
Sun Microsystems, Inc.
www.sun.com

CDC Porting Guide

for the Sun Java Connected Device Configuration
Application Management System

Version 1.0

November 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, Java ME, Sun Corporate Logo and Java Logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, J2ME, Java ME, Sun Corporate Logo et Java Logo sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

Preface xvii

Part I Getting Started

1. Introduction 1–1

1.1 CDC Technology 1–1

1.2 Benefits 1–2

2. Planning 2–1

2.1 Target Platform Requirements 2–1

2.1.1 CPU 2–2

2.1.2 Operating System 2–3

2.2 Porting Steps 2–4

2.3 Source Code Organization 2–5

2.3.1 build Directory 2–5

2.3.2 src Directory 2–6

Part II HPI Layer

3. Host Programming Interface 3–1

3.1 HPI Header File Hierarchy 3–2

3.1.1 CVM_HDR_* Header File Macros 3–2
 iii

3.1.2 src/portlibs Porting Libraries 3–4

3.2 Creating an HPI Implementation 3–5

3.2.1 Suggested Work Flow 3–6

3.2.2 Prepare the Target-Specific build and src Hierarchies 3–7

3.2.3 Data Types, Global State and Memory Access Support 3–8

3.2.4 JNI Support 3–9

3.2.4.1 CVMjniInvokeNative 3–10

3.2.5 Thread Support 3–10

3.2.6 Synchronization Support 3–11

3.2.7 I/O and System Support 3–12

3.2.8 Networking Support 3–12

3.3 CDC Class Library Support Layer 3–13

3.3.1 Source Code Organization 3–13

3.3.2 Creating a CDC Class Library Support Layer Implementation 3–
15

3.4 Simple Test Procedure 3–15

4. Fast Locking 4–1

4.1 Fast Lock Implementations 4–1

4.2 Choosing a Fast Lock Implementation 4–4

4.3 Implementations 4–5

Part III Dynamic Compiler Layer

5. Dynamic Compiler 5–1

5.1 Dynamic Compiler Overview 5–1

5.2 Dynamic Compiler Header File Hierarchy 5–4

5.2.1 portlibs/jit/risc RISC Porting Library 5–5

5.3 Creating a Dynamic Compiler Implementation 5–5

5.3.1 Suggested Work Flow 5–6
iv CDC Porting Guide • November 2005

5.3.2 CPU Abstraction Interface 5–7

5.3.3 Glue Code 5–9

5.3.4 Miscellaneous Code 5–10

5.3.4.1 Code Cache Copy 5–10

5.3.4.2 Trap-based NullPointerExceptions 5–11

5.3.5 Intrinsics 5–12

5.3.6 Invokers 5–13

5.3.7 Emitters 5–13

5.3.8 Helpers 5–15

5.3.9 Floating Point Support 5–16

Part IV Garbage Collector Layer

6. Creating a Garbage Collector 6–1

6.1 Introduction 6–1

6.2 Exactness 6–2

6.2.1 Global GC Requests 6–3

6.2.1.1 Method Invocation Points 6–3

6.2.1.2 Backwards Branches 6–3

6.2.1.3 Class Loading and Constant Resolution Points 6–4

6.2.1.4 JNI Implementation 6–4

6.2.1.5 Memory Allocation Points 6–4

6.3 Pluggable GC 6–4

6.3.1 Separate Memory System 6–4

6.3.2 Entry Points to GC Code 6–5

6.3.3 Shared Memory System Code 6–6

6.3.4 GC-specific Memory System Code 6–6

6.3.5 GC Execution Flow 6–7

6.4 Writing a New GC 6–7
Contents v

6.4.1 Source Organization 6–7

6.4.2 Data Types 6–8

6.4.3 What to Implement 6–10

6.4.3.1 Basic Execution 6–10

6.4.3.2 Read and Write Barriers 6–13

6.4.3.3 Moving Arrays 6–15

6.4.4 What to Call 6–18

6.4.4.1 Initiating a GC 6–19

6.4.4.2 Root Scans 6–19

6.4.4.3 Special Root Scans 6–20

6.4.4.4 Object Walking 6–23

6.4.4.5 Per-object Data 6–24

6.4.5 Example GC 6–25

7. Direct Memory Interface Reference 7–1

7.1 Introduction 7–1

7.2 Object Field Accesses 7–1

7.2.1 Accessing Fields of 32-bit Width 7–2

7.2.1.1 Weakly-Typed 32-bit Read and Write 7–2

7.2.1.2 Strongly-Typed 32-bit Read and Write 7–2

7.2.2 Accessing Fields of 64-bit Width 7–2

7.2.2.1 Weakly-Typed 64-bit Read and Write 7–3

7.2.2.2 Strongly-Typed 64-bit Read and Write 7–3

7.3 Array Accesses 7–3

7.3.1 Accessing Elements of 32-bit Width and Below 7–3

7.3.2 Accessing Elements of 64-bit Width 7–5

7.3.2.1 Weakly-Typed Versions 7–5

7.3.2.2 Strongly-Typed Versions 7–5

7.3.3 Miscellaneous Array Operations 7–5
vi CDC Porting Guide • November 2005

7.4 GC-safety of Threads 7–6

7.4.1 GC-unsafe Blocks 7–6

7.4.2 GC-safe Blocks: Requesting a GC-Safe Point 7–6

8. Indirect Memory Interface Reference 8–1

8.1 Introduction 8–1

8.2 ICell Manipulations 8–1

8.3 Registered Indirection Cells 8–2

8.3.1 Local Roots 8–2

8.3.2 Global Roots 8–3

8.4 Object Field Accesses 8–3

8.4.1 Accessing Fields of 32-bit Width 8–3

8.4.1.1 Weakly-Typed 32-bit Read and Write 8–3

8.4.1.2 Strongly-Typed 32-bit Read and Write 8–4

8.4.2 Accessing Fields of 64-bit Width 8–4

8.4.2.1 Weakly-Typed 64-bit Read and Write 8–4

8.4.2.2 Strongly-Typed 64-bit Read and Write 8–5

8.5 Array Accesses 8–5

8.5.1 Accessing Elements of 32-bit Width and Below 8–5

8.5.2 Accessing Elements of 64-bit Width 8–6

8.5.2.1 Weakly-Typed Versions 8–7

8.5.2.2 Strongly-Typed Versions 8–7

8.5.3 Miscellaneous Array Operations 8–7

8.5.4 GC-unsafe Operations 8–8

9. How to be GC-Safe 9–1

9.1 Introduction 9–1

9.2 Living with ICells 9–2

9.2.1 ICell Types 9–2
Contents vii

9.3 Explicitly Registered Roots 9–4

9.3.1 Declaring and Using Local Roots 9–4

9.3.1.1 Example of Local Root Use 9–5

9.3.2 Declaring and Using Global Roots 9–7

9.3.2.1 Examples of Declaring and Using Global Roots 9–8

9.4 GC-safety of Threads 9–11

9.4.1 GC-atomic Blocks 9–12

9.4.2 Offering a GC-safe Point 9–14

Part V GUI Layer

10. Personal Basis Profile 10–1

10.1 Introduction 10–1

10.2 Porting Architecture 10–2

10.3 Planning and Requirements 10–5

10.3.1 Native GUI Toolkit Requirements 10–5

10.3.2 Notes 10–6

10.4 Writing a Personal Basis Profile AWT Implementation 10–6

10.4.1 Build System Procedures 10–7

10.4.2 Source Code Procedures 10–7

10.4.3 Native Bridge Implementation 10–8

11. Personal Profile 11–1

11.1 Introduction 11–1

11.1.1 AWT Background 11–1

11.1.2 Additional Reading 11–3

11.2 Porting Architecture 11–3

11.3 Planning and Requirements 11–7

11.3.1 Native GUI Toolkit Requirements 11–7

11.3.2 Notes 11–8
viii CDC Porting Guide • November 2005

11.4 Writing a Personal Profile AWT Implementation 11–9

11.4.1 Build System Procedures 11–9

11.4.2 Source Code Procedures 11–9

11.4.3 Native Bridge Implementation 11–10

11.4.4 Event Delivery Notes 11–11

11.4.4.1 Event Ordering 11–11

11.4.4.2 Event Delivery Mechanism 11–12

Part VI AMS Layer

12. CDC Application Management System 12–1

12.1 Overview 12–1

12.2 Conventional Java Application Management 12–1

12.3 mtask: Process-Based JVM Cloning 12–3

12.4 CDC AMS Application Management Framework 12–6

12.5 Tuning Notes 12–8

12.5.1 Generating a Class Preinitialization List 12–8

12.5.2 Calculating Code-Cache Size 12–9

12.5.3 Generating a Method Precompilation List 12–9

12.6 Implementation Notes 12–11

com.sun.appmanager.appmodel 12–13

com.sun.appmanager.apprepository 12–19

com.sun.appmanager.client 12–25

com.sun.appmanager 12–29

com.sun.appmanager.mtask 12–33

com.sun.appmanager.ota 12–39

com.sun.appmanager.preferences 12–73

com.sun.appmanager.presentation 12–77

com.sun.appmanager.store 12–81
Contents ix

Part VII Appendices

A. Debugging with gdb A–1

A.1 Setup Procedures A–2

A.1.1 Signal Handlers A–2

A.1.2 gdb and GC Safety A–3

A.1.3 Turning on Trace Output A–3

A.2 High-Level Dumpers A–5

A.2.1 CVMdumpObject A–6

A.2.2 CVMdumpClassBlock A–7

A.2.3 CVMdumpString A–8

A.2.4 CVMdumpObjectReferences A–8

A.2.5 CVMdumpClassReferences A–9

A.3 Low-Level Dumpers A–9

A.3.1 Using CVMconsolePrintf() A–9

A.3.2 Displaying the PC Offset A–10

A.3.3 Dumping the Java Stack A–11

A.3.4 Displaying Opcode Information A–12

A.3.5 Dumping the Java Heap A–14

A.3.6 Dumping Object Information A–15

A.3.7 Dumping Loaded Classes A–16

A.3.8 Dumping Threads A–18

A.4 Conversion Procedures A–19

A.4.1 The CVMExecEnv Structure A–19

A.4.2 Converting Between CVMExecEnv* and JNIEnv* A–20

A.4.3 Converting from JNI Types to Internal VM Types A–20

A.4.4 Converting from java.lang.Class to CVMClassBlock* A–21

A.5 Other Procedures A–22

A.5.1 Debugging Crashes on Linux A–22
x CDC Porting Guide • November 2005

A.5.2 Debugging Compiled Methods A–26

B. C Stack Checking B–1

B.1 Introduction B–1

B.2 Calculating C Stack Redzones B–2

B.2.1 C Stack Redzone Checks B–3

<$paranumi<$paraftextB–5

B.2.2 C Stack Redzone Values B–5

B.3 Worst Cases of Stack Usage Chains B–6

B.3.1 Worst C Stack Usage Chain in Interpreter Loop B–7

B.3.2 Worst C Stack Usage Chain in CVMimplementsInterface
Routine B–14

B.3.3 Worst C Stack Usage Chain in Class Loader at Class Lookup B–16

B.3.4 Worst C Stack Usage Chain in Class Link B–24

B.3.5 Worst C Stack Usage Chain in Formatting a String from the PC for
a Console Print Out B–30

B.3.6 Worst C Stack Usage Chain in Formatting a String of Object from a
Class and Hash Value B–32

B.3.7 Worst C Stack Usage Chain in Class Verifier B–37

B.3.8 Worst C Stack Usage Chain in Signaling an Exception Routine B–
41
Contents xi

xii CDC Porting Guide • November 2005

Figures

FIGURE 10-1 Personal Basis Profile AWT Architecture 10–2

FIGURE 11-1 Personal Profile AWT Architecture 11–4

FIGURE 12-1 Conventional Application Management 12–2

FIGURE 12-2 Application Management with Separate JVM Instances 12–3

FIGURE 12-3 Server and Client JVM States 12–4

FIGURE 12-4 Creating a Client JVM Instance for a Managed Application 12–5

FIGURE 12-5 CDC AMS Architecture 12–8
 xiii

xiv CDC Porting Guide • November 2005

Tables

TABLE 2-1 Top-Level Directories 2–5

TABLE 2-2 build Directory 2–5

TABLE 2-3 src Directory 2–6

TABLE 3-1 HPI Header File Hierarchy 3–2

TABLE 3-2 ANSI Header File Macros 3–3

TABLE 3-3 VM Header Files Macros 3–4

TABLE 3-4 src/portlibs Sub-Directories 3–4

TABLE 3-5 CPU Ports 3–5

TABLE 3-6 Operating System Ports 3–6

TABLE 3-7 Implementation Source Files for Data Types, Global State and Memory Access Support 3–9

TABLE 3-8 Implementation Source Files for JNI Support 3–10

TABLE 3-9 Implementation Source Files for Thread Support 3–11

TABLE 3-10 Implementation Source Files for Synchronization Support 3–11

TABLE 3-11 Implementation Source Files for I/O Support 3–12

TABLE 3-12 Implementation Source Files for Networking Support 3–12

TABLE 3-13 JNI Native Method Source Code in src/linux/native/java 3–14

TABLE 3-14 Platform-Level Java Classes in linux/classes 3–14

TABLE 4-1 CVM_FASTLOCK_TYPE Values 4–3

TABLE 4-2 Fast Lock Implementations 4–5

TABLE 5-1 Dynamic Compiler Modules 5–2
 xv

TABLE 5-2 Dynamic Compiler Header File Hierarchy 5–4

TABLE 5-3 portlibs/jit/risc RISC Porting Library 5–5

TABLE 5-4 CPU Abstraction Interface 5–7

TABLE 5-5 Glue Code 5–9

TABLE 5-6 Miscellaneous Code 5–10

TABLE 5-7 Intrinsics 5–12

TABLE 5-8 Invokers 5–13

TABLE 5-9 Emitters 5–14

TABLE 5-10 Helpers 5–15

TABLE 5-11 Floating Point Support 5–17

TABLE 6-1 CDC HI Array Types 6–9

TABLE 10-1 Porting Architecture 10–3

TABLE 10-2 Native Bridge Source Files (JNI) 10–4

TABLE 11-1 AWT Porting Layers 11–5

TABLE 11-2 Qt Toolkit Support Library 11–6

TABLE 11-3 Qt Native Bridge 11–6

TABLE 12-1 CDC AMS Packages 12–7

TABLE A-1 Trace Flag Values A–4

TABLE A-2 Debug Flag Trace Options A–5

TABLE 0-1 C Stack Redzone Macros B–4

TABLE 0-2 C Stack Check Macros B–4

TABLE 0-3 C Stack Redzone Macro Values B–5
xvi CDC Porting Guide • November 2005

Preface

This guide describes how to port the CDC HotSpot Implementation Java virtual
machine and class library to a target platform.

The companion documents CDC Build System Guide and CDC Runtime Guide
describes how to build and run a CDC Java runtime environment, including the
build-time and runtime options that control functionality, testing and performance
features. This guide focuses on how to use those features at runtime.

Who Should Read This Document
The primary reader is a software engineer responsible for performing the initial port
of the CDC HotSpot Implementation Java virtual machine and Foundation Profile to
a target platform.

The reader should also be familiar with the following topics:

■ Operating systems and device drivers
■ Object-oriented programming
■ Java virtual machine semantics
■ Java programming
■ C programming
■ Assembly language programming
■ Open source software development tools

The porting layers of the CDC HotSpot Implementation Java virtual machine have
been designed around a narrow set of porting interfaces that focus effort on the
target platform rather than VM internals. So while a general understanding of
compiler architecture is helpful, a deep understanding is not required. Experience
with the target CPU’s assembly language is necessary.
 xvii

How This Book Is Organized
This document is divided into several major sections described below.

Part I: Getting Started introduces CDC HotSpot Implementation technology and
outlines the planning stage for beginning a port.

Part II: HPI Layer describes the Host Programming Interface (HPI) layer, which
provides the CPU and OS-specific interfaces for both the virtual machine runtime
and the Foundation Profile class library.

Part III: Dynamic Compiler Layer describes the porting interfaces for the dynamic
compiler. This optional porting layer provides a adaptng the dynamic compiler for
CPUs that are not currently supported by one of the ports available from Java
Partner Engineering (http://www.sun.com/software/jpe).

Part IV: Garbage Collector Layer describes how to build a garbage collector plug-in.
These advanced APIs are optional since the default GC algorithms in CDC HotSpot
Implementation Java virtual machine work well for a broad range of devices and
applications.

Part V: GUI Layer describes the AWT porting layer for Personal Basis Profile and
Personal Profile.

Part VI: AMS Layer describes the porting interfaces for CDC Application
Management System.

Part VII: Appendices contains useful programming material for related porting
issues like gdb-based debugging and programming techniques that promote system
robustness under tight C stack situations.
xviii CDC Porting Guide • November 2005

http://www.sun.com/software/jpe

Typographic Conventions

Related Documentation

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Related Documentation

Topic Title

white paper The white paper CDC: Java Platform Technology for Connected
Devices introduces CDC technology, standards, devices,
applications and tools.

runtime options The companion document CDC Runtime Guide provides runtime-
oriented information for developers and testers.

build system The companion document CDC Build System Guide describes the
CDC build system installation, configuration and testing.

TCK User documentation for running the TCK validation suites.
• CDC Technology Compatibility Kit version 1.0 User’s Guide
• Foundation Profile Technology Compatibility Kit version 1.0 User’s

Guide
Preface xix

Java virtual machine Java Virtual Machine Specification, Second Edition
(Addison-Wesley, 1999) defines the Java class format and the
virtual machine semantics for class loading, which are the basis
for the operation of the Java runtime environment and its ability
to execute Java application software on a variety of different
target platforms. See
http://java.sun.com/docs/books/vmspec.

Java Native Interface
(JNI)

Java Native Interface: Programmer's Guide and Specification
(Addison-Wesley, 1999) by Sheng Liang describes the native
method interface used by the CDC HotSpot Implementation Java
virtual machine. http://java.sun.com/docs/books/jni.

Java Virtual Machine
Debugger Interface
(JVMDI)

Defines an interface that allows debugger tools like jdb and
third-party debuggers to interact with a debugger-capable Java
runtime environment. See
http://java.sun.com/products/jpda/doc/jvmdi-
spec.html.

Java Virtual Machine
Profiler Interface
(JVMPI)

Defines an interface that allows the hprof profiler to interact
with a Java runtime environment to measure application
behavior. See
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/j
vmpi.html.

security Inside Java 2 Platform Security (Addison-Wesley, 2003) describes the
Java security framework, including security architecture,
deployment and customization. See
http://java.sun.com/docs/books/security.

POSIX Threads Pthreads Programming: A POSIX Standard for Better. Multiprocessing
(O'Reilly & Associates, 1996) by Bradford Nichols, Dick Buttlar
and Jacqueline Proulx Farrell is an introduction to POSIX thread
programming. See
http://www.oreilly.com/catalog/pthread.

POSIX POSIX Programmer's Guide (O'Reilly & Associates, 1991) by
Donald Lewine is an introduction to the POSIX interface. See
http://www.oreilly.com/catalog/posix.

ANSI Standard C
Library

The Standard C Library (Prentice-Hall, 1991) by P. J. Plauger is a
comprehensive description of the ANSI C Library. See
http://www.prenhall.com/books/ptr_0131315099.html.

Berkeley Sockets The Open Group maintains the Single UNIX Specification which
defines standard UNIX interfaces. See http://www.unix-
systems.org/version3.

TABLE P-2 Related Documentation

Topic Title
xx CDC Porting Guide • November 2005

http://www.unix-systems.org/version3
http://www.unix-systems.org/version3
http://www.prenhall.com/books/ptr_0131315099.html
http://www.oreilly.com/catalog/posix
http://www.oreilly.com/catalog/pthread
http://java.sun.com/docs/books/security
http://java.sun.com/products/jpda/doc/jvmdi-spec.html
http://java.sun.com/products/jpda/doc/jvmdi-spec.html
http://java.sun.com/docs/books/vmspec
http://java.sun.com/docs/books/jni

Accessing Sun Documentation Online
Sun provides online documentation resources for developers and licensees.

glibc The glibc library contains all the ANSI Standard C Library and
POSIX library functions needed by the CDC HotSpot
Implementation Java virtual machine. See
http://www.gnu.org/software/libc/manual.

Linux The sample implementation is based on a Linux 2.2 platform. See
http://www.kernel.org.

SoftFloat Library The SoftFloat Library is a software implementation of the IEEE
Standard for Binary Floating-point Arithmetic. See
http://www.jhauser.us/arithmetic/SoftFloat.html.

gcc Compiler Using and Porting the GNU Compiler Collection (Version 2.95, 1999).
See http://gcc.gnu.org/onlinedocs. See also the ARM-
specific patch described in the CDC Build System Guide.

gdb Debugger Debugging with GDB (Version 5.1.1, 2002). See
http://www.gnu.org/software/gdb/documentation.

ARM Processor ARM System-on-Chip Architecture (Addison-Wesley, 2000) is an
introduction to the ARM processor architecture.

TABLE P-3 Sun Documentation

URL Description

http://docs.sun.com Sun product documentation

http://java.sun.com/j2me/docs Java ME technical documentation

http://www.sun.com/software/jpe Java Partner Engineering

TABLE P-2 Related Documentation

Topic Title
Preface xxi

http://www.sun.com/software/jpe
http://java.sun.com/j2me/docs
http://docs.sun.com
http://www.gnu.org/software/gdb/documentation
http://www.jhauser.us/arithmetic/SoftFloat.html
http://gcc.gnu.org/onlinedocs
http://www.kernel.org
http://www.gnu.org/software/libc/manual

Terminology
These terms related to the Java™ platform and Java™ technology are used
throughout this manual.

Java technology level (Java level)

Java technology based (Java based)

class contained in a Java
class file (Java class)

Java programming
language profiler (Java profiler)

Java programming
language debugger (Java debugger)

thread in a Java virtual
machine representing a

Java programming
language thread (Java thread)

stack used by a Java
thread (Java thread stack)

application based on Java
technology (Java application)

source code written in the
Java preogramming

language (Java source code)

object based on Java
technology (Java object)

method in an object based
on Java technology (Java method)

field in an object based on
Java technology (Java field)

a named collection of
method definitions and

constant values based on
Java technology (Java interface)

a group of types based on
Java technology (Java package)
xxii CDC Porting Guide • November 2005

an organized collection of
packages and types

basedon Java technology (Java namespace)

constructor method in an
object based on Java

technology (Java constructor)

exception based on Java
technology (Java exception)

an application
programming interface

(API) based on Java
technology (Java API)

a service providers
interface (SPI) based on

Java technology (Java API)

developer tool based on
Java technology (Java developer tool)

system property in a Java
runtime environment (Java system property)

security framework for the
Java platform (Java security framework)

security architecture of the
Java platform(Java security architecture)

Feedback
Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-hotspot-comments@java.sun.com

You can send comments and suggestions regarding this document by sending email
to: docs@java.sun.com
Preface xxiii

xxiv CDC Porting Guide • November 2005

PART I Getting Started

This part introduces the Connected Device Configuration HotSpot Implementation
(CDC-HI) Java virtual machine and outlines the planning procedures and early
stages of porting the CDC HotSpot Implementation Java virtual machine to a target
platform.

This part contains the chapters:

■ Introduction
■ Planning

CHAPTER 1

Introduction

The Connected Device Configuration (CDC) is a group of Java ME technologies for a
broad range of consumer and embedded products. This porting guide describes how
to port the CDC HotSpot Implementation Java virtual machine and Foundation
Profile class library to a new target platform. This chapter describes the CDC
HotSpot Implementation Java virtual machine, its benefits, target applications and
supported platforms. Chapter 2 provides an overview of the porting process and the
chapters that follow describe the different stages of a port.

1.1 CDC Technology
CDC is a Java ME technology designed to leverage Java SE technology for non-
desktop systems. This includes a Java class library that is derived from the J2SE 1.4.2
Java class library by removing certain server-oriented packages and deprecated
methods and adding a few CLDC compatibility classes. The result is a set of APIs
that are familiar to the millions of Java SE developers yet appropriate to the needs of
non-desktop devices.

The CDC HotSpot Implementation Java virtual machine uses the same external
interfaces as the Java SE HotSpot Java virtual machine. Both implementations fully
adhere to the Java Virtual Machine Specification, Second Edition (Addison-Wesley, 1999)
and both support VM-level interfaces like Java Native Interface (JNI), Java Virtual
Machine Debugger Interface (JVMDI) and Java Virtual Machine Profiler Interface
(JVMPI). However, the design and implementation of the CDC HotSpot
Implementation Java virtual machine is quite different.

One of the most important benefits of this design is portability, which is the subject
of this guide. For a target platform with interface libraries based on common
operating system abstractions like POSIX, the porting process should take a matter
of weeks instead of months. Since many common CPUs and operating systems are
already supported, much of the work is already done in the form of sample ports or
1-1

porting utility libraries. In short, the portability interface of the CDC HotSpot
Implementation Java virtual machine focuses developer effort on the target platform
rather than the Java virtual machine implementation.

1.2 Benefits
CDC HotSpot Implementation is a fully compliant Java virtual machine that is
highly optimized for resource-constrained devices like consumer products and
embedded devices. CDC HotSpot Implementation combines excellent performance
and reliability with a low memory footprint to meet the needs of a broad range of
product scenarios.

CDC HotSpot Implementation was designed to inhabit the world of PDAs, set-top
boxes and other consumer products and embedded devices. It complies with the
same Java virtual machine specification as the Java SE application environment, but
its implementation is tailored to the needs of resource-constrained devices. Because
product designs vary, CDC HotSpot Implementation allows device-friendly tradeoffs
between performance and constrained resources. CDC HotSpot Implementation
achieves best-of-class performance with a modern dynamic compiler and solid
reliability for multi-threaded and low-memory conditions. In addition, CDC
HotSpot Implementation's portability interfaces enable rapid modification to
support new target CPUs and operating systems while maintaining excellent
performance.

■ Device Support

■ Excellent performance
■ Low memory footprint
■ Reliability

Low-memory conditions

Multi-threaded scenarios

■ Device friendliness

Portable

Configurable

■ Java Virtual Machine features

■ Floating point
■ Multiple user-defined class loaders
■ Serialization
■ Reflection
■ Weak references
■ Full I/O and networking
■ Core features and programming model of Java SE
1-2 CDC Porting Guide • November 2005

■ Retargetable

■ Modular implementation

narrow porting interfaces

written in ANSI C and assembly language

■ CPU implementations

ARM

PowerPC

MIPS

SPARC

x86 (interpreter only)

■ Operating systems

Linux

Solaris

Darwin

Win32

■ Design Features

■ Dynamic compiler (JIT - Optimized Implementation only)

Space efficient

Fast

Reliable

Portable

Configurable

■ Interpreter

Fast

Written in ANSI C

Uses GCC extensions when available

■ Java class preloading

Space saving

Data sharing

In-place execution from ROM

Pre-loading improves startup time and avoids fragmentation

■ Runtime

Fast startup and shutdown
Chapter 1 Introduction 1-3

No resource leaks

Small class footprint

Process model independent

Virtualized JVM state

No global variables or statics

■ Memory management

■ Heap management

Virtual memory not required

Fully compactible heaps

No fragmentation

■ Pluggable garbage collector (Optimized Implementation only)
■ Default generational collector

Short pauses

Sequential heaps

Coexists with native system

■ Thread support

■ Fast locking
■ Scalable and robust in heavily threaded scenarios
■ C stack safety for tight memory conditions
■ Porting layer supports both native and user-level threads

■ Standard Java VM interfaces

■ Java SE policy-based security model
■ JNI support
■ JVMDI debug support
■ JVMPI profiling support
1-4 CDC Porting Guide • November 2005

CHAPTER 2

Planning

The CDC HotSpot Implementation Java virtual machine has been designed for easy
portability to alternate target platforms. This porting guide describes the basic stages
of porting the CDC HotSpot Implementation Java virtual machine: bringing up the
VM runtime and integrating the Foundation Profile class library. More advanced
stages like porting the dynamic compiler and implementing an alternate garbage
collection algorithm are discussed in later chapters.

The porting techniques described in this guide are based on the Linux/ARM sample
implementation. TABLE 3-5 and TABLE 3-6 describes implementations for other CPUs
and operating systems available through Java Partner Engineering
(http://www.sun.com/software/jpe). If your target device uses one of these
CPUs or operating systems, then the porting tasks can be simplified by using
different portions of these ports. In addition, the source release includes porting
libraries that streamline support for most platforms.

This chapter cover the following topics:

■ Target Platform Requirements
■ Porting Steps
■ Source Code Organization

2.1 Target Platform Requirements
The target platform requirements of the CDC HotSpot Implementation Java virtual
machine are organized into the CPU and the operating system layers.
2-1

http://www.sun.com/software/jpe

2.1.1 CPU

Note – Most of these CPU features are relavent only to a JIT port that is part of the
Optimized Implementation.

The porting strategy for the CDC HotSpot Implementation Java virtual machine is
based on the simplifying assumption of targeting RISC CPUs that are common in the
embedded and device marketplace. Most RISC CPUs are similar and their
differences are mostly limited to their registers, instruction encodings and calling
conventions.

Note – Though the x86 is the dominant non-RISC CPU, the CDC-HI Java virtual
machine supports the x86 only within the interpreter and not within the dynamic
compiler. Supporting the x86 within the dynamic compiler would lose many of the
performance efficiencies gained by concentrating on RISC architectures.

The following list identifies some of the RISC features important to the CDC-HI Java
virtual machine JIT porting interface.

■ RISC-like architecture
■ 32-bit integer and address size.
■ 2's complement integer representation.
■ Uniform 1-word instruction length.
■ Lots of registers.
■ Uniform set of general-purpose registers (except floating point) available for

integer arithmetic and pointers.
■ Some parameters are passed in registers.
■ Return value appears in a register.
■ Load-store architecture. ALU instructions operate only on registers and

immediates. Values must be explicitly moved between the ALU and memory
with load and store instructions.

■ Interlocked load/store instructions to support fast locking.
■ Byte-addressable memory.
■ Allocating large contiguous memory regions for the code buffer and heap.
■ "call far" instruction that can reach the size of the code buffer.
■ Register-relative memory addresses for load and store instructions.

■ Dynamic compiler-specific requirements
■ Ability to flush the i-cache.
■ Write instructions as data into memory.
■ Execute instructions out of memory.

■ Non-assumptions
■ Byte order within a word.
■ Direction of C stack growth.
■ Presence or absence of delay slots following branches.
2-2 CDC Porting Guide • November 2005

■ Any particular arrangement of dedicated registers, or those available for use
by generated code.

The CDC HotSpot Implementation Java virtual machine has been ported to several
target CPUs. See TABLE 3-5 for a list of supported CPU ports available through Java
Partner Engineering (http://www.sun.com/software/jpe).

Note – The companion document CDC Build System Guide describes the cross-
compiler and other developer tools used by the CDC build system.

2.1.2 Operating System
The operating system portability interfaces for the CDC HotSpot Implementation
Java virtual machine are based on common operating system abstractions like POSIX
and ANSI I/O. If these interfaces are available on the target platform, then the
porting process is mostly a direct mapping from the HPI to the platform’s system
interfaces. Chapter 3 describes the standard system interfaces required by the HPI:

■ Memory management.
■ Uniform address space (not segmented).
■ UNIX-like memory allocation functions.

■ ANSI Standard I/O.
■ POSIX thread management.

■ Easily ported to a POSIX thread library.
■ Alternate fast locking implementations available.
■ Don’t need separate processes.
■ Don’t need a large C stack per thread.
■ Monitor based.

■ Berkeley sockets.

The CDC HotSpot Implementation Java virtual machine has been ported to several
target operating systems. These include Linux and several other UNIX-like
operating systems. See TABLE 3-6 for a list of supported operating system ports
available through Java Partner Engineering
(http://www.sun.com/software/jpe).

The implementation requirements for the system library layer is largely shaped by
the Java Native Interface (JNI) which provides a standard mechanism for Java
classes to execute native methods. JNI provides a calling convention that allows a
Java virtual machine to execute native methods on a target platform
Chapter 2 Planning 2-3

http://www.sun.com/software/jpe
http://www.sun.com/software/jpe

2.2 Porting Steps
The porting layers of the CDC HotSpot Implementation Java virtual machine were
designed to make porting straightforward and to focus effort on issues that affect
performance. This is achieved through simplifying assumptions like common OS
and CPU abstractions as well as using example ports and porting utility libraries.

The steps described below will help introduce the CDC HotSpot Implementation
technology and prepare the way for a successful port.

1. Start by working with a binary reference implementation as described in the CDC
Runtime Guide. This will introduce the mechanics of using the Java application
launcher and even more advanced topics like tuning the runtime performance of the
dynamic compiler.

2. Work with the reference build environment as described in the CDC Build System
Guide. This will introduce the mechanics of performing builds and testing the CDC
Java runtime environment.

3. Perform a basic port that supports interpreter-only operation. In most cases, the
common OS and CPU abstractions make this a straightforward task. There are some
basic assembly language glue routines to write. Start by reading the header files in
src/share/javavm/include/porting, which have many descriptive comments
that are not duplicated in this guide. At the end of this stage, you should have a
fully functional CDC Java runtime environment. This stage is described in
Chapter 3.

4. Because object synchronization heavily affects runtime performance, it is
necessary to tune the locking implementation. Chapter 4 describes how to
approach the task of finding a locking implementation that is appropriate for the
target system. Several implementations are provided.
2-4 CDC Porting Guide • November 2005

2.3 Source Code Organization
The reference source code for the CDC HotSpot Implementation Java virtual
machine is organized into several top-level directories described in TABLE 2-1:

2.3.1 build Directory
The CDC build system is based on a Linux or Solaris host development system using
commonly available Java and UNIX development tools. The basic development
model is to use the CDC build environment as a cross-compilation system to build
an executable runtime environment. Then the executable runtime environment is
loaded onto a target device for testing. For more information about how to install
and use the CDC build environment, see the companion document CDC Build System
Guide.

TABLE 2-1 Top-Level Directories

Directory Description

build CDC build system.

src CDC source code.

TABLE 2-2 build Directory

Directory Description

<CPU> CPU-specific makefiles

<OS> OS-specific makefiles

<OS>-<CPU> These makefiles contain low-level makefile macro
definitions that are unique to the OS/CPU combination.
For example, the location of a CPU-spcific version of
invokeNative.c would be found here.

<OS>-<CPU>-<DEVICE> The main build directory. This contains the top-level
makefile with device-specific options and the generated
target device-specific intermediate files for a Java runtime
environment. These makefiles mostly set or override values
used by the shared makefiles.

portlibs Makefile definitions for the shared JIT layer.

share Shared makefiles.
Chapter 2 Planning 2-5

2.3.2 src Directory
The HPI source code is organized so that a small amount of target-specific
implementation code supports the much larger shared source code. TABLE 2-3
describes the HPI source code hierarchy. These directories have parallel
organizations to ease navigation and support the operation of the CDC build system.

The src directory contains the shared and target-specific source code for the CDC-
HI Java virtual machine and both the CDC and Foundation class libraries. For
porting, the most important directories are the HPI header files in
share/javavm/include/porting and the HPI implementation files in
portlibs, <CPU>/javavm, <OS>/javavm and <OS>-<CPU>/javavm directories.
These directories are described in Chapter 3.

The organization described in TABLE 2-3 uses the following naming conventions:
<CPU> is the CPU architecture, e.g. arm, mips or some other target CPU family.
<OS> is the platform operating system, e.g. linux, solaris or some other
platform operating system.

TABLE 2-3 src Directory

Directory Language Description

<CPU> CPU architecture-specific source code.
This code is shared by most ports based
on <CPU>.

 javavm C CPU-specific portion of the VM
implementation. At the HPI level, this
directory contains a small amount of
assembly glue code as well as source for
the dynamic compiler. This hierarchy
performs a similar purpose to
src/portlibs, but for a specific CPU-
target. The files in this hierarchy use the
interface_cpu.[ch] naming convention.

<OS> OS-specific source code. This code is
shared by all ports based on <OS>.

 bin C OS-specific wrapper for the Java
application launcher.

 classes Java OS-specific portion of the CDC and
Foundation Profile class libraries.
2-6 CDC Porting Guide • November 2005

 javavm C OS-specific portion of the VM
implementation. These source files
contain support functions that interact
with the required OS services. The files
in this hierarchy use the
interface_md.[ch] naming convention.

 lib text MIME content type system property
table and platform-to-Java time zone
mapping table.

 native C JNI native methods for the CDC and FP
class library source code. These native
methods require porting for the target
OS.

 tools C OS-specific portion of the hprof profiler
tool.

<OS>-<CPU> OS/CPU-specific source code.

 javavm C OS/CPU-specific portion of the VM
implementation. These source files
contain CPU-specific support functions
that interact with low-level OS services
like CPU-specific synchronization,
numeric types and endianness. The files
in this hierarchy use the
interface_arch.[ch] naming
convention.

portlibs C These porting utilities are used by most
ports to map the HPI to common
platform system interfaces. See
TABLE 3-4 for a description of these
porting utilities.

share1 Source code shred by different
implementations.

 classes Java CDC class library source code.

 foundation Java Foundation Profile class library source
code.

 javavm C Shared portion of the VM
implementation.

TABLE 2-3 src Directory

Directory Language Description
Chapter 2 Planning 2-7

 javavm/include/porting C These header files define the HPI
interfaces that the target-specific source
must implement.

NOTE: The header files in this directory
contain many descriptive comments that
are not duplicated here. They should be
studied carefully during the planning
stages of a port.

 javavm/test Java Various test programs for exercising the
VM.

 lib text Security policies.

 native C JNI native methods for the CDC and FP
class library source code. These native
methods do not require porting.

 tools C hprof source code.

1 The source code in the share hierarchy is intended for reference purposes only and should not be modified. If
the default behavior needs modification, in most cases these changes should be made by overriding this default
functionality with code in the target-specific source hierarchies. For other cases, see https://javapart-
ner.sun.com/partner/porting/04.html for an overview of the review process for modifying shared
code.

TABLE 2-3 src Directory

Directory Language Description
2-8 CDC Porting Guide • November 2005

https://javapartner.sun.com/partner/porting/04.html
https://javapartner.sun.com/partner/porting/04.html

PART II HPI Layer

This part describes the HPI porting layer. This includes the CPU and OS-specific
interfaces for both the virtual machine runtime and the CDC/Foundation Profile
class library.

This part contains the chapters:

■ Host Programming Interface
■ Fast Locking

CHAPTER 3

Host Programming Interface

This Host Programming Interface (HPI) represents the portability interface for the
runtime component of the CDC HotSpot Implementation Java virtual machine.
Implementing the macros, data structures and functions of the HPI is the first major
stage in porting the CDC HotSpot Implementation Java virtual machine to a new
target system.

This chapter cover the following topics:

■ HPI Header File Hierarchy
■ Creating an HPI Implementation

This chapter uses the Linux/ARM/Zaurus port to describe how an HPI
implementation is structured. In general, we make the simplifying assumptions that
the target port includes ANSI and POSIX libraries and that the CDC build system
uses the patched gcc cross-compiler described in the companion document CDC
Build System Guide. For help with porting projects that fall outside these guidelines,
contact Java Partner Engineering (http://www.sun.com/software/jpe).
3-1

http://www.sun.com/software/jpe

3.1 HPI Header File Hierarchy
The directory src/share/javavm/include contains a series of header files that
impose a structure on an HPI port. The most important is
src/share/javavm/include/defs.h, the top-level HPI include file that defines
basic types and data structures as well as including the other HPI header files. The
top-level HPI header file hierarchy is described in TABLE 3-1.

3.1.1 CVM_HDR_* Header File Macros
The CVM_HDR_* header file macros described in
share/javavm/include/porting/defs.h represent the basic requirements for
an HPI port. These macros are usually defined in
<OS>/javavm/include/defs_md.h.

There are two categories of header file macros:

■ The CVM_HDR_ANSI_* macros described in TABLE 3-2 identify ANSI header files
that define standard C library functions and data types used by the VM.

TABLE 3-1 HPI Header File Hierarchy

Header File Description

src/share/javavm/include/defs.h Defines basic types and data
structures as well as including the
other HPI header files.

src/share/javavm/include/porting/defs.h Describes the file mapping for the
ANSI and VM header files. Some
advanced options are also
described here. See TABLE 3-2
and TABLE 3-3 for descriptions of
these header files.

src/<OS>/javavm/include/defs_md.h The top-level target-specific HPI
header file. Provides the file mapping
for the ANSI and VM header files
and selects advanced platform
features as well as common macros
used throughout the target-specific
source code.

src/<OS>-<CPU>/javavm/include/defs_arch.h OS-CPU architecture-specific
macros.
3-2 CDC Porting Guide • November 2005

■ The rest of the CVM_HDR_* macros described in TABLE 3-3 identify the target-
specific VM header files that define functions and data structures for accessing
platform-level services. These are usually found in <OS>/javavm/include with
corresponding implementation files found in <OS>/javavm/runtime. They are
organized into the stages described in Section 3.2, “Creating an HPI
Implementation” on page 3-5”.

The macros shown in TABLE 3-2 define the locations of the standard ANSI C header
files. They can also be used to define an alternate location or implementation or to
interpose a wrapper file around the system file. One reason to do this is to redefine
tokens that are causing conflicts with the VM code or to include other system header
files first.

TABLE 3-2 ANSI Header File Macros

Macro ANSI Header File Description

CVM_HDR_ANSI_ASSERT_H <assert.h> Macro for verifying program assertion.

CVM_HDR_ANSI_CTYPE_H <ctype.h> Character types.

CVM_HDR_ANSI_ERRNO_H <errno.h> System error numbers.

CVM_HDR_ANSI_LIMITS_H <limits.h> Implementation-dependent constants.

CVM_HDR_ANSI_SETJMP_H <setjmp.h> Declarations for setjmp() and
longjmp() that control transfers that
bypass the normal function call and return
protocol.

CVM_HDR_ANSI_STDARG_H <stdarg.h> Macros for handling variable argument
lists.

CVM_HDR_ANSI_STDDEF_H <stddef.h> Standard type definitions.

CVM_HDR_ANSI_STDIO_H <stdio.h> Standard buffered I/O.

CVM_HDR_ANSI_STDLIB_H <stdlib.h> Standard library definitions.

CVM_HDR_ANSI_STRING_H <string.h> String operations.

CVM_HDR_ANSI_TIME_H <time.h> Time types.
Chapter 3 Host Programming Interface 3-3

In most cases, cloning and modifying the linux example should be sufficient since
it’s based on the porting libraries in portlibs/ansi_c and
portlibs/gcc_32_bit.

3.1.2 src/portlibs Porting Libraries
The src/portlibs directory contains many useful porting libraries that simplify
the task of porting the HPI layer to most platforms.

TABLE 3-3 VM Header Files Macros

Macro VM Header File Description

CVM_HDR_DOUBLEWORD_H
CVM_HDR_ENDIANNESS_H
CVM_HDR_FLOAT_H
CVM_HDR_INT_H

doubleword.h
endianness.h
float.h
int.h

Data type macros and APIs.

CVM_HDR_GLOBALS_H globals.h VM global state.

CVM_HDR_MEMORY_H memory.h Memory access.

CVM_HDR_JNI_H
CVM_HDR_LINKER_H

jni.h
linker.h

Native method support and dynamic linking
support.

CVM_HDR_THREADS_H threads.h Thread support.

CVM_HDR_SYNC_H sync.h Synchronization support.

CVM_HDR_IO_H
CVM_HDR_PATH_H
CVM_HDR_SYSTEM_H
CVM_HDR_TIME_H
CVM_HDR_TIMEZONE_H

io.h
path.h
system.h
time.h
timezone.h

I/O support, Java system properties, time and
system functions for halt and reset.

CVM_HDR_NET_H net.h Networking support.

TABLE 3-4 src/portlibs Sub-Directories

Directory Description

ansi_c Maps internal data types used by the HPI to common ANSI C data types.

dlfcn Supports dynamic linking of shared libraries directly through the dlsym() system
call.

gcc_32_bit Maps internal data types used by the HPI to common gcc data types.

jit RISC porting library for the dynamic compiler.

posix I/O, socket and thread porting functions based on POSIX.

realpath UNIX path name handling.
3-4 CDC Porting Guide • November 2005

3.2 Creating an HPI Implementation
In this section we outline the steps necessary for creating an HPI implementation.
Most of these steps are straightforward. A few require additional effort for which
there is help in the form of porting libraries and examples.

Developing a new port from scratch is probably more work than is necessary. The
sample Linux/ARM/Zaurus port serves two purposes. It’s well structured and
commented so that it can be used as a good example for porting. And it’s also well
tested and optimized for production use. Java Partner Engineering can provide other
example ports, and the porting libraries in src/portlibs should simplify porting
for most common target platforms.

Java Partner Engineering (http://www.sun.com/software/jpe) has ports
available for other operating systems and CPUs. Since the HPI porting layer is
separated into CPU and OS abstractions, the example for one OS support layer can
be used as a starting point for a port to another target system. That is, the same OS
layer can be used even if it’s based on a different CPU. Starting with one of these
prebuilt modules will save a great deal of effort in porting the CDC HotSpot
Implementation Java virtual machine to a new target platform.

TABLE 3-5 shows the CPU ports available from Java Partner Engineering.

TABLE 3-5 CPU Ports

CPU Support Level

ARM V4 architecture and higher

MIPS MIPS II, III, IV, and V

PowerPC PowerPC and e500 architectures

Sparc MicroSparc and UltraSparc

x86 (interpreter only) 386 and higher
Chapter 3 Host Programming Interface 3-5

http://www.sun.com/software/jpe

TABLE 3-6 shows the operating system ports available from Java Partner Engineering.

3.2.1 Suggested Work Flow
The work flow for developing an HPI implementation is divided into the stages
listed below.

1. Section 3.2.2, “Prepare the Target-Specific build and src Hierarchies” on page 3-7
describes how to setup the build and src hierarchies by cloning or combining code
from existing ports.

2. Section 3.2.3, “Data Types, Global State and Memory Access Support” on page 3-8
represents the main portion of the port. The goal is to implement enough of the HPI
to perform basis tests that don’t require I/O capability.

TABLE 3-6 Operating System Ports

Operating Systems CPU Devices

Linux ARM • Sharp Zaurus
• Rebel.Com Netwinder
• iPaq running Familiar Linux
• MontaVista Linux
• Intel Bulverde chipset on the Mainstone development

board
• TI Innovator development board for the OMAP

platform

MIPS • Cobalt Raq2 and Qube2 running Debian Linux 3.0.1
• SGI Indy and Indigo2 running Debian Linux 3.0.1
• MontaVista Linux

PowerPC • YellowDog Linux 2.2, 2.3, and 3.0 on an Apple
PowerMac

• MontaVista Linux

SPARC • Sun UltraSparc running Debian Linux 3.0.1

x86 • x86/PC running Red Hat Linux 7.2 and 9.0

Darwin (BSD-based) PowerPC PowerMac running MacOS 10.x

Solaris SPARC Solaris 2.7, 2.8, and 2.9 on Sun UltraSPARC hardware

Win32 ARM WinCE 3.0 on PocketPC (iPaq)

MIPS WinCE 4.1 on development board

x86 Windows 2000
3-6 CDC Porting Guide • November 2005

3. Section 3.2.4, “JNI Support” on page 3-9 adds dynamic linking and JNI support.
The goal is to enable native method support required by the Java class library.

4. Section 3.2.5, “Thread Support” on page 3-10 adds thread support for both VM
operation and Java runtime support.

5. Section 3.2.6, “Synchronization Support” on page 3-11 add synchronization
support.

6. Section 3.2.7, “I/O and System Support” on page 3-12 adds I/O capability to the
basic port to enable local file system-based class loading and I/O.

7. Section 3.2.8, “Networking Support” on page 3-12 adds support for socket-based
networking to enable network-based class loading and I/O.

Each section below includes a description of the source code for the
Linux/ARM/Zaurus sample implementation.

3.2.2 Prepare the Target-Specific build and src
Hierarchies
The steps below are based on a target platform based on the operating system MyOS,
the CPU MyCPU and the device MyDevice. The example is based on cloning the
Linux/ARM/Zaurus sample implementation. See TABLE 3-5 and TABLE 3-6 for
descriptions of other ports available from Java Partner Engineering that can be used
to more closely match the target device.

1. Prepare the UNIX build tools for the new target device.

This will require configuring and building the cross-development build tools to
include code generation capabilities for the new target device. See Chapter 2 and the
companion document CDC Build System Guide for more information about
configuring the CDC build system.

2. Refactor the platform-dependent makefiles hierarchy to support the target
platform.

If necessary, this involves cloning four directories. For example,

% cp -r build/linux-arm-zaurus build/MyOS-MyCPU-MyDevice
% cp -r build/linux-arm build/MyOS-MyCPU
% cp -r build/linux build/MyOS
% cp -r build/arm build/MyCPU

Note that these cloning steps are only necessary for build directories that will be
modified. If the target CPU or OS is one of the ports described in TABLE 3-5 or
TABLE 3-6, then no modification should be necessary at this stage of the port.
Chapter 3 Host Programming Interface 3-7

Tip – If the target OS and/or CPU are among the ports listed in TABLE 3-5 and
TABLE 3-6, then use or modify the prebuilt makefiles instead.

3. Edit build/MyOS-MyCPU-MyDevice/GNUmakefile to define any necessary
compiler flags and build-time options.

4. Refactor the platform-dependent source code hierarchy.

% cp -r linux-arm MyOS-MyCPU
% cp -r linux MyOS
% cp -r arm MyCPU

The MyOS directory will contain the bin, lib and tools sub-directories for the Java
application launcher, system property files and profiler tools respectively. These
should not require modification for a Linux port. Again, source code from other
ports may be more appropriate than the Linux/ARM/Zaurus example used here.

Note that these cloning steps are only necessary for source directories that will be
modified. If the target CPU or OS is one of the ports described in TABLE 3-5 or
TABLE 3-6, then no modification should be necessary at this stage of the port.

5. For each of the stages outlined in the following sections, supply the required
implementations.

For most target platforms, there should be some code supplied by one of the ports
described in TABLE 3-5 or TABLE 3-6. So the actual amount of implementation steps
should be a subset of the steps described below.

Tip – For ports that use existing OS and CPU implementations, for example porting
linux-arm-zaurus, the only work requried is cleaning up the target device build
directory and editing the GNUmakefile.

3.2.3 Data Types, Global State and Memory Access
Support
The first stage of implementing the HPI layer is to implement the data types and
support functions.
3-8 CDC Porting Guide • November 2005

Create target-specific implementation source files for the interfaces shown in
TABLE 3-7. Again, the header files in share/javavm/include/porting include
comments that describe the required interfaces. The existing ports use the porting
libraries in src/portlibs.

3.2.4 JNI Support
The next stage is to add dynamic linking and JNI support. The sample
Linux/ARM/Zaurus implementation uses Linux shared libraries to provide native
library implementations. Many UNIX-like operating systems provide similar
features.

TABLE 3-7 Implementation Source Files for Data Types, Global State and Memory Access
Support

Header File Examples

porting/doubleword.h linux/javavm/include/doubleword_md.h
linux-arm/javavm/include/doubleword_arch.h
portlibs/gcc_32_bit/doubleword.h
portlibs/ansi_c/doubleword.h

porting/endianness.h linux/javavm/include/endianness_md.h
linux-
arm/javavm/include/endianness_arch.hlinux-
arm/javavm/include/endianness_arch.h

porting/float.h linux/javavm/include/float_md.h
linux-x86/javavm/include/float_arch.hlinux-
arm/javavm/include/float_arch.h
arm/javavm/runtime/arm_float_cpu.c
portlibs/gcc_32_bit/float.h
portlibs/ansi_c/float.h

porting/int.h linux/javavm/include/int_md.h
linux-arm/javavm/include/int_arch.h
portlibs/ansi_c/int.h

porting/globals.h linux/javavm/include/globals_md.h
linux/javavm/runtime/globals_md.c

porting/memory.h linux/javavm/include/memory_md.h
linux-arm/javavm/include/memory_arch.h
arm/javavm/runtime/atomic_arm.S
arm/javavm/runtime/memory_asm_cpu.S1

1 memory_asm_cpu.S contains ARM-specific optimizations that are not necessary for general-purpose porting.
These APIs can be deactivated by removing the related macros in memory_arch.h.
Chapter 3 Host Programming Interface 3-9

Create target-specific implementation source files for the interfaces shown in
TABLE 3-8.

