»
2 Sun

microsystems

CDC Porting Guide

Sun Microsystems, Inc.
WWWw.sun.com

December 2008

Java™ Platform, Micro Edition
Connected Device Configuration, Version 1.1.2

Foundation Profile, Version 1.1.2

Optimized Implementation

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/ patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIXis a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris and HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. or its
subsidiaries in the United States and other countries.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Ftats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
a I'adresse suivante: http:/ /www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
Etats - Unis et dans les autres pays.

Droits du gouvernement des Etats-Unis ? Logiciel Commercial. Les droits des utilisateur du gouvernement des Etats-Unis sont soumis aux
termes de Ia licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris et HotSpot sont des marques de fabrique ou des marques déposées enregistrées de Sun
Microsystems, Inc. ou ses filiales aux Etats-Unis et dans d’autres pays.

Lelogo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font1’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiére de
contrdle des exportations et peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire marjtime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d"un ordre de ne pas participer, d"une fagon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine sur le controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interé:)ites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOQUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L”ABSENCE DE CONTREFACON.

Contents

Part1

Part 11

Preface xv

Getting Started

1. Introduction 1-1
1.1 CDC Technology 1-1
1.2 Benefits 1-2

2. Planning 2-1

2.1 Target Platform Requirements
211 CPU 2-2
212 Operating System 2-3

2.2 Porting Steps 2-3

2.3 Source Code Organization 2-4
2.3.1 build Directory 2-4
2.3.2 src Directory 2-5

2.4 Dual Stack Support 2-8

HPI Layer

3. Host Programming Interface 3-1

3.1 HPI Header File Hierarchy 3-2

2-1

3.1.1 CVM_HDR_* Header File Macros 3-2
3.1.2 src/portlibs Porting Libraries 3—4
3.2 Creating an HPI Implementation 3-5
3.21 Suggested Work Flow 3-6
3.2.2 Prepare the Target-Specific build and src Hierarchies 3-7
3.2.3 Data Types, Global State and Memory Access Support 3-8
3.24 JNISupport 3-9
3.24.1 CVMjniInvokeNative 3-10
3.25 Thread Support 3-10
3.2.6 Synchronization Support 3-11
3.2.7 1/0 and System Support 3-12
3.2.8 Networking Support 3-12
3.3 CDC Class Library Support Layer 3-13
3.3.1 Source Code Organization 3-13

3.3.2 Creating a CDC Class Library Support Layer Implementation 3-
15

3.4 Simple Test Procedure 3-15

4. Fast Locking 4-1
4.1 Fast Lock Implementations 4-1
42 Choosing a Fast Lock Implementation 4-4

43 Implementations 4-5

PartIII Dynamic Compiler Layer

5. Dynamic Compiler 5-1
51 Dynamic Compiler Overview 5-1
5.2 Dynamic Compiler Header File Hierarchy 5-4
52.1 portlibs/jit/risc RISC Porting Library 5-5

5.3 Creating a Dynamic Compiler Implementation 5-5

iv CDC Porting Guide * December 2008

531
532
5.3.3
534

5.3.5
5.3.6
537
5.3.8
5.3.9

Suggested Work Flow 5-6

CPU Abstraction Interface 5-7
Glue Code 5-9

Miscellaneous Code 5-10

53.4.1 Code Cache Copy 5-10
53.4.2 Trap-based NullPointerExceptions 5-11
Intrinsics 5-12

Invokers 5-13

Emitters 5-13

Helpers 5-15

Floating Point Support 5-16

PartIV ~ Garbage Collector Layer

6. Creating a Garbage Collector 6-1

6.1
6.2

6.3

Introduction 6-1

Exactness 6-2

6.2.1

Global GC Requests 6-3

6.2.1.1 Method Invocation Points 6-3

6.2.1.2 Backwards Branches 6-3

6.2.1.3 Class Loading and Constant Resolution Points 6-4
6.2.1.4 JNIImplementation 6—4

6.2.1.5 Memory Allocation Points 6—4

Pluggable GC 64

6.3.1
6.3.2
6.3.3
6.34
6.3.5

Separate Memory System 64

Entry Points to GC Code 6-5

Shared Memory System Code 6-6
GC-specific Memory System Code 6-6
GC Execution Flow 6-7

Contents

6.4 Writing a New GC 6-7

6.4.1 Source Organization 6-7

6.4.2 DataTypes 6-8

6.4.3 What to Implement 6-10
6.4.3.1 Basic Execution 6-10
6.4.3.2 Read and Write Barriers 6-13
6.4.3.3 Moving Arrays 6-15

6.44 WhattoCall 6-18
6.44.1 Initiating a GC 6-19
6.4.4.2 Root Scans 6-19
6.4.4.3 Special Root Scans 6-20
6.4.4.4 Object Walking 6-23
6.4.4.5 Per-object Data 6-24

6.4.5 Example GC 6-25

7. Direct Memory Interface Reference 7-1
71 Introduction 7-1
7.2 Object Field Accesses 7-1
721 Accessing Fields of 32-bit Width 7-2
7211 Weakly-Typed 32-bit Read and Write 7-2
7212 Strongly-Typed 32-bit Read and Write 7-2
7.2.2 Accessing Fields of 64-bit Width 7-2
7221 Weakly-Typed 64-bit Read and Write 7-3
7222 Strongly-Typed 64-bit Read and Write 7-3
7.3 Array Accesses 7-3
7.3.1 Accessing Elements of 32-bit Width and Below 7-3
7.3.2 Accessing Elements of 64-bit Width 7-5
7321 Weakly-Typed Versions 7-5
7322 Strongly-Typed Versions 7-5

vi CDC Porting Guide * December 2008

7.3.3 Miscellaneous Array Operations 7-5
74 GC-safety of Threads 7-6
74.1 GC-unsafe Blocks 7-6
7.4.2 GC-safe Blocks: Requesting a GC-Safe Point 7-6

8. Indirect Memory Interface Reference 8-1
8.1 Introduction 8-1
8.2 ICell Manipulations 8-1
8.3 Registered Indirection Cells 8-2
8.3.1 Local Roots 8-2
8.3.2 Global Roots 8-3
8.4 Object Field Accesses 8-3
8.4.1 Accessing Fields of 32-bit Width 8-3
8.4.1.1 Weakly-Typed 32-bit Read and Write 8-3
8.4.1.2 Strongly-Typed 32-bit Read and Write 8-4
8.4.2 Accessing Fields of 64-bit Width 8-4
8.4.2.1 Weakly-Typed 64-bit Read and Write 8-4
8.42.2 Strongly-Typed 64-bit Read and Write 8-5
8.5 Array Accesses 8-5
8.5.1 Accessing Elements of 32-bit Width and Below 8-5
8.5.2 Accessing Elements of 64-bit Width 8-6
8.5.2.1 Weakly-Typed Versions 8-7
8.5.2.2 Strongly-Typed Versions 8-7
8.5.3 Miscellaneous Array Operations 8-7
8.54 GC-unsafe Operations 8-8

9. How to be GC-Safe 9-1
9.1 Introduction 9-1
9.2 Living with ICells 9-2

Contents

vii

921 ICell Types 9-2
9.3 Explicitly Registered Roots 9-4
9.3.1 Declaring and Using Local Roots 9-4
9.3.1.1 Example of Local Root Use 9-5
9.3.2 Declaring and Using Global Roots 9-7
93.21 Examples of Declaring and Using Global Roots 9-8
94 GC-safety of Threads 9-11
941 GC-atomic Blocks 9-12
9.4.2 Offering a GC-safe Point 9-14

Part V Appendices

A. Debugging with gdb A-1

Al Setup Procedures A-2
A1l Signal Handlers A-2
A12 gdband GC Safety A-3
A.1.3 Turning on Trace Output A-3

A2 High-Level Dumpers A-5
A21 CVMdumpObject A-6
A22 CVMdumpClassBlock A-7
A23 CVvMdumpString A-8
A24 CVMdumpObjectReferences A-8
A25 CvMdumpClassReferences A-9

A3 Low-Level Dumpers A-9
A3.1 Using CVMconsolePrintf () A-9
A.3.2 Displaying the PC Offset A-10
A.3.3 Dumping the Java Stack A-11
A3.4 Displaying Opcode Information A-12
A.3.5 Dumping the Java Heap A-14

viii CDC Porting Guide * December 2008

A4

A5

A6

A3.6 Dumping Object Information A-15

A.3.7 Dumping Loaded Classes A-16

A.3.8 Dumping Threads A-18

Conversion Procedures A-19

A.41 The CVMExecEnv Structure A-19

A.4.2 Converting Between CVMExecEnv* and JNIEnv* A-20
A4.3 Converting from JNI Types to Internal VM Types A-20
A44 Converting from java.lang.Class to CVMClassBlock* A-21
Other Procedures A-22

A.5.1 Debugging Crashes on Linux A-22

A.5.2 Debugging Compiled Methods A-26

VM Inspector and CVMSH = A-27

. CStack Checking B-1

B.1
B.2

Introduction B-1
Calculating C Stack Redzones B-2
B.2.1 C Stack Redzone Checks B-3

B.2.2 Recursive Functions B-5

Contents ix

x CDC Porting Guide * December 2008

Figures

xi

xii CDC Porting Guide ¢ December 2008

Tables

TABLE 2-1 Top-Level Directories 2-4

TABLE 2-2 build Directory 2-5

TABLE 2-3 src Directory 2-6

TABLE 3-1 HPI Header File Hierarchy 3-2

TABLE 3-2 ANSI Header File Macros 3-3

TABLE 3-3 VM Header Files Macros 3-4

TABLE 3-4 src/portlibs Sub-Directories 3-4

TABLE 3-5 CPU Ports 3-5

TABLE 3-6 Operating System Ports 3-6

TABLE 3-7 Implementation Source Files for Data Types, Global State and Memory Access Support 3-9
TABLE 3-8 Implementation Source Files for JNI Support 3—-10

TABLE 3-9 Implementation Source Files for Thread Support 3-11

TABLE 3-10 Implementation Source Files for Synchronization Support 3-11

TABLE 3-11 Implementation Source Files for I/O Support 3-12

TABLE 3-12 Implementation Source Files for Networking Support 3-12

TABLE 3-13 JNI Native Method Source Code in src/linux/native/java 3-14
TABLE 3-14 Platform-Level Java Classes in 1inux/classes 3-14

TABLE 4-1 CVM_FASTLOCK_TYPE Values 4-3

TABLE 4-2 Fast Lock Implementations 4-5

TABLE 5-1 Dynamic Compiler Modules 5-2

xiii

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 5-8

TABLE 5-9

TABLE 5-10

TABLE 5-11

TABLE 6-1

TABLE A-1

TABLE A-2

TABLE 9-1

TABLE 9-2

Dynamic Compiler Header File Hierarchy 5-4
portlibs/jit/risc RISC Porting Library 5-5
CPU Abstraction Interface 5-7

Glue Code 5-9

Miscellaneous Code 5-10

Intrinsics 5-12

Invokers 5-13

Emitters 5-14

Helpers 5-15

Floating Point Support 5-17

CDC HI Array Types 6-9

Trace Flag Values A—4

Debug Flag Trace Options A-5

C Stack Redzone Macros B—4

C Stack Check Macros B—4

xiv. CDC Porting Guide * December 2008

Preface

This guide describes how to port the CDC HotSpot Implementation Java virtual
machine and class library to a target platform.

The companion documents CDC Build System Guide and CDC Runtime Guide
describes how to build and run a CDC Java runtime environment, including the
build-time and runtime options that control functionality, testing and performance
features. This guide focuses on how to use those features at runtime.

Who Should Read This Document

The primary reader is a software engineer responsible for performing the initial port
of the CDC HotSpot Implementation Java virtual machine and Foundation Profile to
a target platform.

The reader should also be familiar with the following topics:

Operating systems and device drivers
Object-oriented programming

Java virtual machine semantics

Java programming

C programming

Assembly language programming

Open source software development tools

The porting layers of the CDC HotSpot Implementation Java virtual machine have
been designed around a narrow set of porting interfaces that focus effort on the
target platform rather than VM internals. So while a general understanding of
compiler architecture is helpful, a deep understanding is not required. Experience
with the target CPU’s assembly language is necessary.

XV

How This Book Is Organized

This document is divided into several major sections described below.

XVi

Part I: Getting Started introduces CDC HotSpot Implementation technology and
outlines the planning stage for beginning a port.

Part II: HPI Layer describes the Host Programming Interface (HPI) layer, which
provides the CPU and OS-specific interfaces for both the virtual machine runtime
and the Foundation Profile class library.

Part III: Dynamic Compiler Layer describes the porting interfaces for the
dynamic compiler. This optional porting layer provides a adaptng the dynamic
compiler for CPUs that are not currently supported by one of the ports available
from Java Partner Engineering (http://www.sun.com/software/jpe).

Part IV: Garbage Collector Layer describes how to build a garbage collector plug-
in. These advanced APIs are optional since the default GC algorithms in CDC
HotSpot Implementation Java virtual machine work well for a broad range of
devices and applications.

Part V: GUI Layer describes the AWT porting layer for Personal Basis Profile and
Personal Profile.

Part V: Appendices contains useful programming material for related porting
issues like gdb-based debugging and programming techniques that promote
system robustness under tight C stack situations.

CDC Software Releases

CDC technology is delivered by Sun through different kinds of software releases.
The following technology releases are relevant to this guide:

A reference implementation (RI) demonstrates CDC technology. CDC Rls are based
on a common desktop development environment like Suse Linux 9.1.

An optimized implementation (OI) supports strategic platforms and provide the
basis for porting projects. The supported optimized implementation is based on
the Linux platform and several embedded processors, including ARM and MIPS.
Starter ports for other OS/CPU combinations are available from Java Partner
Engineering (JPE).

CDC Porting Guide * December 2008

phoneME Open Source Project

Sun makes Java ME technology available through both a commerical license and the
open source phoneME project (https://phoneme.dev.java.net). The main
differences between the commercial and open source versions are:

m The commercial version is a superset of the open source version and contains
additional security features that cannot be made available in source form as well
as third-party components that may have restrictions on redistribution.

m The commercial version has had more rigorous software testing.

m The open source version represents active engineering development and so may
have new features that have not been tested to the level that the commercial
version requires.

The phoneME project includes several subprojects including phoneME Advanced,
which corresponds with CDC technology and phoneME Feature, which corresponds
with CLDC technology. See the phoneME Advanced Twiki at
http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced
for the latest information about the phoneME Advanced open source project.

Preface xvii

Typographic Conventions

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCcl23 The names of commands, files, Edit your . login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.

AaBbCc123 What you type, when contrasted % su
with on-screen computer output Password:

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.

words to be emphasized

Command-line variable; replace
with a real name or value

These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Related Documentation

TABLE P-2

Related Documentation

Topic

Title

white paper

runtime options

build system

TCK

The white paper CDC: Java Platform Technology for Connected
Devices introduces CDC technology, standards, devices,

applications and tools.

The companion document CDC Runtime Guide provides runtime-

oriented information for developers and testers.

The companion document CDC Build System Guide describes the

CDC build system installation, configuration and testing.

User documentation for running the TCK validation suites.
® CDC Technology Compatibility Kit version User’s Guide

® Foundation Profile Technology Compatibility Kit version User’s

Guide

CDC Porting Guide * December 2008

TABLE P-2 Related Documentation

Topic

Title

Java virtual machine

Java Native Interface
(JNI)

Java Virtual Machine
Debugger Interface
(JVMTI)

security

Linux

POSIX Threads

POSIX
ANSI Standard C
Library

Berkeley Sockets

glibc

SoftFloat Library

Java Virtual Machine Specification, Second Edition

(Addison-Wesley, 1999) defines the Java class format and the
virtual machine semantics for class loading, which are the basis
for the operation of the Java runtime environment and its ability
to execute Java application software on a variety of different
target platforms. See
http://java.sun.com/docs/books/vmspec.

Java Native Interface: Programmer’s Guide and Specification
(Addison-Wesley, 1999) by Sheng Liang describes the native
method interface used by the CDC HotSpot Implementation Java
virtual machine. http://java.sun.com/docs/books/jni.

Defines an interface that allows developer tools like jdb and
hprof to interact with a Java runtime environment. See
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti

Inside Java 2 Platform Security (Addison-Wesley, 2003) describes the
Java security framework, including security architecture,
deployment and customization. See
http://java.sun.com/docs/books/security.

The sample implementation is based on a Linux platform. See
http://www.kernel.org.

Pthreads Programming: A POSIX Standard for Better. Multiprocessing
(O'Reilly & Associates, 1996) by Bradford Nichols, Dick Buttlar
and Jacqueline Proulx Farrell is an introduction to POSIX thread
programming. See
http://www.oreilly.com/catalog/pthread.

POSIX Programmer’s Guide (O'Reilly & Associates, 1991) by
Donald Lewine is an introduction to the POSIX interface. See
http://www.oreilly.com/catalog/posix.

The Standard C Library (Prentice-Hall, 1991) by P. J. Plauger is a
comprehensive description of the ANSI C Library. See
http://www.prenhall.com/books/ptr_0131315099.html.

The Open Group maintains the Single UNIX Specification which
defines standard UNIX interfaces. See http://www.unix-
systems.org/version3.

The glibc library contains all the ANSI Standard C Library and
POSIX library functions needed by the CDC HotSpot
Implementation Java virtual machine. See
http://www.gnu.org/software/libc/manual.

The SoftFloat Library is a software implementation of the IEEE
Standard for Binary Floating-point Arithmetic. See

http://www.jhauser.us/arithmetic/SoftFloat.html.

Preface

Xix

TABLE P-2 Related Documentation

Topic Title

gcc Compiler Using and Porting the GNU Compiler Collection. See
http://gcc.gnu.org/onlinedocs.

gdb Debugger Debugging with GDB. See
http://www.gnu.org/software/gdb/documentation.

ARM Processor ARM System-on-Chip Architecture (Addison-Wesley, 2000) is an
introduction to the ARM processor architecture.

MIPS Processor http://www.mips.com/products/
product-materials/processor/mips-architecture

Accessing Sun Resources Online

Sun provides online documentation resources for developers and licensees.

TABLE P-3 Sun Documentation Resources

URL Description

http://docs.sun.com Sun product documentation

http://java.sun.com/javame/reference Java ME technical documentation

/index.jsp

http://developer.java.sun.com Java Developer Services
https://java-partner.sun.com Java Partner Engineering
http://java.net An open community that facilitates

Java technology collaboration.

http://wiki.java.net/bin/view/Mobile phoneME Advanced Twiki
andembedded/PhoneMEAdvanced

xx CDC Porting Guide * December 2008

Terminology

These terms related to the Java™ platform and Java™ technology are used

throughout this manual.

Java technology level
Java technology based

class contained in a Java
class file

Java programming
language profiler

Java programming

language debugger

thread in a Java virtual
machine representing a
Java programming
language thread

stack used by a Java
thread

application based on Java
technology

source code written in the
Java programming
language

object based on Java
technology

method in an object based
on Java technology

field in an object based on
Java technology

a named collection of
method definitions and
constant values based on
Java technology

a group of types based on
Java technology

(Java level)

(Java based)

(Java class)

(Java profiler)

(Java debugger)

(Java thread)

(Java thread stack)

(Java application)

(Java source code)

(Java object)

(Java method)

(Java field)

(Java interface)

(Java package)

Preface

XXi

an organized collection of
packages and types based
on Java technology

constructor method in an
object based on Java
technology

exception based on Java
technology

an application
programming interface
(API) based on Java
technology

a service providers
interface (SPI) based on
Java technology

developer tool based on
Java technology

system property in a Java
runtime environment

security framework for the
Java platform

security architecture of the
Java platform

Feedback

(Java namespace)

(Java constructor)

(Java exception)

(Java API)

(Java API)

(Java developer tool)

(Java system property)

(Java security framework)

(Java security architecture)

Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-hotspot-comments@java.sun.com

You can send comments and suggestions regarding this document by sending email

to: docs@java.sun.com.

xxii CDC Porting Guide * December 2008

rart I Getting Started

This part introduces the Connected Device Configuration HotSpot Implementation
(CDC-HI) Java virtual machine and outlines the planning procedures and early
stages of porting the CDC HotSpot Implementation Java virtual machine to a target
platform.

This part contains the chapters:

m Introduction
m Planning

CHAPTER 1

Introduction

The Connected Device Configuration (CDC) is a group of Java ME technologies for a
broad range of consumer and embedded products. This porting guide describes how
to port the CDC HotSpot Implementation Java virtual machine and Foundation
Profile class library to a new target platform. This chapter describes the CDC
HotSpot Implementation Java virtual machine, its benefits, target applications and
supported platforms. Chapter 2 provides an overview of the porting process and the
chapters that follow describe the different stages of a port.

1.1

CDC Technology

CDC is a Java ME technology designed to leverage Java SE technology for non-
desktop systems. This includes a Java class library that is derived from the J2SE 1.4.2
Java class library by removing certain server-oriented packages and deprecated
methods and adding a few CLDC compatibility classes. The result is a set of APIs
that are familiar to the millions of Java SE developers yet appropriate to the needs of
non-desktop devices.

The CDC HotSpot Implementation Java virtual machine uses the same external
interfaces as the Java SE HotSpot Java virtual machine. Both implementations fully
adhere to the Java Virtual Machine Specification, Second Edition (Addison-Wesley, 1999)
and both support VM-level interfaces like Java Native Interface (JNI), Java Virtual
Machine Debugger Interface (JVMDI) and Java Virtual Machine Profiler Interface
(JVMPI). However, the design and implementation of the CDC HotSpot
Implementation Java virtual machine is quite different.

One of the most important benefits of this design is portability, which is the subject
of this guide. For a target platform with interface libraries based on common
operating system abstractions like POSIX, the porting process should take a matter
of weeks instead of months. Since many common CPUs and operating systems are
already supported, much of the work is already done in the form of sample ports or

1-1

porting utility libraries. In short, the portability interface of the CDC HotSpot
Implementation Java virtual machine focuses developer effort on the target platform
rather than the Java virtual machine implementation.

1.2

Benefits

CDC HotSpot Implementation is a fully compliant Java virtual machine that is
highly optimized for resource-constrained devices like consumer products and
embedded devices. CDC HotSpot Implementation combines excellent performance
and reliability with a low memory footprint to meet the needs of a broad range of
product scenarios.

CDC HotSpot Implementation was designed to inhabit the world of PDAs, set-top
boxes and other consumer products and embedded devices. It complies with the
same Java virtual machine specification as the Java SE application environment, but
its implementation is tailored to the needs of resource-constrained devices. Because
product designs vary, CDC HotSpot Implementation allows device-friendly tradeoffs
between performance and constrained resources. CDC HotSpot Implementation
achieves best-of-class performance with a modern dynamic compiler and solid
reliability for multi-threaded and low-memory conditions. In addition, CDC
HotSpot Implementation's portability interfaces enable rapid modification to
support new target CPUs and operating systems while maintaining excellent
performance.

m Device Support

= Excellent performance
= Low memory footprint
» Reliability

Low-memory conditions
Multi-threaded scenarios
» Device friendliness
Portable
Configurable
m Java Virtual Machine features

Floating point

Multiple user-defined class loaders

Serialization

Reflection

Weak references

Full I/O and networking

Core features and programming model of Java SE

1-2 CDC Porting Guide * December 2008

m Retargetable
= Modular implementation
narrow porting interfaces
written in ANSI C and assembly language
s CPU implementations
ARM
MIPS

Support for other processors like PowerPC and SPARC is available through
Java Partner Engineering (https://java-partner.sun. com).

» Operating systems
Linux

Support for other operating systems like Solaris and Win32 is available
through Java Partner Engineering (https://java-partner.sun.com).

m Design Features
s Dynamic compiler (JIT - Optimized Implementation only)
Space efficient
Fast
Reliable
Portable
Configurable
Ahead-of-Time compiler
» Interpreter
Fast
Written in ANSI C
Uses GCC extensions when available
» Java class preloading
Space saving
Data sharing
In-place execution from ROM
Pre-loading improves startup time and avoids fragmentation
= Runtime
Fast startup and shutdown

No resource leaks

Chapter 1 Introduction 1-3

Small class footprint
Process model independent
Virtualized JVM state
Dual stack support
m Memory management

s Heap management
Virtual memory not required
Fully compactible heaps
No fragmentation
Resizeable heap

» Pluggable garbage collector (Optimized Implementation only)
» Default generational collector

Short pauses

Sequential heaps

Coexists with native system
m Thread support

» Fast locking

m Scalable and robust in heavily threaded scenarios
n C stack safety for tight memory conditions

= Native thread support

m Standard Java VM interfaces

» Java SE policy-based security model
= JNI support
» JVMTI developer toolsupport

1-4 CDC Porting Guide * December 2008

CHAPTER 2

Planning

The CDC HotSpot Implementation Java virtual machine has been designed for easy
portability to alternate target platforms. This porting guide describes the basic stages
of porting the CDC HotSpot Implementation Java virtual machine: bringing up the
VM runtime and integrating the Foundation Profile class library. More advanced
stages like porting the dynamic compiler and implementing an alternate garbage
collection algorithm are discussed in later chapters.

The porting techniques described in this guide are based on the Linux/ARM sample
implementation. TABLE 3-5 and TABLE 3-6 describes implementations for other CPUs
and operating systems available through Java Partner Engineering
(http://www.sun.com/software/jpe). If your target device uses one of these
CPUs or operating systems, then the porting tasks can be simplified by using
different portions of these ports. In addition, the source release includes porting
libraries that streamline support for most platforms.

This chapter cover the following topics:

m Target Platform Requirements
m Porting Steps
m Source Code Organization

2.1 Target Platform Requirements

The target platform requirements of the CDC HotSpot Implementation Java virtual
machine are organized into the CPU and the operating system layers.

2-1

2.1.1 Cru

Note — Most of these CPU features are relavent only to a JIT port that is part of the
Optimized Implementation.

The porting strategy for the CDC HotSpot Implementation Java virtual machine is
based on the simplifying assumption of targeting RISC CPUs that are common in the
embedded and device marketplace. Most RISC CPUs are similar and their
differences are mostly limited to their registers, instruction encodings and calling
conventions.

The following list identifies some of the RISC features important to the CDC-HI Java
virtual machine JIT porting interface.

m RISC-like architecture
m 32-bit integer and address size.
2's complement integer representation.
Uniform 1-word instruction length.
Lots of registers.
Uniform set of general-purpose registers (except floating point) available for
integer arithmetic and pointers.
Some parameters are passed in registers.
m Return value appears in a register.
» Load-store architecture. ALU instructions operate only on registers and
immediates. Values must be explicitly moved between the ALU and memory
with load and store instructions.
Interlocked load/store instructions to support fast locking.
Byte-addressable memory.
Allocating large contiguous memory regions for the code buffer and heap.
"call far" instruction that can reach the size of the code buffer.
Register-relative memory addresses for load and store instructions.
m Dynamic compiler-specific requirements
» Ability to flush the i-cache.
= Write instructions as data into memory.
» Execute instructions out of memory.
m Non-assumptions
Byte order within a word.
Direction of C stack growth.
Presence or absence of delay slots following branches.
Any particular arrangement of dedicated registers, or those available for use
by generated code.

The CDC HotSpot Implementation Java virtual machine has been ported to several
target CPUs. See TABLE 3-5 for a list of supported CPU ports available through Java
Partner Engineering (http://www.sun.com/software/jpe).

2-2 CDC Porting Guide * December 2008

2.1.2

Note — The companion document CDC Build System Guide describes the cross-
compiler and other developer tools used by the CDC build system.

Operating System

The operating system portability interfaces for the CDC HotSpot Implementation
Java virtual machine are based on common operating system abstractions like POSIX
and ANSI I/O. If these interfaces are available on the target platform, then the
porting process is mostly a direct mapping from the HPI to the platform’s system
interfaces. Chapter 3 describes the standard system interfaces required by the HPI:

= Memory management.
» Uniform address space (not segmented).
s UNIX-like memory allocation functions.
m ANSI Standard I/0.
m POSIX thread management.
s Easily ported to a POSIX thread library.
» Alternate fast locking implementations available.
= Don’t need separate processes.
s Don’t need a large C stack per thread.
= Monitor based.
m Berkeley sockets.

The CDC HotSpot Implementation Java virtual machine has been ported to several
target operating systems. These include Linux and several other UNIX-like
operating systems available through Java Partner Engineering
(http://www.sun.com/software/jpe).

The implementation requirements for the system library layer is largely shaped by
the Java Native Interface (JNI) which provides a standard mechanism for Java
classes to execute native methods. JNI provides a calling convention that allows a
Java virtual machine to execute native methods on a target platform

2.2

Porting Steps

The porting layers of the CDC HotSpot Implementation Java virtual machine were
designed to make porting straightforward and to focus effort on issues that affect
performance. This is achieved through simplifying assumptions like common OS
and CPU abstractions as well as using example ports and porting utility libraries.

Chapter 2 Planning 2-3

The steps described below will help introduce the CDC HotSpot Implementation
technology and prepare the way for a successful port.

. Start by working with a binary reference implementation as described in the CDC

Runtime Guide. This will introduce the mechanics of using the Java application
launcher and even more advanced topics like tuning the runtime performance of the
dynamic compiler.

. Work with the reference build environment as described in the CDC Build System

Guide. This will introduce the mechanics of performing builds and testing the CDC
Java runtime environment.

. Perform a basic port that supports interpreter-only operation. In most cases, the

common OS and CPU abstractions make this a straightforward task. There are some
basic assembly language glue routines to write. Start by reading the header files in
src/share/javavm/include/porting, which have many descriptive comments
that are not duplicated in this guide. At the end of this stage, you should have a
fully functional CDC Java runtime environment. This stage is described in

Chapter 3.

. Because object synchronization heavily affects runtime performance, it is

necessary to tune the locking implementation. Chapter 4 describes how to
approach the task of finding a locking implementation that is appropriate for the
target system. Several implementations are provided.

2.3

2.3.1

Source Code Organization

The reference source code for the CDC HotSpot Implementation Java virtual
machine is organized into several top-level directories described in TABLE 2-1:

TABLE 2-1 Top-Level Directories

Directory Description
build CDC build system.
src CDC source code.

build Directory

The CDC build system is based on a Linux or Solaris host development system using
commonly available Java and UNIX development tools. The basic development
model is to use the CDC build environment as a cross-compilation system to build

2-4 CDC Porting Guide * December 2008

2.3.2

an executable runtime environment. Then the executable runtime environment is
loaded onto a target device for testing. For more information about how to install
and use the CDC build environment, see the companion document CDC Build System
Guide.

