

Oracle® Java Micro Edition Connected Device
Configuration
Runtime Guide

Release 1.1.2 for Oracle Java Micro Edition Embedded Client

A12345-01

May 2011

This runtime guide describes how to use a Java runtime
environment for the Oracle Java Micro Edition Embedded
Client that is based on Java Micro Edition Connected
Device Configuration with its related profiles and
optional packages. It focuses on runtime issues such as
deployment, configuration and running application
software based on Java technology, in addition to
developer issues such as compiling, debugging, and
profiling.

Oracle Java Micro Edition Connected Device Configuration Runtime Guide, Release 1.1.2 for Oracle Java
Micro Edition Embedded Client.

A12345-01

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

1 Introduction

1.1 Goals ... 1-2
1.2 Usage Contexts .. 1-2
1.3 CDC Technology Implementations.. 1-3
1.4 CDC Target Device Requirements ... 1-3
1.5 Java Micro Edition Technology Standards.. 1-3
1.6 Java ME API Choices.. 1-4
1.7 CDC Application Features... 1-5
1.8 Developer Tools .. 1-6

2 Software Layout

2.1 Standard Files .. 2-1
2.2 Security Files.. 2-2
2.3 Development Files .. 2-3

3 Running Applications

3.1 Launching a Java Application... 3-1
3.2 Running Managed Applications (Personal Basis Profile only).. 3-1
3.2.1 Running an Xlet (Personal Basis Profile)... 3-2
3.3 Class Search Path Basics... 3-3
3.3.1 Java Class Search Path... 3-3
3.3.2 Native Method Search Path.. 3-4
3.4 Memory Management.. 3-5
3.4.1 The Java Heap .. 3-5
3.4.2 Garbage Collection .. 3-6
3.4.2.1 Garbage Collection in the CDC HotSpot Implementation 3-6
3.4.2.2 Default Generational Collector... 3-7
3.4.2.3 Tuning Options... 3-8
3.4.3 Class Preloading .. 3-8

iv

3.4.3.1 Class Preloading and Verification.. 3-9
3.4.4 Setting the Maximum Working Memory for the Dynamic Compiler 3-9
3.5 Tuning Dynamic Compiler Performance ... 3-10
3.5.1 Dynamic Compiler Overview... 3-10
3.5.2 Dynamic Compiler Policies... 3-12
3.5.2.1 Managing the Popularity Threshold... 3-12
3.5.2.2 Managing Compiled Code Quality... 3-12
3.5.2.3 Managing the Code Cache ... 3-13
3.6 Ahead-of-Time Compilation .. 3-13
3.6.1 Using AOTC .. 3-14
3.6.2 How to Create methodsList.txt .. 3-14

4 Security

4.1 Overview.. 4-1
4.1.1 Built-in Security Features ... 4-2
4.1.2 Security Policy Framework .. 4-2
4.1.3 Security Provider Architecture .. 4-3
4.1.4 Custom JSSE Provider Plug-ins ... 4-3
4.1.5 Oracle JSSE Cipher Suite Support ... 4-3
4.1.6 Self-Integrity Checks ... 4-3
4.2 Security Procedures .. 4-4
4.2.1 Using Alternate Security Providers .. 4-4
4.2.2 Public Key Management... 4-4
4.2.3 Security Policy Management.. 4-4
4.2.4 Seed Generation for Random Number Generation .. 4-5

5 Localization

5.1 Setting Locale System Properties.. 5-1
5.2 Timezone Information Files... 5-1
5.3 Font Management (Personal Basis Profile only) .. 5-2

6 Developer Tools

6.1 Compiling With javac.. 6-1
6.1.1 CDC and Java SE.. 6-1
6.1.2 Compiling Java Source Code for the Java SE Platform .. 6-2
6.1.3 Compiling Java Source Code for CDC ... 6-2
6.1.4 Determining the Target Class Library .. 6-3
6.1.5 Useful javac Command-Line Options ... 6-3
6.1.5.1 -classpath classpath ... 6-3
6.1.5.2 -bootclasspath classpath.. 6-3
6.1.5.3 -extdirs classpath .. 6-4
6.1.5.4 -source release... 6-4
6.1.5.5 -target version ... 6-4
6.1.5.6 -deprecation ... 6-4
6.1.6 Compiling an Example CDC Program ... 6-4
6.2 Application Debugging.. 6-4

v

6.2.1 Launching cvm in Debug Mode .. 6-4
6.2.1.1 cvm Debug Mode Syntax... 6-5
6.2.1.2 cvm Debug Mode Example ... 6-5
6.2.2 Attaching the NetBeans IDE Debugger to cvm ... 6-6
6.2.3 Attaching to cvm with jdb .. 6-8
6.3 Application Profiling.. 6-8
6.3.1 Remote Profiling with the NetBeans IDE... 6-8
6.3.2 Calibrate the Profiler Agent ... 6-9
6.3.3 Start cvm with the Profiler Agent.. 6-9
6.3.4 Attach the NetBeans Profiler... 6-10
6.3.5 Simple Local Profiling with jvmtihprof.. 6-14

A cvm Reference

A.1 Synopsis... A-1
A.2 Description.. A-1
A.3 Options .. A-1

B Serial Port Configuration Notes

B.1 Serial Port Setup... B-1
B.2 OS-Level Testing .. B-2

C Java ME System Properties

vi

vii

List of Examples

6–1 cvm Listens for Connection from Debugger ... 6-5
6–2 cvm Connects to Debugger.. 6-5
6–3 Launching cvm as a Server .. 6-5
6–4 Attaching to cvm with jdb ... 6-8
6–5 Calibrating the Profiler... 6-9
6–6 Launching cvm with the Profiler Agent ... 6-10
6–7 Using jvmtihprof .. 6-14

viii

List of Figures

1–1 CDC Target Device Categories ... 1-1
1–2 An Example CDC Java Runtime Environment .. 1-5
3–1 GC Generations ... 3-7
3–2 Interpreter-Based Method Execution.. 3-10
3–3 Compiling a Method.. 3-11
3–4 Executing a Compiled Method .. 3-11
4–1 Java Security Policy Model .. 4-3
6–1 CDC and Java SE API Compatibility ... 6-1
6–2 Compiling Java Source Code for the Java SE Platform ... 6-2
6–3 Compiling Java Source Code for CDC... 6-3
6–4 Breakpoint in HelloWorld.java ... 6-6
6–5 Attach Debugger Dialog (Debugger as Client)... 6-7
6–6 Debugger Connected and Stopped at Breakpoint ... 6-7
6–7 Debugger as Server Attach Debugger Setup ... 6-8
6–8 Attach Profiler Dialog ... 6-10
6–9 Select Target Type Screen .. 6-11
6–10 Remote System Screen... 6-12
6–11 Review Attach Settings Screen... 6-12
6–12 Manual Integration Screen ... 6-13
6–13 Sample Profile Results... 6-14

ix

List of Tables

1–1 Java ME API Standards... 1-4
2–1 Standard Files ... 2-1
2–2 Security Files... 2-2
2–3 Development Files ... 2-3
3–1 XletRunner Command-Line Options... 3-2
4–1 Security Documentation for the Java SE Platform .. 4-1
5–1 Locale System Properties .. 5-1
5–2 Font Management Comparison ... 5-2
5–3 Logical Font Names ... 5-2
6–1 Profiling Command-Line Options.. 6-15
A–1 Java SE Command-Line Options .. A-2
A–2 CDC-Specific Command-Line Options ... A-4
A–3 -Xgc:suboption .. A-4
A–4 -Xopt:suboption .. A-5
A–5 -Xtrace:flags (unsupported) ... A-5
A–6 JVMTI Options .. A-6
A–7 -Xjit:options ... A-6
A–8 -Xjit:inline=suboption ... A-7
A–9 -Xjit:compile=suboption... A-8
A–10 -Xjit:trace=option ... A-8
B–1 Serial Communications References .. B-1
C–1 CDC System Properties.. C-1

x

xi

Preface

This runtime guide describes how to use a Java runtime environment based on Java
Micro Edition Connected Device Configuration (CDC) version 1.1.2 with its related
profiles and optional packages. It focuses on runtime issues like deployment,
configuration and running application software based on Java technology, in addition
to developer issues such as compiling, debugging, and profiling.

Audience
This runtime guide is intended for use within a product development context,
including both runtime and application development. From a developer's perspective,
runtime issues generally exercise configuration, testing or debugging features of the
CDC Java runtime environment.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit

xii

http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ CDC Build System Guide

■ CDC Porting Guide

■ CDC HotSpot Implementation Dynamic Compiler Architecture Guide

■ CDC Technology Compatibility Kit User's Guide

■ Security Optional Package Technology Compatibility Kit User's Guide

■ Java Language Specification. See http://java.sun.com/docs/books/jls.

■ Java Virtual Machine Specification. See
http://java.sun.com/docs/books/vmspec.

■ Java Native Interface (JNI). See http://java.sun.com/docs/books/jni.

■ Java Virtual Machine Tools Interface (JVMTI). See
http://download.oracle.com/javase/1.5.0/docs/guide/jvmti.

■ Inside Java 2 Platform Security. See
http://java.sun.com/docs/books/security.

■ Java ME Unified Emulator Interface Specification (UEI). See
http://java.sun.com/j2me/docs/uei_specs.pdf.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

A Java runtime environment is an implementation of Java technology for a specific
target platform. It performs a middleware function with features common to a native
application: it is installed, launched and run like a native application. But its real
purpose is to launch, run and manage Java application software on the target
platform.

The CDC Java runtime environment is an implementation of Java technology for
connected devices. These include mobile devices like PDAs and smart phones in
addition to attached devices like set-top boxes, printers and kiosks.

CDC target devices can vary widely based on their features and purpose. Figure 1–1
describes some CDC target device categories and organizes them by their two most
important characteristics: purpose (fixed or general) and mobility (mobile or attached).

Figure 1–1 CDC Target Device Categories

This runtime guide describes how to use the CDC Java runtime environment for
different purposes including application development, runtime development and
solution deployment.

This chapter briefly introduces the CDC Java runtime environment through the
following:

■ Goals

Goals

1-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

■ Usage Contexts

■ CDC Technology Implementations

■ CDC Target Device Requirements

■ Java Micro Edition Technology Standards

■ Java ME API Choices

■ CDC Application Features

■ Developer Tools

1.1 Goals
It is difficult to describe CDC technology without reference to the Java Standard
Edition (Java SE) platform because Java SE represents the core of Java technology. In
fact, the principal goal of CDC is to adapt Java SE technology from desktop systems to
connected devices. Most of CDC's modifications to Java SE APIs are based on
identifying features that are either too large or inappropriate for CDC target devices
and then either removing or making them optional.

Other related goals of CDC include the following:

■ Broaden the number of target devices for Java application software.

■ Take advantage of target device features while fitting within their resource
limitations.

■ Provide a runtime implementation optimized for connected devices.

■ Leverage Java SE developer tools, skills and technology.

1.2 Usage Contexts
The CDC Java runtime environment described in this runtime guide can operate in
several different usage contexts:

■ During product development, the CDC Java runtime environment has testing
features that can help isolate problems while porting CDC technology to a new
target platform. For example, the trace features provide details about opcode and
method execution in addition to garbage collection (GC) state.

■ One of the final stages of product development is TCK verification. A TCK is a test
suite that verifies the behavior of an implementation of Java technology. The TCK
includes a test harness that runs a candidate Java runtime environment and
launches a series of test Java applications. TCK verification is described in the TCK
user guides listed in the CDC Technology Compatibility Kit User's Guide.

■ Application development for the CDC platform requires a target Java class library for
compiling Java source code and a CDC Java runtime environment for testing and
debugging. Chapter 6, "Developer Tools" provides more information about
application development with the CDC Java runtime environment.

■ When an application is complete and tested, it's ready for deployment. CDC
provides a number of deployment mechanisms including preloading with
JavaCodeCompact, managed application models like xlets and network-based
provisioning systems.

Java Micro Edition Technology Standards

Introduction 1-3

1.3 CDC Technology Implementations
CDC technology is delivered by Oracle through different kinds of software releases:

■ A Reference Implementation (RI) demonstrates Java technology that is described in a
Java Specification Request (JSR) and verified by a corresponding Technology
Compatibility Kit (TCK). Because it serves a demonstration purpose, an RI does not
provide the best available performance features.

The sample RI described by this guide is based on the Linux/x86/Qt platform.

■ An Optimized Implementation (OI) is also a TCK-compliant implementation of Java
technology. An OI provides the following benefits:

– Undergoes more quality assurance (QA) testing

– Provides superior performance

– Supports a strategic platform or can be used as a starting point for porting
Java technology to a different target platform

1.4 CDC Target Device Requirements
CDC is an adaptable technology that can support a range of connected target devices
that exist today and in the future. The following are the baseline system requirements
of these connected devices:

■ Network connectivity

■ 32-bit RISC-based or x86 microprocessor

The memory requirements for a CDC Java runtime environment vary based on the
native platform, the profile and optional packages and the application. See Section 3.4,
"Memory Management" for memory usage guidelines.

