOME=/usr/java/jdk1.6.0_03 \
 USE_CDC_COM=true \
 J2ME_CLASSLIB=foundation \
 JAVAME_LEGAL_DIR=$CDC_INSTALL_DIR/legal \
 bin

The runtime bundle will be generated in the top-level install directory in
../../install.

2. Change the current directory to the top-level install directory:

% cd ../../install

To test the runtime bundle, it must be loaded onto a target platform through some
communications mechanism like ftp(1). Other techniques for loading the CDC
runtime bundle onto the target platform are beyond the scope of this guide.
4-4 CDC Build System Guide • December 2008

3. Copy the runtime bundle onto the test system.

% ftp test-system
...
put cdc-runtime.zip

4. Remotely login onto the test system.

% ssh test-system

5. Unload the runtime bundle.

% unzip cdc-runtime.zip

To test the runtime bundle, copy over the testclasses.zip and
democlasses.jar archives and perform the test procedure described in the next
section.

4.1.8 Testing the Build
You can test the CDC Java runtime environment by running a sample application
with cvm, the CDC Java application launcher:

% bin/cvm -cp testclasses.zip HelloWorld

Hello world.

% bin/cvm -cp testclasses.zip Test

.............

*CONGRATULATIONS: test Test completed...

The source code for these test programs is located in src/share/javavm/test.

4.2 JVMTI Support
The CDC HotSpot Implementation now includes support for the new Java Virtual
Machine Tools Interface (JVMTI) introduced in JDK 5.0. It provides both a way to
inspect the state and to control the execution of applications running in the Java
virtual machine (JVM). JVMTI supports the full breadth of tools that need access to
JVM state, including profiling, debugging, monitoring, thread analysis, and coverage
analysis tools.
Chapter 4 Build System Procedures 4-5

Note – JVMTI replaces the Java Virtual Machine Profiler Interface (JVMPI) and the
Java Virtual Machine Debug Interface (JVMDI). JVMPI is still available in the CDC
HotSpot Implementation as a legacy interface. See Appendix C for a description of
JVMPI support.

This chapter describes how to build the CDC Java runtime environment with JVMTI
support enabled. See the companion document CDC Runtime Guide for information
about how to use JVMTI-based tools with the CDC Java runtime environment.

The CVM_JVMTI build option enables tool support in the CDC Java runtime
environment.

Note – The CVM_JIT option must be explicitly disabled for JVMTI builds if it is
normally enabled by default.

The steps below demonstrate how to build a CDC Java runtime environment with
tool support.

1. Change the current directory to the target build directory.

% cd build/target-platform-dir

2. Build the CDC Java runtime environment with debugging support enabled.

% make CVM_JVMTI=true CVM_JIT=false

See the companion document CDC Runtime Guide for instructions on how to connect
a JVMTI-based developer tool to a CDC Java runtime environment.

4.3 Building a Development Version of the
CDC Java Class Library

Note – This section shows how to build a Java class library for a particular CDC
implementation. It is meant as a convenience for prototyping. Normal application
development should be done with an application developer tool like NetBeans.

When the CDC build system compiles the Java class library for the CDC Java
runtime environment, it creates a collection of compiled Java class files that are
placed in the btclasses and (optionally) class-lib_classes directories. Because of
the way the CDC build system operates, the contents of these compiled class
directories can vary based on the selected build options.
4-6 CDC Build System Guide • December 2008

Therefore, it is best to create a target development version of the CDC Java class
library for each target platform so that it can be used for application development
independently of the CDC build system. To do this, use the following build
command:

% make CVM_PRELOAD_SET=libfull J2ME_CLASSLIB=profile OPT_PKGS=pkgs

The J2ME_CLASSLIB build option selects a CDC profile and the OPT_PKGS build
option selects a set of optional packages. The CVM_PRELOAD_SET=libfull build
option directs the CDC build system to generate a target Java runtime environment
with the CDC Java class library entirely in a form that is preloaded and linked with
the Java runtime environment. This has the useful side-effect of compiling a version
of the CDC Java class library for a target platform that can be easily relocated
independently of the Java runtime environment for use with an application
development system.

For example, if J2ME_CLASSLIB=personal and OPT_PKGS=rmi, then the
following build command

% make CVM_PRELOAD_SET=libfull J2ME_CLASSLIB=personal OPT_PKGS=rmi

constructs a file named btclasses.zip in the target build directory that contains
the compiled CDC Java class library for the target platform containing the Java
packages and classes for Personal Profile and the RMI Optional Package.