TABLE2-2 Dbuild Directory

Directory Description

<CPU> CPU-specific makefiles

<O0S> OS-specific makefiles

<0S>-<CPU> These makefiles contain low-level makefile macro

definitions that are unique to the OS/CPU combination.
For example, the location of a CPU-spcific version of
invokeNative.c would be found here.

<0S>-<CPU>-<DEVICE> The main build directory. This contains the top-level
makefile with device-specific options and the generated
target device-specific intermediate files for a Java runtime
environment. These makefiles mostly set or override values
used by the shared makefiles.

portlibs Makefile definitions for the shared JIT layer.

share Shared makefiles.

src Directory

The HPI source code is organized so that a small amount of target-specific
implementation code supports the much larger shared source code. TABLE 2-3
describes the HPI source code hierarchy. These directories have parallel
organizations to ease navigation and support the operation of the CDC build system.

The src directory contains the shared and target-specific source code for the CDC-
HI Java virtual machine and both the CDC and Foundation class libraries. For
porting, the most important directories are the HPI header files in
share/javavm/include/porting and the HPI implementation files in
portlibs, <CPU>/javavm, <0S>/javavm and <0S>-<CPU>/javavm directories.
These directories are described in Chapter 3.

Chapter 2 Planning 2-5

The organization described in TABLE 2-3 uses the following naming conventions:
<CPU> is the CPU architecture, e.g. arm, mips or some other target CPU family.
<0S> is the platform operating system, e.g. 1inux, solaris or some other

platform operating system.

TABLE2-3 src Directory

Directory

Language

Description

<CPU>

javavm

<0OS>

bin

classes

javavm

lib

native

tools

<0S>-<CPU>

Java

text

CPU architecture-specific source code.
This code is shared by most ports based
on <CPU>.

CPU-specific portion of the VM
implementation. At the HPI level, this
directory contains a small amount of
assembly glue code as well as source for
the dynamic compiler. This hierarchy
performs a similar purpose to
src/portlibs, but for a specific CPU-
target. The files in this hierarchy use the
interface_cpu. [ch] naming convention.

OS-specific source code. This code is
shared by all ports based on <OS>.

OS-specific wrapper for the Java
application launcher.

OS-specific portion of the CDC and
Foundation Profile class libraries.

OS-specific portion of the VM
implementation. These source files
contain support functions that interact
with the required OS services. The files
in this hierarchy use the

interface_md. [ch] naming convention.

MIME content type system property
table and platform-to-Java time zone
mapping table.

JNI native methods for the CDC and FP
class library source code. These native

methods require porting for the target
0s.

OS-specific portion of the hprof profiler
tool.

OS/CPU-specific source code.

2-6 CDC Porting Guide * December 2008

TABLE2-3 src Directory

Directory Language Description

javavm C OS/CPU-specific portion of the VM
implementation. These source files
contain CPU-specific support functions
that interact with low-level OS services
like CPU-specific synchronization,
numeric types and endianness. The files
in this hierarchy use the
interface_arch. [ch] naming
convention.

portlibs C These porting utilities are used by most
ports to map the HPI to common
platform system interfaces. See
TABLE 3-4 for a description of these
porting utilities.

sharel Source code shred by different

implementations.

classes Java CDC class library source code.

foundation Java Foundation Profile class library source
code.

javavm C Shared portion of the VM
implementation.

javavm/classes Java VM-specific classes.

javavm/include/porting C These header files define the HPI

interfaces that the target-specific source
must implement.

NOTE: The header files in this directory
contain many descriptive comments that
are not duplicated here. They should be
studied carefully during the planning
stages of a port.

javavm/test Java Various test programs for exercising the
VM.

lib text Security policies.

native C JNI native methods for the CDC and FP

class library source code. These native
methods do not require porting.

tools C Developer tools.

Chapter 2 Planning 2-7

1 The source code in the share hierarchy is intended for reference purposes only and should not be modified. If
the default behavior needs modification, in most cases these changes should be made by overriding this default
functionality with code in the target-specific source hierarchies. For other cases, see https://javapart-
ner.sun.com/partner/porting/04.html for an overview of the review process for modifying shared
code.

24 Dual Stack Support

2-8

CDC-HI supports running MIDP/CLDC applications on a CDC-based stack. The
mechanism for providing this is based on isolation and API hiding at the classloader
level. See the phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
for more information and examples of dual stack support.

CDC Porting Guide * December 2008

parT 11 HPI Layer

This part describes the HPI porting layer. This includes the CPU and OS-specific
interfaces for both the virtual machine runtime and the CDC/Foundation Profile
class library.

This part contains the chapters:

m Host Programming Interface
m Fast Locking

CHAPTER 3

Host Programming Interface

This Host Programming Interface (HPI) represents the portability interface for the
runtime component of the CDC HotSpot Implementation Java virtual machine.
Implementing the macros, data structures and functions of the HPI is the first major
stage in porting the CDC HotSpot Implementation Java virtual machine to a new
target system.

This chapter cover the following topics:

m HPI Header File Hierarchy
m Creating an HPI Implementation

This chapter uses the Linux/ARM port to describe how an HPI implementation is
structured. In general, we make the simplifying assumptions that the target port
includes ANSI and POSIX libraries and that the CDC build system uses the patched
gcc cross-compiler described in the companion document CDC Build System Guide.
For help with porting projects that fall outside these guidelines, contact Java Partner
Engineering (http://www.sun.com/software/jpe).

3-1

3.1

3.1.

3-2

HPI Header File Hierarchy

The directory src/share/javavm/include contains a series of header files that
impose a structure on an HPI port. The most important is
src/share/javavm/include/defs.h, the top-level HPI include file that defines
basic types and data structures as well as including the other HPI header files. The
top-level HPI header file hierarchy is described in TABLE 3-1.

TABLE 3-1 HPI Header File Hierarchy

Header File Description

src/share/javavm/include/defs.h Defines basic types and data
structures as well as including the
other HPI header files.

src/share/javavm/include/porting/defs.h Describes the file mapping for the
ANSI and VM header files. Some
advanced options are also
described here. See TABLE 3-2
and TABLE 3-3 for descriptions of
these header files.

src/<08>/javavm/include/defs_md.h The top-level target-specific HPI
header file. Provides the file mapping
for the ANSI and VM header files
and selects advanced platform
features as well as common macros
used throughout the target-specific
source code.

src/<08>-<CPU>/javavm/include/defs_arch.h OS-CPU architecture-specific
macros.

1 CVM_HDR_* Header File Macros

The cvM_HDR_ * header file macros described in
share/javavm/include/porting/defs.h represent the basic requirements for
an HPI port. These macros are usually defined in
<08>/javavm/include/defs_md.h.

There are two categories of header file macros:

m The CVM_HDR_ANSI_* macros described in TABLE 3-2 identify ANSI header files
that define standard C library functions and data types used by the VM.

CDC Porting Guide * December 2008

m The rest of the CVM_HDR_* macros described in TABLE 3-3 identify the target-
specific VM header files that define functions and data structures for accessing
platform-level services. These are usually found in <0S>/javavm/include with
corresponding implementation files found in <08>/javavm/runtime. They are
organized into the stages described in Section 3.2, “Creating an HPI
Implementation” on page 3-5”.

TABLE 3-2 ANSI Header File Macros

Macro

ANSI Header File

Description

CVM_HDR_ANSI_ASSERT_H
CVM_HDR_ANSI_CTYPE_H
CVM_HDR_ANSI_ERRNO_H
CVM_HDR_ANSI_LIMITS_H

CVM_HDR_ANSI_SETJMP_H

CVM_HDR_ANSI_STDARG_H

CVM_HDR_ANSI_STDDEF_H
CVM_HDR_ANSI_STDIO_H

CVM_HDR_ANSI_STDLIB_H
CVM_HDR_ANSI_STRING_H

CVM_HDR_ANSI_TIME_H

<assert.h>
<ctype.h>
<errno.h>
<limits.h>

<setjmp.h>

<stdarg.h>

<stddef.h>
<stdio.h>

<stdlib.h>
<string.h>

<time.h>

Macro for verifying program assertion.
Character types.

System error numbers.
Implementation-dependent constants.

Declarations for setjmp () and

longjmp () that control transfers that
bypass the normal function call and return
protocol.

Macros for handling variable argument
lists.

Standard type definitions.
Standard buffered 1/0.
Standard library definitions.
String operations.

Time types.

The macros shown in TABLE 3-2 define the locations of the standard ANSI C header
files. They can also be used to define an alternate location or implementation or to

interpose a wrapper file around the system file. One reason to do this is to redefine
tokens that are causing conflicts with the VM code or to include other system header

files first.

Chapter 3 Host Programming Interface

3-3

In most cases, cloning and modifying the 1inux example should be sufficient since
it’s based on the porting libraries in portlibs/ansi_c and
portlibs/gcc_32_bit.

TABLE 3-3 VM Header Files Macros

Macro VM Header File Description

CVM_HDR_DOUBLEWORD_H doubleword.h Data type macros and APIs.
CVM_HDR_ENDIANNESS_H endianness.h

CVM_HDR_FLOAT_H float.h
CVM_HDR_INT_H int.h
CVM_HDR_GLOBALS_H globals.h VM global state.
CVM_HDR_MEMORY_H memory.h Memory access.
CVM_HDR_JNI_H jni.h Native method support and dynamic linking
CVM_HDR_LINKER_H linker.h support.
CVM_HDR_THREADS_H threads.h Thread support.
CVM_HDR_SYNC_H sync.h Synchronization support.
CVM_HDR_IO_H io.h /0O support, Java system properties, time and
CVM_HDR_PATH_H path.h system functions for halt and reset.
CVM_HDR_SYSTEM_H system.h
CVM_HDR_TIME_H time.h
CVM_HDR_TIMEZONE_H timezone.h
CVM_HDR_NET_H net.h Networking support.
3.1.2 src/portlibs Porting Libraries

The src/portlibs directory contains many useful porting libraries that simplify
the task of porting the HPI layer to most platforms.

TABLE 3-4 src/portlibs Sub-Directories

Directory Description

ansi_c Maps internal data types used by the HPI to common ANSI C data types.

dlfcn Supports dynamic linking of shared libraries directly through the dlsym () system
call.

gcc_32_bit Maps internal data types used by the HPI to common gcc data types.
jit RISC porting library for the dynamic compiler.

msvc Microsoft Visual Studio support.

3-4 CDC Porting Guide * December 2008

TABLE 3-4 src/portlibs Sub-Directories

Directory Description

posix /0, socket and thread porting functions based on POSIX.
realpath UNIX path name handling.

unix UNIX process support.

3.2

Creating an HPI Implementation

In this section we outline the steps necessary for creating an HPI implementation.
Most of these steps are straightforward. A few require additional effort for which
there is help in the form of porting libraries and examples.

Developing a new port from scratch is probably more work than is necessary. The
sample Linux/ARM port serves two purposes. It's well structured and commented
so that it can be used as a good example for porting. And it’s also well tested and
optimized for production use. Java Partner Engineering can provide other example
ports, and the porting libraries in src/portlibs should simplify porting for most
common target platforms.

Since the HPI porting layer is separated into CPU and OS abstractions, the example
for one OS support layer can be used as a starting point for a port to another target
system. That is, the same OS layer can be used even if it's based on a different CPU.
Starting with one of these prebuilt modules will save a great deal of effort in porting
the CDC HotSpot Implementation Java virtual machine to a new target platform.

TABLE 3-5 describes the standard CPU ports. Other CPU ports are available through
Java Partner Engineering (http://www.sun.com/software/jpe).

TABLE 3-5 CPU Ports

CPU Support Level
ARM V4 architecture and higher
MIPS MIPS II, 111, IV, and V

Chapter 3 Host Programming Interface 3-5

Linux is the standard operating system port for CDC-HI. TABLE 3-6 shows the
operating system ports available from Java Partner Engineering.

TABLE 3-6 Operating System Ports

Operating Systems CPU Devices

Linux ARM ¢ Sharp Zaurus
* Rebel.Com Netwinder
¢ iPaq running Familiar Linux
* MontaVista Linux

¢ Intel Bulverde chipset on the Mainstone development
board

¢ TI Innovator development board for the OMAP
platform

e SuSE
e Ubuntu

MIPS ¢ Cobalt Raq2 and Qube2 running Debian Linux 3.0.1
¢ SGI Indy and Indigo2 running Debian Linux 3.0.1
¢ MontaVista Linux
* OpenWRT platform

PowerPC ¢ YellowDog Linux 2.2, 2.3, and 3.0 on an Apple
PowerMac

* MontaVista Linux
SPARC ¢ Sun UltraSparc running Debian Linux 3.0.1
x86 ¢ x86/PC running Redhat Linux 7.2 and 9.0
Darwin (BSD-based) PowerPC PowerMac running MacOS 10.x

Solaris SPARC SPARC hardware
Windows ARM ¢ WinCE 3.0 on PocketPC (iPaq)
¢ Windows Mobile 5.0
MIPS WinCE 4.1 on development board
x86 Windows XP
Symbian ARM Symbian platform

3.2.1 Suggested Work Flow

The work flow for developing an HPI implementation is divided into the stages
listed below.

3-6 CDC Porting Guide * December 2008

3.2.2

. Section 3.2.2, “Prepare the Target-Specific build and src Hierarchies” on page 3-7

describes how to setup the build and src hierarchies by cloning or combining code
from existing ports.

. Section 3.2.3, “Data Types, Global State and Memory Access Support” on page 3-8

represents the main portion of the port. The goal is to implement enough of the HPI
to perform basis tests that don’t require I/O capability.

. Section 3.2.4, “INI Support” on page 3-9 adds dynamic linking and JNI support.

The goal is to enable native method support required by the Java class library.

. Section 3.2.5, “Thread Support” on page 3-10 adds thread support for both VM

operation and Java runtime support.

. Section 3.2.6, “Synchronization Support” on page 3-11 add synchronization

support.

. Section 3.2.7, “I/O and System Support” on page 3-12 adds 1/O capability to the

basic port to enable local file system-based class loading and 1/0.

. Section 3.2.8, “Networking Support” on page 3-12 adds support for socket-based

networking to enable network-based class loading and 1/0.

Each section below includes a description of the source code for the Linux/ARM
sample implementation.

Prepare the Target-Specific build and src
Hierarchies

The steps below are based on a target platform based on the operating system MyOS,
the CPU MyCPU and the device MyDevice. The example is based on cloning the
Linux/ARM sample implementation. See TABLE 3-5 and TABLE 3-6 for descriptions of
other ports available from Java Partner Engineering that can be used to more closely
match the target device.

. Prepare the UNIX build tools for the new target device.

This will require configuring and building the cross-development build tools to
include code generation capabilities for the new target device. See Chapter 2 and the
companion document CDC Build System Guide for more information about
configuring the CDC build system.

. Refactor the platform-dependent makefiles hierarchy to support the target

platform.

If necessary, this involves cloning four directories. For example,

Chapter 3 Host Programming Interface 3-7

3.2.3

oe

cp -r build/linux-arm-generic build/MyOS-MyCPU-MyDevice
cp -r build/linux-arm build/My0OS-MyCPU

cp -r build/linux build/MyOS

cp -r build/arm build/MyCPU

o0 o°

o

Note that these cloning steps are only necessary for build directories that will be
modified. If the target CPU or OS is one of the ports described in TABLE 3-5 or
TABLE 3-6, then no modification should be necessary at this stage of the port.

Tip — If the target OS and/or CPU are among the ports listed in TABLE 3-5 and
TABLE 3-6, then use or modify the prebuilt makefiles instead.

. Edit build/My0S-MyCPU-MyDevice/GNUmakefile to define any necessary

compiler flags and build-time options.

. Refactor the platform-dependent source code hierarchy.

o

cp -r linux-arm MyOS-MyCPU
cp -r linux MyOS
cp -r arm MyCPU

o

oe

The My0S directory will contain the bin, 1ib and tools sub-directories for the Java
application launcher, system property files and profiler tools respectively. These
should not require modification for a Linux port. Again, source code from other
ports may be more appropriate than the Linux/ARM example used here.

Note that these cloning steps are only necessary for source directories that will be
modified. If the target CPU or OS is one of the ports described in TABLE 3-5 or
TABLE 3-6, then no modification should be necessary at this stage of the port.

. For each of the stages outlined in the following sections, supply the required

implementations.

For most target platforms, there should be some code supplied by one of the ports
described in TABLE 3-5 or TABLE 3-6. So the actual amount of implementation steps
should be a subset of the steps described below.

Tip — For ports that use existing OS and CPU implementations, for example porting
linux-arm, the only work requried is cleaning up the target device build directory
and editing the GNUmakefile.

Data Types, Global State and Memory Access
Support

The first stage of implementing the HPI layer is to implement the data types and
support functions.

3-8 CDC Porting Guide * December 2008

324

Create target-specific implementation source files for the interfaces shown in
TABLE 3-7. Again, the header files in share/javavm/include/porting include
comments that describe the required interfaces. The existing ports use the porting
libraries in src/portlibs.

TABLE3-7 Implementation Source Files for Data Types, Global State and Memory Access
Support

Header File Examples

porting/doubleword.h linux/javavm/include/doubleword_md.h
linux-arm/javavm/include/doubleword_arch.h
portlibs/gcc_32_bit/doubleword.h
portlibs/ansi_c/doubleword.h

porting/endianness.h linux/javavm/include/endianness_md.h
linux-arm/javavm/include/endianness_arch.h
linux-arm/javavm/include/endianness_arch.h

porting/float.h linux/javavm/include/float_md.h
linux-x86/javavm/include/float_arch.h
linux-arm/javavm/include/float_arch.h
arm/javavm/runtime/arm_float_cpu.c
portlibs/gcc_32_bit/float.h
portlibs/ansi_c/float.h

porting/int.h linux/javavm/include/int_md.h
linux-arm/javavm/include/int_arch.h
portlibs/ansi_c/int.h

porting/globals.h linux/javavm/include/globals_md.h
linux/javavm/runtime/globals_md.c

porting/memory.h linux/javavm/include/memory_md.h
linux-arm/javavm/include/memory_arch.h
arm/javavm/runtime/atomic_arm.S
arm/javavm/runtime/memory_asm_cpu. St

1 memory_asm_cpu. S contains ARM-specific optimizations that are not necessary for general-purpose porting.
These APIs can be deactivated by removing the related macros in memory_arch.h.

JNI Support

The next stage is to add dynamic linking and JNI support. The sample Linux/ARM
implementation uses Linux shared libraries to provide native library
implementations. Many UNIX-like operating systems provide similar features.

Chapter 3 Host Programming Interface 3-9

3.24.1

3.2.5

Create target-specific implementation source files for the interfaces shown in
TABLE 3-8.

TABLE 3-8 Implementation Source Files for JNI Support

Header File Linux/ARM Example

porting/jni.h portlibs/gcc_32_bit/jni.h
linux/javavm/include/jni_md.h
arm/javavm/runtime/
invokeNative_arm.S

porting/linker.h portlibs/dlfcn/linker_md.c

share/native/common/jni_statics.h linux/native/common/statics_md.h

CVMjniInvokeNative

The most important part of this stage is the implementation of the
CVvMjniInvokeNative () routine which translates Java method calling conventions
into the platform language (usually C) calling conventions used by native methods.
The Java VM passes all the arguments in the Java stack and expects the results to be
placed there as well.

For performance and stack safety reasons the implementation of
CVvMjniInvokeNative () should be written in assembly language. The comments
in src/share/javavn/include/porting/jni.h and
arm/javavm/runtime/invokeNative_arm.S describe the interface and
implementation of CVMjniInvokeNative (). Contact Java Partner Engineering
(http://www.sun.com/software/jpe) to get versions of
CVvMjniInvokeNative () for alternate processors.

Thread Support

If the target system has a POSIX thread library, then porting the thread support
portion of the HPI is straightforward. In fact,
src/portlibs/posix/posix_threads_md.c contains such an implementation.
The alternatives are to find and port a POSIX thread library to the native platform or
to port the thread interface directly to the native interface.

The porting/defs.h header file describes the CVM_HAVE_PROCESS_MODEL option
that indicates that the target platform provides a process model. This allows the VM
to avoid waiting for daemon threads to exit before shutting down.

Multi-processor systems are not supported by the CDC HotSpot Implementation
Java virtual machine unless all CDC threads can be isolated to the same processor.

3-10 CDC Porting Guide * December 2008

3.2.6

Create target-specific implementation source files for the interfaces shown in

TABLE 3-9.

TABLE3-9 Implementation Source Files for Thread Support

Header File

Linux/ARM Example

porting/threads.h

portlibs/posix/threads.h
portlibs/posix/posix_threads_md.c
linux/javavm/include/threads_md.h
linux/javavm/runtime/threads_md.c
linux-arm/javavm/include/threads_arch.h

Synchronization Support

The speed of object synchronization greatly affects overall runtime performance. The
default locking mechanism will work without porting effort, but is slow. Choosing
between the other alternatives will require experimentation with the target platform.
This is by far the most complex part of an HPI port to understand, though
implementation is made easier by the options described in Chapter 4.

The porting/sync.h header file describes other advanced options:

m CVM_ADV_SCHEDLOCK requires implementations of the CVMschedLock () and
CVMschedUnlock () functions.
m CVM_ADV_MUTEX_SET_OWNER requires the implementation of

CVMmutexSetOwner ().

m CVM_ADV_THREAD_BOOST enables thread priority boosting. This option requires
implementations of the CVMthreadBoostInit (), CVMthreadAddBooster (),
CVMthreadBoostAndWait () and CVMthreadCancelBoost () functions.

Create target-specific implementation source files for the interfaces shown in

TABLE 3-10.

TABLE 3-10 Implementation Source Files for Synchronization Support

Header File

Linux/ARM Example

porting/sync.h

linux/javavm/include/sync_md.h
linux/javavm/runtime/sync_md.clinux-
arm/javavm/runtime/sync_arch.c
linux-arm/javavm/include/sync_arch.h
linux-arm/javavm/runtime/sync_arch.c
arm/javavm/runtime/atomic_arm.S
portlibs/posix/sync.h
portlibs/posix/posix_sync_md.c

Chapter 3 Host Programming Interface

3-11

3.2.7 I/0O and System Support

The next stage is to add I/O and system support. If the target system has a POSIX-
like I/0O toolkit, then this stage is straightforward.

Create target-specific implementation source files for the interfaces shown in
TABLE 3-11.

TABLE 3-11 Implementation Source Files for I/O Support

Header File Linux/ARM Example

porting/io.h linux/javavm/include/io_md.h
linux/javavm/runtime/io_md.c
portlibs/posix/io.h
portlibs/posix/posix_io_md.c

porting/path.h linux/javavm/include/path_md.h
portlibs/realpath/canonicalize_md.c

porting/java_props.h linux/javavm/runtime/java_props_md.c
linux/javavm/runtime/locale_str.h

porting/system.h linux/javavm/runtime/system_md.c

porting/time.h linux/javavm/include/time_md.h
linux/javavm/runtime/time_md.c
portlibs/posix/posix_time_md.c

porting/timezone.h linux/javavm/runtime/timezone_md.c

3.2.8 Networking Support

The last stage is to implement socket-based network support. Again, using a POSIX
library will simplify this task.

Create target-specific implementation source files for the interfaces shown in
TABLE 3-12.

TABLE 3-12 Implementation Source Files for Networking Support

Header File Linux/ARM Example

porting/net.h linux/javavm/include/net_md.h
linux/javavm/runtime/net_md.c

3-12 CDC Porting Guide * December 2008

3.3

3.3.1

CDC Class Library Support Layer

The CDC class library support layer represents the portability interface for the CDC
Java class library. This portability layer is divided into a small amount of C source
code and a few low-level Java classes that interact with system-level services like a
socket-based network stack, a file system and a native process model.

Implementing the macros, data structures and functions of this layer is based on
providing native method implementations for certain system level classes in the
CDC Java class library. The platform-level portion of the JNI mechanism is provided
the HPI functions described in Section 3.2.4, “JNI Support” on page 3-9. For most
UNIX-like platforms, the Linux-based platform-level Java classes should require
little, if any, modification.

This chapter shows how to implement the system-level native methods for a new
target system. It is divided into the following sections.

m Section 3.3.1, “Source Code Organization” on page 3-13” describes the HPI header
files and the sample implementations.

m Section 3.3.2, “Creating a CDC Class Library Support Layer Implementation” on
page 3-15” describes the basic workflow for porting the class library support
layer.

Source Code Organization

The source code organization for the class library support layer is based on a
combination of the Java class library and the platform-specific source code for the
CDC reference implementations. For example, the CDC reference implementations
keep operating system specific source code in src/OS. And the source code for the
java.net package is usually kept in a hierarchy with a java/net directory
structure. So for the Linux/ARM implementation, the native method
implementations for the java.net package are kept in
src/linux/native/java/net.

Profile-based Java and JNI source code can be found in src/*/profile.

Chapter 3 Host Programming Interface 3-13

3-14

TABLE 3-13 describes the native method implementations for the CDC class library
support layer in src/linux/native/java. There are three packages that require
native method support: java.io, java.lang and java.net.

TABLE 3-13 JNI Native Method Source Code in src/linux/native/java

Source Files

Description

io/FileSystem_md.c
io/UnixFileSystem _md.c

lang/Runtime_md.c
lang/UNIXProcess_md.c

net/InetAddressImpl_md.c

net/PlainDatagramSocketImpl_md.c

net/PlainSocketImpl_md.c
net/SocketInputStream md.c
net/SocketOutputStream_md.c
net/net_util_md.c
net/net_util_md.h

The platform file system classes in java.io are
based on common POSIX-based file system
semantics. The native methods in
src/linux/native/java/io are POSIX-
based. Other file system types are possible. See
src/share/classes/java/io/FileSyste
m.java.

java.lang.Process provide access to
platform-level processes. These should be very
similar for most UNIX-like platforms.

java.net is based on Berkeley sockets available
on most UNIX-like platforms. The native
methods in src/linux/native/java/net
are based on the socket interface. See

TABLE P-2 for a reference document for the
Berkeley Socket interface.

The src/share/native directory contains several portable native method
implementations that do not require modification.

TABLE 3-14 describes platform-level Java classes in the 1inux/classes directory.

TABLE 3-14 Platform-Level Java Classes in 1inux/classes

Source Files

Description

java/io/UnixFileSystem. java

java/lang/Terminator.java
java/lang/UNIXProcess.java

sun/net/www/protocol/file/
Handler.java

sun/net/www/protocol/jar/
JarFileFactory.java

UNIX file system support.
UNIX process support.

file protocol handler.

Retrieving and caching jar archives.

CDC Porting Guide * December 2008

3.3.2

Creating a CDC Class Library Support Layer
Implementation

Porting the CDC class library support layer is very straightforward if the target
system provides the baseline platform requirements:

m POSIX I/0 toolkit
m ANSI standard C library
m Berkeley sockets

As with the HPI layer, there are several existing ports that can be used as a starting
place for porting. For example, the Darwin and Solaris ports provide good examples
for most BSD-flavored UNIX implementations. See TABLE 3-5 and TABLE 3-6 for a list
of CPU and operating system ports available from Java Partner Engineering.

Porting the CDC class library support layer to platforms that don’t provide these
resources requires much more effort. The best way to approach that task is to
understand these interfaces and to either find and port compatibility libraries or
write native method implementations that map platform-level services into the more
standard functionality required by the CDC class library support layer. Java Partner
Engineering can help with these non-standard ports by providing example code and
consulting services.

3.4

Simple Test Procedure

At this point the CDC Java runtime environment should be testable with following
basic procedure. The companion documents CDC Runtime Guide and CDC Build
System Guide have more information about how to exercise the CDC Java runtime
environment.

. Build the CDC Java runtime environment.

% make CVM_JIT=false

. Test the CDC Java runtime environment.

% bin/cvm -cp testclasses.zip HelloWorld

This will provide a basic test for I/O support.

Chapter 3 Host Programming Interface 3-15

3-16 CDC Porting Guide * December 2008

CHAPTER 4

Fast Locking

Fast locking is a speed optimization technique for reducing the time needed to do
object synchronization. Because the vast majority of locking is uncontended, this
optimization is achieved by introducing the use of a lightweight lock in the absence
of contention for a lock between threads. A lightweight lock is a data structure that
records the fact that an object was locked instead of actually binding a monitor to
the object and locking the monitor.

If no contention occurs, locking and unlocking of an object is achieved by simply
marking the object's lightweight lock data structure accordingly. If contention
occurs, the object will then be inflated by binding a monitor to the object. This is
done by the contending thread, and ownership is assigned to the owner thread.
After inflation, locking and unlocking of the object is done by actually locking and
unlocking the monitor which is now bound to the object. A monitor object tends to
be heavyweight because it normally involves system calls.

At some point in time, for example during garbage collection, an unlocked object
monitor may be deflated. That means if the object is not locked at that time, its
monitor may unbind from that object. After deflation, locking and unlocking of the
object will be go through the lightweight lock mechanism again until contention
occurs. Because locking an object through the lightweight lock mechanism generally
takes less time and resources than the heavyweight, inflated mechanism, this scheme
results in faster object synchronization.

4.1

Fast Lock Implementations

Each object has a header which contains a word of bits indicating the current state of
the object from a locking perspective. The possible states are:

m Locked. The locked state indicates that the object is locked with a lightweight lock
and is associated with a lock record data structure which contains further
information about the state of the object.

4-1

m Inflated into a heavyweight monitor. The inflated state indicates that the object has
been inflated and is bound to a monitor as well as a lock record data structure.
Both the monitor and lock record contain information about the object’s state.

m Unlocked. The unlocked state indicates that the object is unlocked and is not
associated with any lightweight lock nor heavyweight monitor. The state of the
object is contained entirely in the object header itself.

The object header word bits, the lock record and any bound monitor must be
manipulated under atomic conditions.

The CDC HotSpot Implementation Java virtual machine provides several options to
implement this atomicity, as expressed in the possible values for the
CVM_FASTLOCK_TYPE option described in TABLE 4-1. These options are usually set in
the platform sync_arch.h header file because the OS and CPU both play a role in
determining the proper CVM_FASTLOCK_TYPE. For example, in the Linux/ARM
example, this is in linux-arm/javavm/include/sync_arch.h.