3.2.4.1 CVMjniInvokeNative

The most important part of this stage is the implementation of the
CVMjniInvokeNative() routine which translates Java method calling conventions
into the platform language (usually C) calling conventions used by native methods.
The Java VM passes all the arguments in the Java stack and expects the results to be
placed there as well.

For performance and stack safety reasons the implementation of
CVMjniInvokeNative() should be written in assembly language. The comments
in src/share/javavn/include/porting/jni.h and
arm/javavm/runtime/invokeNative_arm.S describe the interface and
implementation of CVMjniInvokeNative(). Contact Java Partner Engineering
(http://www.sun.com/software/jpe) to get versions of
CVMjniInvokeNative() for alternate processors.

3.2.5 Thread Support
If the target system has a POSIX thread library, then porting the thread support
portion of the HPI is straightforward. In fact,
src/portlibs/posix/posix_threads_md.c contains such an implementation.
The alternatives are to find and port a POSIX thread library to the native platform or
to port the thread interface directly to the native interface.

The porting/defs.h header file describes the CVM_HAVE_PROCESS_MODEL option
that indicates that the target platform provides a process model. This allows the VM
to avoid waiting for daemon threads to exit before shutting down.

Multi-processor systems are not supported by the CDC HotSpot Implementation
Java virtual machine unless all CDC threads can be isolated to the same processor.

TABLE 3-8 Implementation Source Files for JNI Support

Header File Linux/ARM/Zaurus Example

porting/jni.h portlibs/gcc_32_bit/jni.h
linux/javavm/include/jni_md.h
arm/javavm/runtime/
 invokeNative_arm.S

porting/linker.h portlibs/dlfcn/linker_md.c

share/native/common/jni_statics.h linux/native/common/statics_md.h
3-10 CDC Porting Guide • November 2005

http://www.sun.com/software/jpe

Create target-specific implementation source files for the interfaces shown in
TABLE 3-9.

3.2.6 Synchronization Support
The speed of object synchronization greatly affects overall runtime performance. The
default locking mechanism will work without porting effort, but is slow. Choosing
between the other alternatives will require experimentation with the target platform.
This is by far the most complex part of an HPI port to understand, though
implementation is made easier by the options described in Chapter 4.

The porting/sync.h header file describes other advanced options:

■ CVM_ADV_SCHEDLOCK requires implementations of the CVMschedLock() and
CVMschedUnlock() functions.

■ CVM_ADV_MUTEX_SET_OWNER requires the implementation of
CVMmutexSetOwner().

■ CVM_ADV_THREAD_BOOST enables thread priority boosting. This option requires
implementations of the CVMthreadBoostInit(), CVMthreadAddBooster(),
CVMthreadBoostAndWait() and CVMthreadCancelBoost() functions.

Create target-specific implementation source files for the interfaces shown in
TABLE 3-10.

TABLE 3-9 Implementation Source Files for Thread Support

Header File Linux/ARM/Zaurus Example

porting/threads.h portlibs/posix/threads.h
portlibs/posix/posix_threads_md.c
linux/javavm/include/threads_md.h
linux/javavm/runtime/threads_md.c
linux-arm/javavm/include/threads_arch.h

TABLE 3-10 Implementation Source Files for Synchronization Support

Header File Linux/ARM/Zaurus Example

porting/sync.h linux/javavm/include/sync_md.h
linux/javavm/runtime/sync_md.clinux-
arm/javavm/runtime/sync_arch.c
linux-arm/javavm/include/sync_arch.h
linux-arm/javavm/runtime/sync_arch.c
arm/javavm/runtime/atomic_arm.S

portlibs/posix/sync.h
portlibs/posix/posix_sync_md.c
Chapter 3 Host Programming Interface 3-11

3.2.7 I/O and System Support
The next stage is to add I/O and system support. If the target system has a POSIX-
like I/O toolkit, then this stage is straightforward.

Create target-specific implementation source files for the interfaces shown in
TABLE 3-11.

3.2.8 Networking Support
The last stage is to implement socket-based network support. Again, using a POSIX
library will simplify this task.

Create target-specific implementation source files for the interfaces shown in
TABLE 3-12.

TABLE 3-11 Implementation Source Files for I/O Support

Header File Linux/ARM/Zaurus Example

porting/io.h linux/javavm/include/io_md.h
linux/javavm/runtime/io_md.c
portlibs/posix/io.h
portlibs/posix/posix_io_md.c

porting/path.h linux/javavm/include/path_md.h
portlibs/realpath/canonicalize_md.c

porting/java_props.h linux/javavm/runtime/java_props_md.c
linux/javavm/runtime/locale_str.h

porting/system.h linux/javavm/runtime/system_md.c

porting/time.h linux/javavm/include/time_md.h
linux/javavm/runtime/time_md.c
portlibs/posix/posix_time_md.c

porting/timezone.h linux/javavm/runtime/timezone_md.c

TABLE 3-12 Implementation Source Files for Networking Support

Header File Linux/ARM/Zaurus Example

porting/net.h linux/javavm/include/net_md.h
linux/javavm/runtime/net_md.c
3-12 CDC Porting Guide • November 2005

3.3 CDC Class Library Support Layer
The CDC class library support layer represents the portability interface for the CDC
Java class library. This portability layer is divided into a small amount of C source
code and a few low-level Java classes that interact with system-level services like a
socket-based network stack, a file system and a native process model.

Implementing the macros, data structures and functions of this layer is based on
providing native method implementations for certain system level classes in the
CDC Java class library. The platform-level portion of the JNI mechanism is provided
the HPI functions described in Section 3.2.4, “JNI Support” on page 3-9. For most
UNIX-like platforms, the Linux-based platform-level Java classes should require
little, if any, modification.

This chapter shows how to implement the system-level native methods for a new
target system. It is divided into the following sections.

■ Section 3.3.1, “Source Code Organization” on page 3-13” describes the HPI header
files and the sample implementations.

■ Section 3.3.2, “Creating a CDC Class Library Support Layer Implementation” on
page 3-15” describes the basic workflow for porting the class library support
layer.

3.3.1 Source Code Organization
The source code organization for the class library support layer is based on a
combination of the Java class library and the platform-specific source code for the
CDC reference implementations. For example, the CDC reference implementations
keep operating system specific source code in src/OS. And the source code for the
java.net package is usually kept in a hierarchy with a java/net directory
structure. So for the Linux/ARM/Zaurus implementation, the native method
implementations for the java.net package are kept in
src/linux/native/java/net.

Profile-based Java and JNI source code can be found in src/*/profile.
Chapter 3 Host Programming Interface 3-13

TABLE 3-13 describes the native method implementations for the CDC class library
support layer in src/linux/native/java. There are three packages that require
native method support: java.io, java.lang and java.net.

The src/share/native directory contains several portable native method
implementations that do not require modification.

TABLE 3-14 describes platform-level Java classes in the linux/classes directory.

TABLE 3-13 JNI Native Method Source Code in src/linux/native/java

Source Files Description

io/FileSystem_md.c
io/UnixFileSystem_md.c

The platform file system classes in java.io are
based on common POSIX-based file system
semantics. The native methods in
src/linux/native/java/io are POSIX-
based. Other file system types are possible. See
src/share/classes/java/io/FileSyste
m.java.

lang/Runtime_md.c
lang/UNIXProcess_md.c

java.lang.Process provide access to
platform-level processes. These should be very
similar for most UNIX-like platforms.

net/InetAddressImpl_md.c
net/PlainDatagramSocketImpl_md.c
net/PlainSocketImpl_md.c
net/SocketInputStream_md.c
net/SocketOutputStream_md.c
net/net_util_md.c
net/net_util_md.h

java.net is based on Berkeley sockets available
on most UNIX-like platforms. The native
methods in src/linux/native/java/net
are based on the socket interface. See
TABLE P-2 for a reference document for the
Berkeley Socket interface.

TABLE 3-14 Platform-Level Java Classes in linux/classes

Source Files Description

java/io/UnixFileSystem.java UNIX file system support.

java/lang/Terminator.java
java/lang/UNIXProcess.java

UNIX process support.

sun/net/www/protocol/file/
 Handler.java

file protocol handler.

sun/net/www/protocol/jar/
 JarFileFactory.java

Retrieving and caching jar archives.
3-14 CDC Porting Guide • November 2005

3.3.2 Creating a CDC Class Library Support Layer
Implementation
Porting the CDC class library support layer is very straightforward if the target
system provides the baseline platform requirements:

■ POSIX I/O toolkit
■ ANSI standard C library
■ Berkeley sockets

As with the HPI layer, there are several existing ports that can be used as a starting
place for porting. For example, the Darwin and Solaris ports provide good examples
for most BSD-flavored UNIX implementations. See TABLE 3-5 and TABLE 3-6 for a list
of CPU and operating system ports available from Java Partner Engineering.

Porting the CDC class library support layer to platforms that don’t provide these
resources requires much more effort. The best way to approach that task is to
understand these interfaces and to either find and port compatibility libraries or
write native method implementations that map platform-level services into the more
standard functionality required by the CDC class library support layer. Java Partner
Engineering can help with these non-standard ports by providing example code and
consulting services.

3.4 Simple Test Procedure
At this point the CDC Java runtime environment should be testable with following
basic procedure. The companion documents CDC Runtime Guide and CDC Build
System Guide have more information about how to exercise the CDC Java runtime
environment.

1. Build the CDC Java runtime environment.

% make CVM_JIT=false

2. Test the CDC Java runtime environment.

% bin/cvm -cp testclasses.zip HelloWorld

This will provide a basic test for I/O support.
Chapter 3 Host Programming Interface 3-15

3-16 CDC Porting Guide • November 2005

CHAPTER 4

Fast Locking

Fast locking is a speed optimization technique for reducing the time needed to do
object synchronization. Because the vast majority of locking is uncontended, this
optimization is achieved by introducing the use of a lightweight lock in the absence
of contention for a lock between threads. A lightweight lock is a data structure that
records the fact that an object was locked instead of actually binding a monitor to
the object and locking the monitor.

If no contention occurs, locking and unlocking of an object is achieved by simply
marking the object's lightweight lock data structure accordingly. If contention
occurs, the object will then be inflated by binding a monitor to the object. This is
done by the contending thread, and ownership is assigned to the owner thread.
After inflation, locking and unlocking of the object is done by actually locking and
unlocking the monitor which is now bound to the object. A monitor object tends to
be heavyweight because it normally involves system calls.

At some point in time, for example during garbage collection, an unlocked object
monitor may be deflated. That means if the object is not locked at that time, its
monitor may unbind from that object. After deflation, locking and unlocking of the
object will be go through the lightweight lock mechanism again until contention
occurs. Because locking an object through the lightweight lock mechanism generally
takes less time and resources than the heavyweight, inflated mechanism, this scheme
results in faster object synchronization.

4.1 Fast Lock Implementations
Each object has a header which contains a word of bits indicating the current state of
the object from a locking perspective. The possible states are:

■ Locked. The locked state indicates that the object is locked with a lightweight lock
and is associated with a lock record data structure which contains further
information about the state of the object.
4-1

■ Inflated into a heavyweight monitor. The inflated state indicates that the object has
been inflated and is bound to a monitor as well as a lock record data structure.
Both the monitor and lock record contain information about the object’s state.

■ Unlocked. The unlocked state indicates that the object is unlocked and is not
associated with any lightweight lock nor heavyweight monitor. The state of the
object is contained entirely in the object header itself.

The object header word bits, the lock record and any bound monitor must be
manipulated under atomic conditions.

The CDC HotSpot Implementation Java virtual machine provides several options to
implement this atomicity, as expressed in the possible values for the
CVM_FASTLOCK_TYPE option described in TABLE 4-1. These options are usually set in
the platform sync_arch.h header file because the OS and CPU both play a role in
determining the proper CVM_FASTLOCK_TYPE. For example, in the Linux/ARM
example, this is in linux-arm/javavm/include/sync_arch.h.
4-2 CDC Porting Guide • November 2005

TABLE 4-1 CVM_FASTLOCK_TYPE Values

Option Description

CVM_FASTLOCK_NONE The fast locking technique of object synchronization will not be used. Every
time an object is to be locked, the object will be inflated and bound to a
monitor. Locking and unlocking will always be done through the monitor.
If CVM_FASTLOCK_TYPE is set to CVM_FASTLOCK_NONE, the platform does
not need to define CVM_ADV_MUTEX_SET_OWNER.
This is the easiest fast locking technique to port, but it is also the slowest.

CVM_FASTLOCK_ATOMICOPS The atomicity is achieved using atomic compare-and-swap and atomic swap
operations. The platform must define the CVM_ADV_ATOMIC_CMPANDSWAP
and CVM_ADV_ATOMIC_SWAP options and provide implementations for:
 CVMUint32 CVMatomicCompareAndSwap(volatile
 CVMUint32 *addr , CVMUint32 new, CVMUint32 old);
 CVMUint32 CVMatomicSwap(volatile CVMUint32 *addr,
 CVMUint32 new);

The platform must also define the CVM_ADV_MUTEX_SET_OWNER option and
provide an implementation for:
 void CVMmutexSetOwner(CVMThreadID *self,
 CVMMutex* m , CVMThreadID *ti);

CVM_FASTLOCK_MICROLOCK The atomicity is achieved using microlocks which are essentially non-
reentrant mutexes that are used to protect a critical region of code. The values
of the CVM_MICROLOCK_TYPE option indicate the available microlock
implementations:
• CVM_MICROLOCK_DEFAULT - The microlocks will be implemented using the

platform's implementation of CVMMutex.
Alternatively, the platform could choose to define the
CVM_HAVE_PLATFORM_SPECIFIC_MICROLOCK option. If so, the platform will
have to provide implementations for all the CVMMicroLock APIs.
• CVM_MICROLOCK_SCHEDLOCK - The microlocks will be implemented using

a lockout of the platform's thread scheduler. As such, the platform must
define the CVM_ADV_SCHEDLOCK option and provide implementations for:

 void CVMschedLock(void);
 void CVMschedUnlock(void);

The platform must also define CVM_ADV_MUTEX_SET_OWNER option and
provide an implementation for:
 void CVMmutexSetOwner(CVMThreadID *self,
 CVMMutex* m , CVMThreadID *ti);
Chapter 4 Fast Locking 4-3

4.2 Choosing a Fast Lock Implementation
Deciding which fast lock implementation to use depends on the availability of
certain platform-level APIs and the target processor’s atomic instructions.

It’s easiest to start by setting CVM_FASTLOCK_TYPE to CVM_FASTLOCK_NONE. This
option allows the CDC HotSpot Implementation Java virtual machine to be ported
with the minimal amount of effort spent on object synchronization issues. The
platform must still provide implementations for the CVMMutex APIs. However, the
implementation of CVMmutexSetOwner will not be necessary. Keep in mind that
this implementation is probably the slowest and most resource intensive of all the
fast locking implementations.

If the platform can provide an implementation of CVMmutexSetOwner, the next
easiest combination is:

#define CVM_FASTLOCK_TYPE CVM_FASTLOCK_MICROLOCK
#define CVM_MICROLOCK_TYPE CVM_MICROLOCK_DEFAULT
#undef CVM_HAVE_PLATFORM_SPECIFIC_MICROLOCK

This combination of options allows the CDC HotSpot Implementation Java virtual
machine to use the fast locking technique without the additional burden of having
the platform provide the implementation of CVMmutexSetOwner.

Next, consider which implementation provides the fastest implementation. This can
only be determined by trying each implementation on the platform. The reason there
is no steadfast rule as to which implementation is faster is because the speed
performance of the implementation depends on the platform’s implementation of
the underlying supporting APIs as indicated in Section 4.1, “Fast Lock
Implementations” on page 4-1.

Generally, setting CVM_FASTLOCK_TYPE to CVM_FASTLOCK_ATOMICOPS provides
the fastest implementation. However, this is dependent on the platform being able to
provide implementations for CVMatomicCompareAndSwap and CVMatomicSwap.

If these atomic operations are not available on the platform, the next fastest
implementation may be CVM_FASTLOCK_MICROLOCK. However, the default
implementation of microlocks in the CDC HotSpot Implementation Java virtual
machine uses CVMMutex. Doing this may make CVM_FASTLOCK_MICROLOCK slower
than CVM_FASTLOCK_NONE on some platforms.

If the platform can provide some fast alternate mechanism of achieving mutual
exclusion, then it is possible to redefine the implementation of the VM’s microlocks
to use this fast mechanism. The CVM_MICROLOCK_SCHEDLOCK option is provided as
a way to implement microlocks if the platform has the mechanism for disabling the
4-4 CDC Porting Guide • November 2005

platform scheduler from doing any context switches. Alternatively, the platform can
define CVM_HAVE_PLATFORM_SPECIFIC_MICROLOCK and provide its own
implementation of the CVMMicroLock APIs.

4.3 Implementations
TABLE 4-2 summarizes the CVM_FASTLOCK_TYPE and CVM_MICROLOCK_TYPE
choices for the RIOI ports currently available through Java Partner Engineering..

The following notes describe how these choices were made. This should provide
help with choosing appropriate values for CVM_FASTLOCK_TYPE and
CVM_MICROLOCK_TYPE for a target platform.

Normally if CVM_MICROLOCK_DEFAULT is specified, a mutex-based microlock
implementation is provided. However, this can be very slow if microlocks are being
used as the fastlock type (CVM_FASTLOCK_MICROLOCK). In this case the platform
normally will #define CVM_HAVE_PLATFORM_SPECIFIC_MICROLOCK and
provide its own microlock implementation in the form of a spinlock. However,
spinlock-based microlocks are only safe if threads don’t strictly enforce priorities.
This is why they cannot be used for WinCE.

TABLE 4-2 Fast Lock Implementations

Port CVM_FASTLOCK_TYPE CVM_MICROLOCK_TYPE

Linux/ARM MICROLOCK DEFAULT(spinlock)

Linux/MIPS ATOMICOPS DEFAULT(mutex)

Linux/PowerPC ATOMICOPS DEFAULT(mutex)

Linux/SparcV8 MICROLOCK DEFAULT(spinlock)

Linux/SparcV9 ATOMICOPS DEFAULT(mutex)

Linux/x86 ATOMICOPS DEFAULT(mutex)

WinCE/ARM ATOMICOPS DEFAULT(mutex)

WinCE/MIPS ATOMICOPS DEFAULT(mutex)

Win32/X86 ATOMICOPS DEFAULT(mutex)

Solaris/SparcV8 MICROLOCK DEFAULT(spinlock)

Solaris/SparcV9 ATOMICOPS DEFAULT(mutex)

Darwin/PowerPC ATOMICOPS DEFAULT(mutex)
Chapter 4 Fast Locking 4-5

All the platforms above except for WinCE could have chosen to use a spinlock-based
microlocks rather than the default mutex-based microlocks. However, the benefit of
doing so is insignificant if CVM_FASTLOCK_MICROLOCK is not being used, since
microlocks are rarely used in this case.

Note that even if CVM_FASTLOCK_TYPE is not CVM_FASTLOCK_MICROLOCK,
microlocks will still used by the shared code for purposes other than object
synchronization. Since these represent a small portion of actual usage, it does not
affect overall performance.

Setting CVM_FASTLOCK_TYPE can be summarized as follows: If a CAS instruction is
available, use CVM_FASTLOCK_ATOMICOPS. Otherwise use
CVM_FASTLOCK_MICROLOCK. Note that SPARC v8 (also known as microSparc) does
not have a CAS instruction but SPARC v9 does. This is why the SPARC v8 uses
CVM_FASTLOCK_MICROLOCK and SPARC v9 uses CVM_FASTLOCK_ATOMICOPS.

Setting CVM_MICROLOCK_TYPE can be summarized as follows: If a reasonably fast
thread schedlock is available, use CVM_MICROLOCK_SCHEDLOCK. Otherwise use
CVM_MICROLOCK_DEFAULT. If CVM_MICROLOCK_DEFAULT is used, then if
CVM_FASTLOCK_MICROLOCK is also used, #define
CVM_HAVE_PLATFORM_SPECIFIC_MICROLOCK and provide a spinlock
implementation, assuming the OS thread scheduling allows for this (no strict thread
priorities).

WinCE/ARM is an exception for the normal approach used to determine the proper
locking types. At first is appears that it should use CVM_FASTLOCK_MICROLOCK
since ARM does not have a CAS instruction. However, since a spinlock microlock
implementation cannot be used on WinCE (because of strict thread priorities), the
fastlock implementation would be done via a muxtex-based microlock, which would
be slow. WinCE does provide a CAS OS call. Although rather slow compared to an
actual CAS instruction, it is better than the alternative of using
CVM_FASTLOCK_MICROLOCK with a mutex based microlock implementation.
4-6 CDC Porting Guide • November 2005

PART III Dynamic Compiler Layer

This part describes the porting interfaces for the dynamic compiler.

Dynamic Compiler

CHAPTER 5

Dynamic Compiler

The CDC HotSpot Implementation Java virtual machine includes a dynamic
compiler that can be easily ported to different target RISC CPUs. This chapter
describes the dynamic compiler’s portability interface and shows how a port is
structured.

This chapter cover the following topics:

■ Dynamic Compiler Overview
■ Dynamic Compiler Header File Hierarchy

It may be helpful to become familiar with the compiler policy command-line options
described in the companion document CDC Runtime Guide.

5.1 Dynamic Compiler Overview
This section provides a short description of the dynamic compiler’s structure and
operation. The purpose of this overview is to introduce terms and provide context
for the porting effort, not to provide a theory of operations for the dynamic compiler
itself. It is important to note that only a small well-defined portion of the dynamic
compiler requires attention during the porting process. Most of the implementation
is in shared source code that does not require review or modification during the
porting process. On the other hand, a sophisticated knowledge of the target CPU
architecture is necessary.
5-1

TABLE 5-1 describes the modules of the dynamic compiler.

TABLE 5-1 Dynamic Compiler Modules

Module Implementation Description

Compilation
policy

shared A mechanism for choosing what and how to compile. The
dynamic compiler provides command-line options for
expressing a compilation policy at runtime. See the
companion document CDC Runtime Guide for a
description of these command-line options.

Front-end (IR
generator)

shared Once a method has been selected for compiling, the front-
end translates its bytecodes into an intermediate
representation (IR) which represents expressions with a
directed acyclical graph (DAG) data structure that
simplifies optimization and code generation.
Semantically, the IR is at a slightly lower level than
bytecodes and uses an idealized RISC instruction set that
allows for some parameterization. So during the first pass
many code optimizations are performed by shared code,
the most important being inlining.

JavaCodeSelect shared JavaCodeSelect is a parser generator similar to
YACC. Where YACC is a general-purpose parser
generator based on pattern matching within streams,
JavaCodeSelect produces a parse that performs
pattern matching within tree-based data structures.
JavaCodeSelect runs at build-time and generates a
pattern matching parser for the back-end code generator.

Back-end code
generator

some porting The back-end code generator translates the method’s
optimized IR representation into a native instructions for
storage in the code buffer and eventual execution on the
target CPU. Most of the porting effort for the back-end is
in the implementation of emitter functions that generate
native bit encodings for each IR node.

The back-end also contains a code generation engine built
with JavaCodeSelect. After the initial IR translation,
this code generation engine translates the IR
representation into calls to the emitters. Most of the
JavaCodeSelect grammar rules are written in shared
code and do not require porting. A more advanced port
could override some of these rules.1

Compiled code
manager (CCM)

some porting The CCM provides pre-optimized static code routines for
representing complex bytecode fragments that are difficult
to compile dynamically. These are sometimes called
helper functions. All of the helper functions have shared
C implementations that can be replaced with optimized
assembly code.
5-2 CDC Porting Guide • November 2005

As shown in TABLE 5-1, most of the porting effort is condensed into some
initialization functions, and groups of well-defined emitter and helper functions.

There are basically three layers to the dynamic compiler implementation:

■ Most of the shared code in src/share is target-independent.
■ The code in src/portlibs/risc is a RISC porting library that abstracts the

common features of RISC architectures.
■ The code in src/<CPU> and src/<OS>-<CPU> contain target-specific code.

Register manager some porting The register manager controls resource objects that can be
used to store expression results and other semantic actions
by the optimizer or back-end. These resource objects may
be either a physical register or a spill area in the Java
stack frame. The porting effort for the register manager is
based on the CPU abstraction interface that identifies
which register sets that the register manager can and
cannot use.

Stack manager shared The stack manager is in charge of compile-time
management of the Java expression stack and parameter
stack. It keeps track of the expressions currently on the
stack, which among other things, are used to compute
stackmaps for GC safe-points.

Glue code some porting Target specific code (in assembler) that expedites calling
from dynamically compiled code to CDC-HI runtime
support routines such as CCM helper functions.

Code cache
management

shared Once a method has been compiled, it is stored in the code
cache so that the interpreter or other compiled methods
can access it.

1 Overriding the default JavaCodeSelect grammar rules is not currently supported in this porting guide.

TABLE 5-1 Dynamic Compiler Modules

Module Implementation Description
Chapter 5 Dynamic Compiler 5-3

5.2 Dynamic Compiler Header File
Hierarchy
The directory share/javavm/include/porting/jit contains the top-level
header files that describes the macros, data structures and functions required by a
port. These header files are described in TABLE 5-2.

TABLE 5-2 Dynamic Compiler Header File Hierarchy

Header File Description

share/javavm/include/porting/jit/

 jit.h

Top-level porting layer for the dynamic
compiler. This header file describes macros
that specify target-specific capabilities,
data structures and support functions
provided by the target implementation.
Implementations for most of these support
functions are available in the RISC porting
library in src/portlibs/jit/risc.

portlibs/jit/risc/include/porting/

 jitrisc.h

The CPU abstraction interface defines the
characteristics of the CPU.

portlibs/jit/risc/include/porting/

 jitriscemitter.h

Emitter porting layer.

share/javavm/include/porting/jit/

 ccm.h

portlibs/jit/risc/include/porting/

 ccmrisc.h

Helper porting layer.
5-4 CDC Porting Guide • November 2005

5.2.1 portlibs/jit/risc RISC Porting Library
The portlibs/jit/risc directory contains a RISC porting library that is the basis
of CDC-HI’s shared RISC porting strategy.

5.3 Creating a Dynamic Compiler
Implementation
In this section we outline the steps necessary for creating a dynamic compiler
implementation. As with the HPI, other ports are available from Java Partner
Engineering that can be used as examples. The best approach is to choose a CPU
from the list in TABLE 3-5 with similar features to the target CPU. Then use the

TABLE 5-3 portlibs/jit/risc RISC Porting Library

File/Directory Description

ccmintrinsics_risc.c Intrinsics for a few methods in java.lang.

jit_risc.c Back-end.

jitemitter.c This file implements all of the conditional emitters, and is
meant for platforms that don’t support conditional
instructions other than branches.

jitopcodes.c

jitopcodes.h

Shorthand names for the opcode values used by the back-end.

jitregman.c Register manager.

jitstackman.c

jitstackman.h

Stack manager.

jitgrammar.h Data structures for the codegen-time expression/semantic
stack.

jitfloatgrammarrules.jcs

jitgrammardefs.jcs

jitgrammarincludes.jcs

jitgrammarrules.jcs

JavaCodeSelect input files that contain the default shared
grammar rules.

include/export Public interface to be used by CPU-specific code emitters.

include/porting Portability interfaces to be implemented by CPU-specific
ports.
Chapter 5 Dynamic Compiler 5-5

techniques found in that port as an example for the target port. This will help with
the initial stages of porting, but nothing can replace the research/testing/tuning
cycle necessary to exploit the best features of the target CPU.

5.3.1 Suggested Work Flow
1. Get the initial port working.

a. Collect architectural characteristics. This includes defining macros for the CPU
abstraction interface that identify available registers, maximum load/store offsets
and whether the target CPU has conditional ALU instructions.

b. Implement some glue code. Many glue functions are short pieces of assembly
code that bind compiled code to C helper functions.

c. Implement the invoker functions. The four invoker functions described in
share/javavm/include/porting/jit/ccm.h are critical to system
performance. These are usually written in assembly language.

d. Implement the emitter functions. Because the emitter and helper functions are
well defined they can be isolated for straightforward optimization and testing.

These steps should require about 4500 lines of code: a small amount for the CPU
abstraction interface, about 1500 lines for the glue code and about 3000 lines for the
emitter functions.

2. Tune the implementation by supplying optimized helper function
implementations. Software floating point support is also implemented through a
separate group of helper functions.
5-6 CDC Porting Guide • November 2005

5.3.2 CPU Abstraction Interface
The first stage is to write some macros described in
portlibs/jit/risc/include/porting/jitrisc.h that define the
characteristics of the target CPU.

portlibs/jit/risc/include/porting/jitrisc.h defines the CPU
abstraction interface, including macros that describe available registers and control
facilities like condition code settings and the availability of conditional instruction
execution.

The CPU abstraction interface identifies which registers to use, allocate and avoid.
The following list describes many of the macros in
portlibs/jit/risc/include/porting/jitrisc.h.

■ CVMCPU_SP_REG: register number of the C stack pointer.
■ CVMCPU_JSP_REG and CVMCPU_JFP_REG: dedicated Java stack pointer and Java

frame pointer registers. They must be in the set that are safe (non-volatile) across
C calls.

■ CVMCPU_PROLOGUE_PREVFRAME_REG and CVMCPU_PROLOGUE_NEWJFP_REG:
registers to be used in the prolog. These are used when calling some helpers in a
compiled method’s prolog. They must be in the set that is safe across C calls. But
they are only used during the prolog so will also be available for use by the
compiled code.

■ CVMCPU_FIRST_PHI_SPILL_REG and CVMCPU_MAX_PHI_SPILLS_IN_REGS:
registers to be used for holding computed values between blocks. These are
usually at the low end of the range of non-volatile registers.

■ CVMCPU_ARG1_REG, ... CVMCPU_ARG4_REG, CVMCPU_RESULT1_REG and
CVMCPU_RESULT2_REG: the C argument and return value registers. These are
volatile across C calls.

■ Optional.
■ CVMCPU_CHUNKEND_REG: Java stack chunk end pointer
■ CVMCPU_CVMGLOBALS_REG: system globals pointer
■ CVMCPU_CP_REG: constant pool pointer

TABLE 5-4 CPU Abstraction Interface

Source File Description

portlibs/jit/risc/include/porting/

 jitrisc.h

CPU abstraction interface.

arm/javavm/include/jit/

 jitrisc_cpu.h

arm/javavm/include/jit/

 jitasmconstants_cpu.h

linux-arm/javavm/include/jit/

 jitasmmacros_cpu.h

ARM implementation.
Chapter 5 Dynamic Compiler 5-7

■ CVMCPU_EE_REG: ee pointer
■ CVMCPU_ZERO_REG: zero register

■ Register manager configuration. (Required.)

Note: these guidelines are for general purpose registers. There are corresponding
macros for floating point registers.

■ There should be no more than 32 general purpose registers numbered
0...(n-1), because the bitset for them must be represented with a
CVMUint32.

■ CVMCPU_ALL_SET: the bitset of all registers.
■ CVMCPU_BUSY_SET: the bitset of all registers that the register manager should

not allocate, and which it doesn’t already know about. (It already knows about
any registers named in any of the above definitions, including C stack pointer,
Java frame pointer, Java stack pointer and any optional dedicated registers).
For example, registers reserved for use by the OS are included in
CVMCPU_BUSY_SET.

■ CVMCPU_NON_VOLATILE_SET: the bitset of all registers safe across a C
function call.

■ CVMCPU_VOLATILE_SET: the bitset of all registers unsafe across a C function
call.

■ CVMCPU_AVOID_SET: the register set that can be used, but only as a last resort.
Generally this will include the argument registers plus some or all of the phi
registers.

■ CVMCPU_MIN_INTERESTING_REG and CVMCPU_MAX_INTERESTING_REG: the
lower and upper bounds on register numbers that the register manager should
consider for allocation. This is used by the register manager’s search
optimization so that the register manager does not have to iterate over
registers that can never be used.

■ Optional CPU features.
■ CVMCPU_HAS_CONDITIONAL_ALU_INSTRUCTIONS,

CVMCPU_HAS_CONDITIONAL_LOADSTORE_INSTRUCTIONS and
CVMCPU_HAS_CONDITIONAL_CALL_INSTRUCTIONS indicate conditional
instruction support.

■ CVMCPU_HAS_ALU_SETCC indicates that ALU instructions can set condition
codes.

■ CVMCPU_HAS_IMUL_IMMEDIATE indicates that the platform has an integer mul
by immediate instruction.

■ CVMCPU_HAS_POSTINCREMENT_STORE indicates that the platform has a
postincrement addressing mode for stores.

■ CVMCPU_MAX_LOADSTORE_OFFSET shows the maximum offset (+/-) for a
load/store word instruction.

■ CVMCPU_RESERVED_CP_REG_INSTRUCTIONS shows the number of
instructions reserved for setting up constant pool base register in the method’s
prologue.
5-8 CDC Porting Guide • November 2005

■ CVMCPU_NUM_OF_INSTRUCTIONS_FOR_GC_PATCH gives the number of nop’s
needed at GC check patch points, which is normally the case on processors
with a delay slot after a branch-and-link instruction. Nop’s are alse needed if
the call that is patched in cannot be done in one instruction.

5.3.3 Glue Code
The glue functions in share/javavm/include/porting/jit.h and
portlibs/jit/risc/include/porting/ccmrisc.h are short routines that bind
compiled code to C helper functions.

TABLE 5-5 Glue Code

Source File Description

share/javavm/include/porting/

 jit.h

Defines CVMJITgoNative and
CVMJITexitNative glue functions.

portlibs/jit/risc/include/porting/

 ccmrisc.h

Defines glue functions for binding to
compiled code to CCM C helper functions
and for doing method invocations.

arm/javavm/runtime/jit/

 jit_cpu.S

Implementations of CVMJITgoNative
and CVMJITexitNative glue functions.

arm/javavm/runtime/jit/

 ccmglue_cpu.S

Implementations of parts of ccmrisc.h.
Chapter 5 Dynamic Compiler 5-9

5.3.4 Miscellaneous Code
Some of the code for a port falls outside of neat categories.

5.3.4.1 Code Cache Copy

Dynamically compiled code makes many calls to various helper functions written in
assembler. On most platforms these calls need to be made using a multiple
instruction long call. This is because dynamically compiled code is in the malloc
heap, and is normally too far away from code linked with the CDC-HI Java runtime
binary to call it with a single instruction.

In order to locate the assembler functions closer to the dynamically compiled code
so they can be called with a single instruction, the assembler functions can
optionally be copied into the start of the code cache where the dynamically compiled
code resides. This usually results in better performance.

The copying of the assembler functions is handled by shared code. It is enabled by
#define CVM_JIT_COPY_CCMCODE_TO_CODECACHE. This will cause all code
between the symbols CVMCCMcodeCacheCopyStart and
CVMCCMcodeCacheCopyEnd to be copied. Normally ccmcodecachecopy_cpu.S is
used to properly setup these two symbols.

A table of all functions that are copied must be setup in
CVMJITinitCompilerBackEnd(), which is usually implemented in
jitinit_cpu.c. The functions in the table must appear in the same order that they
appear in memory.

TABLE 5-6 Miscellaneous Code

Source Files Description

arm/javavm/runtime/jit/

 ccmcodecachecopy_cpu.S

Convenience wrapper file for compiling
together code for copying into the code
cache and to guarantee the ordering of
symbols.

arm/javavm/runtime/jit/

 jitinit_cpu.c

Initializing and destroying the back-
end.

linux-arm/javavm/runtime/jit/

 jit_arch.c

arm/javavm/runtime/jit/

 flushcache.S

Called by shared code. Also includes signal
handler for handling trap-based
NullPointerExceptions.

Cache flushing allows data written by
the compiler to be reinterpreted as
instructions. This may be implemented
with a system call.
5-10 CDC Porting Guide • November 2005

Note that if you enable CVM_JIT_COPY_CCMCODE_TO_CODECACHE, debugger
breakpoints set in the assembler code won’t function properly. If they are set after
running CDC, then they will never be hit since the code cache copy of the functions
are the ones actually used. If they are set before running CDC, then the trap
instruction inserted by the debugger will get copied into the code cache copy. This
will cause the breakpoint to be hit, but the debugger won’t know it’s a breakpoint
and get will get confused.

5.3.4.2 Trap-based NullPointerExceptions

The implementations of many Java bytecodes, such as opc_invokevirtual, need
to first check if an object reference is null, and throw a NullPointerException if
it is. Dynamically compiled methods must also do the equivalent of a null pointer
check. This leads to slower performance and increased generated code.

The CDC-HI dynamic compiler allows for a more lazy approach to check for null
object references called trap-based NullPointerExceptions. It eliminates doing
an explicit check for a null object reference, followed by a conditional branch to
throw the exception. Instead the dereference of the null object reference is allowed to
cause a crash. This results in a SIGSEGV on most platforms. A signal handler must
be installed to catch this signal, confirm that it occurred in compiled code, and cause
execution to resume in code that will throw a NullPointerException.

The Linux/ARM port implements the signal handler in jit_arch.c. The
handleSegv() function catches the signal, changes the link register to the
instruction after the crash occurred, and changes the pc to point to the
CVMCCMruntimeThrowNullPointerExceptionGlue() routine. This exactly
mimics the compiled code calling
CVMCCMruntimeThrowNullPointerExceptionGlue() itself from the point of
the crash, which is the desired behavior when using a null object references.

Implementing trap-based NullPointerExceptions is entirely optional. You can
choose to implement it to increase performance. To disable it, make sure you don’t
#define CVMJIT_TRAP_BASED_NULL_CHECKS. Once the port is working, you can
choose to enable trap-based NullPointerExceptions and implement the signal
handler for it.
Chapter 5 Dynamic Compiler 5-11

5.3.5 Intrinsics
java.lang contains a few methods that are implemented with intrinsics for the
dynamic compiler.

Adding intrinsics is optional but the procedure is straightforward.

1. Create a configuration record for the intrinsic. See the example in
arm/javavm/runtime/jit/ccmintrinsics_cpu.c. The record must be inside
CVMJIT_INTRINSIC_CONFIG_BEGIN and CVMJIT_INTRINSIC_CONFIG_END
markers. This record will include a pointer to the intrinsic glue implementation.

2. Override the CVMJITintrinsicsList intrinsic list in
<CPU>/javavm/include/jit/jit_cpu.h.

TABLE 5-7 Intrinsics

Source Files Description

share/javavm/include/jit

 jitintrinsic.h

Intrinsic methods.

portlibs/jit/risc/

 ccmintrinsics_risc.c

Shared RISC implementation.

arm/javavm/runtime/jit/

 ccmintrinsics_cpu.c

arm/javavm/runtime/jit/

 ccmintrinsics_asm_cpu.S

ARM implementation.
5-12 CDC Porting Guide • November 2005

5.3.6 Invokers
The invoker functions handle the transitions between dynamically compiled
methods and interpreted code. These functions are critical to performance and
aggressive techniques are necessary, including reducing the number of memory
accesses, hand scheduling the assembler code and taking into account properties of
methods known at compile time.

5.3.7 Emitters
Each port requires a collection of emitters that map the IR instructions to the native
encoding of the target CPU architecture. Sometimes they do more if more than one
native instruction must be emitted. Writing the emitters requires detailed knowledge

TABLE 5-8 Invokers

Source File Description

share/javavm/include/porting/jit/

 ccm.h

Shared code portability interface for
invokers.

portlibs/jit/risc/include/porting/

 ccmrisc.h

RISC portability interface for invokers.

arm/javavm/runtime/jit/

 ccminvokers_cpu.S

Invoker implementation.
Chapter 5 Dynamic Compiler 5-13

of the target CPU architecture. This porting interface is well-defined but requires
close attention to the target CPU’s capabilities. TABLE 5-9 shows the relevant source
files for both the required interface and the ARM implementation.

Implementing the emitters will require a detailed understanding of the target CPU.
The list below provides some guidelines for the required information.

■ Instruction set issues.
■ The emitters use the binary native encoding for the target CPU, not an

assembly language.
■ Some ISAs include instructions that are supported by traps into the OS. This

would affect performance.
■ Multiply-by-immediate.

■ Branch instructions.
■ Are delay slots required after branches?
■ Reach of branches and calls.
■ Which register(s) can be used in indirect branches?

■ Load/store addressing modes.
■ Post ++ store instruction.
■ Reach of offsets. (assume reg+offset).
■ Mechanism for loading and storing 64-bit quantities, even if it requires

multiple instructions.
■ Because of the way the Java stack is organized, memory alignment beyond

word alignment cannot be guaranteed.
■ Range of ALU instruction immediates.
■ Use of condition codes (if any).

■ Which instructions can set the condition codes.
■ Which instructions can be conditionally executed, depending on condition

codes.

TABLE 5-9 Emitters

Source File Description

portlibs/jit/risc/include/porting/

 jitriscemitter.h

share/javavm/include/porting/jit/

 jit.h

Emitter portability interface.

arm/javavm/runtime/jit/

 jitemitter_cpu.c

arm/javavm/include/jit/

 jitriscemitter_cpu.h

arm/javavm/include/jit/

 jitriscemitterdefs_cpu.h

portlibs/jit/risc/

 jitemitter.c

Emitter implementation.
5-14 CDC Porting Guide • November 2005

■ If the processor lacks condition codes (e.g. MIPS) there must be a way to
compare and branch (see programming idioms below).

After implementing the emitter functions, the dynamic compiler should be
operational and ready for testing. The next stage is to implement helper functions.

5.3.8 Helpers
The back-end can optimize code at runtime or use pre-optimized static code
modules called helpers that represent complex bytecode fragments that are difficult
to compile dynamically. Because the shared code contains C implementations for
every helper function, this work can be performed after first getting the port
working. The goal here is to identify important helper functions and reimplement
them, usually in assembly code.

Note: Most helpers require a small amount of assembler glue to bind compiled code
to the C helper.

share/javavm/include/porting/jit/ccm.h includes a series of macros that
indicate whether the helper function is provided by the platform implementation or
uses the default shared C reference implementation. The the platform
implementation can override the defaults with #defines in
<CPU>/javavm/include/jit/ccm_cpu.h.

TABLE 5-10 Helpers

Source File Description

share/javavm/include/porting/jit/

 ccm.h

portlibs/jit/risc/include/porting/

 ccmrisc.h

Helper portability and glue interface.

share/javavm/include/

 ccm_runtime.h

share/javavm/runtime

 ccm_runtime.c

Shared C reference implementation.

arm/javavm/include/jit/

 ccm_cpu.h

arm/javavm/runtime/jit/

 ccmallocators_cpu.S

arm/javavm/runtime/jit/

 ccmmath_cpu.S

Helper implementation.
Chapter 5 Dynamic Compiler 5-15

The ARM implementation includes more optimizations than the other ports. The
following arithmetic and allocator helpers represent a good place to start.

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_IDIV

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_IREM

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LMUL

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LNEG

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LSHL

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LSHR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LUSHR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LAND

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LOR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LXOR

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_NEW

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_NEWARRAY

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_ANEWARRAY

Note: you may choose to handle common cases with assembly language
implementations and defer more complex cases for the C implementation. Object
synchronization and object allocation helpers are usually implemented this way,
providing high performance in the most common cases and ease of implementation
in the more difficult cases.

5.3.9 Floating Point Support
The floating point helpers provide an opportunity to implement much faster
functions than those provided with the C runtime. This is because Java floating-
point semantics are much simpler than full IEEE floating-point semantics because
there are no modes or exceptions.
5-16 CDC Porting Guide • November 2005

CVM_JIT_USE_FP_HARDWARE causes the dynamic compiler to produce floating
point instructions. Otherwise all floating point values are stored in general purpose
registers and C helpers are called to perform most floating point operations. This is
the softfloat model used by the ARM implementation. The C helpers can be
overridden by assembly language helpers for better performance.

TABLE 5-11 Floating Point Support

Source File Description

share/javavm/include/porting/jit/

 ccm_runtime.h

Defines the helper porting interface.

share/javavm/runtime/

 ccm_runtime.c

Shared floating point helpers.

arm/javavm/runtime/jit/

 ccmmath_cpu.S

Assembly language floating point helpers.
Chapter 5 Dynamic Compiler 5-17

5-18 CDC Porting Guide • November 2005

PART IV Garbage Collector Layer

This part describes the how to create a pluggable garbage collector.

This part contains the chapters:

■ Creating a Garbage Collector
■ Direct Memory Interface Reference
■ Indirect Memory Interface Reference
■ How to be GC-Safe

Note – The garbage collection APIs are optional because the built-in garbage
collection algorithms are highly optimized and known to work across a wide range
of applications. These APIs are made available for product-specific needs and are
not required for general porting.

CHAPTER 6

Creating a Garbage Collector

This chapter describes how to create a garbage collector for the CDC HotSpot
Implementation Java virtual machine. Creating a garbage collector is an optional
part of porting the CDC HotSpot Implementation Java virtual machine to a new
target system because the default generational garbage collector performs well
under most circumstances.

Note – This chapter assumes basic knowledge of conventional garbage collection
(GC) algorithms, such as mark-and-sweep and copying collection, as well as related
GC concepts, such as read and write barriers.

The chapter covers the following topics:

■ Introduction
■ Exactness
■ Pluggable GC
■ Writing a New GC

6.1 Introduction
The CDC HotSpot Implementation Java virtual machine’s memory system possesses
the following features:

■ Exactness: ensures that the GC knows about all pointers at GC time; there is no
need for conservative scans of the heap.

■ Pluggable GC: allows a GC author to write a new GC without changing the VM
source.

CDC HI has a generational garbage collector as its default, resulting in much
reduced average GC pause times and much reduced total time spent on GC. CDC HI
incorporates an implementation of generational GC as its default GC. Generational
6-1

GC is based on the observation that most objects are short lived. In other words,
"young objects die young." So the heap is separated into a small young objects area
and a large old objects area. Objects are allocated in the young area, and if they
survive enough GCs, they are promoted to the old area. Since most objects die
young, young space collections collect most of the garbage with relatively little effort
and short running time, with occasional longer-running, old space collections to
collect the whole heap. In CDC HI, young space collections are performed using a
"semispace copying" GC algorithm, whereas old space collections are performed
using a "mark-compact" GC algorithm.

Further details of CDC HI's generational GC are beyond the scope of this document.
This document instead focuses on aspects of the CDC HI memory system
architecture that apply to any GC written for CDC HI.

6.2 Exactness
CDC HI is built with the goal of exactness in mind. An exact VM knows about all
pointers to the Java heap, both from the VM code and native methods. Exactness has
numerous advantages:

■ Allows for lower per-object overhead through the elimination of handles
■ Makes full heap compaction possible on every GC
■ Eliminates unnecessary object retention due to conservative guesses
■ Allows the implementation of the widest range of GC algorithms

CDC HI implements exactness by using GC-safe points (or GC points, for short) for
GC. GC cannot occur at arbitrary points in the execution of a program, but only
when all threads can tolerate GC. Furthermore, threads only make their states
explicit at well-known intervals, but not all the time.

Each thread in CDC HI can be in a GC-unsafe state or a GC-safe state. A thread in a
GC-unsafe state is free to point to heap objects directly and can do any GC-unsafe
pointer manipulations it likes. However, such a thread cannot tolerate GC, as the
collector cannot obtain its precise set of pointers. A thread in a GC-safe state must
make all its pointers known to the GC. In order to prevent pointers from becoming
invisible to the GC through C compiler optimizations on VM code, a thread is not
allowed to point to objects directly, but only through an extra level of indirection.
Also, a thread registers with the GC any pointers that the GC needs to scan.
Therefore, threads can tolerate GC.

The GC can only proceed when all threads are GC-safe. CDC HI makes precise
pointer information available to the GC when all threads are GC-safe.
6-2 CDC Porting Guide • November 2005

For a guide to writing GC-safe code in CDC HI and details on CDC HI internal APIs
with regards to GC-safe and GC-unsafe modes, please refer to Section 3, “” on
page 3-1.

6.2.1 Global GC Requests
A typical exact GC cycle in CDC HI is initiated by a thread requesting a GC. At this
point, CDC HI must bring all other threads to GC points before the GC can proceed:

■ Each thread polls for a global GC request at GC points.
■ Upon detecting a global GC request, a thread at a GC point saves its GC-

observable state and suspends itself.
■ The GC requester waits for all GC-unsafe threads to become GC-safe and suspend

themselves.
■ When all threads are GC-safe, the GC can proceed and scan the exact state of each

thread.

GC points fall on certain byte codes to ensure that each thread can suspend itself in
bounded time if there is a global GC request.

Valid GC points in the CDC HI interpreter are:

■ Method invocation points
■ Backwards branches
■ Class loading and constant resolution points
■ JNI implementation heap access points
■ Memory allocation points

6.2.1.1 Method Invocation Points

Method invocation points are used as GC points because of the state of the
interpreter stack when a GC occurs. Since each frame on the stack refers to a method
that has stopped, naturally, at a method invocation point, it makes sense to use
invocation sites as GC points. So when the GC walks the interpreter stack frames
looking for roots, it can readily find frame pointers into the heap.

6.2.1.2 Backwards Branches

Backwards branches are used as GC points in the interpreter to ensure that the
currently executing method of each thread is guaranteed to become GC-safe within a
bounded amount of time: each method will either loop by a backwards branch or hit
a method invocation within a bounded amount of time.
Chapter 6 Creating a Garbage Collector 6-3

6.2.1.3 Class Loading and Constant Resolution Points

CDC HI code outside of the interpreter, such as the system class loader and verifier,
runs mostly GC-safe, in contrast to the byte code interpreter. This allows GC to occur
alongside class loading, for example.

6.2.1.4 JNI Implementation

And finally, CDC HI's implementation of the Java Native Interface (JNI) allows all
native methods to run GC-safe, except when they access the Java heap. So native
methods can tolerate GC until they call JNI functions that access the heap. At such
heap access points, the CDC HI JNI implementation makes the caller thread
temporarily GC-unsafe while it accesses the heap.

6.2.1.5 Memory Allocation Points

Heap allocation points are used as GC points in the interpreter to make sure that if
an allocation causes a GC, the state of the thread that initiated the GC is scannable.

6.3 Pluggable GC
CDC HI is designed to allow a GC author to write a new GC without changing a line
of the VM code itself. This section describes the internal organization of the CDC HI,
including the following features:

■ Memory system related functions are separate from the rest of the VM, with the
interfaces between the memory system and the VM clearly defined.

■ Entry points to the memory system from the VM are clearly defined. This
abstracts away the details of many common GC tasks from the GC author and is
available as a set of routines for the GC author to use.

■ GC-algorithm-independent code is separate from the GC-algorithm-dependent
code. GC-algorithm-independent code is designed to be an interface that needs to
be implemented by a GC author to provide GC functionality.

■ GC execution flow, including object allocation, is defined.

