
Sun Microsystems, Inc.
www.sun.com

CDC Build System Guide

for the Sun Java Connected Device Configuration
Application Management System

Version 1.0

November 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, Java ME, Sun Corporate Logo and Java Logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, J2ME, Java ME, Sun Corporate Logo et Java Logo sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

Preface xi

1. Introduction 1–1

1.1 Host Development Environment 1–2

1.2 Build Options 1–2

1.3 Target Platforms 1–2

1.4 Selecting Standard API Features 1–3

1.5 Application Development 1–3

1.6 CDC Build Process Overview 1–5

2. Installation 2–1

2.1 CDC Source Releases 2–1

2.2 CDC Build System Requirements 2–2

2.2.1 Hardware Requirements 2–2

2.2.2 Software Requirements 2–3

2.2.2.1 UNIX Build Tools 2–3

2.2.2.2 Java SE Build Tools 2–4

2.2.2.3 Qt Library 2–4

2.3 CDC Target Platform Requirements 2–5

2.3.1 ARM Floating Point Note 2–5
 iii

2.3.2 Cobalt Build Notes 2–6

2.4 Installation Procedure 2–6

2.4.1 Downloading the CDC Distribution File 2–6

2.4.2 Extracting the Distribution Bundle 2–6

2.4.3 Acquiring the Java Build Tools 2–7

2.4.4 Acquiring the UNIX Build Tools 2–7

2.4.4.1 gcc 2.95.3 Notes 2–8

2.4.4.2 XScale/Bulverde Notes 2–9

2.4.5 Organizing the CDC Build Tools 2–10

2.4.5.1 Using the Default Locations 2–10

2.4.5.2 Redefining the Top-Level Macros 2–11

2.4.5.3 Overriding the Individual Build Tool Macros 2–12

3. Build System Contents 3–1

3.1 build Directory Structure 3–2

3.2 Makefile Hierarchy 3–2

3.3 Generated Files for the CDC Java Runtime Environment 3–3

3.4 Generated Development Files 3–4

3.5 Test and Demo Programs 3–4

3.6 CDC AMS Generated Files 3–5

3.7 Other Generated Files 3–6

4. Build System Procedures 4–1

4.1 The Build Cycle 4–1

4.2 Performing a Test Build 4–2

4.3 Selecting a Target Device 4–2

4.4 Standard API Choices 4–3

4.5 Selecting Testing and Performance Features 4–3

4.6 Building CDC AMS 4–3
iv CDC Build System Guide • November 2005

4.7 Building OTA Support for CDC AMS 4–4

4.8 Quick Rebuilds 4–4

4.9 Generating Verbose Build Logs 4–5

4.10 Creating a Runtime Bundle 4–5

4.11 Testing the Build 4–6

4.12 Building a Target Development Version of the CDC Java Class Library 4–6

4.13 Building javadoc API Reference Documentation 4–7

5. Makefile Options and Macros 5–1

5.1 Makefile Option Categories 5–1

5.2 Guidelines for Overriding Makefile Options 5–2

5.3 Makefile Option Descriptions 5–2

5.3.1 Supported Makefile options 5–3

5.3.2 Limited Support Makefile Options 5–6

6. Debugging Support 6–1

6.1 Building with JVMDI Support 6–2

7. Profiling Support 7–1

7.1 Building with JVMPI Support 7–1

8. Adding an Optional Package 8–1

8.1 Installing an Optional Package 8–1

8.2 Building an Optional Package 8–2

8.2.1 Makefile Option Syntax 8–2

8.3 Optional Package Makefile Naming Convention 8–2

8.3.1 Optional Package Makefile Variables 8–3

8.3.2 javadoc Variables 8–3

9. Preloading Java Class Files with JavaCodeCompact 9–1

9.1 Linking Java Programs 9–1
Contents v

9.2 Enabling Preloaded Builds 9–2

9.3 Adding Classes to Preloaded Builds 9–3

A. JavaCodeCompact Reference A–1

A.1 Description A–1

A.2 Options A–2

A.3 Opcode Transformations A–3

A.4 JavaCodeCompact Class Transitive Closure Requirements A–4

A.5 Output A–4

A.6 See Also A–5
vi CDC Build System Guide • November 2005

Figures

FIGURE 1-1 CDC Build System 1–5

FIGURE 6-1 JVMDI Architecture 6–1
 vii

viii CDC Build System Guide • November 2005

Tables

TABLE 1-1 Standard Java ME API Features 1–3

TABLE 1-2 CDC Build Process Overview 1–6

TABLE 2-1 Solaris Host Requirements 2–2

TABLE 2-2 Linux Host Requirements 2–2

TABLE 2-3 UNIX Target Build Tools 2–3

TABLE 2-4 UNIX Host Build Tools 2–4

TABLE 2-5 Java SE Build Tools 2–4

TABLE 2-6 Target Platforms 2–5

TABLE 2-7 Supported Target Build Tool Versions 2–7

TABLE 2-8 XScale/Bulverde Target Build Tools 2–9

TABLE 2-9 Cross-Development Tool Macros 2–11

TABLE 2-10 Internal Build System Macros 2–11

TABLE 2-11 Target Build Tool Macros 2–12

TABLE 2-12 Host Build Tool Macros 2–13

TABLE 3-1 build Directory 3–2

TABLE 3-2 CDC Build System Makefiles in build/share 3–3

TABLE 3-3 Generated Development Files 3–4

TABLE 3-4 Test and Demo Files 3–5

TABLE 3-5 Other Generated Files 3–5

TABLE 3-6 Other Generated Files 3–6
 ix

TABLE 5-1 Supported Makefile Options 5–3

TABLE 5-2 Limited Support Makefile Options 5–6

TABLE A-1 JavaCodeCompact Options A–2
x CDC Build System Guide • November 2005

Preface

This guide describes the build system shared by various implementations of
technology based on the Connected Device Configuration (CDC) and its related
profiles and optional packages. The CDC build system can generate an executable
binary image containing a CDC Java runtime environment.

This guide contains task descriptions for installing, configuring, testing and using
the CDC build system as well as build option descriptions for controlling
functionality, testability and performance features.

The companion document CDC Runtime Guide describes how to use a CDC Java
runtime environment. It focuses on runtime issues like installation, configuration,
testing and running Java™ technology-based application software as well as
developer issues like compiling, debugging and profiling. This guide focuses on
how to enable these features at build-time.

Who Should Read This Guide
This guide is intended for software engineers who need to build a CDC Java runtime
environment for one of the following purposes:

■ Porting the CDC HotSpot Implementation Java virtual machine.
■ Porting one of the CDC profile class libraries.
■ Testing a CDC Java runtime environment.
■ Developing applications.
■ System integration.

The reader should be familiar with Java and UNIX build tools as well as embedded
software development. Before using the CDC build system, it is helpful to spend
some time learning how to use a CDC Java runtime environment. See the CDC
Runtime Guide for more details.
 xi

How This Book Is Organized
■ Chapter 1 describes the concepts behind the CDC build system.
■ Chapter 2 describes how to install and configure the CDC build system.
■ Chapter 3 describes the source code organization of the CDC build system and

the reference implementations.
■ Chapter 4 describes how to use the CDC build system to perform a test build and

create a runtime environment deployment bundle, build javadoc API reference
documentation.

■ Chapter 5 describes the configuration options for the CDC build system.
■ Chapter 6 describes how to enable debugging support for a CDC Java runtime

environment.
■ Chapter 7 describes how to enable profiling support for a CDC Java runtime

environment.
■ Chapter 8 describes how to add an optional package to the CDC build system.
■ Chapter 9 describes how to direct the CDC build system to preload the Java class

library and application classes.
■ Appendix A describes the JavaCodeCompact build tool that is used for

preloading system and application classes.

Implementation-Specific Features
CDC techology is delivered by Sun thru different kinds of software releases. The
following technology releases are relevant to this guide:

■ Reference Implementation (RI)
■ Optimized Implementation (OI)
■ CDC Application Manager (CAM)

Some topics and discussions in this guide are marked with the acronyms described
above to indicate that the material is relevant to a specific CDC technology release.
xii CDC Build System Guide • November 2005

Typographic Conventions

Related Documentation

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized

Command-line variable;
replace with a real name or
value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Related Documentation

Title Description

CDC: An Application Framework
for Personal Mobile Devices

The white paper CDC: Java Platform Technology for
Connected Devices introduces CDC technology, standards,
devices, applications and tools.

CDC Runtime Guide Runtime-oriented information for developers and testers.

CDC Porting Guide Procedures and interface definitions for porting the CDC
Java virtual machine and class library to an alternate
target platform.
Preface xiii

• CDC Technology Compatibility
Kit User’s Guide

• Foundation Profile Technology
Compatibility Kit User’s Guide

• Personal Basis Profile
Technology Compatibility Kit
User’s Guide

• Personal Basis Profile
Technology Compatibility Kit
User’s Guide

• Security Optional Package
Technology Compatibility Kit
User’s Guide

User documentation for running the TCK validation
suites.

Java Virtual Machine Specification,
Second Edition

Defines the Java class format and the virtual machine
semantics for class loading, which are the basis for the
operation of the Java runtime environment and its ability
to execute Java application software on a variety of
different target platforms. See
http://java.sun.com/docs/books/vmspec.

Java Native Interface:
Programmer's Guide and
Specification

Describes the native method interface used by the CDC
HotSpot Implementation Java virtual machine.
http://java.sun.com/docs/books/jni.

Java Virtual Machine Debugger
Interface (JVMDI)

Defines an interface that allows debugger tools like jdb
and third-party debuggers to interact with a debugger-
capable Java runtime environment. See
http://java.sun.com/products/jpda/doc/jvmdi
-spec.html.

Java Virtual Machine Profiler
Interface (JVMPI)

Defines an interface that allows the hprof profiler to
interact with a Java runtime environment to measure
application behavior. See
http://java.sun.com/j2se/1.4.2/docs/guide/j
vmpi/jvmpi.html.

Inside Java 2 Platform Security Describes the Java security framework, including
security architecture, deployment and customization. See
http://java.sun.com/docs/books/security.

TABLE P-2 Related Documentation

Title Description
xiv CDC Build System Guide • November 2005

http://java.sun.com/docs/books/security
http://java.sun.com/products/jpda/doc/jvmdi-spec.html
http://java.sun.com/products/jpda/doc/jvmdi-spec.html
http://java.sun.com/docs/books/jni
http://java.sun.com/docs/books/vmspec

Accessing Sun Documentation Online
Sun provides online documentation resources for developers and licensees.

TABLE P-3 Sun Documentation Resources

URL Description

http://docs.sun.com Sun product documentation

http://java.sun.com/j2me/docs Java ME technical documentation

http://developer.java.sun.com Java Developer Services

http://www.sun.com/software/jpe Java Partner Engineering

http://java.net An open community that facilitates
Java technology collaboration.
Preface xv

http://java.net
http://www.sun.com/software/jpe
http://developer.java.sun.com
http://java.sun.com/j2me/docs
http://docs.sun.com

Terminology
These terms related to the Java™ platform and Java™ technology are used
throughout this manual.

