S
2 Sun

microsystems

CDC Runtime Guide

for the Sun Java Connected Device Configuration
Application Management System

Version 1.0

Sun Microsystems, Inc.
WWWw.sun.com

November 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/ patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties.

Parts of the dproduc’t may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sunlogo, Java, J2ME, Java ME, Sun Corporate Logo and Java Logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs & la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse http:/ /www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, lelogo Sun, Java, J2ME, Java ME, Sun Corporate Logo et Java Logo sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Les produits qui font 1'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embar§o des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un orgre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

Preface xiii

Introduction 1-1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Goals 1-2

Usage Contexts 1-2

CDC Technology Implementations 1-3
CDC Target Device Requirements 1-4
Java ME Technology Standards 1-4
Java ME API Choices 1-6

CDC Application Features 1-7
Developer Tools 1-7

Application Management 1-8

Installation 2-1

2.1

2.2

Installing the CDC Java Runtime Environment 2-2

211 Local Installation 2-2

2.1.2 Remote Installation 2-2

2.1.3 Installing CDC AMS on a Zaurus personal mobile tool 2-3
214 Installing CDC AMS on a Cobalt Qube 2-4

Installing an Optional Package 2-4

2.3 Testing the CDC Java Runtime Environment 2-4

24 Removing the CDC Java Runtime Environment 2-5

3. Software Contents 3-1
3.1 Standard Files 3-1
32 CDC AMSFiles 3-3
3.3 Security Files 3-5
3.4 Development Files 3-6

3.5 Test and Demonstration Files 3-7

4. Running Applications 4-1
4.1 Launching a Java Application 4-1

42 Running Managed Applications (Personal Basis Profile and Personal Profile
only) 4-2

42.1 Running an Applet (Personal Profile only) 4-2

422 Running an Xlet (Personal Basis Profile and Personal Profile only) 4-3
43 Class Search Path Basics 4—4

4.3.1 Java Class Search Path 4-5

43.2 Native Method Search Path 4-6
44 Memory Management 4-7

441 TheJava Heap 4-7

442 Garbage Collection 4-8

4421 Garbage Collection in the CDC HotSpot
Implementation 4-8

4422 Default Generational Collector 4-9
4423 Tuning Options 4-11

4.4.3 Class Preloading 4-11
Class Preloading and Verification 4-12

444 Setting the Maximum Working Memory for the Dynamic
Compiler 4-13

iv CDC Runtime Guide ¢ November 2005

4.5

Tuning Dynamic Compiler Performance 4-13

451 Dynamic Compiler Overview 4-14

452 Dynamic Compiler Policies 4-15
4521 Managing the Popularity Threshold 4-16
4522 Managing Compiled Code Quality 4-17
4523 Managing the Code Cache 4-17

Application Management 5-1

51
52

5.3

54
5.5
5.6

Launching CDC AMS 5-1

Exploring CDC AMS 5-3

52.1 AwtPDA Presentation Mode (Personal Profile only) 5-4
5.2.2 PBP Presentation Mode (Personal Basis Profile only) 5-6
Launching Applications 5-6

53.1 AwtPDA Presentation Mode (Personal Profile only) 5-7
5.3.2 PBP Presentation Mode (Personal Basis Profile only) 5-8
Switching Applications 5-8

Terminating Applications 5-10

Installing Applications 5-10

5.6.1 Manual Installation 5-11

5.6.2 OTA Provisioning 5-11

Security 6-1

6.1

6.2

Overview 6-2

6.1.1 Built-in Security Features 6-2

6.1.2 Security Policy Framework 6-2

6.1.3 Security Provider Architecture 6-3
Security Procedures 6-4

6.2.1 Using Alternate Security Providers 6-4
6.2.2 Public Key Management 6-4

Contents

6.2.3 Security Policy Management 6-5

6.2.4 Seed Generation for Random Number Generation 6-5

7. Localization 7-1
7.1 Setting Locale System Properties 7-1
7.2 Timezone Information Files 7-2

7.3 Font Management (Personal Basis Profile and Personal Profile only) 7-2

8. Developer Tools 8-1
8.1 Compiling With javac 8-1
8.1.1 CDC and JavaSE 8-1
8.1.2 Compiling Java Source Code for the Java SE Platform 8-3
8.1.3 Compiling Java Source Code for CDC 8-3
8.14 Determining the Target Class Library 8—4
8.1.5 Useful javac Command-Line Options 8-4
8.1.5.1 -classpath classpath 8-5
8.1.5.2 -bootclasspath classpath 8-5
8.1.5.3 -extdirs classpath 8-5

8.1.54 -source release 8-5
8.1.5.5 -target version 8-5
8.1.5.6 -deprecation 8-5

8.1.6 Compiling an Example CDC Program 8-6
8.2 Debugging With jdb 8-6

8.2.1 Debug Command-Line Options 8-7

8.2.2 Running the Debug Version of cvm 8-7

8.2.3 Running jdb on the Host Development System 8-8
8.3 Profiling with hprof 8-9

8.3.1 Profiling Command-Line Options 8-9

8.3.2 Running cvm With hprof 8-10

vi CDC Runtime Guide * November 2005

. cvm Reference A-1

Al Synopsis A-1
A.2 Description A-1
A3 Options A-2

. mtask Command Language Reference B-1
B.1 Launch Command Language B-2
B.2 Warming Up the mtask Server B-3

. cvmc Reference C-1

C.1 Synopsis C-1
C.2 Description C-1
C3 Options C-1

. Java ME System Properties D-1

. Serial Port Configuration Notes E-1
E.1 Serial Port Setup E-2
E2 OS-Level Testing E-3

. Platform Font Administration Notes F-1

. Zaurus Installation Notes G-1

G.1 Zaurus System Requirements G-1

G.2 Installation Procedure G-2

. Cobalt Installation Notes H-1

H.1 Installation Procedure H-1

. Provisioning Server Notes I-1
I1 Download the J2EE 1.3.1 SDK I-1
L2 J2EE Server Setup 1-2

Contents vii

I.3 Download the CPRI Server I-3
14 CPRIServer Setup 1-3

L5 Deploy a PAR File 14

I.6 Testing I-6

viii CDC Runtime Guide ¢ November 2005

Figures

FIGURE 1-1

FIGURE 1-2

FIGURE 4-1

FIGURE 4-2

FIGURE 4-3

FIGURE 4-4

FIGURE 5-1

FIGURE 5-2

FIGURE 5-3

FIGURE 5-4

FIGURE 5-5

FIGURE 5-6

FIGURE 5-7

FIGURE 5-8

FIGURE 5-9

FIGURE 5-10

FIGURE 6-1

FIGURE 8-1

FIGURE 8-2

FIGURE 8-3

CDC Target Device Categories 1-1

An Example CDC Java Runtime Environment 1-6
GC Generations 4-10

Interpreter-Based Method Execution 4-14
Compiling a Method 4-14

Executing a Compiled Method 4-15

Launch an mtask Server JVM Instance 5-2

cvme Sends an mtask Command to Clone the Server JVM Instance 5-2

AppManager Sends an mtask Command to the Server JVM Instance
Zaurus Qtopia Application Environment 5-3

AwtPDA Presentation Mode Login Screen 5—4

AwtPDA Presentation Mode Application Management Screen 5-5
PBP Presentation Mode Application Management Screen 5-6
Phone Xlet 5-7

CD Player Xlet 5-8

Taskbar Utility 5-9

Java Security Policy Model 6-3

CDC and Java SE APl Compatibility 8-2

Compiling Java Source Code for the Java SE Platform 8-3

Compiling Java Source Code for CDC 8-4

5-2

FIGURE I-1 ri-test Page 14

FIGURE I-2 ri-test Upload Page |I-5

x CDC Runtime Guide * November 2005

Tables

TABLE 1-1

TABLE 2-1

TABLE 2-2

TABLE 3-1

TABLE 3-2

TABLE 3-3

TABLE 3-4

TABLE 3-5

TABLE 4-1

TABLE 4-2

TABLE 5-1

TABLE 6-1

TABLE 7-1

TABLE 7-2

TABLE 7-3

TABLE 8-1

TABLE 8-2

TABLE A-1

TABLE A-2

TABLE A-3

Java ME API Standards 1-5

Target Platforms 2-—1

Binary Distribution Archives 2-2

Standard Files 3-1

CDC AMS Files 3-3

Security Files 3-5

Development Files 3-6

Test and Demonstration Files 3-7
XletRunner Command-Line Options 4-3
GC Runtime Options 4-11

Application Repository Sub-Directories 5-11
Security Documentation for the Java SE Platform 6-1
Locale System Properties 7-1

Font Management Comparison 7-2

Logical Font Names 7-3

cvm Debugging Options 8-7

hprof Command-Line Options 8-9

Java SE Command-Line Options A-2
CDC-Specific Command-Line Options A-5

-Xgc :suboption A-7

Xi

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10

TABLE A-11

TABLE A-12

TABLE B-1

TABLE C-1

TABLE D-1

TABLE E-1

TABLE F-1

TABLE G-1

TABLE G-2

-Xopt :suboption A-7

-Xtrace:flags (Ol only, unsupported) A-7
JVMDI Options A-8

JVMPI Options A-9

-Xjit:options (Ol only) A-9
-Xjit:inline=suboption (Ol only) A-11
-Xjit:compile=suboption (Ol only) A-11
-Xserver :suboption (CDC AMS only) A-11
-Xjit:trace=option (Ol only) A-12
Launch Commands B-2

cvmc Command-Line Options C-2

CDC System Properties D-1

Serial Communications References E-1
Font Management References F-1

Zaurus System Requirements G-1

Useful Zaurus Resources G-2

xii CDC Runtime Guide * November 2005

Preface

This runtime guide describes how to use a Java runtime environment based on the
Connected Device Configuration (CDC) with its related profiles and optional
packages. It focuses on runtime issues like deployment, configuration and running
application software based on Java technology, as well as developer issues like
compiling, debugging and profiling.

This runtime guide is based on a version of the CDC Java runtime environment that
has been tested and used in a development environment on test devices. So the
information in this runtime guide is not what a typical end-user would generally
need for two reasons:

m This runtime guide doesn’t describe a specific end-user product implementation
of CDC technology. Chapter 1 shows how these product implementations can
vary depending on the target device and the included optional APIs. So the user
experience for product devices is based on decisions made by product designers
who adapt CDC technology to their products specific needs.

m This runtime guide is intended for use within a product development context,
including both runtime and application development. From a developer’s
perspective, runtime issues generally exercise configuration, testing or debugging
features of the CDC Java runtime environment.

The companion document CDC Build System Guide describes how to build a CDC
Java runtime environment for a specific target device, including the build-time
options that control functionality, testing and performance features. This runtime
guide focuses on how to use those features at runtime.

Who Should Read This Runtime Guide

This runtime guide is intended for software engineers who need to work with a
CDC Java runtime environment for one of the following purposes:

xiii

Testing a CDC Java runtime environment
Developing applications

System integration

Porting the CDC Java runtime environment

Porting one of the CDC profiles or optional packages

How This Book Is Organized

Chapter 1 introduces the CDC platform, including its standards, target devices,
application characteristics and developer tools.

Chapter 2 shows how to install the CDC Java runtime environment on a sample
target device.

Chapter 3 describes the contents of a CDC Java runtime environment.

Chapter 4 shows how to launch and use application software based on Java
technology with a CDC Java runtime environment.

Chapter 5 describes the application management system (AMS) for launching,
controlling applications.

Chapter 6 describes security features and how they are related to the security
framework provided by the Java Platform, Standard Edition (Java SE).

Chapter 7 describes localization procedures including font management, locale-
specific system properties and timezone information files.

Chapter 8 shows how to integrate the CDC Java runtime environment with Java
SE developer tools like javac, jdb and hprof.

Appendix A describes the command-line options for the cvm application launch
tool.

Appendix B describes the describes the mtask command language.
Appendix C describes the cvmc driver utility.

Appendix D describes system properties for the Java Platform, Micro Edition
(Java ME). These include CDC-specific system properties.

Appendix F describes platform-specific font administration for Linux, Qt and X11.

Appendix G describes platform-specific installation procedures for the Zaurus
personal mobile tool.

Appendix I describes how to set up a provisioning server using the J2EE Client
Provisioning RI server.

xiv CDC Runtime Guide ¢ November 2005

Typographic Conventions

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCcl23 The names of commands, files, Edit your . login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.

AaBbCc123 What you type, when contrasted % su
with on-screen computer output Password:

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.

words to be emphasized.
Command-line variable; replace
with a real name or value

These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Runtime Documentation for the Java
Platform Standard Edition

Because CDC is heavily based on Java Platform Standard Edition, it’s important to
be familiar with the documentation for Java Platform Standard Edition. TABLE P-2
describes the main web pages for the runtime documentation for Java Platform
Standard Edition.

TABLE P-2

Java Standard Edition Runtime Documentation

URL

Description

http://java.sun.com/
docs/index.html

http://java.sun.com/
j2se/l.4.2/relnotes.html

http://java.sun.com/
j2se/l1.4.2/docs/tooldocs/tools.html

Main documentation web page for the
Java SE platform.

Release notes for the Java SE platform,
version 1.4.2.

Tool documentation for the Java SE
platform, version 1.4.2.

Preface xv

Related Documentation

TABLE P-3

Related Documentation

Title

Description

CDC: Java Platform Technology for
Connected Devices

CDC Build System Guide
CDC Porting Guide

CDC HotSpot Implementation

Dynamic Compiler Architecture

Guide

* CDC Technology Compatibility Kit
User’s Guide

* Foundation Profile Technology
Compatibility Kit User’s Guide

* Personal Basis Profile Technology
Compatibility Kit User’s Guide

* Personal Basis Profile Technology
Compatibility Kit User’s Guide

* Security Optional Package

Technology Compatibility Kit
User’s Guide

Java Language Specification

Java Virtual Machine Specification

Java Native Interface (JNI)

Java Virtual Machine Debugger
Interface (JVMDI)

This white paper introduces CDC and the devices and applications it
supports.

CDC build system installation, configuration and testing.

Procedures and interface definitions for porting CDC, including its Java
virtual machine and Java class library to an alternate target platform.

Internals reference for the CDC HotSpot Implementation dynamic
compiler.

User documentation for running the TCK validation suites.

Java Language Specification defines the Java programming language. See
http://java.sun.com/docs/books/jls.

Defines the Java class format and the virtual machine semantics for class
loading, which are the basis for the operation of the Java runtime
environment and its ability to execute Java application software on a
variety of different target platforms. See
http://java.sun.com/docs/books/vmspec.

The Java Native Interface: Programmer’s Guide and Specification (Addison-
Wesley, 1999) by Sheng Liang describes the native method interface used
by the CDC HotSpot Implementation Java virtual machine. See
http://java.sun.com/docs/books/jni.

Defines an interface that allows debugger tools like jdb and third-party
debuggers to interact with a debugger-capable Java runtime
environment. See
http://java.sun.com/products/jpda/doc/jvmdi-spec.html.

xvi CDC Runtime Guide ¢ November 2005

http://java.sun.com/docs/books/jni
http://java.sun.com/docs/books/vmspec
http://java.sun.com/products/jpda/doc/jvmdi-spec.html

TABLE P-3 Related Documentation (Continued)

Title

Description

Java Virtual Machine Profiler

Interface (JVMPI)

J2ME Unified Emulator Interface

Specification (UEI)

Inside Java 2 Platform Security

Defines an interface that allows the hprof profiler to interact with a Java

runtime environment to measure application behavior. See

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.h

tml.

Defines an interface that allows an external developer tool to control an

emulator for the running Java ME applications.

Describes the Java security framework, including security architecture,

deployment and customization. See
http://java.sun.com/docs/books/security.

Sun Documentation Resources

Sun provides online documentation resources for developers and licensees.

TABLE P-4 Sun Documentation Resources

URL Description

http://docs.sun.com Sun product documentation
http://java.sun.com/j2me/docs Java ME technical documentation
http://developer.java.sun.com Java Developer Services
http://www.sun.com/software/jpe Java Partner Engineering
http://java.net An open community that facilitates Java

technology collaboration.

Preface

xvii

http://java.net
http://www.sun.com/software/jpe
http://developer.java.sun.com
http://java.sun.com/j2me/docs
http://docs.sun.com
http://java.sun.com/docs/books/security

Terminology

These terms related to the Java™ platform and Java™ technology are used

throughout this manual.

Java technology level
Java technology based

class contained in a Java
class file

Java programming
language profiler

Java programming

language debugger

thread in a Java virtual
machine representing a
Java programming
language thread

stack used by a Java
thread

application based on Java
technology

source code written in the
Java programming
language

object based on Java
technology

method in an object based
on Java technology

field in an object based on
Java technology

a named collection of
method definitions and
constant values based on
Java technology

a group of types based on
Java technology

xviii CDC Runtime Guide ¢ November 2005

(Java level)

(Java based)

(Java class)

(Java profiler)

(Java debugger)

(Java thread)

(Java thread stack)

(Java application)

(Java source code)

(Java object)

(Java method)

(Java field)

(Java interface)

(Java package)

an organized collection of
packages and types based
on Java technology

constructor method in an
object based on Java
technology

exception based on Java
technology

an application
programming interface
(API) based on Java
technology

a service providers
interface (SPI) based on
Java technology

developer tool based on
Java technology

system property in a Java
runtime environment

security framework for the
Java platform

security architecture of the
Java platform

Feedback

(Java namespace)

(Java constructor)

(Java exception)

(Java API)

(Java API)

(Java developer tool)

(Java system property)

(Java security framework)

(Java security architecture)

Sun welcomes your comments and suggestions on CDC technology. The best way to
contact the development team is through the following e-mail alias:

cdc-comments@java.sun.com

You can send comments and suggestions regarding this runtime guide by sending

email to:

docs@java.sun.com

Preface xix

docs@java.sun.com
cdc-comments@java.sun.com

xx CDC Runtime Guide * November 2005

CHAPTER 1

Introduction

fixed
purpose

A Java runtime environment is an implementation of Java technology for a specific
target platform. It performs a middleware function with features common to a native
application: it is installed, launched and run like a native application. But its real
purpose is to launch, run and manage Java application software on the target
platform.

The Connected Device Configuration (CDC) Java runtime environment is an
implementation of Java technology for connected devices. These include mobile
devices like PDAs and smartphones as well as attached devices like set-top boxes,
printers and kiosks.

CDC target devices can vary widely based on their features and purpose. FIGURE 1-1
describes some CDC target device categories and organizes them by their two most
important characteristics: purpose (fixed or general) and mobility (mobile or
attached).

mobile

personal
mobile devices

field service
automation

general

purpose

industrial
automation

office
equipment

set-top
boxes

stationary

FIGURE 1-1 CDC Target Device Categories

This runtime guide describes how to use the CDC Java runtime environment for
different purposes including application development, runtime development and
solution deployment.

This chapter briefly introduces the CDC Java runtime environment through the
following:

m Goals

m Usage Contexts

m CDC Technology Implementations

m CDC Target Device Requirements

m Java ME Technology Standards

m Java ME API Choices

m CDC Application Features

m Application Management

m Developer Tools

1.1 Goals

It is difficult to describe CDC technology without reference to the Java SE platform
because Java SE represents the core of Java technology. In fact, the principal goal of
CDC is to adapt Java SE technology from desktop systems to connected devices.
Most of CDC’s modifications to Java SE APIs are based on identifying features that
are either too large or inappropriate for CDC target devices and then either
removing or making them optional.