6.3.1 Separate Memory System
The separation of the VM from the memory interface is achieved by extensive use of
internal interfaces that are built hierarchically.
6-4 CDC Porting Guide • November 2005

The VM needs to access the heap:

■ Directly for GC-unsafe code
■ Indirectly for GC-safe code
■ Indirectly for native method code

Direct heap access is achieved by using the direct memory interface. Indirect heap
access is achieved using the indirect memory interface, which is built on top of the
direct memory interface. Native method heap access is achieved through a JNI
implementation that is built on top of the indirect memory interface. Consequently,
all heap access in the system is guaranteed to eventually go through the direct
memory interface.

To achieve a memory interface that can accommodate as many GC algorithms as
possible, CDC HI allows the implementation of read and write barriers. Barriers are
used to ensure consistency between a running program and the GC, especially when
the GC does not handle the whole heap on every GC call. Examples of such GCs are
generational, incremental, and concurrent GCs. Barrier use varies widely between
GC algorithms.

A read or write barrier of the data type <T> is a GC-supplied callback to be invoked
on every read or write of a heap location of type <T>.

CDC HI implements support for read and write barriers below the direct memory
interface implementation, so that they are not visible to the VM author. The read and
write barriers are called implicitly and automatically by the implementation of the
direct memory interface, and are, therefore, incurred on all heap access in the
system.

6.3.2 Entry Points to GC Code
Besides accessing the heap, the VM also needs to:

■ Initialize the heap on VM startup
■ Call the object allocator
■ Destroy the heap on VM teardown

Heap initialization/teardown and object allocation are the most commonly used
entry points to GC code from the VM. All allocation and GC activity in the system is
triggered by a call from the VM or a native method into the object allocator. The
object allocator encapsulates GC policy and is responsible for initiating GC when it
is required.

There are other entry points that the VM uses to pass control to the GC. However,
these are usually triggered by a matching native call to request GC action as
described below:

■ The sun.misc.GC class (responsible for asynchronous, background GC) calls
into the GC to figure out the time stamp of the last major GC in the system.
Chapter 6 Creating a Garbage Collector 6-5

■ The library method Runtime.gc() causes a GC to occur.
■ The library methods Runtime.freeMemory() and Runtime.totalMemory()

obtain information from the GC regarding free and total memory sizes in the
heap.

6.3.3 Shared Memory System Code
There are certain activities that all GCs will have to perform, regardless of algorithm.
CDC HI separates those routines into the shared GC interface called gc_common.
Such common GC activities include:

■ Making threads stop at GC-safe points
■ Finding and scanning exact roots of the system
■ Finding and scanning references in heap objects and arrays
■ Handling special scans for

■ Weak references and finalization
■ String interning
■ Java language synchronization data structures
■ Class unloading

The details of such activities are abstracted in the implementation of the gc_common
interface, and are available as GC services for the GC author to use. These routines
and macros are described in detail in the section, Section 6.4, “Writing a New GC”
on page 6-7.

6.3.4 GC-specific Memory System Code
There are certain activities that are GC-algorithm specific. CDC HI separates those
routines into a GC-implementation specific GC interface gcimpl. The routines and
macros in this interface need to be implemented by the GC author. Such GC calls are
responsible for:

■ Allocating and initializing the heap and its associated data structures
■ Allocating new objects
■ Performing the object reclamation functions of the GC
■ Implementing read and write barriers.

The gcimpl routines will be called by the VM at appropriate points to ensure the
correct GC execution flow. These routines and macros are described in detail in the
section, Section 6.4, “Writing a New GC” on page 6-7.
6-6 CDC Porting Guide • November 2005

6.3.5 GC Execution Flow
Object allocation, and subsequent possible GC action, is initiated by the VM by
calling into the gcimpl object allocation routine and is performed by switching back
and forth between shared and GC-implementation specific code.

1. CDC HI allocates memory using the shared routine
CVMgcAllocNewInstance().

2. CVMgcAllocNewInstance() does some processing and calls the GC-specific
CVMgcimplAllocObject() to allocate the actual space for the object.

3. CVMgcimplAllocObject() performs the GC and calls the shared routine
CVMgcStopTheWorldAndGC() to stop all threads at GC-safe points.

4. CVMgcStopTheWorldAndGC() ensures that all threads rendezvous at GC-safe
points. When that is done, it calls the GC implementation CVMgcimplDoGC() to
perform the GC action.

5. CVMgcimplDoGC() may call shared GC service routines to scan GC state: For
example, CVMgcScanRoots() to scan all roots or CVMobjectWalkRefs() to
scan the pointers in a given object or array.

6. When CVMgcimplDoGC() returns, all threads that were stopped at GC points
resume execution. Eventually, CVMgcAllocNewInstance() returns and the
thread that originally initiated GC resumes execution.

6.4 Writing a New GC
To write a new garbage collector for CDC HI, the GC author implements the gcimpl
interface. This section outlines the GC and relevant CDC HI source organization,
describes the CDC HI data types that the GC author needs to know about, and
describes the gcimpl routines that need to be implemented. This section also
describes the shared GC routines available to the GC author.

6.4.1 Source Organization
The important directories and files relevant to implementing GCs on CDC HI are:

■ src/share/javavm/include/gc_common.h
The shared GC interface.

■ src/share/javavm/include/gc/gc_impl.h
The gcimpl GC interface that has to be implemented for each GC.
Chapter 6 Creating a Garbage Collector 6-7

■ src/share/javavm/include/gc/<gcname>/gc_config.h
The configuration file for a specific GC.

■ src/share/javavm/runtime/gc/<gcname>/gc_impl.c
The implementation file for a specific GC.

6.4.2 Data Types
GC code has direct access to all objects on the heap. The GC code can also assume
that it is single-threaded if it is being executed as part of a CVMgcimplDoGC(),
which guarantees that no GC-unsafe threads exist. Therefore, GC code can refer to
an object directly using the type CVMObject*. A CVMObject is defined as:

struct CVMjava_lang_Object {

 CVMObjectHeader hdr;

 CVMJavaVal32 fields[1];

};

...

typedef CVMjava_lang_Object CVMObject;

where the object header CVMObjectHeader is defined as:

struct CVMObjectHeader {

 CVMClassBlock *clas;

 volatile CVMUint32 various32; /* A multi-purpose field */

};

Array types are a subclass of object types, in the sense that an array reference in CDC
HI can be cast to a CVMObject*. The header of a Java language array contains the
same structure, with an additional 32-bit length field.

Array types differ for each element type. Array elements are tightly packed in that an
individual sub-word element of an array, such as a short, is not widened to int
width. A sample array declaration with name <arrName> and element type
<elem_type> looks like:

struct CVMArrayOf<arrName> {

 CVMObjectHeader hdr;

 CVMJavaInt length;

 <elem_type> elems[1];

};

typedef struct CVMArrayOf<arrName> CVMArrayOf<arrName>;
6-8 CDC Porting Guide • November 2005

The CDC HI array types are:

The element type of CVMTwoJavaWords for the long and double cases is defined
as:

typedef CVMJavaVal32 CVMTwoJavaWords[2];

Any array can be cast to CVMArrayOfAnyType if the aim is to access array header
elements only.

Because the GC can assume single-threaded execution, it is free to override the
second word of an object header, assuming that it reconstructs it before threads are
resumed. The second header word frequently has a trivial, well known default value.
This word can be tested for triviality to determine if an overriding GC routine needs
to save away the original contents of the word:

/* The default trivial contents of the various32 word */

constant CVMUint32 CVM_OBJECT_DEFAULT_VARIOUS_WORD

/* Is a various32 word trivial?

 * (i.e., can just be set to CVM_OBJECT_DEFAULT_VARIOUS_WORD after

 * GC)

*/

CVMBool CVMobjectTrivialClassWord(CVMUint32 word)

The complete set of operations on an object the GC author can call are given below
in the section, Section 6.4.4.5, “Per-object Data” on page 6-24.

For more information about CVM-internal data structures, see the header files
included in src/share/javavm/include. Especially important are:

TABLE 6-1 CDC HI Array Types

Array type Element type

CVMArrayOfByte CVMJavaByte

CVMArrayOfShort CVMJavaShort

CVMArrayOfChar CVMJavaChar

CVMArrayOfBoolean CVMJavaBoolean

CVMArrayOfInt CVMJavaInt

CVMArrayOfRef CVMObjectICell

CVMArrayOfFloat CVMJavaFloat

CVMArrayOfLong CVMTwoJavaWords

CVMArrayOfDouble CVMTwoJavaWords
Chapter 6 Creating a Garbage Collector 6-9

■ objects.h: Object format, basic Java language synchronization operations
■ classes.h: CDC HI internal representations of Java language classes
■ gc_common.h: Shared GC data structures
■ sync.h: Lock structures

Also note that the basic data types defined by the platform and the VM basic data
types that are exported to the porting layer are described in the chapter Section 3, “”
on page 3-1:

■ The defs.h section describes the data types defined by the platform.
■ The vm-defs.h section describes data types that are exported to the porting

layer.

6.4.3 What to Implement
As described previously, a new GC is written by implementing a set of gcimpl
functions. This section describes them, detailing how to get basic GC execution,
including the functions and macros that must be implemented, the read and write
barriers to use, and how to move arrays.

6.4.3.1 Basic Execution

For basic GC execution, and for interfacing with the VM, the GC implementation
must implement the following data types and functions.

To start out with, define in
src/share/javavm/include/gc/<gcname>/gc_config.h:

struct CVMGCGlobalState {

};

This should include any global state the GC would like to maintain which non-GC
code might wish to access. In the current state of CDC HI, there are no such details
that may be communicated through CVMGCGlobalState. This may change in the
future.

Now the GC author should implement the following functions.

1. For heap initialization:

/* Initialize GC global state if required */

CVMUint32 CVMgcimplInitGlobalState(CVMGCGlobalState* globalState)

/* Initialize the heap, with a given minimum and maximum heap size
6-10 CDC Porting Guide • November 2005

in bytes. Return CVM_TRUE on success, CVM_FALSE otherwise. */

CVMBool CVMgcimplInitHeap(CVMGCGlobalState* globalState, CVMUint32
minBytes, CVMUint32 maxBytes)

2. For allocation and GC:

/*

 * Allocate uninitialized heap object of size numBytes

 * This is called by the VM code on every allocation.

*/

CVMObject* CVMgcimplAllocObject(CVMExecEnv* ee, CVMUint32 numBytes)

/*

 * Perform GC.

 *

 * This routine is called by the common GC code after all locks are

 * obtained, and threads are stopped at GC-safe points. It's the

 * GC routine that needs a snapshot of the world while all threads

 * arestopped (typically at least a root scan).

 *

 * The goal to free is 'numBytes' bytes.

*/

void CVMgcimplDoGC(CVMExecEnv* ee, CVMUint32 numBytes)

3. For teardown and VM exit:

/* Teardown routines */

/*

 * Destroy GC global state

*/

void CVMgcimplDestroyGlobalState(CVMGCGlobalState* globalState);

/*

 * Destroy heap. CVM_TRUE on success, CVM_FALSE otherwise.

*/

CVMBool CVMgcimplDestroyHeap(CVMGCGlobalState* globalState);

4. Miscellaneous routines:

/*
Chapter 6 Creating a Garbage Collector 6-11

 * Return the number of bytes free in the heap.

*/

CVMUint32 CVMgcimplFreeMemory(CVMExecEnv* ee)

/*

 * Return the amount of total memory in the heap, in bytes.

*/

CVMUint32 CVMgcimplTotalMemory(CVMExecEnv* ee)

/* The time stamp of the last full GC of the heap, in order to

 * support the implementation of

 * sun.misc.GC.maxObjectInspectionAge(). This should return the

 * value of CVMtimeMillis() obtained on the last GC performed.

*/

CVMInt64 CVMgcimplTimeOfLastMajorGC();

5. Debug-only routines (when CVM_DEBUG=true at build-time)

/* Heap iteration support */

/*

 * Per-object callback to call during iteration

*/

typedef void (*CVMObjectCallbackFunc)(CVMObject* obj, CVMClassBlock*
cb, CVMUint32 objSize, void* data);

/*

 * CVMgcimplIterateHeap should traverse all objects on the heap

 * and call 'cback' on each object, with its class, size and

 * generic 'data'.

 *

 * If the heap consists of contiguous range(s), use

 * CVMgcScanObjectRange()

*/

void CVMgcimplIterateHeap(CVMExecEnv* ee, CVMObjectCallbackFunc
cback, void* data)

/*

 * A per-object callback function, to be called during heap dumps
6-12 CDC Porting Guide • November 2005

*/

typedef void (*CVMObjectCallbackFunc)(CVMObject* obj, CVMClassBlock*
cb, CVMUint32 objSize, void* data);

/*

 * Heap dump support: Iterate over a contiguous-allocated

 * range of objects.

*/

void CVMgcScanObjectRange(CVMExecEnv* ee, CVMUint32* base, CVMUint32*
top, CVMObjectCallbackFunc callback, void* callbackData);

6.4.3.2 Read and Write Barriers

CDC HI allows a GC author to define read and write barriers as required by a given
GC algorithm. This is done by including a series of #define's in
src/share/javavm/include/gc/<gcname>/gc_config.h. The implementation
of the barrier for a data type <T> is called implicitly by the appropriate direct
memory layer macro corresponding to <T>; the barriers are not visible to VM
authors.

Note that in all the barriers listed below, the type Ref refers to any reference type,
including objects of all classes and arrays. Appropriate type checking of assignments
is done by the rest of the VM; all reference types are equal by the time they trickle
down to the barrier layer.

The default implementation of a barrier is empty. Therefore, the GC author should
only #define the barriers that he/she needs.

The read and write barriers are separated according to data type. The names are self
explanatory. The code for a read or write barrier is executed right before the actual
read or write takes place.

All barriers take as argument a pointer to the head of the object being written, as
well as the address of the slot being written to. Write barriers take an additional
argument that is the value that is being written.

Read Barriers

The read barrier for reference typed array or object slots:

void CVMgcimplReadBarrierRef(

 CVMObject* objRef, CVMJavaObject** fieldLoc)

The read barriers for non-reference types, size 32-bits or less:
Chapter 6 Creating a Garbage Collector 6-13

void CVMgcimplReadBarrierByte(

 CVMObject* objRef, CVMJavaByte* fieldLoc)

void CVMgcimplReadBarrierBoolean(

 CVMObject* objRef, CVMJavaBoolean* fieldLoc)

void CVMgcimplReadBarrierShort(

 CVMObject* objRef, CVMJavaShort* fieldLoc)

void CVMgcimplReadBarrierChar(

 CVMObject* objRef, CVMJavaChar* fieldLoc)

void CVMgcimplReadBarrierInt(

 CVMObject* objRef, CVMJavaInt* fieldLoc)

void CVMgcimplReadBarrierFloat(

 CVMObject* objRef, CVMJavaFloat* fieldLoc)

The read barrier for 64-bit slots, for Java language long and double.

void CVMgcimplReadBarrier64(

 CVMObject* objRef, CVMJava32* fieldLoc)

Write Barriers

The write barrier for reference typed array or object slots:

void CVMgcimplWriteBarrierRef(

 CVMObject* objRef, CVMObject** fieldLoc, CVMObject* rhs)

The write barriers for non-reference types, size 32-bits or less:

void CVMgcimplWriteBarrierByte(

 CVMObject* objRef, CVMJavaByte* fieldLoc, CVMJavaByte rhs)

void CVMgcimplWriteBarrierBoolean(

 CVMObject* objRef, CVMJavaBoolean* fieldLoc, CVMJavaBoolean rhs)

void CVMgcimplWriteBarrierShort(

 CVMObject* objRef, CVMJavaShort* fieldLoc, CVMJavaShort rhs)

void CVMgcimplWriteBarrierChar(

 CVMObject* objRef, CVMJavaChar* fieldLoc, CVMJavaChar rhs)

void CVMgcimplWriteBarrierInt(

 CVMObject* objRef, CVMJavaInt* fieldLoc, CVMJavaInt rhs)

void CVMgcimplWriteBarrierFloat(

 CVMObject* objRef, CVMJavaFloat* fieldLoc, CVMJavaFloat rhs)

The write barrier for 64-bit slots, for Java language long and double.
6-14 CDC Porting Guide • November 2005

void CVMgcimplWriteBarrier64(

 CVMObject* objRef, CVMJava64* fieldLoc, CVMJava64 rhsPtr)

Important notes:

■ In the 64-bit cases of read and write barriers, the fieldLoc argument of a read or
write barrier is a pointer to a CVMJavaVal32 corresponding to the first 32-bit
word of a 64-bit value. Likewise, in the 64-bit write barrier, rhsPtr is a pointer to
a CVMJavaVal32 corresponding to the first 32-bit word of the 64-bit value being
written.

■ The byte, char and short data types are widened to int width in regular Java
objects (not in arrays), so barriers for those data types are
CVMgcimpReadBarrierInt() and CVMgcimplWriteBarrierInt(), and not
the shorter variants.

6.4.3.3 Moving Arrays

The barriers described above are defined on a slot-by-slot basis. On some GCs, this
may prove to be inefficient when arrays need to be moved. For array moves,
optional block readers and block writers may be defined. These would have to perform
the read or write and batch the barriers. If a GC chooses not to override these, the
memory system invokes the element-wise barriers for each element of the array
move.

Any of the block operations in these sections may be overridden:

■ To read from a Java language array into a C array
■ To write to a Java language array from a C array
■ To copy the contents of one Java language array to another Java language array of

the same type

To read from a Java language array into a C array
Each of these will read len elements of the appropriate type from Java language
array arr, starting from index start. The elements will be written into the C
buffer buf. The action performed below should include any block barrier action
required, and also the block copy itself, which is the equivalent of

memmove(&buf[0], arr->elems[start], len * sizeof(<jType>))

where jType is the appropriate Java language type (e.g., CVMJavaInt or
CVMJavaLong).

void CVMgcimplArrayReadBodyByte(

 CVMJavaByte* buf, CVMArrayOfByte* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyBoolean(
Chapter 6 Creating a Garbage Collector 6-15

 CVMJavaBoolean* buf, CVMArrayOfBoolean* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyShort(

 CVMJavaShort* buf, CVMArrayOfShort* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyChar(

 CVMJavaChar* buf, CVMArrayOfChar* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyInt(

 CVMJavaInt* buf, CVMArrayOfInt* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyFloat(

 CVMJavaFloat* buf, CVMArrayOfFloat* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyRef(

 CVMJavaObject** buf, CVMArrayOfRef* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyLong(

 CVMJavaVal32* buf, CVMArrayOfLong* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayReadBodyDouble(

 CVMJavaVal32* buf, CVMArrayOfDouble* arr,

 CVMUint32 start, CVMUint32 len)

To write to a Java language array from a C array
Each of these will write len elements of the appropriate type to a Java language
array arr, starting from index start. The elements will be read from the C buffer
buf. The action performed below should include any block barrier action
required, and also the block copy itself, which is the equivalent of

memmove(arr->elems[start], &buf[0], len * sizeof(<jType>))

where jType is the appropriate Java language type (e.g., CVMJavaInt or
CVMJavaLong).

void CVMgcimplArrayWriteBodyByte(

 CVMJavaByte* buf, CVMArrayOfByte* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyBoolean(
6-16 CDC Porting Guide • November 2005

 CVMJavaBoolean* buf, CVMArrayOfBoolean* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyShort(

 CVMJavaShort* buf, CVMArrayOfShort* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyChar(

 CVMJavaChar* buf, CVMArrayOfChar* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyInt(

 CVMJavaInt* buf, CVMArrayOfInt* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyFloat(

 CVMJavaFloat* buf, CVMArrayOfFloat* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyRef(

 CVMJavaObject** buf, CVMArrayOfRef* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyLong(

 CVMJavaVal32* buf, CVMArrayOfLong* arr,

 CVMUint32 start, CVMUint32 len)

void CVMgcimplArrayWriteBodyDouble(

 CVMJavaVal32* buf, CVMArrayOfDouble* arr,

 CVMUint32 start, CVMUint32 len)

To copy the contents of one Java language array to another Java
language array of the same type

Each of these will copy len elements of the appropriate type from
srcArr[srcIdx, srcIdx+len) to dstArr[dstIdx, dstIdx+len). The
action performed below should include any block barrier action required, and
also the block copy between the arrays itself, which is the equivalent of

memmove(dstArr->elems[dstIdx], srcArr->elems[srcIdx], len *
sizeof(<jType>))

where jType is the appropriate Java language type (e.g., CVMJavaInt or
CVMJavaLong).

void CVMgcimplArrayCopyByte(

 CVMArrayOfByte* srcArr, CVMUint32 srcIdx,
Chapter 6 Creating a Garbage Collector 6-17

 CVMArrayOfByte* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyBoolean(

 CVMArrayOfBoolean* srcArr, CVMUint32 srcIdx,

 CVMArrayOfBoolean* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyShort(

 CVMArrayOfShort* srcArr, CVMUint32 srcIdx,

 CVMArrayOfShort* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyChar(

 CVMArrayOfChar* srcArr, CVMUint32 srcIdx,

 CVMArrayOfChar* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyInt(

 CVMArrayOfInt* srcArr, CVMUint32 srcIdx,

 CVMArrayOfInt* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyFloat(

 CVMArrayOfFloat* srcArr, CVMUint32 srcIdx,

 CVMArrayOfFloat* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyRef(

 CVMArrayOfRef* srcArr, CVMUint32 srcIdx,

 CVMArrayOfRef* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyLong(

 CVMArrayOfLong* srcArr, CVMUint32 srcIdx,

 CVMArrayOfLong* dstArr, CVMUint32 dstIdx, CVMUint32 len)

void CVMgcimplArrayCopyDouble(

 CVMArrayOfDouble* srcArr, CVMUint32 srcIdx,

 CVMArrayOfDouble* dstArr, CVMUint32 dstIdx, CVMUint32 len)

6.4.4 What to Call
In the section, Section 6.3.3, “Shared Memory System Code” on page 6-6, we have
mentioned the gc_common interface. This section outlines the various components
of the gc_common interface available to the GC author, including how to initiate a
GC, how GC roots are scanned, how special root scans are performed, how object
walking is performed, and a list of the macros for accessing the data on an object.
You can find the interface in src/share/javavm/include/gc_common.h.
6-18 CDC Porting Guide • November 2005

6.4.4.1 Initiating a GC

When an object allocator decides to GC (most probably due to an allocation failure),
it has to make sure that the system is stopped in a GC-safe way. In CDC HI, this is
accomplished by using CVMgcStopTheWorldAndGC():

/*

 * Initiate a GC. Acquire all GC locks, stop all threads, and then

 * call back to the particular GC to do the work. When the

 * particular GC is done, resume.

 *

 * Returns CVM_TRUE on success, CVM_FALSE if GC could not be run.

 */

CVMBool CVMgcStopTheWorldAndGC(CVMExecEnv* ee, CVMUint32 numBytes)

This function stops the system in a GC-consistent way by acquiring all system locks,
and bringing all threads to GC-safe points. Then it calls the entry point to the GC
implementation, CVMgcimplDoGC() to do the actual work. If GC work could not be
performed because of a problem such as an out of memory situation,
CVMgcStopTheWorldAndGC() returns CVM_FALSE.

6.4.4.2 Root Scans

When all threads are stopped at GC-safe points, the GC will need to scan all GC
roots. This is accomplished by using CVMgcScanRoots(), and a GC-specific
callback function:

/*

 * Scan the root set of collection

*/

void CVMgcScanRoots(CVMExecEnv* ee, CVMGCOptions* gcOpts,
CVMRefCallbackFunc callback, void* data)

where the callback function type is defined as:

/*

 * A 'ref callback' called on each *non-NULL* discovered root

*/

typedef void (*CVMRefCallbackFunc)(CVMObject** refAddr, void* data)

So the GC author defines a callback function that takes the address of a reference
containing slot as argument, along with an opaque data argument.
CVMgcScanRoots(ee, gcOpts, refCallback, refCallbackData) calls
(*refCallback)(refPtr, refCallbackData) on every discovered root
address refPtr.
Chapter 6 Creating a Garbage Collector 6-19

The memory system guarantees that both the following conditions hold when the
callback routine is called:

refPtr != NULL

*refPtr != NULL

The roots scanned are JNI local and global references, Java language stack locations,
Java language local variables, Java language static variables, and CDC HI-internal
data structures. The details are abstracted from the GC author.

Weak references are only discovered and queued up if
gcOpts.discoverWeakReferences is CVM_TRUE before a call to
CVMgcScanRoots(). So the GC author typically calls the first root scan with weak
references discovery enabled, and then disable weak references discovery by setting
gcOpts.discoverWeakReferences to CVM_FALSE.

The root scanning operation may be performed multiple times on each GC cycle.
However, note that each root scan cycle including the first one should be preceded
by a call to CVMgcClearClassMarks():

/*

 * Clear the class marks for dynamically loaded classes.

*/

void CVMgcClearClassMarks(CVMExecEnv* ee, CVMGCOptions* gcOpts);

This function is responsible for clearing the mark bits on dynamically loaded classes.
The mark bits are used to prevent infinite recursion and redundant work on class
scanning. If they are not cleared between successive root scans, the GC might end up
skipping important class roots like Java language statics.

Note that CVMgcClearClassMarks() is a separate function since a root scan cycle
may include more than just calling CVMgcScanRoots(). For example, a
generational GC may call CVMgcScanRoots() to discover system roots,
CVMgcScanSpecial() to discover special object roots, and then scan pointers
recorded by a write barrier. So CVMgcClearClassMarks() should be called before
each such list of root scans, during which class scanning state should be kept.

6.4.4.3 Special Root Scans

The Java 2 Platform language and libraries have features that require special
scanning support from CDC HI. In particular, the following requires special
handling:

■ Weak references and finalization
6-20 CDC Porting Guide • November 2005

Java 2 Platform has three flavors of public weak reference classes in the
java.lang.ref package, a fourth package-private java.lang.ref weak
reference flavor for implementing finalization, and a JNI weak reference flavor
for native method use. The GC needs to be aware of all these.

■ String interning

The CDC HI classloader interns Java language strings that it finds in newly
loaded class files. Also, an application can intern strings using
String.intern(). Some special treatment is necessary to enable unloading
of these strings when they are not in application use.

■ Java language synchronization data structures

The CDC HI runtime uses various data structures to support Java language
synchronization, which contain embedded pointers to objects. These data
structures should be collectible when the objects they refer to become garbage.

■ Class unloading

According to Java 2 Platform semantics, a class C can be unloaded if and only
if its classloader CL is garbage-collected. The CDC HI memory system should
implement this behavior.

The CDC HI memory system hides the GC-scanning details of these special features
from the GC author by the use of a narrow interface consisting of two functions. If
the GC author calls these two functions at the right points in GC code, all special
scanning is performed automatically.

The idea with special scanning is to garbage collect entries from out-of-heap tables
pointing into the heap. If we declared the tables as GC roots, they would
automatically be kept alive and their entries would never be collected. Instead, we
do the special objects scanning in conjunction with information from the GC to
figure out which entries of the special objects may be discarded and which entries
need to be kept.

Where to insert special root scan APIs

From the CDC HI point of view, GC involves two conceptual points where special
root scan APIs should be inserted:

1. A point at which object liveness detection is possible. See details below on
Section 3., “A point at which object liveness detection is possible.” on
page 6-22.

2. A point at which object pointer update is possible, from a pre-GC pointer to a
post-GC pointer. See details below on Section 4., “A point at which object
pointer update is possible, from a pre-GC pointer to a post-GC pointer.” on
page 6-23.
Chapter 6 Creating a Garbage Collector 6-21

As illustrated below, when the GC calls
CVMgcProcessSpecialWithLivenessInfo(), each special object slot will be
checked by (*isLive)() to see if the GC determined it to be live in the preceding
reachability scan. Dead entries will automatically be removed from the special object
tables. Later on, the GC will call CVMgcScanSpecial(), which will cause all
remaining live entries in the special object tables to be updated with new pointers.

3. A point at which object liveness detection is possible.

For a mark-sweep-compact type collector, this would be right after a recursive mark
has been performed, but before the addresses of any objects have changed. So to
detect liveness, the mark-sweep collector would simply inspect the mark of an
object. For a copying collector, this would be right after all live data has been copied.
So to detect liveness, the copying collector would check whether an object reference
is to a forwarded old-space object, or a new-space object.

For this point, the appropriate special scan routine is
CVMgcProcessSpecialWithLivenessInfo().

The full API for point #1:

/*

 * Process special objects with liveness info from a particular GC

 * implementation. This covers special scans like string intern

 * table, weak references and monitor structures.

 *

 * isLive - a predicate that returns true if an object is strongly

 * referenced

 *

 * transitiveScanner - a callback that marks an object

 * and all its children

*/

void CVMgcProcessSpecialWithLivenessInfo(CVMExecEnv* ee,
CVMGCOptions* gcOpts, CVMRefLivenessQueryFunc isLive, void*
isLiveData, CVMRefCallbackFunc transitiveScanner, void*
transitiveScannerData);

The transitiveScanner callback function type CVMRefCallbackFunc is defined
in Section 6.4.4.2, “Root Scans” on page 6-19. The transitiveScanner should
mark its parameter object reference and all its children. The non-NULL
CVMRefCallbackFunc argument semantics hold for transitiveScanner (see
Section 6.4.4.2, “Root Scans” on page 6-19).

The liveness test is done using a predicate isLive of type:

/*
6-22 CDC Porting Guide • November 2005

 * A predicate to test liveness of a given reference

*/

typedef CVMBool (*CVMRefLivenessQueryFunc)(CVMObject** refAddr,
void* data)

Here also, the non-NULL argument semantics hold for isLive (see Section 6.4.4.2,
“Root Scans” on page 6-19).

4. A point at which object pointer update is possible, from a pre-GC pointer to a
post-GC pointer.

This varies widely for each algorithm. For a copying type algorithm, objects
typically include their forwarding addresses. So pointer updating for an old space
pointer is simply obtaining its forwarding address. Pointer updating for a new space
pointer is not necessary.

For this point, the appropriate special scan routine is CVMgcScanSpecial().

The full API for point #2:

/*

 * Scan and optionally update special objects. This covers special

 * scans like string intern table, weak references and monitor

 * structures.

*/

void CVMgcScanSpecial(CVMExecEnv* ee, CVMGCOptions* gcOpts,
CVMRefCallbackFunc updateRefCallback, void* data);

The updateRefCallback function type CVMRefCallbackFunc is defined in
Section 6.4.4.2, “Root Scans” on page 6-19. It is called for each location that needs to
be updated to a new address. The non-NULL CVMRefCallbackFunc argument
semantics hold for updateRefCallback (see Section 6.4.4.2, “Root Scans” on
page 6-19).

6.4.4.4 Object Walking

Given an object reference, the GC must be able to find all pointers embedded in the
object and perform an action on each pointer. This operation is very common in all
tracing GCs.

In CDC HI, object walking is performed using a macro, for maximum efficiency. The
object walker uniformly and automatically handles arrays of references and objects.
When it encounters an object of class C, it scans class C as well. It also discovers
weak references, and acts accordingly.

macro void CVMobjectWalkRefsWithSpecialHandling(
Chapter 6 Creating a Garbage Collector 6-23

CVMExecEnv* ee, CVMGCOptions* gcOpts, CVMObject* obj, CVMUint32
firstHeaderWord, C-statement refAction, CVMRefCallbackFunc callback,
void* data)

So given an ee and a gcOpts, CVMobjectWalkRefsWithSpecialHandling()
scans object obj with the first header word firstHeaderWord. It executes (more
like "substitutes", given that this is a macro) the statement refAction on every
embedded object reference. refPtr is a special variable within the body of
refAction, pointing to the object slot being scanned. The object slot may contain
NULL, so refAction must be prepared to deal with that.

CVMobjectWalkRefsWithSpecialHandling() also calls
(*callback)(refPtr, data) on the address refPtr of every reference-typed
slot in the class data. The non-NULL CVMRefCallbackFunc argument semantics
hold for callback (see Section 6.4.4.2, “Root Scans” on page 6-19).

Note that refAction is a macro, whereas callback is a function. This asymmetry
is intentional for efficiency reasons: refAction is going to be called for each slot of
each object, whereas callback is going to be called for each slot of each class. The
former is typically orders of magnitude more frequent than the latter.

6.4.4.5 Per-object Data

The following set of macros are responsible for accessing the information on an
object given a direct object reference. The set of operations are separated into a few
distinct categories. Arrays and objects automatically receive separate treatment.

■ Object size support, given an object or array reference

/* Get the size of an object or array instance */

CVMUint32 CVMobjectSize(CVMObject* obj)

/* Get the size of an object or array instance given its class*/

CVMUint32 CVMobjectSizeGivenClass(CVMObject* obj, CVMClassBlock* cb)

■ Object class support

/* Get the first word of the object header as integer */

CVMUint32 CVMobjectGetClassWord(CVMObject* obj)

/* Set the first word of the object header as integer */

void CVMobjectSetClassWord(CVMObject* obj, CVMUint32 word)

/* Get the class of a given object */

void CVMobjectGetClass(CVMObject* obj)

■ ROMized object support

/* CVM_TRUE if an object is read-only and not on the heap */

CVMBool CVMobjectIsInROM(CVMObject* obj)
6-24 CDC Porting Guide • November 2005

■ Object marking support

/* CVM_TRUE if an object is "marked". */

CVMBool CVMobjectMarked(CVMObject* obj)

/* Clear mark on an object */

void CVMobjectClearMarked(CVMObject* obj)

/* Set mark on an object */

void CVMobjectSetMarked(CVMObject* obj)

6.4.5 Example GC
This section outlines a very simple allocator and garbage collector written for CDC
HI called markcompact, for a mark-sweep-compact collector. The outline here only
pertains to implementation for the GC interface, so there is no detail about the actual
compaction process.

To begin, there should be a gc_config.h file describing the GC:

src/share/javavm/include/gc/markcompact/gc_config.h:

#ifndef _INCLUDED_MARKCOMPACT_GC_CONFIG_H

#define _INCLUDED_MARKCOMPACT_GC_CONFIG_H

#include "javavm/include/gc/gc_impl.h"

/*

 * The following header could include any mark-compact specific

 * declarations.

*/

#include "javavm/include/gc/markcompact/markcompact.h"

/*

 * Barriers in this implementation

*/

#define CVMgcimplWriteBarrierRef(directObj, slotAddr, rhsValue

/*

 * Do nothing. Just an anxample.

*/

/*

 * Global state specific to GC

*/

struct CVMGCGlobalState {
Chapter 6 Creating a Garbage Collector 6-25

/* Nothing here */

};

#endif /* _INCLUDED_MARKCOMPACT_GC_CONFIG_H */

Next, there should be a gc_impl.c file implementing the garbage collector. Note
that setting the build option CVM_GCCHOICE=markcompact would build this
garbage collector automatically.

src/share/javavm/runtime/gc/markcompact/gc_impl.c:

#include "javavm/include/defs.h"

#include "javavm/include/objects.h"

#include "javavm/include/classes.h"

#include "javavm/include/directmem.h"

/*

 * This file is generated from the GC choice given at build

 *time.

 */

#include "generated/javavm/include/gc_config.h"

/* The shared GC interface */

#include "javavm/include/gc_common.h"

/* And the specific GC interface */

#include "javavm/include/gc/gc_impl.h"

/* The main allocation entry point */

/*

 * Allocate uninitialized heap object of size numBytes.

 * GC "policy" encapsulated here.

 */

CVMObject*

CVMgcimplAllocObject(CVMExecEnv* ee, CVMUint32 numBytes)

{

 CVMObject* allocatedObj;

 /* Actual allocation detail hidden here */

 allocatedObj = tryAlloc(numBytes);

 if (allocatedObj == NULL) {

 /* GC and re-try allocation */

 if (CVMgcStopTheWorldAndGC(ee, numBytes)) {

 /* re-try if GC occurred */

 allocatedObj = tryAlloc(numBytes);
6-26 CDC Porting Guide • November 2005

 }

 }

 return allocatedObj;

}

/*

 * The main GC point, which CVM calls after ensuring GC-

 * safety of all threads.

 *

 * This is a mark-sweep-compact GC, with most details of

 * the sweep and compaction hidden.

 *

 * The GC uses three callback functions. These are detailed

 * below, after CVMgcimplDoGC().

*/

void

CVMgcimplDoGC(CVMExecEnv* ee, CVMUint32 numBytes)

{

 CVMGCOptions gcOpts;

 /* Set default GC options */

 gcOpts.fullGC = CVM_TRUE;

 gcOpts.allClassesAreRoots = CVM_FALSE;

 /*

 * The mark phase includes discovering weak references

 /*

 gcOpts.discoverWeakReferences = CVM_TRUE;

 /*

 * Scan all roots. markTransitively will mark a root

 * and all its "children". Its 'data' argument is the

 * GC options. A more complicated callback could pass

 * a pointer to a struct into the callback function.

 */

 CVMgcScanRoots(ee, &gcOpts, markTransitively, &gcOpts);

 /*

 * Don't discover any more weak references.

*/

 gcOpts.discoverWeakReferences = CVM_FALSE;
Chapter 6 Creating a Garbage Collector 6-27

 /*

 * At this point, we know which objects are live and

 * which are not. Do the special objects processing.

*/

 CVMgcProcessSpecialWithLivenessInfo(ee, &gcOpts, isLive,
NULL,

 markTransitively, &gcOpts);

 /* The sweep phase. This phase computes the new

 * addresses of each object and writes them on the * side.

 * Details hidden.

*/

 sweep();

 /* Update the roots again, by writing out looking up

 * old -> new address translations.

*/

 CVMgcScanRoots(ee, &gcOpts, updateRoot, NULL);

 CVMgcScanSpecial(ee, gcOpts, updateRoot, NULL);

 /* And update all interior pointers. Details hidden */

 scanObjectsInHeap(ee, gcOpts, updateRoot, NULL);

 /* Finally we can move objects, and reset object marks.

 * Compaction details hidden.

*/

 compact();

}

/*

 * The liveness predicate, for use in special objects

 * scanning.

*/

static CVMBool

isLive(CVMObject** refPtr, void* data)

{

 CVMObject* ref;

 CVMassert(refPtr != NULL);

 ref = *refPtr;

 CVMassert(ref != NULL);

 /*
6-28 CDC Porting Guide • November 2005

 * ROM objects are always live

 */

 if (CVMobjectIsInROM(ref)) {

 return CVM_TRUE;

 }

 /* Is object marked? It's live then. */

 return CVMobjectMarked(ref);

}

/*

 * The transitive object marker. Marks a given object and

 * all its"children".

 * This is recursive, for simplicity. A production GC

 * should really not be recursive.

*/

static void

markTransitively(CVMObject** refPointer, void* data)

{

 CVMGCOptions* gcOpts = (CVMGCOptions*)data;

 CVMObject* ref = *refPointer;

 CVMClassBlock* refCb = CVMobjectGetClass(ref);

 /*

 * ROM objects are always live

 */

 if (CVMobjectIsInROM(ref)) {

 return;

 }

 CVMobjectSetMarked(ref);

 /*

 * Now handle all the "children".

 */

 CVMobjectWalkRefsWithSpecialHandling(CVMgetEE(), gcOpts,
ref, refCb, {

 CVMObject* thisRef = *refPtr;

 if (thisRef != NULL) {

 if (!CVMobjectMarked(thisRef)) {

 markTransitively(refPtr);
Chapter 6 Creating a Garbage Collector 6-29

 }

 }

 }, markTransitively, data);

}

/*

 * Update a root with the new address of an object

*/

static void

CVMgenMarkCompactFilteredUpdateRoot(CVMObject** refPtr, void* data)

{

 CVMObject* ref = *refPtr;

 /*

 * ROM objects are not on the heap

 */

 if (CVMobjectIsInROM(ref)) {

 return;

 }

 refPtr = lookupNewAddress(ref); / Details hidden. Update
root. */

}

6-30 CDC Porting Guide • November 2005

CHAPTER 7

Direct Memory Interface Reference

This chapter describes the Direct Memory Interface functions used by the CDC HI
garbage collector (GC). It covers the following topics:

■ Introduction
■ Object Field Accesses
■ Array Accesses
■ GC-safety of Threads

7.1 Introduction
These functions are used for accessing object and array fields, and also handle
GC-safe points. Please refer Section , “How to be GC-Safe” on page 9-1 for context
and examples.

Caution – The use of the direct heap access operations is GC-unsafe. Therefore, these
operations should be used with extreme care in a few selected places, and only
within GC-unsafe regions. VM code should use the indirect memory layer almost all
the time when outside the interpreter.

7.2 Object Field Accesses
The following macros access object fields. The result-producing ones take an l-value
as the last argument, and assign to it.
7-1

7.2.1 Accessing Fields of 32-bit Width
These macros use the following parameters:

■ the first parameter is a direct object reference
■ the second parameter is an offset in number of words from the beginning of the

object, counting the first header word as 0
■ the third parameter is an l-value to read into or a value to write

Note – The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

7.2.1.1 Weakly-Typed 32-bit Read and Write
macro void CVMD_fieldRead32(CVMObject* o, CVMUint32 off,
CVMJavaVal32 res)

macro void CVMD_fieldWrite32(CVMObject* o, CVMUint32 off,
CVMJavaVal32 res)

7.2.1.2 Strongly-Typed 32-bit Read and Write
macro void CVMD_fieldReadRef(CVMObject* o, CVMUint32 off,
CVMObject* item)

macro void CVMD_fieldWriteRef(CVMObject* o, CVMUint32 off,
CVMObject* item)

macro void CVMD_fieldReadInt(CVMObject* o, CVMUint32 off,
CVMJavaInt item)

macro void CVMD_fieldWriteInt(CVMObject* o, CVMUint32 off,
CVMJavaInt item)

macro void CVMD_fieldReadFloat(CVMObject* o, CVMUint32 off,
CVMJavaFloat item)

macro void CVMD_fieldWriteFloat(CVMObject* o, CVMUint32 off,
CVMJavaFloat item)

7.2.2 Accessing Fields of 64-bit Width
These macros use the following parameters:

■ the first parameter is a direct object reference
7-2 CDC Porting Guide • November 2005

■ the second parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

■ the third parameter is an l-value of type CVMJavaVal64 to read into or a value to
write

The weakly-typed versions read from and write into a word-aligned two-word area
pointed to by location.

7.2.2.1 Weakly-Typed 64-bit Read and Write
macro void CVMD_fieldRead64(CVMObject* o, CVMUint32 off,
CVMJavaVal32* location)

macro void CVMD_fieldWrite64(CVMObject* o, CVMUint32 off,
CVMJavaVal32* location)

7.2.2.2 Strongly-Typed 64-bit Read and Write
macro void CVMD_fieldReadLong(CVMObject* o, CVMUint32 off,
CVMJavaVal64 val64)

macro void CVMD_fieldWriteLong(CVMObject* o, CVMUint32 off,
CVMJavaVal64 val64)

macro void CVMD_fieldReadDouble(CVMObject* o, CVMUint32 off,
CVMJavaVal64 val64)

macro void CVMD_fieldWriteDouble(CVMObject* o, CVMUint32 off,
CVMJavaVal64 val64)

7.3 Array Accesses
The following macros access object fields. The result producing ones take an l-value
as the last argument, and assign to it

7.3.1 Accessing Elements of 32-bit Width and Below
These macros use the following parameters:

■ the first parameter is a direct array reference
■ the second parameter is the array index where the first array element is at index 0
■ the third parameter is an l-value to read into, or a value to write
Chapter 7 Direct Memory Interface Reference 7-3

These macros are all strongly typed. All the Java basic types are represented.

Note – The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

macro void CVMD_arrayReadRef(CVMArrayOfRef* arr, CVMUint32
index, CVMObject* item)

macro void CVMD_arrayWriteRef(CVMArrayOfRef* arr, CVMUint32
index, CVMObject* item)

macro void CVMD_arrayReadInt(CVMArrayOfInt* arr, CVMUint32
index, CVMJavaInt item)

macro void CVMD_arrayWriteInt(CVMArrayOfInt* arr, CVMUint32
index, CVMJavaInt item)

macro void CVMD_arrayReadByte(CVMArrayOfByte* arr, CVMUint32
index, CVMJavaByte item)

macro void CVMD_arrayWriteByte(CVMArrayOfByte* arr, CVMUint32
index, CVMJavaByte item)

macro void CVMD_arrayReadBool(CVMArrayOfBool* arr, CVMUint32
index, CVMJavaBool item)

macro void CVMD_arrayWriteBool(CVMArrayOfBool* arr, CVMUint32
index, CVMJavaBool item)

macro void CVMD_arrayReadShort(CVMArrayOfShort* arr, CVMUint32
index, CVMJavaShort item)

macro void CVMD_arrayWriteShort(CVMArrayOfShort* arr, CVMUint32
index, CVMJavaShort item)

macro void CVMD_arrayReadChar(CVMArrayOfChar* arr, CVMUint32
index, CVMJavaChar item)

macro void CVMD_arrayWriteChar(CVMArrayOfChar* arr, CVMUint32
index, CVMJavaChar item)

macro void CVMD_arrayReadFloat(CVMArrayOfFloat* arr, CVMUint32
index, CVMJavaFloat item)

macro void CVMD_arrayWriteFloat(CVMArrayOfFloat* arr, CVMUint32
index, CVMJavaFloat item)
7-4 CDC Porting Guide • November 2005

7.3.2 Accessing Elements of 64-bit Width
These macros use the following parameters:

■ the first parameter is a direct array reference
■ the second parameter is the array index where the first array element is at index 0
■ the third parameters an l-value of type CVMJavaVal64 to read into or a value to

write.

7.3.2.1 Weakly-Typed Versions

The weakly-typed versions read from and write to a word-aligned two-word area
pointed to by location:

macro void CVMD_arrayRead64(<CVMArrayOf64>* o, CVMUint32 off,
CVMJavaVal32* location)

macro void CVMD_arrayWrite64(<CVMArrayOf64>* o, CVMUint32 off,
CVMJavaVal32* location)

where <CVMArrayOf64> is either CVMArrayOfLong or CVMArrayOfDouble.

7.3.2.2 Strongly-Typed Versions
macro void CVMD_arrayReadLong(<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal64 val64)

macro void CVMD_arrayWriteLong(<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal64 val64)

macro void CVMD_arrayReadDouble(<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal64 val64)

macro void CVMD_arrayWriteDouble(<CVMArrayOf64>* o, CVMUint32 index,
CVMJavaVal64 val64)

where <CVMArrayOf64> is either CVMArrayOfLong or CVMArrayOfDouble.

7.3.3 Miscellaneous Array Operations
All generic object operations apply to arrays as well. In particular, the header of an
array object starts out with an object header that has an additional length entry, so
any operation on the header of an object may be performed on an array header.

Below is an array-specific operation.

macro CVMJavaInt32 CVMD_arrayGetLength(<CVMArrayOfAny>* o)
Chapter 7 Direct Memory Interface Reference 7-5

where <CVMArrayOfAny> is any direct array reference.

7.4 GC-safety of Threads
Each thread has a GC-safety state associated with it. Threads that cannot tolerate GC
are marked as GC-unsafe. A thread whose state can be scanned by GC is marked
GC-safe. GC can occur only when all threads in the system are GC-safe. When a
thread requests GC, all threads that are currently GC-unsafe are rolled forward to
their next GC-safe point.

The following operations show how to create a GC-unsafe window of operation and
how to request a GC-safe point.

7.4.1 GC-unsafe Blocks
When a GC-safe thread wants to perform a GC-unsafe operation, it marks itself as
unable to tolerate GC, performs the GC-unsafe operation, and then marks itself
again as GC-safe. Use CVMD_gcUnsafeExec() to create such a window of GC-
unsafety. At the end of the GC-unsafe window, the thread calling
CVMD_gcUnsafeExec() polls for a GC request. If there is one, the thread suspends
itself to rendezvous with all the other threads rolling forward to their GC points.
Execution continues after GC.

macro void CVMD_gcUnsafeExec(CVMExecEnv* ee, code gcUnsafeAction)

where ee is a pointer to the current thread's execution environment and
gcUnsafeAction is a segment of GC-unsafe code.

7.4.2 GC-safe Blocks: Requesting a GC-Safe Point
GC-unsafe code must occasionally offer to become GC-safe to bound the time from a
GC request to the beginning of GC. CVMD_gcSafeExec and
CVMD_gcSafeCheckPoint are the two macros that allow that.

The CVMD_gcSafeCheckPoint macro is used for code that will not block. The
assumption here is that there is some cached state in the GC-unsafe code which
needs to be saved if GC is needed.

macro void CVMD_gcSafeCheckPoint(CVMExecEnv* ee, code saveAction,
code restoreAction)
7-6 CDC Porting Guide • November 2005

The thread calling CVMD_gcSafeCheckPoint() checks whether there is a GC
request. If there is, the thread executes saveAction to save state necessary for GC,
marks itself as GC-safe, and suspends itself to rendezvous with all the other threads
rolling forward to their GC points. After GC completes, the thread is resumed,
marks itself as GC-unsafe again, and executes restoreAction to do any caching
operations necessary to continue execution.

The CVMD_gcSafeExec macro is used for code that may potentially block. In this
case, whatever cached state the GC-unsafe code has must be saved before calling the
macro.

macro void CVMD_gcSafeExec(CVMExecEnv* ee, code safeAction)

The thread calling CVMD_gcSafeExec()marks itself GC-safe and checks to see if
there is a GC-request. If there is one, the thread suspends itself to rendezvous with
all the other threads rolling forward to their GC points. After GC is over, the thread
is resumed, still in a GC-safe state. It executes safeAction, potentially blocking.
After waking up from the blocking action, the thread marks itself as GC-unsafe and
continues with GC-unsafe execution.
Chapter 7 Direct Memory Interface Reference 7-7

7-8 CDC Porting Guide • November 2005

CHAPTER 8

Indirect Memory Interface
Reference

This chapter contains the references for the indirect memory layer functions, which
are used by the garbage collector (GC). It covers the following topics:

■ Introduction
■ ICell Manipulations
■ Registered Indirection Cells
■ Object Field Accesses
■ Array Accesses

8.1 Introduction
These functions are used for accessing the garbage-collected heap indirectly using
pointers to ICells. Please refer to Chapter ” for context and examples.

Note – The indirect memory interface is GC-safe, and is appropriate for use in VM
code outside of the interpreter, like the class loader, or JNI implementation.

8.2 ICell Manipulations
The referent of an ICell is the direct object reference encapsulated by the ICell. The
indirect memory interface allows GC-safe assignments and comparisons between
referents of ICells using the following macros.

1. Assign referent of srcICellPtr to be the referent of dstICellPtr:
8-1

macro void CVMID_icellAssign(CVMExecEnv* ee, CVMObjectICell*
destICellPtr,CVMObjectICell* srcICellPtr)

2. Null out the referent of icellPtr:

macro void CVMID_icellSetNull(CVMExecEnv* ee, CVMObjectICell*
icellPtr)

3. Test whether the referent of icellPtr is null, The result is in res:

macro void CVMID_icellIsNull(CVMExecEnv* ee, CVMObjectICell*
icellPtr, CVMBool res)

4. Test whether the referent of icellPtr1 is the same object reference as
icellPtr2. The result is in res:

macro void CVMID_icellSameObject(CVMExecEnv* ee, CVMObjectICell*
icellPtr1,CVMObjectICell* icellPtr2, CVMBool res)

8.3 Registered Indirection Cells
An indirection cell must be registered with GC to be scanned as a root. A registered
indirection cell is either a local root or global root. In both cases, the client code is
handed a pointer to an ICell that is part of the root set of GC.

8.3.1 Local Roots
Local roots are allocated within local root blocks. At the end of a local root block, all
allocated local roots within the block are destroyed. Note that local root blocks may
be nested arbitrarily.

To begin a local root block, with respect to the current thread's execution
environment, ee:

macro CVMID_localrootBegin(CVMExecEnv* ee)

To allocate a local root and return a pointer to it:

macro CVMID_localrootDeclare(<ICell>, var)

Here <ICell> may be any legal object or array ICell type.
CVMID_localrootDeclare allocates a new local root, nulls out its referent,
declares an <ICell>* var, and makes var point to the new local root. var is
visible within the scope of the local root block.