4-2 CDC Porting Guide * December 2008

TABLE 4-1 CVM_FASTLOCK_TYPE Values

Option Description

CVM_FASTLOCK_NONE The fast locking technique of object synchronization will not be used. Every
time an object is to be locked, the object will be inflated and bound to a
monitor. Locking and unlocking will always be done through the monitor.

If CVM_FASTLOCK_TYPE is set to CVM_FASTLOCK_NONE, the platform does
not need to define CVM_ADV_MUTEX_SET_ OWNER.

This is the easiest fast locking technique to port, but it is also the slowest.

CVM_FASTLOCK_ATOMICOPS The atomicity is achieved using atomic compare-and-swap and atomic swap
operations. The platform must define the CVM_ADV_ATOMIC_CMPANDSWAP
and CVM_ADV_ATOMIC_SWAP options and provide implementations for:

CVMUint32 CVMatomicCompareAndSwap (volatile
CVMUint32 *addr , CVMUint32 new, CVMUint32 old);
CVMUint32 CVMatomicSwap (volatile CVMUint32 *addr,
CVMUint32 new) ;
The platform must also define the CVM_ADV_MUTEX_SET_OWNER option and
provide an implementation for:
void CVMmutexSetOwner (CVMThreadID *self,
CVMMutex* m , CVMThreadID *ti);

CVM_FASTLOCK_MICROLOCK The atomicity is achieved using microlocks which are essentially non-
reentrant mutexes that are used to protect a critical region of code. The values
of the CVM_MICROLOCK_TYPE option indicate the available microlock
implementations:

* CVM_MICROLOCK_DEFAULT. The microlocks will be implemented using the
platform's implementation of CVMMutex.
* CVM_MICROLOCK_PLATFORM_SPECIFIC. If specified, the platform will
have to provide implementations for all the CvMMicroLock APIs.
® CVM_MICROLOCK_SCHEDLOCK. The microlocks will be implemented using a
lockout of the platform's thread scheduler. As such, the platform must
define the CVM_ADV_SCHEDLOCK option and provide implementations for:
void CVMschedLock (void) ;
void CVMschedUnlock (void) ;
* CVM_MICROLOCK_SWAP_SPINLOCK. The microlocks will be implemented
through spinlocks.
The platform must also define CVM_ADV_MUTEX_SET_OWNER option and
provide an implementation for:
void CVMmutexSetOwner (CVMThreadID *self,
CVMMutex* m , CVMThreadID *ti);

Chapter 4 Fast Locking 4-3

4.2

Choosing a Fast Lock Implementation

Deciding which fast lock implementation to use depends on the availability of
certain platform-level APIs and the target processor’s atomic instructions.

It’s easiest to start by setting CVM_FASTLOCK_TYPE to CVM_FASTLOCK_NONE. This
option allows the CDC HotSpot Implementation Java virtual machine to be ported
with the minimal amount of effort spent on object synchronization issues. The
platform must still provide implementations for the CvMMutex APIs. However, the
implementation of CVMmutexSetOwner will not be necessary. Keep in mind that
this implementation is probably the slowest and most resource intensive of all the
fast locking implementations.

If the platform can provide an implementation of CVMmutexSetOwner, the next
easiest combination is:

#define CVM_FASTLOCK_TYPE CVM_FASTLOCK_MICROLOCK
#define CVM_MICROLOCK_TYPE CVM_MICROLOCK_DEFAULT

This combination of options allows the CDC HotSpot Implementation Java virtual
machine to use the fast locking technique without the additional burden of having
the platform provide the implementation of CVMmutexSetOwner.

Next, consider which implementation provides the fastest implementation. This can
only be determined by trying each implementation on the platform. The reason there
is no steadfast rule as to which implementation is faster is because the speed
performance of the implementation depends on the platform’s implementation of
the underlying supporting APIs as indicated in Section 4.1, “Fast Lock
Implementations” on page 4-1.

Generally, setting CVM_FASTLOCK_TYPE to CVM_FASTLOCK_ATOMICOPS provides
the fastest implementation. However, this is dependent on the platform being able to
provide implementations for CVMatomicCompareAndSwap and CVMatomicSwap.

If these atomic operations are not available on the platform, the next fastest
implementation may be CVM_FASTLOCK_MICROLOCK. However, the default
implementation of microlocks in the CDC HotSpot Implementation Java virtual
machine uses CVMMutex. Doing this may make CVM_FASTLOCK_MICROLOCK slower
than CVM_FASTLOCK_NONE on some platforms.

If the platform can provide some fast alternate mechanism of achieving mutual
exclusion, then it is possible to redefine the implementation of the VM'’s microlocks
to use this fast mechanism. The CVM_MICROLOCK_SCHEDLOCK option is provided as
a way to implement microlocks if the platform has the mechanism for disabling the
platform scheduler from doing any context switches. The platform can define
CVM_MICROLOCK_PLATFORM_SPECIFIC and provide its own implementation of the
CVMMicroLock APIs.

4-4 CDC Porting Guide * December 2008

Finally, CVM_MICROLOCK_SWAP_SPINLOCK provides locking using a "spin lock".
This is only supported if the threading model does not use strict priorities.

4.3

Implementations

TABLE 4-2 summarizes the common CVM_FASTLOCK_TYPE and
CVM_MICROLOCK_TYPE configurations.

TABLE 4-2 Fast Lock Implementations

Port CVM_FASTLOCK_TYPE CVM_MICROLOCK_TYPE
Linux/ARM MICROLOCK SWAP_SPINLOCK
Linux/MIPS MICROLOCK SWAP_SPINLOCK
Linux/PowerPC MICROLOCK SWAP_SPINLOCK
Linux/SparcV8 MICROLOCK SWAP_SPINLOCK
Linux/SparcV9 MICROLOCK SWAP_SPINLOCK
Linux/x86 MICROLOCK SWAP_SPINLOCK
Windows Mobile/ARM ATOMICOPS DEFAULT
Windows Mobile/MIPS ATOMICOPS DEFAULT
Win32/X86 ATOMICOPS DEFAULT
Solaris/SparcV8 MICROLOCK SWAP_SPINLOCK
Solaris/SparcV9 ATOMICOPS SWAP_SPINLOCK
Darwin/PowerPC MICROLOCK SWAP_SPINLOCK

The following notes describe how these choices were made. This should provide
help with choosing appropriate values for CVM_FASTLOCK_TYPE and
CVM_MICROLOCK_TYPE for a target platform.

Normally if CVM_MICROLOCK_DEFAULT is specified, a mutex-based microlock

implementation is provided. However, this can be very slow if microlocks are being

used as the fastlock type (CVM_FASTLOCK_MICROLOCK).

In earlier versions of CDC-HI technology, spin locks were provided by the port.
Now CDC-HI provides a default shared implementation with
CVM_MICROLOCK_SWAP_SPINLOCK. To get spinlocks, schedlocks, or the default
(mutex based), specify CVM_MICROLOCK_TYPE with
CVM_MICROLOCK_SWAP_SPINLOCK, CVM_MICROLOCK_SCHEDLOCK or
CVM_MICROLOCK_DEFAULT. Otherwise specify

Chapter 4 Fast Locking

4-5

4-6

CVM_MICROLOCK_PLATFORM_SPECIFIC and implement the necessary microlock
APIs. Note that spinlock-based microlocks are only safe if threads don’t strictly
enforce priorities. This is why they cannot be used for Windows Mobile.

All the platforms above except for Windows Mobile could have chosen to use a
spinlock-based microlocks rather than the default mutex-based microlocks.
However, the benefit of doing so is insignificant if CVM_FASTLOCK_MICROLOCK is
not being used, since microlocks are rarely used in this case.

Note that even if CVM_FASTLOCK_TYPE is not CVM_FASTLOCK_MICROLOCK,
microlocks will still used by the shared code for purposes other than object
synchronization. Since these represent a small portion of actual usage, it does not
affect overall performance.

Setting CVM_FASTLOCK_TYPE can be summarized as follows: Use
CVM_FASTLOCK_MICROLOCK if a very fast microlock implementation can be
provided, or a CAS instruction is not available. Otherwise use
CVM_FASTLOCK_ATOMICOPS.

Setting CVM_MICROLOCK_TYPE can be summarized as follows: If a reasonably fast
schedlock is available, use CVM_MICROLOCK_SCHEDLOCK. Otherwise if spinlocks can
be supported, use CVM_MICROLOCK_SWAP_SPINLOCK. If neither of these are
possible, use CVM_MICROLOCK_DEFAULT for the mutex based microlocks, or specify
CVM_MICROLOCK_PLATFORM_SPECIFIC and provide an implementation of the
microlock APIs.

Windows Mobile/ARM is an exception for the normal approach used to determine
the proper locking types. At first is appears that it should use
CVM_FASTLOCK_MICROLOCK since ARM does not have a CAS instruction. However,
since a spinlock microlock implementation cannot be used on Windows Mobile
(because of strict thread priorities), the fastlock implementation would be done via a
muxtex-based microlock, which would be slow. Windows Mobile does provide a
CAS OS call. Although rather slow compared to an actual CAS instruction, it is
better than the alternative of using CVM_FASTLOCK_MICROLOCK with a mutex based
microlock implementation.

CDC Porting Guide * December 2008

rart [II Dynamic Compiler Layer

This part describes the porting interfaces for the dynamic compiler.

Dynamic Compiler

CHAPTER 5

Dynamic Compiler

The CDC HotSpot Implementation Java virtual machine includes a dynamic
compiler that can be easily ported to different target RISC CPUs. This chapter
describes the dynamic compiler’s portability interface and shows how a port is
structured.

This chapter cover the following topics:
m Dynamic Compiler Overview
m Dynamic Compiler Header File Hierarchy

It may be helpful to become familiar with the compiler policy command-line options
described in the companion document CDC Runtime Guide.

5.1

Dynamic Compiler Overview

This section provides a short description of the dynamic compiler’s structure and
operation. The purpose of this overview is to introduce terms and provide context
for the porting effort, not to provide a theory of operations for the dynamic compiler
itself. It is important to note that only a small well-defined portion of the dynamic
compiler requires attention during the porting process. Most of the implementation
is in shared source code that does not require review or modification during the
porting process. On the other hand, a sophisticated knowledge of the target CPU
architecture is necessary.

5-1

5-2

TABLE 5-1 describes the modules of the dynamic compiler.

TABLE 5-1 Dynamic Compiler Modules

Module Implementation Description

Compilation shared A mechanism for choosing what and how to compile. The

policy dynamic compiler provides command-line options for
expressing a compilation policy at runtime. See the
companion document CDC Runtime Guide for a
description of these command-line options.

Front-end (IR shared Once a method has been selected for compiling, the front-

generator) end translates its bytecodes into an intermediate

JavaCodeSelect shared

Back-end code some porting
generator
Compiled code some porting

manager (CCM)

representation (IR) which represents expressions with a
directed acyclical graph (DAG) data structure that
simplifies optimization and code generation.
Semantically, the IR is at a slightly lower level than
bytecodes and uses an idealized RISC instruction set that
allows for some parameterization. So during the first pass
many code optimizations are performed by shared code,
the most important being inlining.

JavaCodeSelect is a parser generator similar to
YACC. Where YACC is a general-purpose parser
generator based on pattern matching within streams,
JavaCodeSelect produces a parse that performs
pattern matching within tree-based data structures.
JavaCodeSelect runs at build-time and generates a
pattern matching parser for the back-end code generator.

The back-end code generator translates the method’s
optimized IR representation into a native instructions for
storage in the code buffer and eventual execution on the
target CPU. Most of the porting effort for the back-end is
in the implementation of emitter functions that generate
native bit encodings for each IR node.

The back-end also contains a code generation engine built
with JavaCodeSelect. After the initial IR translation,
this code generation engine translates the IR
representation into calls to the emitters. Most of the
JavaCodeSelect grammar rules are written in shared
code and do not require porting. A more advanced port
could override some of these rules.!

The CCM provides pre-optimized static code routines for
representing complex bytecode fragments that are difficult
to compile dynamically. These are sometimes called
helper functions. All of the helper functions have shared
C implementations that can be replaced with optimized
assembly code.

CDC Porting Guide * December 2008

TABLE 5-1 Dynamic Compiler Modules

Module Implementation

Description

Register manager some porting

Stack manager shared

Glue code some porting
Code cache shared
management

The register manager controls resource objects that can be
used to store expression results and other semantic actions
by the optimizer or back-end. These resource objects may
be either a physical register or a spill area in the Java
stack frame. The porting effort for the register manager is
based on the CPU abstraction interface that identifies
which register sets that the register manager can and
cannot use.

The stack manager is in charge of compile-time
management of the Java expression stack and parameter
stack. It keeps track of the expressions currently on the
stack, which among other things, are used to compute
stackmaps for GC safe-points.

Target specific code (in assembler) that expedites calling
from dynamically compiled code to CDC-HI runtime
support routines such as CCM helper functions.

Once a method has been compiled, it is stored in the code
cache so that the interpreter or other compiled methods
can access it.

1 Overriding the default JavaCodeSelect grammar rules is not currently supported in this porting guide.

As shown in TABLE 5-1, most of the porting effort is condensed into some

initialization functions, and groups of well-defined emitter and helper functions.

There are basically three layers to the dynamic compiler implementation:

m Most of the shared code in src/share is target-independent.

m The code in src/portlibs/risc is a RISC porting library that abstracts the
common features of RISC architectures.

m The code in src/<CPU> and src/<0S>-<CPU> contain target-specific code.

Chapter 5 Dynamic Compiler

5-3

5.2

Dynamic Compiler Header File

Hierarchy

The directory share/javavm/include/porting/jit contains the top-level
header files that describes the macros, data structures and functions required by a
port. These header files are described in TABLE 5-2.

TABLE5-2 Dynamic Compiler Header File Hierarchy

Header File

Description

share/javavm/include/porting/jit/
jit.h

portlibs/jit/risc/include/porting/
jitrisc.h
portlibs/jit/risc/include/porting/

jitriscemitter.h

share/javavm/include/porting/jit/
ccm.h
portlibs/jit/risc/include/porting/

ccmrisc.h

Top-level porting layer for the dynamic
compiler. This header file describes macros
that specify target-specific capabilities,
data structures and support functions
provided by the target implementation.
Implementations for most of these support
functions are available in the RISC porting
library in src/portlibs/jit/risc.

The CPU abstraction interface defines the
characteristics of the CPU.

Emitter porting layer.

Helper porting layer.

5-4 CDC Porting Guide * December 2008

52.1

portlibs/jit/risc RISC Porting Library

The portlibs/jit/risc directory contains a RISC porting library that is the basis
of CDC-HI's shared RISC porting strategy.

TABLE 5-3

portlibs/jit/risc RISC Porting Library

File/Directory

Description

ccmintrinsics_risc.c
jit_risc.c

jitemitter.c

jitopcodes.c

jitopcodes.h
jitregman.c

jitstackman.c

jitstackman.h

jitgrammar.h

jitfloatgrammarrules.jcs
jitgrammardefs.jcs
jitgrammarincludes.jcs

jitgrammarrules.jcs
include/export

include/porting

Intrinsics for a few methods in java. lang.
Back-end.

This file implements all of the conditional emitters, and is
meant for platforms that don’t support conditional
instructions other than branches.

Shorthand names for the opcode values used by the back-end.

Register manager.

Stack manager.

Data structures for the codegen-time expression/semantic
stack.

JavaCodeSelect input files that contain the default shared
grammar rules.

Public interface to be used by CPU-specific code emitters.

Portability interfaces to be implemented by CPU-specific
ports.

5.3

Creating a Dynamic Compiler
Implementation

In this section we outline the steps necessary for creating a dynamic compiler
implementation. As with the HPI, other ports are available from Java Partner
Engineering that can be used as examples. The best approach is to choose a CPU
from the list in TABLE 3-5 with similar features to the target CPU. Then use the

Chapter 5 Dynamic Compiler 5-5

5.3.1

techniques found in that port as an example for the target port. This will help with
the initial stages of porting, but nothing can replace the research/testing/tuning
cycle necessary to exploit the best features of the target CPU.

Suggested Work Flow

. Get the initial port working.

a. Collect architectural characteristics. This includes defining macros for the CPU
abstraction interface that identify available registers, maximum load/store offsets
and whether the target CPU has conditional ALU instructions.

b. Implement some glue code. Many glue functions are short pieces of assembly
code that bind compiled code to C helper functions.

c. Implement the invoker functions. The four invoker functions described in
share/javavm/include/porting/jit/ccm.h are critical to system
performance. These are usually written in assembly language.

d. Implement the emitter functions. Because the emitter and helper functions are
well defined they can be isolated for straightforward optimization and testing.

These steps should require about 4500 lines of code: a small amount for the CPU
abstraction interface, about 1500 lines for the glue code and about 3000 lines for the
emitter functions.

. Tune the implementation by supplying optimized helper function

implementations. Software floating point support is also implemented through a
separate group of helper functions.

5-6 CDC Porting Guide * December 2008

5.3.2

CPU Abstraction Interface

The first stage is to write some macros described in
portlibs/jit/risc/include/porting/jitrisc.h that define the
characteristics of the target CPU.

TABLE 5-4 CPU Abstraction Interface

Source File Description

portlibs/jit/risc/include/porting/ CPU abstraction interface.
jitrisc.h

arm/javavm/include/jit/ ARM implementation.
jitrisc_cpu.h

arm/javavm/include/jit/
jitasmconstants_cpu.h

linux-arm/javavm/include/jit/

jitasmmacros_cpu.h

portlibs/jit/risc/include/porting/jitrisc.h defines the CPU
abstraction interface, including macros that describe available registers and control
facilities like condition code settings and the availability of conditional instruction
execution.

The CPU abstraction interface identifies which registers to use, allocate and avoid.
The following list describes many of the macros in
portlibs/jit/risc/include/porting/jitrisc.h.

m CVMCPU_SP_REG: register number of the C stack pointer.

m CVMCPU_JSP_REG and CVMCPU_JFP_REG: dedicated Java stack pointer and Java
frame pointer registers. They must be in the set that are safe (non-volatile) across
C calls.

m CVMCPU_PROLOGUE_PREVFRAME_REG and CVMCPU_PROLOGUE_NEWJFP_REG
registers to be used in the prolog. These are used when calling some helpers in a
compiled method’s prolog. They must be in the set that is safe across C calls. But
they are only used during the prolog so will also be available for use by the
compiled code.

m CVMCPU_FIRST_PHI_SPILL_REG and CVMCPU_MAX_PHI_SPILLS_IN_REGS:
registers to be used for holding computed values between blocks. These are
usually at the low end of the range of non-volatile registers.

m CVMCPU_ARGI1_REG, ... CVMCPU_ARG4_REG, CVMCPU_RESULT1_REG and
CVMCPU_RESULT2_REG: the C argument and return value registers. These are
volatile across C calls.

m Optional.

» CVMCPU_CHUNKEND_REG: Java stack chunk end pointer
= CVMCPU_CVMGLOBALS_REG: system globals pointer
= CVMCPU_CP_REG: constant pool pointer

Chapter 5 Dynamic Compiler 5-7

5-8

CVMCPU_EE_REG: ee pointer
CVMCPU_ZERO_REG: zero register

m Register manager configuration. (Required.)

Note: these guidelines are for general purpose registers. There are corresponding
macros for floating point registers.

There should be no more than 32 general purpose registers numbered
0...(n-1), because the bitset for them must be represented with a
CVvMUint32.

CVMCPU_ALL_SET: the bitset of all registers.

CVMCPU_BUSY_SET: the bitset of all registers that the register manager should
not allocate, and which it doesn’t already know about. (It already knows about
any registers named in any of the above definitions, including C stack pointer,
Java frame pointer, Java stack pointer and any optional dedicated registers).
For example, registers reserved for use by the OS are included in
CVMCPU_BUSY_SET.

CVMCPU_NON_VOLATILE_SET: the bitset of all registers safe across a C
function call.

CVMCPU_VOLATILE_SET: the bitset of all registers unsafe across a C function
call.

CVMCPU_AVOID_SET: the register set that can be used, but only as a last resort.
Generally this will include the argument registers plus some or all of the phi
registers.

CVMCPU_MIN_INTERESTING_REG and CVMCPU_MAX INTERESTING_REG: the
lower and upper bounds on register numbers that the register manager should
consider for allocation. This is used by the register manager’s search
optimization so that the register manager does not have to iterate over
registers that can never be used.

m Optional CPU features.

CVMCPU_HAS_CONDITIONAL_ALU_INSTRUCTIONS,
CVMCPU_HAS_CONDITIONAL_LOADSTORE_INSTRUCTIONS and
CVMCPU_HAS_CONDITIONAL_CALL_INSTRUCTIONS indicate conditional
instruction support.

CVMCPU_HAS_ALU_SETCC indicates that ALU instructions can set condition
codes.

CVMCPU_HAS_IMUL_IMMEDIATE indicates that the platform has an integer mul
by immediate instruction.

CVMCPU_HAS_POSTINCREMENT_STORE indicates that the platform has a
postincrement addressing mode for stores.
CVMCPU_MAX_LOADSTORE_OFFSET shows the maximum offset (+/-) for a
load/store word instruction.

CVMCPU_RESERVED_CP_REG_INSTRUCTIONS shows the number of
instructions reserved for setting up constant pool base register in the method’s
prologue.

CDC Porting Guide * December 2008

5.3.3

= CVMCPU_NUM_OF_INSTRUCTIONS_FOR_GC_PATCH gives the number of nop’s
needed at GC check patch points, which is normally the case on processors
with a delay slot after a branch-and-link instruction. Nop’s are alse needed if
the call that is patched in cannot be done in one instruction.

Glue Code

The glue functions in share/javavm/include/porting/jit.h and
portlibs/jit/risc/include/porting/ccmrisc.h are short routines that bind

compiled code to C helper functions.

TABLE 5-5 Glue Code

Source File

Description

share/javavm/include/porting/
jit.h
portlibs/jit/risc/include/porting/

ccmrisc.h

arm/javavm/runtime/jit/

jit_cpu.S

arm/javavm/runtime/jit/

ccmglue_cpu. S

Defines CVMJITgoNative and
CVMJITexitNative glue functions.

Defines glue functions for binding to
compiled code to CCM C helper functions
and for doing method invocations.

Implementations of CVMJITgoNative
and CVMJITexitNative glue functions.

Implementations of parts of ccmrisc.h.

Chapter 5 Dynamic Compiler 5-9

534

53.4.1

Miscellaneous Code

Some of the code for a port falls outside of neat categories.

TABLE 5-6 Miscellaneous Code

Source Files

Description

arm/javavm/runtime/jit/

ccmcodecachecopy_cpu.S

Convenience wrapper file for compiling
together code for copying into the code

cache and to guarantee the ordering of
symbols.

arm/javavm/runtime/jit/ Initializing and destroying the back-

jitinit_cpu.c end.
Called by shared code. Also includes signal

handler for handling trap-based
NullPointerExceptions.

linux-arm/javavm/runtime/jit/
jit_arch.c
arm/javavm/runtime/jit/
flushcache.S
Cache flushing allows data written by
the compiler to be reinterpreted as
instructions. This may be implemented
with a system call.

Code Cache Copy

Dynamically compiled code makes many calls to various helper functions written in
assembler. On most platforms these calls need to be made using a multiple
instruction long call. This is because dynamically compiled code is in the malloc
heap, and is normally too far away from code linked with the CDC-HI Java runtime
binary to call it with a single instruction.

In order to locate the assembler functions closer to the dynamically compiled code
so they can be called with a single instruction, the assembler functions can
optionally be copied into the start of the code cache where the dynamically compiled
code resides. This usually results in better performance.

The copying of the assembler functions is handled by shared code. It is enabled by
#define CVM_JIT_COPY_CCMCODE_TO_CODECACHE. This will cause all code
between the symbols CVMCCMcodeCacheCopyStart and
CVMCCMcodeCacheCopyEnd to be copied. Normally ccmcodecachecopy_cpu. S is
used to properly setup these two symbols.

A table of all functions that are copied must be setup in
CVMJITinitCompilerBackEnd (), which is usually implemented in
jitinit_cpu.c. The functions in the table must appear in the same order that they
appear in memory.

5-10 CDC Porting Guide * December 2008

53.4.2

Note that if you enable CVM_JIT_COPY_CCMCODE_TO_CODECACHE, debugger
breakpoints set in the assembler code won’t function properly. If they are set after
running CDC, then they will never be hit since the code cache copy of the functions
are the ones actually used. If they are set before running CDC, then the trap
instruction inserted by the debugger will get copied into the code cache copy. This
will cause the breakpoint to be hit, but the debugger won’t know it’s a breakpoint
and get will get confused.

Trap-based NullPointerExceptions

The implementations of many Java bytecodes, such as opc_invokevirtual, need
to first check if an object reference is null, and throw a NullPointerException if
it is. Dynamically compiled methods must also do the equivalent of a null pointer
check. This leads to slower performance and increased generated code.

The CDC-HI dynamic compiler allows for a more lazy approach to check for null
object references called trap-based NullPointerExceptions. It eliminates doing
an explicit check for a null object reference, followed by a conditional branch to
throw the exception. Instead the dereference of the null object reference is allowed to
cause a crash. This results in a SIGSEGV on most platforms. A signal handler must
be installed to catch this signal, confirm that it occurred in compiled code, and cause
execution to resume in code that will throw a NullPointerException.

The Linux/ARM port implements the signal handler in jit_arch.c. The
handleSegv () function catches the signal, changes the link register to the
instruction after the crash occurred, and changes the pc to point to the
CVMCCMruntimeThrowNullPointerExceptionGlue () routine. This exactly
mimics the compiled code calling
CVMCCMruntimeThrowNullPointerExceptionGlue () itself from the point of
the crash, which is the desired behavior when using a null object references.

Implementing trap-based NullPointerExceptions is entirely optional. You can
choose to implement it to increase performance. To disable it, make sure you don’t
#define CVMJIT_TRAP_BASED_NULL_CHECKS. Once the port is working, you can
choose to enable trap-based NullPointerExceptions and implement the signal
handler for it.

Chapter 5 Dynamic Compiler 5-11

5.3.5 Intrinsics

java.lang contains a few methods that are implemented with intrinsics for the
dynamic compiler.

TABLE 5-7 Intrinsics

Source Files Description

share/javavm/include/jit Intrinsic methods.
jitintrinsic.h
portlibs/jit/risc/ Shared RISC implementation.

ccmintrinsics_risc.c

arm/javavm/runtime/jit/ ARM implementation.
ccmintrinsics_cpu.c
arm/javavm/runtime/jit/

ccmintrinsics_asm_cpu.S

Adding intrinsics is optional but the procedure is straightforward.

1. Create a configuration record for the intrinsic. See the example in
arm/javavm/runtime/jit/ccmintrinsics_cpu.c. The record must be inside
CVMJIT_INTRINSIC_CONFIG_BEGIN and CVMJIT_INTRINSIC_CONFIG_END
markers. This record will include a pointer to the intrinsic glue implementation.

2. Override the CVMJITintrinsicsList intrinsic list in
<CPU>/javavm/include/jit/jit_cpu.h.

5-12 CDC Porting Guide * December 2008

5.3.6

5.3.7

Invokers

The invoker functions handle the transitions between dynamically compiled
methods and interpreted code. These functions are critical to performance and
aggressive techniques are necessary, including reducing the number of memory
accesses, hand scheduling the assembler code and taking into account properties of

methods known at compile time.

TABLE 5-8 Invokers

Source File

Description

share/javavm/include/porting/jit/

ccm.h

portlibs/jit/risc/include/porting/

ccmrisc.h

arm/javavm/runtime/jit/

ccminvokers_cpu.S

Shared code portability interface for
invokers.

RISC portability interface for invokers.

Invoker implementation.

Emitters

Each port requires a collection of emitters that map the IR instructions to the native
encoding of the target CPU architecture. Sometimes they do more if more than one
native instruction must be emitted. Writing the emitters requires detailed knowledge

Chapter 5 Dynamic Compiler 5-13

5-14

of the target CPU architecture. This porting interface is well-defined but requires
close attention to the target CPU’s capabilities. TABLE 5-9 shows the relevant source
files for both the required interface and the ARM implementation.

TABLE 5-9 Emitters

Source File Description

portlibs/jit/risc/include/porting/ Emitter portability interface.
jitriscemitter.h

share/javavm/include/porting/jit/
jit.h

arm/javavm/runtime/jit/ Emitter implementation.
jitemitter_cpu.c

arm/javavm/include/jit/
jitriscemitter_cpu.h

arm/javavm/include/jit/
jitriscemitterdefs_cpu.h

portlibs/jit/risc/

jitemitter.c

Implementing the emitters will require a detailed understanding of the target CPU.
The list below provides some guidelines for the required information.

m Instruction set issues.

» The emitters use the binary native encoding for the target CPU, not an
assembly language.
= Some ISAs include instructions that are supported by traps into the OS. This
would affect performance.

= Multiply-by-immediate.

m Branch instructions.
m Are delay slots required after branches?
= Reach of branches and calls.
» Which register(s) can be used in indirect branches?

m Load/store addressing modes.

m Post ++ store instruction.

» Reach of offsets. (assume reg+offset).

» Mechanism for loading and storing 64-bit quantities, even if it requires
multiple instructions.

» Because of the way the Java stack is organized, memory alignment beyond
word alignment cannot be guaranteed.

Range of ALU instruction immediates.

Use of condition codes (if any).

s Which instructions can set the condition codes.

= Which instructions can be conditionally executed, depending on condition
codes.

CDC Porting Guide * December 2008

5.3.8

» If the processor lacks condition codes (e.g. MIPS) there must be a way to
compare and branch (see programming idioms below).

After implementing the emitter functions, the dynamic compiler should be
operational and ready for testing. The next stage is to implement helper functions.

Helpers

The back-end can optimize code at runtime or use pre-optimized static code
modules called helpers that represent complex bytecode fragments that are difficult
to compile dynamically. Because the shared code contains C implementations for
every helper function, this work can be performed after first getting the port
working. The goal here is to identify important helper functions and reimplement
them, usually in assembly code.

Note: Most helpers require a small amount of assembler glue to bind compiled code
to the C helper.