Other related goals of CDC include the following:

m Broaden the number of target devices for Java application software.

m Take advantage of target device features while fitting within their resource
limitations.

m Provide a runtime implementation optimized for connected devices.

m Leverage Java SE developer tools, skills and technology.

1.2 Usage Contexts

The CDC Java runtime environment described in this runtime guide can operate in
several different usage contexts:

1-2 CDC Runtime Guide ¢ November 2005

m During product development, the CDC Java runtime environment has testing
features that can help isolate problems while porting CDC technology to a new
target platform. For example, the trace features provide details about opcode and
method execution as well as garbage collection (GC) state.

m One of the final stages of product development is TCK verification. A TCK is a test
suite that verifies the behavior of an implementation of Java technology. The TCK
includes a test harness that runs a candidate Java runtime environment and
launches a series of test Java applications. TCK verification is described in the
TCK user guides listed in “Related Documentation” on page xvi.

m Application development for the CDC platform requires a target Java class library
for compiling Java source code and a CDC Java runtime environment for testing
and debugging. Chapter 8 provides more information about application
development with the CDC Java runtime environment.

m When an application is complete and tested, it’s ready for deployment. CDC
provides a number of deployment mechanisms including preloading with
JavaCodeCompact, managed application models like applets and xlets and
network-based provisioning systems.

1.3

CDC Technology Implementations

CDC techology is delivered by Sun through different kinds of software releases:

m A Reference Implementation (RI) demonstrates Java technology that is described in
a Java Specification Request (JSR) and verified by a corresponding Technology
Compatibility Kit (TCK). Because it serves a demonstration purpose, an RI does not
provide the best available performance features.

m An Optimized Implementation (OI) is also a TCK-compliant implementation of Java
technology. An OI provides the following benefits:

s Undergoes more quality assurance (QA) testing

» Provides superior performance

m Supports a strategic platform or can be used as a starting point for porting Java
technology to a different target platform

The sample OI described in this runtime guide is based on the Linux/ARM/Qt
platform. It includes a dynamic compiler that provides the best available
performance for Java applications. See TABLE 2-1 for a description of the supported
OI platforms.

Chapter 1 Introduction 1-3

1.4

CDC Target Device Requirements

CDC is an adaptable technology that can support a range of connected target devices
that exist today and in the future. The baseline system requirements of these
connected devices are the following:

m network connectivity
m 32-bit RISC-based microprocessor

The memory requirements for a CDC Java runtime environment vary based on the
native platform, the profile and optional packages and the application. See
Section 4.4, “Memory Management” on page 4-7 for memory usage guidelines.

Other features of the CDC target device can include:

m a display for a graphical user interface (GUI)
m Unicode font support
m an open or proprietary native platform that provides operating system services

1.5

14

Java ME Technology Standards

CDC is part of the family of Java ME technology standards that support application
software for connected devices. From an application developer’s perspective, CDC is
a standards-based framework for creating and deploying application software on a
broad range of consumer and embedded devices. The CDC APIs are largely based
on well-known Java SE APIs, which makes the job of migrating skills, tools and
source code easier. From a product designer’s perspective, CDC provides a
standards-based Java runtime environment that supports a variety of target devices.
This allows product designers to provide an application platform that fits within
their device’s resource limitations while supporting a large number of applications
and developers.

Java ME standards are developed in collaboration with industry leaders through the
Java Community Process (www.jcp.org). JCP standards allow Java technology to
adapt to the needs of evolving products in an open way by defining APIs that
address common needs in application development. Furthermore, these standards
allow product designers to choose which API features fit their product needs.

Java ME technology uses three kinds of API standards described in TABLE 1-1 as
building blocks that can be combined in a specific product solution.

CDC Runtime Guide ¢ November 2005

www.jcp.org

TABLE 1-1 Java ME API Standards

Category

Description

Options

Configuration

Profile

Optional
Package

Defines the most basic Java class
library and Java virtual machine
capabilities for a broad range of
devices.

Defines additional APIs that support a
narrower range of devices. A profile is
built on a specific configuration.

Defines a set of technology-specific
APIs.

e Connected Device Configuration (CDC, JSR-218)
supports connected devices like smart phones,
set-top boxes and office equipment.

e Connected Limited Device Configuration (CLDC,
JSR-139) supports small devices like cellphones.

 Foundation Profile (JSR-219) provides application-
support classes like network and I/O support
platforms without a standards-based GUI
system.

e Personal Basis Profile (JSR-217) provides a
standards-based GUI framework for supporting
lightweight components. In addition to the same
application support classes provided by
Foundation Profile, Personal Basis Profile
includes support for the xlet application model.

Personal Profile (JSR-216) provides an AWT-based
GUI toolkit. In addition to the same application
support classes provided by both Foundation
Profile and Personal Basis Profile, Personal
Profile includes support for the applet
application model.

e The Remote Method Invocation (RMI) Optional
Package (JSR-66) provides a subset of the Java SE
RMI API for networked devices based on Java
technology. It exposes distributed application
protocols through Java interfaces, classes and
method invocations and shields the developer
from the details of network communications.

e The Java Database Connectivity (JDBC) Optional
Package (JSR-169) provides a subset of the JDBC
3.0 API that can be used by Java application
software to access tabular data sources including
spreadsheets, flat files and cross-DBMS
connectivity to a wide range of SQL databases.

e The Java Secure Socket Extension (JSSE) Optional
Package, the Java Cryptography Extension (JCE)
Optional Package and the Java Authentication and
Authorization Service (JAAS) Optional Package
(JSR-219) provide Java SE APIs for extending
CDC'’s security architecture.

The Web Services Optional Package (JSR-172)
provides standard access from Java ME clients to
web services.

Chapter 1 Introduction 1-5

1.6 Java ME API Choices

Each Java ME licensee can create a Java runtime environment by choosing from a
menu of standard APIs. The designer’s choice must contain a configuration, a profile
and any number of optional packages and these choices can vary from product to
product. The critical point to understand is that the application developer must
separately learn about which API combination are available for a specific CDC
product implmentation.

For example, FIGURE 1-2 describes a Java runtime environment where a product
designer selects CDC, Personal Profile, RMI Optional Package and JDBC Optional
Package to represent a conforming CDC Java runtime environment.

configuration + profile + optional packages = compliant JRE
cDC Foundation Profile CRMI Optional Package)
CLDC Personal Basis Profile CJDBC Optional Package) é e
C Personal ProfiIe) Security Optional Packages
other optional packages...

\ /

1-6

FIGURE 1-2 An Example CDC Java Runtime Environment

Note — See the companion document CDC Build System Guide for information on
how to build a target development version of the CDC Java class library for
application development that reflects the APIs chosen for a specific target product.
Chapter 8 describes how to compile Java application software with such a library.

CDC Runtime Guide ¢ November 2005

1.7

CDC Application Features

The applications targeted by CDC technology have certain characteristics that
distinguish them from the productivity tools and utilities common to desktop
platforms.

m Network connectivity. The dominant trends in application development, like web
browsers, XML-based web services and RSS, are based on network connectivity.
Examples include the evolution of PDAs and cell phones into connected devices
and the evolution of office printers into multi-function peripherals that can
generate campus-specific reports.

m Security. Application developers and users are becoming increasingly aware of the
need for security for their mobile and distributed applications. The Java SE
security framework in CDC allows applications to use fine-grained security
policies for application and enterprise security needs.

m Application deployment. Java technology has traditionally provided flexible
application models. CDC profiles support managed application models like
applets and xlets that allow developers to easily deploy applications over the
network, either directly or through a provisioning server.

m Standard data access. Mobile clients need access to central databases to view and
modify information. The JDBC and web Services optional packages provide
standard data access for client-side applications.

m Portable GUIs. With the broad range of CDC target devices, applications need a
GUI system that is flexible enough different user experiences and workflows
while being portable enough to support different target devices. Personal Basis
Profile and Personal Profile support conventional AWT-based GUIs as well as
providing a hosting layer for building and supporting GUIs based on industry-
standards and vendor-specific interfaces.

1.8

Developer Tools

Because CDC APIs are derived from Java SE APlIs, application developers can
migrate both their software and their skills to the CDC platform with little effort.
Java SE developers can easily learn CDC APIs by focusing on their small differences
with Java SE APIs. It is therefore easy to modify Java SE software for CDC devices.
The ability to use Java SE developer tools like compilers, debuggers and profilers
makes this transition easier.

The CDC Java runtime environment uses several developer tool-oriented
specifications, including the following:

Chapter 1 Introduction 1-7

m Because CDC is based on the Java Virtual Machine Specification (see
java.sun.com/docs/books/vmspec), application developers can use
conventional Java SE compilers like javac.

m The Java Virtual Machine Debugger Interface (JVMDI, see
java.sun.com/j2se/1.4.2/docs/guide/jvmdi) defines an interface that
allows debugger tools like jdb and third-party debuggers to interact with a
debugger-capable CDC Java runtime environment and explore the behavior of
Java applications on a CDC target device.

m The Java Virtual Machine Profiler Interface (JVMPI, see
java.sun.com/j2se/1.4.2/docs/guide/jvmdi) defines an interface that
allows the hprof profiler to measure runtime data for a specific application or
benchmark.

m The J2ME Unified Emulator Interface Specification (UEI) defines an interface that
allows an external developer tool to control a Java ME emulator.

m cvm, the CDC application launcher, uses many command-line options that are
available with java, the Java SE application launcher. Many of these options can
be used for application testing and development.

Java SE tools like jar and keytool can also be used in CDC application
development and deployment.

1.9

Application Management

The Sun Java Connected Device Configuration Application Management System
(CDC AMS) is a process-based system for controlling multiple concurrent
applications while sharing system resources in a robust and scalable manner. CDC
AMS includes reusable components that can be adapted to build AMS
implementations for specific products. To demonstrate these capabilities, CDC AMS
includes two sample AMS implementations based on Personal Profile and Personal
Basis Profile. This runtime guide describes how to use these sample AMS
implementations to demonstrate different aspects of application management
including OTA provisioning, application launching, application selection and
application removal.

1-8 CDC Runtime Guide ¢ November 2005

java.sun.com/j2se/1.4.2/docs/guide/jvmdi
java.sun.com/j2se/1.4.2/docs/guide/jvmdi
java.sun.com/docs/books/vmspec

CHAPTER 2

Installation

This chapter describes how to install and test a CDC Juntime environment on a
sample target device. It shows how to perform the following procedures:

m Download and install a distribution bundle containing the CDC Java runtime

environment.

m Perform a basic test procedure that demonstrates the operation of the CDC Java

runtime environment.

m Install an optional package.

m Remove the CDC Java runtime environment.

TABLE 2-1 describes the target platforms for the CDC Java runtime environment.

TABLE 2-1 Target Platforms

Supported

Platform URL Description

ARM- http://www.myzaurus .com The Sharp Zaurus SL-C860 is a
based Linux/ARM-based PDA.

Linux

MIPS- http://www.linux-mips.org/ The Cobalt Qube 2 is a Linux/MIPS-
based wiki/index.php/Cobalt based network server.

Linux

http://www.linux-mips.org/��wiki/index.php/Cobalt
http://www.myzaurus.com
http://www.novell.com/��products/linuxprofessional/��sysreqs.html

2.1

2.1.1

2.1.2

Installing the CDC Java Runtime
Environment

This section describes how to install a Java runtime environment contained in a Zip
bundle described in TABLE 2-2. The naming convention used is api-1_1-release-bin-
build-platform-CPU-date . zip. The installation procedure described in TABLE 2-2 uses
the name rt.zip to represent one of these distribution archives.

TABLE2-2 Binary Distribution Archives

Description Archive File

Personal appmgr_pbp-1_0-rr-bin-b2l-linux-mips-15_nov_2005.zip
Basis Profile

Personal appmgr_pp-1_0-rr-bin-b2l-linux-arm-15_nov_2005.zip
Profile

The companion document CDC Build System Guide shows how to build a CDC Java
runtime environment and prepare it for downloading onto a target device.

Local Installation

1. Change the current directory to the location where you wish to install the CDC
Java runtime environment.

ftp> cd /home/test-cdc

2. Download one of the binary distribution archives described in TABLE 2-2.

% get rt.zip

3. Unzip the Zip bundle.

Q

% unzip rt.zip

Remote Installation

1. Download one of the binary distribution archives described in TABLE 2-2.

2-2 CDC Runtime Guide ¢ November 2005

2.1.3

2. Connect to the target system with an ftp(1) client.

This example is based on ftp and assumes that a directory named /home/test-
cdc is available on the target device with enough space for installing and testing the
CDC Java application environment.

% ftp cdc-dev
Name (cdc-dev) :

Password:

. Change the current directory to the location where you wish to install the CDC

Java runtime environment.

ftp> cd /home/test-cdc

. Set the transfer type to binary.

ftp> binary

. Transfer the Zip bundle to the target system.

ftp> put rt.zip

. Quit the ftp client.

ftp> quit

. Remotely login to the target system.

% ssh cdc-dev

. Change the current directory to the directory containing the Zip bundle.

% cd /home/test-cdc

. Unzip the Zip bundle.

% unzip rt.zip

After installation, the current directory should contain the contents of the CDC Java
runtime environment. At a minimum, this includes two directories: bin and 1ib as
well as two files: democlasses. jar or testclasses. zip. See Chapter 3 for a
complete description of the contents of a CDC Java runtime environment.

Installing CDC AMS on a Zaurus personal mobile
tool

See Appendix G for platform-specific installation notes for the Zaurus personal
mobile tool.

Chapter 2 Installation 2-3

214 Installing CDC AMS on a Cobalt Qube

See Appendix H for platform-specific installation notes for the Cobalt Qube.

2.2 Installing an Optional Package

Optional packages can be installed with one of two methods:

m Integration into the CDC Java runtime environment at build-time. See the
companion document CDC Build System Guide for more details.

m Installation into the optional package directory. See Section 4.3, “Class Search
Path Basics” on page 4-4 for a description of the extension class search path.

2.3 Testing the CDC Java Runtime
Environment

You can quickly test the CDC Java runtime environment by running a sample
application with cvm, the CDC Java application launcher:

% bin/cvm -cp testclasses.zip HelloWorld

Hello world.

If these test applications run successfully, the CDC Java runtime environment is
installed correctly. See Chapter 4 for more information about using cvm to run Java
application software and Appendix A for a complete description of the command-
line options.

Note — For the Personal Basis Profile or Personal Profile-based CDC Java runtime
environment, there may be an extra step to specify the location of the Qt shared
library on the Linux platform. See Section 4.3.2, “Native Method Search Path” on
page 4-6 for more information about the native library search path.

2-4 CDC Runtime Guide ¢ November 2005

2.4

Removing the CDC Java Runtime
Environment

The CDC Java runtime environment can be removed from the target system by
removing the bin and 1ib directories.

% cd /home/test-cdc

% rm -rf bin 1ib repository democlasses.jar testclasses.zip

Chapter 2 Installation

2-5

2-6 CDC Runtime Guide ¢ November 2005

CHAPTER 3

Software Contents

A CDC Java runtime environment contains the software necessary to run Java
applications on a target platform. The software contents of a CDC Java runtime
environment can vary, especially during product development when different
testing options may be selected at build-time. This chapter describes the
organization of a CDC Java runtime environment, including standard files as well as
optional security, developer and test files.

3.1

Standard Files

After installation, the CDC Java runtime environment is located in its installation
directory. Because the location of this installation directory can be anywhere in the
local file system, the CDC Java runtime environment specifies this location with the
java.home system property. TABLE 3-1 describes the standard files located in the
installation directory based on the default build options.

TABLE 3-1 Standard Files

File

Description

bin/cvm

lib/class-lib.jar

The CDC Java application launcher loads and executes Java
applications.

Optional. The CDC Java class library is used by the CDC Java runtime
environment to locate and load core Java classes. The actual name of
the archive file indicates the supported CDC specifications, e.g.
cdc.jar, foundation-rmi. jar.

Note: 1ib/class-lib. jar is only present for non-preloaded builds
(CVM_PRELOAD_LIB=false).

lib/libawtjpeg.so PBP/PP only. The Independent JPEG Group’s JPEG codec.

lib/libgtawt.so PBP/PP only. The AWT/Qt native bridge.

TABLE 3-1 Standard Files

File

Description

lib/content-types.properties

lib/security/java.policy
lib/security/java.security

lib/zi/America/Los_Angeles
lib/zi/Asia/Calcutta
lib/zi/Asia/Novosibirsk
lib/zi/GMT
1ib/zi/ZoneInfoMappings

The MIME content type system property table used by the
sun.net.www package. Each entry maps a MIME content type to a
native application that can handle it. Files are associated with a MIME
content type by either the MIME content type returned by an HTTP
header or their file name extension.

System-wide security policies.!
Master security properties.!

Time zone data files used by sun.util.calendar.ZoneInfoFile.

1 See Inside Java 2 Platform Security, Second Edition: Architecture, API Design, and Implementation by Li Gong (Addison-Wesley, 2003) for
more information about Java SE security features.

3-2 CDC Runtime Guide ¢ November 2005

3.2 CDC AMS Files

The CDC AMS version of the CDC Java runtime environment includes extra files for
the mtask driver utility, the AMS and its application repository.

TABLE 3-2 CDC AMS Files

File

Description

bin/cvmc

lib/appmanager.jar

lib/appmanager-client.jar

lib/
AwtPDA_PresentationMode.jar
PBP_PresentationMode. jar

1lib/j2me_xml_cdc.jar

The mtask driver utility controls JVM instances through the
mtask command language described in Appendix B. See
Appendix C for a complete description of the mtask driver
utility.

The AMS implementation is contained in two files that are
usually loaded once in the first client JVM instance:

* a separate jar file contains the presentation mode

® appmanager.jar contains the rest of the AMS
implementation.

Client JVM instances encapsulate managed applications. Each
client JVM instance must load the

com. sun.appmanager .client package in appmanager-
client.jar so that it can be managed by CDC AMS. For
convenience, this package is loaded once in the mtask server
JVM instance and therefore each client JVM instance can access
it through shared memory.

CDC AMS has a modular architecture that isolates the user
experience functionality into a small set of classes called a
presentation mode. CDC AMS includes two alternate
presentation modes. PBP_PresentationMode. jar contains a
very simple presentation mode based on Personal Basis Profile
and AwtPDA_PresentationMode. jar contains a more
featureful presentation mode based on Personal Profile and
which includes an over-the-air (OTA) application deployment
capability.

A subset of the Java Web Services (JSR-172) RI that provides
XML processing services for the OTA application provisioning
feature in the Personal Profile presentation mode.

Chapter 3 Software Contents 3-3

TABLE 3-2 CDC AMS Files (Continued)

File

Description

lib/security/
appmanager .security.constrained
appmanager.security.permissive
appmanager.security.policy

repository/
apps/
icons/
menu/
preferences/
profiles/

/tmp/appmanager_cleanup_user
/tmp/appmanager_server_user
/tmp/appmanager_warmup_ user
/tmp/appmanager_app_user

CDC AMS-specific security policy files.