To end the local root block, and to discard all local roots allocated within the block:

macro CVMID_localrootEnd()
8-2 CDC Porting Guide • November 2005

8.3.2 Global Roots
Global roots are not bound to any one thread, but are shared between all threads.
They are analogous to JNI global refs. Note that unlike local roots, global roots may
be allocated out-of-order (i.e., the global roots are not guaranteed to be allocated
sequentially in memory).

To allocate a new global root, null out its referent and return a pointer to it:

CVMObjectICell* CVMID_getGlobalRoot()

To free the global root pointed to by globalRoot:

void CVMID_freeGlobalRoot(CVMObjectICell* globalRoot)

8.4 Object Field Accesses
The following macros access object fields. The result producing ones take an l-value
as the last argument, and assign to it.

8.4.1 Accessing Fields of 32-bit Width
These macros use the following parameters:

■ the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

■ the second parameter is a registered indirect object reference
(CVMObjectICell*)

■ the third parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

■ the fourth parameter is an l-value to read into or a value to write

Note – The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

8.4.1.1 Weakly-Typed 32-bit Read and Write
macro void CVMID_fieldRead32(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32 res)

macro void CVMID_fieldWrite32(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32 res)
Chapter 8 Indirect Memory Interface Reference 8-3

8.4.1.2 Strongly-Typed 32-bit Read and Write
macro void CVMID_fieldReadRef(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMObjectICell* item)

macro void CVMID_fieldWriteRef(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMObjectICell* item)

macro void CVMID_fieldReadInt(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaInt item)

macro void CVMID_fieldWriteInt(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaInt item)

macro void CVMID_fieldReadFloat(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaFloat item)

macro void CVMID_fieldWriteFloat(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaFloat item)

8.4.2 Accessing Fields of 64-bit Width
These macros use the following parameters:

■ the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

■ the second parameter is a registered indirect object reference
(CVMObjectICell*)

■ the third parameter is an offset in number of words from the beginning of the
object, counting the first header word as 0

■ the fourth parameter is an l-value of type CVMJavaVal64 to read into or a value
to write

The weakly-typed versions read from and write into a word-aligned two-word area
pointed to by location.

8.4.2.1 Weakly-Typed 64-bit Read and Write
macro void CVMID_fieldRead64(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32* location)

macro void CVMID_fieldWrite64(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal32* location)
8-4 CDC Porting Guide • November 2005

8.4.2.2 Strongly-Typed 64-bit Read and Write
macro void CVMID_fieldReadLong(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal64 val64)

macro void CVMID_fieldWriteLong(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal64 val64)

macro void CVMID_fieldReadDouble(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal64 val64)

macro void CVMID_fieldWriteDouble(CVMExecEnv* ee, CVMObjectICell* o,
CVMUint32 off, CVMJavaVal64 val64)

8.5 Array Accesses
The following macros access object arrays. The result-producing ones take an l-value
as the last argument, and assign to it.

8.5.1 Accessing Elements of 32-bit Width and Below
These macros use the following parameters:

■ the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

■ the second parameter is a registered indirect array reference
(CVMArrayOf<T>ICell*)

■ the third parameter is the array index where the first array element is at index 0
■ the fourth parameter is an l-value to read into, or a value to write

These macros are all strongly typed. All the Java basic types are represented.

Note – The implementation of GC read and write barriers are hidden beneath the
Ref typed accessors.

macro void CVMID_arrayReadRef(CVMExecEnv* ee, CVMArrayOfRefICell*
arr, CVMUint32 index, CVMObjectICell* item)

macro void CVMID_arrayWriteRef(CVMExecEnv* ee, CVMArrayOfRefICell*
arr, CVMUint32 index, CVMObjectICell* item)

macro void CVMID_arrayReadInt(CVMExecEnv* ee, CVMArrayOfIntICell*
arr, CVMUint32 index, CVMJavaInt item)
Chapter 8 Indirect Memory Interface Reference 8-5

macro void CVMID_arrayWriteInt(CVMExecEnv* ee, CVMArrayOfIntICell*
arr, CVMUint32 index, CVMJavaInt item)

macro void CVMID_arrayReadByte(CVMExecEnv* ee,
CVMArrayOfByteICell* arr, CVMUint32 index, CVMJavaByte item)

macro void CVMID_arrayWriteByte(CVMExecEnv* ee,
CVMArrayOfByteICell* arr, CVMUint32 index, CVMJavaByte item)

macro void CVMID_arrayReadBool(CVMExecEnv* ee,
CVMArrayOfBoolICell* arr, CVMUint32 index, CVMJavaBool item)

macro void CVMID_arrayWriteBool(CVMExecEnv* ee,
CVMArrayOfBoolICell* arr, CVMUint32 index, CVMJavaBool item)

macro void CVMID_arrayReadShort(CVMExecEnv* ee,
CVMArrayOfShortICell* arr, CVMUint32 index, CVMJavaShort item)

macro void CVMID_arrayWriteShort(CVMExecEnv* ee,
CVMArrayOfShortICell* arr, CVMUint32 index, CVMJavaShort item)

macro void CVMID_arrayReadChar(CVMExecEnv* ee,
CVMArrayOfCharICell* arr, CVMUint32 index, CVMJavaChar item)

macro void CVMID_arrayWriteChar(CVMExecEnv* ee,
CVMArrayOfCharICell* arr, CVMUint32 index, CVMJavaChar item)

macro void CVMID_arrayReadFloat(CVMExecEnv* ee,
CVMArrayOfFloatICell* arr, CVMUint32 index, CVMJavaFloat item)

macro void CVMID_arrayWriteFloat(CVMExecEnv* ee,
CVMArrayOfFloatICell* arr, CVMUint32 index, CVMJavaFloat item)

8.5.2 Accessing Elements of 64-bit Width
These macros use the following parameters:

■ the first parameter is a pointer to the execution environment (CVMExecEnv) of the
current thread

■ the second parameter is a registered indirect array reference
(CVMArrayOf<T>ICell*)

■ the third parameter is the array index where the first array element is at index 0
■ the fourth parameter is an l-value of type CVMJavaVal64 to read into or a value

to write
8-6 CDC Porting Guide • November 2005

8.5.2.1 Weakly-Typed Versions

The weakly-typed versions read from and write to a word-aligned two-word area
pointed to by location:

macro void CVMID_arrayRead64(CVMExecEnv* ee, <CVMArrayOf64ICell>*
o, CVMUint32 off, CVMJavaVal32* location)

macro void CVMID_arrayWrite64(CVMExecEnv* ee, <CVMArrayOf64ICell>*
o, CVMUint32 off, CVMJavaVal32* location)

where <CVMArrayOf64ICell> is either CVMArrayOfLongICell or
CVMArrayOfDoubleICell.

8.5.2.2 Strongly-Typed Versions
macro void CVMID_arrayReadLong(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64)

macro void CVMID_arrayWriteLong(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64)

macro void CVMID_arrayReadDouble(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64)

macro void CVMID_arrayWriteDouble(CVMExecEnv* ee,
<CVMArrayOf64ICell>* o, CVMUint32 index, CVMJavaVal64 val64)

where <CVMArrayOf64ICell> is either CVMArrayOfLongICell or
CVMArrayOfDoubleICell.

8.5.3 Miscellaneous Array Operations
All generic object operations apply to arrays as well. In particular, the header of an
array object starts out with an object header, with an additional length entry, so any
operation on the header of an object may be performed on an array header.

Below is an array-specific operation.

macro void CVMID_arrayGetLength(<CVMArrayOfAnyICell>* o,
CVMJavaInt32 len)

where <CVMArrayOfAnyICell>* is a registered indirect array reference, and len is
an l-value of type CVMJavaInt32 to store the length result in.
Chapter 8 Indirect Memory Interface Reference 8-7

8.5.4 GC-unsafe Operations
The remaining two operations allow setting and getting the referent of an ICell.

Caution – The use of the ICell referent operations is GC-unsafe. Therefore, these
operations should be used with extreme care in a few selected places, and only
within GC-unsafe regions.

Get the referent of icellPtr

macro CVMObject* CVMID_icellDirect(CVMObjectICell* icellPtr)

Set the referent of icellPtr to be the direct object reference directObj

macro void CVMID_icellSetDirect(CVMObjectICell* icellPtr, CVMObject*
directObj)
8-8 CDC Porting Guide • November 2005

CHAPTER 9

How to be GC-Safe

This chapter describes how to safely address garbage collection issues within the
runtime implementation. In practice, these issues mostly affect implementation
issues in the shared source code and not in the porting layer. The techniques in this
chapter can be used in the rare cases where it is necessary to be GC-safe in a porting
layer.

This chapter covers the following topics:

■ Introduction
■ Living with ICells
■ Explicitly Registered Roots
■ GC-safety of Threads

9.1 Introduction
In CDC HI, GC may be running at any time during program execution, searching for
program state or changing object addresses. Therefore, you should be very careful
whenever you want to access and change Java objects from native code.

The indirect memory interface allows you to safely manipulate objects from native
code. The calls that make up the indirect memory interface operate on pointers to
ICells (indirection cells), which are non-moving locations in memory holding object
references. ICells must be registered with the garbage collector (GC), so they can be
found and updated when a GC occurs. Registered ICells may be local roots, or global
roots.

The implementation of the indirect memory interface makes use of a per-thread GC-
safety flag. Each indirect memory call on an ICell marks the caller thread as GC-
unsafe, manipulates the Java object encapsulated by the ICell, and marks the thread
as GC-safe again. Threads that are marked GC-unsafe cannot tolerate GC until they
9-1

are marked GC-safe again. GC is only allowed to proceed if all threads are GC-safe.
Use of the indirect interface in conjunction with registered ICells makes your C code
safe from garbage collection, and makes the GC aware of your Java object use.

Please refer to the chapters Section , “Direct Memory Interface Reference” on
page 7-1 and Section , “Indirect Memory Interface Reference” on page 8-1 for
reference.

9.2 Living with ICells
ICells and the indirect memory interface form the foundation of the exactness
architecture of CDC HI. Therefore, it is critical to understand the various ways these
calls can be used to ensure GC-safety.

Working on an exact system is different than working on a conservative system. In a
conservative system, the GC scans the native stacks and native registers, searching
for values that look like pointers. So in order to keep a heap object alive, it is sufficient
to keep around references to it in registers or stack locations for the GC to find them.

In an exact system, all locations holding pointers to heap objects must be known to
the GC. There are two types of such known locations:

1. Implicitly registered locations: The GC has a default root scan, and certain well-
known VM data structures are considered to be default roots. Among this group
are class statics, string intern tables, JNI tables holding global references, and
others. All the references in these data structures are considered implicitly
registered with GC.

2. Explicitly registered locations: Any ICells that are not included in the default
root scan of GC must be explicitly registered, either by the local roots mechanism
or the global roots mechanism.

9.2.1 ICell Types
ICells encapsulate direct heap object references. Heap objects may be regular Java
objects or arrays. There are different ICell types to express each. ICells for all non-
array object types are declared as CVMObjectICell. Arrays of different Java types
have corresponding ICell types. For basic type <T>, the right ICell type is
CVMArrayOf<T>ICell. Other ICell types are:

CVMObjectICell ocell; /* for CVMObject references */

CVMArrayOfByteICell acellb; /* for CVMArrayOfByte references */
9-2 CDC Porting Guide • November 2005

CVMArrayOfShortICell acells; /* for CVMArrayOfShort references */

CVMArrayOfCharICell acellc; /* for CVMArrayOfChar references */

CVMArrayOfBooleanICell acellz; /* for CVMArrayOfBoolean references*/

CVMArrayOfIntICell acelli; /* for CVMArrayOfInt references */

CVMArrayOfRefICell acellr; /* for CVMArrayOfRef references */

CVMArrayOfFloatICell acellf; /* for CVMArrayOfFloat references */

CVMArrayOfLongICell acelll; /* for CVMArrayOfLong references */

CVMArrayOfDoubleICell acelld; /* for CVMArrayOfDouble references */

Because ICells contain references that may be manipulated by GC, their referents
should be set, nulled, and assigned to one another using calls from the indirect
memory interface (see Section 8.2, “ICell Manipulations” on page 8-1. Their values
should only be passed around as ICell* to ensure GC-safety. So given ocell1 and
ocell2 of type CVMObjectICell:

CVMObjectICell* ocell1;

CVMObjectICell* ocell2;

CVMExecEnv* ee = CVMgetEE();

CVMBool res;

<... make sure ocell1 and ocell2 point to registered ICells. They

could be local roots or global roots, for example. See below ...>

CVMID_icellSetNull(ee, ocell1);

CVMID_icellSetNull(ee, ocell2);

CVMassignDirectReferenceTo(ee, ocell1);

CVMID_icellIsNull(ee, ocell1, res);

if (!res) {

 /* Assign the referent of ocell1 to the referent of ocell2 */

 CVMID_icellAssign(ee, ocell2, ocell1);

}

In the example above, the only values passed around are pointers to ICells. Any
assignment to the encapsulated direct object reference of an ICell (as
assignDirectReferenceTo() does) must happen in a GC-unsafe region, created
in the body of the implementation of CVMID_icellAssign(). GC-unsafe regions
are explained in the section, Section 9.4, “GC-safety of Threads” on page 9-11 .
Chapter 9 How to be GC-Safe 9-3

9.3 Explicitly Registered Roots
Heap object references that are not part of the default root scan of garbage collection
need to be explicitly registered with the collector. There are two separate
mechanisms for explicit registration:

■ Local roots: These are short-lived values, like local variables. They are allocated
and deallocated in a stack-like fashion. The interface for using them is geared
towards fast allocation and deallocation, and does not allow out-of-order
deallocation.

■ Global roots: These are long-lived values, like global variables. The program can
obtain registered global root locations through the global roots API. Global roots
may be created and destroyed out-of-order.

9.3.1 Declaring and Using Local Roots
Local roots are an efficient way of declaring, registering and unregistering ICells of
local scope. They are typically used to hold relatively short-lived values; think of
them as GC-registered local variables. Also note that local roots are thread-local;
they are created, used and discarded in the same thread.

The use pattern is the following:

//

// Start a local root block, passing in the current 'ee'

// (execution environment), which contains per-thread

// information.

//

CVMID_localrootBegin(ee); {

 CVMID_localrootDeclare(Type1ICell, var1);

 CVMID_localrootDeclare(Type2ICell, var2);

 //

 // use var1 and var2 as Type1ICell* and Type2ICell*

 // respectively

 //

 // do NOT leave the block without executing

 // CVMID_localrootEnd()!

 //

} CVMID_localrootEnd();
9-4 CDC Porting Guide • November 2005

Since local roots occur more often (dynamically) than global roots, the interface for
using local roots is optimized for allowing stack-like fast allocation and deallocation.
Conceptually:

1. CVMID_localrootBegin() marks the beginning of a scope containing a list of
CVMID_localrootDeclare() calls.

2. The implementation keeps track of CVMID_localrootDeclare() calls. For
each, it allocates and registers a local ICell and declares an ICell pointer to that
registered ICell.

3. When the programmer is done with the local roots in the scope, he/she calls
CVMID_localrootEnd(), which discards all allocated local roots in that scope.

Note that it is important to call CVMID_localrootEnd() when leaving a local root
scope; this call discards all registered local roots declared since the last
CVMID_localrootBegin(). Also note that CVMID_localrootBegin() and
CVMID_localrootEnd() may nest arbitrarily.

9.3.1.1 Example of Local Root Use

This example illustrates local root use. You want to call an allocating operation that
is possibly a few functions deep. Therefore you want the caller to declare a local
root, and pass its corresponding ICell* as a result argument to the operation. This
keeps the allocated object safe from garbage collection the moment it is stored in the
result argument. When the operation is complete, the caller can unregister the local
root.

The following creates a Java string from a Utf8 string. It is an inlined (fast) version of
the String constructor. It uses two local roots for temporary values, and discards
them after a String has been successfully created and assigned to a result ICell.

void CVMmakeStringFromUtf8(CVMUtf8* chars, CVMObjectICell* result) {

 CVMID_localrootBegin(); {

 // Two local roots to be used as temporaries

 CVMID_localRootDeclare(CVMObjectICell, string);

 CVMID_localRootDeclare(CVMArrayOfCharICell, theChars);

 CVMJavaInt length;

 // Make the string object

 CVMID_objectNewInstance (CVMjavaLangStringClassblock, string);

 // .. . and the chars array
Chapter 9 How to be GC-Safe 9-5

 // Pass the local root in to receive the resulting char[]

 CVMmkArrayOfCharFromUtf8 (chars, theChars);

 CVMID_arrayGetLength (theChars, length);

 //

 // Assign the values of the string

 //

 CVMID_fieldWriteRef(string,
 CVM_offsetOf_java_lang_String_value, theChars);

 CVMID_fieldWriteInt(string,
 CVM_offsetOf_java_lang_String_length, length);

 CVMID_fieldWriteInt(string,
 CVM_offsetOf_java_lang_String_offset, 0);

 // We write the result back to the result ICell.

 CVMID_icellAssign (result, string);

 // We can now discard the local roots, assuming 'result' was

 // a pointer to a registered ICell.

 } CVMID_localrootEnd();

A possible caller of this may be the constant resolution code, resolving a constant
pool entry of type CONSTANT_String. The result ICell may be the actual constant
pool slot, which is updatable by the GC when it scans class information. (In other
words, the constant pool slot for a String constant is an implicitly registered ICell).

So the call would be something like:

void CVMresolveStringConstant(CVMConstantPool* cp, CVMJavaShort
strIdx, CVMJavaShort utf8Idx)

{

 CVM_CLASS_RESOLUTION_LOCK();

 CVMID_icellSetNull(&cp.entries[strIdx].str);

 //

 // Mark it as being resolved. This way, no thread can

 // yet use this c.p. entry; however GC can scan it

 // if necessary.
9-6 CDC Porting Guide • November 2005

 //

 CVMcpSetBeingResolved(cp, strIdx);

 CVMmakeStringFromUtf8(cp.entries[utf8Idx],
 &cp.entries[strIdx].str);

 CVMcpSetResolved(cp, strIdx);

 CVM_CLASS_RESOLUTION_UNLOCK();

}

9.3.2 Declaring and Using Global Roots
Global root registration allows for declaring, registering and unregistering ICells of
global scope. Global roots are typically used to hold long-lived values that are to be
included in the GC root scan; think of them as GC-registered global variables.

The use pattern is the following:

//

// Part of CVMglobals

//

struct CVMGlobalState {

 CVMObjectICell* globalRoot1;

 CVMObjectICell* globalRoot2;

}

...

void CVMinitThisModule()

{

 CVMglobals.globalRoot1 = CVMID_getGlobalRoot();

 CVMglobals.globalRoot2 = CVMID_getGlobalRoot();

 ...

}

...

void CVMuseThisModule()

{

 // globalRoot1 and globalRoot2 may safely be used as

 // ICell* arguments to CVMID_ operations.
Chapter 9 How to be GC-Safe 9-7

 CVMID_objectNewInstance(CVMclassJavaLangStringClassblock,
CVMglobals.globalRoot2);

 CVMID_icellAssign(CVMglobals.globalRoot1,
CVMglobals.globalRoot2);

}

...

void CVMexitThisModule()

{

 CVMID_freeGlobalRoot(CVMglobals.globalRoot1);

 CVMID_freeGlobalRoot(CVMglobals.globalRoot2);

}

Any long-lived ICell declaration should be registered as a global root. These include
C structure fields and global variables.

9.3.2.1 Examples of Declaring and Using Global Roots

The following examples show how to register an ICell referred to by a C struct, a C
struct that contains a Java pointer, and how to register a well-known value.

Example of Registering an ICell Referred to by a C Struct

This example shows registering an ICell referred to by a C struct. There may be long-
lived C structures in the system with heap object references, like a C hash table with
a Java array as the list of values. The declaration for that hash table in CVM would
be:

typedef struct CVMStrIDhash {

 < ... Other hashtable fields ...>

 CVMArrayOfRefICell* params; /* param table, if needed */

} CVMStrIDhash;

where the params array is declared as an ICell* holding an array of references. We
would allocate these StrIDhash nodes as follows:

/* Create a hash table of the specified size */

static CVMStrIDhash *

CVMcreateHash(int sizeInBytes)

{

 CVMStrIDhash *h;

 h = (StrIDhash *)CVMCcalloc(1, sizeInBytes);
9-8 CDC Porting Guide • November 2005

 if (h != NULL) {

 CVMinitNode(h);

 //

 // Register and null out the value

 //

 h->params = CVMID_getGlobalRoot();

 }

 return h;

}

After registration, h->params may be used as a registered ICell* parameter to
other CVMID_ operations. So to allocate the params array:

CVMBool

CVMmkParams(CVMStrIDhash* hash, int size)

{

 CVMArrayOfRefICell* params = hash->params;

 CVMID_newArrayOfRef(CVMjavaLangObjectClassblock, size, params);

 if (CVMID_icellIsNull(params)) {

 return CVM_FALSE; // Allocation failed

 } else {

 return CVM_TRUE;

 }

}

Example of a C Structure that Contains a Java Pointer

This example shows a C structure that contains a Java pointer. This declaration is
from the CVMClassblock structure. Whenever a new CVMClassblock is allocated,
the ICell* typed fields are initialized to point to fresh global roots:

struct CVMClassblock {

 ...

 CVMObjectICell* classLoader;

 ...

};

typedef struct CVMClassblock CVMClassblock;

...

CVMClassblock* class =(CVMClassblock*)CVMCcalloc(1,
sizeof(CVMClassblock));
Chapter 9 How to be GC-Safe 9-9

//

// Get a new, nulled global root to hold a classloader

// reference

//

class->classLoader = CVMID_getGlobalRoot();

//

// Make a new ClassLoader instance, and assign it to its

// location in class 'class'.

//

CVMID_objectNewInstance(CVMglobals.javaLangClassLoaderClassblock,
class->classLoader);

When the CVMClassblock is freed, all its registered global roots must be freed first:

void CVMclassUnload(CVMClassblock* class)

{

 //

 // Free all class-related data structures

 //

 ...

 //

 // Now get rid of the global roots

 //

 CVMID_freeGlobalRoot(class->classLoader);

 // And finally the Classblock itself

 CVMCfree(class);

}

Example of Registering a Well-known Value

This example shows how to register well-known values. Let's assume that we want
to have global instances of the java.lang.Class versions of some Java classes.
Note that CDC HI would not necessarily do this, since Classblocks are not
allocated on the heap, but it is a good example for global roots.

//

// Part of CVMglobals

//

struct CVMGlobalState {
9-10 CDC Porting Guide • November 2005

 CVMObjectICell* classJavaLangObject;

 CVMObjectICell* classJavaLangString;

}

...

CVMinitVM()

 /* Allocate and null out global roots */

 CVMglobals.classJavaLangObject = CVMID_getGlobalRoot();

 CVMglobals.classJavaLangString = CVMID_getGlobalRoot();

 // ... and they lived happily ever after

 CVMfindSystemClass("java/lang/Object",
CVMglobals.classJavaLangObject);

 CVMfindSystemClass("java/lang/String",
CVMglobals.classJavaLangString);

}

9.4 GC-safety of Threads
Each thread in CDC HI has a flag called the GC-safety flag. Whenever a thread
performs an operation that manipulates heap objects directly, it is marked as GC-
unsafe. If another thread initiates a GC at this time, all threads must be rolled to GC-
safe points in order for GC to proceed safely.

The bytecode interpreter typically works in a GC-unsafe manner to allow for
efficient direct access to heap objects. To bound the time the thread remains GC-
unsafe, backwards branches, method calls, and method returns are designated as
GC-safe points. At those points each thread polls for GC. If there is a GC request, the
thread suspends itself to rendezvous with all the other threads rolling forward to
their GC points. Execution continues after GC.

The implementation of the indirect memory interface marks the caller thread GC-
unsafe while it is manipulating object references directly. These are typically very
simple operations, and result in only a small window of GC-unsafety.

CDC HI also allows arbitrary sets of operations to proceed in GC-unsafe regions.
These operations should be bounded in execution time and are not allowed to block.
Chapter 9 How to be GC-Safe 9-11

For the full set of GC-safety operations, see Section 7.4, “GC-safety of Threads” on
page 7-6.

9.4.1 GC-atomic Blocks
If you want GC disallowed while executing a certain set of operations, use:

CVMD_gcUnsafeExec(ee,

 <... gc-unsafe code ...>

)

where ee is a pointer to the execution environment (CVMExecEnv) of the current
thread.

The GC-unsafe code may not block, perform I/O, or otherwise take too long to
execute, in order to keep the time the GC is disabled to a minimum.

When writing GC-unsafe code, extreme care must be taken to avoid calls to arbitrary
library routines. These may take too long to execute, or grab platform locks that
might end up blocking. The example of malloc() comes to mind. So make sure you
become GC-safe before making such a call (see Section 9.4.2, “Offering a GC-safe
Point” on page 9-14).

Direct pointers to objects may be used within the unsafe block; however, you should
make sure that all direct values are written back into registered ICells before exiting
the gcunsafe block.

Example 1:

Let's say that you want to use two direct memory accesses consecutively without the
overhead of being GC-unsafe around each. Here's how you would do that:

CVMObjectICell* cell1;

CVMObjectICell* cell2;

CVMJavaInt val1, val2;

...

< Assume cell1 and cell2 point to registered ICells >

...

CVMD_gcUnsafeExec(ee, {

 CVMObject* o1 = CVMID_icellDirect(cell1);

 CVMObject* o2 = CVMID_icellDirect(cell2);
9-12 CDC Porting Guide • November 2005

 // Read the third integer field of

 // each object.

 CVMD_fieldReadInt(o1, 2, val1);

 CVMD_fieldReadInt(o2, 2, val2);

}); // End of gcunsafe region

Example 2:

Setting the referent of an ICell. The example below takes an ICell* for a char[]
array, allocates a string, starts a GC-unsafe region, and calls out to initialize the
string's fields. The ICell pointed to by resultString gets a reference to the
allocated string before the GC-unsafe region is exited.

Note that this sort of long GC-unsafe region is intended as an example only; this
style should only be used in performance critical points, where direct accesses help
make the code faster.

void CVMmakeString(CVMArrayOfCharICell* theChars, CVMObjectICell*
resultString) {

 CVMID_localrootBegin(ee); {

 CVMID_localrootDeclare(CVMObjectICell, tempString);

 // Allocate a String

 CVMID_objectNewInstance(CVMjavaLangStringClassblock,
 tempString);

 CVMD_gcUnsafeExec(ee, {

 CVMObject* str = CVMID_icellDirect(tempString);

 CVMArrayOfChar* chars = CVMID_icellDirect(theChars);

 CVMJavaInt a_len;

 CVMD_arrayGetLength(chars, a_len);

 CVMinitializeDirectStringRef(str, chars, a_len, 0);

 // Set the referent of the ICell that resultString points

 to CVMID_icellSetDirect(resultString, str);

 });

 } CVMID_localrootEnd();

}

Chapter 9 How to be GC-Safe 9-13

Example 3:

Performing an operation that modifies a data structure that is a default GC root. In
the example below CVMicellList[] is a thread-local list of free ICells and is a
default GC root. CVMgetICell() allocates ICells from the list. All assigned ICells
from the list are scanned by the GC during the root scan. The operation needs to
disable the GC; otherwise a GC scan might find the ICell list in an inconsistent state.

CVMObjectICell CVMicellList[];

CVMUint32 CVMicellListPtr;

CVMObjectICell* CVMgetICell()

{

 CVMObjectICell* ret;

 CVMD_gcUnsafeExec(ee, {

 ret = &CVMicellList[icellListPtr++];

 ((CVMUint32)ret) = 0;

 });

 return ret;

}

If a GC were to happen after the increment and before the initialization, garbage
values might be erroneously scanned by GC, potentially causing a crash. Therefore,
to prevent race conditions, CVMD_gcUnsafeExec() keeps GC disabled between
these two operations.

9.4.2 Offering a GC-safe Point
Code that is GC-unsafe for long segments must periodically offer a GC-safe point.
For example, the interpreter runs in a GC-unsafe way, manipulating direct pointers,
etc., but at backwards branches, at method calls, and maybe other points, it must
offer to be GC-safe to bound the time from a GC request to a GC cycle start. Also,
long running operations like data structure expansions or lengthy computations
must offer to be GC-safe occasionally. And finally, the VM must offer GC-safe points
before doing potentially blocking OS calls like dynamic linker resolution for natives,
acquiring locks, or I/O in order to make sure there are no blocked, GC-unsafe
threads in the system.

The standard pattern of doing this is to use the CVMD_gcSafeExec() or the
CVMD_gcSafeCheckPoint() macros. For details, refer to Section 7.4, “GC-safety of
Threads” on page 7-6.
9-14 CDC Porting Guide • November 2005

CVMD_gcSafeCheckPoint() is used to offer a GC-safe point for operations that
will definitely not block:

CVMD_gcSafeCheckPoint(

 ee,

 {

 <Save your state for possible GC>

 },

 {

 <Restore your state after possible GC>

 }

);

CVMD_gcSafeExec() is used to offer a GC-safe point for operations that might
block.

CVMD_gcSafeExec(

 ee,

 {

 <Do potentially blocking operation>

 }

);

At the end of one of these macros, the executing thread is once again GC-unsafe.

Example 1:

The interpreter becomes GC-safe on a backwards branch.

<...>

case opc_goto: {

 CVMJavaShort skip = CVMgetJavaShort(currentPc + 1);

 if (skip <= 0) {

 CVMD_gcSafeCheckPoint(ee,

 {

 CVM_DECACHE_INTERPRETER_STATE(currentFrame,
 currentPc, currentSp);

 },

 {

 // No reconstruction needed since Java code

 // will not execute in this thread
Chapter 9 How to be GC-Safe 9-15

 // between DECACHE_... and GC.

 }

);

 }

 CVMexecuteNextInstructionAtOffset(skip);

 }

<...>

In effect, the CVMD_gcSafeCheckPoint() operation polls a global variable to see if
a GC is requested. If it is requested, then the state save operation occurs, GC is run,
and the state is reconstructed. If no GC was requested, we go on. This is a very
efficient way to create polling-based GC-safe points.

Example 2:

Blocking operations need to become GC-safe. Here's a tricky example: a two-part
monitorenter operation. The first one gets access to the object, and checks to see if
blocking is needed. If no blocking needed, there is no need to become GC-safe. If
blocking is needed, we save our state, become GC-safe and block.

....

case opc_monitorenter: {

 CVMObject* lockedObject;

 vmResult result;

 lockedObject = STACK_OBJECT(-1);

 CHECK_NULL(lockedObject);

 result = CVMobjectTryLock(lockedObject); // Try to lock

 if (result == VM_LOCKED_WITHOUT_BLOCKING) {

 //

 // The uncontended case

 // We have already succeeded locking

 //

 } else {

 //

 // May now block.

 // Save interpreter state, stash away locked object

 // as a GC-root, and use monitorEnterMayblock() with

 // the ICell version.
9-16 CDC Porting Guide • November 2005

 //

 CVM_DECACHE_INTERPRETER_STATE(currentFrame, currentPc,
currentSpCached);

 CVMD_gcSafeExec(

 ee,

 {

 // Pass in the stack slot as the ICell*

 CVMmonitorEnterMayblock(&STACK_OBJECT(-1));

 }

)

 }

 if (CVMcheckForException() == VM_NO_POSTED_EXCEPTION) {

 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);

 } else {

 CVMhandleException();

 }

}

Example 3:

VM becomes GC-safe before making a call that might allocate from the C heap. This
routine may end up taking a long time execute, or even worse, block on an OS lock.
Therefore the VM needs to become GC-safe before making the call, in a way that
allows blocking.

Here's an excerpt from the stack expansion code that becomes GC-safe before
attempting to allocate from the C heap.

CVMStackVal32*

CVMexpandStack(CVMStack* obj, CVMUint32 capacity)

{

 * Must allocate new chunk. Take excess capacity into account.

 */

 size = sizeof(CVMStackChunk) + sizeof(CVMStackVal32) * (capacity
- CVM_MIN_STACKCHUNK_SIZE);

 newStackSize = s->stackSize + capacity;

 if (newStackSize > CVM_MAX_STACK_SIZE) {
Chapter 9 How to be GC-Safe 9-17

 ... throw exception ...

 }

 CVMD_gcSafeExec(ee, {next = (CVMStackChunk*)CVMCmalloc(size);}

);

}

9-18 CDC Porting Guide • November 2005

PART V GUI Layer

This part describes the porting interfaces for the GUI alternatives.

■ Personal Profile
■ Personal Basis Profile

CHAPTER 10

Personal Basis Profile

10.1 Introduction
Personal Basis Profile provides a hosting layer for alternate GUI toolkits that are
based on Java technology. These GUI toolkits are called lightweight component toolkits
to distinguish them from native GUI toolkits which are based on native platform
technology. Lightweight component toolkits can be based on industry-standard or
vendor-specific interfaces.

At a lower level, the Personal Basis Profile reference implementation (RI) mentioned
in this porting guide has a portability interface that allows it to be modified to
support different target platforms. The Personal Basis Profile RI is based on the Qt
application development framework (http://www.trolltech.com). This makes it
a good example of how to structure an implementation as well as a technology
demonstration that serves as a reference for TCK verification. Product
implementations may be based on modifying the Qt implementation or replacing it
with an alternate native GUI toolkit.

In many ways, the functionality and porting interface of Personal Basis Profile is a
subset of Personal Profile. See Section 11.1, “Introduction” on page 11-1 for an
overview of AWT.

This chapter provides guidance for porting Personal Basis Profile to an alternate
native GUI toolkit. See the Personal Basis Profile TCK Users Guide for information
about how to use the Personal Profile TCK test suite.
10-1

http://www.trolltech.com

10.2 Porting Architecture
The goals of the porting layers of Personal Basis Profile are to:

■ Provide native functionality that supports the GUI semantics and imaging model
in Personal Basis Profile.

■ Meet product requirements for speed and cost/resource constraints.
■ In some cases, provide GUI interoperability that allows AWT-based applications

to cooperate with native applications.

FIGURE 10-1 describes the basic AWT architecture in Personal Basis Profile. java.awt
represents the publicly accessible classes that can be used to construct lightweight
component toolkits and applications. sun.awt contains high-level portion of the
Sun AWT implementation. sun.awt.qt contains the toolkit support library which
implements the native methods of the Qt native bridge.

FIGURE 10-1 Personal Basis Profile AWT Architecture

Sun AWT implementation

toolkit support library

native bridge

native GUI toolkit

sun.awt

sun.awt.qt

JNI implementation

native implementation

lightweight component toolkit

applications

Abstract Window Toolkit (AWT) java.awt

public
APIs

AWT
implementation
10-2 CDC Porting Guide • November 2005

TABLE 10-1 describes the contents of the source code directories that correspond to the
layers shown in FIGURE 10-1.

TABLE 10-1 Porting Architecture

Layer Source Code Directory Description

public AWT
classes

basis/classes/common/java/awt

basis/classes/common/java/awt/image

These public classes are available to
lightweight component toolkits and
applications.

Sun AWT
implementation

basis/classes/common/sun/awt Contains high-level AWT implementation
classes. The contents of this directory will
not need modification for most ports.

toolkit support
library (Java)

basis/classes/awt/qt/java/awt Contains concrete implementations of
QtToolkit, QtImage and other AWT
classes. Other than refactoring, the
contents of this directory will not need
modification for most ports.

native bridge
(JNI)

basis/native/awt/qt Contains JNI wrapper functions that call
the native GUI toolkit functions. Most of
the work during a port involves rewriting
the implementations of these JNI wrapper
functions.

image decoders
(Java)

basis/classes/common/sun/awt/image Contains image handling classes.

native image
decoders (JNI)

basis/native/image Contains JNI wrapper functions for
sun.awt.image.
Chapter 10 Personal Basis Profile 10-3

The files in basis/native/awt/qt contain the native bridge source files. This is
the central focus of the porting effort.

Other useful source files in this directory are QtSync.cpp and QtSync.h which
include Qt-level thread support used in the RI. The OI uses VM-level primitives for
thread support.

TABLE 10-2 Native Bridge Source Files (JNI)

File Description

QtToolkit.cpp JNI wrapper functions for
sun.awt.qt.QtToolkit, the concrete
implementation of java.awt.Toolkit.

Window.cpp JNI wrapper functions for the sun.awt.qt.Window
implementation class.

QtGraphics.cpp
QtGraphicsConfiguration.cpp
QtGraphicsDevice.cpp
QtGraphicsEnv.cpp

JNI wrapper functions for the Graphics
implementation classes.

QtFontMetrics.cpp JNI wrapper functions for the Font implementation
classes.

QtImage.cpp JNI wrapper functions for the Image
implementation classes.

QtSync.cpp
QtSync.h

Mutex support.

QtRobotHelper.cpp JNI wrapper functions for sun.awt.RobotHelper.
NOTE: this is not part of the public API of Personal
Basis Profile.

KeyCodes.h Virtual keycode table.

awt.h JNI ID table.
10-4 CDC Porting Guide • November 2005

10.3 Planning and Requirements

10.3.1 Native GUI Toolkit Requirements
An AWT native bridge for Personal Basis Profile can be based on an alternate native
GUI toolkit. An advantage of doing this may be the hardware acceleration provided
by a native GUI toolkit. A disadvantage may be that the native GUI tookit doesn’t
include everything necessary to support the AWT imaging model in Personal Basis
Profile.

In selecting a native GUI toolkit, the following factors should be considered:
■ Graphics model. The native GUI toolkit should include a stencil/paint imaging

model similar to the one used in java.awt.Graphics as well as a device
abstraction layer similar to what is found in java.awt.GraphicsDevice,
java.awt.GraphicsEnvironment and
java.awt.GraphicsConfiguration. Color model support, alpha blending
and support for BufferedImage will make porting much easier.

■ Truetype font support.
■ Thread safety. Thread safety is an important part of any AWT implementation and

this is an area where native GUI toolkits can vary quite a bit. On one end of the
spectrum are sophisticated native GUI toolkits that have built-in thread
management. On the other end are simple native GUI toolkits without internal
thread management. The specific properties of your native GUI toolkit will have
important implications for the design of a native bridge.

■ Object-oriented design. Both AWT and the Personal Profile portability layer are
object-oriented. Using a native GUI toolkit that has an API with a similar object-
oriented design will simplify the porting effort.

At a lower-level, the feature set of a native GUI toolkit has important implications
for the design of an alternate implementation of Personal Profile. The following
features are important to consider in planning the design of an alternate
implementation:

■ Container layout management. The AWT layout managers like FlowLayout can
either use a Java implementation or native layout functionality from the native
GUI toolkit.

■ Repaint/refresh event management. Repaint events for some components can be
handled by either the native GUI toolkit or with a Java implementation.

■ Event callback registration. Some native GUI toolkits have functionality for
notifying an application when an event happens.

■ Event filtering. Some native GUI toolkits have functionality for watching the event
queue for specific events.
Chapter 10 Personal Basis Profile 10-5

■ Event loop management. Some native GUI toolkits have their own event loops.
Others have only widgets and graphics routines and require an application to
supply its own event management.

10.3.2 Notes
■ For developers with porting experience from legacy technologies like

PersonalJava Application Environment, it is better to start fresh with the Personal
Basis Profile implementation rather than attempt to bring over and modify old
code. The porting layers described here do not use the AWT peer model.

■ Thread support is an important part of any AWT implementation because all
graphics operations must occur atomically. Using a thread-safe GUI toolkit will
simplify the task of supporting this requirement.

■ The specification for the BufferedImage class in the Personal Basis Profile has
been significantly reduced from the J2SE 1.4.2 specification. The reason is that the
Java SE version of BufferedImage requires too many resources for an embedded
application. The Personal Basis Profile version includes only the getRGB() and
setRGB() methods and cannot be directly instantiated or subclassed. Use
GraphicsConfiguration.createCompatibleImage() to create an instance
of BufferedImage. If you need to implement BufferedImage separately, take a
close look at the implementation supplied in the Personal Basis Profile source
release to see how it works.

10.4 Writing a Personal Basis Profile AWT
Implementation
The following procedures represent the major tasks to perform during the initial
port of the Personal Basis Profile source release to an alternate native GUI toolkit.

■ Section 10.4.1, “Build System Procedures” on page 10-7 shows how to clone and
modify the build system to support an alternate native GUI toolkit.

■ Section 10.4.2, “Source Code Procedures” on page 10-7 shows how to clone and
modify the Personal Basis Profile source hierarchy to support an alternate native
GUI toolkit.

■ Section 10.4.3, “Native Bridge Implementation” on page 10-8 outlines some of the
tasks in implementing a native bridge.
10-6 CDC Porting Guide • November 2005

10.4.1 Build System Procedures
The steps described below are based on cloning the qt implementation and creating
an implementation called MyGT, for MyGraphicsToolkit. In build/share:

1. Clone the native GUI toolkit-specific build files:

% cp defs_basis_qt.mk defs_basis_mygt.mk
% cp rules_basis_qt.mk rules_basis_mygt.mk

2. Refactor the native GUI toolkit-specific build files to use the MyGT prefix.

10.4.2 Source Code Procedures
1. Refactor and stub out the JNI wrapper functions in basis/native/awt/mygt.

2. Clone the source file hierarchy.

a. Clone the source files in classes/awt/qt:

 % cp -r qt mygt

b. Clone the source files in basis/native/awt/qt:

 % cp -r qt mygt

3. Refactor the source files in basis/classes/awt/mygt to use the MyGT prefix.

Since the toolkit support library is fairly high-level, it won’t require much
modification during a port other than refactoring to use the MyGT prefix. The classes
in the toolkit support library mostly handle the task of registering and calling the
JNI functions in the native bridge. Therefore the modifications to this layer are pretty
straightforward. If you add new source files or change the name of existing source
files, be sure to modify the CLASSLIB_CLASSES macro in
build/share/defs_basis_mygt.mk to reflect the changes.

4. Edit the concrete Toolkit class.

Edit the source file for the concrete Toolkit class (e.g.
basis/classes/awt/qt/java/awt/QtToolkit.java), and change the line that
registers the native bridge library to specify the new implementation:

new sun.security.action.LoadLibraryAction("mygtawt"));

5. Refactor and stub out the JNI wrapper functions in basis/native/awt/mygt to
use the MyGT prefix.

6. Build the system.

After making these changes, the system should build correctly but not run.

% make J2ME_CLASSLIB=basis
Chapter 10 Personal Basis Profile 10-7

10.4.3 Native Bridge Implementation
The JNI source files for the native bridge call library functions in the native GUI
toolkit. The first changes to this layer are straightforward and mainly involve
refactoring the JNI function implementations and removing unnecessary utility and
helper functions. Of course, the main task of porting the Personal Basis Profile
source release involves reimplementing these JNI functions with library functions
from your native GUI toolkit.

Here are some guidelines for how to approach implementing the native bridge.

■ Event handling code. You need to start with a solid understanding of the AWT
event hierarchy and an appreciation of the tradeoffs between what can be done by
the native bridge and the platform toolkit support library. See Section 11.4.4,
“Event Delivery Notes” on page 11-11.

■ Thread management code. The Qt implementation has two cooperating threads: a
Java thread created in sun.awt.qt.QtToolkit and a Qt-managed native thread
created in the Java_sun_awt_qt_QtToolkit_initIDs function in
QtToolkit.c.

■ Graphics code in QtGraphics*.cc. The following JNI methods should be
implemented first: clearRect, copyArea, drawArc, drawLine, drawPolygon,
drawRect, drawRoundRect, drawString, fillArc, fillRoundRect,
removeClip, setClip, setForeground, setPaintMode and setXORMode.

If you add new source files or change the name of existing source files, modify the
AWT_LIB_OBJS macro in build/share/defs_basis_mygt.mk to reflect the
changes. You will probably also need to modify the JNI ID table in awt.h to reflect
any name changes.
10-8 CDC Porting Guide • November 2005

CHAPTER 11

Personal Profile

11.1 Introduction
Personal Profile provides a full set of heavyweight AWT components as well as
applet support for embedded Web browsers. This provides GUI API compatibility
with Java SE applications as well as compatibility with applet-based Web content..

The Personal Profile implementation mentioned in this porting guide is based on the
Qt application development framework (http://www.trolltech.com). This
makes it a good example of how to structure an implementation as well as a
technology demonstration that serves as a reference for TCK verification. Product
implementations may be based on modifying the Qt implementation or replacing it
with an alternate native GUI toolkit.

This chapter provides guidance for porting Personal Profile to an alternate native
GUI toolkit. See the Personal Profile TCK Users Guide for information about how to
use the Personal Profile TCK test suite.

11.1.1 AWT Background
The Abstract Window Toolkit (AWT) is a basic toolkit for building graphical user-
interfaces (GUIs) for Java application software. The AWT divides the task of
supplying GUI services between high-level API classes and low-level
implementation classes. Java application software interacts only with the high-level
API classes while the AWT manages the task of mapping these high-level API
classes to implementation classes that supply GUI services through some native GUI
toolkit. This architecture allows Java application software to use a single GUI API
and run without modification on different target platforms.
11-1

http://www.trolltech.com

GUI widgets like Buttons and Dialogs can be supplied in two different ways:

■ Lightweight GUI components are subclassed from java.awt.Component and
based entirely on Java technology. This allows maximum portability and control
by the developer.

■ Heavyweight GUI components are based on widgets found in native GUI toolkits.
This promotes maximum compatibility with native platform technology.

The AWT has been a part of the Java class library from the beginning and since then
its public APIs have changed very little. Its role has evolved during the following
stages:

■ JDK 1.0.x & 1.1.x. Originally, the AWT was implemented as a set of high-level
API classes and a set of low-level implementation classes. This provided the
application portability needed by the Java platform even if it didn’t provide a
flexible portability strategy for the AWT itself. The main problem was the fact that
the AWT was required to supply implementation classes that used a set of public
Java interfaces in the java.awt.peer package. These peer interfaces simplified
the task of mapping API classes to implementation classes but they also limited
the flexibility of a given AWT implementation.

■ Swing. The Swing GUI toolkit provides an alternate GUI framework with a
substantially richer interface than the AWT. Most of Swing is implemented as
lightweight GUI components that give application developers tremendous
flexibility, including the selection of pluggable look & feel designs.

■ PersonalJava. The PersonalJava Application Environment (PJAE) was based on
the early JDK 1.1.x AWT implementation. From an application-level perspective it
included changes like optional and modified classes that allow an implementation
to require fewer system-level resources. In addition, the PJAE included an AWT
implementation that was written almost entirely in Java and did not require a
native GUI toolkit or graphics/window system. This changed the portability
focus to the device level which was appropriate for the consumer technology
market targeted by PJAE.

■ Personal Basis Profile. The AWT implementation in Personal Basis Profile serves
a different purpose than previous AWT implementations. Where earlier AWT
implementations included both a fixed set of heavyweight components as well as
the ability to create and host lightweight components, the AWT implementation
in Personal Basis Profile is intended only to host lightweight component toolkits
based on industry-standard or vendor-specific interfaces.

■ Personal Profile. The AWT implementation in the Personal Profile provides a
conventional AWT implementation that is portable and tuned to the needs of
resource-constrained devices. This includes both a standard set of heavyweight
components and the ability to host lightweight component toolkits. In addition,
Personal Profile includes full applet support so that it can be used with embedded
Web browsers.
11-2 CDC Porting Guide • November 2005

11.1.2 Additional Reading
■ Personal Profile Specification, JSR-216 - http://jcp.org/jsr/detail/216.jsp.

The Personal Profile specification describes an API for a AWT-based GUI class
library. While the Personal Profile specification does not describe a specific
implementation, familiarity with this API specification is still a necessary part of
the porting process.

■ Personal Basis Profile Specification, JSR-217 -
http://jcp.org/jsr/detail/217.jsp. The Personal Basis Profile
specification describes an API for providing a hosting layer for alternate GUI
toolkits that are themselves based on Java technology.

■ Java Native Interface: Programmer’s Guide and Specification by Sheng Liang.
Addison-Wesley, 1999. The JNI is the main interface for writing the wrapper
functions for a native bridge.

■ The Java Class Libraries, Second Edition, Volume 2, by Patrick Chan and Rosanna
Lee. Addison-Wesley, 1998. This is probably the best reference manual for the
AWT because it provides much more detail about the AWT classes than the Java
SE or Java ME specifications. Though it is based on JDK 1.1 and thus doesn’t
describe the newer Java SE graphics classes included in Personal Profile, it does
provide a more detailed description of the event and peer hierarchies.

11.2 Porting Architecture
The goals of the porting layers of Personal Profile are to:

■ Provide native functionality that supports the GUI semantics and imaging model
in Personal Profile.

■ Meet product requirements for speed and cost/resource constraints.
■ In some cases, provide GUI interoperability that allows AWT-based applications

to cooperate with native applications.

FIGURE 11-1 describes the basic AWT architecture in Personal Profile. java.awt
represents the publicly accessible classes that represent heavy weight GUI
components. sun.awt.peer contains the AWT peer interfaces that shape the
Chapter 11 Personal Profile 11-3

http://jcp.org/jsr/detail/217.jsp
http://jcp.org/jsr/detail/216.jsp

requirements of a concrete AWT implementation. sun.awt contains high-level
portion of the Sun AWT implementation. And sun.awt.qt contains the toolkit
support library which implements the native methods of the Qt native bridge.

FIGURE 11-1 Personal Profile AWT Architecture

Sun AWT implementation

toolkit support library

native bridge

native GUI toolkit

sun.awt

sun.awt.qt

JNI implementation

native implementation

applications

Abstract Window Toolkit (AWT) java.awt

public
APIs

AWT
implementation

AWT peer interfaces sun.awt.peer
11-4 CDC Porting Guide • November 2005

The high-level architecture of a Personal Profile AWT port is organized into the stack
of layers described in TABLE 11-1.

TABLE 11-1 AWT Porting Layers

Layer Source Code Directory Description

public AWT
classes

personal/classes/awt/peer_based/java/awt
personal/classes/common/java/awt/
basis/classes/common/java/awt

The public AWT classes. Some
Personal Profile classes are
supersets of the equivalent
J2SE 1.4.2 AWT classes. These
include some extra
functionality to provide
backward compatibility for the
PersonalJava Application
Environment.

peer interfaces
(Java)

personal/classes/awt/peer_based/sun/awt/peer The AWT peer interfaces
describe the requirements for
an AWT implementation. In
Personal Profile, these
interfaces have been moved
from the public java.awt
package into the
implementation-specific
sun.awt.peer package.

Sun AWT
implementation
(Java)

personal/classes/awt/peer_based/sun/awt
basis/classes/common/sun/awt

Contains high-level AWT
implementation classes. The
contents of this directory will
not need modification for most
ports.

toolkit support
library (Java)

personal/classes/awt/peer_based/sun/awt/qt The Qt toolkit support library
provides a concrete
implementation of
java.awt.Toolkit which
maps AWT component classes
to peer classes that encapsulate
native widgets that are
managed by the Qt-based
native bridge.

native bridge
(JNI)

personal/native/awt/qt The Qt native bridge is a set of
JNI wrapper functions that call
Qt library functions.

image decoders
(Java)

personal/classes/common/sun/awt/image Contains image handling
classes.

native image
decoders (JNI)

personal/native/image Contains JNI wrapper
functions for sun.awt.image.
Chapter 11 Personal Profile 11-5

t.
TABLE 11-2 describes the toolkit support library source files in
personal/classes/awt/peer_based/sun/awt/qt. The main purpose of the
toolkit support library is to supply a concrete implementation of the abstract
java.awt.Toolkit class and map GUI component classes to peer
implementations. The Personal Profile source release includes two other abstract
classes, sun.awt.SunToolkit and sun.awt.PeerBasedToolkit, that simplify
this task. For most implementations, it is best to refactor the Qt implementation. The
top-level Toolkit class also creates a thread for processing events for the toolkit
support library.

