

Oracle® Java Micro Edition Embedded Client
Developer's Guide

Release 1.1.1

E20632-03

May 2013

This documentation is for application developers. It
describes compiling, debugging, and profiling.

Oracle Java Micro Edition Embedded Client Developer's Guide, Release 1.1.1

E20632-03

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Operating System Commands .. v
Related Documents ... v
Conventions ... vi

1 Introduction

1.1 Overview.. 1-1
1.2 Developer Tools .. 1-1
1.3 Finding API Documentation ... 1-1

2 Compiling Your Application

2.1 Compiling from the Command Line.. 2-1
2.1.1 Prerequisites ... 2-1
2.1.1.1 Installing the JDK ... 2-1
2.1.2 Bytecode Requirements for CDC Applications... 2-1
2.1.3 Compiling an Application.. 2-2
2.1.4 Setting Environment Variables .. 2-2
2.1.4.1 CVM_HOME .. 2-2
2.1.4.2 PATH ... 2-2
2.1.5 Running an Application on the Target Device.. 2-3
2.2 Compiling in an IDE... 2-3
2.2.1 Setting bootclasspath in an IDE .. 2-5

3 Debugging With NetBeans

3.1 Introduction ... 3-1
3.2 Launching cvm in Debug Mode.. 3-1
3.2.1 cvm Debug Mode Syntax.. 3-1
3.2.2 cvm Debug Mode Example .. 3-2
3.3 Attaching the NetBeans IDE Debugger to cvm .. 3-3
3.4 Attaching to cvm with jdb ... 3-5

iv

4 Profiling With NetBeans and jvmtihprof

4.1 Introduction ... 4-1
4.2 Remote Profiling with the NetBeans IDE.. 4-1
4.2.1 Calibrate the Profiler Agent ... 4-2
4.2.2 Start cvm with the Profiler Agent.. 4-2
4.2.3 Attach the NetBeans Profiler.. 4-2
4.3 Simple Local Profiling with jvmtihprof .. 4-7

5 Diagnosing Memory Leaks

5.1 VM Inspector and cvmsh... 5-1
5.2 jvmtihprof and jhat ... 5-1

v

Preface

This manual explains how to use the Oracle Java Micro Edition Embedded Client
(Oracle Java ME Embedded Client) to create and test applications.

Audience
This document is intended for application developers for the Oracle Java ME
Embedded Client. It is also useful for implementers of Oracle Java ME Embedded
Client platforms who wish to test their implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Operating System Commands
This document might not contain information about basic Linux commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following resource for this information:

■ Ubuntu operating system documentation, which is found at:

https://help.ubuntu.com

Related Documents
For more information, see the following documents in the Oracle Java Micro Edition
Embedded Client documentation set:

■ Oracle Java Micro Edition Embedded Client Architecture Guide

■ Oracle Java Micro Edition Embedded Client Customization Guide

vi

Conventions
The following text conventions are used in this document:

Note: The Oracle Java Micro Edition Embedded Client Architecture Guide
is a prerequisite for all Oracle Java Micro Edition Embedded Client
guides. It defines concepts that are mentioned in the other guides.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This chapter describes the Oracle Java ME Embedded Client components, developer
tools, and application programming interface (API) documentation.

This chapter includes the following topics:

■ Section 1.1, "Overview"

■ Section 1.2, "Developer Tools"

■ Section 1.3, "Finding API Documentation"

1.1 Overview
The Oracle Java ME Embedded Client, version 1.1.1 is based on the Connected Device
Configuration of Java Micro Edition (JavaME), also known as CDC. The product also
includes the Foundation Profile (FP) and optional packages based on Java Service
Requests (JSRs) in the Java Community Process.

Refer to the Oracle Java Micro Edition Embedded Client Architecture Guide for a more
detailed overview of this release.

1.2 Developer Tools
The Oracle Java ME Embedded Client allows developers to develop, build and test
embedded applications. Limited support is provided for IDE environments such as
NetBeans. Developers can work with command line tools directly, rather than using an
IDE interface.

For an overview of command line options, refer to Chapter 2, "Compiling Your
Application."

The Oracle Java Micro Edition Embedded Client Installation Guide describes how to
configure these IDEs to work with the SDK.

1.3 Finding API Documentation
The API documentation for CDC, FP, and for JSRs supported in this release, are found
online at:

http://docs.oracle.com/javame/embedded.html

If you prefer to download the API documentation for a configuration, profile or
optional package and install it locally, visit the Java Community Process (JCP) program
web site. For example, for JSR 218 (CDC 1.1):

http://jcp.org/en/jsr/detail?id=218

Finding API Documentation

1-2 Oracle Java Micro Edition Embedded Client Developer's Guide

2

Compiling Your Application 2-1

2Compiling Your Application

This chapter describes compiling an application from the command line or integrated
development environment (IDE).

This chapter includes these topics:

■ Section 2.1, "Compiling from the Command Line"

■ Section 2.2, "Compiling in an IDE"

2.1 Compiling from the Command Line
You need to compile your application on the development workstation (Linux) to
create class files that can then be deployed to the target device. Simple shell scripts and
command lines are presented in this section to illustrate simple compilation and
compiling for debugging or profiling.