The application repository is a mechanism for storing, updating
and removing applications. In the modular architecture of CDC
AMS, the application repository is an implementation of the
com. sun.appmanager .apprepository.AppRepository
interface. SeeSection 5.6, “Installing Applications” on page 5-10
for a description of the application repository.

These logfiles are created by CDC AMS to record information
about running applications and server processes.

3-4 CDC Runtime Guide ¢ November 2005

3.3 Security Files

TABLE 3-3 describes optional security files in versions of the CDC Java runtime
environment that include the security optional packages. See Inside Java 2 Platform
Security: Architecture, API Design, and Implementation by Li Gong (second edition,
Addison-Wesley, 2003) for more information about Java SE security features.

TABLE 3-3 Security Files

File Description

lib/jaas.jar Java Authentication and Authorization Service (JAAS) Optional
Package is a part of JSR-219 which is a framework for enforcing
access control to resources using a CodeSource-based and
Subject-based security model. jaas . jar contains the JAAS
Optional Package implementation and the
KeyStoreLoginModule authentication module, which is a
subset of what is available in J2SE version 1.4.2.

lib/jce.jar Java Cryptography Extension (JCE) Optional Package is a part of
lib/ext/sunjce_provider.jar JSR-219 which extends the Java Cryptography Architecture
lib/sunrsasign.jar (JCA) to include key generation and agreement, encryption and

message authentication code (MAC) generation services.
jce.jar contains the JCE Optional Package implementation
which is fully compatible with J2SE version 1.4.2.
sunjce_provider. jar contains the default ("SunJCE")
provider implementation of the JCE service provider interface
(SPI) and is fully compatible with J2SE version 1.4.2. Note that
lib/ext is part of the extension class search path, but not part
of the system class search path. See Section 4.3, “Class Search
Path Basics” on page 4-4 for more information about class
search paths.

sunrsasign. jar contains the default ("'SUN") provider
implementation of the RSA signature SPI and is fully
compatible with the SunJCE provider implementation in J2SE
version 1.4.2. See “How to Implement a Provider for the Java
Cryptography Architecture” in JSR-219.

Chapter 3 Software Contents 3-5

TABLE 3-3 Security Files (Continued)

File Description

lib/jsse-cdc.jar Java Secure Socket Extension (JSSE) Optional Package is a part of
JSR-219 which provides support for secure communication.
jsse.jar contains both the JSSE Optional Package
implementation and the default (“SunJSSE”) provider
implementation, which is fully compatible with the SunJSSE
provider implementation in J2SE version 1.4.2.

lib/security/cacerts Certificate authority (CA) keystore file. The default keystore
password is "changeit". See keytool(1) for more information
about how to use the Java SE SDK key and certificate
management tool to change the keystore password.

lib/security/local_policy.jar Security jurisdiction policy files.
lib/security/US_export_policy.jar

3.4 Development Files

TABLE 3-4 describes files that can be used with developer tools like compilers and
debuggers. These files are further described in Chapter 8.

TABLE 3-4 Development Files

File Description

lib/btclasses.zip The CDC Java class library can be used for compiling application source code.

Note: Because the contents of these archive files can vary depending on the
selected build options, application development must be based on a target
development version of the CDC Java class library. See the companion
document CDC Build System Guide for information about how to build a
target development version of the CDC Java class library.

lib/libdt_socket[_g].so The Java Debugger Wireline Protocol (JDWP) shared libraries are necessary
lib/libjdwpl_gl.so for remote debugging.

hprof/ hprof profiler-related shared libraries, object files and build flags.

3-6 CDC Runtime Guide ¢ November 2005

3.5 Test and Demonstration Files

TABLE 3-5 describes the test and demo programs. These are often included with the
installation bundle, but are not necessary for operation.

TABLE 3-5 Test and Demonstration Files

File Description

democlasses.jar Demonstration applications that demonstrate profile-based functionality. This
jar archive also contains the Java source code for these demo applications.

testclasses.zip Test applications that can be used to quickly test the CDC Java runtime
environment. The source code for these programs is located in
src/share/javavm/test of the source code release. The simplest test
programs to use are HelloWorld and Test.

Chapter 3 Software Contents 3-7

3-8 CDC Runtime Guide ¢ November 2005

CHAPTER 4

Running Applications

The CDC Java runtime environment includes cvm, the CDC application launcher, for
loading and executing Java applications. This chapter describes basic use of the cvm
command to launch different kinds of Java applications, as well as more advanced
topics like memory management and dynamic compiler policies.

4.1

Launching a Java Application

cvm, the CDC applicatoin launcher is similar to java, the Java SE application
launcher. Many of cvm’s command-line options are borrowed from java. The basic
method of launching a Java application is to specify the top-level application class
containing the main () method on the cvm command-line. For example,

% cvm HelloWorld

By default, cvm looks for the top-level application class in the current directory. As
an alternative, the -cp and -classpath command-line options can specify a list of
locations where cvm can search for application classes. For example,

Q

% cvin -cp /mylib:democlasses.jar HelloWorld

Here cvm searches for a top-level application class named HelloWorld, first in the
directory /mylib and then in the archive file democlasses. jar. See Section 4.3,
“Class Search Path Basics” on page 4-4 for more information about class search
paths.

The -help option displays a brief description of the available command-line
options. Appendix A provides a complete description of the command-line options
available for cvm.

4-1

4.2

4.2.1

Running Managed Applications
(Personal Basis Profile and Personal Profile

only)

Managed application models allow developers to offload the tasks of deployment
and resource management to a separate application manager. The CDC Java runtime
environment includes sample application managers for two different application
models:

m The applet application model was one of the first success stories of Java technology.
An applet contains dynamic web content that a user can view and manipulate
through an applet viewer, typically built into a web browser.

m The xlet application model is similar in purpose to the applet application model, but
different in design. The main differences between an xlet and an applet are that
an xlet has a cleaner life cycle model and doesn’t require an explicit dependency
on AWT. These features make xlets more appropriate for embedded device
scenarios like set-top boxes and PDAs.

Running an Applet (Personal Profile only)

The CDC Java runtime environment includes a simple applet launcher named
sun.applet.AppletViewer which displays each applet in a separate frame.
AppletViewer is a simplified version of the Java SE appletviewer utility (see
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/appletviewe
r.html). The CDC version does not have a separate command-line utility and does
not support all of the options available in the Java SE version, such as -debug,
-encoding, and -J.

The basic command syntax to launch an applet with AppletViewer is:

Q

% cvm sun.applet.AppletViewer URL

URL identifies an HTML file containing an APPLET, OBJECT or EMBED tag that
identifies an applet. See
http://java.sun.com/j2se/1.4.2/docs/tooldocs/appletviewertags.ht
ml for a description of the HTML tags supported by AppletViewer.

Here is a simple example of how to launch an applet based on the DemoApplet
example in democlasses. jar:

% cvm sun.applet.AppletViewer personal/DemoApplet.html

4-2 CDC Runtime Guide ¢ November 2005

http://java.sun.com/j2se/1.4.2/docs/tooldocs/appletviewertags.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/appletviewertags.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/appletviewer.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/appletviewer.html

422

Running an Xlet (Personal Basis Profile and Personal

Profile only)

The CDC Java runtime environment includes a simple xlet manager named
com.sun.xlet.XletRunner. Xlets can be graphical, in which case the xlet
manager displays each xlet in its own frame, or they can be non-graphical. The basic
command syntax to launch XletRunner is:

% cvm com.sun.xlet.XletRunner { \

-name xletName \

(-path xletPath | -codebase urlPath) \
-args argl arg2 arg3 ...} \

oe

oe

cvm com.sun.xlet.XletRunner -filename optionsFile
cvm com.sun.xlet.XletRunner -usage

TABLE 4-1 describes X1etRunner’s command-line options:

TABLE4-1 XletRunner Command-Line Options

Option

Description

-name xletName

-path xletPath

-codebase urlPath

-args argl [arg2] [arg3] ...

-filename optionsFile

-usage

Required. Identifies the top-level Java class that implements the
javax.microedition.xlet.Xlet interface.

Required (or substituted with the -codebase option described
below). Specifies the location of the target xlet with a local
pathname. The path can be absolute or relative to the current
directory. If the xlet is in a jar or Zip archive file, then use the
archive file name.

Note: The xlet must not be found in the system class path,
especially when running more than one xlet, because xlets
must be loaded by their own class loader.

Optional. Specifies the location of the target xlet with a URL.
The -codebase option can be substituted for -path to
provide a URL-formatted path instead of a local pathname.

Optional. Passes additional runtime arguments to the xlet.
Multiple arguments are separated by spaces.

Optional. Reads options from an ASCII file rather than from the
command line. The -filename option must be the first option
provided to XletRunner.

Display a usage string describing X1letRunner’s command-
line options.

Chapter 4 Running Applications 4-3

Here are some command-line examples for launching xlets with
com.sun.xlet.XletRunner:

m To run DemoXlet in democlasses.jar:

o
°

cvm com.sun.xlet.XletRunner \
-name basis.DemoXlet \
-path democlasses.jar

m To run an xlet with multiple command-line arguments:

cvmm com.sun.xlet.XletRunner \
-name MyXlet \
-path . \

-args top bottom right left

run more than one xlet, repeat the X1etRunner options:

%> cvin com.sun.xlet.XletRunner \
-name ServerXlet -path ./server \
-name ClientXlet -path ./client

m To run an xlet whose compiled code is at the URL
http://java.sun.com/xlets/demo/MyXlet.class:

o
°

cvm com.sun.xlet.XletRunner \
-name MyXlet \

-codebase http://java.sun.com/xlets/demo

To run an xlet in a jar file named xlet.jar with the arguments colorMap and
blue, use the following command line:

%

cvmm com.sun.xlet.XletRunner \
-name StockTickerXlet \

-path xlet.jar \

-args colorMap blue

To run an xlet with command-line options in an argument file:

o)
°

cvm com.sun.xlet.XletRunner -filename myArgsFile
myArgsFile contains a text line with valid X1etRunner options:

-name StockTickerXlet -path xlet.jar -args colorMap blue

4.3 Class Search Path Basics

The Java runtime environment uses various search paths to locate classes, resources
and native objects at runtime. This section describes the two most important search
paths: the Java class search path and the native method search path.

4-4 CDC Runtime Guide ¢ November 2005

http://java.sun.com/xlets/demo/MyXlet.class

4.3.1

Java Class Search Path

Java applications are collections of Java classes and application resources that are
built on one system and then potentially deployed on many different target
platforms. Because the file systems on these target platforms can vary greatly from
the development system, Java runtime environments use the Java class search path as
a flexible mechanism for balancing the needs of platform-independence against the
realities of different target platforms.

The Java class search path mechanism allows the Java virtual machine to locate and
load classes from different locations that are defined at runtime on a target platform.
For example, the same application could be organized in one way on a MacOS
system and another on a Linux system. Preparing an application’s classes for
deployment on different target systems is part of the development process.
Arranging them for a specific target system i s part of the deployment process.

The Java class search path defines a list of locations that the Java virtual machine
uses to find Java classes and application resources. A location can be either a file
system directory or a jar or Zip archive file. Locations in the Java class search path
are delimited by a platform-dependent path separator defined by the

",

path.separator system property. The Linux default is the colon “:” character.

The Java SE documentation! describes three related Java class search paths:

m The system or bootstrap classes comprise the Java platform. The system class search
path is a mechanism for locating these system classes. The default system search
path is JRE/1ib.

m The extension classes extend the Java platform with optional packages like the
JDBC Optional Package. The extension class search path is a mechanism for locating
these optional packages. cvm uses the -Xbootclasspath command-line option
to statically specify an extension class search path at launch time and the
sun.boot.class.path system property to dynamically specify an extension
class search path. The CDC default extension class search path is CVM/1ib, with
the exception of some of the provider implementations for the security optional
packages described in TABLE 3-3 which are stored in CVM/1ib/ext. The Java SE
default extension class search path is JRE/1ib/ext.

m The user classes are defined and implemented by developers to provide
application functionality. The user class search path is a mechanism for locating
these application classes. Java virtual machine implementations like the CDC Java
runtime environment can provide different mechanisms for specifying an Java
class search path. cvm uses the -classpath command-line option to statically
specify an Java class search path at launch time and the java.class.path

1. See the tools documentation at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html fora
description of the J2SDK tools and how they use Java class search paths.

Chapter 4 Running Applications 4-5

http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html

4.3.2

system property to dynamically specify an user class search path. The Java SE
application launcher also uses the CLASSPATH environment variable, which is not
supported by the CDC Java runtime environment.

Native Method Search Path

The CDC HotSpot Implementation virtual machine uses the Java Native Interface!
(JNI) as its native method support framework. The JNI specification leaves the
platform-level implementation of native methods up to the designers of a Java
virtual machine implementation. For the Linux-based CDC Java runtime
environment described in this runtime guide, a JNI native method is implemented as
a Linux shared library that can be found in the native library search path defined by
the java.library.path system property.

Note — The standard mechanism for specifying the native library search path is the
java.library.path system property. However, the Linux dynamic linking loader
may cause other shared libraries to be loaded implicitly. In this case, the directories
in the LD_LIBRRARY_PATH environment variable are searched without using the
java.library.path system property. One example of this issue is the location of
the Qt shared library. If the target Linux platform has one version of the Qt shared
library in /usr/1ib and the CDC Java runtime environment uses another version
located elsewhere, this directory must be specified in the LD_LIBRRARY_PATH
environment variable.

Here is a simple example of how to build and use an application with a native
method. The mechanism described below is very similar to the Java SE mechanism.

. Compile a Java application containing a native method.

% javac -bootclasspath lib/btclasses.zip HelloJNI.java

. Generate the JNI stub file for the native method.

Q

% javah -bootclasspath lib/btclasses.zip HelloJNI

. Compile the native method library.

% gcc HellodNI.c -shared -IS{CDC_SRC}/src/share/javavm/export \
-IS$S{CDC_SRC}/src/linux/javavm/include -o libHelloJdNI.so

This step requires the CDC-based JNI header files in the CDC source release.

. Relocate the native method library in the test directory.

% mkdir test
% mv libHellodNI.so test

1. See the Java Native Interface: Programmer’s Guide and Specification described in “Related
Documentation” on page xvi.

4-6 CDC Runtime Guide ¢ November 2005

5. Launch the application.

% cvm -Djava.library.path=test HelloJNI

If the native method implementation is not found in the native method search path,
the CDC Java runtime environment throws an UnsatisfiedLinkError.

4.4

441

Memory Management

The CDC Java runtime environment uses memory to operate the Java virtual
machine and to create, store and use objects and resources. This section provides an
overview of how memory is used by the Java virtual machine. Of course, the actual
memory requirements of a specific Java application running on a specific Java
runtime environment hosted on a specific target platform can only be determined by
application profiling. But this section will provide useful guidelines.

The Java Heap

When it launches, the CDC Java runtime environment uses the native platform’s
memory allocation mechanism to allocate memory for native objects and reserve a
pool of memory, called the Java heap, for Java objects and resources. The size of the
Java heap is specified by the -Xmxsize and -Xmssize command-line options described
in TABLE A-1.

For example,

Q

% cvm -Xmx7M MyApp

launches the application My2App and sets the Java heap size to 7 MB.

m If the requested Java heap size is larger than the available memory on the device,
the Java runtime environment exits with an error message:

% java -Xmx23000M MyApp
Invalid maximum heap size: -Xmx23000M
Could not create the Java virtual machine.

m If there isn’t enough memory to create a Java heap of the requested size, the Java
runtime environment exits with an error message:

% java -Xmx2300M MyApp
Error occurred during initialization of VM
Could not reserve enough space for object heap

m If the application launches and later needs more memory than is available in the
Java heap, the CDC Java runtime environment throws an OutOfMemoryEffor.

Chapter 4 Running Applications 4-7

442

4421

m In the current implementation, the Java heap is not growable. So if only one of
these command-line options is specified, its value will be used to set the Java
heap size. This is compatible with previous versions of CDC where -Xms was the
only available option for specifying the Java heap size. If both command-line
options are specified and -Xmx is less than -Xms, the -Xms value is used for the
maximum Java heap size and the -Xmx value will be ignored. Otherwise, -Xmx is
used as the Java heap size. Note that future implementations may not adhere to
these rules for determining Java heap size.

Garbage Collection

When a Java application creates an object, the Java runtime environment allocates
memory out of the Java heap. And when the object is no longer needed, the memory
should be recycled for later use by other objects and resources. Conventional
application platforms require a developer to track memory usage. Java technology
uses an automatic memory management system that transfers the burden of
managing memory from the developer to the Java runtime environment.

So the Java runtime environment detects when an object or resource is no longer
being used by a Java application, labels it as “garbage” and later recycles its memory
for other objects and resources. This garbage collection (GC) system frees the
developer from the responsibility of manually allocating and freeing memory, which
is a major source of bugs with conventional application platforms.

GC has some additional costs, including runtime overhead and memory footprint
overhead. However, these costs are small in comparison to the benefits of
application reliability and developer productivity.

Garbage Collection in the CDC HotSpot Implementation

The Java Virtual Machine Specification does not specify any particular GC behavior
and early Java virtual machine implementations used simple and slow GC
algorithms. More recent implementations like the Java HotSpot Implementation
virtual machine provide GC algorithms tuned to the needs of desktop and server
Java applications. And now the CDC HotSpot Implementation includes a GC
framework that has been optimized for the needs of connected devices.

The major features of the GC framework in the CDC HotSpot Implementation are:

m Exactness. Exact GC is based on the ability to track all pointers to objects in the
Java heap. Doing so removes the need for object handles, reduces object overhead,
increases the completeness of object compaction and improves reliability and
performance.

4-8 CDC Runtime Guide ¢ November 2005

4422

m Default Generational Collector. The CDC HotSpot Implementation Java virtual
machine includes a generational collector that supports most application
scenarios, including the following;:

general-purpose
excellent performance
robustness

reduced GC pause time

reduced total time spent in GC

m Pluggability. While the default generational collector serves as a general-purpose
garbage collector, the GC plug-in interface allows support for device-specific
needs. Runtime developers can use the GC plug-in interface to add new garbage
collectors at build-time without modifying the internals of the Java virtual
machine. In addition, starter garbage collector plug-ins are available from Java
Partner Engineering (www.sun.com/software/jpe).

Note — Needing an alternate GC plug-in is rare. If an application has an object
allocation and longevity profile that differs significantly from typical applications (to
the extent that the application profile cannot be catered to by setting the GC
arguments), and this difference turns out to be a performance bottleneck for the
application, then alternate GC implementation may be appropriate.

Default Generational Collector

The default generational collector manages memory in the Java heap. FIGURE 4-1
shows how the Java heap is organized into two heap generations, a young generation
and a tenured generation. The generational collector is really a hybrid collector in
that each generation has its own collector. This is based on the observation that most

Chapter 4 Running Applications 4-9

www.sun.com/software/jpe

Java objects are short-lived. The generational collector is designed to collect these
short-lived objects as rapidly as possible while promoting more stable objects to the
tenured generation where objects are collected less frequently.