TABLE 5-10 Helpers

Source File Description
share/javavm/include/porting/jit/ Helper portability and glue interface.
ccm.h

portlibs/jit/risc/include/porting/

ccmrisc.h

share/javavm/include/ Shared C reference implementation.
ccm_runtime.h
share/javavm/runtime

ccm_runtime.c

arm/javavm/include/jit/ Helper implementation.
ccm_cpu.h

arm/javavm/runtime/jit/
ccmallocators_cpu.S

arm/javavm/runtime/jit/

ccmmath_cpu.S

share/javavm/include/porting/jit/ccm.h includes a series of macros that
indicate whether the helper function is provided by the platform implementation or
uses the default shared C reference implementation. The the platform
implementation can override the defaults with #defines in
<CPU>/javavm/include/jit/ccm_cpu.h.

Chapter 5 Dynamic Compiler 5-15

The ARM implementation includes more optimizations than the other ports. The
following arithmetic and allocator helpers represent a good place to start.

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_IDIV

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_IREM

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LMUL

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LNEG

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LSHL

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LSHR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LUSHR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LAND

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LOR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LXOR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_NEW

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_NEWARRAY

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_ANEWARRAY

Note: you may choose to handle common cases with assembly language
implementations and defer more complex cases for the C implementation. Object
synchronization and object allocation helpers are usually implemented this way,

providing high performance in the most common cases and ease of implementation
in the more difficult cases.

5.3.9 Floating Point Support

The floating point helpers provide an opportunity to implement much faster
functions than those provided with the C runtime. This is because Java floating-
point semantics are much simpler than full IEEE floating-point semantics because
there are no modes or exceptions.

5-16 CDC Porting Guide * December 2008

CVM_JIT_USE_FP_HARDWARE causes the dynamic compiler to produce floating
point instructions. Otherwise all floating point values are stored in general purpose
registers and C helpers are called to perform most floating point operations. This is
the softfloat model used by the ARM implementation. The C helpers can be
overridden by assembly language helpers for better performance.

TABLE 5-11 Floating Point Support

Source File Description

share/javavm/include/porting/jit/ Defines the helper porting interface.

ccm_runtime.h

share/javavm/runtime/ Shared floating point helpers.

ccm_runtime.c

arm/javavm/runtime/jit/ Assembly language floating point helpers.

ccmmath_cpu.S

Chapter 5 Dynamic Compiler 5-17

5-18 CDC Porting Guide * December 2008

PART IV

Garbage Collector Layer

This part describes the how to create a pluggable garbage collector.

This part contains the chapters:

Creating a Garbage Collector

Direct Memory Interface Reference
Indirect Memory Interface Reference
How to be GC-Safe

Note — The garbage collection APIs are optional because the built-in garbage
collection algorithms are highly optimized and known to work across a wide range
of applications. These APIs are made available for product-specific needs and are
not required for general porting.

CHAPTER 6

Creating a Garbage Collector

This chapter describes how to create a garbage collector for the CDC HotSpot
Implementation Java virtual machine. Creating a garbage collector is an optional
part of porting the CDC HotSpot Implementation Java virtual machine to a new
target system because the default generational garbage collector performs well
under most circumstances.

Note — This chapter assumes basic knowledge of conventional garbage collection
(GC) algorithms, such as mark-and-sweep and copying collection, as well as related
GC concepts, such as read and write barriers.

The chapter covers the following topics:

Introduction
Exactness
Pluggable GC
Writing a New GC

6.1

Introduction

The CDC HotSpot Implementation Java virtual machine’s memory system possesses
the following features:

m Exactness: ensures that the GC knows about all pointers at GC time; there is no
need for conservative scans of the heap.

m Pluggable GC: allows a GC author to write a new GC without changing the VM
source.

CDC HI has a generational garbage collector as its default, resulting in much
reduced average GC pause times and much reduced total time spent on GC. CDC HI
incorporates an implementation of generational GC as its default GC. Generational

6-1

GC is based on the observation that most objects are short lived. In other words,
"young objects die young." So the heap is separated into a small young objects area
and a large old objects area. Objects are allocated in the young area, and if they
survive enough GCs, they are promoted to the old area. Since most objects die
young, young space collections collect most of the garbage with relatively little effort
and short running time, with occasional longer-running, old space collections to
collect the whole heap. In CDC HI, young space collections are performed using a
"semispace copying" GC algorithm, whereas old space collections are performed
using a "mark-compact” GC algorithm.

Further details of CDC HI's generational GC are beyond the scope of this document.
This document instead focuses on aspects of the CDC HI memory system
architecture that apply to any GC written for CDC HI.

6.2

Exactness

CDC HI is built with the goal of exactness in mind. An exact VM knows about all
pointers to the Java heap, both from the VM code and native methods. Exactness has
numerous advantages:

Allows for lower per-object overhead through the elimination of handles
Makes full heap compaction possible on every GC

Eliminates unnecessary object retention due to conservative guesses
Allows the implementation of the widest range of GC algorithms

CDC HI implements exactness by using GC-safe points (or GC points, for short) for
GC. GC cannot occur at arbitrary points in the execution of a program, but only
when all threads can tolerate GC. Furthermore, threads only make their states
explicit at well-known intervals, but not all the time.

Each thread in CDC HI can be in a GC-unsafe state or a GC-safe state. A thread in a
GC-unsafe state is free to point to heap objects directly and can do any GC-unsafe
pointer manipulations it likes. However, such a thread cannot tolerate GC, as the
collector cannot obtain its precise set of pointers. A thread in a GC-safe state must
make all its pointers known to the GC. In order to prevent pointers from becoming
invisible to the GC through C compiler optimizations on VM code, a thread is not
allowed to point to objects directly, but only through an extra level of indirection.
Also, a thread registers with the GC any pointers that the GC needs to scan.
Therefore, threads can tolerate GC.

The GC can only proceed when all threads are GC-safe. CDC HI makes precise
pointer information available to the GC when all threads are GC-safe.

6-2 CDC Porting Guide * December 2008

6.2.1

6.2.1.1

6.2.1.2

For a guide to writing GC-safe code in CDC HI and details on CDC HI internal APIs
with regards to GC-safe and GC-unsafe modes, please refer to Section 3, “” on
page 3-1.

Global GC Requests

A typical exact GC cycle in CDC HI is initiated by a thread requesting a GC. At this
point, CDC HI must bring all other threads to GC points before the GC can proceed:

m FEach thread polls for a global GC request at GC points.

m Upon detecting a global GC request, a thread at a GC point saves its GC-
observable state and suspends itself.

m The GC requester waits for all GC-unsafe threads to become GC-safe and suspend
themselves.

m When all threads are GC-safe, the GC can proceed and scan the exact state of each
thread.

GC points fall on certain byte codes to ensure that each thread can suspend itself in
bounded time if there is a global GC request.

Valid GC points in the CDC HI interpreter are:

Method invocation points

Backwards branches

Class loading and constant resolution points
JNI implementation heap access points
Memory allocation points

Method Invocation Points

Method invocation points are used as GC points because of the state of the
interpreter stack when a GC occurs. Since each frame on the stack refers to a method
that has stopped, naturally, at a method invocation point, it makes sense to use
invocation sites as GC points. So when the GC walks the interpreter stack frames
looking for roots, it can readily find frame pointers into the heap.

Backwards Branches

Backwards branches are used as GC points in the interpreter to ensure that the
currently executing method of each thread is guaranteed to become GC-safe within a
bounded amount of time: each method will either loop by a backwards branch or hit
a method invocation within a bounded amount of time.

Chapter 6 Creating a Garbage Collector 6-3

6.2.1.3

6.2.1.4

6.2.1.5

Class Loading and Constant Resolution Points

CDC HI code outside of the interpreter, such as the system class loader and verifier,
runs mostly GC-safe, in contrast to the byte code interpreter. This allows GC to occur
alongside class loading, for example.

JNI Implementation

And finally, CDC HI's implementation of the Java Native Interface (JNI) allows all
native methods to run GC-safe, except when they access the Java heap. So native
methods can tolerate GC until they call JNI functions that access the heap. At such
heap access points, the CDC HI JNI implementation makes the caller thread
temporarily GC-unsafe while it accesses the heap.

Memory Allocation Points

Heap allocation points are used as GC points in the interpreter to make sure that if
an allocation causes a GC, the state of the thread that initiated the GC is scannable.

6.3

6.3.1

Pluggable GC

CDC Hl is designed to allow a GC author to write a new GC without changing a line
of the VM code itself. This section describes the internal organization of the CDC HI,
including the following features:

m Memory system related functions are separate from the rest of the VM, with the
interfaces between the memory system and the VM clearly defined.

m Entry points to the memory system from the VM are clearly defined. This
abstracts away the details of many common GC tasks from the GC author and is
available as a set of routines for the GC author to use.

m GC-algorithm-independent code is separate from the GC-algorithm-dependent
code. GC-algorithm-independent code is designed to be an interface that needs to
be implemented by a GC author to provide GC functionality.

m GC execution flow, including object allocation, is defined.

Separate Memory System

The separation of the VM from the memory interface is achieved by extensive use of
internal interfaces that are built hierarchically.

6-4 CDC Porting Guide * December 2008

6.3.2

The VM needs to access the heap:

m Directly for GC-unsafe code
m Indirectly for GC-safe code
m Indirectly for native method code

Direct heap access is achieved by using the direct memory interface. Indirect heap
access is achieved using the indirect memory interface, which is built on top of the
direct memory interface. Native method heap access is achieved through a JNI
implementation that is built on top of the indirect memory interface. Consequently,
all heap access in the system is guaranteed to eventually go through the direct
memory interface.

To achieve a memory interface that can accommodate as many GC algorithms as
possible, CDC HI allows the implementation of read and write barriers. Barriers are
used to ensure consistency between a running program and the GC, especially when
the GC does not handle the whole heap on every GC call. Examples of such GCs are
generational, incremental, and concurrent GCs. Barrier use varies widely between
GC algorithms.

A read or write barrier of the data type <T> is a GC-supplied callback to be invoked
on every read or write of a heap location of type <T>.

CDC HI implements support for read and write barriers below the direct memory
interface implementation, so that they are not visible to the VM author. The read and
write barriers are called implicitly and automatically by the implementation of the
direct memory interface, and are, therefore, incurred on all heap access in the
system.

Entry Points to GC Code

Besides accessing the heap, the VM also needs to:

m Initialize the heap on VM startup
m Call the object allocator
m Destroy the heap on VM teardown

Heap initialization/teardown and object allocation are the most commonly used
entry points to GC code from the VM. All allocation and GC activity in the system is
triggered by a call from the VM or a native method into the object allocator. The
object allocator encapsulates GC policy and is responsible for initiating GC when it
is required.

There are other entry points that the VM uses to pass control to the GC. However,
these are usually triggered by a matching native call to request GC action as
described below:

m The sun.misc.GC class (responsible for asynchronous, background GC) calls
into the GC to figure out the time stamp of the last major GC in the system.

Chapter 6 Creating a Garbage Collector 6-5

6.3.3

6.3.4

m The library method Runtime.gc () causes a GC to occur.

m The library methods Runtime. freeMemory () and Runtime.totalMemory ()
obtain information from the GC regarding free and total memory sizes in the
heap.

Shared Memory System Code

There are certain activities that all GCs will have to perform, regardless of algorithm.
CDC HI separates those routines into the shared GC interface called gc_common.
Such common GC activities include:

Making threads stop at GC-safe points

Finding and scanning exact roots of the system

Finding and scanning references in heap objects and arrays
Handling special scans for

» Weak references and finalization

» String interning
]
]

Java language synchronization data structures
Class unloading

The details of such activities are abstracted in the implementation of the gc_common
interface, and are available as GC services for the GC author to use. These routines
and macros are described in detail in the section, Section 6.4, “Writing a New GC”
on page 6-7.

GC-specific Memory System Code

There are certain activities that are GC-algorithm specific. CDC HI separates those
routines into a GC-implementation specific GC interface gcimpl. The routines and
macros in this interface need to be implemented by the GC author. Such GC calls are
responsible for:

Allocating and initializing the heap and its associated data structures
Allocating new objects

Performing the object reclamation functions of the GC

Implementing read and write barriers.

The gcimpl routines will be called by the VM at appropriate points to ensure the
correct GC execution flow. These routines and macros are described in detail in the
section, Section 6.4, “Writing a New GC” on page 6-7.

6-6 CDC Porting Guide * December 2008

6.3.5

GC Execution Flow

Object allocation, and subsequent possible GC action, is initiated by the VM by
calling into the gcimpl object allocation routine and is performed by switching back
and forth between shared and GC-implementation specific code.

1. CDC HI allocates memory using the shared routine
CVMgcAllocNewInstance ().

2. CVMgcAllocNewInstance () does some processing and calls the GC-specific
CVMgcimplAllocObject () to allocate the actual space for the object.

3. CVMgcimplAallocObject () performs the GC and calls the shared routine
CVMgcStopTheWorldAndGC () to stop all threads at GC-safe points.

4. CVMgcStopTheWorldAndGC () ensures that all threads rendezvous at GC-safe
points. When that is done, it calls the GC implementation CVMgcimplDoGC () to
perform the GC action.

5. CVMgcimplDoGC () may call shared GC service routines to scan GC state: For
example, CVMgcScanRoots () to scan all roots or CVMobjectWalkRefs () to
scan the pointers in a given object or array.

6. When CVMgcimplDoGC () returns, all threads that were stopped at GC points
resume execution. Eventually, CVMgcAllocNewInstance () returns and the
thread that originally initiated GC resumes execution.

6.4

6.4.1

Writing a New GC

To write a new garbage collector for CDC HI, the GC author implements the gcimpl
interface. This section outlines the GC and relevant CDC HI source organization,
describes the CDC HI data types that the GC author needs to know about, and
describes the gcimpl routines that need to be implemented. This section also
describes the shared GC routines available to the GC author.

Source Organization

The important directories and files relevant to implementing GCs on CDC HI are:

m src/share/javavm/include/gc_common.h
The shared GC interface.
m src/share/javavm/include/gc/gc_impl.h
The gcimpl GC interface that has to be implemented for each GC.

Chapter 6 Creating a Garbage Collector 6-7

6.4.2

m src/share/javavm/include/gc/<gcname>/gc_config.h
The configuration file for a specific GC.

m src/share/javavm/runtime/gc/<gcname>/gc_impl.c
The implementation file for a specific GC.

Data Types

GC code has direct access to all objects on the heap. The GC code can also assume
that it is single-threaded if it is being executed as part of a CVMgcimplDoGC (),
which guarantees that no GC-unsafe threads exist. Therefore, GC code can refer to
an object directly using the type CVMObject*. A CVMObject is defined as:

struct CVMjava_lang_ Object {
CVMObjectHeader hdr;
CVMJavaVal32 fields[1];
Y

typedef CVMjava_lang_ Object CVMObject;

where the object header CVMObJjectHeader is defined as:
struct CVMObjectHeader {
CVMClassBlock *clas;
volatile CVMUint32 wvarious32; /* A multi-purpose field */
Yi
Array types are a subclass of object types, in the sense that an array reference in CDC

HI can be cast to a CvMObject*. The header of a Java language array contains the
same structure, with an additional 32-bit length field.

Array types differ for each element type. Array elements are tightly packed in that an
individual sub-word element of an array, such as a short, is not widened to int
width. A sample array declaration with name <arrName> and element type
<elem_type> looks like:

struct CVMArrayOf<arrName> {
CVMObjectHeader hdr;
CVMJavalnt length;
<elem_type> elems[1];
Yi
typedef struct CVMArrayOf<arrName> CVMArrayOf<arrName>;

6-8 CDC Porting Guide * December 2008

The CDC HI array types are:

TABLE6-1 CDC HI Array Types

Array type Element type

CVMArrayOfByte CVMJavaByte
CVMArrayOfShort CVMJavaShort
CVMArrayOfChar CVMJavaChar

CVMArrayOfBoolean CVMJavaBoolean

CVMArrayOfInt CVMJavalnt
CVMArrayOfRef CVMObjectICell
CVMArrayOfFloat CVMJavaFloat
CVMArrayOfLong CVMTwoJavaWords

CVMArrayOfDouble CVMTwoJavaWords

The element type of CVMTwoJavaWords for the long and double cases is defined
as:
typedef CVMJavaval32 CVMTwoJavaWords[2];

Any array can be cast to CVMArrayOfAnyType if the aim is to access array header
elements only.

Because the GC can assume single-threaded execution, it is free to override the
second word of an object header, assuming that it reconstructs it before threads are
resumed. The second header word frequently has a trivial, well known default value.
This word can be tested for triviality to determine if an overriding GC routine needs
to save away the original contents of the word:

/* The default trivial contents of the various32 word */

constant CVMUint32 CVM_OBJECT_DEFAULT_ VARIOUS_WORD

/* Is a various32 word trivial?

* (i.e., can just be set to CVM_OBJECT_DEFAULT_VARIOUS_WORD after
* GC)

*/

CVMBool CVMobjectTrivialClassWord (CVMUint32 word)

The complete set of operations on an object the GC author can call are given below
in the section, Section 6.4.4.5, “Per-object Data” on page 6-24.

For more information about CVM-internal data structures, see the header files
included in src/share/javavm/include. Especially important are:

Chapter 6 Creating a Garbage Collector 6-9

objects.h: Object format, basic Java language synchronization operations
classes.h: CDC HI internal representations of Java language classes
gc_common . h: Shared GC data structures

sync.h: Lock structures

Also note that the basic data types defined by the platform and the VM basic data
types that are exported to the porting layer are described in the chapter Section 3, “”
on page 3-1:

m The defs.h section describes the data types defined by the platform.
m The vim-defs.h section describes data types that are exported to the porting
layer.

6.4.3 What to Implement

As described previously, a new GC is written by implementing a set of gcimpl
functions. This section describes them, detailing how to get basic GC execution,
including the functions and macros that must be implemented, the read and write
barriers to use, and how to move arrays.

6.4.3.1 Basic Execution

For basic GC execution, and for interfacing with the VM, the GC implementation
must implement the following data types and functions.

To start out with, define in
src/share/javavm/include/gc/<gcname>/gc_config.h:

struct CVMGCGlobalState {

Y

This should include any global state the GC would like to maintain which non-GC
code might wish to access. In the current state of CDC HI, there are no such details
that may be communicated through CVMGCGlobalState. This may change in the
future.

Now the GC author should implement the following functions.

1. For heap initialization:
/* Initialize GC global state if required */
CVMUint32 CVMgcimplInitGlobalState (CVMGCGlobalState* globalState)

/* Initialize the heap, with a given minimum and maximum heap size

6-10 CDC Porting Guide * December 2008

in bytes. Return CVM_TRUE on success, CVM_FALSE otherwise. */
CVMBool CVMgcimplInitHeap (CVMGCGlobalState* globalState, CVMUint32
minBytes, CVMUint32 maxBytes)
2. For allocation and GC:
/*
* Allocate uninitialized heap object of size numBytes
* This is called by the VM code on every allocation.
*x/
CVMObject* CVMgcimplAllocObject (CVMExecEnv* ee, CVMUint32 numBytes)

/*

* Perform GC.

* This routine is called by the common GC code after all locks are
* obtained, and threads are stopped at GC-safe points. It's the
* GC routine that needs a snapshot of the world while all threads

* arestopped (typically at least a root scan).

* The goal to free is 'numBytes' bytes.

*/
void CVMgcimplDoGC (CVMExecEnv* ee, CVMUint32 numBytes)
3. For teardown and VM exit:

/* Teardown routines */

/*
* Destroy GC global state
*/
void CVMgcimplDestroyGlobalState (CVMGCGlobalState* globalState) ;

/ *

* Destroy heap. CVM_TRUE on success, CVM_FALSE otherwise.
*/
CVMBool CVMgcimplDestroyHeap (CVMGCGlobalState* globalState) ;
4. Miscellaneous routines:
/ *

Chapter 6 Creating a Garbage Collector 6-11

* Return the number of bytes free in the heap.
*/
CVMUint32 CVMgcimplFreeMemory (CVMExecEnv* ee)

/*

* Return the amount of total memory in the heap, in bytes.
*/
CVMUint32 CVMgcimplTotalMemory (CVMExecEnv* ee)

/* The time stamp of the last full GC of the heap, in order to
* gsupport the implementation of
* sun.misc.GC.maxObjectInspectionAge (). This should return the
* value of CVMtimeMillis() obtained on the last GC performed.
*/

CVMInt64 CVMgcimplTimeOfLastMajorGC () ;

5. Debug-only routines (when CVM_DEBUG=true at build-time)

/* Heap iteration support */

/*
* Per-object callback to call during iteration
*/
typedef void (*CVMObjectCallbackFunc) (CVMObject* obj, CVMClassBlock*
cb, CVMUint32 objSize, void* data) ;

/*
* CVMgcimplIterateHeap should traverse all objects on the heap
* and call 'cback' on each object, with its class, size and

* generic 'data’.

* If the heap consists of contiguous range(s), use

* CVMgcScanObjectRange ()
*/
void CVMgcimplIterateHeap (CVMExecEnv* ee, CVMObjectCallbackFunc
cback, void* data)

/*

* A per-object callback function, to be called during heap dumps

6-12 CDC Porting Guide * December 2008

6.4.3.2

*/
typedef void (*CVMObjectCallbackFunc) (CVMObject* obj, CVMClassBlock*
cb, CVMUint32 objSize, void* data);

/*
* Heap dump support: Iterate over a contiguous-allocated
* range of objects.
*/
void CVMgcScanObjectRange (CVMExecEnv* ee, CVMUInt32* base, CVMUint32*
top, CVMObjectCallbackFunc callback, void* callbackData) ;

Read and Write Barriers

CDC HI allows a GC author to define read and write barriers as required by a given
GC algorithm. This is done by including a series of #define's in
src/share/javavm/include/gc/<gcname>/gce_config.h. Theimplementation
of the barrier for a data type <T> is called implicitly by the appropriate direct
memory layer macro corresponding to <T>; the barriers are not visible to VM
authors.

Note that in all the barriers listed below, the type Ref refers to any reference type,
including objects of all classes and arrays. Appropriate type checking of assignments
is done by the rest of the VM; all reference types are equal by the time they trickle
down to the barrier layer.

The default implementation of a barrier is empty. Therefore, the GC author should
only #define the barriers that he/she needs.

The read and write barriers are separated according to data type. The names are self
explanatory. The code for a read or write barrier is executed right before the actual
read or write takes place.

All barriers take as argument a pointer to the head of the object being written, as
well as the address of the slot being written to. Write barriers take an additional
argument that is the value that is being written.

Read Barriers

The read barrier for reference typed array or object slots:
void CVMgcimplReadBarrierRef (
CVMObject* objRef, CVMJavaObject** fieldLoc)

The read barriers for non-reference types, size 32-bits or less:

Chapter 6 Creating a Garbage Collector 6-13

6-14

void CVMgcimplReadBarrierByte (

CVMObject* objRef, CVMJavaByte* fieldLoc)
void CVMgcimplReadBarrierBoolean (

CVMObject* objRef, CVMJavaBoolean* fieldLoc)
void CVMgcimplReadBarrierShort (

CVMObject* objRef, CVMJavaShort* fieldLoc)
void CVMgcimplReadBarrierChar (

CVMObject* objRef, CVMJavaChar* fieldLoc)
void CVMgcimplReadBarrierInt (

CVMObject* objRef, CVMJavaInt* fieldLoc)
void CVMgcimplReadBarrierFloat (

CVMObject* objRef, CVMJavaFloat* fieldLoc)

The read barrier for 64-bit slots, for Java language long and double.
void CVMgcimplReadBarrier64 (
CVMObject* objRef, CVMJava32* fieldLoc)

Write Barriers

The write barrier for reference typed array or object slots:
void CVMgcimplWriteBarrierRef (
CVMObject* objRef, CVMObject** fieldLoc, CVMObject* rhs)

The write barriers for non-reference types, size 32-bits or less:
void CVMgcimplWriteBarrierByte (

CVMObject* objRef, CVMJavaByte* fieldLoc, CVMJavaByte rhs)
void CVMgcimplWriteBarrierBoolean (

CVMObject* objRef, CVMJavaBoolean* fieldLoc, CVMJavaBoolean rhs)
void CVMgcimplWriteBarrierShort (

CVMObject* objRef, CVMJavaShort* fieldLoc, CVMJavaShort rhs)
void CVMgcimplWriteBarrierChar (

CVMObject* objRef, CVMJavaChar* fieldLoc, CVMJavaChar rhs)
void CVMgcimplWriteBarrierInt (

CVMObject* objRef, CVMJavaInt* fieldLoc, CVMJavalInt rhs)
void CVMgcimplWriteBarrierFloat (

CVMObject* objRef, CVMJavaFloat* fieldLoc, CVMJavaFloat rhs)

The write barrier for 64-bit slots, for Java language long and double.

CDC Porting Guide * December 2008

6.4.3.3

void CVMgcimplWriteBarrieré64 (
CVMObject* objRef, CVMJava6d4* fieldLoc, CVMJavab4d rhsPtr)

Important notes:

m In the 64-bit cases of read and write barriers, the fieldLoc argument of a read or
write barrier is a pointer to a CVMJavaVval32 corresponding to the first 32-bit
word of a 64-bit value. Likewise, in the 64-bit write barrier, rhsPtr is a pointer to
a CvMJavaVal32 corresponding to the first 32-bit word of the 64-bit value being
written.

m The byte, char and short data types are widened to int width in regular Java
objects (not in arrays), so barriers for those data types are
CVMgcimpReadBarrierInt () and CVMgcimplWriteBarrierInt (), and not
the shorter variants.

Moving Arrays

The barriers described above are defined on a slot-by-slot basis. On some GCs, this
may prove to be inefficient when arrays need to be moved. For array moves,
optional block readers and block writers may be defined. These would have to perform
the read or write and batch the barriers. If a GC chooses not to override these, the
memory system invokes the element-wise barriers for each element of the array
move.

Any of the block operations in these sections may be overridden:

m To read from a Java language array into a C array

m To write to a Java language array from a C array

m To copy the contents of one Java language array to another Java language array of
the same type

To read from a Java language array into a C array

Each of these will read 1en elements of the appropriate type from Java language
array arr, starting from index start. The elements will be written into the C
buffer buf. The action performed below should include any block barrier action
required, and also the block copy itself, which is the equivalent of

memmove (&buf[0], arr->elems[start], len * sizeof (<jType>))
where jType is the appropriate Java language type (e.g., CVMJavaInt or
CVMJavalong).
void CVMgcimplArrayReadBodyByte (

CVMJavaByte* buf, CVMArrayOfByte* arr,

CVMUint32 start, CVvMUint32 len)

void CVMgcimplArrayReadBodyBoolean (

Chapter 6 Creating a Garbage Collector 6-15

6-16

CVMJavaBoolean* buf, CVMArrayOfBoolean* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyShort (
CVMJavaShort* buf, CVMArrayOfShort* arr,
CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyChar (
CVMJavaChar* buf, CVMArrayOfChar* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyInt (
CVvMJavaInt* buf, CVMArrayOfInt* arr,
CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyFloat (
CVMJavaFloat* buf, CVMArrayOfFloat* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyRef (
CVMJavaObject** buf, CVMArrayOfRef* arr,
CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyLong (
CVMJavaVal32* buf, CVMArrayOfLong* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyDouble (
CVMJavaVal32* buf, CVMArrayOfDouble* arr,
CVMUint32 start, CVMUint32 len)

To write to a Java language array from a C array

Each of these will write Ien elements of the appropriate type to a Java language
array arr, starting from index start. The elements will be read from the C buffer
buf. The action performed below should include any block barrier action
required, and also the block copy itself, which is the equivalent of

memmove (arr->elems [start], &buf[0], len * sizeof (<jType>))
where jType is the appropriate Java language type (e.g., CVMJavaInt or
CvMJavalLong).
void CVMgcimplArrayWriteBodyByte (

CVMJavaByte* buf, CVMArrayOfByte* arr,

CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyBoolean (

CDC Porting Guide * December 2008

CVMJavaBoolean* buf, CVMArrayOfBoolean* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyShort (
CVMJavaShort* buf, CVMArrayOfShort* arr,
CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyChar (
CVMJavaChar* buf, CVMArrayOfChar* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyInt (
CVMJavaInt* buf, CVMArrayOfInt* arr,
CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyFloat (
CVMJavaFloat* buf, CVMArrayOfFloat* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyRef (
CVMJavaObject** buf, CVMArrayOfRef* arr,
CVvMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyLong (
CVMJavaVal32* buf, CVMArrayOfLong* arr,
CVMU1int32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyDouble (
CVMJavaVal32* buf, CVMArrayOfDouble* arr,
CVMUint32 start, CVMUint32 len)

To copy the contents of one Java language array to another Java
language array of the same type
Each of these will copy len elements of the appropriate type from
srcArr([srcIdx, srcIdx+len) to dstArr[dstIdx, dstIdx+len). The

action performed below should include any block barrier action required, and
also the block copy between the arrays itself, which is the equivalent of

memmove (dstArr->elems [dstIdx], srcArr->elems|[srcIdx], len *
sizeof (<jType>))
where jType is the appropriate Java language type (e.g., CvMJavaInt or
CVMJavalong).
void CVMgcimplArrayCopyByte (

CVMArrayOfByte* srcArr, CVMUint32 srcIdx,

Chapter 6 Creating a Garbage Collector 6-17

CVMArrayOfByte* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyBoolean (

CVMArrayOfBoolean* srcArr, CVMUint32 srcIdx,

CVMArrayOfBoolean* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyShort (

CVMArrayOfShort* srcArr, CVMUint32 srcIdx,

CVMArrayOfShort* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyChar (

CVMArrayOfChar* srcArr, CVMUint32 srcIdx,

CVMArrayOfChar* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyInt (

CVMArrayOfInt* srcArr, CVMUint32 srcIdx,

CVMArrayOfInt* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyFloat (

CVMArrayOfFloat* srcArr, CVMUint32 srcldx,

CVMArrayOfFloat* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyRef (

CVMArrayOfRef* srcArr, CVMUint32 srcIdx,

CVMArrayOfRef* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyLong (

CVMArrayOfLong* srcArr, CVMUint32 srcIdx,

CVMArrayOfLong* dstArr, CVMUint32 dstIdx, CVMUint32 len)
void CVMgcimplArrayCopyDouble (

CVMArrayOfDouble* srcArr, CVMUint32 srcIdx,

CVMArrayOfDouble* dstArr, CVMUint32 dstIdx, CVMUint32 len)

6.4.4 What to Call

In the section, Section 6.3.3, “Shared Memory System Code” on page 6-6, we have
mentioned the gc_common interface. This section outlines the various components
of the gc_common interface available to the GC author, including how to initiate a
GC, how GC roots are scanned, how special root scans are performed, how object
walking is performed, and a list of the macros for accessing the data on an object.
You can find the interface in src/share/javavm/include/gc_common.h.