4.4 Preloading Java Class Files with
JavaCodeCompact
The CDC build system includes a build tool called JavaCodeCompact that reduces
the memory needs of a CDC Java runtime environment while improving its
performance. JavaCodeCompact has its roots in earlier Java technology releases
like JavaOS and PersonalJava technologies.

Basically, JavaCodeCompact takes platform-independent Java class files and
preloads them at build time into a more efficient format that is tightly bound to the
VM runtime system. This produces some target-independent C source files whose
contents correspond to the virtual machine’s runtime data structures that would
result if all the classes had been loaded on demand. These source files are then
compiled into a platform-specific binary object format and linked with the
executable image for the Java runtime environment.

By performing the class loading and linking functions once at build time,
JavaCodeCompact improves runtime performance and reduces the memory needs
of the CDC Java runtime environment. Java classloading semantics are preserved
because the runtime system can still load classes and create objects at runtime.
Chapter 4 Build System Procedures 4-7

This chapter shows how to use JavaCodeCompact within the CDC build system.
This includes the following:

■ Enabling preloaded builds
■ Adding classes to preloaded builds
■ Lazy linking support

4.4.1 Linking Java Programs
Here is an outline of the conventional mechanism for class loading:

■ Use javac to compile Java source files into Java class files.
■ Load the class files into a Java system, either individually or as part of a jar

archive.
■ Upon demand, the class loading mechanism resolves references to other class

definitions.

JavaCodeCompact provides an alternate means of program linking and symbol
resolution that reduces the VM's resource consumption and improves its
performance.

JavaCodeCompact performs the following actions during its operation:

■ Combines multiple input class files, by combining much of their symbolic
information into shared data structures, and concatenating other parts of the
classes' definitions.

■ Determines the layout and size of all preloaded objects.
■ Determines the layout of an object's method table.
■ Changes the representation of certain of the Java bytecodes to their "quick" forms.
■ Creates header files for use by native code.

4.4.2 Lazy Linking Support
In earlier releases of CDC-HI, the constant pools of preloaded classes could only
contain references to other preloaded classes. All the constant pool references had to
be fully resolved at build time. This is known as full transitive closure.

CDC-HI now supports unresolved constant pool entries. Preloaded classes can
contain references to classes that are later dynamically loaded. This allows a much
smaller set of classes to be preloaded

The JCC option -allowUnresolved will allow preloaded classes to contain
unresolved constant pool entries. The only real behavior change this option causes is
to allow unresolved constant pool entries rather than report errors. It does not affect
constant pool references to other preloaded classes.
4-8 CDC Build System Guide • December 2008

CDC-HI requires that certain classes always be preloaded in order for the for the
cvm executable to link and run properly. These are classes for which cvm has static
references. This set of classes is known as the “minimal set”. Use
CVM_PRELOAD_SET=min to preloaded just this minimal set of classes.

4.4.3 Preloaded Builds
CVM_PRELOAD_SET is a build option with several variants that control what will be
preloaded. These variants are described in TABLE 4-1.

TABLE 4-1 CVM_PRELOAD_SET Build Option Flags

Build Option Flag Description

min Minimum required classes to build and run the VM.

minfull Same as min but with full transitive closure.

nullapp Minimum required classes that avoids any class loading
when running an application that does nothing.

nullappfull Same as nullapp but with full transitive closure.

libfull All the library classes.

libtestfull All the library and test classes (testclasses.zip).

For example, the following make command builds a CDC Java runtime environment
based on the Foundation Profile with the full Java class library preloaded

% make J2ME_CLASSLIB=foundation CVM_PRELOAD_SET=libfull

Note that the resulting bin/cvm executable is much larger and that the lib
directory may not contain a jar file for the profile. If the lib directory does contain
a jar file, it will include only resource files and not class files. The bin/cvm
executable contains a preloaded version of the Foundation Profile class library. The
size of the preloaded bin/cvm is slightly larger than the combination of the non-
preloaded bin/cvm with the conventionally compiled lib/class-lib.jar. But
because it can be loaded directly from ROM, the overall memory needs of the Java
runtime environment are reduced. Performance is also improved for both launching
and operating the CDC Java runtime environment.
Chapter 4 Build System Procedures 4-9

4.4.4 Adding Classes to Preloaded Builds
Product-specific classes can be added to the list of preloaded classes. This feature can
be used for bundled applications and product-specific class libraries. Because the
preloaded classes are linked to the bin/cvm executable at build time, this process
cannot be undone at a later stage to regain space.