TABLE 11-3 describes the JNI source files in personal/native/awt/qt. This is the
main directory for a native bridge implementation and represents the bulk of the
work for a porting effort.

TABLE 11-2 Qt Toolkit Support Library

Source File Description

QtToolkit.java The main concrete implementation of java.awt.Toolki

Qt*Peer.java
QtMenuContainer.java

Implementation classes for peer-based GUI component.

QtFont.java Font implementation class.

Qt*Graphics*.java Graphics implementation classes.

Qt*Image*.java Image implementation classes.

QtRobotHelper.java Implementation class for sun.awt.RobotHelper.

QtClipboard.java System-based clipboard support used by
java.awt.datatransfer.Clipboard.

TABLE 11-3 Qt Native Bridge

Source File Description

awt.cc
awt.h

Utility functions and the JNI ID table.

QtToolkit.cc
QtToolkit.h
QtToolkitEventHandler.cc

JNI wrapper functions for sun.awt.qt.QtToolkit, the
concrete implementation of java.awt.Toolkit.

Qt*Peer.cc
Qt*Peer.h

JNI wrapper functions for the peer-based GUI component
classes.

QtGraphics.cc
QtGraphics.h

JNI wrapper functions for the Graphics classes.
11-6 CDC Porting Guide • November 2005

The other source files in personal/native/qt contain helper classes that are Qt-
specific and therefor not useful during a port.

11.3 Planning and Requirements

11.3.1 Native GUI Toolkit Requirements
In selecting a native GUI toolkit, the following factors should be considered:

■ Widget set. The widgets supplied by the native GUI toolkit should match the
requirements of the public GUI component classes in the AWT. Most of the GUI
components in AWT are straightforward and are in most commonly available
native GUI toolkits. The most complex is FileDialog. If this or any other
component is not available, it may be necessary to implement it separately. Here
the choices are between building a lightweight component or perhaps extending
the native GUI toolkit.

■ Graphics model. The native GUI toolkit should include a stencil/paint imaging
model similar to the one used in java.awt.Graphics as well as a device
abstraction layer similar to what is found in java.awt.GraphicsDevice,
java.awt.GraphicsEnvironment and
java.awt.GraphicsConfiguration. Color model support, alpha blending
and support for BufferedImage will make porting much easier.

ImageRepresentation.h
QtImageDecoder.cc
QtImageRepresentation.cc
OffScreenImageSource.cc

JNI wrapper functions for the Image classes.

QtClipboard.cc
QtClipboard.h

JNI wrapper functions for system-based clipboard support
needed by java.awt.datatransfer.Clipboard.

QtKeyboardFocusManager.cc JNI wrapper functions for the
java.awt.KeyboardFocusManager.

QtRobotHelper.cc JNI wrapper functions for sun.awt.RobotHelper.

KeyCodes.cc
KeyCodes.h

Table of key combinations generated for
sun.awt.qt.QtTextField and
sun.awt.qt.QtTextArea.

QtSync.cc
QtSync.h

Mutex support.

TABLE 11-3 Qt Native Bridge

Source File Description
Chapter 11 Personal Profile 11-7

■ Truetype font support.
■ Event handling. The AWT uses a delegated event handling model where an event

source creates an event which is then handled by another object. Events are
associated with generic user-input devices like Buttons and Scrollbars. See
Section 11.4.4, “Event Delivery Notes” on page 11-11 for information about how
native events are scheduled with the AWT event handling mechanism.

■ Thread safety. Thread safety is an important part of any AWT implementation and
this is an area where native GUI toolkits can vary quite a bit. On one end of the
spectrum are sophisticated native GUI toolkits that have built-in thread
management. On the other end are simple native GUI toolkits without internal
thread management. The specific properties of your native GUI toolkit will have
important implications for the design of a native bridge.

■ Object-oriented design. Both AWT and the Personal Profile portability layer are
object-oriented. Using a native GUI toolkit that has an API with a similar object-
oriented design will simplify the porting effort.

At a lower-level, the feature set of a native GUI toolkit has important implications
for the design of an alternate implementation of Personal Profile. The following
features are important to consider in planning the design of an alternate
implementation:

■ Container layout management. The AWT layout managers like FlowLayout can
either use a Java implementation or native layout functionality from the native
GUI toolkit.

■ Repaint/refresh event management. Repaint events for some components can be
handled by either the native GUI toolkit or with a Java implementation.

■ Event callback registration. Some native GUI toolkits have functionality for
notifying an application when an event happens.

■ Event filtering. Some native GUI toolkits have functionality for watching the event
queue for specific events.

■ Event loop management. Some native GUI toolkits have their own event loops.
Others have only widgets and graphics routines and require an application to
supply its own event management.

11.3.2 Notes
■ For developers with porting experience from legacy technologies like

PersonalJava Application Environment, it is better to start fresh with the Personal
Profile implementation rather than attempt to bring over and modify old code.
The porting layers described here are different than peer-based implementations.

■ The Personal Profile specification for java.awt.image.AlphaComposite
allows an implementation to approximate the result of SRC_OVER. The
implementation in the Personal Profile source release provides a very limited
implementation of SRC_OVER.

■ Personal Profile inherits its API specification for the BufferedImage class from
Personal Basis Profile. See Section 10.3.2, “Notes” on page 10-6 for more details.
11-8 CDC Porting Guide • November 2005

11.4 Writing a Personal Profile AWT
Implementation
The following procedures represent the major tasks to perform during the initial
port of the Personal Profile source release to an alternate native GUI toolkit.
Section 11.4.1, “Build System Procedures” on page 11-9 shows how to modify the
build system and clone the source trees for a toolkit support library and native
bridge. Section 11.4.2, “Source Code Procedures” on page 11-9 outlines the task of
writing a toolkit support library and native bridge based on an alternate native GUI
toolkit.

11.4.1 Build System Procedures
The steps described below are based on cloning the qt implementation and creating
an implementation called MyGT, for MyGraphicsToolkit.

In build/share:

1. Edit the build file defs_personal_peer_based.mk and change the definition of
AWT_PEERSET to refer to mygt:

AWT_PEERSET=mygt

2. Clone the build files:

% cp defs_personal_qt.mk defs_personal_mygt.mk
% cp rules_personal_qt.mk rules_personal_mygt.mk

3. Refactor the build files to use the MyGT prefix.

11.4.2 Source Code Procedures
The steps described below are based on cloning the qt implementation and creating
an implementation called MyGT, for MyGraphicsToolkit.

In src/share:

1. Clone the source file hierarchy.

a. Clone the source files in classes/awt/peer_based/sun/awt/qt:

 % cp -r qt mygt

b. Clone the source files in classes/awt/peer_based/sun/awt/qt:
Chapter 11 Personal Profile 11-9

 % cp -r qt mygt

c. Clone the source files in native/awt:

 % cp -r qt mygt

2. Refactor the source files in personal/classes/awt/peer_based/sun/awt/qt
to use the MyGT prefix.

Since the toolkit support library is fairly high-level, it won’t require much
modification during a port other than refactoring to use the MyGT prefix. The classes
in the toolkit support library mostly handle the task of registering and calling the
JNI functions in the native bridge. Therefore the modifications to this layer are pretty
straightforward. If you add new source files or change the name of existing source
files, be sure to modify the CLASSLIB_CLASSES macro in
build/share/defs_personal_mygt.mk to reflect the changes.

3. Edit the concrete Toolkit class.

Edit the source file for the concrete Toolkit class (e.g.
classes/awt/peer_based/sun/awt/mygt/MyGTToolkit.java), and change
the line that registers the native bridge library to specify the new implementation:

new sun.security.action.LoadLibraryAction("mygtawt"));

4. Refactor and stub out the JNI wrapper functions in personal/native/awt/mygt
to use the MyGT prefix.

5. Build the system.

After making these changes, the system should build correctly but not run.

% make J2ME_CLASSLIB=personal AWT_IMPLEMENTATION=peer_based \
 AWT_PEERSET=mygt

11.4.3 Native Bridge Implementation
The JNI source files for the native bridge call library functions in the native GUI
toolkit. The first changes to this layer are straightforward and mainly involve
refactoring the JNI function implementations and removing unnecessary utility and
helper functions. Of course, the main task of porting the Personal Profile source
release involves reimplementing these JNI functions with library functions from
your native GUI toolkit.

Here are some guidelines for how to approach implementing the native bridge.

■ Peer component/native widget mapping in QtToolkit.java and Qt*Peer.java. If
you understand the AWT component hierarchy, this is a straightforward task.

■ Event handling code in QtToolkit.c and Qt*Peer.[ch]. You need to start with a
solid understanding of the AWT event hierarchy and an appreciation of the
tradeoffs between what can be done by the native bridge and the platform toolkit
support library. See Section 11.4.4, “Event Delivery Notes” on page 11-11.
11-10 CDC Porting Guide • November 2005

■ Thread management code. The Qt implementation has two cooperating threads: a
Java thread created in sun.awt.qt.QtToolkit and a Qt-managed native thread
created in the Java_sun_awt_qt_QtToolkit_initIDs function in
QtToolkit.c. See the description of Thread Safety for more information about the
tradeoffs and design choices for thread management.

■ Drawing, clipping, cursor and font handling code in QtGraphics.[ch]. The
following JNI methods must be implemented: clearRect, , drawArc,
drawLine, drawPolygon, drawRect, drawRoundRect, drawString, fillArc,
fillRoundRect, removeClip, setClip, setForeground, setPaintMode and
setXORMode.

■ Image handling code in QtImageRepresentation.c and
ImageRepresentation.h.

If you add new source files or change the name of existing source files, modify the
AWT_LIB_OBJS macro in build/share/defs_personal_mygt.mk to reflect the
changes. You will probably also need to modify the JNI ID table in awt.h to reflect
any name changes.

11.4.4 Event Delivery Notes
The event delivery mechanism for heavyweight components in Personal Profile and
other AWT implementations can present some difficulties for a porting engineer.
There are two basic problems: the order of event delivery and the mechanism for
delivering events from a native widget to the relevant AWT component.

11.4.4.1 Event Ordering

The Personal Profile and Java SE specifications for java.awt.EventQueue make it
clear that the order of event delivery is implementation-dependent. The notes below
describe the implementation approach used in the Personal Profile source release.

■ General Rules
■ All native mouse and keyboard events must be redirected through the AWT

event queue for possible processing and consumption.
■ A series of MOUSE_MOVED events may be coalesced.
■ A series of MOUSE_DRAGGED events may be coalesced.
■ A series of PAINT events will be coalesced.
■ A native widget like a Checkbox could receive an event combination like

MOUSE_PRESS, ITEM_EVENT and MOUSE_RELEASED. The order in which these
events appear in the Java event queue is not specified.

■ WINDOW_ICONIFIED and WINDOW_DEICONIFIED events are only generated
when the Frame is visible.
Chapter 11 Personal Profile 11-11

■ Well-Paired Event Combinations. The following event combinations should be
"well-paired", which means that they should match 1:1 and follow a specific
order. For example, for each KEY_PRESS event there should follow a
KEY_RELEASED event.
■ MOUSE_ENTER and MOUSE_EXIT
■ WINDOW_ACTIVATED and WINDOW_DEACTIVATED
■ MOUSE_PRESSED and MOUSE_RELEASED
■ KEY_PRESS and KEY_RELEASED
■ KEY_TYPED and KEY_RELEASED

■ Other Rules
■ A FOCUS_LOST temporary event should be issued for each

WINDOW_DEACTIVATED event.
■ A FOCUS_GAINED permanent event should be issued for each

WINDOW_ACTIVATED event.
■ A WINDOW_ACTIVATED event should be issued before a FOCUS_GAINED event.
■ A FOCUS_LOST event should be issued before each WINDOW_DEACTIVATED

event.
■ A KEY_RELEASED event should be delivered before a KEY_TYPED event.

11.4.4.2 Event Delivery Mechanism

The more difficult problem is in making sure that events are sent to the right
component depending on the state of the system. The events that cause the most
problems are FOCUS_GAINED, FOCUS_LOST, MOUSE_DRAGGED and MOUSE_MOVED.

■ Focus Events. FOCUS_GAINED and FOCUS_LOST events are perhaps the hardest to
get right but are actually very simple when you fully understand what the peer
classes expect. Here are some useful guidelines:
■ KEY_PRESSED, KEY_RELEASED and KEY_TYPED events should be sent to the

heavyweight component that has focus. In effect the peers can assume there is
one component that always has focus in every containing Window. If no
components actually have focus then you can assume the containing Window
requested focus and send key events to it.

■ Whenever the focus changes from one component to another, post a
FOCUS_LOST permanent event for the component with current focus (see the
technique described above for the case where no component has focus) and a
FOCUS_GAINED permanent event for the component with new focus. The
FOCUS_GAINED permanent event should only be posted if the containing
window is currently active. If the containing window is inactive, the
FOCUS_GAINED permanent event should not be posted until the containing
window becomes activated and after posting the WINDOW_ACTIVATED event.

■ If a window is deactivated then a FOCUS_LOST temporary should be posted to
the currently focused component.
11-12 CDC Porting Guide • November 2005

■ The peer implementation will request focus on a Panel in order to forward
events to any lightweight components it contains. This means that
heavyweight components that may not be able to request focus from the native
widget library should still work. For example, some native GUI toolkits may
not allow a Panel to get focus and send events to the top level window.

■ Mouse Events. MOUSE_MOVED events are always sent to the heavyweight
component under the mouse cursor. MOUSE_DRAGGED events are always sent to
the heavyweight component where the mouse button was first pressed, even
when the mouse is moved outside of the component. The coordinates are always
relative to the component that was clicked on.
Chapter 11 Personal Profile 11-13

11-14 CDC Porting Guide • November 2005

PART VI AMS Layer

This part describes the porting interfaces for CDC Application Management System.

■ CDC Application Management System

CHAPTER 12

CDC Application Management
System

12.1 Overview
The CDC Application Management System (CDC AMS) is a system for deploying,
launching and managing applications, as well as managing system-related tasks like
preferences and inter-application communication. This section provides a brief
overview of CDC AMS, its architecture and how it can be tuned and modified.

This chapter is organized into the following sections:

■ Conventional Java Application Management

■ mtask: Process-Based JVM Cloning

■ CDC AMS Application Management Framework

■ Tuning Notes

■ Implementation Notes

12.2 Conventional Java Application
Management
From the very beginning, Java technology has supported different application
models including the standalone main()-based application model and various
managed application models. Typically, a managed application model allows an
application manager that can manage multiple applications. The application
12-1

manager and the managed applications can all run in the same Java virtual machine
instance. By offloading the tasks of deployment and resource management onto the
application manager, managed application models streamline an application’s
development and simplifies its operation.

FIGURE 12-1 Conventional Application Management

Both the original applet managed application model and the more recent xlet
application model use thread management techniques to allow a single Java virtual
machine instance to support multiple managed applications. This provides the
benefit of scalability but doesn’t provide the necessary robustness because a
managed application in one thread can potentially crash the entire JVM and any
other managed applications with it. Because managed applications are not properly
isolated, their behavior can affect and be affected by other applications.

One simple way to provide this isolation would be to run each managed application
inside in a separate JVM instance and then stitch them together with an application
manager in another JVM instance. This approach would definitely provide the

mapp1 mapp2 mapp3

application manager

Java virtual machine
12-2 CDC Porting Guide • November 2005

required isolation and robustness, but running multiple JVM instances would have
so much resource overhead that it would not achieve the scalability goal and would
therefore be impractical.

FIGURE 12-2 Application Management with Separate JVM Instances

12.3 mtask: Process-Based JVM Cloning
The goal of CDC AMS is to provide the isolation, robustness and scalability that is
lacking in conventional Java application management systems. The central
mechanism is an extension to the JVM called mtask which allows a launched JVM in
a single OS process to clone itself into a separate operating system process for
running an individual managed application. This is functionally equivalent to the
process approach described in the previous section. The difference is that mtask
uses copy-on-write process cloning semantics commonly available in the fork(2)
system call of the Linux kernel. Copy-on-write shares virtual memory pages
between cloned processes until a given page is written to. Then a private copy is
made for the cloned process for holding process-specific state. All other shared
pages remain unaffected and are still shared.

Here’s how mtask works. At boot time, CDC AMS launches a JVM instance. This
launch procedure performs the normal JVM bootstrapping, heap allocation, data
initialization, system class library loading and method compilation. Much of the
data that is typically R/W during the launch procedure will quiesce and become
R/O. When the JVM launch procedure is complete, the JVM’s process memory
image contains a fully initialized JVM instance. Finally, the JVM instance puts itself
to sleep and waits for messages on a known TCP port.

mapp1

JVM

mapp2

JVM

mapp3

JVM

AMS

JVM
Chapter 12 CDC Application Management System 12-3

The term for this sleeping process is the master JVM instance. Its chief purpose is to
act as a template for cloning subsequent client JVM instances that will contain the
application manager and each of the applications it manages.

After creating a master JVM instance, the first order of business is to create a client
JVM instance to contain the application manager. This is done by creating the first
clone of the master JVM, and starting the application manager in it. This bootstrap
procedure is performed with the aid of a driver utility called cvmc described in the
CDC Runtime Guide.

The client and server JVM instances now share a great deal of the server JVM
instance’s memory pages. The major difference is that the client VM instance has
consumed some additional memory for the application manager and perhaps some
shared pages in the client JVM instance have been overridden with new state. There
may be additional changes to JVM data structures, but these are minor. And since
the server JVM instance remains unchanged, subsequent client JVM instances that
host managed applications will be cloned from this original template and share as
much original JVM state as possible.

FIGURE 12-3 Server and Client JVM States

warmed up
JVM state

warmed up
JVM state

private
JVM state

overridden
JVM state
12-4 CDC Porting Guide • November 2005

After the application manager becomes operational it takes over the role of sending
launch commands to the server JVM instance that had originally been performed by
the cvmc driver utility. The next step is to create another client JVM instance for
hosting a managed application.

FIGURE 12-4 Creating a Client JVM Instance for a Managed Application

The mechanics are very similar to cloning the client JVM instance for the application
manager. The mtask JVM extension has a command language for communicating
between and controlling client JVM instances. See the CDC Runtime Guide for a list of
mtask commands.

After cloning the client JVM instance, the server JVM instance returns to sleep
waiting for a launch command on a known port and the client JVM instance finishes
loading the application classes. The managed application now has its own client
JVM instance which provides all the process protection that Linux process
management provides. Significant memory segments are shared between client JVM
instances and the server JVM instance.

It’s useful to make a few observations about the client JVM instance and its
relationship with the server JVM instance.

■ Client JVM instances operate normally. The main difference is that they enter life
prewarmed up. This makes each launch cycle much faster than the entire
bootstrap process normally associated with a Java virtual machine. However,
since the client JVM instance is already warmed up, certain options that are
available at launch time are no longer available. For example, the heap is
allocated once at startup and cannot be resized in a client JVM instance.
Appendix A, cvm Reference describes which command-line options are
appropriate for the client JVM instance.

■ The main purpose of the server JVM instance is for use as a template for cloning.
The server JVM instance does have a small operational component for listening to
and acting upon launch commands.

■ Resource sharing/shared pages.

server
JVM

instance

client
JVM

instance

client
JVM

instance

appmanager

mapp1
Chapter 12 CDC Application Management System 12-5

■ Heap management. The memory pages associated with the heap are cloned
using copy-on-write semantics and these pages are shared until they are
written to. So long-lived objects are fully shared across multiple JVM instances.
A client JVM instance will get a new copy of an object when it is modified.

■ Because the heap is cloned with the rest of the JVM instance, its size is fixed at
master JVM startup time.

■ Reliable termination. Because CDC AMS uses operating system processes to
manage applications it is very easy to terminate an application and its JVM
instance. If the application has some shared resources that require more graceful
handling, like a resource shared with a cooperating application or service, then
additional stages of termination will be required.

■ cvmc is a driver utility for initial cloning and diagnostic purposes only.
Subsequent launch commands are handled by the application manager.

■ cvmc can also be used as a model for integrating CDC AMS with a native AMS.

The CDC AMS architecture is based on an application management infrastructure
that uses operating system process management to support concurrent applications
as well as an application management framework that provides services for
supporting specific application models and deployment mechanisms. The previous
sections describe the major components of the process-based application
management infrastructure. With this infrastructure it is possible to launch and
manage multiple managed applications with isolation, robustness and scalability.
This combines the benefits of Linux’s well-tested process management with the
runtime security of Java technology.

The following sections describe the application management framework and
support for a specific application model: xlets.

12.4 CDC AMS Application Management
Framework
The application management framework in CDC AMS is a based on a modular,
object-oriented design. The goal is not to just support a single application model or
user experience model, but instead to provide a framework that can be extended to
support different kinds of concrete AMSs for different product designs. The current
implementation supports the xlet application model, over-the-air deployment based
on J2EE Client Provisioning Specification (JSR-124) and a simple user-experience
model. However, the application management framework can be extended to
support other application models like xlets or midlets or other deployment
mechanisms.
12-6 CDC Porting Guide • November 2005

The table below shows the principal modules in the application management
framework.

TABLE 12-1 CDC AMS Packages

Package Description

appmanager com.sun.appmanager.AppManager is an abstract class that
represents a top-level registry for an application manager
implementation. This allows different application manager
components to communicate with each other through handles
maintained in a concrete class that is extended from this abstract
class.

appmodel com.sun.appmanager.appmodel contains abstractions for
encapsulating application model lifecycles so they can be
represented with mtask. In addition, this package includes a
concrete implementation for the xlet application model.

apprepository The application repository stores packaged applications. The CDC
AMS implementation uses a simple hierarchical directory structure
in the repository directory of the CDC Java runtime environment.

client The portion of CDC AMS that is resident in the cloned JVM
instance.

mtask Communication with the mtask server for application launch,
message passing, application termination and all other components
of the mtask command language.

ota Supports different OTA protocol implementations. The sample
implementation supports the J2EE Client Provisioning Specification
(JSR-124).

preferences Manages persistent user and system preferences. The
implementation includes a simple key-value preference mechanism
in the repository directory. The default implementation uses backing
store in the repository directory.

presentation The presentation layer manages the user experience and drives the
operation of the AMS. The presentation mode accesses the other
objects of the AMS through the AppManager registry and can drive
execution of the user experience. The application management
framework doesn’t place a lot of requirements on the presentation
layer, just a single interface and a single abstract class. In particular,
the user experience is not defined by the application management
framework.

store Defines a simple interface to persistent storage in a device.
Chapter 12 CDC Application Management System 12-7

com.sun.appmanager.mtask and com.sun.appmanager.client are central to
the architecture of the CDC AMS application manager infrastructure and are not
currently intended for extension, modification or porting.

FIGURE 12-5 CDC AMS Architecture

12.5 Tuning Notes
The following sections describe how to create warmup lists for preinitializing classes
and precompiling methods.

12.5.1 Generating a Class Preinitialization List
1. Build a trace-enabled version of the CDC Java runtime environment:

CVM_DEBUG=false
CVM_OPTIMIZED=true
CVM_TRACE=true

user
experience

presentation
mode

appmanager
(registry)

prefsstore

OTA apprepository
12-8 CDC Porting Guide • November 2005

2. Run each GUI application with -Xtrace:0x00040000.

This provides a list of classes those are loaded during the execution.

3. Combine the list from each GUI application together and remove duplicate class
entries.

Try to keep the original class order as much as possible. Don’t sort the list.

4. Identify <clinit>’s whose effects should not be forked.

a. Run the applications with clinit tracing on (-Xtrace:0x2000).

b. Scan for “[InitClass() called for” in the trace output.

This gives you all the classes being initialized, with and without <clinit>.

5. Check if there are classes from the method list not present in the class list.

Those should be added to the class list.

6. Test the class preinitialization list.

Install the class preinitializaton list in the repository/profile directory of the
CDC runtime environment and then launch CDC AMS with the launch script
described in the CDC Runtime Guide.

12.5.2 Calculating Code-Cache Size
1. Build with option CVM_JIT_COLLECT_STATS=true.

2. Launch CDC AMS with the launchams script described in the CDC Runtime
Guide.

3. Run an application.

CDC AMS will print the statistics:

 Allocated codebuffer bytes : 458868 96 10868

In this example, the code-cache size will be 660k = 460k+ 200k for the application’s
methods.

12.5.3 Generating a Method Precompilation List
1. Build a trace-enabled version of the CDC Java runtime environment:

CVM_DEBUG=false
CVM_OPTIMIZED=true
CVM_TRACE=true
Chapter 12 CDC Application Management System 12-9

2. Run a sample application with the following option:

-Xjit:trace=status,climit=10000

climit should be half the default to enable aggressive compilation.

3. Collect the output from -Xjit:trace for each application.

a. Use grep(1) to scan for the string JS: COMPILED.

b. Remove extra words, leaving a pure method signature.

c. Remove application classes and leave library methods.

d. Take the union of all the files and remove duplicates.

 % cat file1 file2 file3 | sort -u > methodList.txt

e. Remove any redundant entries.

Reduntant entries are defined as a method listed multiple times with differeing
return types. Only one version of the particular method is needed because a
differing argument list makes a new method, but a differing return type does not.

Here’s an example:

 java.io.BufferedReader.readLine()
 java.io.BufferedReader.readLine()Ljava/lang/String;
 java.io.BufferedReader.readLine(Z)
 java.io.BufferedReader.readLine(Z)Ljava/lang/String;

The first and third lines are appropriate but the second and fourth are redundant.

The following command line can remove redundant methods:

 % cat oldmethods.txt | sed ‘s/).*/)/’ | uniq > newmethods.txt

Comment lines start with ‘#’, like a shell script.

4. Test the new method precompilation list.

Install the method precompilation list in the repository/profile directory of the
CDC runtime environment and launch CDC AMS with the launch script described
in the CDC Runtime Guide.

5. Check if the new method list includes a class that’s not in classlist.

The missing classes may need to be added to the classlist for the efficiency.

When a child process is cloned, it shouldn’t need to start decompiling methods it
inherited. So as the method list gets larger, the CDC Java runtime environment may
need a larger code cache to fit all the precompiled methods.

To measure the code cache needed by the server JVM instance, perform the
following procedure:
12-10 CDC Porting Guide • November 2005

1. Build a version of the CDC Java runtime environment withthe
CVM_JIT_COLLECT_STATS=true build option.

2. Run cvm with -Xjit:stats=minimal option.

Be sure not to use a complicated GUI app to cause further method compilation.

The statistics are displayed when the server JVM instance exits. For example,

Allocated codebuffer bytes : 656860 96 10868

Once the size is found, run cvm with a codecache slightly above the actual use. In
our case, -Xjit:codeCacheSize=850K.

12.6 Implementation Notes
The CDC AMS implementation is structured in two levels: the mtask extension to
the CDC Java virtual machine and the AMS framework in com.sun.appmanager.
The mtask extension is closely associated with Linux operating system process
management. In principal, this layer could be adapted to another operating system,
particularly one with copy-on-write process cloning semantics. However, the
current implementation does not support easy porting to alternate operating
systems.

At the AMS framework layer, the following areas represent the most accessible ways
to adapt CDC AMS to a product implementation:

■ Presentation mode. The sample presentation modes included with CDC AMS are
meant to demonstrate application management functionality, not user experience.
The presentation mode also acts as a registry for integrating different components
of the CDC AMS framework.

■ Application model support. The CDC AMS implementation includes support for
the xlet application model. But other application models are possible.

■ Application support services. The preferences, store and apprepository
packages can be modified to support richer services.

■ OTA provisioning. The CDC AMS implementation includes support for J2EE
Client Provisioning (JSR-124). But the CDC AMS framework can be extended to
support other OTA protocols.

■ Native AMS integration. A native AMS could be integrated with CDC AMS
through the presentation mode. cvmc can be used as an example for how to
control JVM instances through the mtask command language.
Chapter 12 CDC Application Management System 12-11

12-12 CDC Porting Guide • November 2005

Package

com.sun.appmanager.appmodel
Description
 The appmodel package encapsulates application models built on top of the mtask framework. The main
abstraction is com.sun.appmanager.AppModelController, representing the lifecycle of a managed
application as implemented on top of mtask. Currently only xlet’s are supported as an application model,
represented by com.sun.appmanager.XletAppModelController.

Class Summary

Classes

AppModelController14 A class that encapsulates the lifecycle of a managed app model

XletAppModelControlle
r16

A class that encapsulates the lifecycle of an xlet app model
 13

com.sun.appmanager.appmodel

AppModelController

java.lang.Object
 |
 +--com.sun.appmanager.appmodel.AppModelController

Direct Known Subclasses: XletAppModelController16

Declaration
public abstract class AppModelController

Description
A class that encapsulates the lifecycle of a managed app model

Fields

mtaskClient

protected Client34 mtaskClient

The basic mtask controller for this app model

XLET_APP_MODEL

public static final int XLET_APP_MODEL

Member Summary

Fields
protected Client34 mtaskClient14

static int XLET_APP_MODEL14

Constructors
AppModelController15(Client34 mtaskClient)

Methods
static

AppModelController14

getAppModelController15(int appModelId, Client34 client)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
14 CDC Porting Guide • November 2005

Xlet application model, to be passed in to getAppModelController().

Constructors

AppModelController(Client34 mtaskClient)

public AppModelController(Client34 mtaskClient)

A new AppModelController with an underlying mtask client mtaskClient

Methods

getAppModelController(int appModelId, Client34 client)

public static AppModelController14 getAppModelController(int appModelId, Client34 client)

Create a new app model controller for a given app model id.
 15

com.sun.appmanager.appmodel

XletAppModelController

java.lang.Object
 |
 +--AppModelController14
 |
 +--com.sun.appmanager.appmodel.XletAppModelController

Declaration
public class XletAppModelController extends AppModelController14

Description
A class that encapsulates the lifecycle of an xlet app model

Member Summary

Fields
static int XLET_ACTIVE17
static int XLET_DESTROYED17
static int XLET_LOADED17
static int XLET_PAUSED17
static int XLET_UNKNOWN17

Constructors
XletAppModelController17(Client34 mtaskClient)

Methods
 boolean xletActivate17(java.lang.String xletId)

 boolean xletDeactivate17(java.lang.String xletId)

 boolean xletDestroy18(java.lang.String xletId)

 boolean xletDestroy18(java.lang.String xletId, boolean conditional)

 int xletGetState18(java.lang.String xletId)

 boolean xletInitialize18(java.lang.String xletId)

 boolean xletPause18(java.lang.String xletId)

 boolean xletStart18(java.lang.String xletId)

 java.lang.String xletStateToString18(int state)

Inherited Member Summary

Fields inherited from class AppModelController14

mtaskClient14, XLET_APP_MODEL14

Methods inherited from class AppModelController14

getAppModelController(int, Client)15
16 CDC Porting Guide • November 2005

Fields

XLET_ACTIVE

public static final int XLET_ACTIVE

XLET_DESTROYED

public static final int XLET_DESTROYED

XLET_LOADED

public static final int XLET_LOADED

XLET_PAUSED

public static final int XLET_PAUSED

XLET_UNKNOWN

public static final int XLET_UNKNOWN

Constructors

XletAppModelController(Client34 mtaskClient)

public XletAppModelController(Client34 mtaskClient)

Construct a new xlet controller based on an underlying mtask client.

Methods

xletActivate(java.lang.String xletId)

public boolean xletActivate(java.lang.String xletId)

Activate a target xlet: make it visible and cause its startXlet() method to be called.

xletDeactivate(java.lang.String xletId)

public boolean xletDeactivate(java.lang.String xletId)

De-activate a target xlet: make it invisible and cause its pauseXlet() method to be called.

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Inherited Member Summary
 17

xletDestroy(java.lang.String xletId)

public boolean xletDestroy(java.lang.String xletId)

Destroy target xlet xletId (cause its destroyXlet() method to be called).

xletDestroy(java.lang.String xletId, boolean conditional)

public boolean xletDestroy(java.lang.String xletId, boolean conditional)

xletGetState(java.lang.String xletId)

public int xletGetState(java.lang.String xletId)

Get state of target xlet

xletInitialize(java.lang.String xletId)

public boolean xletInitialize(java.lang.String xletId)

Start target xlet xletId (cause its initXlet() method to be called).

xletPause(java.lang.String xletId)

public boolean xletPause(java.lang.String xletId)

Pause target xlet xletId (cause its pauseXlet() method to be called).

xletStart(java.lang.String xletId)

public boolean xletStart(java.lang.String xletId)

Start target xlet xletId (cause its startXlet() method to be called).

xletStateToString(int state)

public java.lang.String xletStateToString(int state)
18 CDC Porting Guide • November 2005

Package

com.sun.appmanager.apprepository
Description
 The application repository holds persistent application related items. An instance of AppRepository22
handles all available applications on the device. This includes default installed applications, or applications
installed over the air.

Each locally installed application is represented by an instance of AppModule20. This instance can be used to
get information about the application.

Class Summary

Interfaces

AppRepository22 Interface for the application manager’s repository which contains necessary items like
application files, application descriptors, etc.

Classes

AppModule20
 19

com.sun.appmanager.apprepository

AppModule

java.lang.Object
 |
 +--com.sun.appmanager.apprepository.AppModule

Declaration
public class AppModule

Member Summary

Fields
protected java.net.

URL
iconDepressedURL21

protected java.net.
URL

iconURL21

Constructors
AppModule21(java.util.Hashtable hash)

Methods
 java.lang.String getBundle21()

 java.lang.String getIconDepressedPath21()

 java.net.URL getIconDepressedURL21()

 java.lang.String getIconPath21()

 java.net.URL getIconURL21()

 java.lang.String getInvocation21()

 boolean getIsStartup21()

 boolean getIsSwitchable21()

 java.lang.String getMenu21()

 java.lang.String getPath22()

 java.lang.String getSecurityLevel22()

 java.lang.String getTitle22()

 java.lang.String getType22()

 boolean isSublist22()

 boolean isSystemApp22()

 java.lang.String launch22()

 java.lang.String toString22()

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)
20 CDC Porting Guide • November 2005

Fields

iconDepressedURL

protected java.net.URL iconDepressedURL

URL representation of the path to the depressed icon image

iconURL

protected java.net.URL iconURL

URL representation of the path to the icon image

Constructors

AppModule(java.util.Hashtable hash)

public AppModule(java.util.Hashtable hash)

Parameters:

hash - table containing AppModule properties

Methods

getBundle()

public java.lang.String getBundle()

Returns: The bundle this app belongs to. getIconDepressedPath()

public java.lang.String getIconDepressedPath()

Returns: path to the module’s depressed icon image: getIconDepressedURL()

public java.net.URL getIconDepressedURL()

Returns: URL representation of the path to the module’s depressed icon image: getIconPath()

public java.lang.String getIconPath()

Returns: path to the module’s icon image: getIconURL()

public java.net.URL getIconURL()

Returns: URL representation of the path to the module’s icon image: getInvocation()

public java.lang.String getInvocation()

Returns: printable version of the invocation command of the module: getIsStartup()

public boolean getIsStartup()

Returns: true if this is a startup application, false otherwise: getIsSwitchable()

public boolean getIsSwitchable()

Returns: true if a special-case ticker module, false otherwise: getMenu()

public java.lang.String getMenu()
 21

Returns: name of the menu if this module represents a menu, null if the module does not represent a
menu. getPath()

public java.lang.String getPath()

Returns: path to application files of the module: getSecurityLevel()

public java.lang.String getSecurityLevel()

Returns: The security level setting for this module: getTitle()

public java.lang.String getTitle()

Returns: title of application module: getType()

public java.lang.String getType()

Returns: type of application module: isSublist()

public boolean isSublist()

Returns: true if the module is a submenu, false otherwise: isSystemApp()

public boolean isSystemApp()

Returns: boolean if this app is a system app: launch()

public java.lang.String launch()

Launch the app and return a string handle

Returns: string representation of application id. toString()

public java.lang.String toString()

Overrides: toString in class Object

Returns: title and invocation command of the module: com.sun.appmanager.
apprepository

AppRepository
Declaration
public interface AppRepository

Description
Interface for the application manager’s repository which contains necessary items like application files,
application descriptors, etc.

Member Summary

Methods
 AppModule20[] getAppList23()

 Destination57 getDestination23(Descriptor45 descriptor)

 AppModule20[] installApplication23(Destination57 destination, java.lang.
String menu)

 boolean removeApplication23(AppModule20[] module)
22 CDC Porting Guide • November 2005

Methods

getAppList()

public AppModule20[] getAppList()

Return an array of AppModules representing available applications on the device for the given user.

Returns: AppModule[] array of application modules for each available application and menu:

getDestination(Descriptor45 descriptor)

public Destination57 getDestination(Descriptor45 descriptor)

Create a Destination object to handle the download of a new application

Parameters:

descriptor - Descriptor object pertaining to the application to install

Returns: New Destination object, null if one cannot be created:

installApplication(Destination57 destination, java.lang.String menu)

public AppModule20[] installApplication(Destination57 destination, java.lang.String menu)

Install an app bundle containing one or more apps into the repository

Parameters:

destination - Destination object pertaining to the application to install

menu - the menu within the application manager in which this application should be installed in.

Returns: AppModule module object pertaining to the newly installed application, null the
application could not be installed: removeApplication(AppModule20[] module)

public boolean removeApplication(AppModule20[] module)

Remove an app bundle containing one or more apps from the repository

Parameters:

module - applications to be removed. These apps must all be part of the same app bundle.

Returns: boolean true if all apps were removed, false otherwise. This method makes an attempt to
remove each application regardless of if any previous apps fail to be removed, but will
return a false if any application fails to be removed completely. Also, all applications
specified in module[] must be from the same bundle. This method will return false
immediately if this is not the case.
 23

24 CDC Porting Guide • November 2005

Package

com.sun.appmanager.client
Description
 CDCAms client API’s. These are the API’s that are to be used by cdcams client xlets. Client26 acts as a
place holder for client API components. com.sun.appmanager.client.ServiceManager is
responsible for allowing clients to register and access services.

Class Summary

Classes

Client26 Client is the class that contains handles to each of the AppManager client modules.
 25

com.sun.appmanager.client

Client

java.lang.Object
 |
 +--com.sun.appmanager.client.Client

Declaration
public abstract class Client

Description
Client is the class that contains handles to each of the AppManager client modules. Only one Client
instance is created per cdcams client. The static methods of Client may be used to get access to client
components.

Fields

clientId

protected java.lang.String clientId

The id of this client instance, as identified by mtask

Member Summary

Fields
protected java.lang.

String
clientId26

Constructors
Client27()

Methods
static java.lang.

String
getClientId27()

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
26 CDC Porting Guide • November 2005

Constructors

Client()

public Client()

Create a singleton instance.

If more than one instance is created, a RuntimeException is thrown.

Methods

getClientId()

public static java.lang.String getClientId()

Return the mtask client id of this client
 27

28 CDC Porting Guide • November 2005

Package

com.sun.appmanager
Description
 The root package contains the AppManager30 abstract class. Customers adopting AppManager need to
subclass this class to start up their system and instantiate their module implementations. There can only be one
AppManager30 instance in the system. Static methods in AppManager30 are designed to return handles to
each AppManager module implementation.

Class Summary

Classes

AppManager30 AppManager is the superclass that contains handles to each of the AppManager
modules.
 29

com.sun.appmanager

AppManager

java.lang.Object
 |
 +--com.sun.appmanager.AppManager

Declaration
public abstract class AppManager

Description
AppManager is the superclass that contains handles to each of the AppManager modules. Only one
AppManager instance can be created. Subsequent instances cause a RuntimeException

Member Summary

Fields
protected static java.

util.ResourceBundle
appManagerRB31

protected static
AppRepository22

appRepository31

protected static
Client34

mtaskClient31

protected static
OTAFactory68

otaFactory31

protected static
PersistentStore82

persistentStore31

protected static
Preferences74

preferences31

protected static
PresentationMode79

presentationMode31

protected static java.
rmi.registry.Registry

registry31

Constructors
AppManager31()

Methods
static AppRepository22 getAppRepository32()

static Client34 getMtaskClient32()

static OTAFactory68 getOTAFactory32()

static
PersistentStore82

getPersistentStore32()

static Preferences74 getPreferences32()

static
PresentationMode79

getPresentationMode32()

static java.rmi.
registry.Registry

getRegistry32()

static java.util.
ResourceBundle

getResourceBundle32()
30 CDC Porting Guide • November 2005

Fields

appManagerRB

protected static java.util.ResourceBundle appManagerRB

appRepository

protected static AppRepository22 appRepository

mtaskClient

protected static Client34 mtaskClient

otaFactory

protected static OTAFactory68 otaFactory

persistentStore

protected static PersistentStore82 persistentStore

preferences

protected static Preferences74 preferences

presentationMode

protected static PresentationMode79 presentationMode

registry

protected static java.rmi.registry.Registry registry

Constructors

AppManager()

public AppManager()

Create a singleton instance.

If more than one instance is created, a RuntimeException is thrown.

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
 31

Methods

getAppRepository()

public static AppRepository22 getAppRepository()

getMtaskClient()

public static Client34 getMtaskClient()

getOTAFactory()

public static OTAFactory68 getOTAFactory()

getPersistentStore()

public static PersistentStore82 getPersistentStore()

getPreferences()

public static Preferences74 getPreferences()

getPresentationMode()

public static PresentationMode79 getPresentationMode()

getRegistry()

public static java.rmi.registry.Registry getRegistry()

getResourceBundle()

public static java.util.ResourceBundle getResourceBundle()
32 CDC Porting Guide • November 2005

Package

com.sun.appmanager.mtask
Description
 The Client34 class is used to communicate to a master JVM instance responsible for replicating itself to
create new JVM instances. All aspects of application lifecycle can be implemented via the Client34 class—-
starting, messaging, listing and killing applications.

The master JVM warmup activities can also be controlled via this class, by using the warmupLists()
method.

Class Summary

Interfaces

TaskListener38

Classes

Client34 A class that encapsulates communication with a master JVM instance.
 33

com.sun.appmanager.mtask

Client

java.lang.Object
 |
 +--com.sun.appmanager.mtask.Client

Declaration
public class Client

Description
A class that encapsulates communication with a master JVM instance. The system-wide instance of this class
can be obtained via the getMtaskClient() method of class AppManager30. This instance can control all
aspects of application lifecycle.

Member Summary

Fields
static java.lang.

String
DEFAULT_SERVER_NAME35

static int DEFAULT_SERVER_PORT35

Constructors
Client35()

Client35(int port)

Client35(java.lang.String server)

Client35(java.lang.String server, int port)

Methods
 void addListener35(TaskListener38 l)

 boolean broadcast36(java.lang.String messageWord)

 boolean exit36()

 java.lang.String[] getLaunchedApps36()

 boolean kill36(java.lang.String appHandle)

 boolean killall36()

 java.lang.String launch36(java.lang.String command, java.lang.String[] args)

 java.lang.String[] list36()

 boolean message36(java.lang.String appHandle, java.lang.String
messageWord)

 java.lang.String messageWithResponse36(java.lang.String appHandle, java.lang.
String messageWord)

 void removeListener36(TaskListener38 l)

 boolean setenv37(java.lang.String keyValuePair)

 void source37(java.lang.String[] args)

 boolean testingMode37(java.lang.String filePrefix)

 void warmupLists37(java.lang.String classPath, java.lang.String
classNames, java.lang.String memberNames)
34 CDC Porting Guide • November 2005

Fields

DEFAULT_SERVER_NAME

public static final java.lang.String DEFAULT_SERVER_NAME

DEFAULT_SERVER_PORT

public static final int DEFAULT_SERVER_PORT

Constructors

Client(java.lang.String server, int port)

public Client(java.lang.String server, int port)

Create a client that communicates with server:port

Client(int port)

public Client(int port)

Create a client that communicates with <DEFAULT_SERVER_NAME>:port

Client(java.lang.String server)

public Client(java.lang.String server)

Create a client that communicates with server:<DEFAULT_SERVER_PORT>

Client()

public Client()

Create a client that communicates with <DEFAULT_SERVER_NAME>:<DEFAULT_SERVER_PORT>

Methods

addListener(TaskListener38 l)

public void addListener(TaskListener38 l)

Add task listener for task events

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
 35

broadcast(java.lang.String messageWord)

public boolean broadcast(java.lang.String messageWord)

Broadcast message to all running apps

exit()

public boolean exit()

Tell the master JVM to exit

getLaunchedApps()

public java.lang.String[] getLaunchedApps()

kill(java.lang.String appHandle)

public boolean kill(java.lang.String appHandle)

Kill application

killall()

public boolean killall()

Kill all running applications

launch(java.lang.String command, java.lang.String[] args)

public java.lang.String launch(java.lang.String command, java.lang.String[] args)

Launch using the right command.

list()

public java.lang.String[] list()

Return a list of active applications

message(java.lang.String appHandle, java.lang.String messageWord)

public boolean message(java.lang.String appHandle, java.lang.String messageWord)

Send a message to an application

messageWithResponse(java.lang.String appHandle, java.lang.String messageWord)

public java.lang.String messageWithResponse(java.lang.String appHandle, java.lang.String

messageWord)

Send a message to an application and expect a response

removeListener(TaskListener38 l)

public void removeListener(TaskListener38 l)

Remove task listener for task events
36 CDC Porting Guide • November 2005

setenv(java.lang.String keyValuePair)

public boolean setenv(java.lang.String keyValuePair)

Set environment variable in the mTASK server. Subsequent children will inherit this.

source(java.lang.String[] args)

public void source(java.lang.String[] args)

Source an arbitrary command in the mtask server

testingMode(java.lang.String filePrefix)

public boolean testingMode(java.lang.String filePrefix)

Put mtask in testing mode where output, error and exit codes are dumped into files with prefix

warmupLists(java.lang.String classPath, java.lang.String classNames, java.lang.
String memberNames)

public void warmupLists(java.lang.String classPath, java.lang.String classNames, java.

lang.String memberNames)

Warmup the running master JVM server.
 37

com.sun.appmanager.mtask

TaskListener
Declaration
public interface TaskListener

Fields

CDCAMS_TASK_KILLED

public static final int CDCAMS_TASK_KILLED

Methods

taskEvent(java.lang.String appId, int what)

public void taskEvent(java.lang.String appId, int what)

Member Summary

Fields
static int CDCAMS_TASK_KILLED38

Methods
 void taskEvent38(java.lang.String appId, int what)
38 CDC Porting Guide • November 2005

Package

com.sun.appmanager.ota
Description
 Provides the classes and interfaces for over-the-air provisioning operations. In order to create an instance of an
OTA object which understands a certain protocol, provisioning client software such as a Discovery Application
(DA) can use the AppManager32 method to retrieve the current AppManager’s OTAFactory68, and then
use the factory to create an OTA object:

OTAFactory otaFactory = MyAppManager.getOTAFactory();
OTA omaOTA = otaFactory.getImpl("OMA");

The protocol specified in the OTAFactory68 call is used to find an implementation class which supports the
requested protocol. Alternatively, a class identifier can be passed to the OTAFactory68 method, in which case
the class indicated should have a constructor with no arguments.

Once an OTA implementation object is created, it can be used to discover downloads available at a given URL,
which are returned in a Hashtable which contains objects dependent on the OTA implementation used.

Hashtable h = omaOTA.discover("dummyURL");

From this Hashtable, the DA can determine a URI for a download descriptor containing information about a
particular download, which the OTA implementation will contact to populate a Descriptor object.

Descriptor des = omaOTA.createDescriptor("dummyURI");

Normally this descriptor will contain enough information to determine whether or not the download should
continue, along with a URI to contact for the actual download data. The DA can then perform the actual
download, providing the OTA implementation with enough information to allow it to pass the downloaded data
to the DA, and to update the DA with download progress.

boolean result = omaOTA.download(des,
 destinationObject,
 dlIndicatorObject);

The actual downloaded data will be delivered in chunks to the destinationObject to interpret as it wishes. The
destinationObject will be responsible for allocating necessary memory to hold downloaded data, and for saving
it if desired.

As can be inferred from the example above, a Descriptor45 object contains information about a particular
download. A DA with a graphical interface can implement the DLIndicator60 interface to be notified as a
download progresses. The DA should implement the Destination57 interface to provide the OTA
implementation with information about what to do with downloaded data.

Downloaded executable data will be represented by an custom extension of the Application41 class, which
helps identify what type of application has been retrieved and how to invoke it properly.

Class Summary

Interfaces
 39

Destination57 Generic interface to be used to specify different ways to store downloaded data from
OTA implementation.

DLIndicator60 Provides an interface for a download client to be informed regarding data download
progress.

Classes

Application41 A representation of downloaded executable application content.

Descriptor45 This class describes downloadable content.

OTA62 Abstract class specifying the provisioning client agent.

OTAFactory68 Abstract class providing a factory-like source for OTA download agents.

Exceptions

OTAException67

OTANotSupportedExcept
ion69

SyntaxException71 Indicates an error encountered while parsing a download descriptor.

Class Summary
40 CDC Porting Guide • November 2005

com.sun.appmanager.ota

Application

java.lang.Object
 |
 +--com.sun.appmanager.ota.Application

Declaration
public abstract class Application

Description
A representation of downloaded executable application content. Because we can have different app types (e.g.,
XLET v. MIDLET), use this class to hold relevant information needed to start an application properly.

Member Summary

Fields
protected int appType42

static int MAIN_APP42
static int MIDLET_APP42
static int XLET_APP42

Constructors
Application42(java.lang.String name, java.lang.String
iconPath, java.lang.String clazz, java.lang.String classpath)

Methods
 void addProperty42(java.lang.String name, java.lang.String value)

 void check43()

 int getAppType43()

 java.lang.String getClasspath43()

 java.lang.String getIconPath43()

 java.lang.String getMainClass43()

 java.lang.String getName43()

 void setIconPath43(java.lang.String path)

 void setName43(java.lang.String name)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
 41

Fields

appType

protected int appType

MAIN_APP

public static int MAIN_APP

MIDLET_APP

public static int MIDLET_APP

XLET_APP

public static int XLET_APP

Constructors

Application(java.lang.String name, java.lang.String iconPath, java.lang.String
clazz, java.lang.String classpath)

public Application(java.lang.String name, java.lang.String iconPath, java.lang.String

clazz, java.lang.String classpath)

Create an instance of an application.

Parameters:

name - The application’s name

iconPath - The location of the application’s icon

clazz - The main class of the application.

Methods

addProperty(java.lang.String name, java.lang.String value)

public void addProperty(java.lang.String name, java.lang.String value)

throws SyntaxException

Add a key/value pair to the application’s list of properties.
42 CDC Porting Guide • November 2005

Parameters:

name - - A key value.

value - - To be associated with the key.

Throws:

SyntaxException71 - - If either name or value is null.

check()

public void check()

throws SyntaxException

Validate the application and make sure that it is internally consistent.

Throws:

SyntaxException71 - In case of inconsistency.

getAppType()

public int getAppType()

Determine the type of this application.

Returns: One of Application’s defined application types, MAIN_APP, XLET_APP, or MIDLET_APP.

getClasspath()

public java.lang.String getClasspath()

Get the applications’s specified classpath

Returns: A String indicating the application’s specified classpath, or null if one is not specified:

getIconPath()

public java.lang.String getIconPath()

Get the path to the application’s icon.

Returns: A String defining the path to the icon in the downloaded content. getMainClass()

public java.lang.String getMainClass()

Get the application’s main class.

Returns: A String indicating the application’s main class, or null if there is no main class.

getName()

public java.lang.String getName()

Get the application’s name.