6-18 CDC Porting Guide * December 2008

6.4.4.1

6.4.4.2

Initiating a GC

When an object allocator decides to GC (most probably due to an allocation failure),
it has to make sure that the system is stopped in a GC-safe way. In CDC HI, this is
accomplished by using CVMgcStopTheWor1dAndGC ():

/*
* Initiate a GC. Acquire all GC locks, stop all threads, and then
* call back to the particular GC to do the work. When the
* particular GC is done, resume.
*
* Returns CVM_TRUE on success, CVM_FALSE if GC could not be run.
*/

CVMBool CVMgcStopTheWorldAndGC (CVMExecEnv* ee, CVMUint32 numBytes)

This function stops the system in a GC-consistent way by acquiring all system locks,
and bringing all threads to GC-safe points. Then it calls the entry point to the GC
implementation, CVMgcimplDoGC () to do the actual work. If GC work could not be
performed because of a problem such as an out of memory situation,
CVMgcStopTheWorl1ldAndGC () returns CVM_FALSE.

Root Scans

When all threads are stopped at GC-safe points, the GC will need to scan all GC
roots. This is accomplished by using CVMgcScanRoots (), and a GC-specific
callback function:

/ *
* Scan the root set of collection
*/
void CVMgcScanRoots (CVMExecEnv* ee, CVMGCOptions* gcOpts,
CVMRefCallbackFunc callback, void* data)
where the callback function type is defined as:
/ *
* A 'ref callback' called on each *non-NULL* discovered root
*/
typedef void (*CVMRefCallbackFunc) (CVMObject** refAddr, void* data)

So the GC author defines a callback function that takes the address of a reference
containing slot as argument, along with an opaque data argument.
CVMgcScanRoots (ee, gcOpts, refCallback, refCallbackData) calls
(*refCallback) (refPtr, refCallbackData) on every discovered root
address refPtr.

Chapter 6 Creating a Garbage Collector 6-19

6.4.4.3

The memory system guarantees that both the following conditions hold when the
callback routine is called:

refPtr != NULL
*refPtr != NULL

The roots scanned are JNI local and global references, Java language stack locations,
Java language local variables, Java language static variables, and CDC HI-internal
data structures. The details are abstracted from the GC author.

Weak references are only discovered and queued up if
gcOpts.discoverWeakReferences is CVM_TRUE before a call to
CVMgcScanRoots (). So the GC author typically calls the first root scan with weak
references discovery enabled, and then disable weak references discovery by setting
gcOpts.discoverWeakReferences to CVM_FALSE.

The root scanning operation may be performed multiple times on each GC cycle.
However, note that each root scan cycle including the first one should be preceded
by a call to CVMgcClearClassMarks ():

/*
* Clear the class marks for dynamically loaded classes.
*x/
void CVMgcClearClassMarks (CVMExecEnv* ee, CVMGCOptions* gcOpts) ;

This function is responsible for clearing the mark bits on dynamically loaded classes.
The mark bits are used to prevent infinite recursion and redundant work on class
scanning. If they are not cleared between successive root scans, the GC might end up
skipping important class roots like Java language statics.

Note that CVMgcClearClassMarks () is a separate function since a root scan cycle
may include more than just calling CvMgcScanRoots (). For example, a
generational GC may call CVMgcScanRoots () to discover system roots,
CVMgcScanSpecial () to discover special object roots, and then scan pointers
recorded by a write barrier. So CVMgcClearClassMarks () should be called before
each such list of root scans, during which class scanning state should be kept.

Special Root Scans

The Java 2 Platform language and libraries have features that require special
scanning support from CDC HI. In particular, the following requires special
handling:

m Weak references and finalization

6-20 CDC Porting Guide * December 2008

Java 2 Platform has three flavors of public weak reference classes in the
java.lang.ref package, a fourth package-private java.lang.ref weak
reference flavor for implementing finalization, and a JNI weak reference flavor
for native method use. The GC needs to be aware of all these.

m String interning

The CDC HI classloader interns Java language strings that it finds in newly
loaded class files. Also, an application can intern strings using
String.intern (). Some special treatment is necessary to enable unloading
of these strings when they are not in application use.

m Java language synchronization data structures

The CDC HI runtime uses various data structures to support Java language
synchronization, which contain embedded pointers to objects. These data
structures should be collectible when the objects they refer to become garbage.

m Class unloading

According to Java 2 Platform semantics, a class C can be unloaded if and only
if its classloader CL is garbage-collected. The CDC HI memory system should
implement this behavior.

The CDC HI memory system hides the GC-scanning details of these special features
from the GC author by the use of a narrow interface consisting of two functions. If
the GC author calls these two functions at the right points in GC code, all special
scanning is performed automatically.

The idea with special scanning is to garbage collect entries from out-of-heap tables
pointing into the heap. If we declared the tables as GC roots, they would
automatically be kept alive and their entries would never be collected. Instead, we
do the special objects scanning in conjunction with information from the GC to
figure out which entries of the special objects may be discarded and which entries
need to be kept.

Where to insert special root scan APIs

From the CDC HI point of view, GC involves two conceptual points where special
root scan APIs should be inserted:

1. A point at which object liveness detection is possible. See details below on
Section 3., “A point at which object liveness detection is possible.” on
page 6-22.

2. A point at which object pointer update is possible, from a pre-GC pointer to a
post-GC pointer. See details below on Section 4., “A point at which object
pointer update is possible, from a pre-GC pointer to a post-GC pointer.” on
page 6-23.

Chapter 6 Creating a Garbage Collector 6-21

6-22

As illustrated below, when the GC calls
CVMgcProcessSpecialWithLivenessInfo (), each special object slot will be
checked by (*isLive) () to see if the GC determined it to be live in the preceding
reachability scan. Dead entries will automatically be removed from the special object
tables. Later on, the GC will call CvMgcScanSpecial (), which will cause all
remaining live entries in the special object tables to be updated with new pointers.

3. A point at which object liveness detection is possible.

For a mark-sweep-compact type collector, this would be right after a recursive mark
has been performed, but before the addresses of any objects have changed. So to
detect liveness, the mark-sweep collector would simply inspect the mark of an
object. For a copying collector, this would be right after all live data has been copied.
So to detect liveness, the copying collector would check whether an object reference
is to a forwarded old-space object, or a new-space object.

For this point, the appropriate special scan routine is
CVMgcProcessSpecialWithLivenessInfo ().
The full API for point #1:
/ *
* Process special objects with liveness info from a particular GC
* implementation. This covers special scans like string intern

* table, weak references and monitor structures.

* isLive - a predicate that returns true if an object is strongly

* referenced

* transitiveScanner - a callback that marks an object

* and all its children

*/
void CVMgcProcessSpecialWithLivenessInfo (CVMExecEnv* ee,
CVMGCOptions* gcOpts, CVMRefLivenessQueryFunc isLive, void*

isLiveData, CVMRefCallbackFunc transitiveScanner, void*
transitiveScannerData) ;

The transitiveScanner callback function type CVMRefCallbackFunc is defined
in Section 6.4.4.2, “Root Scans” on page 6-19. The transitiveScanner should
mark its parameter object reference and all its children. The non-NULL
CVMRefCallbackFunc argument semantics hold for transitiveScanner (see
Section 6.4.4.2, “Root Scans” on page 6-19).

The liveness test is done using a predicate isLive of type:
/ *

CDC Porting Guide * December 2008

6.4.4.4

* A predicate to test liveness of a given reference
*/
typedef CVMBool (*CVMRefLivenessQueryFunc) (CVMObject** refAddr,

void* data)

Here also, the non-NULL argument semantics hold for isLive (see Section 6.4.4.2,
“Root Scans” on page 6-19).

4. A point at which object pointer update is possible, from a pre-GC pointer to a
post-GC pointer.

This varies widely for each algorithm. For a copying type algorithm, objects
typically include their forwarding addresses. So pointer updating for an old space
pointer is simply obtaining its forwarding address. Pointer updating for a new space
pointer is not necessary.

For this point, the appropriate special scan routine is CVvMgcScanSpecial ().

The full API for point #2:

/*

* Scan and optionally update special objects. This covers special
* gcans like string intern table, weak references and monitor

* structures.

*/

void CVMgcScanSpecial (CVMExecEnv* ee, CVMGCOptions* gcOpts,
CVMRefCallbackFunc updateRefCallback, void* data);

The updateRefCallback function type CVMRefCallbackFunc is defined in
Section 6.4.4.2, “Root Scans” on page 6-19. It is called for each location that needs to
be updated to a new address. The non-NULL CVMRefCallbackFunc argument
semantics hold for updateRefCallback (see Section 6.4.4.2, “Root Scans” on
page 6-19).

Object Walking

Given an object reference, the GC must be able to find all pointers embedded in the
object and perform an action on each pointer. This operation is very common in all
tracing GCs.

In CDC HI, object walking is performed using a macro, for maximum efficiency. The
object walker uniformly and automatically handles arrays of references and objects.
When it encounters an object of class C, it scans class C as well. It also discovers
weak references, and acts accordingly.

macro void CVMobjectWalkRefsWithSpecialHandling (

Chapter 6 Creating a Garbage Collector 6-23

6.4.4.5

CVMExecEnv* ee, CVMGCOptions* gcOpts, CVMObject* obj, CVMUint32
firstHeaderWord, C-statement refAction, CVMRefCallbackFunc callback,
void* data)

So given an ee and a gcOpts, CVMobjectWalkRefsWithSpecialHandling()
scans object obj with the first header word firstHeaderWord. It executes (more
like "substitutes”, given that this is a macro) the statement refAction on every
embedded object reference. refPtr is a special variable within the body of
refAction, pointing to the object slot being scanned. The object slot may contain
NULL, so refAction must be prepared to deal with that.

CVMobjectWalkRefsWithSpecialHandling () also calls

(*callback) (refPtr, data) on the address refPtr of every reference-typed
slot in the class data. The non-NULL CVMRefCallbackFunc argument semantics
hold for callback (see Section 6.4.4.2, “Root Scans” on page 6-19).

Note that refAction is a macro, whereas callback is a function. This asymmetry
is intentional for efficiency reasons: refAction is going to be called for each slot of
each object, whereas callback is going to be called for each slot of each class. The
former is typically orders of magnitude more frequent than the latter.

Per-object Data

The following set of macros are responsible for accessing the information on an
object given a direct object reference. The set of operations are separated into a few
distinct categories. Arrays and objects automatically receive separate treatment.

m Object size support, given an object or array reference

/* Get the size of an object or array instance */

CVMUint32 CVMobjectSize (CVMObject* obj)

/* Get the size of an object or array instance given its class*/
CVMUint32 CVMobjectSizeGivenClass (CVMObject* obj, CVMClassBlock* cb)
m Object class support

/* Get the first word of the object header as integer */
CVMUint32 CVMobjectGetClassWord (CVMObject* obj)

/* Set the first word of the object header as integer */

void CVMobjectSetClassWord (CVMObject* obj, CVMUint32 word)

/* Get the class of a given object */

void CVMobjectGetClass (CVMObject* obj)

m ROMized object support

/* CVM_TRUE if an object is read-only and not on the heap */
CVMBool CVMobjectIsInROM (CVMObject* obj)

6-24 CDC Porting Guide * December 2008

6.4.5

m Object marking support

/* CVM_TRUE if an object is "marked". */
CVMBool CVMobjectMarked (CVMObject* obj)
/* Clear mark on an object */

void CVMobjectClearMarked (CVMObject* obj)
/* Set mark on an object */

void CVMobjectSetMarked (CVMObject* obj)

Example GC

This section outlines a very simple allocator and garbage collector written for CDC
HI called markcompact, for a mark-sweep-compact collector. The outline here only
pertains to implementation for the GC interface, so there is no detail about the actual
compaction process.
To begin, there should be a gc_config.h file describing the GC:
src/share/javavm/include/gc/markcompact/gc_config.h:

#ifndef _INCLUDED_ MARKCOMPACT_ GC_CONFIG_H

#define _INCLUDED_MARKCOMPACT_GC_CONFIG_H

#include "javavm/include/gc/gc_impl.h"

/ *

* The following header could include any mark-compact specific

* declarations.

*/

#include "javavm/include/gc/markcompact/markcompact.h"

/ *

* Barriers in this implementation

*/
#define CVMgcimplWriteBarrierRef (directObj, slotAddr, rhsValue

/ *

* Do nothing. Just an anxample.

*/

/*

* Global state specific to GC
*/
struct CVMGCGlobalState {

Chapter 6 Creating a Garbage Collector 6-25

/* Nothing here */

i

#endif /* _INCLUDED_MARKCOMPACT_GC_CONFIG_H */

Next, there should be a gc_impl. c file implementing the garbage collector. Note

that setting the build option CVM_GCCHOICE=markcompact would build this
garbage collector automatically.

src/share/javavm/runtime/gc/markcompact/ge_impl.c:
#include "javavm/include/defs.h"
#include "javavm/include/objects.h"
#include "javavm/include/classes.h"
#include "javavm/include/directmem.h"
/*
* This file is generated from the GC choice given at build
*time.
*/
#include "generated/javavm/include/gc_config.h"
/* The shared GC interface */
#include "javavm/include/gc_common.h"
/* And the specific GC interface */
#include "javavm/include/gc/gc_impl.h"
/* The main allocation entry point */
/*
* Allocate uninitialized heap object of size numBytes.
* GC "policy" encapsulated here.
*/
CVMObject*
CVMgcimplAllocObject (CVMExecEnv* ee, CVMUint32 numBytes)
{
CVMObject* allocatedObj;
/* Actual allocation detail hidden here */
allocatedObj = tryAlloc (numBytes) ;
if (allocatedObj == NULL) {
/* GC and re-try allocation */
if (CVMgcStopTheWorldAndGC (ee, numBytes)) {
/* re-try if GC occurred */

allocatedObj = tryAlloc (numBytes) ;

6-26 CDC Porting Guide * December 2008

*

*

*/

3

return allocatedObj;

The main GC point, which CVM calls after ensuring GC-

safety of all threads.

This is a mark-sweep-compact GC, with most details of

the sweep and compaction hidden.

The GC uses three callback functions. These are detailed

below, after CVMgcimplDoGC () .

void

CVMgcimplDoGC (CVMExecEnv* ee, CVMUint32 numBytes)

{

*/

CVMGCOptions gcOpts;

/* Set default GC options */

gcOpts.fullGC = CVM_TRUE;

gcOpts.allClassesAreRoots = CVM_FALSE;

/*

* The mark phase includes discovering weak references

/*

gcOpts.discoveriWeakReferences = CVM_TRUE;

/*

* Scan all roots. markTransitively will mark a root

* and all its "children". Its 'data' argument is the
* GC options. A more complicated callback could pass

* a pointer to a struct into the callback function.
*/

CVMgcScanRoots (ee, &gcOpts, markTransitively, &gcOpts);

/*
* Don't discover any more weak references.

gcOpts.discoveriWeakReferences = CVM_FALSE;

Chapter 6 Creating a Garbage Collector

6-27

6-28

/ *

* At this point, we know which objects are live and

* which are not. Do the special objects processing.
*/

CVMgcProcessSpecialWithLivenessInfo(ee, &gcOpts, isLive,
NULL,

markTransitively, &gcOpts);
/* The sweep phase. This phase computes the new
* addresses of each object and writes them on the * side.

* Details hidden.

*/
sweep () ;
/* Update the roots again, by writing out looking up
* 0ld -> new address translations.
*/
CVMgcScanRoots (ee, &gcOpts, updateRoot, NULL) ;
CVMgcScanSpecial (ee, gcOpts, updateRoot, NULL) ;
/* And update all interior pointers. Details hidden */
scanObjectsInHeap (ee, gcOpts, updateRoot, NULL) ;
/* Finally we can move objects, and reset object marks.
* Compaction details hidden.
*/
compact () ;
}
/*

* The liveness predicate, for use in special objects
* gcanning.
*/
static CVMBool
isLive (CVMObject** refPtr, void* data)
{
CVMObject* ref;

CVMassert (refPtr != NULL) ;
ref = *refPtr;

CVMassert (ref != NULL) ;

/*

CDC Porting Guide * December 2008

* ROM objects are always live
*/
if (CVMobjectIsInROM (ref)) {
return CVM_TRUE;
}
/* Is object marked? It's live then. */
return CVMobjectMarked (ref) ;
}
/*
* The transitive object marker. Marks a given object and
* all its"children".
* This is recursive, for simplicity. A production GC
* should really not be recursive.
*/
static void
markTransitively (CVMObject** refPointer, void* data)
{
CVMGCOptions* gcOpts = (CVMGCOptions*)data;
CVMObject* ref = *refPointer;
CVMClassBlock* refCb = CVMobjectGetClass (ref) ;

/*

* ROM objects are always live
*/

if (CVMobjectIsInROM (ref)) {

return;

}

CVMobjectSetMarked (ref) ;

/*

* Now handle all the "children".
*/

CVMobjectWalkRefsWithSpecialHandling (CVMgetEE(),
ref, refCb, {

CVMObject* thisRef = *refPtr;
if (thisRef != NULL) {
if (!CVMobjectMarked (thisRef)) {

markTransitively (refPtr) ;

gcOpts,

Chapter 6 Creating a Garbage Collector 6-29

}

}, markTransitively, data);
}
/*
* Update a root with the new address of an object
*/
static void
CVMgenMarkCompactFilteredUpdateRoot (CVMObject** refPtr, void* data)
{

CVMObject* ref = *refPtr;

/*

* ROM objects are not on the heap

*/

if (CVMobjectIsInROM (ref)) {

return;

}
refPtr = lookupNewAddress (ref); / Details hidden. Update

root. */
}

6-30 CDC Porting Guide * December 2008

CHAPTER 7

Direct Memory Interface Reference

This chapter describes the Direct Memory Interface functions used by the CDC HI
garbage collector (GC). It covers the following topics:

m Introduction

m Object Field Accesses
m Array Accesses

m GC-safety of Threads

7.1 Introduction

These functions are used for accessing object and array fields, and also handle
GC-safe points. Please refer Section , “How to be GC-Safe” on page 9-1 for context
and examples.

Caution — The use of the direct heap access operations is GC-unsafe. Therefore, these
operations should be used with extreme care in a few selected places, and only
within GC-unsafe regions. VM code should use the indirect memory layer almost all
the time when outside the interpreter.

7.2 Object Field Accesses

The following macros access object fields. The result-producing ones take an l-value
as the last argument, and assign to it.

7-1

7.2.1 Accessing Fields of 32-bit Width

These macros use the following parameters:

m the first parameter is a direct object reference

m the second parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

m the third parameter is an l-value to read into or a value to write

Note — The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

7.2.1.1 Weakly-Typed 32-bit Read and Write

macro void CVMD_fieldRead32(CVMObject* o, CVMUint32 off,
CVMJavaVal32 res)

macro void CVMD_fieldWrite32 (CVMObject* o, CVMUint32 off,
CVMJavaVal32 res)

7.2.1.2 Strongly-Typed 32-bit Read and Write

macro void CVMD_fieldReadRef (CVMObject* o, CVMUint32 off,
CVMObject* item)

macro void CVMD_fieldWriteRef (CVMObject* o, CVMUint32 off,
CVMObject* item)

macro void CVMD_fieldReadInt (CVMObject* o, CVMUint32 off,
CVMJavaInt item)

macro void CVMD_fieldWriteInt (CVMObject* o, CVMUint32 off,
CVMJavaInt item)

macro void CVMD_fieldReadFloat (CVMObject* o, CVMUint32 off,
CVMJavaFloat item)

macro void CVMD_fieldWriteFloat(CVMObject* o, CVMUint32 off,
CVMJavaFloat item)

7.2.2 Accessing Fields of 64-bit Width

These macros use the following parameters:

m the first parameter is a direct object reference

7-2 CDC Porting Guide * December 2008

7.2.2.1

7222

m the second parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

m the third parameter is an I-value of type CVMJavavalé4 to read into or a value to
write

The weakly-typed versions read from and write into a word-aligned two-word area
pointed to by location.

Weakly-Typed 64-bit Read and Write

macro void CVMD_fieldRead64 (CVMObject* o, CVMUint32 off,
CVMJavaVal32* location)

macro void CVMD_fieldWrite64(CVMObject* o, CVMUint32 off,
CVMJavaVal32* location)

Strongly-Typed 64-bit Read and Write

macro void CVMD_fieldReadLong (CVMObject* o, CVMUint32 off,
CVMJavavVal64d valéd)

macro void CVMD_fieldWriteLong(CVMObject* o, CVMUint32 off,
CVMJavaVal64d vale6d)

macro void CVMD_fieldReadDouble(CVMObject* o, CVMUint32 off,
CVMJavaVal64d val64d)

macro void CVMD_fieldWriteDouble (CVMObject* o, CVMUint32 off,
CVMJavaVal6d valé6d)

7.3

7.3.1

Array Accesses

The following macros access object fields. The result producing ones take an l-value
as the last argument, and assign to it

Accessing Elements of 32-bit Width and Below

These macros use the following parameters:

m the first parameter is a direct array reference
m the second parameter is the array index where the first array element is at index 0
m the third parameter is an l-value to read into, or a value to write

Chapter 7 Direct Memory Interface Reference 7-3

These macros are all strongly typed. All the Java basic types are represented.

Note — The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

macro void CVMD_arrayReadRef (CVMArrayOfRef* arr, CVMUint32
index, CVMObject* item)

macro void CVMD_arrayWriteRef (CVMArrayOfRef* arr, CvVMUint32
index, CVMObject* item)

macro void CVMD_arrayReadInt (CVMArrayOfInt* arr, CvMUint32
index, CVMJavalnt item)

macro void CVMD_arrayWriteInt (CVMArrayOfInt* arr, CvMUint32
index, CVMJavaInt item)

macro void CVMD_arrayReadByte (CVMArrayOfByte* arr, CVMUint32
index, CVMJavaByte item)

macro void CVMD_arrayWriteByte(CVMArrayOfByte* arr, CVMUint32
index, CVMJavaByte item)

macro void CVMD_arrayReadBool (CVMArrayOfBool* arr, CVMUint32
index, CVMJavaBool item)

macro void CVMD_arrayWriteBool(CVMArrayOfBool* arr, CVMUint32
index, CVMJavaBool item)

macro void CVMD_arrayReadShort(CVMArrayOfShort* arr, CVMUint32
index, CVMJavaShort item)

macro void CVMD_arrayWriteShort (CVMArrayOfShort* arr, CVMUint32
index, CVMJavaShort item)

macro void CVMD_arrayReadChar (CVMArrayOfChar* arr, CVMUint32
index, CVMJavaChar item)

macro void CVMD_arrayWriteChar(CVMArrayOfChar* arr, CVMUint32
index, CVMJavaChar item)

macro void CVMD_arrayReadFloat(CVMArrayOfFloat* arr, CVMUint32
index, CVMJavaFloat item)

macro void CVMD_arrayWriteFloat (CVMArrayOfFloat* arr, CVMUint32
index, CVMJavaFloat item)

7-4 CDC Porting Guide * December 2008

7.3.2

7.3.2.1

7.3.2.2

7.3.3

Accessing Elements of 64-bit Width

These macros use the following parameters:

m the first parameter is a direct array reference

m the second parameter is the array index where the first array element is at index 0

m the third parameters an l-value of type CVMJavavalé4 to read into or a value to
write.

Weakly-Typed Versions

The weakly-typed versions read from and write to a word-aligned two-word area
pointed to by location:

macro void CVMD_arrayReadé64 (<CVMArrayOf64>* o, CVMUint32 off,
CVMJavaVal32* location)

macro void CVMD_arrayWrite64(<CVMArrayOfé64>* o, CVMUint32 off,
CVMJavaVal32* location)

where <CVMArrayOf64> is either CVMArrayOfLong or CVMArrayOfDouble.

Strongly-Typed Versions

macro void CVMD_arrayReadLong (<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal6d valé6d)

macro void CVMD_arrayWriteLong(<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal64d valéd)

macro void CVMD_arrayReadDouble (<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal6d valé64d)

macro void CVMD_arrayWriteDouble (<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal6d valé6d)

where <CVMArrayOf64> is either CVMArrayOfLong or CVMArrayOfDouble.

Miscellaneous Array Operations

All generic object operations apply to arrays as well. In particular, the header of an
array object starts out with an object header that has an additional length entry, so
any operation on the header of an object may be performed on an array header.

Below is an array-specific operation.

macro CVMJavalInt32 CVMD_arrayGetLength (<CVMArrayOfAny>* o)

Chapter 7 Direct Memory Interface Reference 7-5

where <CVMArrayOfAny> is any direct array reference.

7.4

7.4.1

7.4.2

GC-safety of Threads

Each thread has a GC-safety state associated with it. Threads that cannot tolerate GC
are marked as GC-unsafe. A thread whose state can be scanned by GC is marked
GC-safe. GC can occur only when all threads in the system are GC-safe. When a
thread requests GC, all threads that are currently GC-unsafe are rolled forward to
their next GC-safe point.

The following operations show how to create a GC-unsafe window of operation and
how to request a GC-safe point.

GC-unsafe Blocks

When a GC-safe thread wants to perform a GC-unsafe operation, it marks itself as
unable to tolerate GC, performs the GC-unsafe operation, and then marks itself
again as GC-safe. Use CVMD_gcUnsafeExec () to create such a window of GC-
unsafety. At the end of the GC-unsafe window, the thread calling
CVMD_gcUnsafeExec () polls for a GC request. If there is one, the thread suspends
itself to rendezvous with all the other threads rolling forward to their GC points.
Execution continues after GC.

macro void CVMD_gcUnsafeExec (CVMExecEnv* ee, code gcUnsafeAction)

where ee is a pointer to the current thread's execution environment and
gcUnsafeAction is a segment of GC-unsafe code.

GC-safe Blocks: Requesting a GC-Safe Point

GC-unsafe code must occasionally offer to become GC-safe to bound the time from a
GC request to the beginning of GC. CVMD_gcSafeExec and
CVMD_gcSafeCheckPoint are the two macros that allow that.

The CVMD_gcSafeCheckPoint macro is used for code that will not block. The
assumption here is that there is some cached state in the GC-unsafe code which
needs to be saved if GC is needed.

macro void CVMD_gcSafeCheckPoint (CVMExecEnv* ee, code saveAction,
code restoreAction)

7-6 CDC Porting Guide * December 2008

The thread calling CVMD_gcSafeCheckPoint () checks whether there is a GC
request. If there is, the thread executes saveAction to save state necessary for GC,
marks itself as GC-safe, and suspends itself to rendezvous with all the other threads
rolling forward to their GC points. After GC completes, the thread is resumed,
marks itself as GC-unsafe again, and executes restoreAction to do any caching
operations necessary to continue execution.

The CVMD_gcSafeExec macro is used for code that may potentially block. In this
case, whatever cached state the GC-unsafe code has must be saved before calling the
macro.

macro void CVMD_gcSafeExec (CVMExecEnv* ee, code safeAction)

The thread calling CVMD_gcSafeExec () marks itself GC-safe and checks to see if
there is a GC-request. If there is one, the thread suspends itself to rendezvous with
all the other threads rolling forward to their GC points. After GC is over, the thread
is resumed, still in a GC-safe state. It executes safeAction, potentially blocking.
After waking up from the blocking action, the thread marks itself as GC-unsafe and
continues with GC-unsafe execution.

Chapter 7 Direct Memory Interface Reference 7-7

7-8 CDC Porting Guide * December 2008

CHAPTER 8

Indirect Memory Interface
Reference

This chapter contains the references for the indirect memory layer functions, which
are used by the garbage collector (GC). It covers the following topics:

Introduction

ICell Manipulations
Registered Indirection Cells
Object Field Accesses
Array Accesses

8.1

Introduction

These functions are used for accessing the garbage-collected heap indirectly using
pointers to ICells. Please refer to Chapter ” for context and examples.

Note — The indirect memory interface is GC-safe, and is appropriate for use in VM
code outside of the interpreter, like the class loader, or JNI implementation.

8.2

ICell Manipulations

The referent of an ICell is the direct object reference encapsulated by the ICell. The
indirect memory interface allows GC-safe assignments and comparisons between
referents of ICells using the following macros.

1. Assign referent of srcICellPtr to be the referent of dstICellPtr:

8-1

macro void CVMID_icellAssign (CVMExecEnv* ee, CVMObjectICell*

destICellPtr,CVMObjectICell* srcICellPtr)

2. Null out the referent of icellPtr:

macro void CVMID_icellSetNull (CVMExecEnv* ee, CVMObjectICell*

icellPtr)

3. Test whether the referent of icellPtr is null, The result is in res:

macro void CVMID_icellIsNull (CVMExecEnv* ee, CVMObjectICell%*

icellPtr, CVMBool res)

4. Test whether the referent of icellPtr1l is the same object reference as
icellPtr2. The result is in res:

macro void CVMID_icellSameObject (CVMExecEnv* ee, CVMObjectICell*
icellPtrl,CVMObjectICell* icellPtr2, CVMBool res)

8.3

8.3.1

Registered Indirection Cells

An indirection cell must be registered with GC to be scanned as a root. A registered
indirection cell is either a local root or global root. In both cases, the client code is
handed a pointer to an ICell that is part of the root set of GC.

Local Roots

Local roots are allocated within local root blocks. At the end of a local root block, all
allocated local roots within the block are destroyed. Note that local root blocks may
be nested arbitrarily.

To begin a local root block, with respect to the current thread's execution
environment, ee:

macro CVMID_localrootBegin (CVMExecEnv* ee)

To allocate a local root and return a pointer to it:

macro CVMID_localrootDeclare (<ICell>, var)

Here <ICell> may be any legal object or array ICell type.
CVMID_localrootDeclare allocates a new local root, nulls out its referent,
declares an <ICell>* var, and makes var point to the new local root. var is
visible within the scope of the local root block.

To end the local root block, and to discard all local roots allocated within the block:

macro CVMID_localrootEnd()

8-2 CDC Porting Guide * December 2008

8.3.2

Global Roots

Global roots are not bound to any one thread, but are shared between all threads.
They are analogous to JNI global refs. Note that unlike local roots, global roots may
be allocated out-of-order (i.e., the global roots are not guaranteed to be allocated
sequentially in memory).