Java technology level (Java level)

Java technology based (Java based)

class contained in a Java
class file (Java class)

Java programming
language profiler (Java profiler)

Java programming
language debugger (Java debugger)

thread in a Java virtual
machine representing a

Java programming
language thread (Java thread)

stack used by a Java
thread (Java thread stack)

application based on Java
technology (Java application)

source code written in the
Java preogramming

language (Java source code)

object based on Java
technology (Java object)

method in an object based
on Java technology (Java method)

field in an object based on
Java technology (Java field)

a named collection of
method definitions and

constant values based on
Java technology (Java interface)

a group of types based on
Java technology (Java package)
xvi CDC Build System Guide • November 2005

an organized collection of
packages and types

basedon Java technology (Java namespace)

constructor method in an
object based on Java

technology (Java constructor)

exception based on Java
technology (Java exception)

an application
programming interface

(API) based on Java
technology (Java API)

a service providers
interface (SPI) based on

Java technology (Java API)

developer tool based on
Java technology (Java developer tool)

system property in a Java
runtime environment (Java system property)

security framework for the
Java platform (Java security framework)

security architecture of the
Java platform(Java security architecture)

Feedback
Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-comments@java.sun.com

You can send comments and suggestions regarding this guide by sending email to:

docs@java.sun.com
Preface xvii

xviii CDC Build System Guide • November 2005

CHAPTER 1

Introduction

The CDC build system is a set of makefiles, scripts and tools that constructs a CDC
Java runtime environment. The CDC build system uses commonly available Java
and UNIX build tools to compile Java, C and assembly language source code and
generate an executable image for a specific target platform. Makefile options control
features of the generated CDC Java runtime environment that range from debugging
capabilities and performance characteristics to optional functionality.

This chapter introduces the concepts and procedures of the CDC build system. The
CDC build system has several purposes:

■ Building different implementations of the CDC Java runtime environment for
target platforms.

■ Supporting application and runtime development.

The CDC build system can also be adapted to support different purposes. It can be:

■ Configured to enable/disable functionality, testing and performance features.

■ Extended to support optional packages, applications and class libraries.

■ Ported to support new target platforms and devices.

Once built, the CDC Java runtime environment can be used in several different
contexts:

■ Runtime testing.

■ TCK verification.

■ Application development and testing.

■ Product deployment.

The CDC build system operates on several host development platforms, including
Solaris and Linux. The CDC build system uses cross-compilation to generate an
executable image that can be transferred to a target platform for testing or
deployment. For example, the CDC Java runtime environment can be built on a
Linux-based x86/PC and then run on a Linux-based test device with an embedded
RISC CPU like ARM, XScale or MIPS.
1-1

1.1 Host Development Environment
The CDC build system is based on commonly available software development tools.
These include both Java development tools like javac, the Java compiler and UNIX
development tools like gcc, make and lex. The UNIX development tools are further
divided between host build tools that generate objects and resources for use within
the CDC build system and target build tools that generate objects and resources for
the target platform. FIGURE 1-1 and TABLE 1-2 describe the basic workflow of the CDC
build system and how it constructs a CDC Java runtime environment for a target
platform.

Chapter 2 describes the system requirements for the CDC build system.

1.2 Build Options
The CDC build system has a variety of build options that control different features
of the CDC Java runtime environment:

■ At the top-level, the CDC build system supports several different target devices.
For example, the CDC build system can generate an executable binary image for
one of the target devices described in TABLE 2-6.

■ Some build options control API features of the generated CDC Java runtime
environment. This represents the API target that an application developer refers
to when they create application software for the CDC platform.

■ Finally, the build options control various performance and testability options that are
useful during runtime system development. These build options are described in
Chapter 5.

1.3 Target Platforms
The implementations of the CDC Java runtime environment described in this guide
are based on the target platforms described in TABLE 2-6. These are based on the
Linux platform and several embedded processors, including ARM, XScale and MIPS.
For help with starter ports that support other operating systems and CPUs, contact
Java Partner Engineering (http://www.sun.com/software/jpe).
1-2 CDC Build System Guide • November 2005

http://www.sun.com/software/jpe

1.4 Selecting Standard API Features
Java ME standards provide a flexible mechanism for constructing different yet
conforming versions of a Java runtime environment. API choices balance the needs
of product designers and application developers. Product designers can select
standard API features that match the capabilities of their devices while application
developers can use standard APIs shared by a range of different target devices.

The standard API choices available in CDC technology are based on configurations,
profiles and optional packages described in TABLE 1-1. To construct a conforming
CDC Java runtime environment, a product designer chooses a configuration, a
profile and any number of optional packages..

For example, a product designer could choose the Connected Device Configuration
(CDC), the Personal Profile and the RMI and JDBC optional packages. See
Section 4.4, “Standard API Choices” on page 4-3 for information about how to use
build options to select standard API featues. See Section 4.12, “Building a Target
Development Version of the CDC Java Class Library” on page 4-6 for information
about how to build a target development version of the CDC Java class library.

1.5 Application Development
The CDC application developer compiles Java source code against a CDC Java class
library and then runs the compiled application with a CDC Java runtime
environment for testing and debugging. The companion document CDC Runtime
Guide describes how to compile, run, debug and profile Java applications for the
CDC platform using conventional Java SE tools and the CDC Java runtime
environment.

In general, CDC application development is separate from runtime development.
But there is one scenario where they cross paths. The CDC build system can be used
as part of an application development workflow to bundle Java applications directly

TABLE 1-1 Standard Java ME API Features

Configuration Profile Optional Package

CDC Foundation RMI

Personal Basis JDBC

Personal Security
Chapter 1 Introduction 1-3

into a CDC Java runtime environment for the purposes of both performance and
convenience. This capability is based on the preloading mechanism described in
Chapter 9.
1-4 CDC Build System Guide • November 2005

1.6 CDC Build Process Overview

FIGURE 1-1 CDC Build System

CDC

CDC Java runtime environment

(target: Linux, RTOS...)

VM Source
(C/assembly)

Native Method
Source (JNI)

Class Library
Source (Java)

javac

JavaCodeCompact

*.class

gcc/as

romjava*.c

gcc

romjava.o

ar/ld

target build tools

*.o

build
system

system
libraries
Chapter 1 Introduction 1-5

The CDC build process is divided into the stages described in TABLE 1-2.

TABLE 1-2 CDC Build Process Overview

Stage Build Tool Input Output

1 Java compiler (javac) The source files for the
preloaded system classes are
defined in the build macro
CVM_BUILDTIME_CLASSES.

build/target/btclasses/*.class

2 compression utility
(zip)

Classes listed in
build/target/generated/j
avavm/runtime/tranlist

build/target/btclasses.zip

3 Java compiler (javac) Java source files for runtime
classes

build/target/class-lib/

The class-lib directory contains the classes
for the CDC Java class library. The name of
the directory indicates the supported
API(s), e.g. cdc, foundation or
foundation-rmi. This directory is not
present for preloaded builds.

4 compression utility
(zip)

Classes contained in
build/target/class-lib/

build/target/lib/class-lib.jar

5 Java class preloader
(JavaCodeCompact)

build/target/btclasses.
zip

Preloaded class data structures in
build/target/generated/javavm/runti
me/romjava*.c and romjava.h.

6 JNI C header and stub
file generator (javah)

Runtime classes JNI header files in
build/target/generated/jni/*.h

7 target C compiler Native methods and VM
source (.c) files

Object files in build/target/obj/*.o.

8 target C compiler Preloaded classes in
build/target/generated/j
avavm/runtime/romjava*
.c.

Object files in
build/target/obj/romjava*.o.

9 target archive utility Object files in
build/target/obj/romjava
*.o.

Object archive file in
build/target/obj/libromjava.a.

10 target linker Object files in
build/target/obj/*.o from
step 8 and the archive file in
build/target/obj/libromj
ava.a from step 10.

The target-specific Java virtual machine
executable binary is located in
build/target/bin/cvm.
1-6 CDC Build System Guide • November 2005

CHAPTER 2

Installation

This chapter shows how to install and configure the build system and source code in
a CDC source release. The goals here are to:

■ Download and install a CDC source release.
■ Set up the host and target build tools.
■ Configure the CDC build system.
■ Test the build system

After installation, you can familiarize yourself with the contents of the CDC build
system by reviewing Chapter 3. Then Chapter 4 provides an overview of basic CDC
build system procedures. Then, Chapter 5 provides complete descriptions of the
various CDC build options.

2.1 CDC Source Releases
Source code for CDC technology is released in two versions:

■ A reference implementation (RI) demonstrates CDC technology. CDC RIs are based
on a common desktop development environment like Suse Linux 9.1.

■ An optimized implementation (OI) supports strategic platforms and provide the
basis for porting projects. The supported optimized implementation is based on
the Linux platform and several embedded processors, including ARM, XScale and
MIPS. Starter ports for other OS/CPU combinations are available from Java
Partner Engineering (JPE).

This build guide describes the build system common to both of these source releases.
2-1

2.2 CDC Build System Requirements
The CDC build system is based on standard UNIX and Java build tools hosted on an
x86-based PC or Solaris workstation. The following subsections describe the system
requirements of the CDC build system.

2.2.1 Hardware Requirements
The CDC build system supports two host environments: a Solaris workstation or an
x86-based PC. The basic hardware requirements for the CDC build system are
described in TABLE 2-1 and TABLE 2-2:

The x86-based PC host requirements are mostly defined by the need to run Suse
Linux or Windows. See the Suse Linux desktop system requirements site
(http://www.suse.com/us/business/products/sld/system_requirement
s.html) for a description of the hardware requirements for Suse Linux.

In addition to these host requirements, the CDC build system requires a mechanism
for downloading a runtime executable to the target device. These mechanisms range
from a serial or USB interface to TCP/IP networking. The examples in this guide are
based on ftp(1).

TABLE 2-1 Solaris Host Requirements

Component Requirement

Solaris operating
environment

Solaris 8 or Solaris 9

memory • minimum: 256MB
• recommended: 512MB for a full debugging environment

disk space • minimum: 100MB
• recommended: 5+GB

TABLE 2-2 Linux Host Requirements

Component Description

memory • minimum: 64MB
• recommended: 512MB for a full debugging environment

disk space • minimum: 100MB
• recommended: 5+GB
2-2 CDC Build System Guide • November 2005

http://www.suse.com/us/business/products/sld/system_requirements.html)
http://www.suse.com/us/business/products/sld/system_requirements.html)

2.2.2 Software Requirements
The CDC build system is based on commonly available UNIX and Java build tools.
The UNIX build tools are divided into two categories: target build tools that must be
reconfigured and rebuilt for each target platform and host build tools that should
work without modification on the host development system. In addition, the CDC
build system includes some internal build tools like JavaCodeCompact and
JavaCodeSelect as well as standard Java SE build tools like javac.

2.2.2.1 UNIX Build Tools

TABLE 2-3 describes the UNIX target build tools. See TABLE 2-7 for a description of the
build tool versions for specific platforms.