Other features of the CDC target device can include:

■ A display for a graphical user interface (GUI)

■ Unicode font support

■ An open or proprietary native platform that provides operating system services

1.5 Java Micro Edition Technology Standards
CDC is part of the family of Java Micro Edition (Java ME) technology standards that
support application software for connected devices. From an application developer's
perspective, CDC is a standards-based framework for creating and deploying
application software on a broad range of consumer and embedded devices. The CDC
APIs are largely based on well-known Java SE APIs, which makes the job of migrating
skills, tools and source code easier. From a product designer's perspective, CDC
provides a standards-based Java runtime environment that supports a variety of target
devices. This allows product designers to provide an application platform that fits
within their device's resource limitations while supporting a large number of
applications and developers.

Java ME standards are developed in collaboration with industry leaders through the
Java Community Process (http://jcp.org). JCP standards allow Java technology to
adapt to the needs of evolving products in an open way by defining APIs that address
common needs in application development. Furthermore, these standards allow
product designers to choose which API features fit their product needs.

Java ME API Choices

1-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Java ME technology uses three kinds of API standards described in Table 1–1 as
building blocks that can be combined in a specific product solution.

1.6 Java ME API Choices
Each Java ME licensee can create a Java runtime environment by choosing from a
menu of standard APIs. The designer's choice must contain a configuration, and
optionally, a profile and any number of optional packages. These choices can vary
from product to product. The critical point to understand is that the application
developer must separately learn about which API combinations are available for a
specific CDC product implementation.

For example, Figure 1–2 describes a Java runtime environment where a product
designer selects CDC, RMI Optional Package, and JDBC Optional Package to represent
a conforming CDC Java runtime environment.

Table 1–1 Java ME API Standards

Category Description Options

Configuration Defines the most basic Java class
library and Java virtual machine
capabilities for a broad range of
devices.

Connected Device Configuration (CDC, JSR-218) supports
connected devices like smart phones, set-top boxes and
office equipment.

Profile Defines additional APIs that support a
narrower range of devices. A profile is
built on a specific configuration.

Personal Basis Profile (JSR-217) provides a
standards-based GUI framework for supporting
lightweight components. Personal Basis Profile adds
support for the xlet application model.

Optional
Package

Defines a set of technology-specific
APIs.

■ The Remote Method Invocation (RMI) Optional Package
(JSR-66) provides a subset of the Java SE RMI API
for networked devices based on Java technology. It
exposes distributed application protocols through
Java interfaces, classes and method invocations and
shields the developer from the details of network
communications.

■ The Java Database Connectivity (JDBC) Optional
Package (JSR-169) provides a subset of the JDBC 3.0
API that can be used by Java application software to
access tabular data sources including spreadsheets,
flat files and cross-DBMS connectivity to a wide
range of SQL databases.

■ The Security Optional Packages (part of JSR-219)
include Java Secure Socket Extension (JSSE) Optional
Package, the Java Cryptography Extension (JCE)
Optional Package and the Java Authentication and
Authorization Service (JAAS) Optional Package. These
provide Java SE APIs for extending CDC's security
architecture.

■ The Web Services Optional Package (JSR-172) provides
standard access from Java ME clients to web
services.

CDC Application Features

Introduction 1-5

Figure 1–2 An Example CDC Java Runtime Environment

1.7 CDC Application Features
The applications targeted by CDC technology have certain characteristics that
distinguish them from the productivity tools and utilities common to desktop
platforms.

■ Network connectivity. The dominant trends in application development, like web
browsers, XML-based web services and RSS, are based on network connectivity.
Examples include the evolution of PDAs and cell phones into connected devices
and the evolution of office printers into multi-function peripherals that can
generate campus-specific reports.

■ Security. Application developers and users are becoming increasingly aware of the
need for security for their mobile and distributed applications. The Java SE
security framework in CDC allows applications to use fine-grained security
policies for application and enterprise security needs.

■ Application deployment. Java technology has traditionally provided flexible
application models. CDC profiles support managed application models like xlets
that allow developers to easily deploy applications over the network, either
directly or through a provisioning server.

■ Standard data access. Mobile clients need access to central databases to view and
modify information. The JDBC and web Services optional packages provide
standard data access for client-side applications.

■ Portable GUIs. With the broad range of CDC target devices, applications need a
GUI system that is flexible enough different user experiences and workflows while
being portable enough to support different target devices. Personal Basis Profile
supports conventional AWT-based GUIs in addition to providing a hosting layer

Note: See the companion document CDC Build System Guide for
information on how to build a target development version of the CDC
Java class library for application development that reflects the APIs
chosen for a specific target product. Chapter 6, "Developer Tools"
describes how to compile Java application software with such a
library.

Developer Tools

1-6 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

for building and supporting GUIs based on industry-standards and
vendor-specific interfaces.

1.8 Developer Tools
Because CDC APIs are derived from Java SE APIs, application developers can migrate
both their software and their skills to the CDC platform with little effort. Java SE
developers can easily learn CDC APIs by focusing on their small differences with Java
SE APIs. It is therefore easy to modify Java SE software for CDC devices. The ability to
use Java SE developer tools like compilers, debuggers and profilers makes this
transition easier.

The CDC Java runtime environment uses several developer tool-oriented
specifications, including the following:

■ Because CDC is based on the Java Virtual Machine Specification (see
http://java.sun.com/docs/books/vmspec), application developers can
use conventional Java SE compilers like javac.

■ The Java Virtual Machine Tools Interface (JVMTI, see
http://download.oracle.com/javase/1.5.0/docs/guide/jvmti)
defines an interface that allows developer tools like debuggers and profilers to
control and measure runtime data for a specific application or benchmark.

■ The Java ME Unified Emulator Interface Specification (UEI, see
http://java.sun.com/j2me/docs/uei_specs.pdf) defines an interface
that allows an external developer tool to control a Java ME emulator.

■ cvm, the CDC application launcher, uses many command-line options that are
available with java, the Java SE application launcher. Many of these options can
be used for application testing and development.

Java SE tools like jar and keytool can also be used in CDC application development
and deployment.

2

Software Layout 2-1

2Software Layout

A CDC Java runtime environment contains the software necessary to run Java
applications on a target platform. The software contents of a CDC Java runtime
environment can vary, especially during product development when different testing
options may be selected at build-time. This chapter describes the organization of a
CDC Java runtime environment, including standard files in addition to optional
security, developer and test files.

2.1 Standard Files
After installation of CDC 1.1.2, the CDC Java runtime environment is located in its
installation directory. Because the location of this installation directory can be
anywhere in the local file system, the CDC Java runtime environment specifies this
location with the java.home system property. Table 2–1 describes the standard files
located in the installation directory based on the default build options.

Table 2–1 Standard Files

File Description

bin/cvm The CDC Java application launcher loads and executes Java applications.

Note: For the Oracle Java Micro Edition (Java ME) Embedded Client, cvm
is located in InstallDir/Oracle_JavaME_Embedded_Client/binaries/bin.
See the Oracle Java Micro Edition Embedded Client Reference Guide for
detailed information about cvm for the Oracle Java ME Embedded
Client.

lib/class-lib.jar Optional. The CDC Java class library is used by the CDC Java runtime
environment to locate and load core Java classes. The actual name of the
archive file indicates the supported CDC specifications, e.g. cdc.jar,
foundation-rmi.jar.

Note: lib/class-lib.jar is only present for non-preloaded builds.

lib/content-types.properties The MIME content type system property table used by the sun.net.www
package. Each entry maps a MIME content type to a native application that
can handle it. Files are associated with a MIME content type by either the
MIME content type returned by an HTTP header or their file name
extension.

Security Files

2-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

2.2 Security Files
Table 2–2 describes optional security files in versions of the CDC Java runtime
environment that include the security optional packages. See Inside Java 2 Platform
Security: Architecture, API Design, and Implementation by Li Gong (second edition,
Addison-Wesley, 2003) for more information about Java SE security features.

lib/security/java.policy System-wide security policies.1

lib/security/java.security Master security properties.2

lib/zi/America/Los_Angeles
lib/zi/Asia/Calcutta
lib/zi/Asia/Novosibirsk
lib/zi/GMT
lib/zi/ZoneInfoMappings

Time zone data files used by sun.util.calendar.ZoneInfoFile.

1 See Inside Java 2 Platform Security, Second Edition: Architecture, API Design, and Implementation by Li Gong (Addison-Wesley, 2003)
for more information about Java SE security features.

2 See Inside Java 2 Platform Security, Second Edition: Architecture, API Design, and Implementation by Li Gong (Addison-Wesley, 2003)
for more information about Java SE security features.

Table 2–2 Security Files

File Description

lib/jaas.jar Java Authentication and Authorization Service (JAAS) Optional Package is a
part of JSR-219 which is a framework for enforcing access control to
resources using a CodeSource-based and Subject-based security model.
jaas.jar contains the JAAS Optional Package implementation and the
KeyStoreLoginModule authentication module, which is a subset of
what is available in J2SE version 1.4.2.

lib/jce.jar
lib/ext/sunjce_provider.jar
lib/sunrsasign.jar

Java Cryptography Extension (JCE) Optional Package is a part of JSR-219
which extends the Java Cryptography Architecture (JCA) to include key
generation and agreement, encryption and message authentication code
(MAC) generation services. jce.jar contains the JCE Optional Package
implementation which is fully compatible with J2SE version 1.4.2.

sunjce_provider.jar contains the default provider implementation
of the JCE service provider interface (SPI) and is fully compatible with
J2SE version 1.4.2. Note that lib/ext is part of the extension class search
path, but not part of the system class search path. See Section 3.3, "Class
Search Path Basics" for more information about class search paths.

sunrsasign.jar contains the default provider implementation of the
RSA signature SPI and is fully compatible with the default provider
implementation in J2SE version 1.4.2. See "How to Implement a Provider
for the Java Cryptography Architecture" in JSR-219.

lib/jsse-cdc.jar Java Secure Socket Extension (JSSE) Optional Package is a part of JSR-219
which provides support for secure communication. jsse.jar contains
both the JSSE Optional Package implementation and the default provider
implementation, which is fully compatible with the default provider
implementation in J2SE version 1.4.2.

lib/security/cacerts Certificate authority (CA) keystore file. The default keystore password is
"changeit". See keytool(1) for more information about how to use the
Java SE SDK key and certificate management tool to change the keystore
password.

lib/security/local_policy.jar
lib/security/US_export_policy.jar

Security jurisdiction policy files.

Table 2–1 (Cont.) Standard Files

File Description

Development Files

Software Layout 2-3

2.3 Development Files
Table 2–3 describes files that can be used with developer tools like compilers and
debuggers. These files are further described in Chapter 6.

Table 2–3 Development Files

File Description

lib/btclasses.zip The CDC Java class library can be used for compiling
application source code.

Note: Because the contents of these archive files can vary
depending on the selected build options, application
development must be based on a target development version of
the CDC Java class library. See the companion document CDC
Build System Guide for information about how to build a target
development version of the CDC Java class library.

lib/libdt_socket[_g].so
lib/libjdwp[_g].so

The Java Debug Wire Protocol (JDWP) shared libraries are
necessary for remote debugging.

Development Files

2-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

3

Running Applications 3-1

3Running Applications

The CDC Java runtime environment includes cvm, the CDC application launcher, for
loading and executing Java applications. This chapter describes basic use of the cvm
command to launch different kinds of Java applications, in addition to more advanced
topics like memory management and dynamic compiler policies.

3.1 Launching a Java Application
cvm, the CDC application launcher is similar to java, the Java SE application
launcher. For the Oracle (Java ME) Embedded Client, see the Oracle Java Micro Edition
Embedded Client Reference Guide for detailed information about using cvm to launch
Java applications for the Oracle Java ME Embedded Client.

Many of cvm's command-line options are borrowed from java. The basic method of
launching a Java application is to specify the top-level application class containing the
main() method on the cvm command-line. For example,

% cvm HelloWorld

By default, cvm looks for the top-level application class in the current directory.
Alternatively, the synonymous -cp and -classpath command-line options specify
a list of locations where cvm searches for application classes instead of the current
directory. For example,

% cvm -cp /mylib/archive.zip HelloWorld

Here cvm searches for HelloWorld in an archive file /mylib/archive/.zip. See
Section 3.3, "Class Search Path Basics" for more information about class search paths.

The -help option displays a brief description of the available command-line options.
Appendix A provides a complete description of the command-line options available
for cvm.

3.2 Running Managed Applications (Personal Basis Profile only)
Managed application models allow developers to offload the tasks of deployment and
resource management to a separate application manager. The CDC Java runtime
environment includes sample application managers for an xlet application model.