Here’s an example of how to add an application class file to the list of preloaded
classes:

1. Compile the Java application.

% javac HelloWorld.java

2. Edit build/linux-x86-suse/GNUmakefile and modify the definition of
CVM_JCC_INPUT to include the compile Java application:

CVM_JCC_INPUT += myclasses/HelloWorld.class

CVM_JCC_INPUT specifies the list of preloaded classes. The += syntax is necessary to
avoid overriding the values defined in share/jcc.mk.

3. Build the CDC Java runtime environment with preloading enabled.

% make

By itself, this technique will preload only those classes appended to
CVM_JCC_INPUT. To preload the full Java class library, use CVM_PRELOAD_SET=
libfull.

In this example, it is not necessary to define the class search path for HelloWorld
with the -cp command-line option at runtime because the class has been preloaded.
The difference in size between the cvm executable is not great because HelloWorld
is a small class. The benefits of faster launching and operation are more apparent
with larger applications.
4-10 CDC Build System Guide • December 2008

APPENDIX A

Build Option Reference

The CDC build system provides a number of build options that control how a CDC
Java runtime environment is built. These include options that are shared across a
range of target platforms, like debugging options, profiling options and performance
options. At the other end of the spectrum, target-specific options like CPU-specific
compiler flags can be specified in the target-specific GNUmakefile or in one of the
CPU or OS-level makefiles.

A.1 Build Option Categories
This chapter describes the build options found in build/share. The most
important is top.mk which contains the following categories of top-level build
options:

■ Fully tested. Prior to release, the CDC source release undergoes a full QA testing
cycle. This testing is based on the default build options, though not all possible
combinations have been tested. See the Release Notes for a list of fully test build
options.

■ Supported. These build options have been used frequently by the CDC
development team, but have not gone through full QA testing.

■ Limited Support. The default values for these build options are supported.
Alternate values have been exercised but should be considered experimental.

■ Deprecated. These build options have been supported in the past and still may
work. But because they are no longer needed because either they have been
replaced or are obsolete, they will be removed in a future release.
A-1

A.2 Guidelines for Overriding Build Options
Build options can be overridden in several places in the CDC build system. For best
results, here are some guidelines for choosing where to override the different kinds
of build options.

■ Build flags like CVM_DEBUG should be overridden on the make command-line.

■ Target-specific options like CC_ARCH_FLAGS and CC_ARCH_FLAGS_FDLIB should
be set in the GNUmakefile.

■ Tool configurations can be overridden in build/target/defs.mk.

A.3 Build Option Descriptions
TABLE A-1 and TABLE A-2 describe the top-level build options in the CDC build
system.
A-2 CDC Build System Guide • December 2008

A.3.1 Supported Build Options

TABLE A-1 Supported Build Options

Build Option Default Description

J2ME_CLASSLIB cdc The class library build target. The choices are:
cdc represents a limited class library that is meant for
testing purposes only.
foundation represents the full Foundation Profile
class library.

SECURITY_PKGS all The set of security optional packages. The possible
values are:
• jaas

• jsse

• jce

• all

The syntax of this flag is:
SECURITY_PKGS_LIST=<pkg1>[,<pkg2,...>]

USE_SECOP false Include the Security Optional Packages.

USE_AAPCS false ARM only. Use the new AAPCS calling conventions
instead of the APCS calling conventions.

CVM_DEBUG false Build the debug version of the VM. By default, this
option enables several other options like
CVM_JAVAC_DEBUG.

CVM_DEBUG_ASSERTS $(CVM_DEBUG) Enable asserts. Also is forced to true if
CVM_VERIFY_HEAP=true.

CVM_DEBUG_CLASSINFO $(CVM_DEBUG) Build the VM with the code necessary to interpret
class debugging information in the class files. Also
causes preloaded classes to include debugging
information if they were compiled with it.
CVM_JAVAC_DEBUG=true should also be used to
provide class debugging information in the CDC and
Foundation class files. Otherwise this option will only
benefit application classes that are compiled with the
 -g option.

CVM_DEBUG_DUMPSTACK $(CVM_DEBUG) Include support for the CVMdumpStack and
CVMdumpFrame functions. CVMdumpStack is useful
for dumping a Java stack from gdb after the VM has
crashed.
Appendix A Build Option Reference A-3

CVM_DEBUG_STACKTRACES true Include code for doing
Throwable.printStackTrace and
Throwable.fillInStackTrace. If false, then
printStackTrace will print a "not supported"
message. This is not really just a debug build feature.
To slightly reduce the footprint of non-debug builds,
set this option to false.