TABLE 2-3 UNIX Target Build Tools

Build Tool Example Description

C/C++
cross-
compiler

gcc The reference source code for the CDC-based Java runtime environment and
build system has been compiled with several versions of the gcc C/C++
compiler.

Assembler as The assembler translates assembly language source into a binary format suitable
for use by the linker.

Note that the assembly language source code provided in the CDC source release
is based on the GNU assembler and may need modification to work with a
different target assembler.

Linker ld The linker combines object and archive files, relocates their data and resolves
symbol references.

Archive
utility

ar The archive utility creates, modifies and extracts archives.

Archive
indexer

ranlib The archive indexer generates an index to the contents of an archive and stores it
in the archive.
Chapter 2 Installation 2-3

TABLE 2-4 describes the UNIX host build tools for the x86/Suse Linux host
development platform.

2.2.2.2 Java SE Build Tools

TABLE 2-5 describes the standard Java SE build tools.

2.2.2.3 Qt Library

The CDC build system can build both the Personal Basis Profile and Personal Profile
build targets. These build targets can be based on several different GUI toolkits. The
CDC reference implementation requires Qt/X11 version 3.3.1 which is is included in
the Suse Linux 9.1 desktop distribution.1

TABLE 2-4 UNIX Host Build Tools

Tool Version Description

gcc/g++ 3.3.3 host GNU C/C++ compiler1

1 UNIX host development build tools (GNU C/C++ and GNU binary utilities) are used by the CDC build sys-
tem to build certain host-based CDC build tools. Because these build tools are host-based, they do not create
code that is linked into the target runtime system which is usually based on a different target CPU. Most recent
versions of the GNU C/C++ compiler after 2.95 should work with the CDC build system.

ar
as
ld
ranlib

2.15.90 host GNU binary utilities1

make 3.80 GNU make utility

sh 2.05 Bourne compatible shell (e.g. bash or ksh)

lex 2.5.4 lexical analyzer generator

bison 1.875 parser generator

zip 2.3 Zip compression utility

TABLE 2-5 Java SE Build Tools

Tool Description

java Java application launcher

javac Java compiler

javadoc Java API documentation generator

jar Java archive tool

javah JNI C header and stub file generator
2-4 CDC Build System Guide • November 2005

2.3 CDC Target Platform Requirements
The CDC Java runtime environment can support a variety of target devices. This
section describes the target devices that have been tested with the RI and OI.

For information on the system requirements for supporting alternate target devices,
see the CDC Porting Guide.

2.3.1 ARM Floating Point Note
The CDC HotSpot Implementation Java virtual machine can support floating point
(FP) operations with both a target device’s floating point hardware and with
software emulation. Most ARM processors (such as StrongARM) do not have FP
hardware support. When an FP instruction is encountered in the instruction stream
on Linux/ARM, an illegal instruction trap occurs and the Linux kernel emulates the
FP instruction. This results in highly inefficient code for FP operations.

To avoid this, the CDC HotSpot Implementation Java virtual machine uses a
software floating point model to achieve better performance with software FP
emulation. Instead of generating ARM FP instructions, the VM generates runtime
calls for FP operations. Floating point parameters are passed in integer registers.
This scheme avoids kernel traps for each FP operation.

1. The latest version of the Qt library tested with the CDC source release is version 3.3.4 which is more recent
than the version included with the Suse Linux 9.1 desktop distribution. The source bundle for Qt 3.3.4 can be
aqcquired from ftp.trolltech.com/pub/qt/source. Licensees may only use this Sun Microsystems,
Inc. software with commercial versions of TrollTech’s Qt libraries, either provided herewith by Sun or
licensed directly by Licensee from TrollTech. Additional Qt header files must be licensed from TrollTech
under a TrollTech developer’s license.

TABLE 2-6 Target Platforms

Target
Platform URL Description

ARM-based
Linux

http://www.myzaurus.com The Sharp Zaurus SL-C860 is a
Linux/ARM-based PDA.

http://www.intel.com/design/pca/
 applicationsprocessors/
 tools_software/devboards.htm

The Intel® PXA27x Processor
Developer’s Kit (Mainstone III) includes
a Linux-based Intel XScale PXA270
Processor Card.

MIPS-based
Linux

http://www.linux-mips.org/
 wiki/index.php/Cobalt

The Cobalt Qube 2 is a Linux/MIPS-
based server.
Chapter 2 Installation 2-5

ftp.trolltech.com/pub/qt/source
http://www.linux-mips.org/��wiki/index.php/Cobalt
http://www.myzaurus.com
http://www.novell.com/products/��linuxprofessional/sysreqs.html

The target C compiler should be able to perform software floating point
compilations. With the gcc 2.95.3 compiler, for example, this is achieved by using
the -msoft-float option.

Note – The CDC build system is based on a patched gcc 2.95.x compiler. For
performance reasons, the CDC build system uses the -msoft-float option for the
linux-arm builds. The CDC build system can use the gcc 3.x compiler for
platforms that have been updated to include softfloat libraries. If the target platform
has hard float libraries, then gcc 2.95.x must be used. Otherwise, gcc 3.x can be
used. For guidelines on using alternate compilers and build tools, see the CDC
Porting Guide.

2.3.2 Cobalt Build Notes
The libraries and header files for the Cobalt Qube are older than the current versions
of the UNIX build tools support. Therefore, it is necessary to use the libraries and
header files from the Cobalt Qube target device. See Section 2.4.4, “Acquiring the
UNIX Build Tools” on page 2-7 for instructions on how to configure the UNIX build
tools to support a target device with cross-compilation.

2.4 Installation Procedure
The procedures below show how to acquire, install, configure and test the CDC
build system for a specific target device.

2.4.1 Downloading the CDC Distribution File
The CDC source code release is available under license from Sun Microsystems from
the Java Partner Engineering website at http://javapartner.sun.com. For an
account name and password for this Web site, contact Java Partner Engineering
(http://wwws.sun.com/software/jpe).

2.4.2 Extracting the Distribution Bundle
The CDC distribution bundles are delivered in Zip format and can be unloaded with
the unzip(1) command.
2-6 CDC Build System Guide • November 2005

http://wwws.sun.com/software/jpe
http://javapartner.sun.com

1. Change the current directory to a location in a file system with enough free disk
space to hold the CDC source release.

% cd /net/cdc-build

2. Download the distribution bundle from the Java Partner Engineering download
site.

3. Unzip the distribution bundle:

% unzip cdc-1_1-src-linux-x86.zip

After unloading the distribution file, you can browse through the source and build
hierarchies. For a description of the main directories of the CDC build system, see
Chapter 3. For a description of the different runtime files generated by the CDC
build system, see the CDC Runtime Guide. For a description of the source code files
and directories, see the CDC Porting Guide.

2.4.3 Acquiring the Java Build Tools
The CDC build system uses the Java build tools described in TABLE 2-5. Sun provides
versions of these tools for various development platforms at
http://java.sun.com/j2se/downloads.html. The CDC build system requires
the Java SE version 1.4.2 SDK.

2.4.4 Acquiring the UNIX Build Tools
The host UNIX build tools supplied by the host development environment can be
used without modification. It will be necessary to acquire and build the target build
tools separately for each target platform.

TABLE 2-7 describes the build tool versions used with the CDC build system to test
and validate the CDC Java runtime environment on the supported platforms.

For both Solaris and Linux, the procedure of acquiring the target build tools is the
same:

TABLE 2-7 Supported Target Build Tool Versions

Platform
Compiler
(gcc)

Binary Utilities
(ar, as, ld, ranlib)

ARM/Zaurus 2.95.3 (patched) 2.11

ARM/Bulverde 3.2.3 (patched) 2.14.90.0.7 (patched)

MIPS/Cobalt 3.4.2 2.15
Chapter 2 Installation 2-7

http://java.sun.com/j2se/downloads.html

1. Copy the libraries and header files from the target platform for use with the target
compiler on the host development system.

2. Configure, build and install the target build tools.

See the GNU Compiler Collection documentation
(http://gcc.gnu.org/onlinedocs) for instructions on how to configure, build
and install the cross-development build tools for a given target platform. For
example, the configure build script has a --with_cpu command-line argument.
Passing the strongarm option to this command-line argument adds support for the
StongARM CPU. After the target build tools have been built, they should be
installed in a location for use with the rest of the CDC build system.

2.4.4.1 gcc 2.95.3 Notes
■ Processors like StrongARM may not have hardware-based floating point support.

Build and install the SoftFloat library from
http://www.jhauser.us/arithmetic/SoftFloat.html.

■ Apply the gcc patch from
http://handhelds.org/download/toolchain/source/gcc-2.95.2-
diff-991022.gz. This patch improves support for certain processors like ARM.
2-8 CDC Build System Guide • November 2005

http://gcc.gnu.org/onlinedocs
http://handhelds.org/download/toolchain/source/gcc-2.95.2-diff-991022.gz
http://handhelds.org/download/toolchain/source/gcc-2.95.2-diff-991022.gz
http://www.jhauser.us/arithmetic/SoftFloat.html

2.4.4.2 XScale/Bulverde Notes

The target build tools for the XScale-based Mainstone III development board are
described in TABLE 2-8. These build tools require some patches included in the patch
files described in TABLE 2-8 as well as some additional patches described below.

1. Download the target build tool sources and apply the patches described in
TABLE 2-8.

2. Apply the patch below to gcc/config/arm/t-linux to disable the ASM soft
float library functions:

-LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_lnx \
- _negdf2 _addsubdf3 _muldivdf3 _cmpdf2 _unorddf2 _fixdfsi
_fixunsdfsi \
- _truncdfsf2 _negsf2 _addsubsf3 _muldivsf3 _cmpsf2 _unordsf2 \
- _fixsfsi _fixunssfsi
+LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_lnx

3. Apply the patch below to gcc/config/arm/t-linux to enable C soft float
library functions:

+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c:$(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c

TABLE 2-8 XScale/Bulverde Target Build Tools

Build Tool URL

Binaries ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainst
one/12-29-2004/bin/arm-linux-toolchain-bin-11-26-04.tar.gz

Patches ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainst
one/12-29-2004/src/toolchain/patch/binutils.patch

ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainst
one/12-29-2004/src/toolchain/patch/gcc-base.patch

Source ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainst
one/12-29-2004/src/toolchain/source/binutils-
2.14.90.0.7.tar.gz

ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainst
one/12-29-2004/src/toolchain/source/gcc-3.3.2.tar.gz
Chapter 2 Installation 2-9

ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/xscale/mainstone/12-29-2004/bin/arm-linux-toolchain-bin-11-26-04.tar.gz

+dp-bit.c:$(srcdir)/config/fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> dp-bit.c
+TARGET_LIBGCC2_CFLAGS = -Dinhibit_libc -fno-inline

Note that the gcc patching and rebuilding is only necessary to make sure all TCK
Floating Point tests pass. If the user just wants to experiment with the platform, the
existing Mainstone gcc binaries should work fine and probably will not result in any
incorrect behaviour in the typicial java application.