-Xgc : youngGen=size

from
space

space

-XmxSize

young tenured
generation generation
1

4-10

heap size = (youngen + Xmx)
FIGURE 4-1 GC Generations

The young generation is based on a technique called copying semispace. The young
generation is divided into two equivalent memory pools, the from-space and the fo-
space. Initially, objects are allocated out of the from-space. When the from-space
becomes full, the system pauses and the young generation begins a collection cycle
where only the live objects in the from-space are copied to the to-space. The two
memory pools then reverse roles and objects are allocated from the “new” from-
space. Only surviving objects are copied. If they survive a certain number of
collection cycles (the default is 2), then they are promoted to the tenured generation.

The benefit of the copying semispace technique is that copying live objects across
semispaces is faster than relocating them within the same semispace. This requires
more memory, so there is a trade-off between the size of the young generation and
GC performance.

The tenured generation is based on a technique called mark compact. The tenured
generation contains all objects that have survived several copying cycles in the
young generation. When the tenured generation reaches a certain threshold, the
system pauses and it begins a full collection cycle where both generations go

CDC Runtime Guide ¢ November 2005

4423

443

through a collection cycle. The young generation goes through the stages outlined
above. Objects in the tenured generation are scanned from their “roots” and
determined to be live or dead. Next, the memory for dead objects is released and the
tenured generation goes through a compacting phase where objects are relocated
within the tenured generation.

The default generational garbage collector reduces performance overhead and helps
collect short-lived objects rapidly, which increases heap efficiency.

Tuning Options

Two runtime options are available to control GC performance. These are described in
TABLE 4-2.

TABLE4-2 GC Runtime Options

Option Description

-Xmxsize Maximum size of the Java heap

-Xgc:youngGen=size Size of the young generation

The relative sizes of these generations can affect GC performance.

m youngGen should not be too small. If it is too small, partial GCs may happen too
frequently. This causes unnecessary pauses and retain more objects in the tenured
generation than is necessary because they don’t have time to age and die out
between GC cycles.

The default size of youngGen is about 1/8 of the overall Java heap size.

m youngGen should not be too large. If it is too large, even partial GCs may result
in lengthy pauses because of the number of live objects to be copied between
semispaces or generations will be larger.

By default, the CDC Java runtime environment caps youngGen size to 1 MB
unless it is explicitly specified on the command line.

m The total heap size needs to be large enough to cater for the needs of the
application. This is very application-dependent and can only be estimated.

Class Preloading

The CDC HotSpot Implementation virtual machine includes a mechanism called
class preloading that streamlines VM launch and reduces runtime memory
requirements. The CDC build system includes a special build tool called
JavaCodeCompact that performs many of the steps at build-time that the VM
would normally perform at runtime. This saves runtime overhead because class

Chapter 4 Running Applications 4-11

4-12

loading is done only once at build-time instead of multiple times at runtime. And
because the resulting class data can be stored in a format that allows the VM to
execute in place from a read-only file system (for example, Flash memory), it saves
memory.

Note — It’s important to understand that decisions about class preloading are
generally made at build-time. See the companion document CDC Build Guide for
information about how to use JavaCodeCompact to include Java class files with the
list of files preloaded by JavaCodeCompact with the CDC Java runtime
environment’s executable image.

Class Preloading and Verification

Java class verification is usually performed at class loading time to insure that a class
is well-behaved. This has both performance and security benefits. This section
describes a performance optimization that avoids the overhead of Java class
verification for some application classes.

One way to avoid the overhead of Java class verification is to turn it off completely:
% cvm -Xverify:none -cp MyApp.jar MyApp
This approach has the benefit of more quickly loading the application’s classes. But

it also turns off important security mechanisms that may be needed by applications
that perform remote class loading.

Another approach is based on using JavaCodeCompact to preload an application’s
Java classes at build time. The application’s classes load faster at runtime and other
classes can be loaded remotely with the security benefits of class verification.

Note — JavaCodeCompact assumes the classes it processes are valid and secure.
Other means of determining class integrity should be used at build-time.

The companion document CDC Build Guide describes how to use
JavaCodeCompact to preload an application’s classes so that they are included
with the CDC Java runtime environment’s binary executable image. Once built, the
mechanism for running a preloaded application is very simple. Just identify the
application without using -cp to specify the user Java class search path.

% cvm -Xverify:remote MyApp
The remote option indicates that preloaded and system classes will not be verified.

Because this is the default value for the -Xverify option, it can be safely omitted. It
is shown here to fully describe the process of preloading an application’s classes.

CDC Runtime Guide ¢ November 2005

444

Setting the Maximum Working Memory for the
Dynamic Compiler

The -Xjit:maxWorkingMemorySize command-line option sets the maximum
working memory size for the dynamic compiler. Note that the 512 KB default can be
misleading. Under most circumstances the working memory for the dynamic
compiler is substantially less and is furthermore temporary. For example, when a
method is identified for compiling, the dynamic compiler allocates a temporary
amount of working memory that is proportional to the size of the target method.
After compiling and storing the method in the code buffer, the dynamic compiler
releases this temporary working memory.

The average method needs less than 30 KB but large methods with lots of inlining
can require much more. However since 95% of all methods use 30 KB or less, this is
rarely an issue. Setting the maximum working memory size to a lower threshold
should not adversely affect performance for the majority of applications.

4.5

Tuning Dynamic Compiler Performance

This section shows how to use cvm command-line options that control the behavior
of the CDC HotSpot Implementation Java virtual machine’s dynamic compiler for
different purposes:

m Optimizing a specific application’s performance.

m Configuring the dynamic compiler’s performance for a target device.

m Exercising runtime behavior to aid the porting process.

Using these options effectively requires an understanding of how a dynamic
compiler operates and the kind of situations it can exploit. During its operation the
CDC HotSpot Implementation virtual machine instruments the code it executes to

look for popular methods. Improving the performance of these popular methods
accelerates overall application performance.

The following subsections describe how the dynamic compiler operates and
provides some examples of performance tuning. For a complete description of the
dynamic compiler-specific command-line options, see Appendix A.

Chapter 4 Running Applications 4-13

4.5.1

Dynamic Compiler Overview

The CDC HotSpot Implementation virtual machine offers two mechanisms for
method execution: the interpreter and the dynamic compiler. The interpreter is a
straightforward mechanism for executing a method’s bytecodes. For each bytecode,
the interpreter looks in a table for the equivalent native instructions, executes them
and advances to the next bytecode. Shown in FIGURE 4-2, this technique is predictable
and compact, yet slow.

add2and3: bastore:
bipush 2;<«—— interpreter ...
bipush 3; ———> bipush:
iadd; s_O0=(int)pc([l];
return; updt_pc;
break;
caload;
execute
on native
device

FIGURE 42 Interpreter-Based Method Execution

The dynamic compiler is an alternate mechanism that offers significantly faster
runtime execution. Because the compiler operates on a larger block of instructions, it
can use more aggressive optimizations and the resulting compiled methods run
much faster than the bytecode-at-a-time technique used by the interpreter. This
process occurs in two stages. First, the dynamic compiler takes the entire method’s
bytecodes, compiles them as a group into native code and stores the resulting native
code in an area of memory called the code cache as shown in FIGURE 4-3.

method’s code
bytecodes cache

add2and3 B dynamic ...
bipush 2; compiler ———> Method add2and3:
bipush 3;
iadd;
return;

FIGURE 4-3 Compiling a Method

Then the next time the method is called, the runtime system executes the compiled
method’s native instructions from the code cache as shown in FIGURE 4-4.

4-14 CDC Runtime Guide ¢ November 2005

45.2

interpreter’s code
bytecode stream cache

invoke add2and3; —mM8M8M> Method add2and3:

FIGURE 44 Executing a Compiled Method

The dynamic compiler cannot compile every method because the overhead would be
too great and the start-up time for launching an application would be too noticeable.
Therefore, a mechanism is needed to determine which methods get compiled and for
how long they remain in the code cache.

Because compiling every method is too expensive, the dynamic compiler identifies
important methods that can benefit from compilation. The CDC HotSpot
Implementation Java virtual machine has a runtime instrumentation system that
measures statistics about methods as they are executed. cvm combines these statistics
into a single popularity index for each method. When the popularity index for a
given method reaches a certain threshold, the method is compiled and stored in the
code cache.

m The runtime statistics kept by cvm can be used in different ways to handle various
application scenarios. To do this, cvm exposes certain weighting factors as
command-line options. By changing the weighting factors, cvm can change the
way it performs in different application scenarios. A specific combination of these
options express a dynamic compiler policy for a target application. An example of
these options and their use is provided in Section 4.5.2.1, “Managing the
Popularity Threshold” on page 4-16.

m The dynamic compiler has options for specifying code quality based on various
forms of inlining. These provide space-time trade-offs: aggressive inlining
provides faster compiled methods, but consume more space in the code cache. An
example of the inlining options is provided in Section 4.5.2.2, “Managing
Compiled Code Quality” on page 4-17.

m Compiled methods are not kept in the code cache indefinitely. If the code cache
becomes full or nearly full, the dynamic compiler decompiles the method by
releasing its memory and allowing the interpreter to execute the method. An
example of how to manage the code cache is provided in Section 4.5.2.3,
“Managing the Code Cache” on page 4-17.

Dynamic Compiler Policies

The cvm application launcher has a group of command-line options that control how
the dynamic compiler behaves. Taken together, these options form dynamic compiler
policies that target application or device specific needs. The most common are space-

Chapter 4 Running Applications 4-15

4521

time trade-offs. For example, one policy might cause the dynamic compiler to
compile early and often while another might set a higher threshold because memory
is limited or the application is short-lived.

TABLE A-8 describes the dynamic compiler-specific command-line options and their
defaults. These defaults provide the best overall performance based on experience
with a large set of applications and benchmarks and should be useful for most
application scenarios. They might not provide the best performance for a specific
application or benchmark. Finding alternate values requires experimentation, a
knowledge of the target application’s runtime behavior and requirements as well as
an understanding of the dynamic compiler’s resource limitations and how it
operates.

The following examples show how to experiment with these options to tune the
dynamic compiler’s performance.

Managing the Popularity Threshold

When the popularity index for a given method reaches a certain threshold, it
becomes a candidate for compiling. cvm provides four command-line options that
influence when a given method is compiled: the popularity threshold and three
weighting factors that are combined into a single popularity index:

m climit, the popularity threshold. The default is 20000.
m Dbcost, the weight of a backwards branch. The default is 4.
m icost, the weight of an interpreted to interpreted method call. The default is 20.

m mcost, the weight of transitioning between a compiled method and an
interpreted method and vice versa. The default is 50.

Each time a method is called, its popularity index is incremented by an amount
based on the icost and mcost weighting factors. The default value for climit is
20000. By setting climit at different levels between 0 and 65535, you can find a
popularity threshold that produces good results for a specific application.

The following example uses the -Xjit:option command-line option syntax to set an
alternate climit value:

% cvmm -Xjit:climit=10000 MyTest

o

Setting the popularity threshold lower than the default causes the dynamic compiler
to more eagerly compile methods. Since this will usually cause the code cache to fill
up faster than necessary, this approach is often combined with a larger code cache
size to avoid compilation/decompilation thrashing.

4-16 CDC Runtime Guide ¢ November 2005

4522

4.5.2.3

Managing Compiled Code Quality

The dynamic compiler can choose to inline methods for providing better code
quality and improving the speed of a compiled method. Usually this involves a
space-time trade-off. Method inlining consumes more space in the code cache but
improves performance. For example, suppose a method to be compiled includes an
instruction that invokes an accessor method returning the value of a single variable.

public void popularMethod() {
int i = getX();

}
public int getX() {
return X;

}

getX () has overhead like creating a stack frame. By copying the method’s
instructions directly into the calling method’s instruction stream, the dynamic
compiler can avoid that overhead.

cvm has several options for controlling method inlining, including the following:

m maxInliningCodeLength sets a limit on the bytecode size of methods to inline.
This value is used as a threshold that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined at deeper depths. In addition, if
the inlined method is less than value/2, the dynamic compiler allows unquick
opcodes in the inlined method.

m minInliningCodeLength sets the floor value for maxInliningCodeLength
when its size is proportionally decreased at greater inlining depths..

m maxInliningDepth limits the number of levels that methods can be inlined.

For example, the following command-line specifies a larger maximum method size.

% cvm -Xjit:inline=all,maxInliningCodeLength=80 MyTest

Managing the Code Cache

On some systems, the benefits of compiled methods must be balanced against the
limited memory available for the code cache. cvm offers several command-line
options for managing code cache behavior. The most important is the size of the
code cache, which is specified with the codeCachesize option.

For example, the following command-line specifies a code cache that is half the
default size.

% cvm -Xjit:codeCacheSize=256k MyTest

Chapter 4 Running Applications 4-17

A smaller code cache causes the dynamic compiler to decompile methods more
frequently. Therefore, you might also want to use a higher compilation threshold in
combination with a lower code cache size.

The build option CVM_TRACE_JIT=true allows the dynamic compiler to generate a
status report for when methods are compiled and decompiled. The command-line
option -Xjit:trace=status enables this reporting, which can be useful for tuning
the codeCacheSize option.

4-18 CDC Runtime Guide ¢ November 2005

CHAPTER 5

Application Management

CDC AMS includes two sample AMS implementations based on Personal Profile
and Personal Basis Profile. These are collections of AMS services that are controlled
by a user interface mechanism called a presentation mode. This chapter describes how
to use these sample AMS implementations to demonstrate different aspects of
application management.

Launching CDC AMS
Exploring CDC AMS
Launching Applications
Switching Applications
Terminating Applications
Installing Applications

5.1

Launching CDC AMS

Note — See Chapter 2, Installation for a description of how to install the CDC Java
runtime environment on a target device. Appendix G provides platform-specific
procedures for installing the CDC Java runtime environment on a Zaurus personal
mobile tool. Appendix H provides platform-specific procedures for installing the
CDC Java runtime environment on a Cobalt Qube.

The CDC AMS launch mechanism creates OS processes for the following;:
m an mtask server JVM instance
m a client JVM instance that encapsulates the CDC AMS

m multiple client JVM instances that encapsulate managed applications

5-1

5-2

Launching CDC AMS is a three-stage procedure: First, we launch an mtask server
JVM instance through the conventional JVM launch mechanism. This mtask server
JVM instance remains in memory waiting for mtask commands. This procedure is
shown in FIGURE 5-1 where an mtask server JVM instance is created in memory
through the conventional JVM launch mechanism based on loading and executing
the CDC Java runtime environment from the cvm ROM image.

FIGURE 5-1 Launch an mtask Server JVM Instance

cvim
ROM image| —®

Next, we use the cvmc driver utility to send an mtask command to the server JVM
instance to clone itself into a client JVM instance for running CDC AMS. FIGURE 5-2
shows how this cloning procedure works. At the end of this cloning procedure, there
are two JVM instances in memory, a server JVM instance which responds to mtask
commands and a client JVM instance that encapsulates the AMS implementation.

mtask server
JVM instance

FIGURE 5-2 cvmc Sends an mtask Command to Clone the Server JVM Instance

o
clone

Later, CDC AMS can create more mtask client JVM instances for encapsulating
individual applications, but that is managed interactively through the presentation
mode and the AMS implementation. FIGURE 5-3 illustrates how the AMS
implementation can send an mtask command to the server JVM instance to clone
itself. The AMS implementation could also send an mtask command to a client JVM
instance to kill its process and end the application’s lifecycle.

mtask client
JVM instance

mtask server
JVM instance

FIGURE 5-3 AppManager Sends an mtask Command to the Server JVM Instance

mtask server
JVM instance

AppManager
JVM instance

application

clone JVM instance

m Appendix G shows how to install CDC AMS on a Zaurus personal mobile tool.
This includes installing the CDC Java runtime environment and integration with
the Qtopia application environment. When this installation procedure is
complete, you can launch CDC AMS by clicking on the AwtPDA Appmanager
icon in the Java pane.

m Appendix H shows how to install CDC AMS on a Cobalt Qube.

CDC Runtime Guide ¢ November 2005

5.2

Exploring CDC AMS

CDC AMS has two presentation modes with different user experiences. In general,
the AWtPDA presentation mode is more featureful while the PBP presentation mode
is more primitive. The procedures below are based on the Zaurus personal mobile
tool running the AwtPDA presentation mode.

The Zaurus Qtopia application environment is organized like a conventional
desktop environment. There are a set of icons organized into tabbed windows with a
launch menu in the lower left-hand corner. For best results, the Zaurus Qtopia
application environment should be in portrait display mode.

FIGURE 54 Zaurus Qtopia Application Environment

&

S

B (1108 AM

Chapter 5 Application Management 5-3

5.2.1 AwtPDA Presentation Mode (Personal Profile only)

After launching the AwtPDA presentation mode, the system displays a progress
dialog followed by a login screen. The AwtPDA presentation mode includes a very
simple user account system that supports a single user account per device. If there is
currently no user account for the system, the user can create one and then login.
Otherwise, the AwtPDA presentation mode displays a normal login screen.

FIGURE 5-5 AwtPDA Presentation Mode Login Screen

CDC AMS for PP

New lser:

After logging in, the AWT presentation mode displays an application management
screen which is organized into three areas:

m A scrollable application strip of icons on the top of the screen. The scroll buttons
are on the right side of this strip. These scroll buttons control the display of a
subset of the available application and system icons. A navigation button may be
visible on the left side for navigating through a hierarchical icon folder.

m An application pane in the middle of the screen for displaying the GUI for an
application.

5-4 CDC Runtime Guide * November 2005

m The ticker area at the bottom for displaying an ongoing newsfeed.

FIGURE 5-6 AwtPDA Presentation Mode Application Management Screen

Weather: Partly Cloudy.. 75F
v TRETYE

The application strip organizes icons for applications and system utilities. A given

icon can directly represent an application or utility or it can represent a folder

containing other icons. To navigate between icons, use the scroll buttons on the right
side of the application strip. After entering an icon group (like System), you can go

up a level with the return button on the left side of the application strip.

The top-level icon groups are:

system - exit, taskbar, application store, preferences
graphics - graphics demo applications

text - text applications

phone - phone dialing application

tickers - ongoing newsfeed application

games - TicTacToe game

utils - simple utilities like a clock and a helloworld xlet

Chapter 5 Application Management

522

PBP Presentation Mode (Personal Basis Profile only)

Note — The PBP presentation mode is a very simple AMS implementation that is
designed around a simple button-based user-interface. It does not have much of the
functionality of the AwtPDA presentation mode like the Taskbar utility or the OTA
provisioning capability.

After launching, the PBP presentation mode displays the main application
management screen, which is organized into a group of buttons on the bottom of the
screen with six application buttons on the left and and four control buttons on the
right. Pressing an application icon launches the corresponding application. Pressing
a control button performs the corresponding system task.

FIGURE 5-7 PBP Presentation Mode Application Management Screen

Suspend
Radio Jonix Photo Viewer

Tet

Show Active

Program Guide ™ CD Player

Exit

There are six application buttons and four control buttons:

Suspend - pauses the operation of an application

Terminate - terminate an application

Show Active - display a modal dialog with a list of active applications
Exit - exit CDC AMS

5.3

Launching Applications

Launching an application is performed by clicking on the application’s icon. The
application will then display its GUI in the application pane until it is either
terminated or another application is launched. In this latter case, the application will
still be active and can be seen in the System>Taskbar (AwtPDA presentation
mode) or Show Active (PBP presentation mode) system utilities.