CVM_JAVAC_DEBUG $(CVM_DEBUG) Compile classes with debugging information (line
numbers, local variables, etc.) by using the -g option.
Otherwise build using -g:none. This will not affect
the size of the VM image unless
CVM_DEBUG_CLASSINFO is also true. Using this
option will increase the size of the profile jar file.

CVM_JIT target-specific:
see
GNUmakefile

Build a VM with the dynamic compiler.

CVM_AOT false Enable runtime support for ahead-of-time compilation
(AOTC) of Java methods. See the CDC Runtime Guide
for information about how to use the CDC Java
runtime environment with AOTC enabled. Requires
CVM_PRELOAD_SET=libfull.

CVM_JIT_USE_FP_HARDWARE target-specific:
see
GNUmakefile

Enable the dynamic compiler to use an FPU. If true,
the dynamic compiler emits FP instructions and uses
FP registers. If false, the dynamic compiler stores FP
values in general purpose registers and calls out to C
or assembler helper functions to do FP arithmetic.
NOTE: This option is supported on ARM platforms
with vector floating point (VFP) coprocessor support.

CVM_JVMTI false Build a VM that supports the new JVMTI
debugger/profiler interface. When enabled at runtime,
JVMTI will cause a significant degradation of
performance.

CVM_JVMTI_ROM false Build a VM that supports debugging romized system
classes. Note that CVM_JVMTI must also be true.

CVM_OPTIMIZED !$(CVM_DEBUG) If true, then use various C compiler optimization
features. Setting both CVM_DEBUG=true and
CVM_OPTIMIZED=true will provide both debug
support and optimized code that will run faster, but
not as fast as when using CVM_DEBUG=false.

TABLE A-1 Supported Build Options (Continued)

Build Option Default Description
A-4 CDC Build System Guide • December 2008

CVM_PRELOAD_SET minfull Build a VM with the specified set of classes preloaded.
Possible choices:
• min - minimum required classes to build and run

the VM.
• minfull - same as min but with full transitive

closure
• nullapp - minimum required classes that avoids

any class loading when running an application that
does nothing.

• nullappfull - same as nullapp but with full
transitive closure

• libfull - All the library classes
• libtestfull - All the library and test classes

(testclasses.zip)
Note that full implies full transitive closure of the
classes being preloaded, meaning that there will be no
references from preloaded classes to classes that need
to be dynamically loaded.

CVM_SPLIT_VERIFY false Provides faster verification of classes containing
StackMap attributes:
• Generated by CLDC preverifier tool.
• Generated by Java 6 version of javac.

CVM_SYMBOLS $(CVM_DEBUG) Include debugging and symbol information for C code
even if the build is optimized. Normally, this build
option will not affect performance.

CVM_TRACE $(CVM_DEBUG) Include support for tracing VM events to stderr. The
events that are traced are controlled by the -Xtrace
option. Since CVM_TRACE=true slows down the VM
substantially, use CVM_TRACE=false and
CVM_DEBUG=true to get debugging support without
tracing support.

CVM_VERIFY_HEAP false Generate verification code for the Java heap. Because
this can dramatically affect performance, it can be
turned off while still enabling other assertion code
with CVM_DEBUG_ASSERTS=true.

CVM_INCLUDE_COMMCONNECT
ION

false Include GCF CommProtocol support. This feature is
not supported on all platforms.

TABLE A-1 Supported Build Options (Continued)

Build Option Default Description
Appendix A Build Option Reference A-5

A.3.2 Limited Support Build Options
The build options described in TABLE A-2 are limited in that their default values are
supported, but alternate values are not and should be considered experimental.

CVM_BUILD_SUBDIR_NAME unset Name of subdirectory to place build into, rather than
using the current build directory. Makes it possible to
have multiple builds in the same build directory, and
makes it easier to remove builds,

CVM_DUAL_STACK false Support concurrent CLDC and CDC stacks running on
the same VM. This option is most commonly used
when supporting a MIDP stack. See the phoneME
Advanced Twiki
(http://wiki.java.net/bin/view/Mobile
andembedded/PhoneMEAdvanced) for an
example of how to build a dual stack enabled version
of the CDC Java runtime environment.