2.4.5 Organizing the CDC Build Tools
The CDC build system uses a set of macros that define the locations of the UNIX and
Java build tools. These macros allow the CDC build tools to be organized in different
ways.

The following strategies can be used for organizing the CDC build tools:

■ Use the default locations.

■ Redefine the top-level macros to place the build tools in alternate locations.

■ Override the individual build tool macros listed in TABLE 2-11 and TABLE 2-12.

These strategies provide flexibility in organizing the CDC build tools without
relying on the PATH environment variable.

2.4.5.1 Using the Default Locations

The easiest strategy is to use the default locations:

1. Use /micro/tools as the root of the build tool hierarchy.

2. Install the UNIX cross-development build tools in /micro/tools/<host_cpu>-
<host_device>-<host_os>/gnu/bin/<target_cpu>-<target_device>-<target_os>-<tool>.

For example, the gcc compiler would be located in /micro/tools/sparc-sun-
solaris/gnu/bin/x86-suse-linux-gcc.

3. Install the Java build tools in /micro/tools/<host_cpu>-<host_device>-
<host_os>/java/jdk1.4.2.

For example, the Java build tools would be located in /micro/tools/sparc-sun-
solaris/java/jdk1.4.2.
2-10 CDC Build System Guide • November 2005

2.4.5.2 Redefining the Top-Level Macros

TABLE 2-9 describes the top-level macros used to organize the CDC build tools.
Overriding these macros is not necessary if the build tools are installed in the default
location where the CDC build system can easily find them.

The macros described below and in Chapter 5 can be overridden on the make
command-line, in the GNUmakefile in the target device build directory, or in a
defs.mk file in the target device build directory..

TABLE 2-10 describes some of the internal build system macros. These macros cannot
be overridden because they are discovered by the build system through the build
directory naming conventions. They are used by the macros in TABLE 2-9 and are
listed here for reference purposes.

TABLE 2-9 Cross-Development Tool Macros

Macro Default Description

CVM_TOOLS_DIR /micro/tools The top-level directory for the CDC
build system tools.

JDK_VERSION jdk1.4.2 Version of the Java SE build tools.

JDK_HOME $(CVM_TOOLS_DIR)/$(CVM_H
OST)/java/$(JDK_VERSION)

Location of the Java build tools. See
TABLE 2-10 for a description of
CVM_HOST.

CVM_TARGET_TOOLS_DIR $(CVM_TOOLS_DIR)/$(CVM_H
OST)/gnu/bin

Location of the UNIX target build tools.

CVM_TARGET_TOOLS_PREFIX $(CVM_TARGET_TOOLS_DIR)/
$(TARGET_CPU_FAMILY)-
$(TARGET_DEVICE)-
$(TARGET_OS)-

Prefix for the UNIX target build tools.

TABLE 2-10 Internal Build System Macros

Macro Sample Values Description

HOST_CPU_FAMILY x86 or sparc Host CPU.2

HOST_DEVICE suse or sun Host device.1

HOST_OS linux or solaris Host operating system.1
Chapter 2 Installation 2-11

The macros described in TABLE 2-9 and TABLE 2-10 are defined in
build/share/defs.mk.

Examples for overriding these macros include:

■ An alternate location for the Java build tools can be specified with the JDK_HOME
macro.

■ An alternate root for the build tool hierarchy can be specified with the
CVM_TOOLS_DIR macro.

■ An alternate location for the UNIX cross-development build tools can be specified
with the CVM_TARGET_TOOLS_DIR macro.

2.4.5.3 Overriding the Individual Build Tool Macros

TABLE 2-11 and TABLE 2-12 describe the macros defined in build/share/defs.mk
that define individual target build tools. When these macros are overridden, the top-
level macros like CVM_TOOLS_DIR and JDK_HOME are ignored.

If the shell locates these tools in $PATH, only the tool name is needed. Otherwise, it’s
best to use a full pathname for these macros. Again, the easiest place to define these
macros is in the top-level GNUmakefile.

TARGET_CPU_FAMILY arm1

mips

x86

Target CPU.3

TARGET_DEVICE zaurus

xscale

suse

Target device.2

TARGET_OS linux Target operating system.2

1 Supports both the ARM and XScale embedded CPU.

2 Used to form CVM_HOST which describes the host platform.

3 Used to form CVM_TARGET which describes the target platform.

TABLE 2-11 Target Build Tool Macros

Macro Default Description

CC $(CVM_TARGET_TOOLS_PREFIX)gcc C compiler

CCC $(CC) C++ compiler

TABLE 2-10 Internal Build System Macros

Macro Sample Values Description
2-12 CDC Build System Guide • November 2005

TABLE 2-12 describes the macros defined in build/share/defs.mk that define host
build tools.

AS $(CC) assembler

LD $(CC) linker

CVM_USE_NATIVE_TOOLS The default value is based on whether
the native tools are found. This is
usually true for the RI and false for
the OI.

When true, the native tools in $PATH
are used rather than attempting to
locate a gcc compiler. This means cc
is used as the default compiler. When
false, the makefiles search for gcc in
a path determined by a number of
other options, including
CVM_TOOLS_DIR and CVM_HOST. See
CVM_TARGET_TOOLS_PREFIX in
build/share/defs.mk.

TABLE 2-12 Host Build Tool Macros

Macro Default Description

CVM_JAVA java Java application launcher

CVM_JAVAC javac Java compiler

CVM_JAVADOC javadoc Java API reference generator

CVM_JAVAH javah JNI C header and stub file generator

CVM_JAR jar Java archive tool

AR ar archive utility

RANLIB ranlib archive indexer

HOST_CC $(CVM_HOST_TOOLS_PREFIX)gcc or
$(CC) when
$(CVM_USE_NATIVE_TOOLS) is
true.

host C compiler

HOST_CCC $(HOST_CC) host C++ compiler

LEX lex lexical analyzer

BISON bison parser generator

ZIP zip Zip compression utility

SHELL sh Bourne compatible shell1

1 See the note in build/share/defs.mk about the options for using ksh or sh.

TABLE 2-11 Target Build Tool Macros

Macro Default Description
Chapter 2 Installation 2-13

2-14 CDC Build System Guide • November 2005

CHAPTER 3

Build System Contents

This chapter describes the contents of the CDC source release from the perspective
of the build system. The goals here are to describe the directory structure and
makefiles of the CDC build system.

After the CDC source release bundle has been unzipped and installed, the source
code is structured into a few high-level directories:

■ build - the CDC build system
■ src - shared and target-specific source code
■ test - miscellaneous test programs

This chapter focuses on the build directory. For a description of the src directory,
see the companion document CDC Porting Guide. For a description of the various
files generated for the CDC Java runtime environment, see the companion document
CDC Runtime Guide.
3-1

3.1 build Directory Structure
The CDC build system is located in the build directory which contains a series of
subdirectories that follow the naming conventions described in TABLE 3-1. These
subdirectories have parallel organizations to ease navigation and support the
operation of the CDC build system.

3.2 Makefile Hierarchy
The CDC build system uses the naming convention described in TABLE 3-2 to specify
makefile names. The different directories listed above can contain makefiles with
identical names. In this case the share version will attempt to include the CPU, OS,
OS-CPU and OS-CPU-DEVICE versions, if they are present. For example,
share/defs.mk includes arm/defs.mk, linux/defs.mk, linux-arm/defs.mk
and linux-arm-zaurus/defs.mk.

TABLE 3-1 build Directory

Directory Example Description

portlibs - Makefile definitions for the shared JIT layer.

share - Shared makefiles.

<CPU> arm

mips

x86

CPU architecture-specific makefile options. These are
mostly JIT-related.

<OS> linux OS-specific makefile options for the VM, class library
and tools.

<OS>-<CPU> linux-x86

linux-arm

linux-mips

OS/CPU makefile options for the VM and tools.

<OS>-<CPU>-<DEVICE> linux-x86-suse

linux-arm-zaurus

linux-arm-xscale

linux-mips-cobalt

The main target build directory. It contains the top-level
makefile which can set or override build options used by
the shared makefiles. This is also where the generated
files are placed. These generated files include the
contents of the CDC Java runtime environment and other
generated files, depending on which build options are
selected.
3-2 CDC Build System Guide • November 2005

Profile-based makefiles are chained together. For example, the top-level
share/top.mk includes share/defs_classlib.mk which then includes
share/defs_cdc.mk.

3.3 Generated Files for the CDC Java
Runtime Environment
After a build successfully completes, the target device build directory (e.g.
build/linux-x86-suse) contains a collection of generated files like object files,
executable binaries, Java class files, Zip and jar archives. A subset of these files
represents a CDC Java runtime environment that can be deployed on a target device

TABLE 3-2 CDC Build System Makefiles in build/share

File Description

GNUmakefile The top-level makefile for building a runtime environment for a target device.

defs.mk
defs_profile.mk
defs_profile_option.mk
defs_package_pkg.mk

Macro definitions.

rules.mk
rules_profile.mk
rules_profile_option.mk
rules_package_pkg.mk

Makefile rule definitions.

defs_zoneinfo.mk
rules_zoneinfo.mk

javazic utility and TimeZone resource files.

id_profile.mk Build identification string definitions.

jdwp.mk
jdwp_transport.mk
jdwp_transport_socket.mk

Java debugger wire protocol makefiles. See Chapter 6 for a description of the
debugging support in the CDC build system.

hprof.mk Builds and runs hprof, the Java profiler agent.

jcc.mk Builds and runs JavaCodeCompact.

jcs.mk Builds and runs JavaCodeSelect.

testgc.mk GC test framework.

top.mk Top-level shared makefile included by GNUmakefile that includes all the other
makefiles.
Chapter 3 Build System Contents 3-3

while other files contain runtime and application development resources. See
Section 4.10, “Creating a Runtime Bundle” on page 4-5 for instructions on how to
create a bundle containing the CDC Java runtime environment.

The most important runtime files are located in the bin and lib directories. These are
described in the companion document CDC Runtime Guide which also describes
command-line arguments, system properties and other runtime features.

3.4 Generated Development Files
The CDC build system generates both a target CDC Java runtime environment and
development resources for that target. The table below describes the development
resources generated for the target platform.

3.5 Test and Demo Programs
A CDC source release includes source code for a collection of test and demo
programs that can quickly test the functionality of a CDC Java runtime environment.
By default, the CDC build system compiles these test programs and places the
compiled class files in the testclasses and democlasses subdirectories in the

TABLE 3-3 Generated Development Files

File/Directory Description

btclasses.zip
btclasses/

btclasses.zip contains a version of the CDC class library that can be used for
compiling application source code. Since the contents of btclasses can vary
depending on the selected build options, application development should be based
on a target development version of the CDC Java class library. See Section 4.12,
“Building a Target Development Version of the CDC Java Class Library” on page 4-6
for more information.

hprof/ Compiled class files, header files and object files for the HPROF module. See
Chapter 7 for a description of the profiling support in the CDC build system.

jdwp/ Compiled class files, header files, object files and libraries for the JDWP module. See
Chapter 6 for a description of the debugging support in the CDC build system.
3-4 CDC Build System Guide • November 2005

target build directory. For convenience, the build system also creates Zip archives
named testclasses.zip and democlasses.zip that can be easily moved onto a
target device for testing.