5-6 CDC Runtime Guide ¢ November 2005

5.3.1 AwtPDA Presentation Mode (Personal Profile only)

The phone xlet can be launched by first clicking on the right scroll button until the
Phone icon appears and then clicking on the Phone icon itself. Several applications
can be launched and run simultaneously but only one application is in the
foreground and controls the application pane.

FIGURE 5-8 Phone Xlet

Chapter 5 Application Management 5-7

5.3.2 PBP Presentation Mode (Personal Basis Profile only)

The CD Player xlet can be launched by first clicking on the CDC Player button.

FIGURE5-9 CD Player Xlet

I Wildwood Flower

Elapsed Time: 0:05

@ REWIND
@ PLAY
@ FORWARD

/o
S d
CD Player Jonix Radio =Pl
Terminate
_ : Show Active
™ Photo Viewer Program Guide Exit
i

5.4 Switching Applications

The purpose of CDC AMS is to allow multiple applications to run concurrently.
These applications share memory and CPU resources. However, only a single can be
in the foreground and control the GUI panel. If one application is in the foreground
and you want to interact with another, then you must switch the foreground
application.

5-8 CDC Runtime Guide ¢ November 2005

m In the AWtPDA presentation mode, an application can be selected through the
System>Taskbar utility by selecting the application from the list and clicking
the GoTo button. To select a different application, first launch the
System>Taskbar utility. Then click on the target application to choose it. Then
click on the Goto icon to select the application and bring it to the foreground.

FIGURE 5-10 Taskbar Utility

Ticker| My Ticker Tue, Mow 22, *H5 7:18 PM

‘:‘ & irclest Tue, Nov 22, @5 7:13 P

g Phone Tue, Mow 22, *H5 7:13 PM

d Hellollor 1d Tue, Moy 22, *05 7:15 PH

5 new ringtones now available in the Download Store
I I/ B TR R w

2D AR 1115 AM

m In the PBP presentation mode, there is a very primitive application selection
mechanism. Select the application by clicking on its button. This may cause an
unlaunched application to launch.

Chapter 5 Application Management 5-9

5.5

Terminating Applications

The mechanics of terminating an application are similar to application switching.
First, the application must be selected with the selection mechanism of the
presentation mode and then the application can be terminated, again with the
termination mechanism of the presentation mode.

m In the AwtPDA presentation mode, an application can be terminated through the
System>Taskbar utility by selecting the application from the list and clicking
the Kill button.

m In the PBP presentation mode, the application must be selected by clicking on its
application button and terminated by clicking on the Terminate button.

5.6

5-10

Installing Applications

An application can be installed by adding its classes, icons and resources to the
application repository. This can be done manually by copying files to the sub-
directories in SCVM/repository or automatically through the over-the-air
application provisioning mechanism in the AwtPDA presentation mode. Once an
application has been installed in the application repository, it will be visible in the
CDC AMS presentation mode.

CDC Runtime Guide ¢ November 2005

5.6.1

5.6.2

Manual Installation

The $CVM/repository directory has three sub-directories that contain application
files. These are described inTABLE 5-1.

TABLE5-1 Application Repository Sub-Directories

Directory Description

apps Contains an subdirectory for each application. Within that directory is a
jar file that contains an application’s classes and resources. For example,
repository/apps/Clock contains an xlet for a clock application.

icons Contains PNG-based icons for the application menu.

menu Contains two kinds of files:

* a .app file is an application descriptor file with information used by
the presentation manager to locate icons and other application
resources.

* a .menu file is a descriptor for sub-menus that describe application
folders in the presentation mode.

Both kinds of files use a simple key-value pair system to describe

application location, icon location, etc.

Manually installing an application is simply a matter of installing an application’s
files in these three sub-directories.

OTA Provisioning

Note — The OTA provisioning feature of CDC AMS requires integration of the J2EE
Client Provisioning Rl server into the CDC build system and cannot be enabled with
the binary implementation of CDC AMS.

Appendix I describes how to setup an OTA server based on using the J2EE Client
Provisioning RI server to stage dynamic content like xlets. The CDC AMS client can
interact with the OTA provisioning server to install applications into the application
repository at runtime.

Chapter 5 Application Management 5-11

5-12 CDC Runtime Guide ¢ November 2005

CHAPTER 6

Security

Security is a principal feature of Java technology and an important requirement for
mobile and enterprise applications. CDC includes the same security features that are
in the Java SE platform. These include built-in security features of the Java
programming language and virtual machine as well as a flexible security framework
for more advanced application scenarios.

This chapter provides an overview of the security framework as well as an outline of
the kinds of security procedures that might be performed at runtime. It is not meant
to replace the security documentation available for the Java SE platform, but rather
to supplement it and show how CDC and the JAAS, JCE and JSSE security optional
packages are related to their counterparts in the Java SE platform.

TABLE 6-1 describes the security documentation for the Java SE platform.

TABLE 6-1 Security Documentation for the Java SE Platform

URL Document Description
http://java.sun.com/ Inside Java 2 Describes the Java security framework,
docs/books/security Platform including security architecture,
Security deployment and customization.

Chapter 12 describes deployment and
runtime procedures.

http://java.sun.com/ Security and the The main web page for Java security
security Java Platform issues.

http://java.sun.com/ Java Tutorial, The Java Tutorial includes a security
docs/books/tutorial/ Security Trail section that describes many of the
securityl.2 security procedures for the Java

platform. Because these are identical
between CDC and the Java SE platform,
they are not duplicated in this chapter.

http://java.sun.com/ Security Java SE platform security
j2se/1.4.2/docs/guide/ documentation.
security

http://java.sun.com/��docs/books/security
http://java.sun.com/��docs/books/tutorial/��security1.2
http://java.sun.com/��security
http://java.sun.com/��j2se/1.4.2/docs/guide/��security

6.1

6.1.1

6.1.2

Overview

The security framework shared by the Java SE platform and CDC is based on three
key components:

m Built-in Security Features
m Security Policy Framework
m Security Provider Architecture

These provide a solid base for application and runtime security, a flexible
mechanism for defining deployment-based security needs and a plug-in mechanism
for supplying alternate security implementations.

Built-in Security Features

Java security is based on built-in language and VM security features that have been
part of Java technology from its beginning;:

Strongly typed language (runtime/compile-time/link-time)
Bytecode verification (classloading-time)

Safety checks (runtime)

Dynamic class loaders (classloading-time)

Security Policy Framework

A security policy controls how system resources are accessed by applications at
runtime. The Java security framework includes both a default security policy and a
mechanism for describing alternate security policies for application and
deployment-specific needs. The main benefits of this security policy framework are:

m Code-centric, not identity-centric architecture

m Security policies are described separately from both the applications they control
and the Java runtime environment.

m Fine-grained access control at the package, class or field level

m Flexible permission mechanism

Protection domains provide a layer of abstraction between permissions and code.

The main elements of a security policy are the following:

permission set, a list of permissions granted to the code
codeBase, the location from where the code is loaded
signedBy, the author of the code

principal, the identity of the entity running the code

6-2 CDC Runtime Guide ¢ November 2005

6.1.3

FIGURE 6-1 illustrates the Java security model by showing how application code can
be loaded from different sources: local and remote. The security manager controls
access to system resources by comparing properties of the application code with the
current security policy. The default security policy allows full access to local
application code and limited access to remote application code. But other security
policies are possible. For example, application code from a trusted yet remote source
may be given greater access than untrusted code from a local source.

FIGURE 6-1 Java Security Policy Model

local remote
application application
code code
Security Manager - [security
policy
full limited
access access

system resources

Security Provider Architecture

Beginning with version 1.2, the Java SE platform added some security optional
packages that allow Java technology to adapt to more specific requirements of
applications and deployments. These security optional packages include a security
provider architecture that is interoperable because it is based on publicly available
security standards, and extensible because alternate security provider implementations
can be supplied without requiring modifications to application code.

For example, the JAAS, JCE and JSSE security optional packages include several
service provider interfaces (SPIs) that describe the requirements of a security provider
implementation. TABLE 3-3 describes the default Sun implementations for these
security components.

Chapter 6 Security 6-3

6.2

6.2.1

6.2.2

Security Procedures

This section outlines the security procedures surrounding the Java security
framework described in the previous section. Because these procedures are identical
to the procedures used for the Java SE platform, this section just describes the
procedure and indicates where to find the appropriate Java SE platform
documentation.

Using Alternate Security Providers

From an administrator’s perspective, the first step is to choose whether to install and
use any alternate security providers. In most cases, the Sun default security
providers described in TABLE 3-3 are sufficient.

For a description of how to install alternate security providers, see Inside Java 2
Platform Security, Second Edition. Section 12.5, Installing Provider Packages, describes
how to install alternate security providers.

Public Key Management

The JAAS optional package includes an extensible authentication framework that
can use different forms of authentication. The default LoginModule is the
KeyStoreLoginModule, which uses a protected database (Sun’s JKS keystore file)
to store public key data. Other forms of authentication are possible like smartcard or
Kerberos.

The main tool for managing keystore files is keytool(1), which is included in the
Java SE platform toolset. keytool can be used for

m importing a key

m listing available keys

m replacing a key

m deleting a key

The default keystore file is in 1ib/security/cacerts, described in TABLE 3-3.

For a description of how to use keytool to add and modify keystore entries, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The
security trail in the Java Tutorial also covers how to use keytool.

6-4 CDC Runtime Guide ¢ November 2005

6.2.3

6.2.4

Security Policy Management

Security policies are stored in security policy files. policytool(l) is a convenient
GUlI-based tool for managing security policies. With it, a system administrator can

m identify a keystore
m specify permissions
m specify a codebase

The location of the default security policy file is 1ib/security.policy, described
in TABLE 3-3. Alternate locations can be defined with the
-Djava.security.policy command-line option.

For a description of how to use the policytool to manage security policies, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The
security trail in the Java Tutorial also covers how to use keytool.

Seed Generation for Random Number Generation

The CDC Java runtime environment uses a native platform-provided source as an
entropy gathering device for seed generation indicated by the

securerandomn. source system property. The Linux default for this system
property is file: /dev/random.

On some Linux systems, /dev/random can block if it hasn’t generated sufficient
entropy before a random seed is needed and this can cause applications using
java.security.SecureRandom to hang while waiting for the entropy pool to fill.
To avoid this hang problem, the CDC Java runtime environment has a fallback
mechanism to read from the /dev/urandom device when it determines that there
isn’t enough entropy for /dev/random to work promptly.

Note that /dev/urandom is not generally considered strong enough to support
applications like keypair generation. If the strongest possible seed generation is
required, this fallback mechanism can be disabled by setting the
microedition.securerandom.nofallback property to true. Doing so may run
the risk of application hangs on certain devices where the entropy pool is subject to
early exhaustion.

Chapter 6 Security 6-5

6-6 CDC Runtime Guide ¢ November 2005

CHAPTER 7

Localization

The CDC Java runtime environment can be localized to support different languages
and cultures. The following sections provide CDC-specific information for
localization procedures:

m Setting Locale System Properties
m Timezone Information Files
m Font Management (Personal Basis Profile and Personal Profile only)

7.1

Setting Locale System Properties

In the CDC Java runtime environment, the locale system properties described in
TABLE 7-1 are set before cvm can parse its command-line arguments. Thus, it is not
possible to change the locale by specifying these system properties on the cvm
command-line with the -Dproperty=value option.

TABLE 7-1 Locale System Properties

System Property Description

user.language Two-letter language name code based on ISO 639.

user.region Two-letter region name code based on ISO 3166.

file.encoding Default character-encoding name based on the IANA Charset MIB.

On Linux, these properties are extracted from the LANG locale environment variable
using the format language_region.encoding. The user . language property is obtained
from the language code. The user.region property is obtained from the region

code. The file.encoding property is obtained from the encoding suffix. For
example, to change the locale behavior of cvm on Linux, simply change the LANG
locale environment variable to set the locale system properties.

% setenv LANG en_US.IS08859_1

o

Therefore,

user.language = en
user.region = US
file.encoding = IS08859_1

7.2

Timezone Information Files

The 1ib/zi directory contains a small set of example timezone information files.
Additional files can be generated and placed in this directory. See the javadoc(1)
comments for the sun.util.calendar.ZoneInfoFile class for information
about generating alternate timezone information files.

7.3

Font Management (Personal Basis Profile
and Personal Profile only)

In the CDC Java runtime environment, font management is a subset of the
functionality provided by Java SE technology and is described below in TABLE 7-2.

TABLE7-2 Font Management Comparison

Feature Java SE CDC

Default font mapping between Java logical fonts and platform logical yes yes
fonts is specified at build-time.

Logical font mapping in 1ib/font.properties file. yes no
Bundled Lucida fonts in 1ib/fonts. yes no
Application-specific fonts in an application’s jar file. yes no

The six logical fonts available to a Java application are described in TABLE 7-3.

7-2 CDC Runtime Guide ¢ November 2005

In practice, the only way to specify alternate fonts is to remap the platform logical
fonts. Appendix F contains a procedure for installing TrueType fonts and mapping
them to logical platform fonts that are used by the CDC Java runtime environment

for the Java logical fonts described in TABLE 7-3.

TABLE7-3 Logical Font Names
Java Logical Font Qt Logical Font Example Description
default Sans Serif Courier The default font is used when no
other font is specified or if an attempt
to match a font fails.
dialog Sans Serif Lucida Sans A font for displaying fixed
information within a dialog box or
form.
dialoginput Courier Lucida Sans A font that is used for text fields
Typewriter within dialog boxes and forms that
represent user input.
monospaced Courier Lucida Sans A non-proportional font where each
Typewriter character has the same width. This
simplifies string width calculations
for dialog boxes and forms.
sanserif Sans Serif Helvetica A streamlined font that is simpler to
render on low-resolution devices like
computer monitors and faxes.
serif Serif Times Roman A font with short lines at the end of

the main strokes of a character to
ease visual character recognition.

Chapter 7 Localization

7-3

7-4 CDC Runtime Guide ¢ November 2005

CHAPTER 8

Developer Tools

One of the principal goals of CDC is to leverage conventional Java SE developer
tools for use with CDC applications and devices. This chapter shows how to
integrate the CDC Java runtime environment with Java SE developer tools like
javac, jdb and hprof.

8.1

8.1.1

Compiling With javac

Compiling Java source code is a separate process from execution. All that is needed
is application source code, a Java compiler like javac and an appropriate Java class
library to compile against. In this way, a developer can compile a Java application on
a desktop system and later download it onto a target device for testing or
deployment.

This chapter first reviews the API relationship between the CDC and Java SE
platforms. Then it shows how javac compiles a Java class for the Java SE plaform
and how this process changes for CDC. Finally, it shows how to compile an example
CDC program.

CDC and Java SE

It is possible to take unmodified application software that was compiled for the Java
SE platform and run it on a CDC Java runtime environment because the CDC Java

virtual machine can load and execute Java classes that are compliant with the class

specification for the Java SE platform.

8-1

8-2

FIGURE 8-1 describes the API relationship between the CDC and Java SE platforms.
The two platforms have much in common, including most of the core Java class
library. Differences between the CDC and Java SE APIs can cause discrepancies at
runtime. These differences are based on the need to remove or change certain classes
for memory, functionality or performance reasons.

Java SE

= CDC
/

FIGURE 8-1 CDC and Java SE API Compeatibility

There are four major differences between the CDC and Java SE platforms:

m Some Java SE packages, classes and methods have been removed because they are
not appropriate for smaller devices. Compiling application source code against
the Java SE class library may work, but the compiled classes may fail to run on a
CDC Java runtime environment because the classes are not available at runtime.

m Some packages like java.sqgl are present in the Java SE platform but not in
CDC, though they may be added as an optional package. In this case, compiling
application source code against the Java SE class library may work but running
the compiled classes against the CDC Java runtime environment may not.

m Most Java SE deprecated methods have been removed from CDC. For example,
java.awt.List.clear () is deprecated in JDK version 1.1 and replaced with
java.awt.List.removeAll (). In this case, compiling a Java SE application
that uses this deprecated method against the CDC Java class library will cause
javac to fail to compile because it cannot find the deprecated method.

m CDC includes CLDC compatibility classes that are not included in the Java SE
class library. In this case, compiling CDC source code against the Java SE class
library might cause javac to fail to compile because these compatibility classes
are not present in the Java SE class library.

Therefore, in practice, it is best to recompile Java source code for a Java SE
application against a CDC Java class library. Finally, the CDC Java class library is
modular and can change based on the needs of a product design. Most of this
modularity is based on profiles and optional packages. See Section 1.6, “Java ME API
Choices” on page 1-6 for an explanation of how CDC APIs can vary.

CDC Runtime Guide ¢ November 2005

8.1.2

8.1.3

Compiling Java Source Code for the Java SE
Platform

FIGURE 8-2 shows how javac compiles Java source code for the Java SE platform.
When javac processes Java source code, it uses a Java class library to discover type
information about the classes used in the source code. By default, this is the Java SE
class library located in jre/lib/rt.jar.

= —
— A
Java source file : compiled
* Java class file
Java SE
class
library
JAVA SE SDK

FIGURE 8-2 Compiling Java Source Code for the Java SE Platform

For example, when javac encounters a Java type reference like
java.util.BitSet, it gets the type information from the Java SE class library at
compile time. Later, at runtime, when the Java virtual machine creates an object of
type java.util.BitsSet, it also gets the type information from the Java SE class
library.

Compiling Java Source Code for CDC

The same javac compiler used for developing Java SE applications can be used to
compile Java source code for the CDC Java runtime system. The key is to use a
different target Java class library to compile against. FIGURE 8-3 shows how the
javac compiler uses the -bootclasspath command-line option to specify an
alternate target Java class library as a cross-compilation target.

Chapter 8 Developer Tools 8-3

8.1.4

8.1.5

T

\

Java source file N\

Gavee) +—>
7

.-*"| JAVA SE SDK compiled
’ Java class file

CcbC
class library

FIGURE 8-3 Compiling Java Source Code for CDC

The mechanics of using javac to compile Java source code for CDC differ slightly
from those used for the Java SE platform.

Determining the Target Class Library

Section 1.5, “Java ME Technology Standards” on page 1-4, Section 1.6, “Java ME API
Choices” on page 1-6, and FIGURE 1-2 show how the API functionality of a specific
CDC product implementation can vary based on choices made at design time.
Therefore, it is important to use a target development version of the CDC Java class
library that represents the APIs available in the configuration, profile and optional
packages on the target device.

Note — See the companion document CDC Build System Guide for information on
how to build a target development version of the CDC Java class library which
represents the combination of configuration, profile and optional packages for the
target device.

Useful javac Command-Line Options

The J2SDK Tools and Utilities Web page
(http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html) describes
the javac command-line options that control the cross-compilation process. These
are described in the following subsections.

8-4 CDC Runtime Guide ¢ November 2005

http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html

8.1.5.1

8.1.5.2

8.1.5.3

8.1.5.4

8.1.5.5

8.1.5.6

-classpath classpath

Sets the user class search path, which is useful for compiling against third-party
class libraries.

-bootclasspath classpath

Sets the system class search path. With javac, this option overrides the Java SE class
library and specifies an alternate target Java class library for cross-compilation like
the target development version of the CDC Java class library.

-extdirs classpath

Sets the extensions class search path for optional packages. The CDC default location
is the 1ib directory, except for some security optional packages which are found in
the 1ib/ext directory.