USE_VERBOSE_MAKE false Avoid printing detailed messages that show each
build step. Has the opposite meaning as
CVM_TERSEOUTPUT, which can be used instead, but is
now deprecated.

TABLE A-2 Limited Support Build Options

Build Option Default Description

CVM_CSTACKANALYSIS false Include stub functions to assist in C stack usage
analysis.

CVM_GPROF false Enable gprof profiling support.

CVM_GPROF_NO_CALLGRAPH true When gprof is enabled, this option can be used to
control if call graph is generated in the gprof
output.

CVM_CCM_COLLECT_STATS false Build a VM which collect statistics on the runtime
activity of dynamically compiled code, even if the
build is optimized.

CVM_CLASSLIB_JCOV false Build library classes with -Xjov (JDK 1.4 javac
command line option enabled. Also instruments the
VM to simulate loading of classfiles for preloaded
classes at startup.

TABLE A-1 Supported Build Options (Continued)

Build Option Default Description
A-6 CDC Build System Guide • December 2008

CVM_DYNAMIC_LINKING true Support the base functionality in the porting layer
for dynamic linking. This will be needed by
dynamic classloading as well as debugger and
profiler support.

CVM_GCCHOICE generational Set to the garbage collection technique. semispace,
marksweep and generational-seg are
unsupported and untested legacy options.

CVM_JIT_DEBUG false Build the JIT with extra debugging support,
including support for filtering which methods are
compiled, and support for tracing the JCS rules
used during compilation.

CVM_JIT_ESTIMATE_COMPILATI
ON_SPEED

false Build a VM which estimates the theoretical
maximum compilation speed of the JIT. The
measurement is in KB of byte-code compiled per
second.

CVM_JIT_PROFILE false Enable profiling of compiled code. Use -
Xjit:Xprofile=<filename> to enable profiling and
specify the file to dump profile information. For
Linux, enabling profiling at runtime generally
degrades performance by about 2%. If profiling
support is included at build time but not used at
runtime, it has no affect on performance.

CVM_NO_LOSSY_OPCODES false Field-related opcodes whose arguments would
ordinarily be quickened into offsets instead have
their arguments quickened into constant pool
references, to ensure the field block for the field is
available. This is required to allow the debugger to
set field watchpoints. Note this works either with
or without classloading enabled, and affects both
JavaCodeCompact and quicken.c.

CVM_REBUILD false Rebuild using the same build flags as last time,
preventing the need to retype a bunch of command
line options. The main benefit of this is that there is
not risk of having a typo that results in a bunch of
cleanup actions triggered.
NOTE: this option will not remember the value of
any options that specify where tools are located,
such as JDK_HOME and
CVM_TARGET_TOOLS_PREFIX.

TABLE A-2 Limited Support Build Options (Continued)

Build Option Default Description
Appendix A Build Option Reference A-7

CVM_REFLECT true Build a VM that supports the java.lang.reflect
package. This does not cause any native function
definitions to be eliminated from the build. Instead,
their bodies simply throw an
UnsupportedOperationException. See the
description of CVM_SERIALIZATION for more
information.
NOTE: setting this option true will result in a VM
that is not compliant with the J2ME CDC and
Foundation specifications.

CVM_SERIALIZATION true Build a VM that supports object serialization
(java.io.ObjectInputStream,
java.io.ObjectOutputStream). Currently, this
only eliminates three functions:
JVM_AllocateNewObject,
JVM_AllocateNewArray, and JVM_LoadClass0.
In addition, serialization depends on reflection, so if
CVM_SERIALIZATION is true, CVM_REFLECT will
be set to true as well.
NOTE: setting this option true will result in a VM
that is not compliant with the CDC and Foundation
specifications.

CVM_TRACE_JIT $(CVM_TRACE) Build a VM with tracing support enabled for all
dynamic compiler events, even if the build is
optimized. This option is provided to allow
building without any other debugging support
other than JIT tracing, thus reducing the
performance impact. Compiled code will run
somewhat slower as a result of the method call
tracing that is enabled (estimated 5% slower).

CVM_XRUN false Build a VM which supports the -Xrun command-
line option for loading native libraries. Defaults to
true if CVM_JVMPI is true.

CVM_GCOV false Enable gcov code coverage support.

TABLE A-2 Limited Support Build Options (Continued)

Build Option Default Description
A-8 CDC Build System Guide • December 2008

CVM_JIT_PMI platform-dependent Support for the dynamic patching of calls to
methods within compiled methods. Not supported
on all platforms. true by default for arm and mips
platform when USE_CDC_COM is true.