3.6 CDC AMS Generated Files
The CDC build system generates several files and directories for CDC AMS
(J2ME_PLATFORM=appmanager).

TABLE 3-4 Test and Demo Files

File/Directory Description

democlasses.zip
democlasses/

Demo applications that demonstrate profile-based functionality. The source code for
these programs is located in src/share/personal/demo,
src/share/basis/demo and src/share/cdc/demo.

testclasses.zip
testclasses/

Test applications that can be used to quickly test the CDC Java runtime environment.
The source code for these programs is located in src/share/javavm/test. The
easiest test programs to use are HelloWorld and Test.

TABLE 3-5 Other Generated Files

File/Directory Description

appmanager.par A PAR file containing sample applications for OTA deployment. The
AwtPDA_APPS macro in
build/share/defs_appmanager_AwtPDA_pmode.mk can be used to
add applications for OTA deployment.

appmanager_classes/ Class files built for CDC AMS, including both the presentation mode
and the core CDC AMS implementation.

jaxp_classes/ Class files built for the XML parser.

oma-adapter_classes/ OMA adapter classes included in the EAR file for the J2EE Client
Provisioning server.

par/ Staging directory for the PAR file target.

war/ Staging directory for the WAR file target.
Chapter 3 Build System Contents 3-5

3.7 Other Generated Files
In addition, the CDC build system generates other internal object files that are part
of the build process.

TABLE 3-6 Other Generated Files

File/Directory Description

classes.jcc/ Compiled class files for JavaCodeCompact.

classes.tools/ Compiled class for GenerateCurrencyData tool.

generated/ Miscellaneous generated files.

jcs/ JavaCodeSelect generated files.

obj/ Compiled object files for the VM and class library JNI code.
3-6 CDC Build System Guide • November 2005

CHAPTER 4

Build System Procedures

Once installed, the CDC build system can perform a variety of functions. The
procedure below describes a simple method for performing a test build to make sure
that the CDC build system is correctly installed. Chapter 5 describes the build
options that are available in the CDC build system.

4.1 The Build Cycle
The basic work flow for using the CDC build system is:

Edit source code --> Build with options --> Test

1. Edit source code. In this step, you create or modify source code within the target-
specific (non-shared) portion of the implementation source code. See the companion
document CDC Porting Guide for information about how to modify the
implementation source code.

2. Build with options. In this step, you build a binary executable of the CDC Java
runtime environment based on a set of build options specified on the make
command line.

3. Test. In this step, you launch a Java application using the binary executable running
on a target platform.
4-1

4.2 Performing a Test Build
The target device build directory (e.g. build/linux-x86-suse) contains the top-
level makefile for building the CDC Java runtime environment for a target device.
The example below uses the default values for the makefile options described in
Chapter 5.

1. Change the current directory to the target device build directory:

% cd build/linux-x86-suse

2. Build the CDC Java runtime environment:

% make

Note – During the build process, the CDC build system displays warning messages
about deprecated methods and the missing empty.mk file. These warning messages
are produced by all supported tool sets and have been investigated and found to be
benign.

When the build is complete, the target device build directory contains the executable
binary files for the target platform and other generated files. These generated files
are described in Section 3.3, “Generated Files for the CDC Java Runtime
Environment” on page 3-3, Section 3.4, “Generated Development Files” on page 3-4,
Section 3.5, “Test and Demo Programs” on page 3-4 and Section 3.7, “Other
Generated Files” on page 3-6.

You can override the default values described in Chapter 5. For example,

% make CVM_DEBUG=true

generates the debug version of the build target. Note that CVM_DEBUG implicitly
selects a number of other makefile options. Section 5.2, “Guidelines for Overriding
Makefile Options” on page 5-2 shows how to override makefile options.

4.3 Selecting a Target Device
The CDC build system builds a CDC Java runtime environment for a specific target
device. The actual target device is determined by the main target build directory. For
example, to build a CDC Java runtime environment for a Suse Linux-based x86/PC,
use build/linux-x86-suse as the target build directory.
4-2 CDC Build System Guide • November 2005

4.4 Standard API Choices
The standard API choices available in CDC technology are based on configurations,
profiles and optional packages. The Connected Device Configuration is chosen by using
the CDC build system. One of the CDC profiles like Foundation Profile, Personal Basis
Profile or Personal Profile is chosen by using one of the different source releases based
on a CDC profile and using J2ME_CLASSLIB. And optional packages like RMI and
JDBC are selected by integrating their source bundles into the CDC build system and
using the OPT_PKGS and SECURITY_PKGS build options. See Chapter 8 for
information about how to add an optional package to the CDC build system.

4.5 Selecting Testing and Performance
Features
The CDC build system and source code has a number of testing and performance
options. These build options are described in detail in Chapter 5.

4.6 Building CDC AMS
CDC AMS has a few special build targets and build options. The three most
important build options for building CDC AMS are:

■ J2ME_PLATFORM=appmanager

■ PRESENTATION_MODES (PBP for Cobalt, AwtPDA for Zaurus)

■ QTEMBEDDED (optional)

The first two are necessary for any CDC AMS build. J2ME_PLATFORM is the main CDC
AMS build option. PRESENTATION_MODES specfies the presentation mode build
target. When choosing a value for PRESENTATION_MODES, it is necessary to choose
an appropriate profile target like J2ME_CLASSLIB=personal.

Note – QTEMBEDDED is not specifically a CDC AMS build option, but it is necessary
to build for the Zaurus target.
Chapter 4 Build System Procedures 4-3

4.7 Building OTA Support for CDC AMS
CDC AMS includes support for OTA provisioning based on the J2EE Client
Provisioning Server RI (CPRI). To enable use of this feature in the CDC Java runtime
environment, both the CPRI and the J2EE 1.3.1 SDK distribution bundles must be
integrated with the CDC build system. This integration is necessary so that the CDC
AMS client includes an OTA adapter and so that the Java build system can create an
EAR file for deployment in a J2EE server.

The following procedure shows how to acquire the necessary source bundles for
CPRI and J2EE 1.3.1 SDK and build an EAR file for deployment in a J2EE server.

1. Download and install the J2EE 1.3.1 SDK from
java.sun.com/j2ee/1.3/download.html.

2. Download and unbundle the CPRI source bundle from
java.sun.com/j2ee/provisioning/download.html.

3. Build a client version of CDC AMS as shown in Section 4.6, “Building CDC
AMS” on page 4-3.

4. Build an EAR file by using the previous step and adding the web build target and
the J2EE_HOME and JSR124_HOME macros.

% make web J2EE_HOME=j2ee_home JSR124_HOME=jsr124_home

The web.ear file can be deployed in the J2EE server with a procedure described in
the CDC Java Runtime Guide.

4.8 Quick Rebuilds
The CDC build system maintains some state that can help perform quick rebuilds.
To rebuild using the same build flags as the previous build, use the CVM_REBUILD=
true option. This avoids the need to retype command-line options and avoids the
risk of a mistake that results in triggering cleanup actions.

Note – This option does not save the value of any options that specify where tools
are located, such as JDK_HOME and CVM_TOOLS_DIR.
4-4 CDC Build System Guide • November 2005

4.9 Generating Verbose Build Logs
By default, the CDC build system prints a build log to the standard error output of
the shell. A verbose build log can be generated by setting the CVM_TERSEOUTPUT to
false. For example,

% make CVM_TERSEOUTPUT=false >& build.log

generates a more verbose build log and redirects it to the file build.log.

4.10 Creating a Runtime Bundle
After a successful build, the target build directory contains the generated files for a
CDC Java runtime environment. The contents of this directory vary according to the
makefile options selected, but for the default case the files described in Section 3.3,
“Generated Files for the CDC Java Runtime Environment” on page 3-3 are
important. See the companion document CDC Runtime Guide for more information
about the generated files for the CDC Java runtime environment.

1. Bundle the CDC Java runtime environment for deployment on the target device.

% make bin

The runtime bundle is kept in the top-level install directory in ../../install.

2. Change the current directory to the top-level install directory:

% cd ../../install

To test the runtime bundle, it must be loaded onto a target platform through some
communications mechanism like ftp(1). Other techniques for loading the CDC
runtime bundle onto the target platform are beyond the scope of this guide.

3. Copy the runtime bundle onto the test system.

% ftp test-system
...
put rt.tar.gz

4. Remotely login onto the test system.

% ssh test-system

5. Unload the runtime bundle.

% tar xvzf rt.tar.gz
Chapter 4 Build System Procedures 4-5

To test the runtime bundle, copy over the testclasses.zip and
democlasses.jar archives and perform the test procedure described in the next
section.

4.11 Testing the Build
You can test the CDC Java runtime environment by running a sample application
with cvm, the CDC Java application launcher:

% bin/cvm -cp testclasses.zip HelloWorld

Hello world.

% bin/cvm -cp testclasses.zip Test

.............

*CONGRATULATIONS: test Test completed ...

The source code for these test programs is located in src/share/javavm/test.

4.12 Building a Target Development Version
of the CDC Java Class Library
When the CDC build system compiles the Java class library for the CDC Java
runtime environment, it creates a collection of compiled Java class files that are
placed in the btclasses and (optionally) class-lib_classes directories. Because of
the way the CDC build system operates, the contents of these compiled class
directories can vary based on the selected build options.

Therefore, it is best to create a target development version of the CDC Java class
library for each target platform so that it can be used for application development
independently of the CDC build system. To do this, use the following build
command:

% make CVM_PRELOAD_LIB=true J2ME_CLASSLIB=profile OPT_PKGS=pkgs

The J2ME_CLASSLIB build option selects a CDC profile and the OPT_PKGS build
option selects a set of optional packages. The CVM_PRELOAD_LIB build option
directs the CDC build system to generate a target Java runtime environment with the
CDC Java class library entirely in a form that is preloaded and linked with the Java
runtime environment. This has the useful side-effect of compiling a version of the
4-6 CDC Build System Guide • November 2005

CDC Java class library for a target platform that can be easily relocated
independently of the Java runtime environment for use with an application
development system.

For example, if J2ME_CLASSLIB=personal and OPT_PKGS=rmi, then the
following build command

% make CVM_PRELOAD_LIB=true J2ME_CLASSLIB=personal OPT_PKGS=rmi

constructs a file named btclasses.zip in the target build directory that contains
the compiled CDC Java class library for the target platform containing the Java
packages and classes for Personal Profile and the RMI Optional Package.

4.13 Building javadoc API Reference
Documentation
The CDC build system can generate javadoc API reference documentation. This
can be useful in cases where a licensee either adds functionality to a Java runtime
environment, perhaps with a product-specific package (e.g. com.myproduct.*) or
to generate a javadoc bundle that more accurately reflects the set of optional
packages in a CDC-based product.

The command for generating javadoc reference documentation is:

% make J2ME_CLASSLIB=profile javadoc.zip

The javadoc-generated HTML files are place in the install directory.