Returns: The application’s name. setIconPath(java.lang.String path)

public void setIconPath(java.lang.String path)

Set the path to the application’s icon.

setName(java.lang.String name)

public void setName(java.lang.String name)
 43

Set the application’s name.
44 CDC Porting Guide • November 2005

com.sun.appmanager.ota

Descriptor

java.lang.Object
 |
 +--com.sun.appmanager.ota.Descriptor

All Implemented Interfaces: java.io.Serializable

Declaration
public class Descriptor implements java.io.Serializable

Description
This class describes downloadable content. This class is populated during descriptor parsing. Upon the
completion of parsing, the Descriptor50 method must be called to verify the consistency of the descriptor. If
Descriptor50 succeeds (i.e. doesn’t throw an exception), then the descriptor must be taken as valid.

Member Summary

Fields
 java.util.Vector applications47

protected int appManagerType47
protected java.lang.

String
classpath47

protected java.lang.
String

data47

 java.util.Vector dependencies47
protected java.lang.

String
description47

protected java.lang.
String

displayName47

protected java.lang.
String

href47

protected java.lang.
String

iconURI48

protected java.lang.
String

installNotifyURI48

protected boolean isLibrary48
protected boolean isNative48

protected java.lang.
String

name48

protected java.lang.
String

objectURI48

protected java.lang.
String

schema48

protected java.lang.
String

securityLevel48

protected int size48
 45

protected java.lang.
String

source48

protected java.lang.
String

type49

static int TYPE_APP49
static int TYPE_DATA49
static int TYPE_LIB49

protected java.lang.
String

vendor49

protected java.lang.
String

version49

Constructors
Descriptor49(java.lang.String schema, java.lang.String
source)

Methods
 void addApplication49(Application41 app)

 void addData50(java.lang.String mimeType, java.lang.String href)

 void addLibrary50(boolean java)

 void checkOut50()

protected static void checkURL50(java.lang.String uri)

 java.util.Vector getApplications51()

 java.lang.String getDataRef51()

 java.lang.String getDescription51()

 java.lang.String getDisplayName51()

 java.lang.String getIconURI51()

 java.lang.String getInstallNotifyURI51()

 java.lang.String getMimeType51()

 java.lang.String getName51()

 java.lang.String getObjectURI51()

 java.lang.String getSecurityLevel52()

 int getSize52()

 java.lang.String getSource52()

 java.lang.String getVendor52()

 java.lang.String getVersion52()

 boolean isData52()

 boolean isJavaLibrary52()

 boolean isNativeLibrary52()

 void setAppManagerType52(int type)

 void setDescription53(java.lang.String description)

 void setDisplayName53(java.lang.String s)

 void setIconURI53(java.lang.String uri)

 void setInstallNotifyURI53(java.lang.String uri)

 void setName54(java.lang.String name)

 void setObjectURI54(java.lang.String uri)

 void setSecurityLevel54(java.lang.String level)

 void setSize55(int size)

 void setSize54(java.lang.String size)

 void setType55(java.lang.String type)

 void setVendor55(java.lang.String vendor)

 void setVersion55(java.lang.String version)

Member Summary
46 CDC Porting Guide • November 2005

Fields

applications

public java.util.Vector applications

A vector of applications contained in this media object.

appManagerType

protected int appManagerType

The Appmanager type of the media object. Normally Appmanager treats downloads as either applications
Descriptor49, libraries Descriptor49 or binary data of some sort Descriptor49.

classpath

protected java.lang.String classpath

For application media objects, a classpath.

data

protected java.lang.String data

The mimetype of a data object.

dependencies

public java.util.Vector dependencies

A vector of dependencies upon which this media object relies.

description

protected java.lang.String description

A short, textual description of the media object. There are no particular semantics associated with the
description, but it should be displayed to the user prior to installation.

displayName

protected java.lang.String displayName

A displayable name of this media object for use on the device, if desired.

href

protected java.lang.String href

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
 47

The URI of a data object.

iconURI

protected java.lang.String iconURI

The URI of an icon object which can be used by the client to represent the media object.

installNotifyURI

protected java.lang.String installNotifyURI

A URI to notify after a successful download and installation.

isLibrary

protected boolean isLibrary

An indicator of whether the media object is a library.

isNative

protected boolean isNative

An indicator of whether the media object is a native executable.

name

protected java.lang.String name

The user-readable name of the media object, which identifies it to the user.

objectURI

protected java.lang.String objectURI

The URI (usually URL) from which the object can be downloaded. This must be accessible via an HTTP
GET in order to allow the client agent to perform a download.

schema

protected java.lang.String schema

securityLevel

protected java.lang.String securityLevel

The security level which the Appmanager will associate with this media object.

size

protected int size

source

protected java.lang.String source
48 CDC Porting Guide • November 2005

type

protected java.lang.String type

The MIME type of the media object.

TYPE_APP

public static int TYPE_APP

An identifier used to denote a media object which is an executable application.

TYPE_DATA

public static int TYPE_DATA

An identifier used to denote a media object which is binary data of some sort (i.e., not executable).

TYPE_LIB

public static int TYPE_LIB

An identifier used to denote a media object which is a library object for use by other applications.

vendor

protected java.lang.String vendor

The organization which provides the media object.

version

protected java.lang.String version

The version of this descriptor.

Constructors

Descriptor(java.lang.String schema, java.lang.String source)

public Descriptor(java.lang.String schema, java.lang.String source)

Methods

addApplication(Application41 app)

public void addApplication(Application41 app)

Add a ddx:application entry to the list of applications in this media object.
 49

Parameters:

app - An Application41 object constructed from information provided in the application’s entry.

addData(java.lang.String mimeType, java.lang.String href)

public void addData(java.lang.String mimeType, java.lang.String href)

throws SyntaxException

For a data object, record a mimetype and href.

Parameters:

mimeType - A MIME type for the data

href - An href indicating where to find the data (may be null, in which case the data will be assumed
to be local).

Throws:

SyntaxException71 - if data has already been set, or if there is an apparent conflict in the
download type.

addLibrary(boolean java)

public void addLibrary(boolean java)

throws SyntaxException

Indicate that this media object contains a library.

Parameters:

java - Whether or not the library is Java (as opposed to native).

Throws:

SyntaxException71 - if we have already recorded a data or application media object.

checkOut()

public void checkOut()

throws SyntaxException

Validate the descriptor by verifying that all of the necessary fields have been populated, and that no
contradictory information was included. As part of the process, each Application41 identified as part of
the media object is also checked for internal consistency.

Throws:

SyntaxException71 - If mandantory fields are missing, the descriptor contains contradictory
information, or any of the Applications in the media object are internally inconsistent.

checkURL(java.lang.String uri)

protected static void checkURL(java.lang.String uri)

throws SyntaxException

Check a provided URL or URI for valid syntax.
50 CDC Porting Guide • November 2005

Parameters:

uri - The URI or URI to check.

Throws:

SyntaxException71 - If there is a problem with the URI.

getApplications()

public java.util.Vector getApplications()

Return a Vector containing all of the Application41 objects from this media object. If this is not an
application download, the Vector will be null.

getDataRef()

public java.lang.String getDataRef()

Return the data href (URI) for this media object. If this is not a data download, the href will be null.

getDescription()

public java.lang.String getDescription()

Return the description of this media object (possibly null).

getDisplayName()

public java.lang.String getDisplayName()

Retrieve the name of this media object for display. If the display name is not set, return the media object’s
name sttribute.

getIconURI()

public java.lang.String getIconURI()

Return the URI of this media object’s icon (may be null).

getInstallNotifyURI()

public java.lang.String getInstallNotifyURI()

Return the URI of this media object (possibly null) which should be contacted after installation.

getMimeType()

public java.lang.String getMimeType()

Return the MIME type of this media object.

getName()

public java.lang.String getName()

Return the name of this media object (possibly null).

getObjectURI()

public java.lang.String getObjectURI()
 51

Return the URI of this media object to be used for actual download.

getSecurityLevel()

public java.lang.String getSecurityLevel()

Return the security level of this media object, possibly null.

getSize()

public int getSize()

Return the size (a non-negative value) of the media object for download.

getSource()

public java.lang.String getSource()

getVendor()

public java.lang.String getVendor()

Retrieve the vendor of this media object (may be null).

getVersion()

public java.lang.String getVersion()

Retrieve the version of this media object (may be null).

isData()

public boolean isData()

Indicate whether or not this media object is binary data.

isJavaLibrary()

public boolean isJavaLibrary()

Indicate whether or not this media object is a Java library.

isNativeLibrary()

public boolean isNativeLibrary()

Indicate whether or not this media object is a native library.

setAppManagerType(int type)

public void setAppManagerType(int type)

throws SyntaxException

Set the Appmanager type of this media object. Currently downloads recognized by Appmanager are either
applications, libraries or data downloads.
52 CDC Porting Guide • November 2005

Parameters:

type - The Appmanager type

Throws:

SyntaxException71 - if the Appmanager type has already been set.

setDescription(java.lang.String description)

public void setDescription(java.lang.String description)

throws SyntaxException

Set the description for the media object.

Parameters:

description - The new description string.

Throws:

SyntaxException71 - if the description has already been set.

setDisplayName(java.lang.String s)

public void setDisplayName(java.lang.String s)

Set the display name of this download.

Parameters:

s - The name for display use to identify the download.

setIconURI(java.lang.String uri)

public void setIconURI(java.lang.String uri)

throws SyntaxException

Set the iconURI for this media object.

Parameters:

uri - The URI (URL) which will provide an icon which will provide an icon for this media object.

Throws:

SyntaxException71 - If the URI is invalid.

setInstallNotifyURI(java.lang.String uri)

public void setInstallNotifyURI(java.lang.String uri)

throws SyntaxException

Set the installNotifyURI for this media object. This URI should be notified once download and installation
are complete.
 53

Parameters:

uri - The URI to contact

Throws:

SyntaxException71 - if the URI is invalid.

setName(java.lang.String name)

public void setName(java.lang.String name)

throws SyntaxException

Set the name of the download object.

Parameters:

name - The name to use for this descriptor.

Throws:

SyntaxException71 - if the name is already set.

setObjectURI(java.lang.String uri)

public void setObjectURI(java.lang.String uri)

throws SyntaxException

Set the objectURI for this media object, from which the download may be performed.

Parameters:

uri - The URI (URL) to contact.

Throws:

SyntaxException71 - if the objectURI has already been set, or if the parameter is an invalid URL.

setSecurityLevel(java.lang.String level)

public void setSecurityLevel(java.lang.String level)

throws SyntaxException

Set the security level of this media object. Security levels recognized by Appmanager are
SecurityConstrained and SecurityTrusted.

Parameters:

level - The security level to set

Throws:

SyntaxException71 - if the specified security level is unknown.

setSize(java.lang.String size)

public void setSize(java.lang.String size)

throws SyntaxException

Set the size of this download.
54 CDC Porting Guide • November 2005

Parameters:

size - The download size in bytes.

Throws:

SyntaxException71 - if the size has already been set, or if the size value cannot be properly
parsed into a non-negative, integer value.

setSize(int size)

public void setSize(int size)

throws SyntaxException

Set the size of this download.

Parameters:

size - The download size in bytes.

Throws:

SyntaxException71 - if the size has already been set, or if the size value is not a non-negative
value.

setType(java.lang.String type)

public void setType(java.lang.String type)

throws SyntaxException

Set the type of this download.

Parameters:

type - The download type.

Throws:

SyntaxException71 - if the type has already been set.

setVendor(java.lang.String vendor)

public void setVendor(java.lang.String vendor)

throws SyntaxException

Set the vendor which provided this media object.

Parameters:

vendor - The vendor identifier.

Throws:

SynxtaxException - If the vendor has already been set.
SyntaxException71

setVersion(java.lang.String version)

public void setVersion(java.lang.String version)

throws SyntaxException

Set the version of this download.
 55

Parameters:

version - The version of this download.

Throws:

SyntaxException71 - if the version is already set.
56 CDC Porting Guide • November 2005

com.sun.appmanager.ota

Destination
Declaration
public interface Destination

Description
Generic interface to be used to specify different ways to store downloaded data from OTA implementation. An
instance of destination class should be provided to the OTA65 method. Since there are few methods that
practically change the state of a destination, this class should not be MT safe, and multiple instances should be
used for each call to OTA65.

Methods

abort()

public void abort()

Notifies the destination that the object acquisition has failed or was stopped. There will be no more bits
sent, and the Destination58 method will not be called.

acceptMimeType(java.lang.String mimeType)

public void acceptMimeType(java.lang.String mimeType)

throws OTAException

Asks a destination whether it supports a certain mime type.

Member Summary

Methods
 void abort57()

 void acceptMimeType57(java.lang.String mimeType)

 void finish58()

 int getMaxChunkSize58()

 int receive58(java.io.InputStream in, int desiredLength)

 void start58(java.lang.String sourceURL, java.lang.String
mimeType)
 57

Parameters:

mimeType - mimeType to be sent to this destination.

Throws:

OTAException67 - if this mime type is not supported.

finish()

public void finish()

throws OTAException, IOException

Notifies the destination that the object download is done.

Throws:

OTAException67 - it is at implemntation’s discretion to throw an OTAException if anything goes
wrong. The download will be cancelled and this exception will be bubbled up.

java.io.IOException - signal that there was an IO error.

getMaxChunkSize()

public int getMaxChunkSize()

Asks the destination what’s the maximum buffer size should be used for downloading.

Returns: maximum buffer size to be used for downloading, or 0, to let the OTA implementation
decide what’s best.
: receive(java.io.InputStream in, int desiredLength)

public int receive(java.io.InputStream in, int desiredLength)

throws OTAException, IOException

Requests this destination to receive a part of the object being downloaded.

Parameters:

in - The InputStream to read from

desiredLength - The number of bytes to receive

Returns: the total number of bytes read, or -1 is there is no more data because the end of the stream
has been reached. Throws:

OTAException67 - it is at implemntation’s discretion to throw an OTAException if anything goes
wrong. The download will be cancelled and this exception will be bubbled up.

java.io.IOException - signal that there was an IO error.

start(java.lang.String sourceURL, java.lang.String mimeType)

public void start(java.lang.String sourceURL, java.lang.String mimeType)

throws OTAException, IOException

Notifies the destination the download is about to start.
58 CDC Porting Guide • November 2005

Parameters:

sourceURL - source URL

mimeType - mime type of the object to be sent to this destination.

Throws:

OTAException67 - it is at implemntation’s discretion to throw an OTAException if anything goes
wrong. The download will be cancelled and this exception will be bubbled up.

java.io.IOException - signal that there was an IO error.
 59

com.sun.appmanager.ota

DLIndicator
Declaration
public interface DLIndicator

Description
Provides an interface for a download client to be informed regarding data download progress.

Methods

downloadDone()

public void downloadDone()

Notify that the download is done. This doesn’t mean, however, that the download is successfully completed
or 100% has been reached.

getGranularity()

public int getGranularity()

Called once before download is about to start. The value returns tells how frequently the indicator should be
updated in percents. So, returning 1 will cause download to update indicator every time one more percent is
downloaded.

Returns: granularity: getLockNotifier()

public java.lang.Object getLockNotifier()

Return a synchronization object for download. The object returned from this method will be used by
download thread to wait on so download is either completed by the separate download thread, or is
cancelled by the system. So, to cancel the download, one must call notify on the same object and then make
isCancelled60 to return true. If you return null from this method, the cancellation will still be possible,
but if IO is waiting, it won’t happen until it’s done waiting.

Returns: object to syncrhonize download and cancellation: isCancelled()

public boolean isCancelled()

Check for cancelled download. If at any time this method is called it returns true, download is cancelled.

Member Summary

Methods
 void downloadDone60()

 int getGranularity60()

 java.lang.Object getLockNotifier60()

 boolean isCancelled60()

 void updatePercent61(int value)
60 CDC Porting Guide • November 2005

Returns: true if user/system cancels the download. updatePercent(int value)

public void updatePercent(int value)

Update callback. Called by downloaded each time a certain amount of data has been downloaded.

Parameters:

value - how much data in percentage is downloaded
 61

com.sun.appmanager.ota

OTA

java.lang.Object
 |
 +--com.sun.appmanager.ota.OTA

Declaration
public abstract class OTA

Description
Abstract class specifying the provisioning client agent.

Member Summary

Fields
static java.lang.

String
ST_ATTRIBUTEMISMATCH63

static java.lang.
String

ST_DEVICEABORTED63

static java.lang.
String

ST_INSUFFICIENTMEMORY63

static java.lang.
String

ST_INVALIDDDVERSION63

static java.lang.
String

ST_INVALIDDESCRIPTOR63

static java.lang.
String

ST_LOADERERROR64

static java.lang.
String

ST_LOSSOFSERVICE64

static java.lang.
String

ST_NONACCEPTABLECONTENT64

static java.lang.
String

ST_SIZEMISMATCH64

static java.lang.
String

ST_SUCCESS64

static java.lang.
String

ST_USERCANCELLED64

Constructors
OTA64()

Methods
 Descriptor45 createDescriptor65(java.lang.String uri)

 java.util.Hashtable discover65(java.lang.String url)

 boolean download65(Descriptor45 des, Destination57 store,
DLIndicator60 report)

abstract java.lang.
String

getSchema65()
62 CDC Porting Guide • November 2005

Fields

ST_ATTRIBUTEMISMATCH

public static final java.lang.String ST_ATTRIBUTEMISMATCH

Status constant that indicates that the media object does not match the attributes defined in the Download
Descriptor, and that the device therefore rejects the media object.

ST_DEVICEABORTED

public static java.lang.String ST_DEVICEABORTED

Status constant that indicates that the device interrupted, or cancelled, the retrieval of the medai object
despite the fact that the content should have been executable on the device. This is thus a different case from
“Insuficient Memory” and “Non-Acceptable Content” (where the device has concluded that it cannot use
the content).

ST_INSUFFICIENTMEMORY

public static final java.lang.String ST_INSUFFICIENTMEMORY

Status constant that indicates to the service that the device could not accept the media object as it did not
have enough storage space on the device. This event may occur before ar oafter the retrieval of the media
object.

ST_INVALIDDDVERSION

public static final java.lang.String ST_INVALIDDDVERSION

Status constant that indicates that the device was not compatible with the “major” version of the Download
Descriptor, as indicated in the Attribute Version (that is a parameter to the attribute Media).

ST_INVALIDDESCRIPTOR

public static final java.lang.String ST_INVALIDDESCRIPTOR

Status constant that indicates that the device could not interpret the Download Descriptor. This typically
means a syntactic error.

 boolean sendNotify66(java.lang.String uri, java.lang.String
statusCode, java.lang.String statusMsg)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary
 63

ST_LOADERERROR

public static java.lang.String ST_LOADERERROR

Status constant that indicates that the URL that was to be used for the retrieval of the Medai Object did not
provide access to the Media Object. This may represent for example errors of type server down, incorrect
URL and service errors.

ST_LOSSOFSERVICE

public static final java.lang.String ST_LOSSOFSERVICE

Status constant that indicates the the client device lost network service while retrieveing the Media Object.

ST_NONACCEPTABLECONTENT

public static java.lang.String ST_NONACCEPTABLECONTENT

Status constant that indicates that after the retrieval of the media object, buf before sedning the installtion
notification, the Download Agent concluded that the device cannot use the media object.

ST_SIZEMISMATCH

public static final java.lang.String ST_SIZEMISMATCH

Statis constant that indicates that the downloaded media object size was not the same as stated in the
descriptor.

ST_SUCCESS

public static final java.lang.String ST_SUCCESS

Status constant that indicates to the service that the media object was downloaded and installed
successfully.

ST_USERCANCELLED

public static final java.lang.String ST_USERCANCELLED

Status constant that indicates that the used does not want to go trhough with the download operation. The
event may occur after the analyses of the Download Descriptor, or instead of the sedning of the Installation
Notification (i.e. the user cancelled the download while th retrieval/installation of the media object was in
process)

Constructors

OTA()

public OTA()
64 CDC Porting Guide • November 2005

Methods

createDescriptor(java.lang.String uri)

public Descriptor45 createDescriptor(java.lang.String uri)

throws OTAException

Returns a decriptor information of an application.

Parameters:

uri - uri to get the descriptor from, usually returned by discover()65 method. Upon
encountering an error in the descriptor, this method will throw an OTAException67
exception, and if url to notify server of problems is known, report the corresponding error
to the server. It will not though send the success status, the application is responsible for
doing that, since it may encounter a descriptor error itself.

Throws:

OTAException67 - if there are troubles downloading or parsing the descriptor.

discover(java.lang.String url)

public java.util.Hashtable discover(java.lang.String url)

Discover applications at given URL. Downloads the page from the url and stores application name and
descriptor in the hashtable, where urls are keys and application names are values.

Parameters:

url - url to discover from

Returns: list of discovered applications. If returned hashtable is empty, either no applications were
discovered, or there was some sort of an error during the discovery.

download(Descriptor45 des, Destination57 store, DLIndicator60 report)

public boolean download(Descriptor45 des, Destination57 store, DLIndicator60 report)

throws OTAException

Download the data identified by the associated Descriptor.

Parameters:

des - the Descriptor object identifying the download, which is provided by the
createDescriptor()65 method.

store - implementation instance of Destination interface to be used to store downloaded bits.

report - class implementing DLIndicator60 interface. If null, reporting is not done.

Returns: false if download was cancelled. See DLIndicator60 to learn how to cancel a download:

Throws:

OTAException67 - if an error occured during download.

getSchema()

public abstract java.lang.String getSchema()

Returns schema implemented by this instance.
 65

sendNotify(java.lang.String uri, java.lang.String statusCode, java.lang.String
statusMsg)

public boolean sendNotify(java.lang.String uri, java.lang.String statusCode, java.lang.

String statusMsg)

Send installation notification to the server, either reporting a success or a failure. Note, that some of the
errors will already be reported by download()65 method. So, if an exception was thrown from
download()65 method, you do not need to report another failure.

Parameters:

uri - uri to send the status to. Usually this uri is taken from the descriptor information provided by
the createDescriptor()65 method.

statusCode - Status code to return. Since codes may be different in different OTA
implementations, the special constants defined by this class should be used for that. The
list of constants starts from ST_SUCCESS64. Note, that not all of the status may be
supported by all of the protocols. If the protocol does not support a certain constants, some
default will be used.
66 CDC Porting Guide • November 2005

com.sun.appmanager.ota

OTAException

java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--com.sun.appmanager.ota.OTAException

All Implemented Interfaces: java.io.Serializable

Declaration
public class OTAException extends java.lang.Exception

Constructors

OTAException(java.lang.String reason)

public OTAException(java.lang.String reason)

Member Summary

Constructors
OTAException67(java.lang.String reason)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
 67

com.sun.appmanager.ota

OTAFactory

java.lang.Object
 |
 +--com.sun.appmanager.ota.OTAFactory

Declaration
public abstract class OTAFactory

Description
Abstract class providing a factory-like source for OTA download agents.

Constructors

OTAFactory()

public OTAFactory()

Methods

getImpl(java.lang.String impl)

public OTA62 getImpl(java.lang.String impl)

Return implementation instance.

Member Summary

Constructors
OTAFactory68()

Methods
 OTA62 getImpl68(java.lang.String impl)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
68 CDC Porting Guide • November 2005

Parameters:

impl - protocol name, which is used to attempt to find an impl class for the protocol (e.g., “MIDP” or
“OMA”). This argument can also denote a fully qualified class name to be instantiated.

Returns: OTA implementation class, or null if no implementation found for this protocol. If class
name is specified, the class should have argumentless public constructor. com.sun.

appmanager.ota

OTANotSupportedException

java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--com.sun.appmanager.ota.OTANotSupportedException

All Implemented Interfaces: java.io.Serializable

Declaration
public class OTANotSupportedException extends java.lang.RuntimeException

Member Summary

Constructors
OTANotSupportedException70()

OTANotSupportedException70(java.lang.String reason)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
 69

Constructors

OTANotSupportedException()

public OTANotSupportedException()

OTANotSupportedException(java.lang.String reason)

public OTANotSupportedException(java.lang.String reason)
70 CDC Porting Guide • November 2005

com.sun.appmanager.ota

SyntaxException

java.lang.Object
 |
 +--java.lang.Throwable
 |
 +--java.lang.Exception
 |
 +--com.sun.appmanager.ota.SyntaxException

All Implemented Interfaces: java.io.Serializable

Declaration
public class SyntaxException extends java.lang.Exception

Description
Indicates an error encountered while parsing a download descriptor.

Constructors

SyntaxException()

public SyntaxException()

Member Summary

Constructors
SyntaxException71()

SyntaxException72(java.lang.String s)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
 71

SyntaxException(java.lang.String s)

public SyntaxException(java.lang.String s)
72 CDC Porting Guide • November 2005

Package

com.sun.appmanager.preferences
Description
 This is the layer handling persistent user and system preferences. These are string based key-value pairs, and
are to be handled separately for users and the system. Persistence must be built into the system, and is expressed
via the save methods below.

A com.sun.appmanager.users.UserManager instance can decide to manipulate user and system
preferences when users are added or deleted. Also, a user or an administrator might set preferences via a screen
in the presentation manager.

Class Summary

Interfaces

Preferences74 An interface that defines access to preferences.
 73

com.sun.appmanager.preferences

Preferences
Declaration
public interface Preferences

Description
An interface that defines access to preferences.

Preferences are string based key-value pairs.

There are two kinds of preferences: user preferences, and system preferences. User preferences can be thought
of as multiple string-indexed preference namespaces. Preferences for one user are completely disjoint from
preferences for another user. Overlap of a preference name for different user names is therefore not a conflict.
System preferences on the other hand are global; ie they apply to the entire system regardless of the user
namespaces.

An implementation of Preferences should allow for persistence of user and system preferences. The save*
methods below handle persistence explicitly.

Methods

deleteUserPreferences(java.lang.String userName)

public void deleteUserPreferences(java.lang.String userName)

Save all preferences for user userName

getAllSystemPreferenceNames()

public java.lang.String[] getAllSystemPreferenceNames()

Member Summary

Methods
 void deleteUserPreferences74(java.lang.String userName)

 java.lang.String[] getAllSystemPreferenceNames74()

 java.lang.String[] getAllUserNames75()

 java.lang.String[] getAllUserPreferenceNames75(java.lang.String user)

 java.lang.String getSystemPreference75(java.lang.String prefName)

 java.lang.String getUserPreference75(java.lang.String userName, java.lang.
String prefName)

 void saveAll75()

 void saveSystemPreferences75()

 void saveUserPreferences75(java.lang.String userName)

 void setSystemPreference75(java.lang.String prefName, java.lang.
String prefValue)

 void setUserPreference75(java.lang.String userName, java.lang.
String prefName, java.lang.String prefValue)
74 CDC Porting Guide • November 2005

Get names of all system preferences

getAllUserNames()

public java.lang.String[] getAllUserNames()

Get names of all users

getAllUserPreferenceNames(java.lang.String user)

public java.lang.String[] getAllUserPreferenceNames(java.lang.String user)

Get names of all user preferences corresponding to ’user’

getSystemPreference(java.lang.String prefName)

public java.lang.String getSystemPreference(java.lang.String prefName)

Get system preference prefName

getUserPreference(java.lang.String userName, java.lang.String prefName)

public java.lang.String getUserPreference(java.lang.String userName, java.lang.String

prefName)

Get preference prefName for user userName.

saveAll()

public void saveAll()

Make all user preferences and system preferences persistent

saveSystemPreferences()

public void saveSystemPreferences()

Save all system preferences

saveUserPreferences(java.lang.String userName)

public void saveUserPreferences(java.lang.String userName)

Save preferences for user userName

setSystemPreference(java.lang.String prefName, java.lang.String prefValue)

public void setSystemPreference(java.lang.String prefName, java.lang.String prefValue)

Set system preference prefName to prefValue

setUserPreference(java.lang.String userName, java.lang.String prefName, java.
lang.String prefValue)

public void setUserPreference(java.lang.String userName, java.lang.String prefName,

java.lang.String prefValue)

Set preference prefName to prefValue for user userName.
 75

76 CDC Porting Guide • November 2005

Package

com.sun.appmanager.presentation
Description
 Provides the classes and interfaces for a presentation layer. The presentation layer is free to implement any kind
of user experience, accessing AppManager components where necessary via the AppManager30 class. As
such, its interface is very simple; it is probably the biggest client of the other modules of the system.

Class Summary

Interfaces

Presentation78 This is a rudimentary interface to link a presentation layer with the startup code.

Classes

PresentationMode79
 77

com.sun.appmanager.presentation

Presentation
All Known Implementing Classes: PresentationMode79

Declaration
public interface Presentation

Description
This is a rudimentary interface to link a presentation layer with the startup code. An implementation of
AppManager30 gets started, and in turn invokes methods in Presentation to get the presentation layer kick-
started.

Methods

initialize()

public void initialize()

Initialize presentation mode in preparation for display to the user.

loadApps()

public void loadApps()

Load any application descriptors that might be displayed to the user

runStartupApps()

public void runStartupApps()

Run any applications that the presentation layer feels is appropriate to always display to the user.

startAppManager()

public void startAppManager()

Show the presentation mode and start interacting with the user.

Member Summary

Methods
 void initialize78()

 void loadApps78()

 void runStartupApps78()

 void startAppManager78()
78 CDC Porting Guide • November 2005

com.sun.appmanager.presentation

PresentationMode

java.lang.Object
 |
 +--com.sun.appmanager.presentation.PresentationMode

All Implemented Interfaces: Presentation78

Declaration
public abstract class PresentationMode implements Presentation78

Constructors

PresentationMode()

public PresentationMode()

Member Summary

Constructors
PresentationMode79()

Methods
 void addApp80(AppModule20 module)

static
PresentationMode79

createPresentation80()

static java.lang.
String

getPresentationClassName80()

 void runStartupApp80(AppModule20 module)

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Methods inherited from interface Presentation78

initialize()78, loadApps()78, runStartupApps()78, startAppManager()78
 79

Methods

addApp(AppModule20 module)

public void addApp(AppModule20 module)

Add an application or menu represented by an AppModule to this presentation mode. It is highly
recommended that this method be used within the implemented loadApps() method of the Presentation
interface.

Parameters:

module - the module to be added

createPresentation()

public static PresentationMode79 createPresentation()

getPresentationClassName()

public static java.lang.String getPresentationClassName()

Return the presentation mode’s implementation class name of the Presentation interface. The returned
string will contain of the following format represent by this example of a presentation mode called
“AwtPDA”: com.sun.appmanager.impl.presentation.AwtPDAPresentationMode

Returns: String: runStartupApp(AppModule20 module)

public void runStartupApp(AppModule20 module)

Launch the application upon startup of the application manager. It is highly recommended that this method
be used within the implemented runStartupApps() method of the Presentation interface.

Parameters:

module - AppModule
80 CDC Porting Guide • November 2005

Package

com.sun.appmanager.store
Description
 An abstraction of persistent storage. PersistentStore82 allows use of abstract relative paths, and converts
these to absolute paths for access via java.io file API’s.

Class Summary

Interfaces

PersistentStore82 Generic interface to be used to specify a persistent storage implementation.
 81

com.sun.appmanager.store

PersistentStore
Declaration
public interface PersistentStore

Description
Generic interface to be used to specify a persistent storage implementation. The current version allows the
construction of full file paths out of relative storage paths.

Methods

absolutePathOf(java.lang.String storePath)

public java.lang.String absolutePathOf(java.lang.String storePath)

Parameters:

storePath - relative path of a file

Returns: the absolute file path in this PersistentStore implementation.

Member Summary

Methods
 java.lang.String absolutePathOf82(java.lang.String storePath)
82 CDC Porting Guide • November 2005

Constant Field Values

Contents
• com.sun.*

com.sun.*13

com.sun.appmanager.appmodel.AppModelController14

static final int XLET_APP_MODEL14 1

com.sun.appmanager.appmodel.XletAppModelController16

static final int XLET_ACTIVE17 3

static final int XLET_DESTROYED17 4

static final int XLET_LOADED17 1

static final int XLET_PAUSED17 2

static final int XLET_UNKNOWN17 0

com.sun.appmanager.mtask.Client34

static final java.lang.String DEFAULT_SERVER_NAME35 "localhost"

static final int DEFAULT_SERVER_PORT35 7777

com.sun.appmanager.mtask.TaskListener38

static final int CDCAMS_TASK_KILLED38 1
 83

com.sun.appmanager.ota.OTA62

static final java.lang.String ST_ATTRIBUTEMISMATCH63 "905"

static final java.lang.String ST_INSUFFICIENTMEMORY63 "901"

static final java.lang.String ST_INVALIDDDVERSION63 "951"

static final java.lang.String ST_INVALIDDESCRIPTOR63 "906"

static final java.lang.String ST_LOSSOFSERVICE64 "903"

static final java.lang.String ST_SIZEMISMATCH64 "904"

static final java.lang.String ST_SUCCESS64 "900"

static final java.lang.String ST_USERCANCELLED64 "902"
84 CDC Porting Guide • November 2005

Contents
com.sun.appmanager ... 1

AppManager .. 2

com.sun.appmanager.appmodel ... 5

AppModelController ... 6

XletAppModelController .. 8

com.sun.appmanager.apprepository .. 11

AppModule ... 12

AppRepository .. 14

com.sun.appmanager.client ... 17

Client ... 18

com.sun.appmanager.mtask .. 21

Client ... 22

TaskListener .. 26

com.sun.appmanager.ota ... 27

Application .. 29

Descriptor .. 33

Destination .. 45

DLIndicator ... 48

OTA .. 50

OTAException .. 55

OTAFactory .. 56

OTANotSupportedException .. 57

SyntaxException ... 59

com.sun.appmanager.preferences .. 61

Preferences .. 62

com.sun.appmanager.presentation ... 65

Presentation ... 66

PresentationMode .. 67

com.sun.appmanager.store .. 69

PersistentStore ... 70

Almanac .. 73
 85

Constant Field Values .. 81

Index ... 83
86 CDC Porting Guide • November 2005

PART VII Appendices

This part contains the appendices:

■ Debugging with gdb
■ C Stack Checking

APPENDIX A

Debugging with gdb

This chapter contains tips for debugging the CDC-HI Java virtual machine with gdb.
It covers these topics:

■ Setup Procedures
■ Signal Handlers
■ gdb and GC Safety
■ Turning on Trace Output

■ High-Level Dumpers
■ CVMdumpObject
■ CVMdumpClassBlock
■ CVMdumpString
■ CVMdumpObjectReferences
■ CVMdumpClassReferences

■ Low-Level Dumpers
■ Using CVMconsolePrintf()
■ Displaying the PC Offset
■ Dumping the Java Stack
■ Displaying Opcode Information
■ Dumping the Java Heap
■ Dumping Object Information
■ Dumping Loaded Classes
■ Dumping Threads

■ Conversion Procedures
■ The CVMExecEnv Structure
■ Converting Between CVMExecEnv* and JNIEnv*
■ Converting from JNI Types to Internal VM Types
■ Converting from java.lang.Class to CVMClassBlock*

■ Other Procedures
■ Debugging Crashes on Linux
■ Debugging Compiled Methods

This chapter describes gdb techniques that are specific to CDC runtime
development. See the gdb reference manual listed in the Preface for more
information about gdb.
A-1

A.1 Setup Procedures

A.1.1 Signal Handlers
There are a number of signals that are raised by the CDC-HI virtual machine that
gdb must be made aware of so it can pass them on. You need to execute the
following handle commands to avoid having gdb stop execution unnecessarily:

handle SIGUSR1 nostop noprint pass

handle SIGUSR2 nostop noprint pass

handle SIGSTOP nostop noprint pass

For CVM_JIT=true builds, the target port usually chooses to use trap-based null
checks by defining CVMJIT_TRAP_BASED_NULL_CHECKS in src/<OS>-
<CPU>/javavm/runtime/jit/jit_arch.h. In this case you will also need to
execute:

handle SIGSEGV nostop noprint pass

and set a breakpoint in your implementation of handleSegv(). handleSegv() is
usually located in src/<OS>-<CPU>/javavm/runtime/jit/jit_arch.c.
handleSegv() needs to handle three cases of SIGSEGV. The first and second cases
are for a SIGSEGVs that occur in JIT compiled and supporting code respectively.
These cases are interpreted as NullPointerExceptions and should be ignored by
gdb. (This is only necessary for applications that cause NullPointerException.)
The third case for SIGSEGV represents a crash in the VM. This case is where the
breakpoint should be set to inform you of a crash when it occurs. If you reach this
breakpoint, then use

handle SIGSEGV stop

continue

to reproduce the crash at the instruction where it occurred.

Note – Because SIGSEGV is used in JIT compiled code to represent
NullPointerExceptions, crashes that occur in JIT compiled code that has not
been fully debugged may be mis-interpreted as a NullPointerException and
may not show up as a crash at all. If you need to eliminate this possibility for
debugging purposes, you can undefine CVMJIT_TRAP_BASED_NULL_CHECKS in
src/<OS>-<CPU>/javavm/runtime/jit/jit_arch.h. This will cause SIGSEGV
to not be used for null checks, and any SIGSEGV that you get will actually be due to
a crash. This can also be done to avoid handling SIGSEGV as described earlier.
A-2 CDC Porting Guide • November 2005

A.1.2 gdb and GC Safety
There are some things you can't do in the debugger while GC unsafe, such as calling
CVMdumpThread(). Examine ee->tcstate.isConsistent. It must be 1. If it is
not, then you can try switching to a thread that is. If this isn't possible, you can
always try the following:

(gdb) set var ee->tcstate.isConsistent = 1

(gdb) call CVMdumpAllThreads()

However, there is a very small risk of a deadlock or a crash if you do this. Don't
forget to set the isConsistent flag back to 0 if you wish to continue execution. You
are always GC safe when executing in a JNI method and are usually GC safe when
executing in a JNI API or any class loading or unloading related code. You are
usually always GC unsafe when executing in the interpreter loop
(CVMgcUnsafeExecuteJavaMethod()) or in dynamically compiled code.

A.1.3 Turning on Trace Output
If the CDC-HI virtual machine is built with CVM_TRACE=true, then the support for
debug tracing will be compiled in. There are three ways to turn on trace flags. By
default, CVM_TRACE=true if CVM_DEBUG=true.

1. Use the -Xtrace command line argument:

cvm -Xtrace:0xc40000 -Djava.class.path=../testclasses HelloWorld

2. Turn the flags on or off manually in gdb:

(gdb) set var CVMglobals.debugFlags = 0xc40000

3. Turn flags on and off from Java source code:

You must first import sun.misc.CVM. You can then use the following APIs:

/*

 * Methods for checking, setting, and clearing the state of debug

 * flags. All of the following methods return the previous state of

 * the flags.

 *

 * You can pass in more than one flag at a time to any of the methods.

*/

public native static int checkDebugFlags(int flags);

public native static int setDebugFlags(int flags);

public native static int clearDebugFlags(int flags);
Appendix A Debugging with gdb A-3

public native static int restoreDebugFlags(int flags, int oldvalue);

See src/share/javavm/test/Test.java for an example on using these APIs.

The supported trace flags can be found in
src/share/classes/sun/misc/CVM.java or see the companion document CDC
Runtime Guide for a documented list. To turn on more than one flag at the same time,
use a logical OR of their values:

TABLE A-1 Trace Flag Values

Flag Value

DEBUGFLAG_TRACE_OPCODE 0x00000001

DEBUGFLAG_TRACE_METHOD 0x00000002

DEBUGFLAG_TRACE_STATUS 0x00000004

DEBUGFLAG_TRACE_FASTLOCK 0x00000008

DEBUGFLAG_TRACE_DETLOCK 0x00000010

DEBUGFLAG_TRACE_MUTEX 0x00000020

DEBUGFLAG_TRACE_CS 0x00000040

DEBUGFLAG_TRACE_GCSTARTSTOP 0x00000080

DEBUGFLAG_TRACE_GCSCAN 0x00000100

DEBUGFLAG_TRACE_GCSCANOBJ 0x00000200

DEBUGFLAG_TRACE_GCALLOC 0x00000400

DEBUGFLAG_TRACE_GCCOLLECT 0x00000800

DEBUGFLAG_TRACE_GCSAFETY 0x00001000

DEBUGFLAG_TRACE_CLINIT 0x00002000

DEBUGFLAG_TRACE_EXCEPTIONS 0x00004000

DEBUGFLAG_TRACE_MISC 0x00008000

DEBUGFLAG_TRACE_BARRIERS 0x00010000

DEBUGFLAG_TRACE_STACKMAPS 0x00020000

DEBUGFLAG_TRACE_CLASSLOADING 0x00040000

DEBUGFLAG_TRACE_CLASSLOOKUP 0x00080000

DEBUGFLAG_TRACE_TYPEID 0x00100000

DEBUGFLAG_TRACE_VERIFIER 0x00200000
A-4 CDC Porting Guide • November 2005

TABLE A-2 lists the debug flag trace options most commonly used. The remainder of
the flags are less commonly used.

There are also a number of dynamic compiler related trace flags that are described in
the companion document CDC Runtime Guide. These trace flags can be set with the
following techniques:

■ -Xjit=trace=<option> command-line options
■ CVM.setJITDebugFlags() method found in CVM.java
■ CVMglobals.debugJITFlags command in gdb

A.2 High-Level Dumpers
The following dumper utilities display runtime information in a more useful format.
These utilities are only available when the VM is built with CVM_DEBUG=true and
can be used at anytime except during garbage collection.

Before using these utilities, you should disable GC:

DEBUGFLAG_TRACE_WEAKREFS 0x00400000

DEBUGFLAG_TRACE_CLASSUNLOAD 0x00800000

DEBUGFLAG_TRACE_CLASSLINK 0x01000000

TABLE A-2 Debug Flag Trace Options

Option Description

OPCODE Traces each opcode being executed.

METHOD Traces each method as it is entered, exited, and returned to.

GCSTARTSTOP Provides information each time GC starts and completes.

EXCEPTIONS Does a full backtrace of the Java thread whenever an exception is
thrown, and also provide information when an exception is caught.

CLASSLOADING Provides information about classes being loaded.

CLASSLOOKUP Provides information about class lookups (mostly loader cache related
information).

CLASSUNLOAD Provides information each time a class is unloaded.

CLASSLINK Provides information when a class is linked.

TABLE A-1 Trace Flag Values

Flag Value
Appendix A Debugging with gdb A-5

(gdb) call CVMgcDisableGC()

$2 = 1

Only the first invocation of CVMgcDisableGC will have any effect.

(gdb) call CVMgcDisableGC()

GC is already disabled! No need to disable.

$3 = 1

When you’re done, you can re-enable GC with CVMgcEnableGC. For example:

(gdb) call CVMgcEnableGC()

$4 = 1

Only the first invocation of CVMgcEnableGC will have any effect.

A.2.1 CVMdumpObject

CVMdumpObject dumps the contents of an object using its direct object pointer. For
example:

(gdb) call CVMdumpObject(directObj)

Object 0x61034c: instance of class java.lang.ThreadGroup

 classblock = 0x40ddfc

 size = 48

 fields[10] = {

 [000b] 0x0 : groups:[Ljava/lang/ThreadGroup;

 [000a] 0 : ngroups:I

 [0009] 0x0 : threads:[Ljava/lang/Thread;

 [0008] 0 : nthreads:I

 [0007] 0 : vmAllowSuspension:Z

 [0006] 0 : daemon:Z

 [0005] 0 : destroyed:Z

 [0004] 10 : maxPriority:I

 [0003] 0x51a2ec : name:Ljava/lang/String;

 [0002] 0x0 : parent:Ljava/lang/ThreadGroup;

}

A-6 CDC Porting Guide • November 2005

NOTE: CVMdumpObject operates on the value of a direct object pointer (CVMObject
pointer or CVMObjectICell). An CVMObjectICell pointer will need to be
dereferenced before CVMdumpObject can be used. If you accidentally typed in a
wrong object pointer value, CVMdumpObject will fail safely and tell you that you do
not have a valid object. For example:

(gdb) call CVMdumpObject(235)

Address 0xeb is not a valid object

A.2.2 CVMdumpClassBlock

CVMdumpClassBlock dumps the contents of a classblock. For example:

(gdb) call CVMdumpClassBlock(0x40ddfc)

Classblock 0x40ddfc: class java.lang.ThreadGroup

 class object = 0x549404

 instance size = 48

 superclass = 0x3ee05c : java.lang.Object

 classloader ref= 0x0, obj= 0x0 :

 protectionDomain = 0x0

 instanceSize = 48

 static fields [0] = { NONE }

NOTE: The classblock is not the class object (CVMClassBlock *). The pointer for
class object is the first field given in the classblock dump. You can use
CVMdumpObject to dump the class object. For example:

(gdb) call CVMdumpObject(0x549404)

Object 0x549404: instance of class java.lang.Class

classblock = 0x3edd70

size = 16

fields[2] = {

 [0003] 0x0 : loader:Ljava/lang/ClassLoader;

 [0002] 4251132 : classBlockPointer:I

}

NOTE: The classblock pointer is also contained in the class object. If you type in a
wrong classblock pointer value, CVMdumpClassBlock will fail gracefully and tell
you so. For example:

(gdb) call CVMdumpClassBlock(0x40ddf0)

Address 0x40ddf0 is not a valid Classblock
Appendix A Debugging with gdb A-7

NOTE: A classblock pointer for an object can be obtained by either calling
CVMdumpObject or by masking the lower two bits off of the first word of the object.

A.2.3 CVMdumpString

CVMdumpString dumps the contents of a java.lang.String object as a C string.
Note that this dumper does not go through any character decoder. It simply
truncates the Java chars and dumps the string as ASCII. This should be adequate
for most debugging purposes that don’t concern localization. For example:

(gdb) call CVMdumpString(0x51a2ec)

String 0x51a2ec: length= 6

value= “system”

NOTE: You can also call CVMdumpObject(directObj) to dump the string, but its
contents will show as a char array instead of the above nicely formatted string.

If you accidentally specified a wrong String object pointer, CVMdumpString will
fail gracefully and tell you so. For example:

(gdb) call CVMdumpString(254)

Address 0xfe is not a valid object.

A.2.4 CVMdumpObjectReferences

CVMdumpObjectReferences dumps all references to a specific object, which is
useful for discovering what is keeping an object alive.

For example:

(gdb) call CVMdumpObjectReferences(directObj)

List of references to object 0x61034c (java.lang.ThreadGroup):

 Ref 0x525c30 type: PRELOADER STATICS ROOT

 Ref 0x5fd510 type: JAVA FRAME ROOT ee 0x504ac0 frame 0

If you accidentally specified a wrong object pointer value, the dumper will fail
gracefully and tell you so. For example:

(gdb) call CVMdumpObjectReferences(555)

Address 0x22b is not a valid object.
A-8 CDC Porting Guide • November 2005

A.2.5 CVMdumpClassReferences

CVMdumpClassReferences dumps all references to a class by name. For example:

(gdb) call CVMdumpClassReferences(“java/lang/ThreadGroup”)

Addr: 0x61034c Size: 48 Class: java.lang.ThreadGroup

List of references to object 0x61034c (java.lang.ThreadGroup):

 Ref 0x525c30 type: PRELOADER STATICS ROOT

 Ref 0x5fd510 type: JAVA FRAME ROOT ee 0x504ac0 frame 0

Addr: 0x61037c Size: 48 Class: java.lang.ThreadGroup

List of references to object 0x61037c (java.lang.ThreadGroup):

 Ref 0x5fd50c type: JAVA FRAME ROOT ee 0x504ac0 frame 0

 Ref 0x5fd508 type: JAVA FRAME ROOT ee 0x504ac0 frame 1

NOTE: The classname uses ‘/’ as a separator instead of ‘.’. The dumper will not
recognize ‘.’ as a separator. For example:

(gdb) call CVMdumpClassReferences(“java.lang.ThreadGroup”)

 Class java.lang.ThreadGroup is NOT loaded

The error message is misleading in this case (an unfortunate side effect of the current
implementation).

A.3 Low-Level Dumpers

A.3.1 Using CVMconsolePrintf()
CVMconsolePrintf() provides information about classes, methods, fields, objects,
and Java stack frames. CVMconsolePrintf() supports six special conversion
characters in addition to those normally supported by printf(), plus the meaning
of three of the characters can be modified with the '!' character. The conversion
characters include:

%C and %!C - prints a class name

%M and %!M - prints a method name

%F and %!F - prints a field name

%O and %I - prints out an object's class name and hash

%P - prints out java stack frame information
Appendix A Debugging with gdb A-9

The argument type required for each of the above conversion characters is as
follows:

%C - CVMClassBlock*

%M - CVMMethodBlock*

%F - CVMFieldBlock*

%!C - CVMClassTypeID

%!M - CVMMethodTypeID

%!F - CVMFieldTypeID

%O - CVMObject*

%I - CVMObjectICell*

%P - CVMInterpreterFrame* (only supported in CVM_DEBUG=true builds)

You must be GC safe when using %I. See Section A.1.2, “gdb and GC Safety” on
page A-3. %O will not print the object hash if it has not been calculated yet.

Here are some examples:

(gdb) call CVMconsolePrintf("%C.%M\n", cb, mb)

java.lang.Class.runStaticInitializers()V

(gdb) call CVMconsolePrintf("%O\n", directObj)

java.lang.Class@0

(gdb) call CVMconsolePrintf("%P\n", frame)

java.lang.Class.runStaticInitializers()V(Class.java:1446)

A.3.2 Displaying the PC Offset
Given a bytecode address (such as the pc local variable) you can find the offset from
the start of the method. You will also need the CVMMethodBlock*, which can be
retrieved from the frame of the method in order to do this:

(gdb) p *(CVMInterpreterFrame*)frame

$61 = {

 frameX = {

 prevX = 0x387950,

 scanner = 0xaf70c <CVMjavaFrameScanner>,

 topOfStack = 0x38799c,

 mb = 0x2bbb5c

 },
A-10 CDC Porting Guide • November 2005

 pcX = 0x2bb6fb "ß\013\003 ",

 cpX = 0x2bbc58,

 localsX = 0x387970

}

(gdb) p $61->pcX - (CVMUint8*)($61->frameX.mb->immutX.codeX.jmd+1)

$62 = 7

You can define a macro pcOffset(frame) to print out the current offset of the pc
from the start of the method:

define pcOffset

 p ((CVMInterpreterFrame*)$arg0)->pcX -
(CVMUint8*)(((CVMInterpreterFrame*)$arg0)->frameX.mb-
>immutX.codeX.jmd+1)

end

Note – This technique is only applicable if the frame is not a compiled frame. See
Section A.3.4, “Displaying Opcode Information” on page A-12.