CVM_CREATE_RT_JAR false By default, non-preloaded JSR and CDC class
library are created as separate jar files. This option
creates a single jar file containing all JSR and CDC
class libraries.

CVM_INSPECTOR false The CVM Inspector is a set of utility functions like
CVMdumpStack() together with some wrapper
functions to make them safe. These can be used to
dump information about commonly used VM data
structures like thread dumps, heap dumps and
object dumps. See the phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobi
leandembedded/PhoneMEAdvancedCVMSH)
for more information about using the CVM
Inspector.

TABLE A-3 Legacy Build Options

Build Option Default Description

CVM_JVMPI false Build a VM that supports Java profiling based on
JVMPI. This option is not supported with
CVM_JIT=true. When set true, there will be a
significant degradation of performance.

CVM_JVMPI_TRACE_INSTRUCTION $(CVM_JVMPI) Build a VM that supports bytecode tracing for
profiling purposes. Enabling this option imposes a
greater runtime burden on the interpreter. Hence,
this option is provided in case the user does not
need this feature and does not want the additional
runtime burden to have an impact on the profile
they are sampling.

TABLE A-2 Limited Support Build Options (Continued)

Build Option Default Description
Appendix A Build Option Reference A-9

CVM_PRELOAD_LIB unset Obsolete. Replaced by CVM_PRELOAD_SET=
libfull.
Build a VM with all the system and profile classes
preloaded. If this build option is set to true then it
is equivalent to CVM_PRELOAD_SET=libfull.
NOTE: Do not set both CVM_PRELOAD_LIB and
CVM_PRELOAD_SET.

CVM_PRELOAD_TEST unset Obsolete. Replaced by CVM_PRELOAD_SET=
libtestfull.

Build a VM with all the system and profile classes
preloaded as well as the test classes
(testclasses.zip). If this build option is set to
true then it is equivalent to CVM_PRELOAD_SET=
libtestfull.

NOTE: Do not set both CVM_PRELOAD_TEST and
CVM_PRELOAD_SET.

OPT_PKGS Includes a named optional package in the regular
build. The syntax of this flag is:
OPT_PKGS=all | <pkg1>[,<pkg2>]

where pkg1 is the name of the optional package
and a ',' is used to separate multiple package
names. While this legacy interface can be used for
rmi and jdbc, those optional packages are
available through USE_RMI and USE_JDBC.

TABLE A-3 Legacy Build Options (Continued)

Build Option Default Description
A-10 CDC Build System Guide • December 2008

APPENDIX B

JavaCodeCompact Reference

B.1 Description
JavaCodeCompact combines one or more Java class files and produces a target
platform-independent C file that contains the given classes in a preloaded format
that can be compiled with a C compiler and linked with the executable image of the
CDC Java virtual machine. It also provides a way to ensure that certain necessary
classes are present and fully linked to expedite the VM's startup and simplify error
handling procedures.
B-1

B.2 Options

Note – The options described below are for reference purposes only. Setting
alternate values for these options is not supported. Only adding class files to
CVM_JCC_INPUT is supported.

TABLE B-1 JavaCodeCompact Options

Options Description

filename Designates the name of a file to be used as input, the contents of which
should be included in the output. File names are not modified by any
pathname calculus. File names with a class suffix are read as single class files.
File names with .jar or .zip suffixes are read as Zip files. Class files
contained as elements of these files are read and included. Other elements are
silently ignored.

-maxSegmentSize num_classes Specifies the maximum number of classes to be represented in any one output
file. Requires use of the -o option to specify output file name. Section B.4,
“Output” on page B-4.

-o outfilename Provides a template for the name of the output files to be produced.
Section B.4, “Output” on page B-4.

-qlossless Preserves more information about the original program in the output file for
use of the debugging using the JVMTI debugger interface. See Section B.3,
“Opcode Transformations” on page B-3 for a description of the "quickening"
process, which is modified by the option. This has a small performance
impact on the running system.

-c Performs cumulative linking. Classes that are unresolved by the linking of
class files explicitly listed as linker arguments are searched for using the -
classpath option, and linked as they are found.

-classpath path Specifies the path JavaCodeCompact uses to look up classes. Directories
and Zip files are separated by the delimiter defined by
java.io.File.pathSeparatorChar, which is generally a colon.
Multiple classpath options are cumulative, and are searched left-to-right. This
option is only used in conjunction with the -c cumulative-linking option.