To allocate a new global root, null out its referent and return a pointer to it:

CVMObjectICell* CVMID_getGlobalRoot ()

To free the global root pointed to by globalRoot:
void CVMID_freeGlobalRoot (CVMObjectICell* globalRoot)

8.4

8.4.1

8.4.1.1

Object Field Accesses

The following macros access object fields. The result producing ones take an l-value
as the last argument, and assign to it.

Accessing Fields of 32-bit Width

These macros use the following parameters:

m the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

m the second parameter is a registered indirect object reference
(CvMObjectICell¥)

m the third parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

m the fourth parameter is an l-value to read into or a value to write

Note — The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

Weakly-Typed 32-bit Read and Write

macro void CVMID_fieldRead32(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32 res)

macro void CVMID_fieldWrite32 (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32 res)

Chapter 8 Indirect Memory Interface Reference 8-3

8.4.1.2 Strongly-Typed 32-bit Read and Write

macro void CVMID_ fieldReadRef (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMObjectICell* item)

macro void CVMID fieldWriteRef (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMObjectICell* item)

macro void CVMID_fieldReadInt (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavalInt item)

macro void CVMID fieldWritelInt (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaInt item)

macro void CVMID_fieldReadFloat(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaFloat item)

macro void CVMID_fieldWriteFloat (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaFloat item)

8.4.2 Accessing Fields of 64-bit Width

These macros use the following parameters:

m the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

m the second parameter is a registered indirect object reference
(CVMObjectICell¥)

m the third parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

m the fourth parameter is an l-value of type CVMJavaval64 to read into or a value
to write

The weakly-typed versions read from and write into a word-aligned two-word area
pointed to by location.

8.4.2.1 Weakly-Typed 64-bit Read and Write

macro void CVMID_fieldRead64 (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32* location)

macro void CVMID_fieldWrite64(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32* location)

8-4 CDC Porting Guide * December 2008

8.4.2.2

Strongly-Typed 64-bit Read and Write

macro void CVMID_fieldReadLong (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavavValé64 val64d)

macro void CVMID_fieldWriteLong(CVMExecEnv* ee, CVMObjectICell* o,
CvVMUint32 off, CVMJavaVal64d valé64d)

macro void CVMID_fieldReadDouble (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaValé64 val64)

macro void CVMID_fieldWriteDouble (CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal64d valé64d)

8.5

8.5.1

Array Accesses

The following macros access object arrays. The result-producing ones take an l-value
as the last argument, and assign to it.

Accessing Elements of 32-bit Width and Below

These macros use the following parameters:

m the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

m the second parameter is a registered indirect array reference
(CVMArrayOf<T>ICell*)

m the third parameter is the array index where the first array element is at index 0

m the fourth parameter is an I-value to read into, or a value to write

These macros are all strongly typed. All the Java basic types are represented.

Note — The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

macro void CVMID_arrayReadRef (CVMExecEnv* ee, CVMArrayOfRefICell*
arr, CVMUint32 index, CVMObjectICell* item)

macro void CVMID_arrayWriteRef (CVMExecEnv* ee, CVMArrayOfRefICell*
arr, CVMUint32 index, CVMObjectICell* item)

macro void CVMID_arrayReadInt (CVMExecEnv* ee, CVMArrayOfIntICell*
arr, CVMUint32 index, CVMJavalInt item)

Chapter 8 Indirect Memory Interface Reference 8-5

8.5.2

macro void CVMID_arrayWriteInt (CVMExecEnv* ee, CVMArrayOfIntICell*
arr, CVMUint32 index, CVMJavaInt item)

macro void CVMID_arrayReadByte (CVMExecEnv* ee,
CVMArrayOfByteICell* arr, CVMUint32 index, CVMJavaByte item)

macro void CVMID_arrayWriteByte(CVMExecEnv* ee,
CVMArrayOfByteICell* arr, CVMUint32 index, CVMJavaByte item)

macro void CVMID_arrayReadBool (CVMExecEnv* ee,
CVMArrayOfBoolICell* arr, CVMUint32 index, CVMJavaBool item)

macro void CVMID_arrayWriteBool(CVMExecEnv* ee,
CVMArrayOfBoolICell* arr, CVMUint32 index, CVMJavaBool item)

macro void CVMID_arrayReadShort(CVMExecEnv* ee,
CVMArrayOfShortICell* arr, CVMUint32 index, CVMJavaShort item)

macro void CVMID_arrayWriteShort (CVMExecEnv* ee,
CVMArrayOfShortICell* arr, CVMUint32 index, CVMJavaShort item)

macro void CVMID_arrayReadChar (CVMExecEnv* ee,
CVMArrayOfCharICell* arr, CVMUint32 index, CVMJavaChar item)

macro void CVMID_arrayWriteChar(CVMExecEnv* ee,
CVMArrayOfCharICell* arr, CVMUint32 index, CVMJavaChar item)

macro void CVMID_arrayReadFloat (CVMExecEnv* ee,
CVMArrayOfFloatICell* arr, CVMUint32 index, CVMJavaFloat item)

macro void CVMID_arrayWriteFloat (CVMExecEnv* ee,
CVMArrayOfFloatICell* arr, CVMUint32 index, CVMJavaFloat item)

Accessing Elements of 64-bit Width

These macros use the following parameters:

m the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

m the second parameter is a registered indirect array reference
(CVMArrayOf<T>ICell*)

m the third parameter is the array index where the first array element is at index 0

m the fourth parameter is an I-value of type CVMJavavalé64 to read into or a value
to write

8-6 CDC Porting Guide * December 2008

8.5.2.1

8.5.2.2

8.5.3

Weakly-Typed Versions

The weakly-typed versions read from and write to a word-aligned two-word area
pointed to by location:

macro void CVMID_arrayRead64 (CVMExecEnv* ee, <CVMArrayOf64ICell>*
o, CVMUint32 off, CVMJavaVal32* location)

macro void CVMID_arrayWrite64 (CVMExecEnv* ee, <CVMArrayOf64ICell>*
o, CVMUint32 off, CVMJavaVal32* location)

where <CVMArrayOf64ICell> is either CVMArrayOfLongICell or
CVMArrayOfDoubleICell.

Strongly-Typed Versions

macro void CVMID_arrayReadLong (CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64d)

macro void CVMID_arrayWriteLong(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaValé64 val64)

macro void CVMID_arrayReadDouble(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64)

macro void CVMID_arrayWriteDouble (CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaValé64 val64)

where <CVMArrayOf64ICell> is either CVMArrayOfLongICell or
CVMArrayOfDoubleICell.

Miscellaneous Array Operations

All generic object operations apply to arrays as well. In particular, the header of an
array object starts out with an object header, with an additional length entry, so any
operation on the header of an object may be performed on an array header.

Below is an array-specific operation.

macro void CVMID_arrayGetLength (<CVMArrayOfAnyICell>* o,
CVMJavaInt32 len)

where <CVMArrayOfAnyICell>* is a registered indirect array reference, and len is
an l-value of type CVMJavaInt32 to store the length result in.

Chapter 8 Indirect Memory Interface Reference 8-7

8.5.4 GC-unsafe Operations

The remaining two operations allow setting and getting the referent of an ICell.

Caution — The use of the ICell referent operations is GC-unsafe. Therefore, these
operations should be used with extreme care in a few selected places, and only
within GC-unsafe regions.

Get the referent of icellPtr
macro CVMObject* CVMID_icellDirect (CVMObjectICell* icellPtr)

Set the referent of icellPtr to be the direct object reference directObj

macro void CVMID_icellSetDirect (CVMObjectICell* icellPtr, CVMObject*
directObj)

8-8 CDC Porting Guide * December 2008

CHAPTER 9

How to be GC-Safe

This chapter describes how to safely address garbage collection issues within the
runtime implementation. In practice, these issues mostly affect implementation
issues in the shared source code and not in the porting layer. The techniques in this
chapter can be used in the rare cases where it is necessary to be GC-safe in a porting
layer.

This chapter covers the following topics:

Introduction

Living with ICells
Explicitly Registered Roots
GC-safety of Threads

9.1

Introduction

In CDC HI, GC may be running at any time during program execution, searching for
program state or changing object addresses. Therefore, you should be very careful
whenever you want to access and change Java objects from native code.

The indirect memory interface allows you to safely manipulate objects from native
code. The calls that make up the indirect memory interface operate on pointers to
ICells (indirection cells), which are non-moving locations in memory holding object
references. ICells must be registered with the garbage collector (GC), so they can be
found and updated when a GC occurs. Registered ICells may be local roots, or global
roots.

The implementation of the indirect memory interface makes use of a per-thread GC-
safety flag. Each indirect memory call on an ICell marks the caller thread as GC-
unsafe, manipulates the Java object encapsulated by the ICell, and marks the thread
as GC-safe again. Threads that are marked GC-unsafe cannot tolerate GC until they

9-1

are marked GC-safe again. GC is only allowed to proceed if all threads are GC-safe.
Use of the indirect interface in conjunction with registered ICells makes your C code
safe from garbage collection, and makes the GC aware of your Java object use.

Please refer to the chapters Section , “Direct Memory Interface Reference” on
page 7-1 and Section , “Indirect Memory Interface Reference” on page 8-1 for
reference.

9.2

9.2.1

Living with ICells

ICells and the indirect memory interface form the foundation of the exactness
architecture of CDC HI. Therefore, it is critical to understand the various ways these
calls can be used to ensure GC-safety.

Working on an exact system is different than working on a conservative system. In a
conservative system, the GC scans the native stacks and native registers, searching

for values that look like pointers. So in order to keep a heap object alive, it is sufficient
to keep around references to it in registers or stack locations for the GC to find them.

In an exact system, all locations holding pointers to heap objects must be known to
the GC. There are two types of such known locations:

1. Implicitly registered locations: The GC has a default root scan, and certain well-
known VM data structures are considered to be default roots. Among this group
are class statics, string intern tables, NI tables holding global references, and
others. All the references in these data structures are considered implicitly
registered with GC.

2. Explicitly registered locations: Any ICells that are not included in the default
root scan of GC must be explicitly registered, either by the local roots mechanism
or the global roots mechanism.

ICell Types

ICells encapsulate direct heap object references. Heap objects may be regular Java
objects or arrays. There are different ICell types to express each. ICells for all non-
array object types are declared as CVMObjectICell. Arrays of different Java types
have corresponding ICell types. For basic type <T>, the right ICell type is
CVMArrayOf<T>ICell. Other ICell types are:

CVMObjectICell ocell; /* for CVMObject references */

CVMArrayOfByteICell acellb; /* for CVMArrayOfByte references */

9-2 CDC Porting Guide * December 2008

CVMArrayOfShortICell acells; /* for CVMArrayOfShort references */
CVMArrayOfCharICell acellc; /* for CVMArrayOfChar references */
CVMArrayOfBooleanICell acellz; /* for CVMArrayOfBoolean references*/
CVMArrayOfIntICell acelli; /* for CVMArrayOfInt references */
CVMArrayOfRefICell acellr; /* for CVMArrayOfRef references */
CVMArrayOfFloatICell acellf; /* for CVMArrayOfFloat references */
CVMArrayOfLongICell acelll; /* for CVMArrayOfLong references */
CVMArrayOfDoubleICell acelld; /* for CVMArrayOfDouble references */
Because ICells contain references that may be manipulated by GC, their referents
should be set, nulled, and assigned to one another using calls from the indirect
memory interface (see Section 8.2, “ICell Manipulations” on page 8-1. Their values

should only be passed around as ICell* to ensure GC-safety. So given ocelll and
ocell2 of type CVMObjectICell:

CVMObjectICell* ocelll;
CVMObjectICell* ocell2;
CVMExecEnv* ee = CVMgetEE() ;
CVMBool res;

<... make sure ocelll and ocell2 point to registered ICells. They
could be local roots or global roots, for example. See below ...>
CVMID_ icellSetNull (ee, ocelll);
CVMID_icellSetNull (ee, ocell2);

CVMassignDirectReferenceTo (ee, ocelll);
CVMID_ icellIsNull (ee, ocelll, res);
if (!res) {
/* Assign the referent of ocelll to the referent of ocell2 */
CVMID_icellAssign(ee, ocell2, ocelll);
}
In the example above, the only values passed around are pointers to ICells. Any
assignment to the encapsulated direct object reference of an ICell (as
assignDirectReferenceTo () does) must happen in a GC-unsafe region, created

in the body of the implementation of CVMID_icellAssign (). GC-unsafe regions
are explained in the section, Section 9.4, “GC-safety of Threads” on page 9-11 .

Chapter 9 How to be GC-Safe 9-3

9.3 Explicitly Registered Roots

Heap object references that are not part of the default root scan of garbage collection
need to be explicitly registered with the collector. There are two separate
mechanisms for explicit registration:

m Local roots: These are short-lived values, like local variables. They are allocated
and deallocated in a stack-like fashion. The interface for using them is geared
towards fast allocation and deallocation, and does not allow out-of-order
deallocation.

m Global roots: These are long-lived values, like global variables. The program can
obtain registered global root locations through the global roots API. Global roots
may be created and destroyed out-of-order.

9.3.1 Declaring and Using Local Roots

Local roots are an efficient way of declaring, registering and unregistering ICells of
local scope. They are typically used to hold relatively short-lived values; think of
them as GC-registered local variables. Also note that local roots are thread-local;
they are created, used and discarded in the same thread.
The use pattern is the following:
//
// Start a local root block, passing in the current 'ee'
// (execution environment), which contains per-thread
// information.
/7
CVMID_localrootBegin(ee); {
CVMID_localrootDeclare (TypelICell, wvarl);
CVMID_localrootDeclare (Type2ICell, var2);
//
// use varl and var2 as TypelICell* and Type2ICell*
// respectively
//
// do NOT leave the block without executing
// CVMID_localrootEnd()!
//
} CVMID_localrootEnd() ;

9-4 CDC Porting Guide * December 2008

9.3.1.1

Since local roots occur more often (dynamically) than global roots, the interface for
using local roots is optimized for allowing stack-like fast allocation and deallocation.
Conceptually:

1. CVMID_localrootBegin () marks the beginning of a scope containing a list of
CVMID_localrootDeclare () calls.

2. The implementation keeps track of CVMID_localrootDeclare () calls. For
each, it allocates and registers a local ICell and declares an ICell pointer to that
registered ICell.

3. When the programmer is done with the local roots in the scope, he/she calls
CVMID_localrootEnd (), which discards all allocated local roots in that scope.

Note that it is important to call CVMID_localrootEnd () when leaving a local root
scope; this call discards all registered local roots declared since the last
CVMID_localrootBegin (). Also note that CVMID_localrootBegin () and
CVMID_localrootEnd () may nest arbitrarily.

Example of Local Root Use

This example illustrates local root use. You want to call an allocating operation that
is possibly a few functions deep. Therefore you want the caller to declare a local
root, and pass its corresponding ICell* as a result argument to the operation. This
keeps the allocated object safe from garbage collection the moment it is stored in the
result argument. When the operation is complete, the caller can unregister the local
root.

The following creates a Java string from a Utf8 string. It is an inlined (fast) version of
the String constructor. It uses two local roots for temporary values, and discards
them after a String has been successfully created and assigned to a result ICell.

void CVMmakeStringFromUtf8 (CVMUtf8* chars, CVMObjectICell* result) {
CVMID_localrootBegin(); {
// Two local roots to be used as temporaries
CVMID_localRootDeclare (CVMObjectICell, string) ;
CVMID_localRootDeclare (CVMArrayOfCharICell, theChars);

CVMJavaInt length;

// Make the string object

CVMID_objectNewInstance (CVMjavaLangStringClassblock, string) ;

// .. . and the chars array

Chapter 9 How to be GC-Safe 9-5

9-6

// Pass the local root in to receive the resulting char/[]

CVMmkArrayOfCharFromUtf8 (chars, theChars);
CVMID_arrayGetLength (theChars, length);

//
// Assign the values of the string
//

CVMID_fieldWriteRef (string,
CVM_offsetOf_java_lang_String value, theChars);

CVMID_fieldWriteInt (string,
CVM_offsetOf_java_lang_String length, length);

CVMID_fieldWriteInt (string,
CVM_offsetOf_java_lang String offset, 0);

// We write the result back to the result ICell.

CVMID_icellAssign (result, string);

// We can now discard the local roots, assuming 'result' was
// a pointer to a registered ICell.
} CVMID_localrootEnd() ;

A possible caller of this may be the constant resolution code, resolving a constant
pool entry of type CONSTANT_String. The result ICell may be the actual constant
pool slot, which is updatable by the GC when it scans class information. (In other
words, the constant pool slot for a String constant is an implicitly registered ICell).
So the call would be something like:

void CVMresolveStringConstant (CVMConstantPool* cp, CVMJavaShort
strIdx, CVMJavaShort utf8Idx)

{
CVM_CLASS_RESOLUTION_LOCK() ;
CVMID_icellSetNull (&cp.entries[strIdx].str);
//
// Mark it as being resolved. This way, no thread can
// yet use this c.p. entry; however GC can scan it

// if necessary.

CDC Porting Guide * December 2008

9.3.2

//
CVMcpSetBeingResolved (cp, strIdx);

CVMmakeStringFromUtf8 (cp.entries[utf8Idx],
&cp.entries[strIdx].str);

CVMcpSetResolved(cp, strIdx);
CVM_CLASS_RESOLUTION_UNLOCK() ;

Declaring and Using Global Roots

Global root registration allows for declaring, registering and unregistering ICells of
global scope. Global roots are typically used to hold long-lived values that are to be

included in the GC root scan; think of them as GC-registered global variables.

The use pattern is the following:
//

// Part of CVMglobals

//

struct CVMGlobalState {

CVMObjectICell* globalRootl;
CVMObjectICell* globalRoot2;

void CVMinitThisModule ()

{
CVMglobals.globalRootl = CVMID_getGlobalRoot () ;
CVMglobals.globalRoot2 = CVMID_getGlobalRoot () ;

void CVMuseThisModule ()
{
// globalRootl and globalRoot2 may safely be used as

// ICell* arguments to CVMID_ operations.

Chapter 9 How to be GC-Safe

9-7

9.3.2.1

CVMID_objectNewInstance (CVMclassJavalangStringClassblock,
CVMglobals.globalRoot2) ;

CVMID_icellAssign(CVMglobals.globalRootl,
CVMglobals.globalRoot2) ;

}

void CVMexitThisModule ()
{
CVMID_freeGlobalRoot (CVMglobals.globalRootl) ;
CVMID_freeGlobalRoot (CVMglobals.globalRoot2) ;
}

Any long-lived ICell declaration should be registered as a global root. These include
C structure fields and global variables.

Examples of Declaring and Using Global Roots

The following examples show how to register an ICell referred to by a C struct, a C
struct that contains a Java pointer, and how to register a well-known value.

Example of Registering an ICell Referred to by a C Struct

This example shows registering an ICell referred to by a C struct. There may be long-
lived C structures in the system with heap object references, like a C hash table with
a Java array as the list of values. The declaration for that hash table in CVM would

be:

typedef struct CVMStrIDhash ({
< ... Other hashtable fields ...>
CVMArrayOfRefICell* params; /* param table, if needed */
} CVMStrIDhash;
where the params array is declared as an ICell* holding an array of references. We
would allocate these StrIDhash nodes as follows:
/* Create a hash table of the specified size */
static CVMStrIDhash *
CVMcreateHash (int sizeInBytes)
{
CVMStrIDhash *h;
h = (StrIDhash *)CVMCcalloc(l, sizeInBytes);

9-8 CDC Porting Guide * December 2008

if (h != NULL) {
CVMinitNode (h) ;
/7
// Register and null out the value
/7
h->params = CVMID_getGlobalRoot () ;
}
return h;
}
After registration, h->params may be used as a registered ICell* parameter to
other CVMID_ operations. So to allocate the params array:
CVMBool
CVMmkParams (CVMStrIDhash* hash, int size)
{
CVMArrayOfRefICell* params = hash->params;
CVMID_newArrayOfRef (CVMjavalLangObjectClassblock, size, params) ;
if (CVMID_icellIsNull (params)) {
return CVM_FALSE; // Allocation failed
} else {

return CVM_TRUE;

Example of a C Structure that Contains a Java Pointer

This example shows a C structure that contains a Java pointer. This declaration is
from the CVMClassblock structure. Whenever a new CVMClassblock is allocated,
the ICell* typed fields are initialized to point to fresh global roots:

struct CVMClassblock {
CVMObjectICell* classLoader;

Y
typedef struct CVMClassblock CVMClassblock;

CVMClassblock* class =(CVMClassblock*)CVMCcalloc (1,
sizeof (CVMClassblock)) ;

Chapter 9 How to be GC-Safe 9-9

9-10

/7
// Get a new, nulled global root to hold a classloader
// reference
//
class->classLoader = CVMID_getGlobalRoot () ;
!/
// Make a new ClassLoader instance, and assign it to its
// location in class 'class'.
/7
CVMID_objectNewInstance (CVMglobals.javaLangClassLoaderClassblock,
class->classLoader) ;
When the CvMClassblock is freed, all its registered global roots must be freed first:
void CVMclassUnload(CVMClassblock* class)
{
//
// Free all class-related data structures

/7

//

// Now get rid of the global roots

//

CVMID_freeGlobalRoot (class->classLoader) ;

// And finally the Classblock itself
CVMCfree (class) ;

Example of Registering a Well-known Value

This example shows how to register well-known values. Let's assume that we want
to have global instances of the java.lang.Class versions of some Java classes.
Note that CDC HI would not necessarily do this, since Classblocks are not
allocated on the heap, but it is a good example for global roots.

//

// Part of CVMglobals
!/

struct CVMGlobalState ({

CDC Porting Guide * December 2008

CVMObjectICell* classJavaLangObject;
CVMObjectICell* classJavalangString;

CVMinitVM /()

/* Allocate and null out global roots */
CVMglobals.classJavaLangObject = CVMID_getGlobalRoot () ;
CVMglobals.classJavaLangString = CVMID_getGlobalRoot () ;

// ... and they lived happily ever after

CvMfindSystemClass ("java/lang/Object",
CVMglobals.classJavaLangObject) ;

CvMfindSystemClass ("java/lang/String",
CVMglobals.classJavalLangString) ;

}

9.4

GC-safety of Threads

Each thread in CDC HI has a flag called the GC-safety flag. Whenever a thread
performs an operation that manipulates heap objects directly, it is marked as GC-
unsafe. If another thread initiates a GC at this time, all threads must be rolled to GC-
safe points in order for GC to proceed safely.

The bytecode interpreter typically works in a GC-unsafe manner to allow for
efficient direct access to heap objects. To bound the time the thread remains GC-
unsafe, backwards branches, method calls, and method returns are designated as
GC-safe points. At those points each thread polls for GC. If there is a GC request, the
thread suspends itself to rendezvous with all the other threads rolling forward to
their GC points. Execution continues after GC.

The implementation of the indirect memory interface marks the caller thread GC-
unsafe while it is manipulating object references directly. These are typically very
simple operations, and result in only a small window of GC-unsafety.

CDC HI also allows arbitrary sets of operations to proceed in GC-unsafe regions.
These operations should be bounded in execution time and are not allowed to block.

Chapter 9 How to be GC-Safe 9-11

9.4.1

For the full set of GC-safety operations, see Section 7.4, “GC-safety of Threads” on
page 7-6.

GC-atomic Blocks

If you want GC disallowed while executing a certain set of operations, use:
CVMD_gcUnsafeExec (ee,

<... gc-unsafe code ...>
)

where ee is a pointer to the execution environment (CVMExecEnv) of the current

thread.

The GC-unsafe code may not block, perform I/0O, or otherwise take too long to
execute, in order to keep the time the GC is disabled to a minimum.

When writing GC-unsafe code, extreme care must be taken to avoid calls to arbitrary
library routines. These may take too long to execute, or grab platform locks that
might end up blocking. The example of malloc () comes to mind. So make sure you
become GC-safe before making such a call (see Section 9.4.2, “Offering a GC-safe
Point” on page 9-14).

Direct pointers to objects may be used within the unsafe block; however, you should
make sure that all direct values are written back into registered ICells before exiting
the gcunsafe block.

Example 1:

Let's say that you want to use two direct memory accesses consecutively without the
overhead of being GC-unsafe around each. Here's how you would do that:
CVMObjectICell* celll;

CVMObjectICell* cell2;

CVMJavalnt vall, val2;

< Assume celll and cell2 point to registered ICells >
CVMD_gcUnsafeExec (ee, {

CVMObject* ol = CVMID_icellDirect (celll);
CVMObject* 02 = CVMID_icellDirect(cell2);

9-12 CDC Porting Guide * December 2008

// Read the third integer field of
// each object.
CVMD_fieldReadInt (ol, 2, wvall);
CVMD_fieldReadInt (02, 2, val2);

}); // End of gcunsafe region

Example 2:

Setting the referent of an ICell. The example below takes an ICell* for a char[]
array, allocates a string, starts a GC-unsafe region, and calls out to initialize the
string's fields. The ICell pointed to by resultString gets a reference to the
allocated string before the GC-unsafe region is exited.

Note that this sort of long GC-unsafe region is intended as an example only; this
style should only be used in performance critical points, where direct accesses help
make the code faster.

void CVMmakeString (CVMArrayOfCharICell* theChars, CVMObjectICell*
resultString)

CVMID_localrootBegin(ee); {
CVMID_localrootDeclare (CVMObjectICell, tempString) ;
// Allocate a String

CVMID_objectNewInstance (CVMjavaLangStringClassblock,
tempString) ;

CVMD_gcUnsafeExec (ee, {

CVMObject™* str CVMID_icellDirect (tempString) ;

CVMArrayOfChar* chars CVMID_icellDirect (theChars) ;

CVMJavalnt a_len;

CVMD_arrayGetLength(chars, a_len);

CVMinitializeDirectStringRef (str, chars, a_len, 0);

// Set the referent of the ICell that resultString points
to CVMID_icellSetDirect (resultString, str);

}):
} CVMID_localrootEnd() ;

Chapter 9 How to be GC-Safe 9-13

9.4.2

Example 3:

Performing an operation that modifies a data structure that is a default GC root. In
the example below CVMicellList[] is a thread-local list of free ICells and is a
default GC root. CVMgetICell () allocates ICells from the list. All assigned ICells
from the list are scanned by the GC during the root scan. The operation needs to
disable the GC; otherwise a GC scan might find the ICell list in an inconsistent state.

CVMObjectICell CVMicellListl([];
CVMUint32 CVMicellListPtr;

CVMObjectICell* CVMgetICell ()
{
CVMObjectICell* ret;
CVMD_gcUnsafeExec (ee, {
ret = & CVMicellList[icellListPtr++];
((CVMUint32)ret) = 0;
Yo
return ret;

}

If a GC were to happen after the increment and before the initialization, garbage
values might be erroneously scanned by GC, potentially causing a crash. Therefore,
to prevent race conditions, CVMD_gcUnsafeExec () keeps GC disabled between
these two operations.

Offering a GC-safe Point

Code that is GC-unsafe for long segments must periodically offer a GC-safe point.
For example, the interpreter runs in a GC-unsafe way, manipulating direct pointers,
etc., but at backwards branches, at method calls, and maybe other points, it must
offer to be GC-safe to bound the time from a GC request to a GC cycle start. Also,
long running operations like data structure expansions or lengthy computations
must offer to be GC-safe occasionally. And finally, the VM must offer GC-safe points
before doing potentially blocking OS calls like dynamic linker resolution for natives,
acquiring locks, or I/O in order to make sure there are no blocked, GC-unsafe
threads in the system.

The standard pattern of doing this is to use the CVMD_gcSafeExec () or the
CVMD_gcSafeCheckPoint () macros. For details, refer to Section 7.4, “GC-safety of
Threads” on page 7-6.

9-14 CDC Porting Guide * December 2008

CVMD_gcSafeCheckPoint () is used to offer a GC-safe point for operations that
will definitely not block:

CVMD_gcSafeCheckPoint (
ee,
{
<Save your state for possible GC>
Y,
{

<Restore your state after possible GC>

)i
CVMD_gcSafeExec () is used to offer a GC-safe point for operations that might
block.
CVMD_gcSafeExec (
ee,

{
<Do potentially blocking operation>

)

At the end of one of these macros, the executing thread is once again GC-unsafe.

Example 1:

The interpreter becomes GC-safe on a backwards branch.
<...>
case opc_goto: {
CVMJavaShort skip = CVMgetJavaShort (currentPc + 1);
if (skip <= 0) {
CVMD_gcSafeCheckPoint (ee,

{
CVM_DECACHE_INTERPRETER_STATE (currentFrame,
currentPc, currentSp) ;

// No reconstruction needed since Java code

// will not execute in this thread

Chapter 9 How to be GC-Safe

9-15

// between DECACHE_... and GC.

)
}
CVMexecuteNextInstructionAtOffset (skip) ;
}

<...>

In effect, the CVMD_gcSafeCheckPoint () operation polls a global variable to see if
a GC is requested. If it is requested, then the state save operation occurs, GC is run,
and the state is reconstructed. If no GC was requested, we go on. This is a very
efficient way to create polling-based GC-safe points.

Example 2:

Blocking operations need to become GC-safe. Here's a tricky example: a two-part
monitorenter operation. The first one gets access to the object, and checks to see if
blocking is needed. If no blocking needed, there is no need to become GC-safe. If
blocking is needed, we save our state, become GC-safe and block.

case opc_monitorenter: {
CVMObject* lockedObject;

vmResult result;

lockedObject = STACK_OBJECT(-1);
CHECK_NULL (lockedObject) ;
result = CVMobjectTryLock (lockedObject); // Try to lock
if (result == VM_LOCKED_WITHOUT_ BLOCKING) ({
//
// The uncontended case
// We have already succeeded locking
//
} else {
//
// May now block.
// Save interpreter state, stash away locked object
// as a GC-root, and use monitorEnterMayblock() with

// the ICell version.

9-16 CDC Porting Guide * December 2008

/7

CVM_DECACHE_INTERPRETER_STATE (currentFrame, currentPc,
currentSpCached) ;

CVMD_gcSafeExec (

ee,

{
// Pass in the stack slot as the ICell*
CVMmonitorEnterMayblock (&STACK_OBJECT (-1)) ;

)

}

if (CVMcheckForException() == VM_NO_POSTED_EXCEPTION) ({
UPDATE_PC_AND_TOS_AND_CONTINUE (1, -1);

} else {
CVMhandleException() ;

Example 3:

VM becomes GC-safe before making a call that might allocate from the C heap. This
routine may end up taking a long time execute, or even worse, block on an OS lock.
Therefore the VM needs to become GC-safe before making the call, in a way that
allows blocking.