Note: For the Oracle Java Micro Edition (Java ME) Embedded Client, cvm
is located in InstallDir/Oracle_JavaME_Embedded_
Client/binaries/bin. See the Oracle Java Micro Edition Embedded
Client Reference Guide for detailed information about using cvm for the
Oracle Java ME Embedded Client.

Running Managed Applications (Personal Basis Profile only)

3-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

The xlet application model doesn't require an explicit dependency on AWT. These
features make xlets appropriate for embedded device scenarios like set-top boxes and
PDAs.

3.2.1 Running an Xlet (Personal Basis Profile)
The CDC Java runtime environment includes a simple xlet manager named
com.sun.xlet.XletRunner. Xlets can be graphical, in which case the xlet manager
displays each xlet in its own frame, or they can be non-graphical. The basic command
syntax to launch XletRunner is:

% cvm com.sun.xlet.XletRunner { \
 -name xletName \
 (-path xletPath | -codebase urlPath) \
 -args arg1 arg2 arg3 ...} \
 ...
% cvm com.sun.xlet.XletRunner -filename optionsFile
% cvm com.sun.xlet.XletRunner -usage
Table 3–1 describes XletRunner's command-line options:

Here are some command-line examples for launching xlets with
com.sun.xlet.XletRunner:

■ To run MyXlet in Myclasses.jar:

% cvm com.sun.xlet.XletRunner \
 -name basis.MyXlet \
 -path Myclasses.jar

■ To run an xlet with multiple command-line arguments:

% cvm com.sun.xlet.XletRunner \
 -name MyXlet \
 -path . \

Table 3–1 XletRunner Command-Line Options

Option Description

-name xletName Required. Identifies the top-level Java class that implements the
javax.microedition.xlet.Xlet interface.

-path xletPath Required (or substituted with the -codebase option described
below). Specifies the location of the target xlet with a local
pathname. The path can be absolute or relative to the current
directory. If the xlet is in a jar or Zip archive file, then use the
archive file name.

Note: The xlet must not be found in the system class path,
especially when running more than one xlet, because xlets must be
loaded by their own class loader.

-codebase urlPath Optional. Specifies the location of the target xlet with a URL. The
-codebase option can be substituted for -path to provide a
URL-formatted path instead of a local pathname.

-args arg1 [arg2]
[arg3] ...

Optional. Passes additional runtime arguments to the xlet.
Multiple arguments are separated by spaces.

-filename optionsFile Optional. Reads options from an ASCII file rather than from the
command line. The -filename option must be the first option
provided to XletRunner.

-usage Display a usage string describing XletRunner's

 command-line options.

Class Search Path Basics

Running Applications 3-3

 -args top bottom right left

■ To run more than one xlet, repeat the XletRunner options:

% cvm com.sun.xlet.XletRunner \
 -name ServerXlet -path ./server \
 -name ClientXlet -path ./client

■ To run an xlet whose compiled code is at the URL
http://myurl.com/xlets/MyXlet.class:

% cvm com.sun.xlet.XletRunner \
 -name MyXlet \
 -codebase http://myurl.com/xlets/

■ To run an xlet in a jar file named xlet.jar with the arguments colorMap and
blue, use the following command line:

% cvm com.sun.xlet.XletRunner \
 -name StockTickerXlet \
 -path xlet.jar \
 -args colorMap blue

■ To run an xlet with command-line options in an argument file:

% cvm com.sun.xlet.XletRunner -filename myArgsFile
myArgsFile contains a text line with valid XletRunner options:

-name StockTickerXlet -path Myxlet.jar -args colorMap blue

3.3 Class Search Path Basics
The Java runtime environment uses various search paths to locate classes, resources
and native objects at runtime. This section describes the two most important search
paths: the Java class search path and the native method search path.

3.3.1 Java Class Search Path
Java applications are collections of Java classes and application resources that are built
on one system and then potentially deployed on many different target platforms.
Because the file systems on these target platforms can vary greatly from the
development system, Java runtime environments use the Java class search path as a
flexible mechanism for balancing the needs of platform-independence against the
realities of different target platforms.

The Java class search path mechanism allows the Java virtual machine to locate and
load classes from different locations that are defined at runtime on a target platform.
For example, the same application could be organized in one way on a MacOS system
and another on a Linux system. Preparing an application's classes for deployment on
different target systems is part of the development process. Arranging them for a
specific target system i s part of the deployment process.

The Java class search path defines a list of locations that the Java virtual machine uses
to find Java classes and application resources. A location can be either a file system
directory or a jar or Zip archive file. Locations in the Java class search path are
delimited by a platform-dependent path separator defined by the path.separator
system property. The Linux default is the colon ":" character.

The Java SE documentation1 describes three related Java class search paths:

Class Search Path Basics

3-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

■ The system or bootstrap classes comprise the Java platform. The system class search
path is a mechanism for locating these system classes. The default system search
path is based on a set of jar files located in JRE/lib.

■ The extension classes extend the Java platform with optional packages like the JDBC
Optional Package. The extension class search path is a mechanism for locating these
optional packages. cvm uses the -Xbootclasspath command-line option to
statically specify an extension class search path at launch time and the
sun.boot.class.path system property to dynamically specify an extension
class search path. The CDC default extension class search path is CVM/lib,
except for some of the provider implementations for the security optional
packages described in Table 2–2 which are stored in CVM/lib/ext. The Java SE
default extension class search path is JRE/lib/ext.

■ The user classes are defined and implemented by developers to provide application
functionality. The user class search path is a mechanism for locating these
application classes. Java virtual machine implementations like the CDC Java
runtime environment can provide different mechanisms for specifying an Java
class search path. cvm uses the -classpath command-line option to statically
specify an Java class search path at launch time and the java.class.path
system property to dynamically specify an user class search path. The Java SE
application launcher also uses the CLASSPATH environment variable, which is not
supported by the CDC Java runtime environment.

3.3.2 Native Method Search Path
The CDC HotSpot Implementation virtual machine uses the Java Native Interface1
(JNI) as its native method support framework. The JNI specification leaves the
platform-level implementation of native methods up to the designers of a Java virtual
machine implementation. For the Linux-based CDC Java runtime environment
described in this runtime guide, a JNI native method is implemented as a Linux
shared library that can be found in the native library search path defined by the
java.library.path system property.

Here is a simple example of how to build and use an application with a native method.
The mechanism described below is very similar to the Java SE mechanism.

1. Compile a Java application containing a native method.

1See the tools documentation at
http://download.oracle.com/javase/1.4.2/docs/tooldocs/tools.html for a
description of the J2SDK tools and how they use Java class search paths.
1 See the Java Native Interface: Programmer's Guide and Specification.

Note: The standard mechanism for specifying the native library
search path is the java.library.path system property. However,
the Linux dynamic linking loader may cause other shared libraries to
be loaded implicitly. In this case, the directories in the LD_
LIBRRARY_PATH environment variable are searched without using the
java.library.path system property. One example of this issue is
the location of the Qt shared library. If the target Linux platform has
one version of the Qt. shared library in /usr/lib and the CDC Java
runtime environment uses another version located elsewhere, this
directory must be specified in the LD_LIBRRARY_PATH environment
variable.

Memory Management

Running Applications 3-5

% javac -boot class path lib/btclasses.zip HelloJNI.java

2. Generate the JNI stub file for the native method.

% Java -bootclasspath lib/btclasses.zip HelloJNI

3. Compile the native method library.

% gcc HelloJNI.c -shared -I${CDC_SRC}/src/share/javavm/export \
 -I${CDC_SRC}/src/linux/javavm/include -o libHelloJNI.so

This step requires the CDC-based JNI header files in the CDC source release.

4. Relocate the native method library in the test directory.

% mkdir test
% mv libHelloJNI.so test

5. Launch the application.

% cvm -Djava.library.path=test HelloJNI

If the native method implementation is not found in the native method search
path, the CDC Java runtime environment throws an UnsatisfiedLinkError.

3.4 Memory Management
The CDC Java runtime environment uses memory to operate the Java virtual machine
and to create, store, and use objects and resources. This section provides an overview
of how memory is used by the Java virtual machine. Of course, the actual memory
requirements of a specific Java application running on a specific Java runtime
environment hosted on a specific target platform can only be determined by
application profiling. This section, however, provides useful guidelines.

3.4.1 The Java Heap
When it launches, the CDC Java runtime environment uses the native platform's
memory allocation mechanism to allocate memory for native objects and reserve a
pool of memory, called the Java heap, for Java objects and resources.

■ The size of the Java heap can grow and shrink within the boundaries specified by
the -Xmxsize, -Xmssize and -Xmnsize command-line options described in
Table A–1.

■ If the requested Java heap size is larger than the available memory on the device,
the Java runtime environment exits with an error message:

% cvm -Xmx23000M MyApp
Cannot start VM (error parsing heap size command line option -Xmx)
Cannot start VM (out of memory while initializing)
Cannot start VM (CVMinitVMGlobalState failed)
Could not create JVM.

■ If there isn't enough memory to create a Java heap of the requested size, the Java
runtime environment exits with an error message:

% cvm -Xmx2300M MyApp
Cannot start VM (unable to reserve GC heap memory from OS)
Cannot start VM (out of memory while initializing)
Cannot start VM (CVMinitVMGlobalState failed)
Could not create JVM.

Memory Management

3-6 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

■ If the application launches and later needs more memory than is available in the
Java heap, the CDC Java runtime environment throws an OutOfMemoryError.

■ The heap grows and shrinks between the -Xmn and -Xmx values based on heap
utilization. This is true for Linux ports, but not all ports.

For example,

% cvm -Xms10M -Xmn5M -Xmx15M MyApp

launches the application MyApp and sets the initial Java heap size to 10 MB, with a
low water mark of 5 MB and a high water mark of 15 MB.

3.4.2 Garbage Collection
When a Java application creates an object, the Java runtime environment allocates
memory out of the Java heap. And when the object is no longer needed, the memory
should be recycled for later use by other objects and resources. Conventional
application platforms require a developer to track memory usage. Java technology
uses an automatic memory management system that transfers the burden of managing
memory from the developer to the Java runtime environment.

The Java runtime environment detects when an object or resource is no longer being
used by a Java application, labels it as "garbage" and later recycles its memory for
other objects and resources. This garbage collection (GC) system frees the developer
from the responsibility of manually allocating and freeing memory, which is a major
source of bugs with conventional application platforms.

GC has some additional costs, including runtime overhead and memory footprint
overhead. However, these costs are small in comparison to the benefits of application
reliability and developer productivity.

3.4.2.1 Garbage Collection in the CDC HotSpot Implementation
The Java Virtual Machine Specification does not specify any particular GC behavior
and early Java virtual machine implementations used simple and slow GC algorithms.
More recent implementations like the Java HotSpot Implementation virtual machine
provide GC algorithms tuned to the needs of desktop and server Java applications.
And now the CDC HotSpot Implementation includes a GC framework that has been
optimized for the needs of connected devices.

The major features of the GC framework in the CDC HotSpot Implementation are:

■ Exactness. Exact GC is based on the ability to track all pointers to objects in the Java
heap. Doing so removes the need for object handles, reduces object overhead,
increases the completeness of object compaction and improves reliability and
performance.

■ Default Generational Collector. The CDC HotSpot Implementation Java virtual
machine includes a generational collector that supports most application
scenarios, including the following:

– general-purpose

– excellent performance

– robustness

– reduced GC pause time

– reduced total time spent in GC

Memory Management

Running Applications 3-7

■ Pluggability. While the default generational collector serves as a general-purpose
garbage collector, the GC plug-in interface allows support for device-specific
needs. Runtime developers can use the GC plug-in interface to add new garbage
collectors at build-time without modifying the internals of the Java virtual machine.
In addition, starter garbage collector plug-ins are available from Java Partner
Engineering.

3.4.2.2 Default Generational Collector
The default generational collector manages memory in the Java heap. Table 3–1 shows
how the Java heap is organized into two heap generations, a young generation and a
tenured generation. The generational collector is really a hybrid collector in that each
generation has its own collector. This is based on the observation that most Java
objects are short-lived. The generational collector is designed to collect these
short-lived objects as rapidly as possible while promoting more stable objects to the
tenured generation where objects are collected less frequently.

Figure 3–1 GC Generations

The young generation is based on a technique called copying semispace. The young
generation is divided into two equivalent memory pools, the from-space and the
to-space. Initially, objects are allocated out of the from-space. When the from-space
becomes full, the system pauses and the young generation begins a collection cycle
where only the live objects in the from-space are copied to the to-space. The two

Note: Needing an alternate GC plug-in is rare. If an application has
an object allocation and longevity profile that differs significantly
from typical applications (to the extent that the application profile
cannot be catered to by setting the GC arguments), and this difference
turns out to be a performance bottleneck for the application, then an
alternate GC implementation may be appropriate.