Note – The javadoc source for the Personal Basis Profile class library and the
Personal Profile class library is not complete or accurate. Attempting to generate
javadoc reference documentation for these build targets will generate an error
message from the CDC build system. Refer to the JCP specifications for Personal
Basis Profile (JSR-217) and Personal Profile (JSR-216) for API reference
documentation.
Chapter 4 Build System Procedures 4-7

4-8 CDC Build System Guide • November 2005

CHAPTER 5

Makefile Options and Macros

The CDC build system provides a number of makefile options and macros that
control how a CDC Java runtime environment is built. These include options that are
shared across a range of target platforms, like debugging options, profiling options
and performance options. At the other end of the spectrum, target-specific options
like CPU-specific compiler flags can be specified in the target-specific GNUmakefile
or in one of the CPU or OS-level makefiles.

5.1 Makefile Option Categories
This chapter describes the makefile options found in build/share. The most
important is top.mk which contains three categories of top-level makefile options:

■ Fully tested. Prior to release, the CDC source release undergoes a full QA testing
cycle. This testing is based on the default build options, though not all possible
combinations have been tested. See the Release Notes for a list of fully test build
options.

■ Supported. These makefile options have been used frequently by the CDC
development team, but have not gone through full QA testing.

■ Limited Support. The default values for these options are supported. Alternate
values have been exercised but should be considered experimental.
5-1

5.2 Guidelines for Overriding Makefile
Options
Makefile options can be overridden in several places in the CDC build system. For
best results, here are some guidelines for choosing where to override the different
kinds of makefile options.

■ Build flags like CVM_DEBUG should be overridden on the make command-line.

■ Target-specific options like CC_ARCH_FLAGS and CC_ARCH_FLAGS_FDLIB should
be set in the GNUmakefile.

■ Tool configurations can be overridden in build/target/defs.mk.

5.3 Makefile Option Descriptions
TABLE 5-1 and TABLE 5-2 describe the top-level makefile options in the CDC build
system.
5-2 CDC Build System Guide • November 2005

5.3.1 Supported Makefile options

TABLE 5-1 Supported Makefile Options

Makefile Option Default Description

J2ME_CLASSLIB cdc The class library build target. The possible values are:
• cdc

• foundation

• basis

• personal

AWT_IMPLEMENTATION qt (PBP)
peer_based (PP)

Specifies which implementation of AWT to build.

AWT_PEERSET qt (PP) Specifies which AWT native bridge to build.

QTEMBEDDED false Builds with the Qt Embedded library. Note that this
build option is overridden with a value of true for
Zaurus builds.

SECURITY_PKGS The set of security optional packages. The possible
values are:
• jaas

• jsse

• jce

• all
The syntax of this flag is:
SECURITY_PKGS_LIST=<pkg1>[,<pkg2,...>]

J2ME_PLATFORM [CDC AMS only.] appmanager

PRESENTATION_MODES [CDC AMS only.] AwtPDA, PBP, all

CVM_MTASK true [CDC AMS only.] Include the mtask process-based
application management system.

OPT_PKGS Includes a named optional package in the regular
build. The syntax of this flag is:
OPT_PKGS=all | <pkg1>[,<pkg2>]

where pkg1 is the name of the optional package and a
',' is used to separate multiple package names. When
OPT_PKGS is set to all, all available optional
packages will be part of the compilation. See
Chapter 8 for more information on including optional
packages in a build.

CVM_DEBUG false Build the debug version of the VM. By default, this
option enables several other options like
CVM_JAVAC_DEBUG.
Chapter 5 Makefile Options and Macros 5-3

CVM_DEBUG_ASSERTS $(CVM_DEBUG) Enable asserts. Also is forced to true if
CVM_VERIFY_HEAP=true.

CVM_DEBUG_CLASSINFO $(CVM_DEBUG) Build the VM with the code necessary to interpret
class debugging information in the class files. Also
causes preloaded classes to include debugging
information if they were compiled with it.
CVM_JAVAC_DEBUG=true should also be used to
provide class debugging information in the CDC and
Foundation class files. Otherwise this option will only
benefit application classes that are compiled with the
 -g option.

CVM_DEBUG_DUMPSTACK $(CVM_DEBUG) Include support for the CVMdumpStack and
CVMdumpFrame functions. CVMdumpStack is useful
for dumping a Java stack from gdb after the VM has
crashed.

CVM_JAVAC_DEBUG $(CVM_DEBUG) Compile classes with debugging information (line
numbers, local variables, etc.) by using the -g option.
Otherwise build using -g:none. This will not affect
the size of the VM image unless
CVM_DEBUG_CLASSINFO is also true. Using this
option will increase the size of the profile jar file.

CVM_JIT target-specific:
see
GNUmakefile

[OI only.]Build a VM with the dynamic compiler.

CVM_JIT_USE_FP_HARDWARE target-specific:
see
GNUmakefile

[OI only.] Enable the dynamic compiler to use an FPU.
If true, the dynamic compiler emits FP instructions
and uses FP registers. If false, the dynamic compiler
stores FP values in general purpose registers and calls
out to C or assembler helper functions to do FP
arithmetic.

NOTE: This option is not supported on the ARM port
and will result in build errors.

CVM_JVMDI false Build a VM that supports Java debugging based on
JVMDI. This option is not supported with CVM_JIT=
true. When set true, there will be a significant
degradation of performance.

CVM_JVMPI false Build a VM that supports Java profiling based on
JVMPI. This option is not supported with CVM_JIT=
true. When set true, there will be a significant
degradation of performance.

TABLE 5-1 Supported Makefile Options

Makefile Option Default Description
5-4 CDC Build System Guide • November 2005

CVM_JVMPI_TRACE_INSTRUC
TION

$(CVM_JVMPI) Build a VM that supports bytecode tracing for
profiling purposes. Enabling this option imposes a
greater runtime burden on the interpreter. Hence, this
option is provided in case the user does not need this
feature and does not want the additional runtime
burden to have an impact on the profile they are
sampling.

CVM_MTASK true if
J2ME_PLATFORM
=appmanager

Build with mtask enabled.

CVM_OPTIMIZED !$(CVM_DEBUG) If true, then use various C compiler optimization
features. Setting both CVM_DEBUG=true and
CVM_OPTIMIZED=true will provide both debug
support and optimized code that will run faster, but
not as fast as when using CVM_DEBUG=false.

CVM_PRELOAD_LIB false Build a VM with all the system and profile classes
preloaded. See Chapter 9.

CVM_SYMBOLS $(CVM_DEBUG) Include debugging and symbol information for C code
even if the build is optimized. Normaly, this build
option will not affect performance.

CVM_TRACE $(CVM_DEBUG) Include support for tracing VM events to stderr. The
events that are traced are controlled by the -Xtrace
option. Since CVM_TRACE=true slows down the VM
substantially, use CVM_TRACE=false and
CVM_DEBUG=true to get debugging support without
tracing support.

TABLE 5-1 Supported Makefile Options

Makefile Option Default Description
Chapter 5 Makefile Options and Macros 5-5

5.3.2 Limited Support Makefile Options
The makefile options described in TABLE 5-2 are limited in that their default values
are supported, but alternate values are not and should be considered experimental.

TABLE 5-2 Limited Support Makefile Options

Makefile Option Default Description

CVM_CCM_COLLECT_STATS false [OI only.] Build a VM which collects statistics on the
runtime activity of dynamically compiled code,
even if the build is optimized.

CVM_DEBUG_STACKTRACES true Include code for doing
Throwable.printStackTrace and
Throwable.fillInStackTrace. If false, then
printStackTrace will print a "not supported"
message. This is not really just a debug build
feature. To slightly reduce the footprint of non-
debug builds, set this option to false.

CVM_JIT_DEBUG false [OI only.] Build the dynamic compiler with extra
debugging support, including support for filtering
which methods are compiled, and support for
tracing the JCS rules used during compilation.

CVM_JIT_PROFILE false [OI only.] Enable profiling of compiled code. Use -
Xjit:Xprofile=<filename> to enable profiling and
specify the file to dump profile information. For
Linux, enabling profiling at runtime generally
degrades performance by about 2%. If profiling
support is included at build time but not used at
runtime, it has no affect on performance.

CVM_NO_LOSSY_OPCODES $(CVM_JVMDI) Field-related opcodes whose arguments would
ordinarily be quickened into offsets instead have
their arguments quickened into constant pool
references, to ensure the field block for the field is
available. This is required to allow the debugger to
set field watchpoints. Note this works either with
or without classloading enabled, and affects both
JavaCodeCompact and quicken.c.
5-6 CDC Build System Guide • November 2005

CVM_TRACE_JIT $(CVM_TRACE) [OI only.] Build a VM with tracing support enabled
for all dynamic compiler events, even if the build is
optimized. This option is provided to allow
building without any other debugging support
other than JIT tracing, thus reducing the
performance impact. Compiled code will run
somewhat slower as a result of the method call
tracing that is enabled (estimated 5% slower).

CVM_VERIFY_HEAP false Generate verification code for the Java heap.
Because this can dramatically affect performance, it
can be turned off while still enabling other assertion
code with CVM_DEBUG_ASSERTS=true.

CVM_XRUN false Build a VM which supports the -Xrun command-
line option for loading native libraries. Defaults to
true if either CVM_JVMDI or CVM_JVMPI are true.

TABLE 5-2 Limited Support Makefile Options

Makefile Option Default Description
Chapter 5 Makefile Options and Macros 5-7

5-8 CDC Build System Guide • November 2005

CHAPTER 6

Debugging Support

Debugging is the exploration of the relationships between the source code structure
of an application, the behavior of its compiled code and the capabilities of the target
Java runtime environment. The CDC build system supports Java debugging through
the Java Virtual Machine Debugger Interface (JVMDI). For more information about
JVMDI, see http://java.sun.com/j2se/1.4.2/docs/guide/jvmdi.

This chapter describes how to enable JVMDI-based debugging in the CDC Java
runtime environment. See the companion document CDC Runtime Guide for
information about how to use a JVMDI-based debugger like jdb running on a Java
SE host with a debugging-enabled CDC Java runtime environment running on a
target device.

FIGURE 6-1 describes the Java Platform Debugger Architecture (JPDA) which allows a
Java virtual machine to communicate with a Java debugging tool. Building the CDC
Java runtime environment with JVMDI support inserts a Java Debug Wire Protocol
(JDWP) agent in the Java runtime environment. It also allows the JDWP agent to
communicate with a remote debugger.

FIGURE 6-1 JVMDI Architecture

VM

back-end (JDWP agent)

front-end

UI

Java VM
Debugger
Interface

communications
channel

Java
Debugger
Interface

Java Debug
Wire Protocol

debugging
target

debugging
client
6-1

http://java.sun.com/j2se/1.4.2/docs/guide/jvmdi

The source code for the JVMDI debugging support is located in the
share/tools/jpda directory and the build files are located in build/share.

6.1 Building with JVMDI Support
The CVM_JVMDI makefile option enables debugging support in the CDC Java
runtime environment.