—-source release

Specifies the version of Java source code accepted. In practice, this controls the use
of recently added Java programming language features. For example, J2SE 1.4
includes support for the assert keyword and J2SE 1.5 includes support for generics,
which are not yet supported. The release argument can be set to 1.2, 1.3 or 1.4 for
CDC application development.

-target version

This option directs javac to generate Java class files for a specific version of the Java
virtual machine. It is preferable to set the version value to 1.4, though values of 1.2 or
1.3 can also be used for CDC development.

-deprecation

Show a description of each use or override of a deprecated member or class. Without
-deprecation, javac shows the names of source files that use or override
deprecated members or classes.

Chapter 8 Developer Tools 8-5

8.1.6

Compiling an Example CDC Program

The example below demonstrates how to compile an application using the
command-line option -bootclasspath argument to specify an alternate target Java
class library:

% javac -target 1.4 -source 1.4 -bootclasspath \
/home/test-cdc/btclasses.zip MyApp.java

8.2

Debugging With jdb

A debugger like jdb can explore the relationships between the source code structure
of an application, the behavior of its compiled code and the capabilities of the target
Java runtime environment.

The CDC Java runtime environment supports debugging based on the Java Virtual
Machine Debugger Interface (JVMDI) specification. This chapter describes the
mechanics of attaching a remote debugger to a Java application running on a CDC
Java runtime environment. The application can run on a target system while the
debugger runs on a host development system connected over a network.

Note — Chapter 6 of the CDC Build System Guide describes how to build a version of
the CDC Java runtime environment that supports Java debugging. Note that cvm
must be compiled with both CVM_JVMDI=true and CVM_JIT=false.

8-6 CDC Runtime Guide ¢ November 2005

8.2.1

8.2.2

Debug Command-Line Options

The debug version of cvm includes some extra command-line options described in

TABLE 8-1 that control debugging features. See

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/conninv.html for a

complete list of -Xrunjdwp suboptions.

TABLE 8-1 cvm Debugging Options

Option Description
-Xdebug Run the VM in debugger mode.
-Xrunjdwp [option],option2...] Load the JDWP agent library (1ibjdwp.so). This

library resides in the target VM and uses JVMDI and

JNI to interact with it. It uses a transport and the
JDWP protocol to communicate with a separate
debugger application.

transport=dt_socket Connect to the JVMDI debugger’s front-end using a

socket transport.

server=y Start the VM in server mode and wait for the
connection with a JVMDI debugger client.

address=port Set the TCP port ID for the JDWP connection.

Running the Debug Version of cvm

Here’s an example of how to launch a debug version of cvm on a remote target

system for use with a host-based Java debugger. For this example, we assume the

following;:

m The target application is in /net/MyApp.

m The application is named MyApplication.

m The CDC Java runtime environment is correctly installed.

m A debug-capable version of cvm is in the shell’s search path.

. Remote login to the target system.

Q

% ssh cdc-dev

. Change the current directory to the location of the target application.

Q

% cd /net/MyApp

3. Launch cvm with the debug options.

Chapter 8 Developer Tools

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/conninv.html

% bin/cvm -Xrunjdwp:transport=dt_socket, server=y,address=8000 \
-Xdebug -Dsun.boot.library.path=jdwp/lib -cp democlasses.jar \
personal .DemoFrame

The sun.boot.library.path system property allows cvm to append to the
shared library search path from the command line. This launches cvm in a server
state where it waits for a connection with jdb, which is described in the next section.

8.2.3 Running jdb on the Host Development System

8-8

jdb is a JVMDI-based debugger that is included with the Java SE SDK. The example
below shows how to attach jdb to an application running on a remote Java runtime
environment.

This example assumes that J25DK is properly installed and that jdb is in the shell’s
search path. Also, the source code for MyApplication should be in /net/MyApp so
that jdb can access it.

1. Change the current directory to the location of the target application.
% cd /net/MyApp

2. Launch jdb with the command-line options that identify the application on the
target system.
% jdb -attach cdc-dev:8000 -sourcepath src/personal/demo

jdb displays a command prompt.

3. Set a breakpoint.

jdb> stop in MyApplication.main

4. Launch the application and let it run to the breakpoint.
jdb> run
At this point, the application should be stopped at the first line of the top-level
main () method.
5. Step through the application.
jdb> step
See the jdb reference documentation

(http://java.sun.com/products/jpda/doc) for a list of options and
commands or type help at the jdb command-line prompt.

CDC Runtime Guide ¢ November 2005

http://java.sun.com/products/jpda/doc

8.3

8.3.1

Profiling with hprof

Profiling is the measurement of runtime data for a specific application on a target
runtime system. Understanding the runtime behavior of an application allows the
developer to identify performance-sensitive components when tuning an
application’s implementation or selecting runtime features.

The CDC HotSpot Implementation supports profiling based on the experimental
Java Virtual Machine Profiler Interface (JVMPI) specification. Specifically, the JVMPI-
based hprof profiling agent provides reports that include CPU usage, heap
allocation statistics and monitor contention profiles.

Chapter 7 of the CDC Build System Guide describes how to build a version of the
CDC Java runtime environment that supports profiling. This chapter describes the
mechanics of using hprof to generate a simple profiling report.

Note — The JVMPI functionality in the CDC Java runtime environment is a subset of
what is supported in the Java SE SDK. In particular, remote profiling is not
supported.

Profiling Command-Line Options

The profiling version of cvm includes the -Xrunhprof command-line option
described in TABLE 8-2 that controls profiling features. See
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html for
more information.

TABLE8-2 hprof Command-Line Options

Option Default Description
-Xrunhprof [:help] | [option=value, ..] Run the VM with hprof
enabled
heap=dump|sites|all all Heap profiling
cpu=samples|times|old off CPU usage
monitor=y|n n Monitor contention
format=a|b a ASCII or binary output
file=name java.hpr Write data to file name and
of append . txt for ASCII
format

Chapter 8 Developer Tools 8-9

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

8.3.2

8-10

TABLE8-2 hprof Command-Line Options

Option Default Description
net=host : port Send data over a socket
depth=size 4 Stack trace depth
cutof f=value 0.0001 Output cutoff point
lineno=y|n y Display line-numbers in

traces

thread=y|n n Thread in trace
doe=y|n v Dump on exit

Running cvm With hprof

Here’s an example of how to use hprof to profile an application.

Q

% cvm -Xrunhprof:heap=all, cpu=samples, file=profile.txt MyApp

When the application terminates, the output file profile. txt contains the profile

report.

CDC Runtime Guide ¢ November 2005

APPENDIX A

cvm Reference

A.l

Synopsis

cvm [-options] class [options ..]
cvm [-options] -jar jarfile [options ..]

A2

Description

cvm launches a Java application. It does this by starting a Java virtual machine,
loading its system classes, loading a specified application class, and then invoking
that class’s main method, which must have the following signature:

public static void main(String args|[])

The first non-option argument to cvm is the name of the top-level application class
with a fully-qualified class name that contains the main method. The Java virtual
machine searches for the main application class, and other classes used, in three
locations: the system class path, the extension class path and the user class path. See
Section 4.3, “Class Search Path Basics” on page 4-4 for more information about Java
class paths. Non-option arguments after the main application class name are passed
to the main method.

If the -jar jarfile command-line option is used, cvm launches the application in the
jar file. The manifest of the jar file must contain a line of the form
MainClass:classname. The classname string identifies the class having the main
method which serves as the application's starting point.

Section 4.1, “Launching a Java Application” on page 4-1 has more informatin about
launching Java applications with cvm.

A-1

A3 Options

cvm borrows some of its command-line options from java, the Java SE application
launcher. Other options are unique to cvm and may require certain build options to
enable the necessary runtime features.

Note — In most cases, the command-line options described below have identical
behavior in standalone cvm mode and mtask mode. For command-line options with
different behaviors in the two modes, the affected options are identified and the
alternate behavior is explained below the standard behavior. In most of these cases,
the client JVM instance inherits its behavior from the server JVM instance and the
command-line options, if they have any effect at all, override the inherited behavior.

For command-line options that take a size parameter, the default units for size are
bytes. Append the letter k or K to indicate kilobytes, or m or M to indicate megabytes.

TABLE A-1 describes the command-line options that are shared with the Java SE
application launcher.

TABLE A-1 Java SE Command-Line Options

Option Description

-help Display usage information and exit.
mtask: Only the client JVM instance exits.

-showversion Display product version information and continue.

-version Display product version information and exit.
mtask: Only the client JVM instance exits.

-Dproperty=value Set a system property value. See Appendix D for a description
of security properties for CDC.
mtask: Inherited. This command-line option overrides the
behavior of the master JVM instance.

-classpath classpath Specify an alternate user class path.! The default user class path
-cp classpath is the current directory.
mtask: The inherited user class path for the master JVM
instance is treated as read-only. classpath is appended to the
default path. The /a and /p strings are ignored.

-Xbootclasspathl[/a | /p]l:classpath Specify the extension class path.! /a appends classpath list to the
default path. /p prepends classpath list to the default path.
mtask: The extension class path inherited from the master JVM
instance is treated as read-only. Therefore, classpath is appended
to the default path whether or not the /a syntax is used.

A-2 CDC Runtime Guide * November 2005

TABLE A-1 Java SE Command-Line Options (Continued)

Option Description

-Xmssize Set the minimum size of the memory allocation pool (heap).
This value must be greater than 1000 bytes.

The default value is 2M.

NOTE: This option is ignored by the generational garbage
collector, though it could be used by other garbage collectors.
mtask: Inherited. The heap size is fixed at launch time for the
server JVM instance. So this command-line option is ignored by
client JVM instances.

-Xmxsize Set the maximum size of the memory allocation pool (heap).
The default value is 5M.

mtask: Inherited. The heap size is fixed at launch time for the
server JVM instance. So this command-line option is ignored by
client JVM instances.

-Xsssize Each Java thread has two stacks: one for Java code and one for
native code. The maximum native stack size of the main thread is
determined by the native application launcher (e.g. shell, OS,
etc.). For subsequent threads, the maximum native stack size is
set by the -Xss option, although this can be ignored by the
underlying OS. See TABLE A-4 for a description of the
command-line options for controlling the size of the Java stack.

The default value is 0 which indicates that the value is actually
set by the native environment.

Appendix A cvm Reference A-3

TABLE A-1

Java SE Command-Line Options (Continued)

Option

Description

-enableassertions [:<package>.. |
:<class>]

—ea

[:<package>.. | :<class>]

Enable Java assertions. These are disabled by default. With no
arguments, this switch enables assertions for all user classes.
With one argument ending in ..., the switch enables assertions in
the specified package and any subpackages. If the argument is
simply .., the switch enables assertions in the unnamed package
in the current working directory. With one argument not ending
in .., the switch enables assertions in the specified class.

If a single command line contains multiple instances of these
switches, they are processed in order before loading any classes.
So, for example, to run a program with assertions enabled only
in the package com.wombat . fruitbat (and any subpackages),
the following command could be used:

% cvm -ea:com.wombat.fruitbat .. <MainClass>

The -enableassertions and -ea switches apply to all class
loaders and to system classes (which do not have a class loader).
There is one exception to this rule: in their no-argument form,
the switches do not apply to system. This makes it easy to turn
on assertions in all classes except for system classes. The
-enablesystemassertions option enables asserts in all
system classes (that is, it sets the default assertion status for
system classes to true). To run a program with assertions
enabled in the package com.wombat . fruitbat but disabled in
class com.wombat . fruitbat.Brickbat, the following
command could be used:

% cvm -ea:com.wombat.fruitbat.. \
-da:com.wombat . fruitbat.Brickbat <MainClass>

mtask: For client JVM instances, each class has an assertion
state that is inherited from the master JVM instance.
Subsequently, within the client JVM instance, each new class
gets its own assertion state.

A4

CDC Runtime Guide ¢ November 2005

TABLE A-1 Java SE Command-Line Options (Continued)

Option Description

-disableassertions [:<package>.. | Disable Java assertions. This is the default behavior.

:<class>] With no arguments, -disableassertions or -da disables
-da [:<package>.. | :<class>] assertions. With one argument ending in .., the option disables

assertions in the specified package and any subpackages. If the
argument is simply .., the switch disables assertions in the
unnamed package in the current working directory. With one
argument not ending in ..., the switch disables assertions in the
specified class.

The -disableassertions and -da switches apply to all class
loaders and to system classes that do not have a class loader.
There is one exception to this rule: in their no-argument form,
the switches do not apply to system. This makes it easy to turn
on assertions in all classes except for system classes. A separate
switch is provided to enable assertions in all system classes. See
the description of the ~disablesystemassertions option.

-enablesystemassertions Enable assertions in all system classes (sets the default assertion
-esa status for system classes to true).

mtask: For client JVM instances, each class has an assertion
state that is inherited from the master JVM instance.
Subsequently, within the client JVM instance, each new class
gets its own assertion state.

-disablesystemassertions Disable assertions in all system classes.
-dsa

1 See Section 4.3, “Class Search Path Basics” on page 4-4 and
http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html for more information about class search paths.

TABLE A-2 describes the CDC-specific command-line options.

TABLE A-2 CDC-Specific Command-Line Options

Option Description

-fullversion Display build version information and exit.
mtask: Only the client JVM instance exits.

-XbuildOptions Display build options and exit.
mtask: Only the client JVM instance exits.

-XshowBuildOptions Display build options and continue.

-XappName=value Specify the application name for QPE. This is used to identify
the cvm process for native application management and control.

Appendix A cvm Reference A-5

http://java.sun.com/j2se/1.4.2/docs/tooldocs/tools.html

TABLE A-2

CDC-Specific Command-Line Options (Continued)

Option

Description

-Xverify:[all | remote none]

-XfullShutdown

-Xgc : suboption

-Xopt : suboption

-Xserver :suboption

-Xtrace:flags

Perform class verification.

® all verify all classes.

* remote verify all but preloaded and system classes.
* none don’t perform class verification.

The default value is remote. If -Xverify is used without any
arguments, the value is all.

mtask: Inherited. This command-line option is only affects
classes loaded in the client JVM instance.

Make sure all resources are freed and the VM destroyed upon
exit. This is the default for non-process-model operating
systems, but is not needed for process-model operating systems,
such as Linux.

mtask: This command-line option is ignored by both server and
client JVM instances.

Specify GC-specific options. The default GC is the generational
garbage collector described in Chapter 4. See TABLE A-3 for a
description of the suboptions.

Other garbage collectors are unsupported.

Control the Java stack. See TABLE A-4 for a description of the
suboptions. The different suboptions can be appended into a
single argument with name/value pair separated by commas.

Launch a server JVM instance (mtask server) to act as an
instance factory for generating client JVM instances (mtask
clients) through process cloning. Each mtask client inherits the
mtask server’s warmed up state. This feature supports the CDC
AMS process-based application management infrastructure. See
TABLE A-11 for a description of the suboptions.

mtask: This command-line option is ignored by mtask clients.

Turn on trace flags. TABLE A-5 shows the hexadecimal values to
turn on each trace flag. To turn on multiple flags, bitwise-OR the
values of all the flags you wish to turn on, and use that result as
the -Xtrace value. Requires the CVM_TRACE=true build
option. (Unsupported.)

mtask: This command-line option overrides the behavior
inherited from the master JVM instance.

A-6

CDC Runtime Guide ¢ November 2005

TABLE A-3 describes the suboptions for the -Xgc command-line option.

TABLE A-3 -Xgc : suboption

Option

Description

maxStackMapsMemorySize=size

stat

youngGen=size

Set the size of the stack map cache. The default value is
OXFFFFFFFF.

Collect and display garbage collection statistics.

Set the size of the young object generation.
NOTE: this option is specific to the default generational collector.
The default value is 1M.

mtask: Inherited. The younGen size is fixed at launch time for
the server JVM instance. So this command-line option is ignored
by client JVM instances.

TABLE A-4 describes the suboptions for the -Xopt command-line option, which
controls the size of the Java stack. This option is useful for runtime development
purposes only and is unsupported.

TABLE A-4 -Xopt :suboption

Suboption

Description

stackMinSize=size

stackMaxSize=size

stackChunkSize=size

Set th initial size of the Java stack, from <32..65536>. The
default for JIT-based systems is 3K and the default for non-JIT
based systems is 1K.

Set the maximum size of the stack, from <1024..1048576>. The
default for 128K.

Set the amount the stack grows when it needs to expand
<32..65536>. The default for JIT-based systems is 2K and the
default for non-JIT based systems is 1X.

TABLE A-5 describes the flags used by the -Xtrace command-line option. This
option is useful for runtime development purposes only and is unsupported.

TABLEA-5 -Xtrace:flags (OI only, unsupported)

Value Description

0x00000001 Opcode execution.

0x00000002 Method execution.

0x00000004 Internal state of the interpreter loop on method calls and
returns.

0x00000008 Fast common-case path of Java synchronization.

Appendix A cvm Reference A-7

TABLE A5 -Xtrace:flags (OI only, unsupported) (Continued)

Value Description

0x00000010 Slow rare-case path of Java synchronization.

0x00000020 Mutex locking and unlocking operations.

0x00000040 Consistent state transitions. Garbage Collection (GC)-safety
state only.

0x00000080 GC start and stop notifications.

0x00000100 GC root scans.

0x00000200 GC heap object scans.

0x00000400 GC object allocation.

0x00000800 GC algorithm internals.

0x00001000 Transitions between GC-safe and GC-unsafe states.

0x00002000 Class static initializers.

0x00004000 Java exception handling.

0x00008000 Heap initialization and destruction, global state initialization,
and the safe exit feature.

0x00010000 Read and write barriers for GC.

0x00020000 Generation of GC maps for Java stacks.

0x00040000 Class loading.

0x00080000 Class lookup in VM-internal tables.

0x00100000 Type system operations.

0x00200000 Java code verifier operations.

0x00400000 Weak reference handling.

0x00800000 Class unloading.

0x01000000 Class linking.

TABLE A-6 describes the command-line options available with the CVM_JVvMDI build
option. See Chapter 8 for an example of how to use these command-line options.

TABLE A-6 JVMDI Options

Option

Description

-Xdebug

-Xrunjdwp: [optionl,option2...]

Enable VM-level debugging support.

Load the JDWP library with the specified options. See
TABLE 8-1.

A-8 CDC Runtime Guide * November 2005

TABLE A-7 describes the command-line options available with the CvM_JVMPI build
option. See Chapter 8 for an example of how to use these command-line options.

TABLE A-7 JVMPI Options

Option Description

-Xrunhprof: [help] | [option=value, ...] Enable hprof profiling support.

TABLE A-8 describes the command-line options available with the CVM_JIT=true
build option. See Chapter 4 for an example of how to use these command-line
options.

TABLE A-8 -Xjit:options (OI only)

Option Default Description

bcost=cost 4 Cost of a backwards branch, between
<0...32767>.

climit=cost 20000 The popularity threshold for a given method,

between <0...65535>. The VM compares a
per-method count based on bcost, icost and
mcost against this threshold to determine
when to compile a given method.

codeCachesize=value 512k Size of code cache where compiled methods are
stored, between <0...32M>.

mtask: Inherited. The cache size is fixed at
launch time for the server JVM instance. So this
command-line option is ignored by client JVM
instances.

compile=suboption policy When to compile methods. See TABLE A-10 for
descriptions of the suboptions for compile.
The default policy is based on the suboption
defaults listed in this table.

icost=cost 20 Cost of an interpreted-to-interpreted method
call, between <0...32767>.

inline=suboption all Perform method inlining when compiling. See
TABLE A-9 for descriptions of the suboptions
for inline.

lowerCodeCacheThreshold=percentage 90% Lower code cache threshold, between
<0%..100%>. The dynamic compiler
decompiles methods until the code cache
reaches this threshold.

maxCompiledMethodSize=value 65535 Maximum size of a compiled method, between
<0..64K>.