Memory Management

3-8 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

memory pools then reverse roles and objects are allocated from the "new" from-space.
Only surviving objects are copied. If they survive a certain number of collection cycles
(the default is 2), then they are promoted to the tenured generation.

The benefit of the copying semispace technique is that copying live objects across
semispaces is faster than relocating them within the same semispace. This requires
more memory, so there is a trade-off between the size of the young generation and GC
performance.

The tenured generation is based on a technique called mark compact. The tenured
generation contains all objects that have survived several copying cycles in the young
generation. When the tenured generation reaches a certain threshold, the system
pauses and it begins a full collection cycle where both generations go through a
collection cycle. The young generation goes through the stages outlined above. Objects
in the tenured generation are scanned from their "roots" and determined to be live or
dead. Next, the memory for dead objects is released and the tenured generation goes
through a compacting phase where objects are relocated within the tenured
generation.

The default generational garbage collector reduces performance overhead and helps
collect short-lived objects rapidly, which increases heap efficiency.

3.4.2.3 Tuning Options
The relative sizes of generations can affect GC performance. So the -Xgc:youngGen
command-line option controls the size of the young object portion of the heap. See
Table A–3 for more information about GC command-line options.

■ youngGen should not be too small. If it is too small, partial GCs may happen too
frequently. This causes unnecessary pauses and retain more objects in the tenured
generation than is necessary because they don't have time to age and die out
between GC cycles.

The default size of youngGen is about 1/8 of the overall Java heap size.

■ youngGen should not be too large. If it is too large, even partial GCs may result in
lengthy pauses because of the number of live objects to be copied between
semispaces or generations will be larger.

By default, the CDC Java runtime environment caps youngGen size to 1 MB
unless it is explicitly specified on the command line.

■ The total heap size needs to be large enough to cater for the needs of the
application. This is very application-dependent and can only be estimated.

3.4.3 Class Preloading
The CDC HotSpot Implementation virtual machine includes a mechanism called class
preloading that streamlines VM launch and reduces runtime memory requirements.
The CDC build system includes a special build tool called JavaCodeCompact that
performs many of the steps at build-time that the VM would normally perform at
runtime. This saves runtime overhead because class loading is done only once at
build-time instead of multiple times at runtime. And because the resulting class data
can be stored in a format that allows the VM to execute in place from a read-only file
system (for example, Flash memory), it saves memory.

Memory Management

Running Applications 3-9

3.4.3.1 Class Preloading and Verification
Java class verification is usually performed at class loading time to insure that a class
is well-behaved. This has both performance and security benefits. This section
describes a performance optimization that avoids the overhead of Java class
verification for some application classes.

One way to avoid the overhead of Java class verification is to turn it off completely:

% cvm -Xverify:none -cp MyApp.jar MyApp

This approach has the benefit of more quickly loading the application's classes. But it
also turns off important security mechanisms that may be needed by applications that
perform remote class loading.

Another approach is based on using JavaCodeCompact to preload an application's

 Java classes at build time. The application's classes load faster at runtime and other
classes can be loaded remotely with the security benefits of class verification.

The companion document CDC Build Guide describes how to use JavaCodeCompact
to preload an application's classes so that they are included with the CDC Java
runtime environment's binary executable image. Once built, the mechanism for
running a preloaded application is very simple. Just identify the application without
using -cp to specify the user Java class search path.

% cvm -Xverify:remote MyApp

The remote option indicates that preloaded and system classes will not be verified.
Because this is the default value for the -Xverify option, it can be safely omitted. It is
shown here to fully describe the process of preloading an application's classes.

3.4.4 Setting the Maximum Working Memory for the Dynamic Compiler
The -Xjit:maxWorkingMemorySize command-line option sets the maximum
working memory size for the dynamic compiler. Note that the 512 KB default can be
misleading. Under most circumstances the working memory for the dynamic compiler
is substantially less and is furthermore temporary. For example, when a method is
identified for compiling, the dynamic compiler allocates a temporary amount of
working memory that is proportional to the size of the target method. After compiling
and storing the method in the code buffer, the dynamic compiler releases this
temporary working memory.

The average method needs less than 30 KB but large methods with lots of inlining can
require much more. However since 95% of all methods use 30 KB or less, this is rarely

Note: It is important to understand that decisions about class
preloading are generally made at build-time. See the companion
document CDC Build Guide for information about how to use
JavaCodeCompact to include Java class files with the list of files
preloaded by JavaCodeCompact with the CDC Java runtime
environment's executable image.

Note: JavaCodeCompact assumes the classes it processes are valid
and secure. Other means of determining class integrity should be used
at build-time.

Tuning Dynamic Compiler Performance

3-10 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

an issue. Setting the maximum working memory size to a lower threshold should not
adversely affect performance for the majority of applications.

3.5 Tuning Dynamic Compiler Performance
This section shows how to use cvm command-line options that control the behavior of
the CDC HotSpot Implementation Java virtual machine's dynamic compiler for
different purposes:

■ Optimizing a specific application's performance.

■ Configuring the dynamic compiler's performance for a target device.

■ Exercising runtime behavior to aid the porting process.

Using these options effectively requires an understanding of how a dynamic compiler
operates and the kind of situations it can exploit. During its operation the CDC
HotSpot Implementation virtual machine instruments the code it executes to look for
popular methods. Improving the performance of these popular methods accelerates
overall application performance.

The following subsections describe how the dynamic compiler operates and provides
some examples of performance tuning. For a complete description of the dynamic
compiler-specific command-line options, see Appendix A.

3.5.1 Dynamic Compiler Overview
The CDC HotSpot Implementation virtual machine offers two mechanisms for method
execution: the interpreter and the dynamic compiler. The interpreter is a straightforward
mechanism for executing a method's bytecodes. For each bytecode, the interpreter
looks in a table for the equivalent native instructions, executes them and advances to
the next bytecode. Shown in Figure 3–2, this technique is predictable and compact, yet
slow.

Figure 3–2 Interpreter-Based Method Execution

The dynamic compiler is an alternate mechanism that offers significantly faster
runtime execution. Because the compiler operates on a larger block of instructions, it
can use more aggressive optimizations and the resulting compiled methods run much
faster than the bytecode-at-a-time technique used by the interpreter. This process
occurs in two stages. First, the dynamic compiler takes the entire method's bytecodes,
compiles them as a group into native code and stores the resulting native code in an
area of memory called the code cache as shown in Figure 3–3.

Tuning Dynamic Compiler Performance

Running Applications 3-11

Figure 3–3 Compiling a Method

Then the next time the method is called, the runtime system executes the compiled
method's native instructions from the code cache as shown in Figure 3–4.

Figure 3–4 Executing a Compiled Method

The dynamic compiler cannot compile every method because the overhead would be
too great and the start-up time for launching an application would be too noticeable.
Therefore, a mechanism is needed to determine which methods get compiled and for
how long they remain in the code cache.

Because compiling every method is too expensive, the dynamic compiler identifies
important methods that can benefit from compilation. The CDC HotSpot
Implementation Java virtual machine has a runtime instrumentation system that
measures statistics about methods as they are executed. cvm combines these statistics
into a single popularity index for each method. When the popularity index for a given
method reaches a certain threshold, the method is compiled and stored in the code
cache.

■ The runtime statistics kept by cvm can be used in different ways to handle various
application scenarios. To do this, cvm exposes certain weighting factors as
command-line options. By changing the weighting factors, cvm can change the
way it performs in different application scenarios. A specific combination of these
options express a dynamic compiler policy for a target application. An example of
these options and their use is provided in Section 3.5.2.1, "Managing the
Popularity Threshold".

■ The dynamic compiler has options for specifying code quality based on various
forms of inlining. These provide space-time trade-offs: aggressive inlining
provides faster compiled methods, but consume more space in the code cache. An
example of the inlining options is provided in Section 3.5.2.2, "Managing
Compiled Code Quality".

■ Compiled methods are not kept in the code cache indefinitely. If the code cache
becomes full or nearly full, the dynamic compiler decompiles the method by
releasing its memory and allowing the interpreter to execute the method. An
example of how to manage the code cache is provided in Section 3.5.2.3,
"Managing the Code Cache".

Tuning Dynamic Compiler Performance

3-12 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

3.5.2 Dynamic Compiler Policies
The cvm application launcher has a group of command-line options that control how
the dynamic compiler behaves. Taken together, these options form dynamic compiler
policies that target application or device specific needs. The most common are
space-time trade-offs. For example, one policy might cause the dynamic compiler to
compile early and often while another might set a higher threshold because memory is
limited or the application is short-lived.

Table A–7 describes the dynamic compiler-specific command-line options and their
defaults. These defaults provide the best overall performance based on experience
with a large set of applications and benchmarks and should be useful for most
application scenarios. They might not provide the best performance for a specific
application or benchmark. Finding alternate values requires experimentation, a
knowledge of the target application's runtime behavior and requirements in addition
to an understanding of the dynamic compiler's resource limitations and how it
operates.

The following examples show how to experiment with these options to tune the
dynamic compiler's performance.

3.5.2.1 Managing the Popularity Threshold
When the popularity index for a given method reaches a certain threshold, it becomes
a candidate for compiling. cvm provides four command-line options that influence
when a given method is compiled: the popularity threshold and three weighting
factors that are combined into a single popularity index:

■ climit, the popularity threshold. The default is 20000.

■ bcost, the weight of a backwards branch. The default is 4.

■ icost, the weight of an interpreted to interpreted method call. The default is 20.

■ mcost, the weight of transitioning between a compiled method and an interpreted
method and vice versa. The default is 50.

Each time a method is called, its popularity index is incremented by an amount based
on the icost and mcost weighting factors. The default value for climit is 20000. By
setting climit at different levels between 0 and 65535, you can find a popularity
threshold that produces good results for a specific application.

The following example uses the -Xjit:option command-line option syntax to set an
alternate climit value:

% cvm -Xjit:climit=10000 MyTest

Setting the popularity threshold lower than the default causes the dynamic compiler to
more eagerly compile methods. Since this usually causes the code cache to fill up
faster than necessary, this approach is often combined with a larger code cache size to
avoid compilation/decompilation thrashing.

3.5.2.2 Managing Compiled Code Quality
The dynamic compiler can choose to inline methods for providing better code quality
and improving the speed of a compiled method. Usually this involves a space-time
trade-off. Method inlining consumes more space in the code cache but improves
performance. For example, suppose a method to be compiled includes an instruction
that invokes an accessor method returning the value of a single variable.

public void popularMethod() {
...

Ahead-of-Time Compilation

Running Applications 3-13

 int i = getX();
...
}
public int getX() {
 return X;
}
getX() has overhead like creating a stack frame. By copying the method's
instructions directly into the calling method's instruction stream, the dynamic
compiler can avoid that overhead.

cvm has several options for controlling method inlining, including the following:

■ maxInliningCodeLength sets a limit on the bytecode size of methods to inline.
This value is used as a threshold that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined at deeper depths. In addition, if
the inlined method is less than value/2, the dynamic compiler allows unquick
opcodes in the inlined method.

■ minInliningCodeLength sets the floor value for maxInliningCodeLength
when its size is proportionally decreased at greater inlining depths.

■ maxInliningDepth limits the number of levels that methods can be inlined.

For example, the following command-line specifies a larger maximum method
size.

% cvm -Xjit:inline=all,maxInliningCodeLength=80 MyTest

3.5.2.3 Managing the Code Cache
On some systems, the benefits of compiled methods must be balanced against the
limited memory available for the code cache. cvm offers several command-line options
for managing code cache behavior. The most important is the size of the code cache,
which is specified with the codeCacheSize option.

For example, the following command-line specifies a code cache that is half the default
size.

% cvm -Xjit:codeCacheSize=256k MyTest

A smaller code cache causes the dynamic compiler to decompile methods more
frequently. Therefore, you might also want to use a higher compilation threshold in
combination with a lower code cache size.

The build option CVM_TRACE_JIT=true allows the dynamic compiler to generate a
status report for when methods are compiled and decompiled. The command-line
option -Xjit:trace=status enables this reporting, which can be useful for tuning
the codeCacheSize option.

3.6 Ahead-of-Time Compilation
Ahead-of-time compilation (AOTC) refers to compiling Java bytecode into native
machine code beforehand, for example during VM build time or install time. In
CDC-HI, AOTC happens when the VM is being executed for the first time on the
target platform. A set of Java methods is compiled during VM startup and the
compiled code is saved into a file. During subsequent executions of CVM the saved
AOTC code is found and executed like dynamically compiled code.

Ahead-of-Time Compilation

3-14 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

3.6.1 Using AOTC
AOTC is run in two basic stages: an initial run to compile a method list specified in a
text file and subsequent runs that use that precompiled method list.

■ Initial run. AOTC is enabled with the -aot=true command-line option. The first
time cvm is executed, it must also include the aotMethodList=file to specify the
location of the method list file. These methods are compiled and stored in the
cvm.aot file. The aotFile=file command-line option can be used to specify an
alternate location for the precompiled methods.