Here's an excerpt from the stack expansion code that becomes GC-safe before
attempting to allocate from the C heap.

CvMStackval32*

CVMexpandStack (CVMStack* obj, CVMUint32 capacity)

{

* Must allocate new chunk. Take excess capacity into account.

*/

size = sizeof (CVMStackChunk) + sizeof (CVMStackval32) * (capacity
- CVM_MIN_STACKCHUNK_SIZE) ;

newStackSize = s->stackSize + capacity;

if (newStackSize > CVM_MAX_STACK_SIZE) {

Chapter 9 How to be GC-Safe 9-17

throw exception

}
CVMD_gcSafeExec (ee, {next = (CVMStackChunk*)CVMCmalloc (size);}

)i

9-18 CDC Porting Guide * December 2008

et V. Appendices

This part contains the appendices:

m Debugging with gdb
m C Stack Checking

APPENDIX A

Debugging with gdb

This chapter contains tips for debugging the CDC-HI Java virtual machine with gdb.

It covers these topics:

m Setup Procedures

= Signal Handlers

s gdb and GC Safety

s Turning on Trace Output
m High-Level Dumpers
CVMdumpObject
CVMdumpClassBlock
CVMdumpString
CVMdumpObjectReferences
CVMdumpClassReferences
m Low-Level Dumpers

» Using CVMconsolePrintf ()

s Displaying the PC Offset

s Dumping the Java Stack

= Displaying Opcode Information

= Dumping the Java Heap

= Dumping Object Information

s Dumping Loaded Classes

s Dumping Threads
m Conversion Procedures

]

]

]

]

The CVMExecEnv Structure
Converting Between CVMExecEnv* and JNIEnv*
Converting from JNI Types to Internal VM Types
Converting from java.lang.Class to CVMClassBlock*
m Other Procedures
» Debugging Crashes on Linux
s Debugging Compiled Methods

This chapter describes gdb techniques that are specific to CDC runtime
development. See the gdb reference manual listed in the Preface for more
information about gdb.

A-1

A.l

A.l1l

Setup Procedures

Signal Handlers

There are a number of signals that are raised by the CDC-HI virtual machine that
gdb must be made aware of so it can pass them on. You need to execute the
following handle commands to avoid having gdb stop execution unnecessarily:

handle SIGUSR1 nostop noprint pass
handle SIGUSR2 nostop noprint pass
handle SIGSTOP nostop noprint pass

For CVM_JIT=true builds, the target port usually chooses to use trap-based null
checks by defining CVMJIT_TRAP_BASED_NULL_CHECKS in src/<0S>-
<CPU>/javavm/runtime/jit/jit_arch.h. In this case you will also need to
execute:

handle SIGSEGV nostop noprint pass

and set a breakpoint in your implementation of handleSegv (). handleSegv () is
usually located in src/<0S>-<CPU>/javavm/runtime/jit/jit_arch.c.
handleSegv () needs to handle three cases of SIGSEGV. The first and second cases
are for a SIGSEGVs that occur in JIT compiled and supporting code respectively.
These cases are interpreted as NullPointerExceptions and should be ignored by
gdb. (This is only necessary for applications that cause NullPointerException.)
The third case for SIGSEGV represents a crash in the VM. This case is where the
breakpoint should be set to inform you of a crash when it occurs. If you reach this
breakpoint, then use

handle SIGSEGV stop

continue

to reproduce the crash at the instruction where it occurred.

Note — Because SIGSEGV is used in JIT compiled code to represent
NullPointerExceptions, crashes that occur in JIT compiled code that has not
been fully debugged may be mis-interpreted as a NullPointerException and
may not show up as a crash at all. If you need to eliminate this possibility for
debugging purposes, you can undefine CVMJIT_TRAP_BASED_NULL_CHECKS in
src/<08>-<CPU>/javavm/runtime/jit/jit_arch.h. This will cause SIGSEGV
to not be used for null checks, and any SIGSEGV that you get will actually be due to
a crash. This can also be done to avoid handling SIGSEGV as described earlier.

A-2 CDC Porting Guide * December 2008

A.l2

A.l13

gdb and GC Safety

There are some things you can't do in the debugger while GC unsafe, such as calling
CvMdumpThread (). Examine ee->tcstate.isConsistent. It must be 1. If it is
not, then you can try switching to a thread that is. If this isn't possible, you can
always try the following:

(gdb) set var ee->tcstate.isConsistent = 1

(gdb) call CVMdumpAllThreads ()

However, there is a very small risk of a deadlock or a crash if you do this. Don't
forget to set the isConsistent flag back to 0 if you wish to continue execution. You
are always GC safe when executing in a JNI method and are usually GC safe when
executing in a JNI API or any class loading or unloading related code. You are

usually always GC unsafe when executing in the interpreter loop
(cvMgcUnsafeExecuteJavaMethod ()) or in dynamically compiled code.

Turning on Trace Output

If the CDC-HI virtual machine is built with CVM_TRACE=true, then the support for
debug tracing will be compiled in. There are three ways to turn on trace flags. By
default, CVM_TRACE=true if CVM_DEBUG=true.

1. Use the -Xtrace command line argument:

cvm -Xtrace:0xc40000 -Djava.class.path=../testclasses HelloWorld

2. Turn the flags on or off manually in gdb:
(gdb) set var CVMglobals.debugFlags = 0xc40000

3. Turn flags on and off from Java source code:

You must first import sun.misc.CVM. You can then use the following APIs:
/*
* Methods for checking, setting, and clearing the state of debug
* flags. All of the following methods return the previous state of
* the flags.
*
* You can pass in more than one flag at a time to any of the methods.
*/
public native static int checkDebugFlags (int flags);
public native static int setDebugFlags(int flags);

public native static int clearDebugFlags (int flags);

Appendix A Debugging with gdb A-3

public native static int restoreDebugFlags (int flags, int oldvalue);
See src/share/javavm/test/Test.java for an example on using these APIs.

The supported trace flags can be found in
src/share/classes/sun/misc/CVM. java or see the companion document CDC
Runtime Guide for a documented list. To turn on more than one flag at the same time,

use a logical OR of their values:

TABLE A-1 Trace Flag Values

Flag Value

DEBUGFLAG_TRACE_OPCODE 0x00000001
DEBUGFLAG_TRACE_METHOD 0x00000002
DEBUGFLAG_TRACE_STATUS 0x00000004
DEBUGFLAG_TRACE_FASTLOCK 0x00000008
DEBUGFLAG_TRACE_DETLOCK 0x00000010
DEBUGFLAG_TRACE_MUTEX 0x00000020
DEBUGFLAG_TRACE_CS 0x00000040
DEBUGFLAG_TRACE_GCSTARTSTOP 0x00000080
DEBUGFLAG_TRACE_GCSCAN 0x00000100
DEBUGFLAG_TRACE_GCSCANOBJ 0x00000200
DEBUGFLAG_TRACE_GCALLOC 0x00000400
DEBUGFLAG_TRACE_GCCOLLECT 0x00000800
DEBUGFLAG_TRACE_GCSAFETY 0x00001000
DEBUGFLAG_TRACE_CLINIT 0x00002000
DEBUGFLAG_TRACE_EXCEPTIONS 0x00004000
DEBUGFLAG_TRACE_MISC 0x00008000
DEBUGFLAG_TRACE_BARRIERS 0x00010000
DEBUGFLAG_TRACE_STACKMAPS 0x00020000
DEBUGFLAG_TRACE_CLASSLOADING 0x00040000
DEBUGFLAG_TRACE_CLASSLOOKUP 0x00080000
DEBUGFLAG_TRACE_TYPEID 0x00100000
DEBUGFLAG_TRACE_VERIFIER 0x00200000
DEBUGFLAG_TRACE_WEAKREFS 0x00400000
DEBUGFLAG_TRACE_CLASSUNLOAD 0x00800000

CDC Porting Guide * December 2008

TABLE A-1 Trace Flag Values

Flag Value

DEBUGFLAG_TRACE_CLASSLINK 0x01000000
DEBUGFLAG_TRACE_LVM 0x02000000
DEBUGFLAG_TRACE_JVMTI 0x04000000

TABLE A-2 lists the debug flag trace options most commonly used. The remainder of
the flags are less commonly used.

TABLE A-2 Debug Flag Trace Options

Option Description
OPCODE Traces each opcode being executed.
METHOD Traces each method as it is entered, exited, and returned to.

GCSTARTSTOP Provides information each time GC starts and completes.

EXCEPTIONS Does a full backtrace of the Java thread whenever an exception is
thrown, and also provide information when an exception is caught.

CLASSLOADING Provides information about classes being loaded.

CLASSLOOKUP Provides information about class lookups (mostly loader cache related
information).

CLASSUNLOAD Provides information each time a class is unloaded.

CLASSLINK Provides information when a class is linked.

There are also a number of dynamic compiler related trace flags that are described in
the companion document CDC Runtime Guide. These trace flags can be set with the
following techniques:

m -Xjit=trace=<option> command-line options
m CVM.setJITDebugFlags () method found in CVM. java
m CVMglobals.debugdITFlags command in gdb

A2

High-Level Dumpers

The following dumper utilities display runtime information in a more useful format.
These utilities are only available when the VM is built with CVM_DEBUG=true and
can be used at anytime except during garbage collection.

Before using these utilities, you should disable GC:

Appendix A Debugging with gdb A-5

(gdb) call CVMgcDisableGC ()
$2 =1

Only the first invocation of CVMgcDisableGC will have any effect.
(gdb) call CVMgcDisableGC ()

GC is already disabled! No need to disable.

$3 =1

When you're done, you can re-enable GC with CVMgcEnableGC. For example:
(gdb) call CVMgcEnableGC ()
$4 =1

Only the first invocation of CVMgcEnableGC will have any effect.

A.2.1 CVMdumpObject

CVMdumpObject dumps the contents of an object using its direct object pointer. For
example:

(gdb) call CVMdumpObject (directObj)

Object 0x61034c: instance of class java.lang.ThreadGroup
classblock = 0x40ddfc
size = 48

fields[10] = {

[000b] 0x0 : groups:[Ljava/lang/ThreadGroup;
[000a] O : ngroups:I

[0009] 0x0 : threads:[Ljava/lang/Thread;
[0008] O : nthreads:I

[0007] O : vmAllowSuspension:Z

[0006] O : daemon:Z

[0005] O : destroyed:Z

[0004] 10 : maxPriority:I

[0003] Ox5la2ec : name:Ljava/lang/String;
[0002] 0x0 : parent:Ljava/lang/ThreadGroup;

A-6 CDC Porting Guide * December 2008

NOTE: cvMdumpObject operates on the value of a direct object pointer (CVMObject
pointer or CVMObjectICell). An CVMObjectICell pointer will need to be
dereferenced before CVMdumpObject can be used. If you accidentally typed in a
wrong object pointer value, CVMdumpObject will fail safely and tell you that you do
not have a valid object. For example:

(gdb) call CVMdumpObject (235)

Address Oxeb is not a valid object

CVMdumpClassBlock

CVMdumpClassBlock dumps the contents of a classblock. For example:
(gdb) call CVMdumpClassBlock (0x40ddfc)
Classblock 0x40ddfc: class java.lang.ThreadGroup
class object = 0x549404
instance size = 48
superclass = 0x3eel5c : java.lang.Object
classloader ref= 0x0, obj= 0x0
protectionDomain = 0x0
instanceSize = 48
static fields [0] = { NONE }
NOTE: The classblock is not the class object (CvMClassBlock *). The pointer for

class object is the first field given in the classblock dump. You can use
CVMdumpObject to dump the class object. For example:

(gdb) call CVMdumpObject (0x549404)
Object 0x549404: instance of class java.lang.Class
classblock = 0x3edd70
size = 16
fields[2] = {
[0003] 0x0 : loader:Ljava/lang/ClassLoader;
[0002] 4251132 : classBlockPointer:I
}
NOTE: The classblock pointer is also contained in the class object. If you type in a

wrong classblock pointer value, CvMdumpClassBlock will fail gracefully and tell
you so. For example:

(gdb) call CVMdumpClassBlock (0x40ddf0)
Address 0x40ddf0 is not a valid Classblock

Appendix A Debugging with gab A-7

NOTE: A classblock pointer for an object can be obtained by either calling
CVMdumpObject or by masking the lower two bits off of the first word of the object.

CVMdumpString

CVMdumpString dumps the contents of a java.lang.String object as a C string.
Note that this dumper does not go through any character decoder. It simply
truncates the Java chars and dumps the string as ASCII. This should be adequate
for most debugging purposes that don’t concern localization. For example:

(gdb) call CVMdumpString (0x5lal2ec)
String 0x5la2ec: length= 6
value= “system”

NOTE: You can also call CVMdumpObject (directObj) to dump the string, but its
contents will show as a char array instead of the above nicely formatted string.

If you accidentally specified a wrong String object pointer, CVMdumpString will
fail gracefully and tell you so. For example:
(gdb) call CVMdumpString(254)

Address Oxfe is not a valid object.

CVMdumpObjectReferences

CVMdumpObjectReferences dumps all references to a specific object, which is
useful for discovering what is keeping an object alive.
For example:
(gdb) call CVMdumpObjectReferences (directObj)
List of references to object 0x61034c (java.lang.ThreadGroup) :
Ref 0x525c30 type: PRELOADER STATICS ROOT
Ref 0x5fd510 type: JAVA FRAME ROOT ee 0x504acO0 frame 0
If you accidentally specified a wrong object pointer value, the dumper will fail
gracefully and tell you so. For example:

(gdb) call CVMdumpObjectReferences (555)

Address 0x22Db is not a valid object.

A-8 CDC Porting Guide * December 2008

CVMdumpClassReferences

CVMdumpClassReferences dumps all references to a class by name. For example:
(gdb) call CVMdumpClassReferences (“java/lang/ThreadGroup”)
Addr: 0x61034c Size: 48 Class: java.lang.ThreadGroup
List of references to object 0x61034c (java.lang.ThreadGroup) :
Ref 0x525¢30 type: PRELOADER STATICS ROOT
Ref 0x5fd510 type: JAVA FRAME ROOT ee 0x504acO0 frame 0
Addr: 0x61037c Size: 48 Class: java.lang.ThreadGroup
List of references to object 0x61037c (java.lang.ThreadGroup) :
Ref 0x5fd50c type: JAVA FRAME ROOT ee 0x504acO0 frame 0
Ref 0x5fd508 type: JAVA FRAME ROOT ee 0x504acO0 frame 1
NOTE: The classname uses ‘/” as a separator instead of *.”. The dumper will not
recognize *.” as a separator. For example:
(gdb) call CVMdumpClassReferences (“java.lang.ThreadGroup”)
Class java.lang.ThreadGroup is NOT loaded

The error message is misleading in this case (an unfortunate side effect of the current
implementation).

A3

A.3.1

Low-Level Dumpers

Using CVMconsolePrintf ()

CVMconsolePrintf () provides information about classes, methods, fields, objects,
and Java stack frames. CVMconsolePrintf () supports six special conversion
characters in addition to those normally supported by printf (), plus the meaning
of three of the characters can be modified with the '!"' character. The conversion
characters include:

oe

C and %!C - prints a class name

o
=

and $!M - prints a method name

o
|

and $!F - prints a field name

o
O

and $I - prints out an object's class name and hash

oe
e}
|

prints out java stack frame information

Appendix A Debugging with gab A-9

The argument type required for each of the above conversion characters is as

follows:

%C - CVMClassBlock*
%M - CVMMethodBlock*
%F - CVMFieldBlock*

%!1C - CVMClassTypeID
$!M - CVMMethodTypeID
%!F - CVMFieldTypeID

%0 - CVMObject*
%I - CVMObjectICell*
%P - CVMInterpreterFrame* (only supported in CVM_DEBUG=true builds)

You must be GC safe when using %I. See Section A.1.2, “gdb and GC Safety” on
page A-3. $0 will not print the object hash if it has not been calculated yet.

Here are some examples:

(gdb) call CVMconsolePrintf ("%C.%M\n", cb, mb)

java.lang.Class.runStaticInitializers()V

(gdb) call CVMconsolePrintf ("%0\n", directObj)

java.lang.Class@0

(gdb) call CVMconsolePrintf ("$P\n", frame)

java.lang.Class.runStaticInitializers()V(Class.java:1446)

A3.2 Displaying the PC Offset

A-10

Given a bytecode address (such as the pc local variable) you can find the offset from
the start of the method. You will also need the CvMMethodBlock*, which can be
retrieved from the frame of the method in order to do this:

(gdb) p *(CVMInterpreterFrame*) frame
$61 = {
frameX = {
prevX = 0x387950,
scanner = 0xaf70c <CVMjavaFrameScanner>,
topOfStack = 0x38799c,
mb = 0x2bbb5c
Y,

CDC Porting Guide * December 2008

A.3.3

pcX = 0x2bb6fb "£\013\003 ",

cpX 0x2bbc58,

localsX = 0x387970
}
(gdb) p $61->pcX - (CVMUint8*) ($6l->frameX.mb->immutX.codeX.jmd+1)
$62 = 7

You can define a macro pcOffset (frame) to print out the current offset of the pc
from the start of the method:

define pcOffset

p ((CVMInterpreterFrame*)Sarg0)->pcX -
(CVMUint8*) (((CVMInterpreterFrame*) Sarg0)->frameX.mb-
>immutX.codeX.jmd+1)

end

Note — This technique is only applicable if the frame is not a compiled frame. See
Section A.3.4, “Displaying Opcode Information” on page A-12.

Dumping the Java Stack

There are two functions that you can call from gdb to dump out Java stack
information. They are only included if you build with CVM_DEBUG_DUMPSTACK=
true, which is the default if you build with CVM_DEBUG=true. If you also want
source file and line number information included in the stack dump, then you need
to also build with CVM_DEBUG_CLASSINFO=true and CVM_JAVAC_DEBUG=true,
both of which also default to true if CVM_DEBUG=true.

extern void

CVMdumpStack (CVMStack* s, CVMBool verbose, CVMBool includeData,
CVMInt32 frameLimit) ;

extern CVMStackChunk*

CVMdumpFrame (CVMFrame* frame, CVMStackChunk* startChunk, CVMBool
verbose, CVMBool includeData) ;

(gdb) call CVMdumpStack (&ee->interpreterStack,0,0,0)
Java Frame Test.testSunMiscGC()V(Test.java:158)
Java Frame Test.main([Ljava/lang/String;)V(Test.java:123)

Transition Frame Test.main([Ljava/lang/String;)V(Transition
Method)

Free List Frame (JNI Local Frame)

Appendix A Debugging with gdb A-11

If you pass 1 for verbose, you will see more details for each frame. If you also pass
1 for includeData, then the stack contents for each frame are also displayed.
Alternatively, you can use the special combination of verbose==0 and
includeData==1 to get the minimal information for each frame plus the arguments
needed to call CVMdumpFrame () for more information on each of the respective
frames. For example:

(gdb) call CVMdumpStack (&ee->interpreterStack,0,1,0)

Java Frame Test.testSunMiscGC()V(Test.java:158)
call CVMdumpFrame (0x387878, 0x3877d8, 1, 1)

Java Frame Test.main([Ljava/lang/String;)V(Test.java:123)
call CVMdumpFrame (0x38784c, 0x3877d8, 1, 1)

Transition Frame Test.main([Ljava/lang/String;)V(Transition
Method)

call CVMdumpFrame (0x38781c, 0x3877d8, 1, 1)

Free List Frame (JNI Local Frame)
call CVMdumpFrame (0x3877e4, 0x3877d8, 1, 1)
The advantage of this output is that arguments needed to call CVMdumpFrame () are
automatically included for you, so you don't need to look at the verbose output of
CvMdumpStack () to figure out which arguments to pass to CvMdumpFrame (), and

you don't need to deal with a stack dump that includes the stack data for every
frame. For example:

(gdb) call CVMdumpFrame (0x387878, 0x3877d8, 1, 1)
Frame: 0x387878
prev: 0x38784c

Scanner: Oxaf70c

Tos: 0x387898
Type: Java Frame
Name : Test.testSunMiscGC () V (Test.java:158)

NextPC: 0x8be023
special: 0
Contents:

Chunk 0x3877d8 (0x3877e4-0x3887e4)

A34 Displaying Opcode Information

There are three ways to locate the current PC for a frame:

A-12 CDC Porting Guide * December 2008

1.

Use cvMdumpStack () or CVMdumpFrame () and pass verbose==1. The address
of the current program counter (pc) will be included in the output in the NextPC
field.

(gdb) call CVMdumpFrame (0x387878, 0x3877d8, 1, 1)

2.

Frame: 0x387878
prev: 0x38784c

Scanner: Oxaf70c

Tos: 0x387898
Type: Java Frame
Name : Test.testSunMiscGC () V (Test.java:158)

NextPC: 0x8be023
special: 0
Contents:
Chunk 0x3877d8 (0x3877e4-0x3887e4)

Locate the CvMFrame* for the frame and display its contents. The current pc
should be in the pcX field.

(gdb) p *(CVMInterpreterFrame*) frame
$46 = {

}

frameX = {
prevX = 0x38797c,
scanner = 0Oxaf70c <CVMjavaFrameScanner>,
topOfStack = 0x38798c,
mb = 0x2bbbéc
I
pcX = 0x3879c8 ",
cpX = 0x2bbch58,
localsX = 0x38799c

Note that:

These techniques work with Java frames, but not JNI frames, which don't have a
pc.

The scanner field must be set to <CVMjavaFrameScanner>.

frame->pcX may not be correct for the topmost frame on the stack, since it may
be cached in a local variable. Use the pc local variable in
CVMgcUnsafeExecuteJavaMethod () instead.

. Go to the CVMgcUnsafeExecuteJavaMethod () C frame and display the pc

variable:

Appendix A Debugging with gab A-13

A.3.5

(gdb) p pc
$47 = (CVMUint8 *) O0x2bb74e " "

Once you have a pc, you can display the opcode at the pc:

(gdb) p (CVMOpcode) * (CVMUint8*) 0x2bb74e

$48 = opc_return

For CVM_JIT=true builds, it does not make sense to display opcode information
when the frame is a compiled frame (as opposed to an interpreted Java frame). This

is because the code being executed is not the original bytecodes but a compiled
version of it.

Regardless, when dumping stack frames, you need to be able to distinguish between
compiled and interpreted frames. For CVM_JIT=true builds, the low bit of prevx
for stack frames will normally be set. If the low bit is not set, then the scanner field
contains unreliable information. If the low bit is not set, the frame is a compiled
frame even if the scanner field says <CVMjavaFrameScanner>. If the low bit is set,
for compiled frames, the scanner field will indicate
<CVMcompiledFrameScanner>.

Like JNI native code frames, you cannot get program counter and opcode
information from compiled frames.

Dumping the Java Heap

There are three functions that can be used for dumping out the contents of the Java
heap. All of these functions can be useful in detecting leaks in the Java heap. They
are only available if you build with CVM_DEBUG=true.

extern void CVMgcDumpHeapSimple ()

extern void CVMgcDumpHeapStats ()

extern void CVMgcDumpHeapVerbose ()

CVMgcDumpHeapSimple () dumps the total number of objects in the heap. For
example:

(gdb) call CVMgcDumpHeapSimple ()

Counted 3702 objects

CVMgcDumpHeapStats () displays the number of instances (NI) allocated for each

class and the total space (TS) in bytes that the instances occupy in the heap. For
example:

(gdb) call CVMgcDumpHeapStats ()
TS=89396 NI=986 CL=[C
TS=47172 NI=167 CL=[B

A-14 CDC Porting Guide * December 2008

A.3.6

TS=14292 NI=397 CL=[Ljava.lang.Object;

TS=14020 NI=701 CL=java.lang.String

TS=9056 NI=126 CL=[I

TS=8096 NI=2 CL=[S

TS=3700 NI=185 CL=java.lang.Class

TS=3480 NI=174 CL=java.lang.StringBuffer

TS=2256 NI=94 CL=java.util.Hashtable$SEntry

TS=2040 NI=18 CL=[Ljava.util.HashtableS$SEntry;
TS=1400 NI=116 CL=[Ljava.lang.Class;

TS=8 NI=1 CL=java.util.Hashtable$SEmptyEnumerator
TS=8 NI=1 CL=java.net.UnknownContentHandler
TS=8 NI=1 CL=java.security.SecurityS$S1l

TS=8 NI=1 CL=java.util.Hashtable$SEmptyIterator

CVMgcDumpHeapVerbose () dumps out the address and size of every object in the

heap. For example:

(gdb) call CVMgcDumpHeapVerbose ()

Addr: 0x3bd0a8 Size: 44 Class: CloneableObject
Addr: 0x3bd0d4 Size: 8 Class: java.lang.Object
Addr: 0x3bd0dc Size: 44 Class: CloneableObject
Addr: 0x3bd108 Size: 24 Class: [Ljava.lang.Object;
Addr: 0x3bd1l20 Size: 24 Class: [Ljava.lang.Object;
Addr: 0x3bd138 Size: 12 Class: NonCloneableObject

Addr: 0x3bdl44 Size: 16 Class: java.lang.CloneNotSupportedException

The next section describes how you can dump the contents of these objects.

Dumping Object Information

Objects have an 8 byte header, followed by the contents of the object.
(gdb) x /4wx 0x3bdl44

0x3bd144: 0x002ebffc 0x00000002 0x003bdlad 0x003bd154
(gdb) p * (CVMObject*) 0x3bdl44
$74 = {

Appendix A Debugging with gdb

A-15

A.3.7

hdr = {
clas = Ox2ebffc,
various32 = 2

I

}

The clas field contains the CVMClassBlock* that the object is an instance of. The
lower two bits of this field have special meaning and should be masked off if set
before attempting to use it as a CVMClassBlock*.

(gdb) p ((CVMObject*)0x3bdl44)->hdr.clas

$76 = (CVMClassBlock *) 0x2ebffc

(gdb) call CVMconsolePrintf ("%C\n", $76)
java.lang.CloneNotSupportedException

Array objects have the same header as above, with the addition of a length field.
Below is an array of length one.

(gdb) x /4wx 0x3bd7d8

0x3bd7d8: 0x008a8cel0 0x00000002 0x00000001 0x00000000
(gdb) p *((CVMArrayOfAnyType*) 0x3bd7d8)
$77 = {
hdr = {
clas = 0x8a8ceO,
various32 = 2
Iy
length = 1,

}

See the description of the high-level dumper in Section A.2.1, “CvMdumpObject” on
page A-6.

Dumping Loaded Classes

You can dump the set of loaded classes using the CVMclassTableDump () function.
You must first enable CLASSLOOKUP tracing or no output will be displayed. You
must also compile with CVM_TRACE=true which is the default when CVM_DEBUG=
true.

(gdb) set var CVMglobals.debugFlags = 0x80000

A-16 CDC Porting Guide * December 2008

(g

CT:
CT:
CT:
CT:
CT:
CT:
CT:
CT:
CT:

The addresses listed are for the CVvMClassBlock* of each class. You can use a

db) call CVMclassTableDump (ee)
0x8d5db8: sun.misc.GCS1
0x8d53a8: sun.misc.GC$Daemon
0x8d4900: java.util.TreeMapSEntry
0x8d3f18: java.util.TreeMap$S1l
0x8d7b40: java.util.TreeMap
0x8d3190: java.util.TreeSet
0x8d0ed8: sun.misc.GCSLatencyRequest
0x8cfal8: sun.misc.GCSLatencyLock
0x8ce568: sun.misc.GC

CVMClassBlock* address as follows to get more information for any individual

class:
(gdb) p *(CVMClassBlock*)0x8d5db8
$64 = {
gcMapX = {
map = 0,

}

You can also dump out the loader cache using CVMloaderCacheDump (). Once

bigmap = 0x0
I
classNameX = 978,
superclassX = {
superclassCb = 0x244b2c,
superclassTypelID = 2378540,
mirandaMethodCountX = 0 '\000'
I
cpX = {
constantpoolX = 0x8d5e20,
arrayInfoX = 0x8d5e20

I

again, CLASSLOOKUP tracing must be turned on and you must compile with

CVM_TRACE=true and CVM_DEBUG=true.
(gdb)

LC

call CVMloaderCacheDump (ee)
: #887 0x8a8fcO:

<0x38a0a4, [LTest;>

Appendix A Debugging with gdb

A-17

A.3.8

LC: #890 0xB8aB8e00: <0x38ala4, [LC;>

LC: #895 0x8ccb88: <0x38ala4d, [Lcvmtest.TypeidRefcountHelper;>
LC: #978 0x8d5db8: <0x0,sun.misc.GCS$1>

LC: #979 0x8cfal8: <0x0,sun.misc.GCsLatencyLock>

LC: #980 0x8d53a8: <0x0,sun.misc.GC$Daemon>

LC: #981 0x8d3190: <0x0,java.util.TreeSet>

LC: #982 0x8d7b40: <0x0,java.util.TreeMap>

LC: #983 0x8d4900: <0x0,java.util.TreeMapSEntry>

LC: #984 0x8d3fl1l8: <0x0,java.util.TreeMap$l>

LC: #1007 0x8a2cf0: <0x38ala4, [[LTest;>

The first address given is the CvMClassBlock*. The second is the

CVMObjectICell* of the ClassLoader instance. 0x0 represents the NULL class
loader (a.k.a. the bootclasspath loader or bootstrap loader).

See the description of the high-level dumper in Section A.2.2,
“CvMdumpClassBlock” on page A-7.

Dumping Threads

Information about one or all of the Java threads can be dumped by using the
following functions, which are only available when the CDC-HI virtual machine is
built using CVM_DEBUG=true:

extern void

CVMdumpThread (INIEnv* env)

extern void

CVMdumpAllThreads ()

extern void

CVMprintThreadName (JINIEnv* env, CVMObjectICell* threadICell)

You must be GC safe when calling these functions. See Section A.1.2, “gdb and GC
Safety” on page A-3.