-nativesType native_type classes Indicates the calling convention to be used for native methods of the listed
classes. The CNI native type is for use only by classes intimately involved
with the virtual machine implementation. All other classes must use the JNI
convention. The option sequence “-nativesType JNI -*” informs
JavaCodeCompact of the default type.
B-2 CDC Build System Guide • December 2008

B.3 Opcode Transformations
Many Java bytecode instructions refer to symbolic quantities such as the offset of a
field or of a method, or to a Java class. Normally, the Java virtual machine resolves
such a reference upon first executing the instruction and rewrites the instruction in
place. The transformed instruction opcode is referred to as a "quickened" instruction,
as subsequent executions of it do not need to see if resolution has taken place, but
can proceed assuming it has.

-headersDir header_type
target_directory

Controls the location of C-language header files generated by
JavaCodeCompact. Header files for classes of the indicated
header_type are written in the indicated target directory. Existing header
files unchanged remain untouched. A header_type is either a
native_type, as described with the -nativesType option above, or an
extra_header_type, as described below.

-extraHeaders
extra_header_typeclasses

Governs the generation of additional headers for the named classes. The
extra_header_type of CVMOffsets is for use only by classes
intimately involved with the virtual machine implementation.

-v Turns up the verbosity of the linking process. This option is cumulative.
Currently up to three levels of verbosity are understood. This option is really
only of interest as a debugging aid.

-g Enables writing of data information that can facilitate Java debugging, if the
information is available in the input data: line-number tables, local variable
table and source file names. These tables are not written by default. This
option also suppresses the code in-lining optimization.

-imageAttribute Makes all bytecodes writable. By default they are declared as const. They
must be writable to support breakpointing using the JVMTI debugger
interface.

-noPureCode Place all bytecodes in read-write memory. This is useful for setting
breakpoints.

-f filename Open the named file and read options from it. They are processed just as if
they were substituted in the place of this option.

-allowUnresolved Allows deferring of build-time reference checking/linking until
runtime. This process is also known as lazy linking. See Section 4.4.2,
“Lazy Linking Support” on page 4-8 for more information.

-cl Associates a reuploaded class with a runtime ClassLoader instance
rather than with just the NULL/bootstrap class loader. This capability
can be used with CVM_DUAL_STACK to preload a MIDP stack.

TABLE B-1 JavaCodeCompact Options (Continued)

Options Description
Appendix B JavaCodeCompact Reference B-3

Instead of waiting until runtime to perform this quickening operation,
JavaCodeCompact “prequickens” each class once at build-time. The result
improves classloading performance and makes the resulting code ROMable. A few
other transformations take place during linking, including the simple inlining of
very short methods.

The usual quickening process makes it harder to reconstruct source code information
from the binary program. For example, it is harder to discover name and type
information for a class member given only its offset. When retention of this
information is important (such as debugging using JVMTI), an alternate set of
quickened instructions can be used. They can be more easily interpreted at runtime,
but are somewhat slower to execute. This is when -qlossless is used.

B.4 Output
The main product of the program is a body of initialized data structures, in C,
representing the classes of the input files, and their ancillary data structures, such as
Strings, the String intern table, the type table, primitive type classes and many of the
array type classes referenced in the input. In addition to one or more .c files, a .h
file is produced called the forward file. This provides forward declarations and is for
use only by the other source files produced by JavaCodeCompact.

Due to the limitations of many C compilers, it is often necessary to break this output
into multiple files. When the -maxSegmentSize option is given, multiple .c files
are produced: one to hold shared data structures such as strings and types, and as
many others are necessary, each containing no more than num_classes classes.

The names of the files produced are computed using a combination of variables and
options.

■ -maxSegmentSize not specified. If the -o option is given, its argument is used as the
name of the single compilable output file. Conventionally, this name ends with .c
for C language output, but this is not important to the operation of the program.
In the absence of this option, a file is produced with a name based on that of the
first input file, stripped of path name prefix and any suffix, to which a .c suffix is
appended. The resulting name, with ".h" appended, is used for the forward file.