A.3.3 Dumping the Java Stack
There are two functions that you can call from gdb to dump out Java stack
information. They are only included if you build with CVM_DEBUG_DUMPSTACK=
true, which is the default if you build with CVM_DEBUG=true. If you also want
source file and line number information included in the stack dump, then you need
to also build with CVM_DEBUG_CLASSINFO=true and CVM_JAVAC_DEBUG=true,
both of which also default to true if CVM_DEBUG=true.

extern void

CVMdumpStack(CVMStack* s, CVMBool verbose, CVMBool includeData,
CVMInt32 frameLimit);

extern CVMStackChunk*

CVMdumpFrame(CVMFrame* frame, CVMStackChunk* startChunk, CVMBool
verbose, CVMBool includeData);

(gdb) call CVMdumpStack(&ee->interpreterStack,0,0,0)

 Java Frame Test.testSunMiscGC()V(Test.java:158)

 Java Frame Test.main([Ljava/lang/String;)V(Test.java:123)

 Transition Frame Test.main([Ljava/lang/String;)V(Transition
Method)

 Free List Frame (JNI Local Frame)
Appendix A Debugging with gdb A-11

If you pass 1 for verbose, you will see more details for each frame. If you also pass
1 for includeData, then the stack contents for each frame are also displayed.
Alternatively, you can use the special combination of verbose==0 and
includeData==1 to get the minimal information for each frame plus the arguments
needed to call CVMdumpFrame() for more information on each of the respective
frames. For example:

(gdb) call CVMdumpStack(&ee->interpreterStack,0,1,0)

 Java Frame Test.testSunMiscGC()V(Test.java:158)

call CVMdumpFrame(0x387878, 0x3877d8, 1, 1)

 Java Frame Test.main([Ljava/lang/String;)V(Test.java:123)

call CVMdumpFrame(0x38784c, 0x3877d8, 1, 1)

 Transition Frame Test.main([Ljava/lang/String;)V(Transition
Method)

call CVMdumpFrame(0x38781c, 0x3877d8, 1, 1)

 Free List Frame (JNI Local Frame)

call CVMdumpFrame(0x3877e4, 0x3877d8, 1, 1)

The advantage of this output is that arguments needed to call CVMdumpFrame() are
automatically included for you, so you don't need to look at the verbose output of
CVMdumpStack() to figure out which arguments to pass to CVMdumpFrame(), and
you don't need to deal with a stack dump that includes the stack data for every
frame. For example:

(gdb) call CVMdumpFrame(0x387878, 0x3877d8, 1, 1)

 Frame: 0x387878

 prev: 0x38784c

 Scanner: 0xaf70c

 Tos: 0x387898

 Type: Java Frame

 Name: Test.testSunMiscGC()V(Test.java:158)

 NextPC: 0x8be023

 special: 0

 Contents:

 Chunk 0x3877d8 (0x3877e4-0x3887e4)

A.3.4 Displaying Opcode Information
There are three ways to locate the current PC for a frame:
A-12 CDC Porting Guide • November 2005

1. Use CVMdumpStack() or CVMdumpFrame() and pass verbose==1. The address
of the current program counter (pc) will be included in the output in the NextPC
field.

(gdb) call CVMdumpFrame(0x387878, 0x3877d8, 1, 1)

 Frame: 0x387878

 prev: 0x38784c

 Scanner: 0xaf70c

 Tos: 0x387898

 Type: Java Frame

 Name: Test.testSunMiscGC()V(Test.java:158)

 NextPC: 0x8be023

 special: 0

 Contents:

 Chunk 0x3877d8 (0x3877e4-0x3887e4)

2. Locate the CVMFrame* for the frame and display its contents. The current pc
should be in the pcX field.

(gdb) p *(CVMInterpreterFrame*) frame

$46 = {

 frameX = {

 prevX = 0x38797c,

 scanner = 0xaf70c <CVMjavaFrameScanner>,

 topOfStack = 0x38798c,

 mb = 0x2bbb6c

 },

 pcX = 0x3879c8 "",

 cpX = 0x2bbc58,

 localsX = 0x38799c

}

Note that:

■ These techniques work with Java frames, but not JNI frames, which don't have a
pc.

■ The scanner field must be set to <CVMjavaFrameScanner>.
■ frame->pcX may not be correct for the topmost frame on the stack, since it may

be cached in a local variable. Use the pc local variable in
CVMgcUnsafeExecuteJavaMethod() instead.

3. Go to the CVMgcUnsafeExecuteJavaMethod() C frame and display the pc
variable:
Appendix A Debugging with gdb A-13

(gdb) p pc

$47 = (CVMUint8 *) 0x2bb74e " "

Once you have a pc, you can display the opcode at the pc:

(gdb) p (CVMOpcode)*(CVMUint8*)0x2bb74e

$48 = opc_return

For CVM_JIT=true builds, it does not make sense to display opcode information
when the frame is a compiled frame (as opposed to an interpreted Java frame). This
is because the code being executed is not the original bytecodes but a compiled
version of it.

Regardless, when dumping stack frames, you need to be able to distinguish between
compiled and interpreted frames. For CVM_JIT=true builds, the low bit of prevX
for stack frames will normally be set. If the low bit is not set, then the scanner field
contains unreliable information. If the low bit is not set, the frame is a compiled
frame even if the scanner field says <CVMjavaFrameScanner>. If the low bit is set,
for compiled frames, the scanner field will indicate
<CVMcompiledFrameScanner>.

Like JNI native code frames, you cannot get program counter and opcode
information from compiled frames.

A.3.5 Dumping the Java Heap
There are three functions that can be used for dumping out the contents of the Java
heap. All of these functions can be useful in detecting leaks in the Java heap. They
are only available if you build with CVM_DEBUG=true.

extern void CVMgcDumpHeapSimple()

extern void CVMgcDumpHeapStats()

extern void CVMgcDumpHeapVerbose()

CVMgcDumpHeapSimple() dumps the total number of objects in the heap. For
example:

(gdb) call CVMgcDumpHeapSimple()

Counted 3702 objects

CVMgcDumpHeapStats() displays the number of instances (NI) allocated for each
class and the total space (TS) in bytes that the instances occupy in the heap. For
example:

(gdb) call CVMgcDumpHeapStats()

TS=89396 NI=986 CL=[C

TS=47172 NI=167 CL=[B
A-14 CDC Porting Guide • November 2005

TS=14292 NI=397 CL=[Ljava.lang.Object;

TS=14020 NI=701 CL=java.lang.String

TS=9056 NI=126 CL=[I

TS=8096 NI=2 CL=[S

TS=3700 NI=185 CL=java.lang.Class

TS=3480 NI=174 CL=java.lang.StringBuffer

TS=2256 NI=94 CL=java.util.Hashtable$Entry

TS=2040 NI=18 CL=[Ljava.util.Hashtable$Entry;

TS=1400 NI=116 CL=[Ljava.lang.Class;

...

TS=8 NI=1 CL=java.util.Hashtable$EmptyEnumerator

TS=8 NI=1 CL=java.net.UnknownContentHandler

TS=8 NI=1 CL=java.security.Security$1

TS=8 NI=1 CL=java.util.Hashtable$EmptyIterator

CVMgcDumpHeapVerbose() dumps out the address and size of every object in the
heap. For example:

(gdb) call CVMgcDumpHeapVerbose()

...

Addr: 0x3bd0a8 Size: 44 Class: CloneableObject

Addr: 0x3bd0d4 Size: 8 Class: java.lang.Object

Addr: 0x3bd0dc Size: 44 Class: CloneableObject

Addr: 0x3bd108 Size: 24 Class: [Ljava.lang.Object;

Addr: 0x3bd120 Size: 24 Class: [Ljava.lang.Object;

Addr: 0x3bd138 Size: 12 Class: NonCloneableObject

Addr: 0x3bd144 Size: 16 Class: java.lang.CloneNotSupportedException

...

The next section describes how you can dump the contents of these objects.

A.3.6 Dumping Object Information
Objects have an 8 byte header, followed by the contents of the object.

(gdb) x /4wx 0x3bd144

0x3bd144: 0x002ebffc 0x00000002 0x003bd1a0 0x003bd154

(gdb) p *(CVMObject*) 0x3bd144

$74 = {
Appendix A Debugging with gdb A-15

 hdr = {

 clas = 0x2ebffc,

 various32 = 2

 },

 ...

}

The clas field contains the CVMClassBlock* that the object is an instance of. The
lower two bits of this field have special meaning and should be masked off if set
before attempting to use it as a CVMClassBlock*.

(gdb) p ((CVMObject*)0x3bd144)->hdr.clas

$76 = (CVMClassBlock *) 0x2ebffc

(gdb) call CVMconsolePrintf("%C\n", $76)

java.lang.CloneNotSupportedException

Array objects have the same header as above, with the addition of a length field.
Below is an array of length one.

(gdb) x /4wx 0x3bd7d8

0x3bd7d8: 0x008a8ce0 0x00000002 0x00000001 0x00000000

(gdb) p *((CVMArrayOfAnyType*)0x3bd7d8)

$77 = {

 hdr = {

 clas = 0x8a8ce0,

 various32 = 2

 },

 length = 1,

 ...

}

See the description of the high-level dumper in Section A.2.1, “CVMdumpObject” on
page A-6.

A.3.7 Dumping Loaded Classes
You can dump the set of loaded classes using the CVMclassTableDump() function.
You must first enable CLASSLOOKUP tracing or no output will be displayed. You
must also compile with CVM_TRACE=true which is the default when CVM_DEBUG=
true.

(gdb) set var CVMglobals.debugFlags = 0x80000
A-16 CDC Porting Guide • November 2005

(gdb) call CVMclassTableDump(ee)

CT: 0x8d5db8: sun.misc.GC$1

CT: 0x8d53a8: sun.misc.GC$Daemon

CT: 0x8d4900: java.util.TreeMap$Entry

CT: 0x8d3f18: java.util.TreeMap$1

CT: 0x8d7b40: java.util.TreeMap

CT: 0x8d3190: java.util.TreeSet

CT: 0x8d0ed8: sun.misc.GC$LatencyRequest

CT: 0x8cfa18: sun.misc.GC$LatencyLock

CT: 0x8ce568: sun.misc.GC

The addresses listed are for the CVMClassBlock* of each class. You can use a
CVMClassBlock* address as follows to get more information for any individual
class:

(gdb) p *(CVMClassBlock*)0x8d5db8

$64 = {

 gcMapX = {

 map = 0,

 bigmap = 0x0

 },

 classNameX = 978,

 superclassX = {

 superclassCb = 0x244b2c,

 superclassTypeID = 2378540,

 mirandaMethodCountX = 0 '\000'

 },

 cpX = {

 constantpoolX = 0x8d5e20,

 arrayInfoX = 0x8d5e20

 },

 ...

}

You can also dump out the loader cache using CVMloaderCacheDump(). Once
again, CLASSLOOKUP tracing must be turned on and you must compile with
CVM_TRACE=true and CVM_DEBUG=true.

(gdb) call CVMloaderCacheDump(ee)

LC: #887 0x8a8fc0: <0x38a0a4,[LTest;>
Appendix A Debugging with gdb A-17

LC: #890 0x8a8e00: <0x38a0a4,[LC;>

LC: #895 0x8ccb88: <0x38a0a4,[Lcvmtest.TypeidRefcountHelper;>

LC: #978 0x8d5db8: <0x0,sun.misc.GC$1>

LC: #979 0x8cfa18: <0x0,sun.misc.GC$LatencyLock>

LC: #980 0x8d53a8: <0x0,sun.misc.GC$Daemon>

LC: #981 0x8d3190: <0x0,java.util.TreeSet>

LC: #982 0x8d7b40: <0x0,java.util.TreeMap>

LC: #983 0x8d4900: <0x0,java.util.TreeMap$Entry>

LC: #984 0x8d3f18: <0x0,java.util.TreeMap$1>

LC: #1007 0x8a2cf0: <0x38a0a4,[[LTest;>

The first address given is the CVMClassBlock*. The second is the
CVMObjectICell* of the ClassLoader instance. 0x0 represents the NULL class
loader (a.k.a. the bootclasspath loader or bootstrap loader).

See the description of the high-level dumper in Section A.2.2,
“CVMdumpClassBlock” on page A-7.

A.3.8 Dumping Threads
Information about one or all of the Java threads can be dumped by using the
following functions, which are only available when the CDC-HI virtual machine is
built using CVM_DEBUG=true:

extern void

CVMdumpThread(JNIEnv* env)

extern void

CVMdumpAllThreads()

extern void

CVMprintThreadName(JNIEnv* env, CVMObjectICell* threadICell)

You must be GC safe when calling these functions. See Section A.1.2, “gdb and GC
Safety” on page A-3.
A-18 CDC Porting Guide • November 2005

A.4 Conversion Procedures

A.4.1 The CVMExecEnv Structure
All Java threads in the CDC-HI virtual machine are represented by a CVMExecEnv
structure. If you look at the C backtrace for almost any running thread, you will
probably see a CVMExecEnv* passed as an argument to just about every function in
the backtrace. You can use the CVMExecEnv* to locate information about the thread,
such as the Java stack being used by the interpreter loop. For example, if your C
backtrace is as follows:

#0 CVMgcUnsafeExecuteJavaMethod (ee=0x37d2c0, mb=0x267590,

 isStatic=0,

 isVirtual=0) at ../../src/share/javavm/runtime

 executejava.c:1636

#1 0xe4b2c in CVMjniInvoke (env=0x37d2e8, obj=0x387810,

 methodID=0x8bd124,

 pushArguments=0xe3638 <CVMjniPushArgumentsVararg>,

 args=0xffbef5b4,

 info=770, retValue=0x0) at ../../src/share/javavm/runtime/

 jni_impl.c:2412

#2 0xe727c in CVMjniCallStaticVoidMethod (env=0x37d2e8,

 clazz=0x387810,

 methodID=0x8bd124) at ../../src/share/javavm/runtime/

 jni_impl.c:2587

#3 0x19a644 in ansiJavaMain (argc=3, argv=0xffbef754)

 at ../../src/portlibs/ansi_c/ansi_java_md.c:223

#4 0x199cc4 in main (argc=3, argv=0xffbef754)

 at ../../src/solaris/bin/java_md.c:16

The ee argument passed to CVMgcUnsafeExecuteJavaMethod() can be used to
dump the Java stack:

(gdb) call CVMdumpStack(&ee->interpreterStack,0,0,0)

You can also always get the CVMExecEnv* for the current thread by calling
CVMgetEE().
Appendix A Debugging with gdb A-19

A.4.2 Converting Between CVMExecEnv* and JNIEnv*
Every CVMExecEnv has a corresponding JNIEnv. You can manually convert
between the two, but usually you can avoid having to do this conversion by looking
elsewhere on the C stack. For example, if you are in
CVMgcUnsafeExecuteJavaMethod() and need a JNIEnv*, going up one or two C
frames will usually put you in one of the JNI APIs, and you can get the JNIEnv*
there.

Converting from CVMExecEnv* to JNIEnv*:

(gdb) p &(&(ee)->jniEnv)->vector

$86 = (JNIEnv *) 0x37d2e8

Converting from JNIEnv* to CVMExecEnv*:

(gdb) p (CVMExecEnv*)((char*)env - (CVMUint32)&(((CVMExecEnv*)0)-
>jniEnv)->vector)

$87 = (CVMExecEnv *) 0x37d2c0

Here are some conversion macros:

define ee2env

 p &(($arg0)->jniEnv)->vector

end

define env2ee

 ee2env((CVMExecEnv*)0)

 p (CVMExecEnv*)((char*)$arg0 - (CVMUint32)($))

end

A.4.3 Converting from JNI Types to Internal VM Types
The following are mappings of JNI types to internal VM types:

jclass == CVMClassICell* == java.lang.Class instance

jmethodID == CVMMethodBlock*

jfieldID == CVMFieldBlock*

jobject == CVMObject*

You can pass a variable of type jmethodID as the %M argument to
CVMconsolePrintf(). Likewise for jfieldID and %F. Even though these types
have "ID" in their names, they are not the same as CVMMethodTypeID and
CVMFieldTypeID.
A-20 CDC Porting Guide • November 2005

To print the type that a jclass represents, see the next section on converting from a
java.lang.Class to CVMClassBlock*.

A.4.4 Converting from java.lang.Class to
CVMClassBlock*

All java.lang.Class instances contain a pointer to the CVMClassBlock* that
they represent, and all CVMClassBlocks have an indirect pointer to their
java.lang.Class instance. This makes it possible to convert between the two by
using the following two APIs:

extern CVMClassBlock*

CVMgcSafeClassRef2ClassBlock(CVMExecEnv* ee, CVMClassICell *clazz)

extern CVMClassBlock *

CVMgcUnsafeClassRef2ClassBlock(CVMExecEnv *ee, CVMClassICell *clazz)

(gdb) call CVMgcSafeClassRef2ClassBlock(ee, clazz)

$80 = (CVMClassBlock *) 0x26d4d4

If clas is a jclass or CVMClassICell*, then you can do the following to print the
class name:

(gdb) call CVMconsolePrintf("%C\n", CVMgcSafeClassRef2ClassBlock(ee,
clas))

java.lang.Runtime

If you are not GC safe, then you can use CVMgcUnsafeClassRef2ClassBlock()
instead.

See the descriptions of the high-level dumpers in Section A.2.1, “CVMdumpObject”
on page A-6 and Section A.2.2, “CVMdumpClassBlock” on page A-7.
Appendix A Debugging with gdb A-21

A.5 Other Procedures

A.5.1 Debugging Crashes on Linux
Linux implements threads on top of processes. When there is a crash, the core file
produced is almost never for the thread (process) that actually crashed. The CDC-HI
virtual machine installs a signal handler on Linux that will catch the signal raised
because of a crash, and suspends the process. This allows you to then attach gdb to
the process, rather than having to deal with a useless core file.

Note that the example below is based on a Linux x86/PC port. The register
information will be presented in a different struct for each target.

When the CDC-HI virtual machine crashes on Linux, you will see the following:

Process received signal 11, suspending

When you see this, ctrl-z the process to temporarily stop it. You can then use ps
to see a list of all the current virtual machine processes:

[bin]$ ps

31576 ttyp3 00:00:00 bash

21912 ttyp3 00:00:00 cvm

21913 ttyp3 00:00:00 cvm

21914 ttyp3 00:00:00 cvm

21915 ttyp3 00:00:00 cvm

22447 ttyp3 00:00:00 cvm

22448 ttyp3 00:00:00 cvm

22449 ttyp3 00:00:00 cvm

22450 ttyp3 00:00:00 cvm

22451 ttyp3 00:00:00 cvm

22452 ttyp3 00:00:00 cvm

22453 ttyp3 00:00:00 cvm

22454 ttyp3 00:00:00 cvm

22455 ttyp3 00:00:00 cvm

22456 ttyp3 00:00:00 cvm

22457 ttyp3 00:00:23 cvm

24310 ttyp3 00:00:00 ps
A-22 CDC Porting Guide • November 2005

The first process in the list is the main process and is the one you want to attach to
in gdb. After executing ps, type bg to continue execution in the background.
Otherwise gdb will hang waiting for the process to be started again. Next launch
gdb and specify the cvm binary that was running when the crash occurred.

[bin]$ gdb cvm

Current directory is /home/test/cvm/build/linux/bin/

GNU gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and
you are

welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i386-redhat-linux"...

Starting up GDB configuration file

Done interpreting GDB configuration file

Attach to the first CDC-HI virtual machine process in the ps list:

(gdb) attach 21912

Attaching to program: /home/test/cvm/build/linux/bin/cvm, Pid 21912

Reading symbols from /lib/libpthread.so.0...done.

Reading symbols from /lib/libm.so.6...done.

Reading symbols from /lib/libnsl.so.1...done.

Reading symbols from /lib/libdl.so.2...done.

Reading symbols from /lib/libc.so.6...done.

Reading symbols from /lib/ld-linux.so.2...done.

Reading symbols from /lib/libnss_files.so.2...done.

Reading symbols from /usr/lib/gconv/ISO8859-1.so...done.

0x40083e0b in __sigsuspend (set=0xbffff50c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

48 ../sysdeps/unix/sysv/linux/sigsuspend.c: No such file or
directory.

info threads will give you a list of all the threads:

(gdb) info threads

 15 Thread 22457 0x40083e0b in __sigsuspend (set=0xbdfff008)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48
Appendix A Debugging with gdb A-23

 14 Thread 22456 0x40083e0b in __sigsuspend (set=0xbe1ff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 13 Thread 22455 0x40083e0b in __sigsuspend (set=0xbe3ff498)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 12 Thread 22454 0x40083e0b in __sigsuspend (set=0xbe5ff498)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 11 Thread 22453 0x40083e0b in __sigsuspend (set=0xbe7ff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 10 Thread 22452 0x40083d61 in __kill () from /lib/libc.so.6

 9 Thread 22451 0x40083e0b in __sigsuspend (set=0xbebff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 8 Thread 22450 0x40083e0b in __sigsuspend (set=0xbedff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 7 Thread 22449 0x40083e0b in __sigsuspend (set=0xbefff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 6 Thread 22447 0x40083e0b in __sigsuspend (set=0xbf1ff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 5 Thread 22448 0x40083e0b in __sigsuspend (set=0xbf3ff62c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 4 Thread 21915 0x40083e0b in __sigsuspend (set=0xbf5ff52c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 3 Thread 21914 0x40083e0b in __sigsuspend (set=0xbf7ff52c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

* 2 Thread 21912 (initial thread) 0x40083e0b in __sigsuspend (set=
0xbffff50c)

 at ../sysdeps/unix/sysv/linux/sigsuspend.c:48

 1 Thread 21913 (manager thread) 0x40110fe0 in __poll (fds=
0x8386d08,

 nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:45

The thread that crashed will be in the __kill() function. Switch to it to debug the
crash:

(gdb) thread 10

[Switching to thread 10 (Thread 22452)]

#0 0x40083d61 in __kill () from /lib/libc.so.6

(gdb) bt

#0 0x40083d61 in __kill () from /lib/libc.so.6
A-24 CDC Porting Guide • November 2005

#1 0x817543d in crash (sig=11) at
../../src/linux/javavm/runtime/sync_md.c:388

#2 0x40022582 in pthread_sighandler (signo=11, ctx={gs = 0, __gsh =
0,

 fs = 0, __fsh = 0, es = 43, __esh = 0, ds = 43, __dsh = 0, edi
= 25,

 esi = 1081082928, ebp = 3198154408, esp = 3198154336, ebx =
1075139692,

 edx = 32, ecx = 1081081904, eax = 1081081912, trapno = 14, err
= 6,

 eip = 1074521900, cs = 35, __csh = 0, eflags = 66118,

 esp_at_signal = 3198154336, ss = 43, __ssh = 0, fpstate =
0xbe9ff5e0,

 oldmask = 2147483648, cr2 = 33}) at signals.c:96

#3 0x40083c88 in __restore ()

 at ../sysdeps/unix/sysv/linux/i386/sigaction.c:127

#4 0x400bfec4 in __libc_calloc (n=1, elem_size=28) at malloc.c:3707

#5 0x8147bb4 in CVMCcallocStub (nelem=1, elsize=28)

 at ../../src/share/javavm/runtime/porting_debug.c:127

#6 0x8114951 in CVMreplenishLockRecordUnsafe (ee=0xbe9ffc40)

 at ../../src/share/javavm/runtime/objsync.c:366

#7 0x8116f59 in CVMdetLock (ee=0xbe9ffc40, indirectObj=0x83d2aec)

 at ../../src/share/javavm/runtime/objsync.c:1116

#8 0x80cc668 in CVMgcUnsafeExecuteJavaMethod (ee=0xbe9ffc40, mb=
0x836a8e4,

 isStatic=0, isVirtual=1)

 at ../../src/share/javavm/runtime/executejava.c:2932

#9 0x80fad05 in CVMjniInvoke (env=0xbe9ffc68, obj=0x83d2954,

 methodID=0x83696e4, pushArguments=0x80fa0d8
<CVMjniPushArgumentsVararg>,

 args=0xbe9ffbdc, info=258, retValue=0x0)

 at ../../src/share/javavm/runtime/jni_impl.c:2412

#10 0x80fc3e1 in CVMjniCallVoidMethod (env=0xbe9ffc68, obj=
0x83d2954,

 methodID=0x83696e4) at
../../src/share/javavm/runtime/jni_impl.c:2587

#11 0x8108830 in start_func (arg=0x409cfc80)

 at ../../src/share/javavm/runtime/jvm.c:1505

#12 0x8173183 in start_func (a=0x409cfc98)
Appendix A Debugging with gdb A-25

 at ../../src/portlibs/posix/posix_threads_md.c:30

#13 0x4001fbb5 in pthread_start_thread (arg=0xbe9ffe40) at
manager.c:241

The frame that actually crashed is not included in the backtrace. However, all the
registers, including the pc (eip register) are passed as arguments to the signal
handler, pthread_sighandler(). You can disassemble the value passed in eip to
find out where the crash actually occurred. (Note that not all platforms support this
backtrace feature.)

In the above backtrace, frames #0 through #3 are all part of the signal handling. The
crash actually occurred in a function called from __libc_calloc(). If you
disassemble the value passed in the eip argument to pthread_sighandler(),
you can see that __libc_calloc() called chunk_alloc(), and that is where the
crash occurred. (This crash was the result of a memory corruption that caused a call
to calloc() to crash).

(gdb) x /4i 1074521900

0x400be72c <chunk_alloc+84>: mov %ecx,0x8(%edi)

0x400be72f <chunk_alloc+87>: mov 0xfffffff4(%ebp),%edi

0x400be732 <chunk_alloc+90>: orb $0x1,0x4(%edi,%esi,1)

0x400be737 <chunk_alloc+95>: jmp 0x400bef93 <chunk_alloc+2235>

NOTE: Some platforms like ARM don’t include any frames above the signal handler
in the backtrace.

NOTE: After attaching to the crashed process, you can usually just type continue
and the crash will occur again. But this time gdb will handle the crash and you can
debug at the actual site of the crash rather than in the CDC-HI crash() function.

A.5.2 Debugging Compiled Methods
One way to debug the dynamic compiler with gdb is to use the function
CVMJITcodeCacheFindCompileMethod(<machine-pc>, 1). This requires the
CVM_DEBUG=true build. If you know or suspect that a pc is in a compiled method,
you can pass it to the following function:

(gdb) call CVMJITcodeCacheFindCompiledMethod(<machine-pc>, 1)

If the method is found, it will print out the name of the method and also return the
CVMMethodBlock*. Otherwise NULL is returned.
A-26 CDC Porting Guide • November 2005

APPENDIX B

C Stack Checking

This appendix describes how system robustness against a tight C stack situation can
be achieved by performing static analysis of C stack usage and introducing dynamic
stack checks in CDC HI. This appendix covers the following topics:

■ Introduction
■ Calculating C Stack Redzones
■ Worst Cases of Stack Usage Chains

B.1 Introduction
Because CDC HI is targeted for devices that have less memory available and for OSs
that do not have MMU support, the C stack usage in CDC HI is taken into account
to avoid a stack overrun caused by recursive operations, such as the bytecode
interpreter loop, class loading, and class verifier.

To avoid this problem, CDC HI cannot take the same approach as the JDK, in which
large memory area is reserved for the C stack. To ensure system robustness against C
stack overflow situations caused by tight C stacks, an extensive static analysis of the
C codes in CDC HI and the supporting libraries is performed. A dynamic C stack
check is introduced at the points where recursive function calls can happen.

As a result, CDC HI guarantees that a C stack overflow failure is detected so that a
StackOverflowError is thrown when a C stack check notifies that insufficient C
stack space is available and a potential memory corruption caused by C stack
overflow is eliminated.

C codes are statically analyzed to identify where recursive call cycles occur,
eliminate call cycles as much as possible, and sum up stack use in any given call
cycles. As a result, the worst case of stack usage required by the recursive function
calls is used by a redzone check in the C stack check routine. The worst case of stack
usage is called "stack redzone" and the C stack check routine is called
B-1

CVMCstackCheckSize. The C stack check codes on a cycle determine whether
another invocation of the cycle can continue execution with sufficient C stack size
left. This redzone (worst case of stack usage) size is used to find out the available
stack size for next function invocation in the cycle at execution time. When the C
stack is insufficient to continue execution, CDC HI throws a StackOverflowError.

B.2 Calculating C Stack Redzones
The CDC HI stack usage is statically analyzed to identify the recursive functions and
calculate the worst case C stack redzone values for each recursive function. All CDC
HI programs written in C are first compiled into platform-specific assembly codes by
the GNU C compiler. All indirect function calls, such as JNI function invocation
through the function pointers and other function invocations through function
pointers in CDC HI programs, are resolved and mapped into direct function calls to
assist the static stack analysis.

The mapping information that maps an indirect function call to a direct function call
in CDC HI programs can be found in Chapter 7 and the mapping information that
maps an indirect function call to a JNI function call can be found in Chapter 8.

Note – In stublist, a function named CVM_worst_case_psuedo_method is a link
between CVMjniInvokeNative and all of the JNI functions in the JNI vector table
and the JVMDI vector table. It is also a link between ansiJavaMain and all of the
JNI functions defined in the JNI vector table for the code outside the VM calling into
JNI functions. The worse case stack usage for a JNI call cycle from calling
CVM_worst_case_psuedo_method to a JNI call is assumed to be 3K bytes, and the
same is true for all call cycles that end with OS and C library functions.

There are nine functions that have recursive invocation paths.

1. CVMgcUnsafeExecuteJavaMethod

2. CVMimplementsInterface

3. classlookup:CVMclassLookupFromClassLoader

4. CVMclassLink

5. utils:CVMCstackDummy2CVMformatStringVaList

6. utils:CVMCstackDummy2CVMconsolePrintf

7. utils:CVMCstackDummy2CVMobjectGetHashSafe

8. verifycode:CVMCstackDummy2merge_fullinfo_types
B-2 CDC Porting Guide • November 2005

9. CVMsignalErrorVaLisT

Three recursions occurring in the function CVMformatStringVaList from file
utils.c detected by the static stack analysis have at most one-level deep recursion
which terminates itself at the second invocation of CVMformatStringVaList. To
obtain an accurate stack size required to invoke CVMformatStringVaList another
time, a dummy function is temporarily created for each recursion and is called at the
place that needs to check stack overflow before going into the loop to terminate
itself. Once the stack requirement is obtained by the static stack analysis, each
dummy function invocation is removed and a runtime C stack check is added in the
place that invokes the dummy function. There is only one C stack check for
detecting the available stack size before calling
utils:CVMCstackDummy2CVMconsolePrintf and
utils:CVMCstackDummy2CVMobjectGetHashSafe. The three dummy functions
are statically defined in utils.c and are invoked in CVMformatStringVaList as
below:

(1) utils:CVMCstackDummy2CVMformatStringVaList

(2) utils:CVMCstackDummy2CVMconsolePrintf

(3) utils:CVMCstackDummy2CVMobjectGetHashSafe

The self recursive invocation of merge_fullinfo_types in file verifycode.c
has at most one-level deep recursion. A dummy function called
CVMCstackDummy2merge_fullinfo_types is temporarily created and invoked at
the place that needs to check stack overflow before entering the loop and
terminating itself in that call path so that the stack redzone can be calculated
accurately. Once the stack requirement is obtained by the static stack analysis, this
dummy function invocation is removed and a runtime C stack check is added in the
place that invokes the dummy function. The dummy function is statically defined in
file verifycode.c and is invoked in merge_fullinfo_types as below:

(1) verifycode:CVMCstackDummy2merge_fullinfo_types

B.2.1 C Stack Redzone Checks
Once the nine recursive functions are identified by the stack analysis, eight stack
redzone values are calculated based on the given function call path of each recursion
that consumes the most stack usage. The C stack redzone values are used by the C
Appendix B C Stack Checking B-3

stack check routines in CDC HI to detect a C stack overflow failure before making a
recursive function invocation. The following table shows each C stack redzone
macro used by the C stack check in its corresponding recursive function.

The following macros are used in C stack check codes for various recursive
functions.

TABLE 0-1 C Stack Redzone Macros

CDC HI Function C Stack Redzone Macro

CVMgcUnsafeExecuteJavaMethod CVM_REDZONE_ILOOP

CVMimplementsInterface CVM_REDZONE_CVMimplementsInterface

CVMformatStringVaList CVM_REDZONE_CVMCstackCVMpc2string

CVMformatStringVaList CVM_REDZONE_CVMCstackCVMID_objectGet
ClassAndHashSafe

CVMclassLookupFromClassLoader CVM_REDZONE_CVMclassLookupFromClassL
oader

CVMclassLink CVM_REDZONE_CVMclassLink

merge_fullinfo_to_types CVM_REDZONE_CVMCstackmerge_fullinfo_
to_types

TABLE 0-2 C Stack Check Macros

Declaration Description

CVM_REDZONE_ILOOP Stack space required for interpreter loop in
CVMgcUnsafeExecuteJavaMethod().

CVM_REDZONE_CVMclassLookupFromCla
ssLoader

Stack space required for class loading in a
deep class lookup hierarchy in
CVMclassLookupFromClassLoader ().

CVM_REDZONE_CVMclassLink Stack space required for class linking in
CVMclassLink().

CVM_REDZONE_CVMclassScan Stack space required for traversing the
scannable state of one class by the garbage
collector in CVMclassScan().

CVM_REDZONE_CVMimplementsInterfac
e

Stack space required for checking whether a
non-array class is an interface type class in
CVMimplementsInterface().

CVM_REDZONE_CVMCstackCVMpc2string Stack space required for building a
formatted string %P format of PC
information for console I/O in
CVMformatStringVaList().
B-4 CDC Porting Guide • November 2005

B.2.1.1 Recursive Functions

Recursive functions that have a C stack check are listed below:

■ CVMgcUnsafeExecuteJavaMethod
■ CVMclassLookupFromClassLoader
■ CVMclassLink
■ CVMclassScan
■ CVMimplementsInterface
■ CVMformatStringVaList
■ CVMsignalErrorVaList
■ merge_fullinfo_types

B.2.2 C Stack Redzone Values
The following eight stack redzones are used by the stack check routines in CDC HI
are shown in the table below.

CVM_REDZONE_CVMCstackCVMID_
objectGetClassAndHashSafe

Stack space required for building a
formatted string %I format of class name
information for console I/O in
CVMformatStringVaList().

CVM_REDZONE_CVMCstackmerge_
fullinfo_to_types

Stack space required for class verifier to do
type merging between two object types or
two arrays of object types in
merge_fullinfo_types().

CVM_REDZONE_CVMsignalErrorVaList Stack space required for signaling an
exception in CVMsignalErrorVaList().

TABLE 0-3 C Stack Redzone Macro Values

C Stack Redzone Macro Stack Redzone Value

CVM_REDZONE_ILOOP 11592
(11.32K bytes)

CVM_REDZONE_CVMimplementsInterface 4752
(5.14K bytes)

CVM_REDZONE_CVMCstackCVMpc2string 4752
(5.14K bytes)

TABLE 0-2 C Stack Check Macros (Continued)

Declaration Description
Appendix B C Stack Checking B-5

B.3 Worst Cases of Stack Usage Chains
The worst cases of stack usage chains that are used to calculate the stack redzones
can vary greatly on different platforms. SPARC, a RISC platform, uses a minimum
112 bytes of frame allocation in a frame even if no local variables are declared (in
some special case, code optimizer can make this 0). Whereas, many CISC platforms
would only use less stack space in this case. Therefore, stack usage calculated based
on SPARC code tends to be larger than CISC platforms.

The worst stack usage chain that contains the stack size of each function and the
accumulated stack size of the call path is not necessarily one of the recursive paths.
It can be a stack trace of calling a recursive function and terminating at an OS or C
library function, a stack trace of calling a recursive function and terminating at a
CDC HI function that ends itself, or a stack trace of calling a self-recursive function.
The static stack analysis checks all the call paths and comes out with the worst stack
usage of each recursive function call cycle. All the worst C stack usage call chains
provided in this documentation terminate at a library function strncpy.

The static stack analysis looks into the worst case of the stack usage chain of each
recursive function cycle and identifies several functions that use more stack frame
space than other functions occurring in the stack usage chain. The functions that
consume a large chunk of stack space are optimized by replacing the static allocation
of locals with a dynamically allocated and shared buffer to reduce the stack usage of
the frame allocation. Other optimizations summarized by the static stack analysis
include removing a recursion or a potentially infinite recursion out of the recursive
functions to reduce the stack space usage.

Listed in the following sections are the worst stack usage chains. They trace function
call paths that most consume the stack in each recursive function.

CVM_REDZONE_CVMCstackCVMID_objectGetClassAndHashS
afe

5392
(5.27K bytes)

CVM_REDZONE_CVMclassLookupFromClassLoader 13500
(13.18K bytes)

CVM_REDZONE_CVMclassLink 7456
(7.28K bytes)

CVM_REDZONE_CVMCstackmerge_fullinfo_to_types 5800
(5.66K bytes)

CVM_REDZONE_CVMsignalErrorVaList 8400
(8.20K bytes)

TABLE 0-3 C Stack Redzone Macro Values

C Stack Redzone Macro Stack Redzone Value
B-6 CDC Porting Guide • November 2005

The worst stack usage chains are:

■ Interpreter Loop
■ Implement Interface
■ Class Lookup in Class Loader
■ Class Link
■ Format String from PC
■ Format String from Object
■ Class Verifier
■ Signal Exception Message

In the following sections, the worst stack usage lists are structured as follows:

■ The first number is the accumulated stack usage in bytes to execute functions
from bottom up to the point that excludes the stack size of the current function
specified in the same line.

■ The second number is the stack frame size of the function following the second
colon.

B.3.1 Worst C Stack Usage Chain in Interpreter Loop
Some worst cases of stack consumption occurring in the interpreter loop that have a
call path from CVMgcUnsafeExecuteJavaMethod to a C library function, such as
strncpy, are given below.

> stacktrace CVMgcUnsafeExecuteJavaMethod strncpy

 8848 : 328 : CVMgcUnsafeExecuteJavaMethod

 8520 : 112 : CVMjniInvokeNative

 8408 : 3072 : CVM_worst_case_psuedo_method

 5336 : 128 : CVMjniToReflectedMethod

 5208 : 112 : CVMreflectMethodBlockToNewJavaMethod

 5096 : 224 : CVMreflectNewJavaLangReflectMethod

 4872 : 376 : CVMnewStringUTF

 4496 : 144 : CVMnewString

 4352 : 136 : CVMgcAllocNewInstance

 4216 : 128 : CVMjniCallStaticVoidMethod

 4088 : 184 : jni_impl:CVMjniInvoke

 3904 : 136 : CVMjniExceptionDescribe

 3768 : 112 : CVMjniGetMethodID

 3656 : 136 : jni_impl:CVMjniGetXMethodID

 3520 : 112 : CVMclassInit

 3408 : 128 : classinitialize:CVMprivateClassInit
Appendix B C Stack Checking B-7

 3280 : 128 : CVMjniCallVoidMethod

 3152 : 184 : jni_impl:CVMjniInvoke

 2968 : 136 : CVMjniExceptionDescribe

 2832 : 112 : CVMjniGetMethodID

 2720 : 136 : jni_impl:CVMjniGetXMethodID

 2584 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2456 : 240 : typeid:referenceMethodSignature

 2216 : 144 : typeid:referenceFieldSignature

 2072 : 120 : typeid:referenceClassName

 1952 : 144 : typeid:lookupClass

 1808 : 120 : typeid:findFreeScalarEntry

 1688 : 136 : typeid:findFreeTableEntry

 1552 : 120 : typeid:unlockThrowOutOfMemoryError

 1432 : 112 : CVMsysMutexUnlock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace CVMgcUnsafeExecuteJavaMethod .umul

 8744 : 328 : CVMgcUnsafeExecuteJavaMethod

 8416 : 112 : CVMjniInvokeNative

 8304 : 3072 : CVM_worst_case_psuedo_method

 5232 : 128 : CVMjniToReflectedMethod

 5104 : 112 : CVMreflectMethodBlockToNewJavaMethod

 4992 : 224 : CVMreflectNewJavaLangReflectMethod

 4768 : 376 : CVMnewStringUTF

 4392 : 144 : CVMnewString

 4248 : 136 : CVMgcAllocNewInstance

 4112 : 128 : CVMjniCallStaticVoidMethod

 3984 : 184 : jni_impl:CVMjniInvoke

 3800 : 136 : CVMjniExceptionDescribe
B-8 CDC Porting Guide • November 2005

 3664 : 112 : CVMjniGetMethodID

 3552 : 136 : jni_impl:CVMjniGetXMethodID

 3416 : 112 : CVMclassInit

 3304 : 128 : classinitialize:CVMprivateClassInit

 3176 : 128 : CVMjniCallVoidMethod

 3048 : 184 : jni_impl:CVMjniInvoke

 2864 : 136 : CVMjniExceptionDescribe

 2728 : 112 : CVMjniGetMethodID

 2616 : 136 : jni_impl:CVMjniGetXMethodID

 2480 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2352 : 240 : typeid:referenceMethodSignature

 2112 : 144 : typeid:referenceFieldSignature

 1968 : 120 : typeid:referenceClassName

 1848 : 144 : typeid:lookupClass

 1704 : 120 : typeid:findFreeScalarEntry

 1584 : 136 : typeid:findFreeTableEntry

 1448 : 120 : typeid:unlockThrowOutOfMemoryError

 1328 : 112 : CVMsysMutexUnlock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace CVMgcUnsafeExecuteJavaMethod strlen

 8728 : 328 : CVMgcUnsafeExecuteJavaMethod

 8400 : 112 : CVMjniInvokeNative

 8288 : 3072 : CVM_worst_case_psuedo_method

 5216 : 128 : CVMjniToReflectedMethod

 5088 : 112 : CVMreflectMethodBlockToNewJavaMethod

 4976 : 224 : CVMreflectNewJavaLangReflectMethod

 4752 : 376 : CVMnewStringUTF

 4376 : 144 : CVMnewString

 4232 : 136 : CVMgcAllocNewInstance
Appendix B C Stack Checking B-9

 4096 : 128 : CVMjniCallStaticVoidMethod

 3968 : 184 : jni_impl:CVMjniInvoke

 3784 : 136 : CVMjniExceptionDescribe

 3648 : 112 : CVMjniGetMethodID

 3536 : 136 : jni_impl:CVMjniGetXMethodID

 3400 : 112 : CVMclassInit

 3288 : 128 : classinitialize:CVMprivateClassInit

 3160 : 128 : CVMjniCallVoidMethod

 3032 : 184 : jni_impl:CVMjniInvoke

 2848 : 136 : CVMjniExceptionDescribe

 2712 : 112 : CVMjniGetMethodID

 2600 : 136 : jni_impl:CVMjniGetXMethodID

 2464 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2336 : 240 : typeid:referenceMethodSignature

 2096 : 144 : typeid:referenceFieldSignature

 1952 : 120 : typeid:referenceClassName

 1832 : 144 : typeid:lookupClass

 1688 : 120 : typeid:findFreeScalarEntry

 1568 : 136 : typeid:findFreeTableEntry

 1432 : 120 : typeid:unlockThrowOutOfMemoryError

 1312 : 112 : CVMsysMutexUnlock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace CVMgcUnsafeExecuteJavaMethod free

 8320 : 328 : CVMgcUnsafeExecuteJavaMethod

 7992 : 112 : CVMjniInvokeNative

 7880 : 3072 : CVM_worst_case_psuedo_method

 4808 : 128 : CVMjniToReflectedMethod

 4680 : 112 : CVMreflectMethodBlockToNewJavaMethod
B-10 CDC Porting Guide • November 2005

 4568 : 224 : CVMreflectNewJavaLangReflectMethod

 4344 : 376 : CVMnewStringUTF

 3968 : 144 : CVMnewString

 3824 : 136 : CVMgcAllocNewInstance

 3688 : 128 : CVMjniCallStaticVoidMethod

 3560 : 184 : jni_impl:CVMjniInvoke

 3376 : 136 : CVMjniExceptionDescribe

 3240 : 112 : CVMjniGetMethodID

 3128 : 136 : jni_impl:CVMjniGetXMethodID

 2992 : 112 : CVMclassInit

 2880 : 128 : classinitialize:CVMprivateClassInit

 2752 : 128 : CVMjniCallVoidMethod

 2624 : 184 : jni_impl:CVMjniInvoke

 2440 : 136 : CVMjniExceptionDescribe

 2304 : 112 : CVMjniGetMethodID

 2192 : 136 : jni_impl:CVMjniGetXMethodID

 2056 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1928 : 240 : typeid:referenceMethodSignature

 1688 : 144 : typeid:referenceFieldSignature

 1544 : 120 : typeid:referenceClassName

 1424 : 144 : typeid:lookupClass

 1280 : 120 : typeid:findFreeScalarEntry

 1160 : 136 : typeid:findFreeTableEntry

 1024 : 120 : typeid:unlockThrowOutOfMemoryError

 904 : 112 : CVMsysMutexUnlock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace CVMgcUnsafeExecuteJavaMethod sprintf

 8208 : 328 : CVMgcUnsafeExecuteJavaMethod

 7880 : 112 : CVMjniInvokeNative

 7768 : 3072 : CVM_worst_case_psuedo_method

 4696 : 128 : CVMjniToReflectedMethod

 4568 : 112 : CVMreflectMethodBlockToNewJavaMethod
Appendix B C Stack Checking B-11

 4456 : 224 : CVMreflectNewJavaLangReflectMethod

 4232 : 376 : CVMnewStringUTF

 3856 : 144 : CVMnewString

 3712 : 136 : CVMgcAllocNewInstance

 3576 : 128 : CVMjniCallStaticVoidMethod

 3448 : 184 : jni_impl:CVMjniInvoke

 3264 : 136 : CVMjniExceptionDescribe

 3128 : 112 : CVMjniGetMethodID

 3016 : 136 : jni_impl:CVMjniGetXMethodID

 2880 : 112 : CVMclassInit

 2768 : 128 : classinitialize:CVMprivateClassInit

 2640 : 128 : CVMjniCallVoidMethod

 2512 : 184 : jni_impl:CVMjniInvoke

 2328 : 136 : CVMjniExceptionDescribe

 2192 : 112 : CVMjniGetMethodID

 2080 : 136 : jni_impl:CVMjniGetXMethodID

 1944 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1816 : 240 : typeid:referenceMethodSignature

 1576 : 144 : typeid:referenceFieldSignature

 1432 : 120 : typeid:referenceClassName

 1312 : 144 : typeid:lookupClass

 1168 : 120 : typeid:findFreeScalarEntry

 1048 : 136 : typeid:findFreeTableEntry

 912 : 120 : typeid:unlockThrowOutOfMemoryError

 792 : 112 : CVMsysMutexUnlock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace CVMgcUnsafeExecuteJavaMethod fflush

 7904 : 328 : CVMgcUnsafeExecuteJavaMethod

 7576 : 112 : CVMjniInvokeNative

 7464 : 3072 : CVM_worst_case_psuedo_method

 4392 : 128 : CVMjniToReflectedMethod

 4264 : 112 : CVMreflectMethodBlockToNewJavaMethod
B-12 CDC Porting Guide • November 2005

 4152 : 224 : CVMreflectNewJavaLangReflectMethod

 3928 : 376 : CVMnewStringUTF

 3552 : 144 : CVMnewString

 3408 : 136 : CVMgcAllocNewInstance

 3272 : 128 : CVMjniCallStaticVoidMethod

 3144 : 184 : jni_impl:CVMjniInvoke

 2960 : 136 : CVMjniExceptionDescribe

 2824 : 112 : CVMjniGetMethodID

 2712 : 136 : jni_impl:CVMjniGetXMethodID

 2576 : 112 : CVMclassInit

 2464 : 128 : classinitialize:CVMprivateClassInit

 2336 : 128 : CVMjniCallVoidMethod

 2208 : 184 : jni_impl:CVMjniInvoke

 2024 : 136 : CVMjniExceptionDescribe

 1888 : 112 : CVMjniGetMethodID

 1776 : 136 : jni_impl:CVMjniGetXMethodID

 1640 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1512 : 240 : typeid:referenceMethodSignature

 1272 : 144 : typeid:referenceFieldSignature

 1128 : 120 : typeid:referenceClassName

 1008 : 144 : typeid:lookupClass

 864 : 120 : typeid:findFreeScalarEntry

 744 : 136 : typeid:findFreeTableEntry

 608 : 120 : typeid:unlockThrowOutOfMemoryError

 488 : 112 : CVMsysMutexUnlock

 376 : 376 : CVMconsolePrintf

 0 : ?(0) : fflush

> stacktrace CVMgcUnsafeExecuteJavaMethod .rem

 7424 : 328 : CVMgcUnsafeExecuteJavaMethod

 7096 : 112 : CVMjniInvokeNative

 6984 : 3072 : CVM_worst_case_psuedo_method

 3912 : 128 : CVMjniToReflectedMethod

 3784 : 112 : CVMreflectMethodBlockToNewJavaMethod
Appendix B C Stack Checking B-13

 3672 : 224 : CVMreflectNewJavaLangReflectMethod

 3448 : 376 : CVMnewStringUTF

 3072 : 144 : CVMnewString

 2928 : 136 : CVMgcAllocNewInstance

 2792 : 128 : CVMjniCallStaticVoidMethod

 2664 : 184 : jni_impl:CVMjniInvoke

 2480 : 136 : CVMjniExceptionDescribe

 2344 : 112 : CVMjniGetMethodID

 2232 : 136 : jni_impl:CVMjniGetXMethodID

 2096 : 112 : CVMclassInit

 1984 : 128 : classinitialize:CVMprivateClassInit

 1856 : 128 : CVMjniCallVoidMethod

 1728 : 184 : jni_impl:CVMjniInvoke

 1544 : 136 : CVMjniExceptionDescribe

 1408 : 128 : CVMjniGetObjectClass

 1280 : 120 : CVMjniNewLocalRef

 1160 : 144 : CVMjniCreateLocalRef

 1016 : 112 : CVMjniFatalError

 904 : 120 : CVMdumpStack

 784 : 128 : stacks:CVMdumpFrames

 656 : 392 : CVMdumpFrame

 264 : 128 : CVMpc2string

 136 : 136 : interpreter:CVMadddec

 0 : ?(0) : .rem

B.3.2 Worst C Stack Usage Chain in
CVMimplementsInterface Routine
Some worst cases of stack consumption occurring in the routine that compares each
subclass class block in the class hierarchy to the interface class block have a call path
from CVMimplementsInterface to a C library function, such as strncpy, are
given below.