A-18 CDC Porting Guide * December 2008

A4

A4l

Conversion Procedures

The CVMExecEnv Structure

All Java threads in the CDC-HI virtual machine are represented by a CVMExecEnv
structure. If you look at the C backtrace for almost any running thread, you will
probably see a CVMExecEnv* passed as an argument to just about every function in
the backtrace. You can use the CVMExecEnv* to locate information about the thread,
such as the Java stack being used by the interpreter loop. For example, if your C
backtrace is as follows:

#0

#1

#2

#3

#4

CVMgcUnsafeExecuteJavaMethod (ee=0x37d2c0, mb=0x267590,
isStatic=0,

isVirtual=0) at ../../src/share/javavm/runtime
executejava.c:1636

0xedb2c in CVMjniInvoke (env=0x37d2e8, obj=0x387810,
methodID=0x8bd124,

pushArguments=0xe3638 <CVMjniPushArgumentsVararg>,
args=0xffbef5b4,

info=770, retValue=0x0) at ../../src/share/javavm/runtime/
jni_impl.c:2412

0xe727c in CVMjniCallStaticVoidMethod (env=0x37d2e8,
clazz=0x387810,

methodID=0x8bd124) at ../../src/share/javavm/runtime/
jni_impl.c:2587

0x19a644 in ansidJavaMain (argc=3, argv=0xffbef754)

at ../../src/portlibs/ansi_c/ansi_java_md.c:223
0x199cc4 in main (argc=3, argv=0xffbef754)

at ../../src/solaris/bin/java_md.c:16

The ee argument passed to CVMgcUnsafeExecuteJavaMethod () can be used to
dump the Java stack:

(gdb) call CVMdumpStack (&ee->interpreterStack,0,0,0)

You can also always get the CVMExecEnv* for the current thread by calling
CVMgetEE ().

Appendix A Debugging with gab A-19

A4.2 Converting Between CVMExecEnv* and JNIEnv*

Every CVMExecEnv has a corresponding JNIEnv. You can manually convert
between the two, but usually you can avoid having to do this conversion by looking
elsewhere on the C stack. For example, if you are in
CVMgcUnsafeExecuteJavaMethod () and need a INIEnv*, going up one or two C
frames will usually put you in one of the NI APIs, and you can get the INIEnv*
there.

Converting from CVMExecEnv* to JNIEnv*:
(gdb) p &(&(ee)->jniEnv)->vector
$86 = (JNIEnv *) 0x37d2e8

Converting from JNIEnv* to CVMExecEnv*:

(gdb) p (CVMExecEnv*) ((char*)env - (CVMUint32)&(((CVMExecEnv*)0) -
>jniEnv) ->vector)
$87 = (CVMExecEnv *) 0x37d2cO

Here are some conversion macros:
define eelenv
p &((Sarg0)->jniEnv) ->vector

end

define env2ee
ee2env ((CVMExecEnv*)0)
p (CVMExecEnv*) ((char*)$arg0 - (CVMUint32) ($))

end

A43 Converting from JNI Types to Internal VM Types

The following are mappings of JNI types to internal VM types:

jclass == CVMClassICell* == java.lang.Class instance
jmethodID == CVMMethodBlock*

jfieldID == CVMFieldBlock*

jobject == CVMObject*

You can pass a variable of type jmethodID as the $M argument to
CVMconsolePrintf (). Likewise for j£ieldID and %F. Even though these types
have "ID" in their names, they are not the same as CVMMethodTypeID and
CVMFieldTypeID.

A-20 CDC Porting Guide * December 2008

A44

To print the type that a jclass represents, see the next section on converting from a
java.lang.Class to CVMClassBlock*.

Converting from java.lang.Class to
CVMClassBlock*

All java.lang.Class instances contain a pointer to the CVMClassBlock* that
they represent, and all CvMClassBlocks have an indirect pointer to their
java.lang.Class instance. This makes it possible to convert between the two by
using the following two APlIs:

extern CVMClassBlock*

CVMgcSafeClassRef2ClassBlock (CVMExecEnv* ee, CVMClassICell *clazz)
extern CVMClassBlock *

CVMgcUnsafeClassRef2ClassBlock (CVMExecEnv *ee, CVMClassICell *clazz)
(gdb) call CVMgcSafeClassRef2ClassBlock(ee, clazz)

$80 = (CVMClassBlock *) 0x26d4d4

If clasisa jclass or CVMClassICell*, then you can do the following to print the
class name:

(gdb) call CVMconsolePrintf ("$C\n", CVMgcSafeClassRef2ClassBlock (ee,
clas))

java.lang.Runtime

If you are not GC safe, then you can use CVMgcUnsafeClassRef2ClassBlock ()
instead.

See the descriptions of the high-level dumpers in Section A.2.1, “CVMdumpObject”
on page A-6 and Section A.2.2, “CVMdumpClassBlock” on page A-7.

Appendix A Debugging with gdb A-21

A.D

A5.1

Other Procedures

Debugging Crashes on Linux

Linux implements threads on top of processes. When there is a crash, the core file
produced is almost never for the thread (process) that actually crashed. The CDC-HI
virtual machine installs a signal handler on Linux that will catch the signal raised
because of a crash, and suspends the process. This allows you to then attach gdb to
the process, rather than having to deal with a useless core file.

Note that the example below is based on a Linux x86/PC port. The register
information will be presented in a different struct for each target.

When the CDC-HI virtual machine crashes on Linux, you will see the following:
Process received signal 11, suspending

When you see this, ctrl-z the process to temporarily stop it. You can then use ps
to see a list of all the current virtual machine processes:

[bin]$ ps

31576 ttyp3 00:00:00 bash
21912 ttyp3 00:00:00 cvm
21913 ttyp3 00:00:00 cvm
21914 ttyp3 00:00:00 cvm
21915 ttyp3 00:00:00 cvm
22447 ttyp3 00:00:00 cvm
22448 ttyp3 00:00:00 cvm
22449 ttyp3 00:00:00 cvm
22450 ttyp3 00:00:00 cvm
22451 ttyp3 00:00:00 cvm
22452 ttyp3 00:00:00 cvm
22453 ttyp3 00:00:00 cvm
22454 ttyp3 00:00:00 cvm
22455 ttyp3 00:00:00 cvm
22456 ttyp3 00:00:00 cvm
22457 ttyp3 00:00:23 cvm
24310 ttyp3 00:00:00 ps

A-22 CDC Porting Guide * December 2008

The first process in the list is the main process and is the one you want to attach to
in gdb. After executing ps, type bg to continue execution in the background.
Otherwise gdb will hang waiting for the process to be started again. Next launch
gdb and specify the cvm binary that was running when the crash occurred.

[bin]$ gdb cvm

Current directory is /home/test/cvm/build/linux/bin/
GNU gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and
you are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-redhat-linux"...
Starting up GDB configuration file

Done interpreting GDB configuration file

Attach to the first CDC-HI virtual machine process in the ps list:
(gdb) attach 21912
Attaching to program: /home/test/cvm/build/linux/bin/cvm, Pid 21912
Reading symbols from /lib/libpthread.so.0...done.
Reading symbols from /lib/libm.so.6...done.
Reading symbols from /lib/libnsl.so.l...done.
Reading symbols from /lib/libdl.so.2...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
Reading symbols from /lib/libnss_files.so.2...done.
Reading symbols from /usr/lib/gconv/IS08859-1.so...done.
0x40083e0b in __sigsuspend (set=0xbffff50c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48
48 ../sysdeps/unix/sysv/linux/sigsuspend.c: No such file or
directory.
info threads will give you a list of all the threads:
(gdb) info threads
15 Thread 22457 0x40083e0b in _ sigsuspend (set=0xbdfff008)

at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

Appendix A Debugging with gdb A-23

A-24

14 Thread 22456 0x40083e0b in _ sigsuspend (set=0xbelff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

13 Thread 22455 0x40083e0b in _ sigsuspend (set=0xbe3ff498)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

12 Thread 22454 0x40083e0b in _ sigsuspend (set=0xbe5ff498)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

11 Thread 22453 0x40083e0b in _ sigsuspend (set=0xbe7ff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

10 Thread 22452 0x40083d61 in _ kill () from /lib/libc.so.6

9 Thread 22451 0x40083e0b in _ sigsuspend (set=0xbebff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

8 Thread 22450 0x40083e0b in _ sigsuspend (set=0xbedff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

7 Thread 22449 0x40083e0b in _ sigsuspend (set=0xbefff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

6 Thread 22447 0x40083e0b in _ sigsuspend (set=0xbflff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

5 Thread 22448 0x40083e0b in _ sigsuspend (set=0xbf3ff62c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

4 Thread 21915 0x40083e0b in _ sigsuspend (set=0xbf5ff52c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

3 Thread 21914 0x40083e0b in _ sigsuspend (set=0xbf7ff52c)
at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

* 2 Thread 21912 (initial thread) 0x40083e0b in _ sigsuspend (set=
O0xbffff50c)

at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

1 Thread 21913 (manager thread) 0x40110fe0 in poll (fds=
0x8386d08,

nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:45
The thread that crashed will be in the __ki11 () function. Switch to it to debug the
crash:
(gdb) thread 10
[Switching to thread 10 (Thread 22452)]

#0 0x40083d61 in _ kill () from /lib/libc.so.6
(gdb) bt
#0 0x40083d61 in _ kill () from /lib/libc.so.6

CDC Porting Guide * December 2008

#1 0x817543d in crash (sig=11) at
../../src/linux/javavm/runtime/sync_md.c:388

#2 0x40022582 in pthread_sighandler (signo=11, ctx={gs = 0,
0,

gsh =

fs = 0, _ fsh = 0, es = 43, __esh = 0, ds = 43, _ dsh = 0, edi
= 25,

esi = 1081082928, ebp = 3198154408, esp = 3198154336, ebx =
1075139692,

edx = 32, ecx = 1081081904, eax = 1081081912, trapno = 14, err

= 6,
eip = 1074521900, cs = 35, _ csh = 0, eflags = 66118,
esp_at_signal = 3198154336, ss = 43, _ ssh = 0, fpstate =
0xbe9ff5e0,

oldmask = 2147483648, cr2 = 33}) at signals.c:96
#3 0x40083c88 in _ restore ()
at ../sysdeps/unix/sysv/linux/1386/sigaction.c:127
#4 O0x400bfecd4 in _ libc_calloc (n=1, elem _size=28) at malloc.c:3707
#5 0x8147bb4 in CVMCcallocStub (nelem=1, elsize=28)
at ../../src/share/javavm/runtime/porting debug.c:127
#6 0x8114951 in CVMreplenishLockRecordUnsafe (ee=0xbe9ffc40)
at ../../src/share/javavm/runtime/objsync.c:366
#7 0x8116f59 in CVMdetLock (ee=0xbe9ffc40, indirectObj=0x83d2aec)
at ../../src/share/javavm/runtime/objsync.c:1116

#8 0x80cc668 in CVMgcUnsafeExecutedJavaMethod (ee=0xbe9ffc40, mb=
0x836a8e4,

isStatic=0, isVirtual=1l)
at ../../src/share/javavm/runtime/executejava.c:2932
#9 0x80fad05 in CVMjniInvoke (env=0xbe9ffc68, obj=0x83d2954,

methodID=0x83696e4, pushArguments=0x80£fa0d8
<CVMjniPushArgumentsVararg>,

args=0xbe9ffbdc, info=258, retValue=0x0)
at ../../src/share/javavm/runtime/jni_impl.c:2412

#10 0x80fc3el in CVMjniCallVoidMethod (env=0xbe9ffc68, obj=
0x83d2954,

methodID=0x83696e4) at
../../src/share/javavm/runtime/jni_impl.c:2587

#11 0x8108830 in start_func (arg=0x409cfc80)
at ../../src/share/javavm/runtime/jvm.c:1505

#12 0x8173183 in start_func (a=0x409cfc98)

Appendix A Debugging with gdb ~ A-25

A.5.2

at ../../src/portlibs/posix/posix_threads_md.c:30

#13 0x4001fbb5 in pthread_start_thread (arg=0xbe9ffed40) at
manager.c:241

The frame that actually crashed is not included in the backtrace. However, all the
registers, including the pc (eip register) are passed as arguments to the signal
handler, pthread_sighandler (). You can disassemble the value passed in eip to
find out where the crash actually occurred. (Note that not all platforms support this
backtrace feature.)

In the above backtrace, frames #0 through #3 are all part of the signal handling. The
crash actually occurred in a function called from _ libc_calloc (). If you
disassemble the value passed in the eip argument to pthread_sighandler (),
you can see that __libc_calloc () called chunk_alloc (), and that is where the
crash occurred. (This crash was the result of a memory corruption that caused a call
to calloc () to crash).

(gdb) x /4i 1074521900

0x400be72¢c <chunk_alloc+84>: mov %ecx, 0x8 (%edi)

0x400be72f <chunk_alloc+87>: mov Oxfffffffd (%ebp), sedi
0x400be732 <chunk_alloc+90>: orb $0x1,0x4 (%edi, %esi,1)
0x400be737 <chunk_alloc+95>: jmp 0x400bef93 <chunk_alloc+2235>

NOTE: Some platforms like ARM don’t include any frames above the signal handler
in the backtrace.

NOTE: After attaching to the crashed process, you can usually just type continue
and the crash will occur again. But this time gdb will handle the crash and you can
debug at the actual site of the crash rather than in the CDC-HI crash () function.

Debugging Compiled Methods

One way to debug the dynamic compiler with gdb is to use the function
CVMJITcodeCacheFindCompileMethod (<machine-pc>, 1). This requires the
CVM_DEBUG=true build. If you know or suspect that a pc is in a compiled method,
you can pass it to the following function:

(gdb) call CVMJITcodeCacheFindCompiledMethod (<machine-pc>, 1)

If the method is found, it will print out the name of the method and also return the
CVMMethodBlock*. Otherwise NULL is returned.

A-26 CDC Porting Guide * December 2008

A.6

VM Inspector and CVMSH

The VM Inspector is a collection of utilities based on the dumper utilities described
in Section A.2, “High-Level Dumpers” on page A-5 and Section A.3, “Low-Level
Dumpers” on page A-9 that already existed in the CVM for other purposes, plus
some wrappers around some of them to make them safe to call from Java code. It
also include some other additional useful utilities that aren’t normally available in a
production VM build.

To use the VM inspector utilities, build CVM with CVM_INSPECTOR=true.
CVM_INSPECTOR is set to true by default when you build with CVM_DEBUG=true,
but you can also enable it in a non-debug build without having to pull in all the
other debug code in the system.

After you have built CVM as specified above, you can now use the VM Inspector
utilities in a number of ways:

1. Start CVM in a gdb session, and call some of the inspector functions from the gdb
command prompt.

2. Call them from modified VM code. For a list of the available functions, check out
src/share/javavm/include/inspector.h.

3. Use cvmsh as a shell on the target device/machine and issue commands
interactively.

4. Run cvmsh in server mode, and connect to it using the cvmclient application.

With option 1 and 2, you will need to be careful as to when and how you use these
functions. You will be essentially writing and/or changing the flow of VM code. If
you don’t do this correctly, you can destabilize the VM instance that you are
running. This may result in crashes, hangs, or unpredictable failures. The easier
thing to do would be to go with option 3 or 4 which interfaces the VM Inspector
through the cvmsh application.

See the phoneME Advanced Twiki
(http://wiki.java.net/bin/view/Mobileandembedded/PhoneMEAdvanced)
for more information about the VM Inspector.

Appendix A Debugging with gab A-27

A-28 CDC Porting Guide * December 2008

APPENDIX B

C Stack Checking

This appendix describes how system robustness against a tight C stack situation can
be achieved by performing static analysis of C stack usage and introducing dynamic
stack checks in CDC HI. This appendix covers the following topics:

m Introduction
m Calculating C Stack Redzones

B.1

Introduction

Because CDC HI is targeted for devices that have less memory available and for OSs
that do not have MMU support, the C stack usage in CDC HI is taken into account
to avoid a stack overrun caused by recursive operations, such as the bytecode
interpreter loop, class loading, and class verifier.

To avoid this problem, CDC HI cannot take the same approach as the JDK, in which
large memory area is reserved for the C stack. To ensure system robustness against C
stack overflow situations caused by tight C stacks, an extensive static analysis of the
C codes in CDC HI and the supporting libraries is performed. A dynamic C stack
check is introduced at the points where recursive function calls can happen.

As a result, CDC HI guarantees that a C stack overflow failure is detected so that a
StackOverflowError is thrown when a C stack check notifies that insufficient C
stack space is available and a potential memory corruption caused by C stack
overflow is eliminated.

C codes are statically analyzed to identify where recursive call cycles occur,
eliminate call cycles as much as possible, and sum up stack use in any given call
cycles. As a result, the worst case of stack usage required by the recursive function
calls is used by a redzone check in the C stack check routine. The worst case of stack
usage is called "stack redzone" and the C stack check routine is called
CvMCstackCheckSize. The C stack check codes on a cycle determine whether

B-1

another invocation of the cycle can continue execution with sufficient C stack size
left. This redzone (worst case of stack usage) size is used to find out the available
stack size for next function invocation in the cycle at execution time. When the C
stack is insufficient to continue execution, CDC HI throws a StackOverflowError.

B.2

Calculating C Stack Redzones

The CDC HI stack usage is statically analyzed to identify the recursive functions and
calculate the worst case C stack redzone values for each recursive function. All CDC
HI programs written in C are first compiled into platform-specific assembly codes by
the GNU C compiler. All indirect function calls, such as JNI function invocation
through the function pointers and other function invocations through function
pointers in CDC HI programs, are resolved and mapped into direct function calls to
assist the static stack analysis.

The mapping information that maps an indirect function call to a direct function call
in CDC HI programs can be found in Chapter 7 and the mapping information that
maps an indirect function call to a JNI function call can be found in Chapter 8.

Note — In stublist, a function named CVM_worst_case_psuedo_method is a link
between CVMjniInvokeNative and all of the JNI functions in the JNI vector table
and the JVMDI vector table. It is also a link between ansiJavaMain and all of the
JNI functions defined in the JNI vector table for the code outside the VM calling into
JNI functions. The worse case stack usage for a JNI call cycle from calling
CVM_worst_case_psuedo_method to a JNI call is assumed to be 3K bytes, and the
same is true for all call cycles that end with OS and C library functions.

There are nine functions that have recursive invocation paths.
1.CVMgcUnsafeExecutedJavaMethod

2. CVMimplementsInterface

3. classlookup:CVMclassLookupFromClassLoader

4. CVMclassLink

5. utils:CVMCstackDummy2CVMformatStringVaList
6. utils:CVMCstackDummy2CVMconsolePrintf

7. utils:CVMCstackDummy2CVMobjectGetHashSafe

8. verifycode:CVMCstackDummy2merge_fullinfo_types

B-2 CDC Porting Guide * December 2008

B.2.1

9. CVMsignalErrorVaLisT

Three recursions occurring in the function CvMformatStringVaList from file
utils.c detected by the static stack analysis have at most one-level deep recursion
which terminates itself at the second invocation of CVMformatStringVaList. To
obtain an accurate stack size required to invoke CVMformatStringVaList another
time, a dummy function is temporarily created for each recursion and is called at the
place that needs to check stack overflow before going into the loop to terminate
itself. Once the stack requirement is obtained by the static stack analysis, each
dummy function invocation is removed and a runtime C stack check is added in the
place that invokes the dummy function. There is only one C stack check for
detecting the available stack size before calling
utils:CVMCstackDummy2CVMconsolePrintf and
utils:CVMCstackDummy2CVMobjectGetHashSafe. The three dummy functions
are statically defined in utils.c and are invoked in CVMformatStringVaList as
below:

(1) utils:CVMCstackDummy2CVMformatStringVaList
(2) utils:CVMCstackDummy2CVMconsolePrintf
(3) utils:CVMCstackDummy2CVMobjectGetHashSafe

The self recursive invocation of merge_fullinfo_types in file verifycode.c
has at most one-level deep recursion. A dummy function called
CVMCstackDummy2merge_fullinfo_types is temporarily created and invoked at
the place that needs to check stack overflow before entering the loop and
terminating itself in that call path so that the stack redzone can be calculated
accurately. Once the stack requirement is obtained by the static stack analysis, this
dummy function invocation is removed and a runtime C stack check is added in the
place that invokes the dummy function. The dummy function is statically defined in
file verifycode.c and is invoked in merge_fullinfo_types as below:

(1) verifycode:CVMCstackDummy2merge_fullinfo_types

C Stack Redzone Checks

Once the nine recursive functions are identified by the stack analysis, eight stack
redzone values are calculated based on the given function call path of each recursion
that consumes the most stack usage. The C stack redzone values are used by the C

Appendix B C Stack Checking B-3

stack check routines in CDC HI to detect a C stack overflow failure before making a
recursive function invocation. The following table shows each C stack redzone
macro used by the C stack check in its corresponding recursive function.

TABLE 9-1 C Stack Redzone Macros

CDC HI Function C Stack Redzone Macro

CVMgcUnsafeExecuteJavaMethod CVM_REDZONE_ILOOP

CVMimplementsInterface CVM_REDZONE_CVMimplementsInterface

CVMformatStringVaList CVM_REDZONE_CVMCstackCVMpc2string

CVMformatStringVaList CVM_REDZONE_CVMCstackCVMID_objectGet
ClassAndHashSafe

CVMclassLookupFromClassLoader CVM_REDZONE_CVMclassLookupFromClassL

oader
CVMclassLink CVM_REDZONE_CVMclassLink
merge_fullinfo_to_types CVM_REDZONE_CVMCstackmerge_fullinfo_
to_types

The following macros are used in C stack check codes for various recursive
functions.

TABLE9-2 C Stack Check Macros

Declaration Description

CVM_REDZONE_ILOOP Stack space required for interpreter loop in
CVMgcUnsafeExecuteJavaMethod ().

CVM_REDZONE_CVMclassLookupFromCla Stack space required for class loading in a
ssLoader deep class lookup hierarchy in
CVMclassLookupFromClassLoader ().

CVM_REDZONE_CVMclassLink Stack space required for class linking in
CVMclassLink ().
CVM_REDZONE_CVMclassScan Stack space required for traversing the

scannable state of one class by the garbage
collector in CVMclassScan ().

CVM_REDZONE_CVMimplementsInterfac Stack space required for checking whether a
e non-array class is an interface type class in
CVMimplementsInterface().

CVM_REDZONE_CVMCstackCVMpc2string Stack space required for building a
formatted string %P format of PC
information for console I/O in
CVMformatStringvVaList ().

B-4 CDC Porting Guide * December 2008

B.2.2

TABLE 9-2

C Stack Check Macros (Continued)

Declaration

Description

CVM_REDZONE_CVMCstackCVMID_
objectGetClassAndHashSafe

CVM_REDZONE_CVMCstackmerge__
fullinfo_to_types

CVM_REDZONE_CVMsignalErrorVaList

Stack space required for building a
formatted string %I format of class name
information for console I/O in
CvMformatStringVaList ().

Stack space required for class verifier to do
type merging between two object types or
two arrays of object types in
merge_fullinfo_types().

Stack space required for signaling an
exception in CVMsignalErrorvVaList ().

Recursive Functions

Recursive functions that have a C stack check are listed below:

CVMclassLink
CVMclassScan
CVMimplementsInterface
CVvMformatStringValList
CVMsignalErrorVaList
merge_fullinfo_types

CVMgcUnsafeExecutedJavaMethod
CVMclassLookupFromClassLoader

Appendix B C Stack Checking

B-5

B-6 CDC Porting Guide * December 2008

	Contents
	Figures
	Tables
	Preface
	Who Should Read This Document
	How This Book Is Organized
	CDC Software Releases
	phoneME Open Source Project
	Typographic Conventions
	Related Documentation
	Accessing Sun Resources Online
	Terminology
	Feedback

	I Getting Started
	Introduction
	1.1 CDC Technology
	1.2 Benefits

	Planning
	2.1 Target Platform Requirements
	2.1.1 CPU
	2.1.2 Operating System

	2.2 Porting Steps
	2.3 Source Code Organization
	2.3.1 build Directory
	2.3.2 src Directory

	2.4 Dual Stack Support

	II HPI Layer
	Host Programming Interface
	3.1 HPI Header File Hierarchy
	3.1.1 CVM_HDR_* Header File Macros
	3.1.2 src/portlibs Porting Libraries

	3.2 Creating an HPI Implementation
	3.2.1 Suggested Work Flow
	3.2.2 Prepare the Target-Specific build and src Hierarchies
	3.2.3 Data Types, Global State and Memory Access Support
	3.2.4 JNI Support
	3.2.4.1 CVMjniInvokeNative

	3.2.5 Thread Support
	3.2.6 Synchronization Support
	3.2.7 I/O and System Support
	3.2.8 Networking Support

	3.3 CDC Class Library Support Layer
	3.3.1 Source Code Organization
	3.3.2 Creating a CDC Class Library Support Layer Implementation

	3.4 Simple Test Procedure

	Fast Locking
	4.1 Fast Lock Implementations
	4.2 Choosing a Fast Lock Implementation
	4.3 Implementations

	III Dynamic Compiler Layer
	Dynamic Compiler
	5.1 Dynamic Compiler Overview
	5.2 Dynamic Compiler Header File Hierarchy
	5.2.1 portlibs/jit/risc RISC Porting Library

	5.3 Creating a Dynamic Compiler Implementation
	5.3.1 Suggested Work Flow
	5.3.2 CPU Abstraction Interface
	5.3.3 Glue Code
	5.3.4 Miscellaneous Code
	5.3.4.1 Code Cache Copy
	5.3.4.2 Trap-based NullPointerExceptions

	5.3.5 Intrinsics
	5.3.6 Invokers
	5.3.7 Emitters
	5.3.8 Helpers
	5.3.9 Floating Point Support

	IV Garbage Collector Layer
	Creating a Garbage Collector
	6.1 Introduction
	6.2 Exactness
	6.2.1 Global GC Requests
	6.2.1.1 Method Invocation Points
	6.2.1.2 Backwards Branches
	6.2.1.3 Class Loading and Constant Resolution Points
	6.2.1.4 JNI Implementation
	6.2.1.5 Memory Allocation Points

	6.3 Pluggable GC
	6.3.1 Separate Memory System
	6.3.2 Entry Points to GC Code
	6.3.3 Shared Memory System Code
	6.3.4 GC-specific Memory System Code
	6.3.5 GC Execution Flow

	6.4 Writing a New GC
	6.4.1 Source Organization
	6.4.2 Data Types
	6.4.3 What to Implement
	6.4.3.1 Basic Execution
	6.4.3.2 Read and Write Barriers
	6.4.3.3 Moving Arrays

	6.4.4 What to Call
	6.4.4.1 Initiating a GC
	6.4.4.2 Root Scans
	6.4.4.3 Special Root Scans
	6.4.4.4 Object Walking
	6.4.4.5 Per-object Data

	6.4.5 Example GC

	Direct Memory Interface Reference
	7.1 Introduction
	7.2 Object Field Accesses
	7.2.1 Accessing Fields of 32-bit Width
	7.2.1.1 Weakly-Typed 32-bit Read and Write
	7.2.1.2 Strongly-Typed 32-bit Read and Write

	7.2.2 Accessing Fields of 64-bit Width
	7.2.2.1 Weakly-Typed 64-bit Read and Write
	7.2.2.2 Strongly-Typed 64-bit Read and Write

	7.3 Array Accesses
	7.3.1 Accessing Elements of 32-bit Width and Below
	7.3.2 Accessing Elements of 64-bit Width
	7.3.2.1 Weakly-Typed Versions
	7.3.2.2 Strongly-Typed Versions

	7.3.3 Miscellaneous Array Operations

	7.4 GC-safety of Threads
	7.4.1 GC-unsafe Blocks
	7.4.2 GC-safe Blocks: Requesting a GC-Safe Point

	Indirect Memory Interface Reference
	8.1 Introduction
	8.2 ICell Manipulations
	8.3 Registered Indirection Cells
	8.3.1 Local Roots
	8.3.2 Global Roots

	8.4 Object Field Accesses
	8.4.1 Accessing Fields of 32-bit Width
	8.4.1.1 Weakly-Typed 32-bit Read and Write
	8.4.1.2 Strongly-Typed 32-bit Read and Write

	8.4.2 Accessing Fields of 64-bit Width
	8.4.2.1 Weakly-Typed 64-bit Read and Write
	8.4.2.2 Strongly-Typed 64-bit Read and Write

	8.5 Array Accesses
	8.5.1 Accessing Elements of 32-bit Width and Below
	8.5.2 Accessing Elements of 64-bit Width
	8.5.2.1 Weakly-Typed Versions
	8.5.2.2 Strongly-Typed Versions

	8.5.3 Miscellaneous Array Operations
	8.5.4 GC-unsafe Operations

	How to be GC-Safe
	9.1 Introduction
	9.2 Living with ICells
	9.2.1 ICell Types

	9.3 Explicitly Registered Roots
	9.3.1 Declaring and Using Local Roots
	9.3.1.1 Example of Local Root Use

	9.3.2 Declaring and Using Global Roots
	9.3.2.1 Examples of Declaring and Using Global Roots

	9.4 GC-safety of Threads
	9.4.1 GC-atomic Blocks
	9.4.2 Offering a GC-safe Point

	V Appendices
	Debugging with gdb
	A.1 Setup Procedures
	A.1.1 Signal Handlers
	A.1.2 gdb and GC Safety
	A.1.3 Turning on Trace Output

	A.2 High-Level Dumpers
	A.2.1 CVMdumpObject
	A.2.2 CVMdumpClassBlock
	A.2.3 CVMdumpString
	A.2.4 CVMdumpObjectReferences
	A.2.5 CVMdumpClassReferences

	A.3 Low-Level Dumpers
	A.3.1 Using CVMconsolePrintf()
	A.3.2 Displaying the PC Offset
	A.3.3 Dumping the Java Stack
	A.3.4 Displaying Opcode Information
	A.3.5 Dumping the Java Heap
	A.3.6 Dumping Object Information
	A.3.7 Dumping Loaded Classes
	A.3.8 Dumping Threads

	A.4 Conversion Procedures
	A.4.1 The CVMExecEnv Structure
	A.4.2 Converting Between CVMExecEnv* and JNIEnv*
	A.4.3 Converting from JNI Types to Internal VM Types
	A.4.4 Converting from java.lang.Class to CVMClassBlock*

	A.5 Other Procedures
	A.5.1 Debugging Crashes on Linux
	A.5.2 Debugging Compiled Methods

	A.6 VM Inspector and CVMSH

	C Stack Checking
	B.1 Introduction
	B.2 Calculating C Stack Redzones
	B.2.1 C Stack Redzone Checks
	B.2.2 Recursive Functions