Appendix A cvm Reference A-9

TABLE A-8

-Xjit:options (OI only) (Continued)

Option

Default

Description

maxInliningCodeLength=value

maxInliningDepth=value

maxWorkingMemorySize=value

mcost=cost

minInliningCodeLength=value

policyTriggeredDecompilations=boolean

trace=suboption

upperCodeCacheThreshold=percentage

XregisterPhis=boolean

XcompilingCausesClassLoading=boolean

68

12

512k

50

16

true

95

true

false

Maximum size of an inlined method, between
<0...1000>. This value is used as a threshold
that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined
at deeper depths. In addition, if the inlined
method is less than value/2, the dynamic
compiler allows unquick opcodes in the inlined
method.

Maximum inlining depth of inlined
methods/frames, between <0...1000>.

Maximum working memory size for the
dynamic compiler, between <0. . . 64M>. See
Section 4.4.4, “Setting the Maximum Working
Memory for the Dynamic Compiler” on

page 4-13.

Cost for transitioning between a compiled
method and an interpreted method, and vice
versa. Between <0..32767>.

The floor value for maxInliningCodeLength
when its size is proportionally decreased at
greater inlining depths.

Policy triggered decompilations. If false, then
never decompile a method to make room for
more compilations. Methods remain compiled
until the class is unloaded, even if the code
cache is full.

Set dynamic compiler trace options. See
TABLE A-12.

Upper code cache threshold, between
<0%...100%>. The dynamic compiler starts
decompiling methods during a GC when the
code cache passes this threshold unless
policyTriggeredDecompilations=false.

Unsupported.
Unsupported.

A-10 CDC Runtime Guide * November 2005

TABLE A-9 describes the command-line options for selecting when to inline methods.

TABLE A-9 -Xjit:inline=suboption (OI only)

Suboption Description

all Enable all the options listed below to perform inlining whenever possible. The
default.

none Do not perform inlining.

virtual Perform inlining on virtual methods.

nonvirtual Perform inlining on nonvirtual methods.

vhints Virtual hints. Use hints gathered while interpreting a method to choose a target

method to get inlined when an invokevirtual opcode is compiled.

ihints Interface hints. Use hints gathered while interpreting a method to choose a target
method for inlining when an invokeinterface opcode is compiled.

Xvsync Inline virtual synchronized methods. Off by default. Unsupported.

Xnvsync Inline non-virtual synchronized methods. Off by default. Unsupported.

Xdopriv Inline privileged methods specified by
java.security.AccessController.doPrivileged (). On by default.
Unsupported.

TABLE A-10 describes the top-level command-line options that control dynamic
compiler policies.

TABLE A-10 -Xjit:compile=suboption (OI only)

Suboption Description

policy Compile according to existing compilation policy parameters such as icost and
climit. The default.

all Compile all methods aggressively. Note: this hurts performance and should be
used only for testing the dynamic compiler.

none Do not compile any methods.

TABLE A-11 describes the suboptions for the server JVM instance.

TABLE A-11 -Xserver :suboption (CDC AMS only)

Suboption Description

port The TCP port that the server JVM instance is bound to.
initClasses The class list file for preinitialization.
precompileMethods The method list file for precompilation.

Appendix A cvm Reference A-11

TABLE A-12 describes the command-line options for controlling dynamic compiler
tracing. These options require a build with CVM_TRACE_JIT=true. These options
are experimental and unsupported.

TABLE A-12 -Xjit:trace=option (OI only)

Suboption Description

bctoir Print information regarding the conversion of Java bytecodes to the JIT internal
representation (IR), including a complete dump of all IR nodes.

codegen Print the generated code in a format similar to the assembler language of the
target processor. If the build option CVM_JIT_DEBUG=true, then this also prints
the JavaCodeSelect rule used to generate the code interspersed with the
generated code.

inlining Print method inlining information during the bytecode to IR pass, such as which
methods were inlined and which ones were not.

iropt Print information about optimizations done in the bytecode to IR pass.

osr Print a message when compilation of a method is triggered by on stack
replacement (OSR).

stats Print statistics gathered during compilation.

status Print a line of status each time a method is compiled. The output includes the
name of the method and whether or not it was compiled successfully.

A-12 CDC Runtime Guide * November 2005

APPENDIX B

mtask Command Language
Reference

This appendix describes the mtask command language in some detail. Both the
cvme driver utility and the CDC AMS implementation use the same mtask
command language to launch, initialize and control JVM instances that encapsulate
both the CDC AMS implementation and the applications it manages.

B-1

B.1 Launch Command Language

TABLE B-1 Launch Commands

Command

Description

BROADCAST miessage

CHILDREN_EXITED

JAPP

JDETACH vmArgs className args

JEXIT

JSYNC vmArgs className args

JXLET
KILL taskID
KILLALL
LIST

MESSAGE taskID message

S vmArgs className args

SETENV key=value

TESTING_MODE filePrefix

Send the text string message to all mtask-based JVM instances.

Test whether any launched JVM instances have exited since the last
time this command was executed.

main ()-based application-model specific launcher.

Asynchronously launch a new client JVM instance that is detached
from the server JVM instance (so that LIST, BROADCAST, KILLALL, etc.
do not see this application). This is typically used during bootstrapping
to launch the client JVM instance that encapsulates the appmanager
and presentation mode implementations.

Terminate the mtask server JVM instance.

Launch a client JVM instance and block the mtask server JVM instance
until the client JVM instance task exits.

Xlet application-model specific launcher.
Terminate a task with the given taskID.
Terminate all launched tasks.

List currently running applications.

Send the text string message to the mtask-based JVM instance identified
by the process taskID.

Execute className with args within the mtask server JVM instance. This
is done in-place without using fork () and execute (). This command
is typically used for warming up mtask server JVM instnace.

Set the value of an environment variable in the mtask server JVM
instance for subsequent use by launched applications.

For all subsequent launched apps, dump filePrefix /stdout . taskld,
filePrefix/stderr . taskld and filePrefix/exitcode. taskld to correspond
to the standard output, standard error and exit code for the task taskld.
filePrefix is the path of the directory containing these logfiles.

B-2 CDC Runtime Guide * November 2005

B.2

Warming Up the mtask Server

mtask provides two ahead-of-time mechanisms for warming up the server JVM
instance. Performing these warmup tasks once for the server JVM instance allows
subsequent client JVM instances to benefit from these warmup mechansims with no
runtime cost by accessing the shared memory pages of the server JVM instance.

The two warmup mechanisms are pre-initializing classes and pre-compiling
methods. The CDC Java runtime environment includes two files for configuring
warmup in the repository/profiles directory. Each file contains a sample list of
classes or methods for warmup.

m The class preinitialization list is located in
repository/profiles/classesList. txt.

m The class initialization list is located in
repository/profiles/methodsList.txt.

The syntax for these warmup list files is very simple. Each line represents a single
class or method. Lines that begin with a hash mark (#) are commented out and
ignored.

Appendix B mtask Command Language Reference B-3

B-4 CDC Runtime Guide ¢ November 2005

APPENDIX C

cvme Reference

C.1 Synopsis

cvme [.. cumc options ...] [.. com options ..]

C.2 Description

cvmc is a driver utility for managing mtask-based JVM instances. Its main purpose
is to perform tasks necessary to bootstrap a CDC AMS implementation. In addition,
it can perform tasks that are performed internally by a CDC AMS implementation,
such as application termination:

warming up classes and methods

cloning client JVM instances

controlling the lifecycles of JVM instances
monitoring JVM instances

cvmc communicates with mtask-based JVM instances through an established TCP
port.

C.3 Options

cvme recognizes two kinds of command-line options: cvmc-specific command-line
options and cvm command-line options that are passed to a client JVM instance.

C-1

TABLE C-1 describes the cvmc command-line options.

TABLE C-1 cvmc Command-Line Options

Option

Description

-childrenexited

-command command

-help

-host name

-killall
-killserver

-port number

-testingmode festprefix

-warmup
-initClasses classListFile
-precompileMethods methodListFile

Equivalent to the CHILDREN_EXITED mtask command
described in TABLE B-1.

Send command to a JVM instance. See Appendix B for a complete
description of mtask commands.

Display usage information and exit.

The IP address of the host running the server JVM instance. The
default is 127.0.0.1.

Terminate all launched JVM instances.
Terminate the master JVM server instance.

The TCP port bound to the server JVM instance. The default
port is 7777.

Equivalent to the TESTING_MODE mtask command described in
TABLE B-1.

Specify text files containing the warmup lists for class
initialization and method precompilation. See Appendix B for a
description of the warmup list syntax.

C-2 CDC Runtime Guide * November 2005

APPENDIX D

Java ME System Properties

In addition to the standard Java SE system properties, CDC supports the standard
Java ME system properties supported by CLDC 1.1 and MIDP 2.0. These system
properties are described in TABLE D-1.

TABLED-1 CDC System Properties

System Property

Default Value

Description

microedition.

microedition.
microedition.
microedition.
microedition.
microedition.
microedition.

microedition.

commports

configuration
encoding
hostname
locale
platform
profiles

securerandom.nofallback

cdcams.decorations

cdcams.presentation

No default

cdc
ISO_LATIN_1
No default
en-US

j2me

No default

false

false

No default

Comma-delimited list of available
communications ports

Java ME configuration
Unicode character encoding
Host platform

System locale

Java platform

Java ME profile

Disable the mechanism that allows the
CDC Java runtime environment to fallback
to using /dev/urandom if /dev/random
doesn’t have enough entropy to work
properly. See Section 6.2.4, “Seed
Generation for Random Number
Generation” on page 6-5 for more
information.

Display native window decorations.

Top-level presentation mode class.

D-1

TABLE D-1

CDC System Properties (Continued)

System Property

Default Value

Description

cdcams.repository

cdcams.verbose

java.ext.dirs

CVMHOME/
repository

false

CVMHOME/
lib

Location of application repository.

Display extra diagnostic information.

Specifies one or more directories to
search for installed optional packages,
each separated by
File.pathSeparatorChar.

D-2

For a list of the standard Java SE system properties, see the description of
java.lang.System.getProperties () in the CDC specification.

CDC Runtime Guide ¢ November 2005

APPENDIX E

Serial Port Configuration Notes

The javax.microedition.io.CommConnection interface allows a CDC Java
runtime environment to expose an OS-level serial port as a logical serial port
connection. This appendix shows how to configure an OS-level serial port on a
Linux system so that a Java application can access the corresponding logical serial
port connection.

Note — While this example is based on the RS-232 serial interface implementation of
CommConnection in com.sun.cdc.io.j2me.comm.Protocol, an alternate
implementation could use the CommConnection interface to support other forms of
serial communication such as IrDA.

TABLE E-1 Serial Communications References

Interface Document

RS-232 serial http://www.tldp.org/HOWTO/Serial -HOWTO-4.html
communications

minicom serial minicom(1)

communications program
Serial port configuration setserialport(8)

Serial port driver interface ttys(4)

E-1

http://www.tldp.org/HOWTO/Serial-HOWTO-4.html

E.1

Serial Port Setup

. Setup a serial cable connection between two Linux computers.

Become super-user.

% su
#

This step is necessary to allow non-root users to access the serial port.

. Configure the serial port to use IRQ 4.

setserial /dev/ttySO irg 4

. Change the file access permissions for the serial port and the lock file.

chmod 777 /dev/ttyS0 /var/lock

This allows other users to access the serial port.

. Launch the minicom(1) serial communications program in setup mode.

minicom -s
a. Select Serial port setup from the [configuration] menu.

b. In the setup menu, type A to change the Serial Device setting.

If the Serial Device setting is /dev/modem, then change it to /dev/ttyS0.
c. Press <ENTER> to confirm the change.
d. Press <ENTER> again to exit the setup menu.
e. Select the Save setup as df1l menu option.

f. Select the Exit menu option.

This will initialize the serial port.

g. Type <CONTROL>-a ¢ to finally exit minicom(1)

. Follow a similar configuration procedure with the other computer connected to

the serial cable.

E-2 CDC Runtime Guide ¢ November 2005

E.2

OS-Level Testing

The serial connection between the two computers can be tested with the minicom(1)
serial communications program.

. Remotely login to each computer.
. Launch the minicom(1) serial communications program on each computer.
. Type some text into one of the minicom(1l) windows.

. Type <CONTROL>-a ¢ to finally exit minicom(1).

This should determine that the serial connection is correct.

Appendix E Serial Port Configuration Notes E-3

E-4 CDC Runtime Guide ¢ November 2005

APPENDIX F

Platform Font Administration Notes

Note — These notes show how to install and configure some TrueType fonts for use
by the Xft font server running on the Suse Linux 9.1 platform. Next, these fonts are
mapped to the Qt logical font names that are used by the CDC Java runtime
environment. Other target platforms will vary greatly.

Suse Linux uses the XFree86 server to provide an X11-based desktop infrastructure
for supporting graphical desktop environments like KDE and Gnome. X11 font
administration has evolved to support remote font servers for international fonts as
well as font matching and substitution that allows a single logical font to use
multiple physical fonts for supporting different character set ranges.

TABLE F-1 Font Management References

Title URL Description

Qt font support http://trolltech.com The Qt source release includes the
gtconfig configuration utility
which has online help that describes
its options and features.

font-config http://fontconfig.org A library for font customization and
configuration.

Fonts in XFree86 ~ http://www.xfree86.org/ Font support in XFree86 and the Xft
4.4.0/fonts.html font system.

This example of installing and configuring a new TrueType font is based installing
and configuring the Thorndale font family contained in the files thornbcp. ttf,
thorncp.ttf, thornicp.ttf and thornzcp. ttf. These font files must be
acquired separately.

. Install the TrueType fonts in a personal font directory in SHOME/ . fonts for use

by the Xft font server.

F-1

http://fontconfig.org
http://trolltech.com

a. If necessary create the personal font directory.

% mkdir SHOME/.fonts

]

b. Copy the TrueType font files into the personal font directory.

o

cp *.ttf SHOME/.fonts

c. Change the shell’s current directory to the personal font directory.
% cd SHOME/.fonts

d. Create an index of scalable font files.

% mkfontscale

e. Create an index of X11 font files.

% mkfontdir

]

f. Restart the X11 server.

Logout from the desktop session and login again.

g. Test the X11 font installation with x1sfonts(1) and x£d(1).

% xlsfonts | grep -i thorn
% xfd -fn "-monotype-thorndale-bold-r-normal--0-0-0-0-p-0-is08859-1"

2. Setup the fonts.conf font configuration system to manage the new fonts.

a. Create a personal fonts.conf configuration file in SHOME/ . fonts.conf.

<?xml version="1.0"7?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">
<fontconfig>
<dir>~/.fonts</dir>
<alias>
<family>sans-serif</family>
<prefer><family>Andale Mono</family></prefer>
</alias>
<alias>
<family>serif</family>
<prefer><family>Thorndale</family></prefer>
</alias>
<alias>
<family>Courier</family>
<prefer><family>Andale Mono</family></prefer>
</alias>
<alias>
<family>Monospace</family>
<prefer><family>Andale Mono</family></prefer>
</alias>
</fontconfig>

b. Update the fonts.conf cache files.

F-2 CDC Runtime Guide ¢ November 2005

% fc-cache -f

. Determine that the fonts have been configured to match to the fonts.conf

logical font names.

% fc-list | grep -i thorn
% fc-match serif

. Visually test the font configuration with a non-Qt application like gnome-

terminal(1).

. Check to see if Qt has any extra logical font substitutions that can interfere with
the intended font mapping in $HOME/ . fonts.conf.

a.

b.

Launch gtconfig.
Select the Fonts panel.

Remove any extra logical font substitutions for Sans, Sans Serif, Serif,
Courier and Monospace.

Extra font substitutions can interfere with the Qt logical font matching
mechanism.

. Visually test the font configuration with a Qt application like the hello

example program in the Qt source bundle.

. Test whether the font mapping between logical Java fonts and logical platform
(Qt) fonts is accurate with the following application:

import java.awt.*;

class MyFontTest extends Frame {

MyFontTest () {
super ("MyFontTest") ;
setSize (200, 200);
show () ;
}
public void paint (Graphics g) {
Font f = new Font("Serif", Font.PLAIN, 12);
g.setFont (f) ;
g.drawString("test string", 50, 50);

static public void main(String[] args) {
new MyFontTest () ;

Appendix F Platform Font Administration Notes F-3

F-4 CDC Runtime Guide ¢ November 2005

APPENDIX G

Zaurus Installation Notes

This appendix describes how to install the CDC Java runtime environment on a
Zaurus personal mobile tool.

G.1

Zaurus System Requirements

The Zaurus personal mobile tool is a PDA based on the Linux operating system, the
ARM processor and the Qtopia application environment. It is available mainly for
the Japanese market but Dynamism (www.dynamism. com) localizes and markets
these devices for the English-speaking market.

TABLE G-1 describes the basic system requirements for a Zaurus personal mobile tool
to run the CDC Java runtime environment and CDC AMS.

TABLE G-1 Zaurus System Requirements

Category Requirement
ROM level 1.41 or greater
Memory 64MB system memory and 256MB SD card memory

Network connection wireless CF card or Ethernet CF card

Locale en (English)

G-1

TABLE G-2 describes some useful resources for working with the Zaurus personal
mobile tool in a development environment.

TABLE G-2 Useful Zaurus Resources

Resource Purpose

ssh server Remote login server daemon. An OpenSSH-based server for the
Zaurus personal mobile tool is available from www.handango . com.

unzip utility Unzipping installation bundles. See www.elsix.org.

wireless CF card or ~ OTA provisioning.
Ethernet CF card

SD card Local software installation and swap space.

SD card reader Local software installation.

G.2 Installation Procedure

The installation procedure below assumes that the Zaurus already has ssh and
unzip installed on the device.

1. Establish a network connection for the Zaurus personal mobile tool.

2. Copy the runtime installation bundle onto an SD card using an SD card reader.
See TABLE 2-2 for a description of the installation bundles. For the purposes of these
instructions, the installation bundle will be named runtime . zip.

3. Copy the Qtopia application resources in the resources directory of the
documentation bundle onto the SD card.

launchams

makeswap

appmanager .desktop
ams.directory
28x283DJavalconB.png

4. Insert the SD card into the Zaurus personal mobile tool.

5. Remote login to the Zaurus personal mobile tool with an ssh client using the
root account.

% ssh zaurus -1 root

6. Change the shell’s current directory to the SD card.
cd /mnt/card

G-2 CDC Runtime Guide * November 2005

www.handango.com

10.

11.

12.

13.

14.

15.