> stacktrace CVMimplementsInterface strncpy

 1800 : 120 : CVMimplementsInterface

 1680 : 112 : CVMCstackCheckSize
B-14 CDC Porting Guide • November 2005

 1568 : 136 : CVMcsRendezvous

 1432 : 112 : CVMsysMutexLock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace CVMimplementsInterface .umul

 1696 : 120 : CVMimplementsInterface

 1576 : 112 : CVMCstackCheckSize

 1464 : 136 : CVMcsRendezvous

 1328 : 112 : CVMsysMutexLock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace CVMimplementsInterface strlen

 1680 : 120 : CVMimplementsInterface

 1560 : 112 : CVMCstackCheckSize

 1448 : 136 : CVMcsRendezvous

 1312 : 112 : CVMsysMutexLock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen
Appendix B C Stack Checking B-15

> stacktrace CVMimplementsInterface free

 1272 : 120 : CVMimplementsInterface

 1152 : 112 : CVMCstackCheckSize

 1040 : 136 : CVMcsRendezvous

 904 : 112 : CVMsysMutexLock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace CVMimplementsInterface sprintf

 1160 : 120 : CVMimplementsInterface

 1040 : 112 : CVMCstackCheckSize

 928 : 136 : CVMcsRendezvous

 792 : 112 : CVMsysMutexLock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace CVMimplementsInterface pthread_cond_wait

 936 : 120 : CVMimplementsInterface

 816 : 112 : CVMCstackCheckSize

 704 : 136 : CVMcsRendezvous

 568 : 128 : CVMsysMutexWait

 440 : 128 : CVMreentrantMutexWait

 312 : 144 : CVMcondvarWait

 168 : 168 : POSIXcondvarWait

 0 : ?(0) : pthread_cond_wait

B.3.3 Worst C Stack Usage Chain in Class Loader at
Class Lookup
Some worst cases of stack consumption occurs in class loader that have a call path
from CVMclassLookupFromClassLoader to a C library function such as strncpy
are given below.
B-16 CDC Porting Guide • November 2005

> stacktrace classlookup:CVMclassLookupFromClassLoader strncpy

 5968 : 152 : classlookup:CVMclassLookupFromClassLoader

 5816 : 136 : CVMclassLoadClass

 5680 : 136 : classload:CVMclassLoadSystemClass

 5544 : 144 : classload:CVMclassLoadFromFile

 5400 : 672 : CVMclassCreateInternalClass

 4728 : 168 : classcreate:CVMreadConstantPool

 4560 : 376 : CVMinternUTF

 4184 : 136 : CVMgcAllocNewInstance

 4048 : 136 : CVMgcimplAllocObject

 3912 : 120 : CVMgcStopTheWorldAndGC

 3792 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe

 3664 : 144 : CVMgcimplDoGC

 3520 : 112 : gen_semispace:CVMgenSemispaceCollect

 3408 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 3264 : 112 : CVMgcProcessSpecialWithLivenessInfo

 3152 : 136 : CVMweakrefProcessNonStrong

 3016 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2888 : 120 : weakrefs:CVMweakrefIterateQueue

 2768 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2632 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 2504 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 2392 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 2256 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 2136 : 168 : gen_semispace:scanObjectsInRangeFull

 1968 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1816 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1704 : 120 : gen_semispace:CVMgenSemispaceGrayObject

 1584 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 1448 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString
Appendix B C Stack Checking B-17

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace classlookup:CVMclassLookupFromClassLoader .umul

 5864 : 152 : classlookup:CVMclassLookupFromClassLoader

 5712 : 136 : CVMclassLoadClass

 5576 : 136 : classload:CVMclassLoadSystemClass

 5440 : 144 : classload:CVMclassLoadFromFile

 5296 : 672 : CVMclassCreateInternalClass

 4624 : 168 : classcreate:CVMreadConstantPool

 4456 : 376 : CVMinternUTF

 4080 : 136 : CVMgcAllocNewInstance

 3944 : 136 : CVMgcimplAllocObject

 3808 : 120 : CVMgcStopTheWorldAndGC

 3688 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe

 3560 : 144 : CVMgcimplDoGC

 3416 : 112 : gen_semispace:CVMgenSemispaceCollect

 3304 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 3160 : 112 : CVMgcProcessSpecialWithLivenessInfo

 3048 : 136 : CVMweakrefProcessNonStrong

 2912 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2784 : 120 : weakrefs:CVMweakrefIterateQueue

 2664 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2528 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 2400 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 2288 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 2152 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 2032 : 168 : gen_semispace:scanObjectsInRangeFull

 1864 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1712 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1600 : 120 : gen_semispace:CVMgenSemispaceGrayObject

 1480 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 1344 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 1216 : 376 : CVMconsolePrintf
B-18 CDC Porting Guide • November 2005

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace classlookup:CVMclassLookupFromClassLoader strlen

 5848 : 152 : classlookup:CVMclassLookupFromClassLoader

 5696 : 136 : CVMclassLoadClass

 5560 : 136 : classload:CVMclassLoadSystemClass

 5424 : 144 : classload:CVMclassLoadFromFile

 5280 : 672 : CVMclassCreateInternalClass

 4608 : 168 : classcreate:CVMreadConstantPool

 4440 : 376 : CVMinternUTF

 4064 : 136 : CVMgcAllocNewInstance

 3928 : 136 : CVMgcimplAllocObject

 3792 : 120 : CVMgcStopTheWorldAndGC

 3672 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe

 3544 : 144 : CVMgcimplDoGC

 3400 : 112 : gen_semispace:CVMgenSemispaceCollect

 3288 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 3144 : 112 : CVMgcProcessSpecialWithLivenessInfo

 3032 : 136 : CVMweakrefProcessNonStrong

 2896 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2768 : 120 : weakrefs:CVMweakrefIterateQueue

 2648 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2512 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 2384 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 2272 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 2136 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 2016 : 168 : gen_semispace:scanObjectsInRangeFull

 1848 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1696 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1584 : 120 : gen_semispace:CVMgenSemispaceGrayObject
Appendix B C Stack Checking B-19

 1464 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 1328 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace classlookup:CVMclassLookupFromClassLoader adler32

 5568 : 152 : classlookup:CVMclassLookupFromClassLoader

 5416 : 136 : CVMclassLoadClass

 5280 : 136 : classload:CVMclassLoadSystemClass

 5144 : 136 : classload:CVMclassLoadFromZipFile

 5008 : 128 : CVMziputilReadEntry

 4880 : 4280 : CVMzutilInflateFully

 600 : 120 : CVMzlibInflate

 480 : 192 : CVMzlibInflate_blocks

 288 : 160 : CVMzlibInflate_codes

 128 : 128 : CVMzlibInflate_flush

 0 : ?(0) : adler32

> stacktrace classlookup:CVMclassLookupFromClassLoader
pthread_getspecific

 5560 : 152 : classlookup:CVMclassLookupFromClassLoader

 5408 : 136 : CVMclassLoadClass

 5272 : 136 : classload:CVMclassLoadSystemClass

 5136 : 144 : classload:CVMclassLoadFromFile

 4992 : 672 : CVMclassCreateInternalClass

 4320 : 168 : classcreate:CVMreadConstantPool

 4152 : 376 : CVMinternUTF

 3776 : 136 : CVMgcAllocNewInstance

 3640 : 136 : CVMgcimplAllocObject

 3504 : 120 : CVMgcStopTheWorldAndGC

 3384 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe
B-20 CDC Porting Guide • November 2005

 3256 : 144 : CVMgcimplDoGC

 3112 : 112 : gen_semispace:CVMgenSemispaceCollect

 3000 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 2856 : 112 : CVMgcProcessSpecialWithLivenessInfo

 2744 : 136 : CVMweakrefProcessNonStrong

 2608 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2480 : 120 : weakrefs:CVMweakrefIterateQueue

 2360 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2224 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 2096 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 1984 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 1848 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 1728 : 168 : gen_semispace:scanObjectsInRangeFull

 1560 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1408 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1296 : 120 : gen_semispace:CVMgenSemispaceGrayObject

 1176 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 1040 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace classlookup:CVMclassLookupFromClassLoader zcfree

 5528 : 152 : classlookup:CVMclassLookupFromClassLoader

 5376 : 136 : CVMclassLoadClass

 5240 : 136 : classload:CVMclassLoadSystemClass

 5104 : 136 : classload:CVMclassLoadFromZipFile

 4968 : 128 : CVMziputilReadEntry

 4840 : 4280 : CVMzutilInflateFully

 560 : 112 : CVMzlibInflateInit2_

 448 : 112 : CVMzlibInflateEnd

 336 : 112 : CVMzlibInflate_blocks_free

 224 : 112 : CVMzlibInflate_blocks_reset
Appendix B C Stack Checking B-21

 112 : 112 : CVMzlibInflate_codes_free

 0 : ?(0) : zcfree

> stacktrace classlookup:CVMclassLookupFromClassLoader free

 5440 : 152 : classlookup:CVMclassLookupFromClassLoader

 5288 : 136 : CVMclassLoadClass

 5152 : 136 : classload:CVMclassLoadSystemClass

 5016 : 144 : classload:CVMclassLoadFromFile

 4872 : 672 : CVMclassCreateInternalClass

 4200 : 168 : classcreate:CVMreadConstantPool

 4032 : 376 : CVMinternUTF

 3656 : 136 : CVMgcAllocNewInstance

 3520 : 136 : CVMgcimplAllocObject

 3384 : 120 : CVMgcStopTheWorldAndGC

 3264 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe

 3136 : 144 : CVMgcimplDoGC

 2992 : 112 : gen_semispace:CVMgenSemispaceCollect

 2880 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 2736 : 112 : CVMgcProcessSpecialWithLivenessInfo

 2624 : 136 : CVMweakrefProcessNonStrong

 2488 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2360 : 120 : weakrefs:CVMweakrefIterateQueue

 2240 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2104 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 1976 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 1864 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 1728 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 1608 : 168 : gen_semispace:scanObjectsInRangeFull

 1440 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1288 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1176 : 120 : gen_semispace:CVMgenSemispaceGrayObject

 1056 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 920 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList
B-22 CDC Porting Guide • November 2005

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace classlookup:CVMclassLookupFromClassLoader strchr

 5440 : 152 : classlookup:CVMclassLookupFromClassLoader

 5288 : 136 : CVMclassLoadClass

 5152 : 136 : classload:CVMclassLoadSystemClass

 5016 : 144 : classload:CVMclassLoadFromFile

 4872 : 672 : CVMclassCreateInternalClass

 4200 : 168 : classcreate:CVMreadConstantPool

 4032 : 376 : CVMinternUTF

 3656 : 136 : CVMgcAllocNewInstance

 3520 : 136 : CVMgcimplAllocObject

 3384 : 120 : CVMgcStopTheWorldAndGC

 3264 : 128 : gc_common:CVMgcStopTheWorldAndGCSafe

 3136 : 144 : CVMgcimplDoGC

 2992 : 112 : gen_semispace:CVMgenSemispaceCollect

 2880 : 144 : gen_semispace:CVMgenSemispaceCollectFull

 2736 : 112 : CVMgcProcessSpecialWithLivenessInfo

 2624 : 136 : CVMweakrefProcessNonStrong

 2488 : 128 : weakrefs:CVMweakrefHandlePendingQueue

 2360 : 120 : weakrefs:CVMweakrefIterateQueue

 2240 : 136 : weakrefs:CVMweakrefDiscoveredQueueCallback

 2104 : 128 : gen_semispace:CVMgenSemispaceScanTransitively

 1976 : 112 : gen_semispace:CVMgenSemispaceFollowRootsFull

 1864 : 136 :
gen_semispace:CVMgenSemispaceFollowRootsWithBlackener

 1728 : 120 : gen_semispace:CVMgenSemispaceScanPromotedPointers

 1608 : 168 : gen_semispace:scanObjectsInRangeFull

 1440 : 152 : gen_semispace:CVMgenSemispaceBlackenObjectFull

 1288 : 112 : gen_semispace:CVMgenSemispaceFilteredGrayObject

 1176 : 120 : gen_semispace:CVMgenSemispaceGrayObject

 1056 : 136 : gen_semispace:CVMgenSemispaceForwardOrPromoteObject

 920 : 128 : gen_semispace:CVMgenSemispacePromoteInto

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList
Appendix B C Stack Checking B-23

 112 : 112 : CVMCstrchrStub

 0 : ?(0) : strchr

B.3.4 Worst C Stack Usage Chain in Class Link
Some worst cases of stack consumption occurring in class linking that have a call
path from CVMclassLink to a C library function such as strncpy are given below.

> stacktrace CVMclassLink strncpy

 4512 : 128 : CVMclassLink

 4384 : 376 : CVMclassVerify

 4008 : 144 : VerifyClass

 3864 : 160 : verifycode:verify_method

 3704 : 184 : verifycode:run_dataflow

 3520 : 200 : verifycode:merge_into_successors

 3320 : 264 : verifycode:merge_into_one_successor

 3056 : 216 : verifycode:merge_registers

 2840 : 112 : verifycode:isAssignableTo

 2728 : 144 : verifycode:merge_fullinfo_types

 2584 : 128 : CVMjniGetSuperclass

 2456 : 120 : CVMjniNewLocalRef

 2336 : 144 : CVMjniCreateLocalRef

 2192 : 112 : CVMjniFatalError

 2080 : 120 : CVMdumpStack

 1960 : 128 : stacks:CVMdumpFrames

 1832 : 392 : CVMdumpFrame

 1440 : 120 : stacks:CVMdumpData

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy
B-24 CDC Porting Guide • November 2005

> stacktrace CVMclassLink .umul

 4408 : 128 : CVMclassLink

 4280 : 376 : CVMclassVerify

 3904 : 144 : VerifyClass

 3760 : 160 : verifycode:verify_method

 3600 : 184 : verifycode:run_dataflow

 3416 : 200 : verifycode:merge_into_successors

 3216 : 264 : verifycode:merge_into_one_successor

 2952 : 216 : verifycode:merge_registers

 2736 : 112 : verifycode:isAssignableTo

 2624 : 144 : verifycode:merge_fullinfo_types

 2480 : 128 : CVMjniGetSuperclass

 2352 : 120 : CVMjniNewLocalRef

 2232 : 144 : CVMjniCreateLocalRef

 2088 : 112 : CVMjniFatalError

 1976 : 120 : CVMdumpStack

 1856 : 128 : stacks:CVMdumpFrames

 1728 : 392 : CVMdumpFrame

 1336 : 120 : stacks:CVMdumpData

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace CVMclassLink strlen

 4392 : 128 : CVMclassLink

 4264 : 376 : CVMclassVerify

 3888 : 144 : VerifyClass

 3744 : 160 : verifycode:verify_method

 3584 : 184 : verifycode:run_dataflow

 3400 : 200 : verifycode:merge_into_successors

 3200 : 264 : verifycode:merge_into_one_successor

 2936 : 216 : verifycode:merge_registers
Appendix B C Stack Checking B-25

 2720 : 112 : verifycode:isAssignableTo

 2608 : 144 : verifycode:merge_fullinfo_types

 2464 : 128 : CVMjniGetSuperclass

 2336 : 120 : CVMjniNewLocalRef

 2216 : 144 : CVMjniCreateLocalRef

 2072 : 112 : CVMjniFatalError

 1960 : 120 : CVMdumpStack

 1840 : 128 : stacks:CVMdumpFrames

 1712 : 392 : CVMdumpFrame

 1320 : 120 : stacks:CVMdumpData

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace CVMclassLink free

 3984 : 128 : CVMclassLink

 3856 : 376 : CVMclassVerify

 3480 : 144 : VerifyClass

 3336 : 160 : verifycode:verify_method

 3176 : 184 : verifycode:run_dataflow

 2992 : 200 : verifycode:merge_into_successors

 2792 : 264 : verifycode:merge_into_one_successor

 2528 : 216 : verifycode:merge_registers

 2312 : 112 : verifycode:isAssignableTo

 2200 : 144 : verifycode:merge_fullinfo_types

 2056 : 128 : CVMjniGetSuperclass

 1928 : 120 : CVMjniNewLocalRef

 1808 : 144 : CVMjniCreateLocalRef

 1664 : 112 : CVMjniFatalError

 1552 : 120 : CVMdumpStack

 1432 : 128 : stacks:CVMdumpFrames

 1304 : 392 : CVMdumpFrame
B-26 CDC Porting Guide • November 2005

 912 : 120 : stacks:CVMdumpData

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace CVMclassLink sprintf

 3872 : 128 : CVMclassLink

 3744 : 376 : CVMclassVerify

 3368 : 144 : VerifyClass

 3224 : 160 : verifycode:verify_method

 3064 : 184 : verifycode:run_dataflow

 2880 : 200 : verifycode:merge_into_successors

 2680 : 264 : verifycode:merge_into_one_successor

 2416 : 216 : verifycode:merge_registers

 2200 : 112 : verifycode:isAssignableTo

 2088 : 144 : verifycode:merge_fullinfo_types

 1944 : 128 : CVMjniGetSuperclass

 1816 : 120 : CVMjniNewLocalRef

 1696 : 144 : CVMjniCreateLocalRef

 1552 : 112 : CVMjniFatalError

 1440 : 120 : CVMdumpStack

 1320 : 128 : stacks:CVMdumpFrames

 1192 : 392 : CVMdumpFrame

 800 : 120 : stacks:CVMdumpData

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace CVMclassLink fflush

 3568 : 128 : CVMclassLink

 3440 : 376 : CVMclassVerify

 3064 : 144 : VerifyClass

 2920 : 160 : verifycode:verify_method

 2760 : 184 : verifycode:run_dataflow

 2576 : 200 : verifycode:merge_into_successors
Appendix B C Stack Checking B-27

 2376 : 264 : verifycode:merge_into_one_successor

 2112 : 216 : verifycode:merge_registers

 1896 : 112 : verifycode:isAssignableTo

 1784 : 144 : verifycode:merge_fullinfo_types

 1640 : 128 : CVMjniGetSuperclass

 1512 : 120 : CVMjniNewLocalRef

 1392 : 144 : CVMjniCreateLocalRef

 1248 : 112 : CVMjniFatalError

 1136 : 120 : CVMdumpStack

 1016 : 128 : stacks:CVMdumpFrames

 888 : 392 : CVMdumpFrame

 496 : 120 : stacks:CVMdumpData

 376 : 376 : CVMconsolePrintf

 0 : ?(0) : fflush

> stacktrace CVMclassLink pthread_cond_wait

 3504 : 128 : CVMclassLink

 3376 : 376 : CVMclassVerify

 3000 : 144 : VerifyClass

 2856 : 160 : verifycode:verify_method

 2696 : 184 : verifycode:run_dataflow

 2512 : 200 : verifycode:merge_into_successors

 2312 : 264 : verifycode:merge_into_one_successor

 2048 : 216 : verifycode:merge_registers

 1832 : 112 : verifycode:isAssignableTo

 1720 : 144 : verifycode:merge_fullinfo_types

 1576 : 112 :
verifycode:CVMCstackDummy2object_fullinfo_to_classclass

 1464 : 136 : verifycode:object_fullinfo_to_classclass

 1328 : 120 : CVMjniNewGlobalRef

 1208 : 112 : CVMID_getGlobalRoot

 1096 : 120 : globalroots:CVMIDprivate_getGlobalRoot

 976 : 136 : globalroots:CVMIDprivate_getGlobalRootNoLock

 840 : 136 : CVMexpandStack

 704 : 136 : CVMcsRendezvous

 568 : 128 : CVMsysMutexWait
B-28 CDC Porting Guide • November 2005

 440 : 128 : CVMreentrantMutexWait

 312 : 144 : CVMcondvarWait

 168 : 168 : POSIXcondvarWait

 0 : ?(0) : pthread_cond_wait

> stacktrace CVMclassLink pthread_mutex_unlock

 3448 : 128 : CVMclassLink

 3320 : 376 : CVMclassVerify

 2944 : 144 : VerifyClass

 2800 : 160 : verifycode:verify_method

 2640 : 184 : verifycode:run_dataflow

 2456 : 200 : verifycode:merge_into_successors

 2256 : 264 : verifycode:merge_into_one_successor

 1992 : 216 : verifycode:merge_registers

 1776 : 112 : verifycode:isAssignableTo

 1664 : 144 : verifycode:merge_fullinfo_types

 1520 : 112 :
verifycode:CVMCstackDummy2object_fullinfo_to_classclass

 1408 : 136 : verifycode:object_fullinfo_to_classclass

 1272 : 120 : CVMjniNewGlobalRef

 1152 : 112 : CVMID_getGlobalRoot

 1040 : 120 : globalroots:CVMIDprivate_getGlobalRoot

 920 : 136 : globalroots:CVMIDprivate_getGlobalRootNoLock

 784 : 136 : CVMexpandStack

 648 : 136 : CVMcsRendezvous

 512 : 128 : CVMsysMutexWait

 384 : 128 : CVMreentrantMutexWait

 256 : 144 : CVMcondvarWait

 112 : 112 : POSIXmutexUnlock

 0 : ?(0) : pthread_mutex_unlock
Appendix B C Stack Checking B-29

B.3.5 Worst C Stack Usage Chain in Formatting a String
from the PC for a Console Print Out
Some worst cases of stack consumption occurring in the console print out routine
that have a call path from CVMCstackDummy2CVMformatStringVaList to a C
library function such as strncpy are given below.

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList strncpy

 1792 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1680 : 112 : CVMCstackCheckSize

 1568 : 136 : CVMcsRendezvous

 1432 : 112 : CVMsysMutexLock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList .umul

 1688 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1576 : 112 : CVMCstackCheckSize

 1464 : 136 : CVMcsRendezvous

 1328 : 112 : CVMsysMutexLock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList strlen

 1672 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1560 : 112 : CVMCstackCheckSize
B-30 CDC Porting Guide • November 2005

 1448 : 136 : CVMcsRendezvous

 1312 : 112 : CVMsysMutexLock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList
pthread_getspecific

 1384 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1272 : 112 : CVMCstackCheckSize

 1160 : 136 : CVMcsRendezvous

 1024 : 112 : CVMsysMutexLock

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList free

 1264 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1152 : 112 : CVMCstackCheckSize

 1040 : 136 : CVMcsRendezvous

 904 : 112 : CVMsysMutexLock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace utils:CVMCstackDummy2CVMformatStringVaList sprintf

 1152 : 112 : utils:CVMCstackDummy2CVMformatStringVaList

 1040 : 112 : CVMCstackCheckSize

 928 : 136 : CVMcsRendezvous
Appendix B C Stack Checking B-31

 792 : 112 : CVMsysMutexLock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

B.3.6 Worst C Stack Usage Chain in Formatting a String
of Object from a Class and Hash Value
Some worst cases of stack consumption occurring in the console print out routine
which displays a string of objects from its class block or a hashed value have a call
path from CVMCstackDummy2CVMconsolePrintf to a C library function such as
strncpy are given below.

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf strncpy

 1800 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1680 : 112 : CVMCstackCheckSize

 1568 : 136 : CVMcsRendezvous

 1432 : 112 : CVMsysMutexLock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf .umul

 1696 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1576 : 112 : CVMCstackCheckSize

 1464 : 136 : CVMcsRendezvous

 1328 : 112 : CVMsysMutexLock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator
B-32 CDC Porting Guide • November 2005

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf strlen

 1680 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1560 : 112 : CVMCstackCheckSize

 1448 : 136 : CVMcsRendezvous

 1312 : 112 : CVMsysMutexLock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf
pthread_getspecific

 1392 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1272 : 112 : CVMCstackCheckSize

 1160 : 136 : CVMcsRendezvous

 1024 : 112 : CVMsysMutexLock

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf free

 1272 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1152 : 112 : CVMCstackCheckSize

 1040 : 136 : CVMcsRendezvous

 904 : 112 : CVMsysMutexLock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub
Appendix B C Stack Checking B-33

 0 : ?(0) : free

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf sprintf

 1160 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 1040 : 112 : CVMCstackCheckSize

 928 : 136 : CVMcsRendezvous

 792 : 112 : CVMsysMutexLock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace utils:CVMCstackDummy2CVMconsolePrintf
pthread_cond_wait

 936 : 120 : utils:CVMCstackDummy2CVMconsolePrintf

 816 : 112 : CVMCstackCheckSize

 704 : 136 : CVMcsRendezvous

 568 : 128 : CVMsysMutexWait

 440 : 128 : CVMreentrantMutexWait

 312 : 144 : CVMcondvarWait

 168 : 168 : POSIXcondvarWait

 0 : ?(0) : pthread_cond_wait

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe strncpy

 2056 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1944 : 120 : CVMobjectGetHashSafe

 1824 : 120 : objsync:CVMobjectComputeHash

 1704 : 136 : objsync:CVMobjectSetHashCode

 1568 : 136 : CVMcsRendezvous

 1432 : 112 : CVMsysMutexLock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub
B-34 CDC Porting Guide • November 2005

 0 : ?(0) : strncpy

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe .umul

 1952 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1840 : 120 : CVMobjectGetHashSafe

 1720 : 120 : objsync:CVMobjectComputeHash

 1600 : 136 : objsync:CVMobjectSetHashCode

 1464 : 136 : CVMcsRendezvous

 1328 : 112 : CVMsysMutexLock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe strlen

 1936 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1824 : 120 : CVMobjectGetHashSafe

 1704 : 120 : objsync:CVMobjectComputeHash

 1584 : 136 : objsync:CVMobjectSetHashCode

 1448 : 136 : CVMcsRendezvous

 1312 : 112 : CVMsysMutexLock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe
pthread_getspecific

 1648 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1536 : 120 : CVMobjectGetHashSafe
Appendix B C Stack Checking B-35

 1416 : 120 : objsync:CVMobjectComputeHash

 1296 : 136 : objsync:CVMobjectSetHashCode

 1160 : 136 : CVMcsRendezvous

 1024 : 112 : CVMsysMutexLock

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe free

 1528 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1416 : 120 : CVMobjectGetHashSafe

 1296 : 120 : objsync:CVMobjectComputeHash

 1176 : 136 : objsync:CVMobjectSetHashCode

 1040 : 136 : CVMcsRendezvous

 904 : 112 : CVMsysMutexLock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe sprintf

 1416 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe

 1304 : 120 : CVMobjectGetHashSafe

 1184 : 120 : objsync:CVMobjectComputeHash

 1064 : 136 : objsync:CVMobjectSetHashCode

 928 : 136 : CVMcsRendezvous

 792 : 112 : CVMsysMutexLock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace utils:CVMCstackDummy2CVMobjectGetHashSafe
pthread_cond_wait

 1192 : 112 : utils:CVMCstackDummy2CVMobjectGetHashSafe
B-36 CDC Porting Guide • November 2005

 1080 : 120 : CVMobjectGetHashSafe

 960 : 120 : objsync:CVMobjectComputeHash

 840 : 136 : objsync:CVMobjectSetHashCode

 704 : 136 : CVMcsRendezvous

 568 : 128 : CVMsysMutexWait

 440 : 128 : CVMreentrantMutexWait

 312 : 144 : CVMcondvarWait

 168 : 168 : POSIXcondvarWait

 0 : ?(0) : pthread_cond_wait

B.3.7 Worst C Stack Usage Chain in Class Verifier
Some worst cases of stack consumption occurring in class verifier that merges types
of two array objects have a call path from
CVMCstackDummy2merge_fullinfo_types to a C library function such as
strncpy.

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types strncpy

 2848 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2728 : 144 : verifycode:merge_fullinfo_types

 2584 : 128 : CVMjniGetSuperclass

 2456 : 120 : CVMjniNewLocalRef

 2336 : 144 : CVMjniCreateLocalRef

 2192 : 112 : CVMjniFatalError

 2080 : 120 : CVMdumpStack

 1960 : 128 : stacks:CVMdumpFrames

 1832 : 392 : CVMdumpFrame

 1440 : 120 : stacks:CVMdumpData

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy
Appendix B C Stack Checking B-37

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types .umul

 2744 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2624 : 144 : verifycode:merge_fullinfo_types

 2480 : 128 : CVMjniGetSuperclass

 2352 : 120 : CVMjniNewLocalRef

 2232 : 144 : CVMjniCreateLocalRef

 2088 : 112 : CVMjniFatalError

 1976 : 120 : CVMdumpStack

 1856 : 128 : stacks:CVMdumpFrames

 1728 : 392 : CVMdumpFrame

 1336 : 120 : stacks:CVMdumpData

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types strlen

 2728 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2608 : 144 : verifycode:merge_fullinfo_types

 2464 : 128 : CVMjniGetSuperclass

 2336 : 120 : CVMjniNewLocalRef

 2216 : 144 : CVMjniCreateLocalRef

 2072 : 112 : CVMjniFatalError

 1960 : 120 : CVMdumpStack

 1840 : 128 : stacks:CVMdumpFrames

 1712 : 392 : CVMdumpFrame

 1320 : 120 : stacks:CVMdumpData

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub
B-38 CDC Porting Guide • November 2005

 0 : ?(0) : strlen

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types

pthread_getspecific

 2440 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2320 : 144 : verifycode:merge_fullinfo_types

 2176 : 128 : CVMjniGetSuperclass

 2048 : 120 : CVMjniNewLocalRef

 1928 : 144 : CVMjniCreateLocalRef

 1784 : 112 : CVMjniFatalError

 1672 : 120 : CVMdumpStack

 1552 : 128 : stacks:CVMdumpFrames

 1424 : 392 : CVMdumpFrame

 1032 : 120 : stacks:CVMdumpData

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types free

 2320 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2200 : 144 : verifycode:merge_fullinfo_types

 2056 : 128 : CVMjniGetSuperclass

 1928 : 120 : CVMjniNewLocalRef

 1808 : 144 : CVMjniCreateLocalRef

 1664 : 112 : CVMjniFatalError

 1552 : 120 : CVMdumpStack

 1432 : 128 : stacks:CVMdumpFrames

 1304 : 392 : CVMdumpFrame

 912 : 120 : stacks:CVMdumpData

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free
Appendix B C Stack Checking B-39

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types sprintf

 2208 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 2088 : 144 : verifycode:merge_fullinfo_types

 1944 : 128 : CVMjniGetSuperclass

 1816 : 120 : CVMjniNewLocalRef

 1696 : 144 : CVMjniCreateLocalRef

 1552 : 112 : CVMjniFatalError

 1440 : 120 : CVMdumpStack

 1320 : 128 : stacks:CVMdumpFrames

 1192 : 392 : CVMdumpFrame

 800 : 120 : stacks:CVMdumpData

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types fflush

 1904 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 1784 : 144 : verifycode:merge_fullinfo_types

 1640 : 128 : CVMjniGetSuperclass

 1512 : 120 : CVMjniNewLocalRef

 1392 : 144 : CVMjniCreateLocalRef

 1248 : 112 : CVMjniFatalError

 1136 : 120 : CVMdumpStack

 1016 : 128 : stacks:CVMdumpFrames

 888 : 392 : CVMdumpFrame

 496 : 120 : stacks:CVMdumpData

 376 : 376 : CVMconsolePrintf

 0 : ?(0) : fflush

> stacktrace verifycode:CVMCstackDummy2merge_fullinfo_types
pthread_cond_

wait

 1840 : 120 : verifycode:CVMCstackDummy2merge_fullinfo_types

 1720 : 144 : verifycode:merge_fullinfo_types

 1576 : 112 :
verifycode:CVMCstackDummy2object_fullinfo_to_classclass
B-40 CDC Porting Guide • November 2005

 1464 : 136 : verifycode:object_fullinfo_to_classclass

 1328 : 120 : CVMjniNewGlobalRef

 1208 : 112 : CVMID_getGlobalRoot

 1096 : 120 : globalroots:CVMIDprivate_getGlobalRoot

 976 : 136 : globalroots:CVMIDprivate_getGlobalRootNoLock

 840 : 136 : CVMexpandStack

 704 : 136 : CVMcsRendezvous

 568 : 128 : CVMsysMutexWait

 440 : 128 : CVMreentrantMutexWait

 312 : 144 : CVMcondvarWait

 168 : 168 : POSIXcondvarWait

 0 : ?(0) : pthread_cond_wait

B.3.8 Worst C Stack Usage Chain in Signaling an
Exception Routine
Some worst cases of stack consumption occurring in a function that signals a thrown
exception have a call path from CVMsignalErrorVaList to a C library function
such as strncpy.

> stacktrace CVMsignalErrorVaList strncpy

 5448 : 120 : CVMsignalErrorVaList

 5328 : 144 : interpreter:CVMgcSafeSignalError

 5184 : 112 : CVMfillInStackTrace

 5072 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4872 : 376 : CVMnewStringUTF

 4496 : 144 : CVMnewString

 4352 : 136 : CVMgcAllocNewInstance

 4216 : 128 : CVMjniCallStaticVoidMethod

 4088 : 184 : jni_impl:CVMjniInvoke

 3904 : 136 : CVMjniExceptionDescribe

 3768 : 112 : CVMjniGetMethodID

 3656 : 136 : jni_impl:CVMjniGetXMethodID

 3520 : 112 : CVMclassInit

 3408 : 128 : classinitialize:CVMprivateClassInit

 3280 : 128 : CVMjniCallVoidMethod
Appendix B C Stack Checking B-41

 3152 : 184 : jni_impl:CVMjniInvoke

 2968 : 136 : CVMjniExceptionDescribe

 2832 : 112 : CVMjniGetMethodID

 2720 : 136 : jni_impl:CVMjniGetXMethodID

 2584 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2456 : 240 : typeid:referenceMethodSignature

 2216 : 144 : typeid:referenceFieldSignature

 2072 : 120 : typeid:referenceClassName

 1952 : 144 : typeid:lookupClass

 1808 : 120 : typeid:findFreeScalarEntry

 1688 : 136 : typeid:findFreeTableEntry

 1552 : 120 : typeid:unlockThrowOutOfMemoryError

 1432 : 112 : CVMsysMutexUnlock

 1320 : 376 : CVMconsolePrintf

 944 : 304 : CVMformatStringVaList

 640 : 168 : CVMtypeidMethodTypeToCString

 472 : 112 : CVMtypeidFieldTypeToCString

 360 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 232 : 120 : typeid:conditionalPutstring

 112 : 112 : CVMCstrncpyStub

 0 : ?(0) : strncpy

> stacktrace CVMsignalErrorVaList .umul

 5344 : 120 : CVMsignalErrorVaList

 5224 : 144 : interpreter:CVMgcSafeSignalError

 5080 : 112 : CVMfillInStackTrace

 4968 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4768 : 376 : CVMnewStringUTF

 4392 : 144 : CVMnewString

 4248 : 136 : CVMgcAllocNewInstance

 4112 : 128 : CVMjniCallStaticVoidMethod

 3984 : 184 : jni_impl:CVMjniInvoke

 3800 : 136 : CVMjniExceptionDescribe

 3664 : 112 : CVMjniGetMethodID

 3552 : 136 : jni_impl:CVMjniGetXMethodID
B-42 CDC Porting Guide • November 2005

 3416 : 112 : CVMclassInit

 3304 : 128 : classinitialize:CVMprivateClassInit

 3176 : 128 : CVMjniCallVoidMethod

 3048 : 184 : jni_impl:CVMjniInvoke

 2864 : 136 : CVMjniExceptionDescribe

 2728 : 112 : CVMjniGetMethodID

 2616 : 136 : jni_impl:CVMjniGetXMethodID

 2480 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2352 : 240 : typeid:referenceMethodSignature

 2112 : 144 : typeid:referenceFieldSignature

 1968 : 120 : typeid:referenceClassName

 1848 : 144 : typeid:lookupClass

 1704 : 120 : typeid:findFreeScalarEntry

 1584 : 136 : typeid:findFreeTableEntry

 1448 : 120 : typeid:unlockThrowOutOfMemoryError

 1328 : 112 : CVMsysMutexUnlock

 1216 : 376 : CVMconsolePrintf

 840 : 304 : CVMformatStringVaList

 536 : 168 : CVMtypeidMethodTypeToCString

 368 : 128 : CVMtypeidGetSignatureIterator

 240 : 120 : CVMtypeidGetTerseSignatureIterator

 120 : 120 : typeid:indexSegmentedTable

 0 : ?(0) : .umul

> stacktrace CVMsignalErrorVaList strlen

 5328 : 120 : CVMsignalErrorVaList

 5208 : 144 : interpreter:CVMgcSafeSignalError

 5064 : 112 : CVMfillInStackTrace

 4952 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4752 : 376 : CVMnewStringUTF

 4376 : 144 : CVMnewString

 4232 : 136 : CVMgcAllocNewInstance

 4096 : 128 : CVMjniCallStaticVoidMethod

 3968 : 184 : jni_impl:CVMjniInvoke

 3784 : 136 : CVMjniExceptionDescribe

 3648 : 112 : CVMjniGetMethodID
Appendix B C Stack Checking B-43

 3536 : 136 : jni_impl:CVMjniGetXMethodID

 3400 : 112 : CVMclassInit

 3288 : 128 : classinitialize:CVMprivateClassInit

 3160 : 128 : CVMjniCallVoidMethod

 3032 : 184 : jni_impl:CVMjniInvoke

 2848 : 136 : CVMjniExceptionDescribe

 2712 : 112 : CVMjniGetMethodID

 2600 : 136 : jni_impl:CVMjniGetXMethodID

 2464 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2336 : 240 : typeid:referenceMethodSignature

 2096 : 144 : typeid:referenceFieldSignature

 1952 : 120 : typeid:referenceClassName

 1832 : 144 : typeid:lookupClass

 1688 : 120 : typeid:findFreeScalarEntry

 1568 : 136 : typeid:findFreeTableEntry

 1432 : 120 : typeid:unlockThrowOutOfMemoryError

 1312 : 112 : CVMsysMutexUnlock

 1200 : 376 : CVMconsolePrintf

 824 : 304 : CVMformatStringVaList

 520 : 168 : CVMtypeidMethodTypeToCString

 352 : 112 : CVMtypeidFieldTypeToCString

 240 : 128 : typeid:CVMtypeidPrivateFieldTypeToCString

 112 : 112 : CVMCstrlenStub

 0 : ?(0) : strlen

> stacktrace CVMsignalErrorVaList pthread_getspecific

 5040 : 120 : CVMsignalErrorVaList

 4920 : 144 : interpreter:CVMgcSafeSignalError

 4776 : 112 : CVMfillInStackTrace

 4664 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4464 : 376 : CVMnewStringUTF

 4088 : 144 : CVMnewString

 3944 : 136 : CVMgcAllocNewInstance

 3808 : 128 : CVMjniCallStaticVoidMethod

 3680 : 184 : jni_impl:CVMjniInvoke

 3496 : 136 : CVMjniExceptionDescribe
B-44 CDC Porting Guide • November 2005

 3360 : 112 : CVMjniGetMethodID

 3248 : 136 : jni_impl:CVMjniGetXMethodID

 3112 : 112 : CVMclassInit

 3000 : 128 : classinitialize:CVMprivateClassInit

 2872 : 128 : CVMjniCallVoidMethod

 2744 : 184 : jni_impl:CVMjniInvoke

 2560 : 136 : CVMjniExceptionDescribe

 2424 : 112 : CVMjniGetMethodID

 2312 : 136 : jni_impl:CVMjniGetXMethodID

 2176 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 2048 : 240 : typeid:referenceMethodSignature

 1808 : 144 : typeid:referenceFieldSignature

 1664 : 120 : typeid:referenceClassName

 1544 : 144 : typeid:lookupClass

 1400 : 120 : typeid:findFreeScalarEntry

 1280 : 136 : typeid:findFreeTableEntry

 1144 : 120 : typeid:unlockThrowOutOfMemoryError

 1024 : 112 : CVMsysMutexUnlock

 912 : 376 : CVMconsolePrintf

 536 : 304 : CVMformatStringVaList

 232 : 120 : CVMgetEE

 112 : 112 : POSIXthreadGetSelf

 0 : ?(0) : pthread_getspecific

> stacktrace CVMsignalErrorVaList free

 4920 : 120 : CVMsignalErrorVaList

 4800 : 144 : interpreter:CVMgcSafeSignalError

 4656 : 112 : CVMfillInStackTrace

 4544 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4344 : 376 : CVMnewStringUTF

 3968 : 144 : CVMnewString

 3824 : 136 : CVMgcAllocNewInstance

 3688 : 128 : CVMjniCallStaticVoidMethod

 3560 : 184 : jni_impl:CVMjniInvoke

 3376 : 136 : CVMjniExceptionDescribe

 3240 : 112 : CVMjniGetMethodID
Appendix B C Stack Checking B-45

 3128 : 136 : jni_impl:CVMjniGetXMethodID

 2992 : 112 : CVMclassInit

 2880 : 128 : classinitialize:CVMprivateClassInit

 2752 : 128 : CVMjniCallVoidMethod

 2624 : 184 : jni_impl:CVMjniInvoke

 2440 : 136 : CVMjniExceptionDescribe

 2304 : 112 : CVMjniGetMethodID

 2192 : 136 : jni_impl:CVMjniGetXMethodID

 2056 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1928 : 240 : typeid:referenceMethodSignature

 1688 : 144 : typeid:referenceFieldSignature

 1544 : 120 : typeid:referenceClassName

 1424 : 144 : typeid:lookupClass

 1280 : 120 : typeid:findFreeScalarEntry

 1160 : 136 : typeid:findFreeTableEntry

 1024 : 120 : typeid:unlockThrowOutOfMemoryError

 904 : 112 : CVMsysMutexUnlock

 792 : 376 : CVMconsolePrintf

 416 : 304 : CVMformatStringVaList

 112 : 112 : CVMCfreeStub

 0 : ?(0) : free

> stacktrace CVMsignalErrorVaList sprintf

 4808 : 120 : CVMsignalErrorVaList

 4688 : 144 : interpreter:CVMgcSafeSignalError

 4544 : 112 : CVMfillInStackTrace

 4432 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 4232 : 376 : CVMnewStringUTF

 3856 : 144 : CVMnewString

 3712 : 136 : CVMgcAllocNewInstance

 3576 : 128 : CVMjniCallStaticVoidMethod

 3448 : 184 : jni_impl:CVMjniInvoke

 3264 : 136 : CVMjniExceptionDescribe

 3128 : 112 : CVMjniGetMethodID

 3016 : 136 : jni_impl:CVMjniGetXMethodID

 2880 : 112 : CVMclassInit
B-46 CDC Porting Guide • November 2005

 2768 : 128 : classinitialize:CVMprivateClassInit

 2640 : 128 : CVMjniCallVoidMethod

 2512 : 184 : jni_impl:CVMjniInvoke

 2328 : 136 : CVMjniExceptionDescribe

 2192 : 112 : CVMjniGetMethodID

 2080 : 136 : jni_impl:CVMjniGetXMethodID

 1944 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1816 : 240 : typeid:referenceMethodSignature

 1576 : 144 : typeid:referenceFieldSignature

 1432 : 120 : typeid:referenceClassName

 1312 : 144 : typeid:lookupClass

 1168 : 120 : typeid:findFreeScalarEntry

 1048 : 136 : typeid:findFreeTableEntry

 912 : 120 : typeid:unlockThrowOutOfMemoryError

 792 : 112 : CVMsysMutexUnlock

 680 : 376 : CVMconsolePrintf

 304 : 304 : CVMformatStringVaList

 0 : ?(0) : sprintf

> stacktrace CVMsignalErrorVaList fflush

 4504 : 120 : CVMsignalErrorVaList

 4384 : 144 : interpreter:CVMgcSafeSignalError

 4240 : 112 : CVMfillInStackTrace

 4128 : 200 : jvm:CVMgcUnsafeFillInStackTrace

 3928 : 376 : CVMnewStringUTF

 3552 : 144 : CVMnewString

 3408 : 136 : CVMgcAllocNewInstance

 3272 : 128 : CVMjniCallStaticVoidMethod

 3144 : 184 : jni_impl:CVMjniInvoke

 2960 : 136 : CVMjniExceptionDescribe

 2824 : 112 : CVMjniGetMethodID

 2712 : 136 : jni_impl:CVMjniGetXMethodID

 2576 : 112 : CVMclassInit

 2464 : 128 : classinitialize:CVMprivateClassInit

 2336 : 128 : CVMjniCallVoidMethod

 2208 : 184 : jni_impl:CVMjniInvoke
Appendix B C Stack Checking B-47

 2024 : 136 : CVMjniExceptionDescribe

 1888 : 112 : CVMjniGetMethodID

 1776 : 136 : jni_impl:CVMjniGetXMethodID

 1640 : 128 : CVMtypeidNewMethodIDFromNameAndSig

 1512 : 240 : typeid:referenceMethodSignature

 1272 : 144 : typeid:referenceFieldSignature

 1128 : 120 : typeid:referenceClassName

 1008 : 144 : typeid:lookupClass

 864 : 120 : typeid:findFreeScalarEntry

 744 : 136 : typeid:findFreeTableEntry

 608 : 120 : typeid:unlockThrowOutOfMemoryError

 488 : 112 : CVMsysMutexUnlock

 376 : 376 : CVMconsolePrintf

 0 : ?(0) : fflush
B-48 CDC Porting Guide • November 2005

	CDC Porting Guide
	Contents
	Figures
	Tables
	Preface
	I Getting Started
	Introduction
	1.1 CDC Technology
	1.2 Benefits

	Planning
	2.1 Target Platform Requirements
	2.1.1 CPU
	2.1.2 Operating System

	2.2 Porting Steps
	2.3 Source Code Organization
	2.3.1 build Directory
	2.3.2 src Directory

	II HPI Layer
	Host Programming Interface
	3.1 HPI Header File Hierarchy
	3.1.1 CVM_HDR_* Header File Macros
	3.1.2 src/portlibs Porting Libraries

	3.2 Creating an HPI Implementation
	3.2.1 Suggested Work Flow
	3.2.2 Prepare the Target-Specific build and src Hierarchies
	3.2.3 Data Types, Global State and Memory Access Support
	3.2.4 JNI Support
	3.2.4.1 CVMjniInvokeNative

	3.2.5 Thread Support
	3.2.6 Synchronization Support
	3.2.7 I/O and System Support
	3.2.8 Networking Support

	3.3 CDC Class Library Support Layer
	3.3.1 Source Code Organization
	3.3.2 Creating a CDC Class Library Support Layer Implementation

	3.4 Simple Test Procedure

	Fast Locking
	4.1 Fast Lock Implementations
	4.2 Choosing a Fast Lock Implementation
	4.3 Implementations

	III Dynamic Compiler Layer
	Dynamic Compiler
	5.1 Dynamic Compiler Overview
	5.2 Dynamic Compiler Header File Hierarchy
	5.2.1 portlibs/jit/risc RISC Porting Library

	5.3 Creating a Dynamic Compiler Implementation
	5.3.1 Suggested Work Flow
	5.3.2 CPU Abstraction Interface
	5.3.3 Glue Code
	5.3.4 Miscellaneous Code
	5.3.4.1 Code Cache Copy
	5.3.4.2 Trap-based NullPointerExceptions

	5.3.5 Intrinsics
	5.3.6 Invokers
	5.3.7 Emitters
	5.3.8 Helpers
	5.3.9 Floating Point Support

	IV Garbage Collector Layer
	Creating a Garbage Collector
	6.1 Introduction
	6.2 Exactness
	6.2.1 Global GC Requests
	6.2.1.1 Method Invocation Points
	6.2.1.2 Backwards Branches
	6.2.1.3 Class Loading and Constant Resolution Points
	6.2.1.4 JNI Implementation
	6.2.1.5 Memory Allocation Points

	6.3 Pluggable GC
	6.3.1 Separate Memory System
	6.3.2 Entry Points to GC Code
	6.3.3 Shared Memory System Code
	6.3.4 GC-specific Memory System Code
	6.3.5 GC Execution Flow

	6.4 Writing a New GC
	6.4.1 Source Organization
	6.4.2 Data Types
	6.4.3 What to Implement
	6.4.3.1 Basic Execution
	6.4.3.2 Read and Write Barriers
	6.4.3.3 Moving Arrays

	6.4.4 What to Call
	6.4.4.1 Initiating a GC
	6.4.4.2 Root Scans
	6.4.4.3 Special Root Scans
	6.4.4.4 Object Walking
	6.4.4.5 Per-object Data

	6.4.5 Example GC

	Direct Memory Interface Reference
	7.1 Introduction
	7.2 Object Field Accesses
	7.2.1 Accessing Fields of 32-bit Width
	7.2.1.1 Weakly-Typed 32-bit Read and Write
	7.2.1.2 Strongly-Typed 32-bit Read and Write

	7.2.2 Accessing Fields of 64-bit Width
	7.2.2.1 Weakly-Typed 64-bit Read and Write
	7.2.2.2 Strongly-Typed 64-bit Read and Write

	7.3 Array Accesses
	7.3.1 Accessing Elements of 32-bit Width and Below
	7.3.2 Accessing Elements of 64-bit Width
	7.3.2.1 Weakly-Typed Versions
	7.3.2.2 Strongly-Typed Versions

	7.3.3 Miscellaneous Array Operations

	7.4 GC-safety of Threads
	7.4.1 GC-unsafe Blocks
	7.4.2 GC-safe Blocks: Requesting a GC-Safe Point

	Indirect Memory Interface Reference
	8.1 Introduction
	8.2 ICell Manipulations
	8.3 Registered Indirection Cells
	8.3.1 Local Roots
	8.3.2 Global Roots

	8.4 Object Field Accesses
	8.4.1 Accessing Fields of 32-bit Width
	8.4.1.1 Weakly-Typed 32-bit Read and Write
	8.4.1.2 Strongly-Typed 32-bit Read and Write

	8.4.2 Accessing Fields of 64-bit Width
	8.4.2.1 Weakly-Typed 64-bit Read and Write
	8.4.2.2 Strongly-Typed 64-bit Read and Write

	8.5 Array Accesses
	8.5.1 Accessing Elements of 32-bit Width and Below
	8.5.2 Accessing Elements of 64-bit Width
	8.5.2.1 Weakly-Typed Versions
	8.5.2.2 Strongly-Typed Versions

	8.5.3 Miscellaneous Array Operations
	8.5.4 GC-unsafe Operations

	How to be GC-Safe
	9.1 Introduction
	9.2 Living with ICells
	9.2.1 ICell Types

	9.3 Explicitly Registered Roots
	9.3.1 Declaring and Using Local Roots
	9.3.1.1 Example of Local Root Use

	9.3.2 Declaring and Using Global Roots
	9.3.2.1 Examples of Declaring and Using Global Roots

	9.4 GC-safety of Threads
	9.4.1 GC-atomic Blocks
	9.4.2 Offering a GC-safe Point

	V GUI Layer
	Personal Basis Profile
	10.1 Introduction
	10.2 Porting Architecture
	10.3 Planning and Requirements
	10.3.1 Native GUI Toolkit Requirements
	10.3.2 Notes

	10.4 Writing a Personal Basis Profile AWT Implementation
	10.4.1 Build System Procedures
	10.4.2 Source Code Procedures
	10.4.3 Native Bridge Implementation

	Personal Profile
	11.1 Introduction
	11.1.1 AWT Background
	11.1.2 Additional Reading

	11.2 Porting Architecture
	11.3 Planning and Requirements
	11.3.1 Native GUI Toolkit Requirements
	11.3.2 Notes

	11.4 Writing a Personal Profile AWT Implementation
	11.4.1 Build System Procedures
	11.4.2 Source Code Procedures
	11.4.3 Native Bridge Implementation
	11.4.4 Event Delivery Notes
	11.4.4.1 Event Ordering
	11.4.4.2 Event Delivery Mechanism

	VI AMS Layer
	CDC Application Management System
	12.1 Overview
	12.2 Conventional Java Application Management
	12.3 mtask: Process-Based JVM Cloning
	12.4 CDC AMS Application Management Framework
	12.5 Tuning Notes
	12.5.1 Generating a Class Preinitialization List
	12.5.2 Calculating Code-Cache Size
	12.5.3 Generating a Method Precompilation List

	12.6 Implementation Notes

	VII Appendices
	Debugging with gdb
	A.1 Setup Procedures
	A.1.1 Signal Handlers
	A.1.2 gdb and GC Safety
	A.1.3 Turning on Trace Output

	A.2 High-Level Dumpers
	A.2.1 CVMdumpObject
	A.2.2 CVMdumpClassBlock
	A.2.3 CVMdumpString
	A.2.4 CVMdumpObjectReferences
	A.2.5 CVMdumpClassReferences

	A.3 Low-Level Dumpers
	A.3.1 Using CVMconsolePrintf()
	A.3.2 Displaying the PC Offset
	A.3.3 Dumping the Java Stack
	A.3.4 Displaying Opcode Information
	A.3.5 Dumping the Java Heap
	A.3.6 Dumping Object Information
	A.3.7 Dumping Loaded Classes
	A.3.8 Dumping Threads

	A.4 Conversion Procedures
	A.4.1 The CVMExecEnv Structure
	A.4.2 Converting Between CVMExecEnv* and JNIEnv*
	A.4.3 Converting from JNI Types to Internal VM Types
	A.4.4 Converting from java.lang.Class to CVMClassBlock*

	A.5 Other Procedures
	A.5.1 Debugging Crashes on Linux
	A.5.2 Debugging Compiled Methods

	C Stack Checking
	B.1 Introduction
	B.2 Calculating C Stack Redzones
	B.2.1 C Stack Redzone Checks
	B.2.1.1 Recursive Functions

	B.2.2 C Stack Redzone Values

	B.3 Worst Cases of Stack Usage Chains
	B.3.1 Worst C Stack Usage Chain in Interpreter Loop
	B.3.2 Worst C Stack Usage Chain in CVMimplementsInterface Routine
	B.3.3 Worst C Stack Usage Chain in Class Loader at Class Lookup
	B.3.4 Worst C Stack Usage Chain in Class Link
	B.3.5 Worst C Stack Usage Chain in Formatting a String from the PC for a Console Print Out
	B.3.6 Worst C Stack Usage Chain in Formatting a String of Object from a Class and Hash Value
	B.3.7 Worst C Stack Usage Chain in Class Verifier
	B.3.8 Worst C Stack Usage Chain in Signaling an Exception Routine