■ Subsequent runs. When cvm is run again, it must also use -aot=true
command-line option and aotFile=file if it was used.

If it becomes necessary to recompile the method list, this can be done with the
recompileAOT=boolean command-line option.

See Table A–7 for a description of the AOTC command-line options.

3.6.2 How to Create methodsList.txt
A good way to produce a method list is to start by building a VM with CVM_TRACE_
JIT=true and running with -Xjit:trace=status. This shows all the methods
being compiled while running a particular application. Note that non-romized
methods should not be included in the method list.

Adding or removing methods in methodsList.txt does not cause AOTC code
being regenerated. To regenerate the precompiled AOTC code, use the
recompileAOT=boolean command-line option to delete the bin/cvm.aot file.

4

Security 4-1

4Security

Security is a principal feature of Java technology and an important requirement for
mobile and enterprise applications. CDC includes the same security features that are
in the Java SE platform. These include built-in security features of the Java
programming language and virtual machine in addition to a flexible security
framework for more advanced application scenarios.

This chapter provides an overview of the security framework in addition to an outline
of the kinds of security procedures that might be performed at runtime. It is not meant
to replace the security documentation available for the Java SE platform, but rather to
supplement it and show how CDC and the JAAS, JCE and JSSE security optional
packages are related to their counterparts in the Java SE platform.

Table 4–1 describes the security documentation for the Java SE platform.

4.1 Overview
The security framework shared by the Java SE platform and CDC is based on three key
components:

■ Built-in Security Features

Table 4–1 Security Documentation for the Java SE Platform

Document Description

Inside Java 2
Platform Security

Describes the Java security framework, including security
architecture, deployment and customization. Chapter 12
describes deployment and runtime procedures. See
documentation at

http://java.sun.com/docs/books/security.

Security and the
Java Platform

Main web page for Java security issues. See documentation at

http://www.oracle.com/technetwork/java/javase/t
ech/index-jsp-136007.html.

Java Tutorial,
Security Trail

A tutorial section that describes many of the security
procedures for the Java platform. Because these are identical
between CDC and the Java SE platform, they are not duplicated
in this chapter. See documentation at

http://download.oracle.com/javase/tutorial/secu
rity/index.html.

Security Java SE platform security documentation. See documentation at

http://download.oracle.com/javase/1.4.2/docs/gu
ide/security/spec/security-spec.doc.html.

Overview

4-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

■ Security Policy Framework

■ Security Provider Architecture

These provide a solid base for application and runtime security, a flexible mechanism
for defining deployment-based security needs and a plug-in mechanism for supplying
alternate security implementations.

4.1.1 Built-in Security Features
Java security is based on built-in language and VM security features that have been
part of Java technology from its beginning:

■ Strongly typed language (runtime/compile-time/link-time)

■ Bytecode verification (classloading-time)

■ Safety checks (runtime)

■ Dynamic class loaders (classloading-time)

4.1.2 Security Policy Framework
A security policy controls how system resources are accessed by applications at
runtime. The Java security framework includes both a default security policy and a
mechanism for describing alternate security policies for application and
deployment-specific needs. The main benefits of this security policy framework are:

■ Code-centric, not identity-centric architecture

■ Security policies are described separately from both the applications they control
and the Java runtime environment.

■ Fine-grained access control at the package, class or field level

■ Flexible permission mechanism

■ Protection domains provide a layer of abstraction between permissions and code.

The main elements of a security policy are the following:

■ permission set, a list of permissions granted to the code

■ codeBase, the location from where the code is loaded

■ signedBy, the author of the code

■ principal, the identity of the entity running the code

Figure 4–1 illustrates the Java security model by showing how application code can be
loaded from different sources: local and remote. The security manager controls access
to system resources by comparing properties of the application code with the current
security policy. The default security policy allows full access to local application code
and limited access to remote application code. But other security policies are possible.
For example, application code from a trusted yet remote source may be given greater
access than untrusted code from a local source.

Overview

Security 4-3

Figure 4–1 Java Security Policy Model

4.1.3 Security Provider Architecture
Beginning with version 1.2, the Java SE platform added some security optional
packages that allow Java technology to adapt to more specific requirements of
applications and deployments. These security optional packages include a security
provider architecture that is interoperable because it is based on publicly available
security standards, and extensible because alternate security provider implementations can
be supplied without requiring modifications to application code.

For example, the JAAS, JCE and JSSE security optional packages include several service
provider interfaces (SPIs) that describe the requirements of a security provider
implementation. Table 2–2 describes the default implementations for these security
components.

4.1.4 Custom JSSE Provider Plug-ins
JSSE supports custom Provider plug-ins which can be implemented as extensions of
SSLSocketFactory.

4.1.5 Oracle JSSE Cipher Suite Support
Many of the standard JSSE algorithm names are prefixed with SSL_. JSSE now
supports the TLS_ prefix to be used as an alias to a standard algorithm name.

4.1.6 Self-Integrity Checks
In general, a JCE Provider implementation should include self-integrity checks. For
example, Oracle's current JCE provider (Oracle JCE) includes self-integrity checks.
However, this is not a requirement of the JCE or Oracle for a third-party JCE provider.
A third-party JCE provider should make its own choice regarding whether including
self-integrity checks or not.

Security Procedures

4-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

4.2 Security Procedures
This section outlines the security procedures surrounding the Java security framework
described in the previous section. Because these procedures are identical to the
procedures used for the Java SE platform, this section just describes the procedure and
indicates where to find the appropriate Java SE platform documentation.

4.2.1 Using Alternate Security Providers
From an administrator's perspective, the first step is to choose whether to install and
use any alternate security providers. In most cases, the default security providers
described in Table 2–2 are sufficient.

For a description of how to install alternate security providers, see Inside Java 2
Platform Security, Second Edition. Section 12.5, Installing Provider Packages, describes how
to install alternate security providers.

4.2.2 Public Key Management
The JAAS optional package includes an extensible authentication framework that can
use different forms of authentication. The default LoginModule is the
KeyStoreLoginModule, which uses a protected database (Oracle's JKS keystore file)
to store public key data. Other forms of authentication are possible like smart card or
Kerberos.

The main tool for managing keystore files is keytool(1), which is included in the Java
SE platform toolset. keytool can be used for

■ importing a key

■ listing available keys

■ replacing a key

■ deleting a key

The default keystore file is in lib/security/cacerts, described in Table 2–2.

For a description of how to use keytool to add and modify keystore entries, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The security
trail in the Java Tutorial also covers how to use keytool.

4.2.3 Security Policy Management
Security policies are stored in security policy files. policytool is a convenient
GUI-based tool for managing security policies. With it, a system administrator can

■ identify a keystore

■ specify permissions

■ specify a codebase

The location of the default security policy file is lib/security.policy, described
in Table 2–2. Alternate locations can be defined with the -Djava.security.policy
command-line option.

For a description of how to use the policytool to manage security policies, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The security
trail in the Java Tutorial also covers how to use keytool.

Security Procedures

Security 4-5

4.2.4 Seed Generation for Random Number Generation
The CDC Java runtime environment uses a native platform-provided source as an
entropy gathering device for seed generation indicated by the
securerandom.source system property. The Linux default for this system property
is file:/dev/random.

On some Linux systems, /dev/random can block if it hasn't generated sufficient
entropy before a random seed is needed and this can cause applications using
java.security.SecureRandom to hang while waiting for the entropy pool to fill.
To avoid this hang problem, the CDC Java runtime environment has a fallback
mechanism to read from the /dev/urandom device when it determines that there isn't
enough entropy for /dev/random to work promptly.

Note that /dev/urandom is not generally considered strong enough to support
applications like keypair generation. If the strongest possible seed generation is
required, this fallback mechanism can be disabled by setting the
microedition.securerandom.nofallback property to true. Doing so may run
the risk of application hangs on certain devices where the entropy pool is subject to
early exhaustion.

Security Procedures

4-6 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

5

Localization 5-1

5Localization

The CDC Java runtime environment can be localized to support different languages
and cultures. The following sections provide CDC-specific information for localization
procedures:

■ Setting Locale System Properties

■ Timezone Information Files

■ Font Management (Personal Basis Profile only)

5.1 Setting Locale System Properties
In the CDC Java runtime environment, the locale system properties described in
Table 5–1 are set before cvm can parse its command-line arguments. Thus, it is not
possible to change the locale by specifying these system properties on the cvm
command-line with the -Dproperty=value option.

On Linux, these properties are extracted from the LANG locale environment variable
using the format language_region.encoding. The user.language property is obtained
from the language code. The user.region property is obtained from the region code.
The file.encoding property is obtained from the encoding suffix. For example, to
change the locale behavior of cvm on Linux, simply change the LANG locale
environment variable to set the locale system properties.

% setenv LANG en_US.ISO8859_1

Therefore,

user.language = en
user.region = US
file.encoding = ISO8859_1

5.2 Timezone Information Files
The lib/zi directory contains a small set of example timezone information files.
Additional files can be generated and placed in this directory. See the javadoc

Table 5–1 Locale System Properties

System Property Description

user.language Two-letter language name code based on ISO 639.

user.region Two-letter region name code based on ISO 3166.

file.encoding Default character-encoding name based on the IANA Charset MIB.

Font Management (Personal Basis Profile only)

5-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

comments for the sun.util.calendar.ZoneInfoFile class for information about
generating alternate timezone information files.

5.3 Font Management (Personal Basis Profile only)
In the CDC Java runtime environment, font management is a subset of the
functionality provided by Java SE technology and is described below in Table 5–2.

The six logical fonts available to a Java application are described in Table 5–3.

In practice, the only way to specify alternate fonts is to remap the platform logical
fonts. TrueType fonts are mapped to logical platform fonts used by the CDC Java
runtime environment for the Java logical fonts described in Table 5–3.

Table 5–2 Font Management Comparison

Feature Java SE CDC

Default font mapping between Java logical fonts and platform logical
fonts is specified at build-time.

yes yes

Logical font mapping in lib/font.properties file. yes no

Bundled Lucida fonts in lib/fonts. yes no

Application-specific fonts in an application

's jar file.

yes no

Table 5–3 Logical Font Names

Java Logical
Font

Qt Logical
Font Example Description

default Sans Serif Courier The default font is used when no other
font is specified or if an attempt to match
a font fails.

dialog Sans Serif Lucida Sans A font for displaying fixed information
within a dialog box or form.

dialoginput Courier Lucida Sans
Typewriter

A font that is used for text fields within
dialog boxes and forms that represent
user input.

monospaced Courier Lucida Sans
Typewriter

A non-proportional font where each
character has the same width. This
simplifies string width calculations for
dialog boxes and forms.

sanserif Sans Serif Helvetica A streamlined font that is simpler to
render on low-resolution devices like
computer monitors and faxes.

serif Serif Times Roman A font with short lines at the end of the
main strokes of a character to ease visual
character recognition.

6

Developer Tools 6-1

6Developer Tools

One of the principal goals of CDC is to leverage conventional Java SE developer tools
for use with CDC applications and devices. This chapter shows how to integrate the
CDC Java runtime environment with Java SE developer tools like javac, jdb, and
jvmtihprof, in addition to integrated development environments such as NetBeans.

6.1 Compiling With javac
Compiling Java source code is a separate process from execution. All that is needed is
application source code, a Java compiler like javac and an appropriate Java class
library to compile against. In this way, a developer can compile a Java application on a
desktop system and later download it onto a target device for testing or deployment.

This chapter first reviews the API relationship between the CDC and Java SE
platforms. Then it shows how javac compiles a Java class for the Java SE platform
and how this process changes for CDC. Finally, it shows how to compile an example
CDC program.

6.1.1 CDC and Java SE
It is possible to take unmodified application software that was compiled for the Java
SE platform and run it on a CDC Java runtime environment because the CDC Java
virtual machine can load and execute Java classes that are compliant with the class
specification for the Java SE platform.

Figure 6–1 describes the API relationship between the CDC and Java SE platforms. The
two platforms have much in common, including most of the core Java class library.
Differences between the CDC and Java SE APIs can cause discrepancies at runtime.
These differences are based on the need to remove or change certain classes for
memory, functionality or performance reasons.

Figure 6–1 CDC and Java SE API Compatibility

There are four major differences between the CDC and Java SE platforms:

Compiling With javac

6-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

■ Some Java SE packages, classes and methods have been removed because they are
not appropriate for smaller devices. Compiling application source code against the
Java SE class library may work, but the compiled classes may fail to run on a CDC
Java runtime environment because the classes are not available at runtime.

■ Some packages like java.sql are present in the Java SE platform but not in CDC,
though they may be added as an optional package. In this case, compiling
application source code against the Java SE class library may work but running the
compiled classes against the CDC Java runtime environment may not.