. Create a Qtopia application directory for CDC AMS.

mkdir /home/QtPalmtop/apps/Java

. Copy the Qtopia application resource files from the card to the Qtopia application

directory.

cp ams.directory /home/QtPalmtop/apps/Java/.directory
chmod 777 /home/QtPalmtop/apps/Java/.directory

cp appmanager.desktop /home/QtPalmtop/apps/Java

chmod 777 /home/QtPalmtop/apps/Java/appmanager .desktop

. Copy the CDC AMS icon to the Qtopia icon directories.

cp 28x283DJavalconB.png /home/QtPalmtop/pics
cp 28x283DJavalconB.png /home/QtPalmtop/picsli4
Install the CDC AMS driver script.

cp launchams /home/QtPalmtop/bin
chmod 755 /home/QtPalmtop/launchams

CODE EXAMPLE G-1 contains the text for the launchams driver script.

Create a swap file on the SD card.

cd /mnt/card

sh < /home/zaurus/swap.sh

Make a directory to hold the CDC Java runtime environment.
mkdir /home/cdcams

Because the Personal Profile version of CDC AMS includes a simple user account
system and other system features that require writing to local files, the CDC Java
runtime environment should be installed on a read-write partition.

Edit the 1aunchams script and change the definition of the CDCAMS variable to
refer to the directory containing the CDC Java runtime environment.

vi /home/QtPalmtop/bin/launchams

Copy the runtime installation bundle from the SD card onto the device.

cp runtime.zip /home/cdcams

Unpack the installation bundle.

cd /home/cdcams
unzip runtime.zip

The CDC Java runtime environment should now be installed on the Zaurus device.
It can be run using the same procedure described in Chapter 5.

Appendix G Zaurus Installation Notes G-3

CODE EXAMPLE G-1 launchams Script for Zaurus

#!/bin/sh

#

use cvmc to launch the Personal Profile version

of the CDC AMS appmanager in a client JVM instance
#

CDCAMS=/home/cdcams

SERVERLOG=/tmp/ams_server.log
MANAGERLOG=/tmp/ams_manager.log

AMSCLIENTJAR=$CDCAMS/lib/appmanager-client.jar
AMSMANAGERJAR=SCDCAMS/lib/appmanager.jar

AMSCLASS=com. sun.appmanager . impl .CDCAmsAppManager
PMODEJAR=$CDCAMS/1ib/AwtPDA_PresentationMode. jar

PMODECLASS=com. sun.appmanager . impl.presentation.AwtPDA.AwtPDAPresentationMode
XMLJAR=$CDCAMS/1lib/j2me_xml_cdc.jar
CLASSLIST=$CDCAMS/repository/profiles/classesList.txt
METHODLIST=$CDCAMS/repository/profiles/methodsList. txt

#

launch the mtask server

#

SCDCAMS/bin/cvm \
-Xbootclasspath/a: SAMSCLIENTJAR \
-Xserver:port=7788,initClasses=$CLASSLIST, precompileMethods=$METHODLIST \
> $SERVERLOG 2>&1 &

#

wait for the mtask server to finish launching before cloning it
#

sleep 5

#

use the cvmc driver utility

to launch the CDC AMS implementation
in a client JVM instance
#
$

CDCAMS/bin/cvmc \
-host 127.0.0.1 \
-port 7788 \
-command JDETACH \
-XappName=$0 \
-Xbootclasspath/a: SAMSMANAGERJAR : SPMODEJAR : SXMLJAR \
-Dcdcams .presentation=$PMODECLASS \
SAMSCLASS \
-port 7788 \
-server 127.0.0.1 \
> SMANAGERLOG 2>&1

G-4 CDC Runtime Guide * November 2005

APPENDIX H

Cobalt Installation Notes

This appendix describes how to install the CDC Java runtime environment on a
Cobalt Qube.

The Cobalt Qube 2 is a Linux/MIPS-based server. See http: / /www. linux-
mips.org/wiki/index.php/Cobalt for more information about the Qube 2.

H.1

Installation Procedure

. Remote login to the Cobalt Qube with an ssh client using the root account.

% ssh qube -1 root

o

. Copy the CDC AMS driver script from the resources directory of the

documentation bundle.

cp launchams /usr/bin
chmod 755 /usr/bin/launchams

. Make a directory to hold the CDC Java runtime environment.

mkdir /home/cdcams

. Copy the runtime installation bundle into the new directory.

cp runtime.zip /home/cdcams

See TABLE 2-2 for a description of the installation bundles. For the purposes of these
instructions, the installation bundle will be named runtime . zip.

. Unpack the installation bundle.

cd /home/cdcams
unzip runtime.zip

The CDC Java runtime environment should now be installed on the Cobalt Qube. It
can be run using the same procedure described in Chapter 5.

H-1

://www.linux-mips.org/wiki/index.php/Cobalt
://www.linux-mips.org/wiki/index.php/Cobalt

CODE EXAMPLE H-1 launchams Script for the Cobalt Qube

#!/bin/sh

#

use cvmc to launch the Personal Basis Profile version
of the CDC AMS appmanager in a client JVM instance

#

CDCAMS=/home/cdcams

SERVERLOG=/tmp/ams_server.log
MANAGERLOG=/tmp/ams_manager.log

AMSCLIENTJAR=$CDCAMS/lib/appmanager-client.jar
AMSMANAGERJAR=$CDCAMS/1lib/appmanager.jar
PMODEJAR=$CDCAMS/1ib/PBP_PresentationMode. jar

PMODECLASS=com. sun.appmanager . impl.presentation.PBP.PBPPresentationMode
AMSCLASS=com. sun.appmanager . impl .CDCAmsAppManager
CLASSLIST=$CDCAMS/repository/profiles/classesList.txt
METHODLIST=$SCDCAMS/repository/profiles/methodsList.txt
PBP_SCREEN_BOUNDS=0,342-640x100

export PBP_SCREEN_BOUNDS

#

launch the mtask server

#

SCDCAMS/bin/cvm \
-Xbootclasspath/a: SAMSCLIENTJAR \
-Xserver:port=7788, initClasses=$SCLASSLIST, precompileMethods=$METHODLIST \
> $SERVERLOG 2>&1 &

#

wait for the mtask server to finish launching before cloning it
#

sleep 5

#

use the cvmc driver utility

to launch the CDC AMS implementation
in a client JVM instance
#
$

CDCAMS/bin/cvmec \
-host 127.0.0.1 \
-port 7788 \
-command JDETACH \
-Xbootclasspath/a: SAMSMANAGERJAR : SPMODEJAR \
-Dcdcams .presentation=$PMODECLASS \
SAMSCLASS \
-port 7788 \
-server 127.0.0.1
> SMANAGERLOG 2>&1

H-2 CDC Runtime Guide * November 2005

APPENDIX I

Provisioning Server Notes

Note — The OTA provisioning feature of CDC AMS requires integration of the J2EE
Client Provisioning RI (CPRI) source code into the CDC build system. This feature
cannot be enabled directly with the binary implementation of CDC AMS. Instead,
the CDC build system must be first configured with the CPRI source bundle and
then used to build a client version of CDC AMS.

Note — The Personal Profile version of CDC AMS includes the provisioning feature
to discover and download various types of content, including dynamic content like
xlets. This feature is based on the com. sun.appmanager .ota package which can
support a variety of provisioning technologies. The Personal Profile version of CDC
AMS includes a specific example implementation based on the the J2EE Client
Provisioning Server Reference Implementation (CPRI). The Personal Basis Profile
version of CDC AMS does not include an equivalent provisioning feature.

This appendix describes how to setup a CPRI server for use with the Personal Profile
version of CDC AMS. This includes the following steps:

Download the J2EE 1.3.1 SDK
J2EE Server Setup

Download the CPRI Server
CPRI Server Setup

Testing

I.1 Download the J2EE 1.3.1 SDK

The J2EE 1.3.1 SDK is available from:
http://java.sun.com/j2ee/1.3/download.html

http://java.sun.com/j2ee/1.3/download.html

[.2

1-2

J2EE Server Setup

The J2EE 1.3.1 SDK download page includes standard installation and setup
instructions for different target platforms. The following notes provide a brief
summary of the J2EE server installatioin process.

. Add the following permissions to the server.policy file before starting the

J2EE server.

Using a text editor, edit the file ST2EE_HOME/1ib/security/server.policy and
append the following lines:

CODE EXAMPLE I1 Policy Statement for server.policy File

grant {
permission java.io.FilePermission
"${user.home}${/}MyRepositoryS${/}-",
"read,write,delete";
permission java.io.FilePermission
"${user.home}${/}MyRepository",
"read,write,delete";

Y

These grant entries enable servlets to read, write and delete local files and allow the
ri-test servlet to create a download repository in the home directory of the user
running the J2EE server.

. Set the JAVA_HOME, J2EE_HOME and PATH environment variables.

set JAVA_HOME=<path to j2sdk1.4.2>

set J2EE_HOME=<path to j2sdkeel.3.1>

set PATH=${PATH}:${J2EE_HOME}/bin
export JAVA_HOME J2EE_HOME PATH

. Start the Cloudscape database.

cloudscape -start &

Wait for the Cloudscape database to initialize before starting the J2EE server.

. Start the J2EE server.

j2ee -verbose &

Diagnostic messages will be displayed on stdout from the cloudscape database and
the server as they start. The server will listen on port 1050, provide web service on
port 8000 and secure web service at port 7000.

CDC Runtime Guide ¢ November 2005

1.3

Download the CPRI Server

The CPRI server is available at:

http://java.sun.com/j2ee/provisioning/download.html

1.4

CPRI Server Setup

The CPRI server download page includes standard installation and setup
instructions. The following notes provide a brief summary of the CPRI installation
process.

In this procedure, we repackage the CPRI classes in their own EAR file to include
OMA-aware adapter classes that can communicate with the appmanager client. This
is in turn deployed to the J2EE server to create the ri-test servlet.

. Set the J2EE_HOME and JSR124_HOME variables to specify the locations of the

J2EE and CPRI servers.

J2EE_HOME=location/j2sdkeel.3.1 ; export J2EE_HOME
JSR124_HOME=location/j2ee_cp_ri_1_0 ; export JSR124_HOME

. Build an EAR file using the procedure described in the CDC Build System Guide.
. Deploy the EAR file for the CPRI server.

java -classpath $S{J2EE_HOME}/lib/j2ee.jar:${J2EE_HOME}/lib/locale\
-Dorg.omg.CORBA.ORBInitialPort=1050 \
-Dcom.sun.enterprise.home=${J2EE_HOME} \
-Djava.security.policy=${J2EE_HOME}/lib/security/server.policy \
com.sun.enterprise.tools.deployment.main.Main \

-deploy eatfile local

When this step is completed, the CPRI server should be deployed and running on
the J2EE server. It will be accessible through a web browser at the following URL:

http://j2eeserver:8000/ri-test/index.html

Once the ri-test servlet is deployed to the J2EE server, you can view ri-test
page:
http://j2ee-server:8000/ri-test/index.html

Appendix | Provisioning Server Notes -3

:8000/ri-test/index.html
http://
:8000/ri-test/index.html
http://
http://java.sun.com/j2ee/provisioning/download.html

The ri-test page should look something like FIGURE I-1:

FIGURE -1 ri-test Page

i Eile Edit ¥iew Go Bookmarks Tools Window Help

L . » . A

Eack Forward Reload

g% [& ntip:1ocalnostan00si-testindsx himl ~|[2. Search| ;:_‘it -
. . 171 | Brin

ca
o

i 4hHome | wpBookmarks 2 Internet g Lookup g MNewaCool

J2EE Client Provisioning Reference Implementation

RI-Test Demo

This is the home page of the RI-Test demo, a provisioning application which demonstrates the features of the JZEE Client
Provisioning Reference Implementation,

From this web page, youhave access to the following features of the RI-Test demo:

« List All Bundles in the Repository,

+ Addfremove PAR files to/from the repository,

+ Search for bundles using a variety of criteria.

+ View the Device Type Table which shows the types of device knowm to the application. This information is derived from the
devices.xzml file,

The RI-Test Demo also includes pages that are designed to be accessed from non-browser clients, as well as being accessible from
abrowser:

+ [f you have the Java Web Start installed, you can browse available J2SE applications using its Application Manager (specify
this URL as a "Remote Applicatons URL").

+ Alternatively, if you have the J2ME/MIDP Wireless Toolkit installed, you can browse awvailable MIDlet suites using its Java
Application Manager (JAM),

% @ 2 @ | | |=o-lap

I.5

Deploy a PAR File

A PAR file is a mechanism for staging downloadable content in a CPRI server.

I-4 CDC Runtime Guide ¢ November 2005

1. Create a PAR file containing an xlet.
The resources directory in the documentation bundle includes a sample PAR file
for a helloworld xlet.

2. Upload the PAR file to the J2EE server.

Select the Add/remove PAR files to/from the repository link. The
browser will display the upload page shown in FIGURE I-2.

FIGUREI-2 ri-test Upload Page

I Eile Edit

il Back 7 Forward | Reload Stop
% 4hHome | whBookmarks g Intemet 4 Lookup 4 NewaCool

View Go Bookmarks Tools Window Help

[& http:Aocalhost5000/i-testadmin/stacking |+][5. search ;:_‘it -
e S ki AL J ritr

Bundle Repository Administration

Repository Contents

PAR | Uploaded |Bundles

[5/[ThuNov04 21:30:50 PST 2004 16 jremove |
Upload a PAR Hle

Upload a PAR file by entering its path and clicking " Upload PAR file", For example, click on Browse and go to .. /test/apps/testpar.

PAR file: | Browse. .. [
Upload PAR file |
Empty the Repository

If you want to start over, you can empty out the repository by clicking on this button:

Remove all PAR files from repository !

Back to top

[& 2 @ [Done [e

Select the Browse button to navigate to the target PAR file, and then select the
Upload PAR file button. The PAR file should now be stored on the CPRI server

and available for OTA deployment.

Appendix | Provisioning Server Notes I-5

Verify that the PAR file was correctly uploaded by viewing the list by clicking on
"List all Bundles in the Repository". Also verify all the contents are
displayed correctly at http: //j2ee-server:8000/ri-test/oma.

1.6 Testing

Test the ri-test server with a CDC AMS client.
When the upload process is complete, the ri-test server is ready for testing.
1. Launch the Personal Profile version of CDC AMS.

2. Set the Discovery URL in System>Preferences>General for locating content.

http://J2EE-server:8000/ri-test/oma

3. Start the provisioning application at System>App Store.

The provisioning application wil display a set of staged applications for deployment.
Selecting an application will cause it to be downloaded and deployed in the
application repository.

I-6 CDC Runtime Guide ¢ November 2005

	CDC Runtime Guide
	Contents
	Figures
	Tables
	Preface
	Introduction
	1.1 Goals
	1.2 Usage Contexts
	1.3 CDC Technology Implementations
	1.4 CDC Target Device Requirements
	1.5 Java ME Technology Standards
	1.6 Java ME API Choices
	1.7 CDC Application Features
	1.8 Developer Tools
	1.9 Application Management

	Installation
	2.1 Installing the CDC Java Runtime Environment
	2.1.1 Local Installation
	2.1.2 Remote Installation
	2.1.3 Installing CDC AMS on a Zaurus personal mobile tool
	2.1.4 Installing CDC AMS on a Cobalt Qube

	2.2 Installing an Optional Package
	2.3 Testing the CDC Java Runtime Environment
	2.4 Removing the CDC Java Runtime Environment

	Software Contents
	3.1 Standard Files
	3.2 CDC AMS Files
	3.3 Security Files
	3.4 Development Files
	3.5 Test and Demonstration Files

	Running Applications
	4.1 Launching a Java Application
	4.2 Running Managed Applications (Personal Basis Profile and Personal Profile only)
	4.2.1 Running an Applet (Personal Profile only)
	4.2.2 Running an Xlet (Personal Basis Profile and Personal Profile only)

	4.3 Class Search Path Basics
	4.3.1 Java Class Search Path
	4.3.2 Native Method Search Path

	4.4 Memory Management
	4.4.1 The Java Heap
	4.4.2 Garbage Collection
	4.4.2.1 Garbage Collection in the CDC HotSpot Implementation
	4.4.2.2 Default Generational Collector
	4.4.2.3 Tuning Options

	4.4.3 Class Preloading
	Class Preloading and Verification

	4.4.4 Setting the Maximum Working Memory for the Dynamic Compiler

	4.5 Tuning Dynamic Compiler Performance
	4.5.1 Dynamic Compiler Overview
	4.5.2 Dynamic Compiler Policies
	4.5.2.1 Managing the Popularity Threshold
	4.5.2.2 Managing Compiled Code Quality
	4.5.2.3 Managing the Code Cache

	Application Management
	5.1 Launching CDC AMS
	5.2 Exploring CDC AMS
	5.2.1 AwtPDA Presentation Mode (Personal Profile only)
	5.2.2 PBP Presentation Mode (Personal Basis Profile only)

	5.3 Launching Applications
	5.3.1 AwtPDA Presentation Mode (Personal Profile only)
	5.3.2 PBP Presentation Mode (Personal Basis Profile only)

	5.4 Switching Applications
	5.5 Terminating Applications
	5.6 Installing Applications
	5.6.1 Manual Installation
	5.6.2 OTA Provisioning

	Security
	6.1 Overview
	6.1.1 Built-in Security Features
	6.1.2 Security Policy Framework
	6.1.3 Security Provider Architecture

	6.2 Security Procedures
	6.2.1 Using Alternate Security Providers
	6.2.2 Public Key Management
	6.2.3 Security Policy Management
	6.2.4 Seed Generation for Random Number Generation

	Localization
	7.1 Setting Locale System Properties
	7.2 Timezone Information Files
	7.3 Font Management (Personal Basis Profile and Personal Profile only)

	Developer Tools
	8.1 Compiling With javac
	8.1.1 CDC and Java SE
	8.1.2 Compiling Java Source Code for the Java SE Platform
	8.1.3 Compiling Java Source Code for CDC
	8.1.4 Determining the Target Class Library
	8.1.5 Useful javac Command-Line Options
	8.1.5.1 -classpath classpath
	8.1.5.2 -bootclasspath classpath
	8.1.5.3 -extdirs classpath
	8.1.5.4 -source release
	8.1.5.5 -target version
	8.1.5.6 -deprecation

	8.1.6 Compiling an Example CDC Program

	8.2 Debugging With jdb
	8.2.1 Debug Command-Line Options
	8.2.2 Running the Debug Version of cvm
	8.2.3 Running jdb on the Host Development System

	8.3 Profiling with hprof
	8.3.1 Profiling Command-Line Options
	8.3.2 Running cvm With hprof

	cvm Reference
	A.1 Synopsis
	A.2 Description
	A.3 Options

	mtask Command Language Reference
	B.1 Launch Command Language
	B.2 Warming Up the mtask Server

	cvmc Reference
	C.1 Synopsis
	C.2 Description
	C.3 Options

	Java ME System Properties
	Serial Port Configuration Notes
	E.1 Serial Port Setup
	E.2 OS-Level Testing

	Platform Font Administration Notes
	Zaurus Installation Notes
	G.1 Zaurus System Requirements
	G.2 Installation Procedure

	Cobalt Installation Notes
	H.1 Installation Procedure

	Provisioning Server Notes
	I.1 Download the J2EE 1.3.1 SDK
	I.2 J2EE Server Setup
	I.3 Download the CPRI Server
	I.4 CPRI Server Setup
	I.5 Deploy a PAR File
	I.6 Testing