■ -maxSegmentSize specified. The -o option must be given in this case. It is used to
form this set of file names:
■ outfilenameList is an ASCII file naming all the C source programs

produced.
■ outfilenameAux.c is C file holding data structures not tied to any specific

class, such as Strings, String intern table, and the type tables.
■ outfilenamev.c For 0 <= v < (number of classes) / num_classes. The

C files holding per-class data structures.
■ outfilename.h is the forward file name.
B-4 CDC Build System Guide • December 2008

CHAPTER C

Legacy JVMPI Support

Note – This appendix contains information about the legacy Java Virtual Machine
Profiler Interface (JVMPI), a legacy interface that has been replaced by the Java
Virtual Machine Tool Interface (JVMTI). In general, JVMTI should be used instead of
JVMPI. The support described here is deprecated and may be removed in a future
release.

The CDC HotSpot Implementation supports profiling based on the experimental
Java Virtual Machine Profiler Interface (JVMPI) specification. Specifically, the JVMPI-
based hprof profiling agent provides reports that include CPU usage, heap allocation
statistics and monitor contention profiles.

This chapter describes how to build the CDC Java runtime environment with JVMPI-
based profiling enabled. See the companion document CDC Runtime Guide for
information about how to use the hprof Java profiler in a profiling-enabled CDC
Java runtime environment.

The hprof profiler agent is built into the VM runtime and generates profiling data
on the target platform. The source code for the hprof is integrated into the VM
source directories in src/share/javavm/{include,runtime}.

Note – The JVMPI functionality in the CDC HotSpot Implementation is a subset of
what the Java SE platform supports. In particular, remote profiling is not supported.

The CVM_JVMPI build option enables profiling support in the CDC Java runtime
environment. The component that is added to the Java runtime environment that
enables debugging support is the JDWP debugging agent.

Note – If CVM_JIT and CVM_JVMPI are both set to true, then the JIT will be
disabled at runtime when profiling is used.
C-1

The steps below demonstrate how to build a CDC Java runtime environment with
Java profiling support.

1. Change the current directory to the target build directory.

% cd build/linux-x86-suse

2. Build the CDC Java runtime environment with debugging support enabled.

% make CVM_JVMPI=true CVM_JIT=false

3. Bundle the CDC Java runtime environment for deployment on the target device.

% make bin

See the companion document CDC Runtime Guide for instructions on how to connect
a Java profiler to a Java application running on a CDC Java runtime environment.
C-2 CDC Build System Guide • December 2008

	Contents
	Figures
	Tables
	Preface
	Who Should Read This Guide
	How This Book Is Organized
	CDC Software Releases
	phoneME Open Source Project
	Accessing Sun Resources Online
	Related Documentation
	Typographic Conventions
	Terminology
	Feedback

	Introduction
	1.1 Host Development Environment
	1.2 Target Platforms
	1.3 Build Options
	1.4 Java ME Standard API Choices
	1.5 Application Development
	1.6 CDC Build Process Overview

	Installation
	2.1 Host Development System Requirements
	2.2 Build Tools
	2.2.1 Host Build Tools
	2.2.2 Java Build Tools
	2.2.3 Target Build Tools

	2.3 Build System Setup Examples

	Build System Layout
	3.1 Relationship to the phoneME Open Source Project
	3.2 cdc Component
	3.2.1 build Directory Structure
	3.2.2 Makefile Hierarchy

	3.3 secop Component
	3.4 Generated Files for the CDC Java Runtime Environment
	3.4.1 Development Files
	3.4.2 Test and Demo Programs
	3.4.3 Other Generated Files

	Build System Procedures
	4.1 The Build Cycle
	4.1.1 Performing a Test Build
	4.1.2 Selecting a Target Device
	4.1.3 Standard API Choices: Profiles and Optional Packages
	4.1.4 Selecting Testing and Performance Features
	4.1.5 Quick Rebuilds
	4.1.6 Generating Verbose Build Logs
	4.1.7 Creating a Runtime Bundle
	4.1.8 Testing the Build

	4.2 JVMTI Support
	4.3 Building a Development Version of the CDC Java Class Library
	4.4 Preloading Java Class Files with JavaCodeCompact
	4.4.1 Linking Java Programs
	4.4.2 Lazy Linking Support
	4.4.3 Preloaded Builds
	4.4.4 Adding Classes to Preloaded Builds

	Build Option Reference
	A.1 Build Option Categories
	A.2 Guidelines for Overriding Build Options
	A.3 Build Option Descriptions
	A.3.1 Supported Build Options
	A.3.2 Limited Support Build Options

	JavaCodeCompact Reference
	B.1 Description
	B.2 Options
	B.3 Opcode Transformations
	B.4 Output

	Legacy JVMPI Support