■ Most Java SE deprecated methods have been removed from CDC. For example,
java.awt.List.clear() is deprecated in JDK version 1.1 and replaced with
java.awt.List.removeAll(). In this case, compiling a Java SE application
that uses this deprecated method against the CDC Java class library cause javac
to fail to compile because it cannot find the deprecated method.

■ CDC includes CLDC compatibility classes that are not included in the Java SE
class library. In this case, compiling CDC source code against the Java SE class
library might cause javac to fail to compile because these compatibility classes
are not present in the Java SE class library.

Therefore, in practice, it is best to recompile Java source code for a Java SE application
against a CDC Java class library. Finally, the CDC Java class library is modular and
can change based on the needs of a product design. Most of this modularity is based
on profiles and optional packages. See Section 1.6, "Java ME API Choices" for an
explanation of how CDC APIs can vary.

6.1.2 Compiling Java Source Code for the Java SE Platform
Figure 6–2 shows how javac compiles Java source code for the Java SE platform.
When javac processes Java source code, it uses a Java class library to discover type
information about the classes used in the source code. By default, this is the Java SE
class library located in jre/lib/rt.jar.

Figure 6–2 Compiling Java Source Code for the Java SE Platform

For example, when javac encounters a Java type reference like java.util.BitSet,
it gets the type information from the Java SE class library at compile time. Later, at
runtime, when the Java virtual machine creates an object of type
java.util.BitSet, it also gets the type information from the Java SE class library.

6.1.3 Compiling Java Source Code for CDC
The same javac compiler used for developing Java SE applications can be used to
compile Java source code for the CDC Java runtime system. The key is to use a

Compiling With javac

Developer Tools 6-3

different target Java class library to compile against. Figure 6–3 shows how the javac
compiler uses the -bootclasspath command-line option to specify an alternate
target Java class library as a cross-compilation target.

Figure 6–3 Compiling Java Source Code for CDC

The mechanics of using javac to compile Java source code for CDC differ slightly
from those used for the Java SE platform.

6.1.4 Determining the Target Class Library
Section 1.5, "Java Micro Edition Technology Standards", Section 1.6, "Java ME API
Choices", and Figure 1–2 show how the API functionality of a specific CDC product
implementation can vary based on choices made at design time. Therefore, it is
important to use a target development version of the CDC Java class library that
represents the APIs available in the configuration, profile and optional packages on
the target device.

6.1.5 Useful javac Command-Line Options
The page
http://download.oracle.com/javase/6/docs/technotes/tools/windows
/javac.html describes the javac cross-compilation options. These are summarized
in the following subsections.

6.1.5.1 -classpath classpath
Sets the user class search path, which is useful for compiling against third-party class
libraries.

6.1.5.2 -bootclasspath classpath
Sets the system class search path. With javac, this option overrides the Java SE class
library and specifies an alternate target Java class library for cross-compilation like the
target development version of the CDC Java class library.

Note: See the companion document CDC Build System Guide for
information on how to build a target development version of the CDC
Java class library which represents the combination of configuration,
profile and optional packages for the target device

Application Debugging

6-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

6.1.5.3 -extdirs classpath
Sets the extensions class search path for optional packages. The CDC default location
is the lib directory, except for some security optional packages which are found in
the lib/ext directory.

6.1.5.4 -source release
Specifies the version of Java source code accepted. In practice, this controls the use of
Java programming language syntax that conflicts with identifier names. For example,
J2SE 1.4 includes support for the assert keyword and J2SE 1.5 includes support for
generics. Therefore, an int named assert is legal in 1.3 and illegal in 1.4. The
release argument can be set to 1.3, 1.4, 1.5 (or synonym 5), or 1.6 (or synonym 6) for
CDC application development.

6.1.5.5 -target version
This option directs javac to generate Java class files for a specific version of the Java
virtual machine. It is preferable to set the version value to 1.6, though values of 1.2
through 1.5 can also be used for CDC development.

6.1.5.6 -deprecation
Show a description of each use or override of a deprecated member or class. Without
-deprecation, javac shows the names of source files that use or override
deprecated members or classes.

6.1.6 Compiling an Example CDC Program
The example below demonstrates how to compile an application using the
command-line option -bootclasspath argument to specify an alternate target Java
class library:

% javac -target 1.4 -source 1.4 -bootclasspath \
 /home/mydir/myclasses.zip MyApp.java

6.2 Application Debugging
You can remotely debug a CDC application with most debuggers that support the Java
Virtual Machine Tool Interface (JVMTI) described in
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.ht
ml. The most likely choices are the NetBeans, Oracle JDeveloper, and Eclipse
integrated development environments, but you can also use the Java SE jdb command
line debugger or another compatible debugger. You run the debugger on a
development host, and the application plus CDC on the target device. CDC and the
debugger communicate over a network.

CDC debugging has the following limitations:

■ Only interpreted code can be debugged.

■ CDC-debugger connections must use sockets. Shared memory connections are not
supported.

6.2.1 Launching cvm in Debug Mode
Regardless of the debugger you choose, you launch cvm running the application in the
same way.

Application Debugging

Developer Tools 6-5

6.2.1.1 cvm Debug Mode Syntax
Example 6–1 and Example 6–2 show how to launch cvm in debug mode on a target
host. These examples assume that the target host runs a Unix-style operating system
and that socket networking is operational. Make adjustments as necessary for your
target host. For the Oracle Java ME Embedded Client, see the Oracle Java Micro Edition
Embedded Client Reference Guide for the appropriate command syntax and suboptions
used to launch cvm in debug mode.

For a list of debug suboptions, run cvm -agentlib:jdwp=help or refer to
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.
html.

Example 6–1 cvm Listens for Connection from Debugger

% cvm -agentlib:jdwp=transport=dt_socket,server=y,address=port -Xdebug ...

Example 6–2 cvm Connects to Debugger

% cvm -agentlib:jdwp=transport=dt_socket,server=n,address=host:port -Xdebug ...

When launching cvm in debug mode, observe the following requirements:

■ -agentlib:jdwp and the transport and address suboptions must be
specified.

■ The transport value must be dt_socket.

■ Set server to y to direct cvm to listen for a connection from the debugger (the
most likely case). Set server to n to direct cvm to attach to a listening debugger.

■ If server=y, set port to the socket port on the target host at which cvm listens for
a connection. If server-n, set host:port to the host and socket port at which the
debugger waits for a connection from cvm.

■ -Xdebug disables the compiler so the virtual machine interprets the application's
bytecodes.

6.2.1.2 cvm Debug Mode Example
Example 6–3 shows a simple example of launching cvm as a server to debug a
HelloWorld application.

Example 6–3 Launching cvm as a Server

% cvm -agentlib:jdwp=transport=dt_socket,server=y,address=8000 -Xdebug -classpath
/home/mydir/myclasses.zip HelloWorld
Listening for transport dt_socket at address: 8000

Note: For the Oracle Java ME Embedded Client, cvm is installed on
your system in the following location:

InstallDir/Oracle_JavaME_Embedded_Client/binaries/bin/cvm

See the Oracle Java Micro Edition Embedded Client Reference Guide for
detailed information about launching cvm for the Oracle Java ME
Embedded Client.

Application Debugging

6-6 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

6.2.2 Attaching the NetBeans IDE Debugger to cvm
Although this section describes the NetBeans debugger, other IDE debuggers that are
compatible with the Java Virtual Machine Tool Interface (JVMTI) can be used
similarly. This section first describes the most common arrangement in which cvm acts
as a server for the debugger, then the converse case.

1. Load the NetBeans project you want to debug and create a debugger operation,
such as a breakpoint. Figure 6–4 shows an example.

Ensure that the project's compiled class files are accessible to the target host and
that the class files correspond to the source files loaded in the IDE.

Figure 6–4 Breakpoint in HelloWorld.java

2. On the target host, launch cvm with server=y and, for this example,
address=8000, similar to the example in Section 6.2.1.2, "cvm Debug Mode
Example".

3. In NetBeans, choose Debug > Attach Debugger.

4. Set up the Attach Debugger dialog as shown in Figure 6–5.

Substitute the target host name for (Target Host).

Application Debugging

Developer Tools 6-7

Figure 6–5 Attach Debugger Dialog (Debugger as Client)

The debugger connects and indicates that execution has stopped at the breakpoint as
similar to Figure 6–6.

Figure 6–6 Debugger Connected and Stopped at Breakpoint

If you want the debugger to be the server, complete the Attach Debugger dialog
similar to Figure 6–7. After clicking OK, launch cvm on the target host with server=n
and address= the debuggers' host and port.

Application Profiling

6-8 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Figure 6–7 Debugger as Server Attach Debugger Setup

6.2.3 Attaching to cvm with jdb
After launching cvm as a debug server (see Section 6.2.1.2, "cvm Debug Mode
Example") on the target host, you can connect to it with the jdb command line
debugger using syntax similar to Example 6–4. The jdb command is in
JavaSEinstall/bin/.

Example 6–4 Attaching to cvm with jdb

% jdb -connect com.sun.jdi.SocketAttach:hostname=hostname,port=8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>
VM Started: No frames on the current call stack
main[1]

6.3 Application Profiling
Profiling is the acquisition of runtime performance data for an application on a target
runtime system. Understanding the runtime behavior of an application allows the
developer to identify performance-sensitive components when tuning an application's
implementation or selecting runtime features. cvm profiling provides reports that
include CPU usage, heap allocation statistics, and monitor contention profiles. See
http://java.sun.com/developer/technicalArticles/Programming/HPRO
F.html for more information.

This section describes two profiling options using a HelloWorld example
application:

■ Section 6.3.1, "Remote Profiling with the NetBeans IDE"

■ Section 6.3.5, "Simple Local Profiling with jvmtihprof"

6.3.1 Remote Profiling with the NetBeans IDE
This section describes how to profile remotely with the NetBeans IDE. The steps are:

Application Profiling

Developer Tools 6-9

■ Calibrate the Profiler Agent (a one-time operation)

■ Start cvm with the Profiler Agent

■ Attach the NetBeans Profiler

Before you begin, ensure that the project's compiled class files are accessible to the
target host and correspond to source files loaded in the IDE. Also be sure that the
profiler agent native classes are accessible on the target host. For platforms directly
supported by CDC (see the Build Guide), the build creates the profiler agent as a .so or
.dll library called profiler interface. For platforms that use a CDC port, the
details of the profiler agent are platform-specific.

6.3.2 Calibrate the Profiler Agent
1. On the target host, calibrate the profiler agent by issuing commands equivalent to

those shown in Example 6–5 or, for the Oracle Java ME Embedded Client, see the
Oracle Java Micro Edition Embedded Client Reference Guide for commands and
procedures used on both Linux and Windows platforms.

Calibration measures the profiler agent overhead so it can be subtracted out of
measurements obtained in a profiler run. To run the NetBeans calibrator, the
target host must have access to the files jfluid-server.jar and
jfluid-server-cvm.jar. These are NetBeans libraries modified for CDC so
they consume less target device file system space. The location of these files is
target host-dependent.

In the following example, use set CVM_HOME=yourCVM for the Windows
operating system. Use export CVM_HOME=yourCVM for Linux operating system.

Example 6–5 Calibrating the Profiler

% set CVM_HOME=yourCVM
% $CVM_HOME/bin/cvm \
-classpath $CVM_HOME/lib/profiler/lib/jfluid-server.jar:\
$CVM_HOME/lib/profiler/lib/jfluid-server-cvm.jar \
-Djava.library.path=$CVM_HOME/bin \
org.netbeans.lib.profiler.server.ProfilerCalibrator
Profiler Agent: JNI On Load Initializing...
Profiler Agent: JNI OnLoad Initialized successfully
Starting calibration...
Calibration performed successfully
For your reference, obtained results are as follows:
Approximate time in one methodEntry()/methodExit() call pair:
When getting absolute timestamp only: 3.085 microseconds
When getting thread CPU timestamp only: 3.1022 microseconds
When getting both timestamps: 5.2254 microseconds

Approximate time in one methodEntry()/methodExit() call pair
in sampled instrumentation mode: 0.7299 microseconds

6.3.3 Start cvm with the Profiler Agent
1. Launch cvm with the profiler agent using a command equivalent to that shown in

Example 6–6 for a Linux target host or, for the Oracle Java ME Embedded Client,

Note: This section covers only the basics of remote profiling. Read
the NetBeans online help if you need more information on the subject.
This section was created with the NetBeans version 6.7.1 IDE.

Application Profiling

6-10 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

see the Oracle Java Micro Edition Embedded Client Reference Guide for the appropriate
commands used to launch cvm with the profiler agent.