Note – The CVM_JIT option must be explicitly disabled for JVMDI builds if it is
normally enabled by default.

The steps below demonstrate how to build a CDC Java runtime environment with
Java debugging support.

1. Change the current directory to the target build directory.

% cd build/linux-x86-suse

2. Build the CDC Java runtime environment with debugging support enabled.

% make CVM_JVMDI=true CVM_JIT=false

This creates a VM executable in bin/cvm as well as the JDWP shared libraries in
jdwp/lib.

3. Make sure that the JDWP shared libraries are in the shared library search path so
that the runtime shared library loader (ld.so(8)) can find them.

There are three ways to do this:

■ Move the shared libraries in the jdwp/lib directory into the lib directory:

% mv jdwp/lib/* lib

■ Redefine the LD_LIBRARY_PATH environment variable to include the jdwp/lib
directory.

■ Set the java.library.path system property on the cvm command-line.

4. Bundle the CDC Java runtime environment for deployment on the target device.

% make bin

See the companion document CDC Runtime Guide for instructions on how to connect
a Java debugger running on a Java SE host system to a Java application running on
a CDC Java runtime environment.
6-2 CDC Build System Guide • November 2005

CHAPTER 7

Profiling Support

The CDC HotSpot Implementation supports profiling based on the experimental
Java Virtual Machine Profiler Interface (JVMPI) specification. Specifically, the JVMPI-
based hprof profiling agent provides reports that include CPU usage, heap allocation
statistics and monitor contention profiles.

This chapter describes how to build the CDC Java runtime environment with JVMPI-
based profiling enabled. See the companion document CDC Runtime Guide for
information about how to use the hprof Java profiler in a profiling-enabled CDC
Java runtime environment.

The hprof profiler agent is built into the VM runtime and generates profiling data
on the target platform. The source code for the hprof is integrated into the VM
source directories in src/share/javavm/{include,runtime}.

Note – The JVMPI functionality in the CDC HotSpot Implementation is a subset of
what the Java SE platform supports. In particular, remote profiling is not supported.

7.1 Building with JVMPI Support
The CVM_JVMPI makefile option enables profiling support in the CDC Java runtime
environment. The component that is added to the Java runtime environment that
enables debugging support is the JDWP debugging agent.

Note – The CVM_JIT option must be explicitly disabled for JVMPI builds if it is
normally enabled by default.

The steps below demonstrate how to build a CDC Java runtime environment with
Java profiling support.
7-1

1. Change the current directory to the target build directory.

% cd build/linux-x86-suse

2. Build the CDC Java runtime environment with debugging support enabled.

% make CVM_JVMPI=true CVM_JIT=false

3. Bundle the CDC Java runtime environment for deployment on the target device.

% make bin

See the companion document CDC Runtime Guide for instructions on how to connect
a Java profiler to a Java application running on a CDC Java runtime environment.
7-2 CDC Build System Guide • November 2005

CHAPTER 8

Adding an Optional Package

The standard mechanism for extending the functionality of a CDC Java runtime
environment is to add an optional package that provides technology-specific
functionality. For example, the RMI optional package provides a distributed
application programming model and the JDBC optional package provides access to
different kinds of database systems.

This chapter describes how to add an optional package to the CDC build system,
using the RMI optional package as an example. It focuses on build system
procedures. The companion document CDC Runtime Guide describes the various
forms of the Java class search path. The CDC Java runtime environment uses the
extensions class search path to locate the classes in an optional package.

Note – In the Java ME platform, optional packages are based on profiles. Therefore,
the CDC build system requires that an optional package be built for a specific CDC
profile target like foundation, not for a lower-level build target like cdc.

8.1 Installing an Optional Package
The RMI optional package must be downloaded separately. For information about
the RMI optional package and how to obtain it, see
http://java.sun.com/products/rmiop.

The RMI optional package release notes include installation instructions for
integrating the RMI optional package into the CDC build system. Basically, the Zip
archive must be unbundled in the top-level directory. This will install the RMI
source files into src/share/rmi and the build files into build/share.
8-1

http://java.sun.com/products/rmiop

8.2 Building an Optional Package
If the optional package follows the build and source file conventions described in
Section 8.3, “Optional Package Makefile Naming Convention” on page 8-2, the CDC
build system will detect it and build it when necessary.

8.2.1 Makefile Option Syntax
The OPT_PKGS makefile option indicates which optional packages are compiled with
the current build. The syntax of this makefile option is:

OPT_PKGS=<pkg1>[,<pkg2>] | all

where <pkg1>,<pkg2> are the names of the optional packages. A comma is used,
without spaces, to separate multiple optional package names. For example, the
following command includes the RMI OP package in the Foundation Profile build:

% make J2ME_CLASSLIB=foundation OPT_PKGS=rmi

This produces the lib/foundation_rmi.jar file along with the other generated
runtime files in the target build directory.

When OPT_PKGS is set to the value all, all the available optional packages are
included in the build.

8.3 Optional Package Makefile Naming
Convention
The naming convention for optional package makefiles is similar to the naming
convention for profile makefiles in build/share. Each optional package must have
a definitions file and a rules file. The naming convention for definitions and rules
files is:

defs_<pkgname>_pkg.mk
rules_<pkgname>_pkg.mk

For example, for the RMI optional package these makefiles are:

defs_rmi_pkg.mk
rules_rmi_pkg.mk
8-2 CDC Build System Guide • November 2005

The _pkg suffix alerts the build system that the file is an optional package makefile.
When the OPT_PKGS build option is specified, the build process locates the optional
package’s makefiles and includes them in the build. For example, with the
command:

% make J2ME_CLASSLIB=foundation OPT_PKGS=rmi,jdbc

the build process locates the files defs_rmi_pkg.mk, rules_rmi_pkg.mk,
defs_jdbc_pkg.mk and rules_jdbc_pkg.mk and includes them in the build.

8.3.1 Optional Package Makefile Variables
Two variables must be included within each package’s defs_<pkgname>_pkg.mk
file. They are:

■ OPT_PKGS_SRCPATH - the list of directories containing Java source files
■ OPT_PKGS_CLASSES - the list of classes that make up the optional package

For example, if the optional package definitions makefile
(defs_<pkgname>_pkg.mk) contains:

OPT_PKGS_SRCPATH += $(MY_ROOT)/src/mypackage/classes
OPT_PKGS_CLASSES += my.class.Class1 my.class.Class2

The += syntax is required when more than one optional package is added to the
CDC build system.

8.3.2 javadoc Variables
Optional packages can include rules for generating javadoc API reference
documentation for the optional package along with the profile's API documentation.
Use the target javadoc.zip for generating the javadoc files.

The makefile variable OPT_PKGS_JAVADOC_RULES is the key to generating
javadoc files for the optional package. Each makefile rule that added to
OPT_PKGS_JAVADOC_RULES runs after the rules for the profile javadoc files are
complete. For example, to add the RMI optional package to the set of javadoc build
targets, the following rule can be added to rules_rmi_pkg.mk.

javadoc-rmi: $(INSTALLDIR)/javadoc-rmi $(JAVADOC_RMI_CLASSESLIST)
../../src/share/javadoc/rmi-overview-description.html
$(CVM_JAVADOC) options...
...
(cd $(INSTALLDIR); \
$(ZIP) -r -q - javadoc-rmi) > $(INSTALLDIR)/javadoc-rmi.zip
Chapter 8 Adding an Optional Package 8-3

To include this rule with the current build, use the variable
OPT_PKGS_JAVADOC_RULES in defs_rmi_pkg.mk. For example,

OPT_PKGS_JAVADOC_RULES += javadoc-rmi

The += syntax is required if more than one optional package is added to the CDC
build system.
8-4 CDC Build System Guide • November 2005

CHAPTER 9

Preloading Java Class Files with
JavaCodeCompact

The CDC build system includes a build tool called JavaCodeCompact that reduces
the memory needs of a CDC Java runtime environment while improving its
performance. JavaCodeCompact has its roots in earlier Java technology releases
like JavaOS and PersonalJava technologies.

Basically, JavaCodeCompact takes platform-independent Java class files and
preloads them at build time into a more efficient format that is tightly bound to the
VM runtime system. This produces some target-independent C source files whose
contents correspond to the virtual machine’s runtime data structures that would
result if all the classes had been loaded on demand. These source files are then
compiled into a platform-specific binary object format and linked with the
executable image for the Java runtime environment.

By performing the class loading and linking functions once at build time,
JavaCodeCompact improves runtime performance and reduces the memory needs
of the CDC Java runtime environment. Java classloading semantics are preserved
because the runtime system can still load classes and create objects at runtime.

This chapter shows how to use JavaCodeCompact within the CDC build system.
This includes the following:

■ Enabling preloaded builds
■ Adding classes to preloaded builds

9.1 Linking Java Programs
Here is an outline of the conventional mechanism for class loading:

■ Use javac to compile Java source files into Java class files.
9-1

■ Load the class files into a Java system, either individually or as part of a jar
archive.

■ Upon demand, the class loading mechanism resolves references to other class
definitions.

JavaCodeCompact provides an alternate means of program linking and symbol
resolution that reduces the VM's resource consumption and improves its
performance.

JavaCodeCompact performs the following actions during its operation:

■ Combines multiple input class files, by combining much of their symbolic
information into shared data structures, and concatenating other parts of the
classes' definitions.

■ Determines the layout and size of all preloaded objects.
■ Determines the layout of an object's method table.
■ Changes the representation of certain of the Java bytecodes to their "quick" forms.
■ Creates header files for use by native code.

9.2 Enabling Preloaded Builds
The main makefile option for enabling preloaded builds is CVM_PRELOAD_LIB.
When this option is set to false, the CDC build system will preload only a
minimum set of system classes that the VM requires. When CVM_PRELOAD_LIB is
set to true, the CDC build system will preload the entire CDC Java class library.

For example, the following make command builds a CDC Java runtime environment
based on the Foundation Profile with Java class preloading enabled.

% make J2ME_CLASSLIB=foundation CVM_PRELOAD_LIB=true

Note that the resulting bin/cvm executable is much larger and that the lib
directory may not contain a jar file for the profile. If the lib directory does contain
a jar file, it will include only resource files and not class files. The bin/cvm
executable contains a preloaded version of the Foundation Profile class library. The
size of the preloaded bin/cvm is slightly larger than the combination of the non-
preloaded bin/cvm with the conventionally compiled lib/class-lib.jar. But
because it can be loaded directly from ROM, the overall memory needs of the Java
runtime environment are reduced. Performance is also improved for both launching
and operating the CDC Java runtime environment.

Note – Even if CVM_PRELOAD_LIB is set to false, the CDC build system still uses
JavaCodeCompact to preload a certain number of system classes to simplify the
task of launching the VM.
9-2 CDC Build System Guide • November 2005

9.3 Adding Classes to Preloaded Builds
Product-specific classes can be added to the list of preloaded classes. This feature can
be used for bundled applications and product-specific class libraries. Because the
preloaded classes are linked to the bin/cvm executable at build time, this process
cannot be undone at a later stage to regain space.

CVM_JCC_INPUT specifies the list of preloaded classes. See Section A.4,
“JavaCodeCompact Class Transitive Closure Requirements” on page A-4 for a
description of the requirements for classes that can be preloaded by
JavaCodeCompact.

Here’s an example of how to add an application class file to the list of preloaded
classes:

1. Compile the Java application.

% javac HelloWorld.java

2. Edit build/linux-x86-suse/GNUmakefile and modify the definition of
CVM_JCC_INPUT to include the compile Java application:

CVM_JCC_INPUT += myclasses/HelloWorld.class

The += syntax is necessary to avoid overriding the values defined in
share/jcc.mk.

3. Build the CDC Java runtime environment with preloading enabled.

% make

By itself, CVM_JCC_INPUT will preload only the classes appended to its definition.
To preload the rest of the Java class library, CVM_PRELOAD_LIB=true and
J2ME_CLASSLIB=cdc or J2ME_CLASSLIB=foundation are required.

In this example, since HelloWorld is preloaded, it is not necessary to define the
class search path with the -cp command-line option. The difference in size between
the cvm executable is not great because HelloWorld is a small class. The benefits of
faster launching and operation are more apparent with larger applications.
Chapter 9 Preloading Java Class Files with JavaCodeCompact 9-3

9-4 CDC Build System Guide • November 2005

APPENDIX A

JavaCodeCompact Reference

A.1 Description
JavaCodeCompact combines one or more Java class files and produces a target
platform-independent C file that contains the given classes in a preloaded format
that can be compiled with a C compiler and linked with the executable image of the
CDC Java virtual machine. It also provides a way to ensure that certain necessary
classes are present and fully linked to expedite the VM's startup and simplify error
handling procedures.
A-1

A.2 Options

Note – The options described below are for reference purposes only. Setting
alternate values for these options is not supported. Only adding class files to
CVM_JCC_INPUT is supported.

TABLE A-1 JavaCodeCompact Options

Options Description

filename Designates the name of a file to be used as input, the contents of which
should be included in the output. File names are not modified by any
pathname calculus. File names with a class suffix are read as single class files.
File names with .jar or .zip suffixes are read as Zip files. Class files
contained as elements of these files are read and included. Other elements are
silently ignored.

-maxSegmentSize num_classes Specifies the maximum number of classes to be represented in any one output
file. Requires use of the -o option to specify output file name. Section A.5,
“Output” on page A-4.

-o outfilename Provides a template for the name of the output files to be produced.
Section A.5, “Output” on page A-4.

-qlossless Preserves more information about the original program in the output file for
use of the debugging using the JVMDI debugger interface. See Section A.3,
“Opcode Transformations” on page A-3 for a description of the "quickening"
process, which is modified by the option. This has a small performance
impact on the running system.

-c Performs cumulative linking. Classes that are unresolved by the linking of
class files explicitly listed as linker arguments are searched for using the -
classpath option, and linked as they are found.

-classpath path Specifies the path JavaCodeCompact uses to look up classes. Directories
and Zip files are separated by the delimiter defined by
java.io.File.pathSeparatorChar, which is generally a colon.
Multiple classpath options are cumulative, and are searched left-to-right. This
option is only used in conjunction with the -c cumulative-linking option.

-nativesType native_type classes Indicates the calling convention to be used for native methods of the listed
classes. The CNI native type is for use only by classes intimately involved
with the virtual machine implementation. All other classes must use the JNI
convention. The option sequence “-nativesType JNI -*” informs
JavaCodeCompact of the default type.
A-2 CDC Build System Guide • November 2005

A.3 Opcode Transformations
Many Java bytecode instructions refer to symbolic quantities such as the offset of a
field or of a method, or to a Java class. Normally, the Java virtual machine resolves
such a reference upon first executing the instruction and rewrites the instruction in
place. The transformed instruction opcode is referred to as a "quickened" instruction,
as subsequent executions of it do not need to see if resolution has taken place, but
can proceed assuming it has.

Instead of waiting until runtime to perform this quickening operation,
JavaCodeCompact “prequickens” each class once at build-time. The result
improves classloading performance and makes the resulting code ROMable. A few
other transformations take place during linking, including the simple inlining of
very short methods.

-headersDir header_type
target_directory

Controls the location of C-language header files generated by
JavaCodeCompact. Header files for classes of the indicated
header_type are written in the indicated target directory. Existing header
files unchanged remain untouched. A header_type is either a
native_type, as described with the -nativesType option above, or an
extra_header_type, as described below.

-extraHeaders
extra_header_typeclasses

Governs the generation of additional headers for the named classes. The
extra_header_type of CVMOffsets is for use only by classes
intimately involved with the virtual machine implementation.

-v Turns up the verbosity of the linking process. This option is cumulative.
Currently up to three levels of verbosity are understood. This option is really
only of interest as a debugging aid.

-g Enables writing of data information that can facilitate Java debugging, if the
information is available in the input data: line-number tables, local variable
table and source file names. These tables are not written by default. This
option also suppresses the code in-lining optimization.

-imageAttribute Makes all bytecodes writable. By default they are declared as const. They
must be writable to support breakpointing using the JVMDI debugger
interface.

-noPureCode Place all bytecodes in read-write memory. This is useful for setting
breakpoints.

-f filename Open the named file and read options from it. They are processed just as if
they were substituted in the place of this option.

TABLE A-1 JavaCodeCompact Options

Options Description
Appendix A JavaCodeCompact Reference A-3

The usual quickening process makes it harder to reconstruct source code information
from the binary program. For example, it is harder to discover name and type
information for a class member given only its offset. When retention of this
information is important (such as debugging using JVMDI), an alternate set of
quickened instructions can be used. They can be more easily interpreted at runtime,
but are somewhat slower to execute. This is when -qlossless is used.

A.4 JavaCodeCompact Class Transitive
Closure Requirements
JavaCodeCompact determines the offset of every instance field and the method
table offset of each non-static method for each class in the generated file. It requires
that the complete inheritance hierarchy for each class be present in the set of
preloaded classes. Also, all classes referenced from bytecodes must be preloaded
because JavaCodeCompact requires full transitive closure of the preloaded classes.

A.5 Output
The main product of the program is a body of initialized data structures, in C,
representing the classes of the input files, and their ancillary data structures, such as
Strings, the String intern table, the type table, primitive type classes and many of the
array type classes referenced in the input. In addition to one or more .c files, a .h
file is produced, giving forward declarations, and for use only by the other source
files produced by JavaCodeCompact. It will be referred to hereafter as the forward
file.

Due to the limitations of many C compilers, it is often necessary to break this output
into multiple files. When the -maxSegmentSize option is given, multiple .c files
are produced: one to hold shared data structures such as strings and types, and as
many others are necessary, each containing no more than num_classes classes.

The names of the files produced are computed using a combination of variables and
options.

■ -maxSegmentSize not specified. If the -o option is given, its argument is used as the
name of the single compilable output file. Conventionally, this name ends with .c
for C language output, but this is not important to the operation of the program.
In the absence of this option, a file is produced with a name based on that of the
first input file, stripped of path name prefix and any suffix, to which a .c suffix is
appended. The resulting name, with ".h" appended, is used for the forward file.
A-4 CDC Build System Guide • November 2005

■ -maxSegmentSize specified. The -o option must be given in this case. It is used to
form this set of file names:
■ outfilenameList is an ASCII file naming all the C source programs

produced.
■ outfilenameAux.c is C file holding data structures not tied to any specific

class, such as Strings, String intern table, and the type tables.
■ outfilenamev.c For 0 <= v < (number of classes) / num_classes. The

C files holding per-class data structures.
■ outfilename.h is the forward file name.

A.6 See Also
■ java - the Java application launcher
■ jar - Java archive tool
Appendix A JavaCodeCompact Reference A-5

A-6 CDC Build System Guide • November 2005

	CDC Build System Guide
	Contents
	Figures
	Tables
	Preface
	Introduction
	1.1 Host Development Environment
	1.2 Build Options
	1.3 Target Platforms
	1.4 Selecting Standard API Features
	1.5 Application Development
	1.6 CDC Build Process Overview

	Installation
	2.1 CDC Source Releases
	2.2 CDC Build System Requirements
	2.2.1 Hardware Requirements
	2.2.2 Software Requirements
	2.2.2.1 UNIX Build Tools
	2.2.2.2 Java SE Build Tools
	2.2.2.3 Qt Library

	2.3 CDC Target Platform Requirements
	2.3.1 ARM Floating Point Note
	2.3.2 Cobalt Build Notes

	2.4 Installation Procedure
	2.4.1 Downloading the CDC Distribution File
	2.4.2 Extracting the Distribution Bundle
	2.4.3 Acquiring the Java Build Tools
	2.4.4 Acquiring the UNIX Build Tools
	2.4.4.1 gcc 2.95.3 Notes
	2.4.4.2 XScale/Bulverde Notes

	2.4.5 Organizing the CDC Build Tools
	2.4.5.1 Using the Default Locations
	2.4.5.2 Redefining the Top-Level Macros
	2.4.5.3 Overriding the Individual Build Tool Macros

	Build System Contents
	3.1 build Directory Structure
	3.2 Makefile Hierarchy
	3.3 Generated Files for the CDC Java Runtime Environment
	3.4 Generated Development Files
	3.5 Test and Demo Programs
	3.6 CDC AMS Generated Files
	3.7 Other Generated Files

	Build System Procedures
	4.1 The Build Cycle
	4.2 Performing a Test Build
	4.3 Selecting a Target Device
	4.4 Standard API Choices
	4.5 Selecting Testing and Performance Features
	4.6 Building CDC AMS
	4.7 Building OTA Support for CDC AMS
	4.8 Quick Rebuilds
	4.9 Generating Verbose Build Logs
	4.10 Creating a Runtime Bundle
	4.11 Testing the Build
	4.12 Building a Target Development Version of the CDC Java Class Library
	4.13 Building javadoc API Reference Documentation

	Makefile Options and Macros
	5.1 Makefile Option Categories
	5.2 Guidelines for Overriding Makefile Options
	5.3 Makefile Option Descriptions
	5.3.1 Supported Makefile options
	5.3.2 Limited Support Makefile Options

	Debugging Support
	6.1 Building with JVMDI Support

	Profiling Support
	7.1 Building with JVMPI Support

	Adding an Optional Package
	8.1 Installing an Optional Package
	8.2 Building an Optional Package
	8.2.1 Makefile Option Syntax

	8.3 Optional Package Makefile Naming Convention
	8.3.1 Optional Package Makefile Variables
	8.3.2 javadoc Variables

	Preloading Java Class Files with JavaCodeCompact
	9.1 Linking Java Programs
	9.2 Enabling Preloaded Builds
	9.3 Adding Classes to Preloaded Builds

	JavaCodeCompact Reference
	A.1 Description
	A.2 Options
	A.3 Opcode Transformations
	A.4 JavaCodeCompact Class Transitive Closure Requirements
	A.5 Output
	A.6 See Also