Example 6–6 Launching cvm with the Profiler Agent

% set CVM_HOME=yourCVM
% $CVM_HOME/bin/cvm -Xmx32M
-agentpath:profilerInstallDir/lib/deployed/cvm/linux/libprofilerinterface.so=profi
lerInstallDir/lib,5140 -cp /home/mydir/myclasses.zip HelloWorld
Profiler Agent: Initializing...
Profiler Agent: Options: >profilerInstallDir/lib,5140<
Profiler Agent: Initialized successfully
Profiler Agent: Waiting for connection on port 5140 (Protocol version: 9)

5140 is the default NetBeans profiler port, which you can change in NetBeans Tools >
Options > Miscellaneous > Profiler.

libprofilerinterface.so is a shared native code library. For Windows hosts, it
is libprofilerinterface.dll. Building CDC creates the file.

6.3.4 Attach the NetBeans Profiler
1. Load the project to be profiled, and choose Profile > Attach Profiler.

The Attach Profiler dialog appears, similar to Figure 6–8.

Figure 6–8 Attach Profiler Dialog

Application Profiling

Developer Tools 6-11

2. Near the bottom of the dialog, click define.

The Select Target Type screen appears, similar to Figure 6–9.

Figure 6–9 Select Target Type Screen

3. Set the values as follows, then click Next>:

■ Target Type: Application

■ Attach method: Remote

■ Attach invocation: Direct

The Remote System screen appears, similar to Figure 6–10.

Application Profiling

6-12 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Figure 6–10 Remote System Screen

4. Enter the target host's name or IP address, select its operating system and Java
virtual machine from the drop-down, then click Next>.

The Review Attach Settings screen appears, similar to Figure 6–11.

Figure 6–11 Review Attach Settings Screen

5. Verify that the settings are correct, then click Next>.

Application Profiling

Developer Tools 6-13

The Manual Integration screen appears, similar to Figure 6–12.

Figure 6–12 Manual Integration Screen

6. In the Manual Integration screen, click Finish.

7. In the Attach Profiler dialog click Attach.

Profiling results begin to appear, for example, the heap profile shown in
Figure 6–13.

Application Profiling

6-14 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Figure 6–13 Sample Profile Results

Subsequent profiling runs are simpler because the NetBeans IDE remembers settings:

1. On the target host, start the application with the -agentpath option shown in
Example 6–6.

2. In the NetBeans IDE, choose Profile > Attach Profiler.

3. In the Attach Profile dialog, click Attach.

6.3.5 Simple Local Profiling with jvmtihprof
Example 6–7 is a simple profiling example that creates a file of profiling data for a
HelloWorld application.

Example 6–7 Using jvmtihprof

% cvm -agentlib:jvmtihprof -Xbootclasspath/a:./lib/mysamples.jar -classpath
/home/mydir/myclasses.zip HelloWorld
Hello world.
Dumping Java heap ... allocation sites ... done.

The -Xbootclasspath option specifies the location of mysamples.jar, which is
required for profiling. In this example, no output file name is given, so the profile data
is in the default file java.hprof.txt.

The -agentlib:jvmtihprof option controls profiling features. For example:

% cvm -agentlib:jvmtihprof=heap=all,cpu=samples,file=profile.txt ...

Table 6–1 lists the profiling options.

Application Profiling

Developer Tools 6-15

Table 6–1 Profiling Command-Line Options

Option Default Description

-agentlib:jmvtihprof[=option=value,
...]

Run the VM with profiling
enabled using options
specified

heap=dump|sites|all all Heap profiling

cpu=samples|times|old off CPU usage

monitor=y|n n Monitor contention

format=a|b a ASCII or binary output

file=name java.hprof.txt Write data to file name and
append .txt for ASCII
format

net=host:port (off) Send data over a socket

depth=size 4 Stack trace depth

cutoff=value 0.0001 Output cutoff point

lineno=y|n y Display line numbers in
traces

thread=y|n n Thread in trace

doe=y|n y Dump on exit

Application Profiling

6-16 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

A

cvm Reference A-1

Acvm Reference

This appendix describes the cvm command in detail. For the Oracle Java ME
Embedded Client, see the Oracle Java Micro Edition Embedded Client Reference Guide for
detailed information about cvm for the Oracle Java ME Embedded Client.

A.1 Synopsis
cvm [-options] class [options ...]
cvm [-options] -jar jarfile [options ...]

A.2 Description
cvm launches a Java application. It does this by starting a Java virtual machine,
loading its system classes, loading a specified application class, and then invoking that
class's main method, which must have the following signature:

public static void main(String args[])

The first non-option argument to cvm is the name of the top-level application class
with a fully-qualified class name that contains the main method. The Java virtual
machine searches for the main application class, and other classes used, in three
locations: the system class path, the extension class path and the user class path. See
Section 3.3, "Class Search Path Basics," for more information about Java class paths.
Non-option arguments after the main application class name are passed to the main
method.

If the -jar jarfile command-line option is used, cvm launches the application in the
jar file. The manifest of the jar file must contain a line of the form
MainClass:classname. The classname string identifies the class having the main
method which serves as the application's starting point.

Section 3.1, "Launching a Java Application," has more information about launching
Java applications with cvm.

A.3 Options
cvm borrows some of its command-line options from java, the Java SE application
launcher. Other options are unique to cvm and may require certain build options to
enable the necessary runtime features. For command-line options that take a size
parameter, the default units for size are bytes. Append the letter k or K to indicate
kilobytes, or m or M to indicate megabytes.

Table A–1 describes the command-line options that are shared with the Java SE
application launcher.

Options

A-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Table A–1 Java SE Command-Line Options

Option Description

-help Display usage information and exit.

-showversion Display product version information and continue.

-version Display product version information and exit.

-fullversion Display build version information and exit.

-Dproperty=value Set a system property value. See Appendix C, "Java ME System
Properties" for a description of security properties for CDC.

-classpath classpath
-cp classpath

Specify an alternate user class path.1 The default user class path is the
current directory.

-Xbootclasspath[/a | /p]:classpath Specify the extension class path.2/a appends classpath list to the
default path. /p prepends classpath list to the default path.

-Xmssize Set the start size of the memory allocation pool (heap). This value
must be greater than 1000 bytes.

The default value is 2M.

NOTE: This option is ignored by the generational garbage collector,
though it could be used by other garbage collectors.

-Xmxsize Set the maximum heap size (high water mark).

The default value is 7M.

-Xmnsize Set the minimum heap size (low water mark).

The default value is 1M.

-Xsssize Each Java thread has two stacks: one for Java code and one for native
code. The maximum native stack size of the main thread is
determined by the native application launcher (e.g. shell, OS, etc.).
For subsequent threads, the maximum native stack size is set by the
-Xss option, although this can be ignored by the underlying OS. See
Table A–4 for a description of the command-line options for
controlling the size of the Java stack.

The default value is 0 which indicates that the value is actually set by
the native environment.

Options

cvm Reference A-3

Table A–2 describes the CDC-specific command-line options.

-enableassertions [:<package>… |
:<class>]
-ea [:<package>... | :<class>]

Enable Java assertions. These are disabled by default. With no
arguments, this switch enables assertions for all user classes. With
one argument ending in …, the switch enables assertions in the
specified package and any subpackages. If the argument is simply …,
the switch enables assertions in the unnamed package in the current
working directory. With one argument not ending in …, the switch
enables assertions in the specified class.

If a single command line contains multiple instances of these
switches, they are processed in order before loading any classes. So,
for example, to run a program with assertions enabled only in the
package com.wombat.fruitbat (and any subpackages), the
following command could be used:

% cvm -ea:com.wombat.fruitbat … <MainClass>

The -enableassertions and -ea switches apply to all class
loaders and to system classes (which do not have a class loader).
There is one exception to this rule: in their no-argument form, the
switches do not apply to system. This makes it easy to turn on
assertions in all classes except for system classes. The
-enablesystemassertions option enables asserts in all system
classes (that is, it sets the default assertion status for system classes to
true). To run a program with assertions enabled in the package
com.wombat.fruitbat but disabled in class
com.wombat.fruitbat.Brickbat, the following command could
be used:

% cvm -ea:com.wombat.fruitbat… \

 -da:com.wombat.fruitbat.Brickbat <MainClass>

-disableassertions [:<package>… |
:<class>]
-da [:<package>... | :<class>]

Disable Java assertions. This is the default behavior.

With no arguments, -disableassertions or -da disables
assertions. With one argument ending in …, the option disables
assertions in the specified package and any subpackages. If the
argument is simply …, the switch disables assertions in the unnamed
package in the current working directory. With one argument not
ending in …, the switch disables assertions in the specified class.

The -disableassertions and -da switches apply to all class
loaders and to system classes that do not have a class loader. There is
one exception to this rule: in their no-argument form, the switches do
not apply to system. This makes it easy to turn on assertions in all
classes except for system classes. A separate switch is provided to
enable assertions in all system classes. See the description of the
-disablesystemassertions option.

-enablesystemassertions
-esa

Enable assertions in all system classes (sets the default assertion
status for system classes to true).

-disablesystemassertions
-dsa

Disable assertions in all system classes.

1See Section 3.3, "Class Search Path Basics" and
http://download.oracle.com/javase/1.4.2/docs/tooldocs/tools.html for more information about class
search paths.
2See Section 3.3, "Class Search Path Basics" and
http://download.oracle.com/javase/1.4.2/docs/tooldocs/tools.html for more information about class
search paths.

Table A–1 (Cont.) Java SE Command-Line Options

Option Description

Options

A-4 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Table A–3 describes the suboptions for the -Xgc command-line option.

Table A–4 describes the suboptions for the -Xopt command-line option, which
controls the size of the Java stack. This option is useful for runtime development
purposes only and is unsupported.

Table A–2 CDC-Specific Command-Line Options

Option Description

-XbuildOptions Display build options and exit.

-XshowBuildOptions Display build options and continue.

-XappName=value Specify the application name for QPE. This is used to identify the cvm
process for native application management and control.

-Xverify:[all | remote | none] Perform class verification.

■ all verify all classes.

■ remote verify all but preloaded and system classes.

■ none don

■ 't perform class verification.

The default value is remote. If -Xverify is used without any
arguments, the value is all.

-XfullShutdown Make sure all resources are freed and the VM destroyed upon exit.
This is the default for non-process-model operating systems, but is
not needed for process-model operating systems, such as Linux.

-Xgc:suboption Specify GC-specific options. The default GC is the generational
garbage collector described in Chapter 3, "Running Applications."
See Table A–3 for a description of the suboptions.

Other garbage collectors are unsupported.

-Xopt:suboption Control the Java stack. See Table A–4 for a description of the
suboptions. The different suboptions can be appended into a single
argument with name/value pair separated by commas.

-XtimeStamping Enable timestamping.

-Xtrace:flags Turn on trace flags. Table A–5 shows the hexadecimal values to turn
on each trace flag. To turn on multiple flags, bitwise-OR the values of
all the flags you want to turn on, and use that result as the -Xtrace
value. Requires the CVM_TRACE=true build option. (Unsupported.)

Table A–3 -Xgc:suboption

Option Description

maxStackMapsMemorySize=size Set the size of the stack map cache. The default value is 0xFFFFFFFF.

stat Collect and display garbage collection statistics.

youngGen=size Set the size of the young object generation.

NOTE: this option is specific to the default generational collector.

The default value is 1M.

Options

cvm Reference A-5

Table A–5 describes the flags used by the -Xtrace command-line option. This option
is useful for runtime development purposes only and is unsupported.

Table A–4 -Xopt:suboption

Suboption Description

stackMinSize=size Set the initial size of the Java stack, from <32…65536>.

 The default for JIT-based systems is 3K and the default for non-JIT
based systems is 1K.

stackMaxSize=size Set the maximum size of the stack, from <1024…1048576>. The
default for 128K.

stackChunkSize=size Set the amount the stack grows when it needs to expand
<32…65536>. The default for JIT-based systems is 2K and the default
for non-JIT based systems is 1K.

Table A–5 -Xtrace:flags (unsupported)

Value Description

0x00000001 Opcode execution.

0x00000002 Method execution.

0x00000004 Internal state of the interpreter loop on method calls and returns.

0x00000008 Fast common-case path of Java synchronization.

0x00000010 Slow rare-case path of Java synchronization.

0x00000020 Mutex locking and unlocking operations.

0x00000040 Consistent state transitions. Garbage Collection (GC)-safety state
only.

0x00000080 GC start and stop notifications.

0x00000100 GC root scans.

0x00000200 GC heap object scans.

0x00000400 GC object allocation.

0x00000800 GC algorithm internals.

0x00001000 Transitions between GC-safe and GC-unsafe states.

0x00002000 Class static initializers.

0x00004000 Java exception handling.

0x00008000 Heap initialization and destruction, global state initialization, and
the safe exit feature.

0x00010000 Read and write barriers for GC.

0x00020000 Generation of GC maps for Java stacks.

0x00040000 Class loading.

0x00080000 Class lookup in VM-internal tables.

0x00100000 Type system operations.

0x00200000 Java code verifier operations.

0x00400000 Weak reference handling.

0x00800000 Class unloading.

0x01000000 Class linking.

Options

A-6 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Table A–6 describes the command-line options available with the CVM_JVMTI build
option. See Chapter 6, "Developer Tools," for an example of how to use these
command-line options.

Table A–7 describes the command-line options available with the CVM_JIT=true
build option. See Chapter 3, "Running Applications," for an example of how to use
these command-line options.

Table A–6 JVMTI Options

Option Description

-Xdebug Enable VM-level debugging support.

-Xrunlib:[help]|[option=value, …] Enable feature in shared library. For example, hprof profiling
support.

Table A–7 -Xjit:options

Option Default Description

bcost=cost 4 Cost of a backwards branch, between
<0...32767>.

climit=cost 20000 The popularity threshold for a given method,
between <0...65535>. The VM compares a
per-method count based on bcost, icost and
mcost against this threshold to determine when to
compile a given method.

codeCacheSize=value 512k Size of code cache where compiled methods are
stored, between <0...32M>.

compile=suboption policy When to compile methods. See Table A–9 for
descriptions of the suboptions for compile. The
default policy is based on the suboption defaults
listed in this table.

icost=cost 20 Cost of an interpreted-to-interpreted method call,
between <0...32767>.

inline=suboption all Perform method inlining when compiling. See
Table A–8 for descriptions of the suboptions for
inline.

lowerCodeCacheThreshold=percentage 90% Lower code cache threshold, between <0%..100%>.
The dynamic compiler decompiles methods until the
code cache reaches this threshold.

maxCompiledMethodSize=value 65535 Maximum size of a compiled method, between
<0...64K>.

maxInliningCodeLength=value 68 Maximum size of an inlined method, between
<0...1000>. This value is used as a threshold that
proportionally decreases with the depth of inlining.
Therefore, shorter methods are inlined at deeper
depths. In addition, if the inlined method is less than
value/2, the dynamic compiler allows unquickened
opcodes in the inlined method.

maxInliningDepth=value 12 Maximum inlining depth of inlined
methods/frames, between <0...1000>.

maxWorkingMemorySize=value 512k Maximum working memory size for the dynamic
compiler, between <0...64M>. See Section 3.4.4,
"Setting the Maximum Working Memory for the
Dynamic Compiler."

Options

cvm Reference A-7

Table A–8 describes the command-line options for selecting when to inline methods.

mcost=cost 50 Cost for transitioning between a compiled method
and an interpreted method, and vice versa. Between
<0..32767>.

minInliningCodeLength=value 16 The floor value for maxInliningCodeLength
when its size is proportionally decreased at greater
inlining depths.

policyTriggeredDecompilations=boolean true Policy triggered decompilations. If false, then
never decompiles a method to make room for more
compilations. Methods remain compiled until the
class is unloaded, even if the code cache is full.

trace=suboption Set dynamic compiler trace options. See Table A–10.

upperCodeCacheThreshold=percentage 95 Upper code cache threshold, between
<0%...100%>. The dynamic compiler starts
decompiling methods during a GC when the code
cache passes this threshold unless
policyTriggeredDecompilations=false.

XregisterPhis=boolean true Unsupported.

XcompilingCausesClassLoading=boolean false Unsupported.

Xpmi=boolean true Unsupported.

XregisterLocals=boolean true Unsupported.

aot=boolean true Enable/disable AOTC.

aotFile=file AOTC file path.

recompileAOT=boolean false Recompile AOTC code when this option is set to
true. The existing AOTC code is replaced when this
option is used.

aotCodeCacheSize=size 672K Size for the code cache used for AOTC.

aotMethodList=file File containing a list of methods to be compiled and
saved for AOTC.

Table A–8 -Xjit:inline=suboption

Suboption Description

all Enable all the options listed below to perform inlining whenever possible. The default.

none Do not perform inlining.

virtual Perform inlining on virtual methods.

nonvirtual Perform inlining on nonvirtual methods.

vhints Virtual hints. Use hints gathered while interpreting a method to choose a target
method to get inlined when an invokevirtual opcode is compiled.

ihints Interface hints. Use hints gathered while interpreting a method to choose a target
method for inlining when an invokeinterface opcode is compiled.

Table A–7 (Cont.) -Xjit:options

Option Default Description

Options

A-8 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

Table A–9 describes the top-level command-line options that control dynamic compiler
policies.

Table A–10 describes the command-line options for controlling dynamic compiler
tracing. These options require a build with CVM_TRACE_JIT=true. These options are
experimental and unsupported.

Xvsync Inline virtual synchronized methods. Off by default. Unsupported.

Xnvsync Inline non-virtual synchronized methods. Off by default. Unsupported.

Xdopriv Inline privileged methods specified by
java.security.AccessController.doPrivileged(). On by default.
Unsupported.

Table A–9 -Xjit:compile=suboption

Suboption Description

policy Compile according to existing compilation policy parameters such as icost and
climit. The default.

all Compile all methods aggressively. Note: this hurts performance and should be used
only for testing the dynamic compiler.

none Do not compile any methods.

Table A–10 -Xjit:trace=option

Suboption Description

bctoir Print information regarding the conversion of Java bytecodes to the JIT internal
representation (IR), including a complete dump of all IR nodes.

codegen Print the generated code in a format similar to the assembler language of the target
processor. If the build option CVM_JIT_DEBUG=true, then this also prints the
JavaCodeSelect rule used to generate the code interspersed with the generated
code.

inlining Print method inlining information during the bytecode to IR pass, such as which
methods were inlined and which ones were not.

iropt Print information about optimizations done in the bytecode to IR pass.

osr Print a message when compilation of a method is triggered by on stack replacement
(OSR).

stats Print statistics gathered during compilation.

status Print a line of status each time a method is compiled. The output includes the name of
the method and whether or not it was compiled successfully.

Table A–8 (Cont.) -Xjit:inline=suboption

Suboption Description

B

Serial Port Configuration Notes B-1

BSerial Port Configuration Notes

The javax.microedition.io.CommConnection interface allows a CDC Java
runtime environment to expose an OS-level serial port as a logical serial port
connection. This appendix shows how to configure an OS-level serial port on a Linux
system so that a Java application can access the corresponding logical serial port
connection.

B.1 Serial Port Setup
1. Setup a serial cable connection between two Linux computers.

Become super-user.

% su
#

This step is necessary to allow non-root users to access the serial port.

2. Configure the serial port to use IRQ 4.

setserial /dev/ttyS0 irq 4

3. Change the file access permissions for the serial port and the lock file.

chmod 777 /dev/ttyS0 /var/lock

This allows other users to access the serial port.

Note: While this example is based on the RS-232 serial interface
implementation of CommConnection in
com.sun.cdc.io.j2me.comm.Protocol, an alternate
implementation could use the CommConnection interface to support
other forms of serial communication such as IrDA.

Table B–1 Serial Communications References

Interface Document

RS-232 serial
communications

http://www.tldp.org/HOWTO/Serial-HOWTO-4.html

minicom serial
communications program

minicom

Serial port configuration setserialport

Serial port driver interface ttyS

OS-Level Testing

B-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

4. Launch the minicom serial communications program in setup mode.

minicom -s

a. Select Serial port setup from the [configuration] menu.

b. In the setup menu, type A to change the Serial Device setting.

If the Serial Device setting is /dev/modem, then change it to
/dev/ttyS0.

c. Press <ENTER> to confirm the change.

d. Press <ENTER> again to exit the setup menu.

e. Select the Save setup as dfl menu option.

f. Select the Exit menu option.

This initializes the serial port.

g. Type <CONTROL>-a q to finally exit minicom.

5. Follow a similar configuration procedure with the other computer connected to
the serial cable.

B.2 OS-Level Testing
The serial connection between the two computers can be tested with the minicom
serial communications program.

1. Remotely login to each computer.

2. Launch the minicom(1) serial communications program on each computer.

3. Type some text into one of the minicom windows.

4. Type <CONTROL>-a q to finally exit minicom.

This should determine that the serial connection is correct.

C

Java ME System Properties C-1

CJava ME System Properties

In addition to the standard Java SE system properties, CDC supports the standard Java
ME system properties supported by CLDC 1.1 and MIDP 2.0. These system properties
are described in Table C–1.

For a list of the standard Java SE system properties, see the description of
java.lang.System.getProperties() in the CDC specification.

Table C–1 CDC System Properties

System Property Default Value Description

microedition.commports No default Comma-delimited list of available
communications ports

microedition.configuration cdc Java ME configuration

microedition.encoding ISO_LATIN_1 Unicode character encoding

microedition.hostname No default Host platform

microedition.locale en-US System locale

microedition.platform j2me Java platform

microedition.profiles No default Java ME profile

microedition.securerandom.nofallback false Disable the mechanism that allows
the CDC Java runtime
environment to fallback to using
/dev/urandom if /dev/random
doesn't have enough entropy to
work properly. See Section 4.2.4,
"Seed Generation for Random
Number Generation" for more
information.

cdcams.decorations false Display native window
decorations.

cdcams.presentation No default Top-level presentation mode class.

cdcams.repository CVMHOME/repository Location of application repository.

cdcams.verbose false Display extra diagnostic
information.

java.ext.dirs CVMHOME/lib Specifies one or more directories to
search for installed optional
packages, each separated by
File.pathSeparatorChar.

C-2 Oracle Java Micro Edition Connected Device Configuration Runtime Guide

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 Goals
	1.2 Usage Contexts
	1.3 CDC Technology Implementations
	1.4 CDC Target Device Requirements
	1.5 Java Micro Edition Technology Standards
	1.6 Java ME API Choices
	1.7 CDC Application Features
	1.8 Developer Tools

	2 Software Layout
	2.1 Standard Files
	2.2 Security Files
	2.3 Development Files

	3 Running Applications
	3.1 Launching a Java Application
	3.2 Running Managed Applications (Personal Basis Profile only)
	3.2.1 Running an Xlet (Personal Basis Profile)

	3.3 Class Search Path Basics
	3.3.1 Java Class Search Path
	3.3.2 Native Method Search Path

	3.4 Memory Management
	3.4.1 The Java Heap
	3.4.2 Garbage Collection
	3.4.2.1 Garbage Collection in the CDC HotSpot Implementation
	3.4.2.2 Default Generational Collector
	3.4.2.3 Tuning Options

	3.4.3 Class Preloading
	3.4.3.1 Class Preloading and Verification

	3.4.4 Setting the Maximum Working Memory for the Dynamic Compiler

	3.5 Tuning Dynamic Compiler Performance
	3.5.1 Dynamic Compiler Overview
	3.5.2 Dynamic Compiler Policies
	3.5.2.1 Managing the Popularity Threshold
	3.5.2.2 Managing Compiled Code Quality
	3.5.2.3 Managing the Code Cache

	3.6 Ahead-of-Time Compilation
	3.6.1 Using AOTC
	3.6.2 How to Create methodsList.txt

	4 Security
	4.1 Overview
	4.1.1 Built-in Security Features
	4.1.2 Security Policy Framework
	4.1.3 Security Provider Architecture
	4.1.4 Custom JSSE Provider Plug-ins
	4.1.5 Oracle JSSE Cipher Suite Support
	4.1.6 Self-Integrity Checks

	4.2 Security Procedures
	4.2.1 Using Alternate Security Providers
	4.2.2 Public Key Management
	4.2.3 Security Policy Management
	4.2.4 Seed Generation for Random Number Generation

	5 Localization
	5.1 Setting Locale System Properties
	5.2 Timezone Information Files
	5.3 Font Management (Personal Basis Profile only)

	6 Developer Tools
	6.1 Compiling With javac
	6.1.1 CDC and Java SE
	6.1.2 Compiling Java Source Code for the Java SE Platform
	6.1.3 Compiling Java Source Code for CDC
	6.1.4 Determining the Target Class Library
	6.1.5 Useful javac Command-Line Options
	6.1.5.1 -classpath classpath
	6.1.5.2 -bootclasspath classpath
	6.1.5.3 -extdirs classpath
	6.1.5.4 -source release
	6.1.5.5 -target version
	6.1.5.6 -deprecation

	6.1.6 Compiling an Example CDC Program

	6.2 Application Debugging
	6.2.1 Launching cvm in Debug Mode
	6.2.1.1 cvm Debug Mode Syntax
	6.2.1.2 cvm Debug Mode Example

	6.2.2 Attaching the NetBeans IDE Debugger to cvm
	6.2.3 Attaching to cvm with jdb

	6.3 Application Profiling
	6.3.1 Remote Profiling with the NetBeans IDE
	6.3.2 Calibrate the Profiler Agent
	6.3.3 Start cvm with the Profiler Agent
	6.3.4 Attach the NetBeans Profiler
	6.3.5 Simple Local Profiling with jvmtihprof

	A cvm Reference
	A.1 Synopsis
	A.2 Description
	A.3 Options

	B Serial Port Configuration Notes
	B.1 Serial Port Setup
	B.2 OS-Level Testing

	C Java ME System Properties

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