2.1.1 Prerequisites
Before compiling, JDK 6.0 must be installed on your development workstation. If you
do not yet have it, follow the instructions in Section 2.1.1.1, "Installing the JDK."

2.1.1.1 Installing the JDK
Follow these steps to install the JDK.

1. Download JDK 6 update 45 from
http://www.oracle.com/technetwork/java/javase/downloads/jdk6d
ownloads-1902814.html.
If you download a later JDK version, modify the next two steps accordingly.

2. Open a Linux terminal and cd into the directory where JDK 6 has been
downloaded. After installation, the environment variable JDK_INSTALL_DIR will
be set to this directory.

Set file permissions to enable execution with the following command:

sudo chmod a+x jdk-6u45-linux-i586.bin

3. Run the installer with the following command:

./jdk-6u45-linux-i586.bin

2.1.2 Bytecode Requirements for CDC Applications
An Oracle Java ME Embedded Client program must comply with the requirements of
the Connected Device Configuration (CDC), version 1.1.2. The correct bytecode will be

http://www.oracle.com/technetwork/java/javase/downloads/jdk6downloads-1902814.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk6downloads-1902814.html

Compiling from the Command Line

2-2 Oracle Java Micro Edition Embedded Client Developer's Guide

generated for CDC provided that you specify JDK 1.4 at the command line with both
the -source and the -target options. Refer to Section 2.1.3, "Compiling an Application"
for an example.

2.1.3 Compiling an Application
1. On the workstation, cd into the base directory where the source files are located.

2. Compile with the command

javac -source 1.4 -target 1.4 helloworld/HelloWorld.java

The class file HelloWorld.class will be created in the helloworld directory

2.1.4 Setting Environment Variables
You should make sure that these environment variables are set correctly before
running a compiled program on either your development workstation or on the target
device.

2.1.4.1 CVM_HOME
You need to set the environment variable CVM_HOME to:

InstallDir/Oracle_JavaME_Embedded_Client/binaries

Where InstallDir is the directory on your Linux workstation where you installed the
Oracle Java ME Embedded Client.

2.1.4.2 PATH
Your PATH environment variable should be set to include the location of the javac
command. In these instructions, Version stands for the JDK version you have
installed, for example, 1.6.0_45.

1. Edit either of the files ~/.bashrc or ~/.bash_profile.

2. Append the following lines:

export JAVA_HOME=/home/myname/tools/jdkVersion

export PATH=/home/myname/bin:$PATH/tools/jdkVersion

3. Log out of your Linux account and log back in.

4. Use the following command to verify that javac can be found:

which java

Note: The value 1.4 must be assigned to the options -source and
-target to ensure that the compiled byte codes are compatible with
CDC.

Note: This section uses the bash shell. Make adjustments if you use a
different shell.

Note: You can avoid setting the PATH on the target device by
entering the relative path or full path to the cvm executable on the
command line.

Compiling in an IDE

Compiling Your Application 2-3

2.1.5 Running an Application on the Target Device
1. Make sure the class file is accessible by the target host.

This is typically accomplished by mounting the base directory (where the source
and class files are located) as an nfs file system on the device. Or, on devices with
less capability, the class file can be copied to a suitable directory on the device with
a command such as ftp or scp.

2. From the workstation, open a terminal window that connects to the target device
using a protocol such as ssh or telnet.

3. Change directory to that containing the cvm executable with the command

cd cvm_install_dir/bin

where cvm_install_dir is the location where Oracle Java ME Embedded Client was
installed on the device.

4. Run the program on the device with the command

./cvm -cp /home/myname/working/HelloWorld helloworld.HelloWorld
assuming the first argument is the working directory on the device containing the
class file.

5. Check the terminal output to validate the result.

2.2 Compiling in an IDE
If you prefer to work within an IDE such as NetBeans or Eclipse, you can compile an
Oracle Java ME Embedded Client application by setting the project type to Java
application, and specifying options to make the compiler generate bytecodes
compatible with Java 1.4. For NetBeans, this is illustrated in the following steps.

1. Create a new project in NetBeans. Choose the category Java and project type Java
Application, as shown:

Figure 2–1 Create New java Application Project

Compiling in an IDE

2-4 Oracle Java Micro Edition Embedded Client Developer's Guide

The newly created project creates a default Main class program.

Figure 2–2 New Java Project in NetBeans

Since this is a CDC program, you must change the compiler options to generate JDK
1.4 bytecodes. Select your project in the Projects page and right-click to get the Project
Properties dialog box.

Under Categories, choose the first item, "Sources." Near the bottom of the dialog, pull
down the Source/Binary Format menu, and select JDK 1.4.

Compiling in an IDE

Compiling Your Application 2-5

Figure 2–3 Selecting Java 1.4 Encoding

2.2.1 Setting bootclasspath in an IDE
It is advisable to set bootclasspath when working in an IDE.

Compiling in an IDE

2-6 Oracle Java Micro Edition Embedded Client Developer's Guide

3

Debugging With NetBeans 3-1

3Debugging With NetBeans

This chapter describes how to debug an application with the NetBeans integrated
development environment (IDE).

This chapter includes these topics:

■ Section 3.1, "Introduction"

■ Section 3.2, "Launching cvm in Debug Mode"

■ Section 3.3, "Attaching the NetBeans IDE Debugger to cvm"

■ Section 3.4, "Attaching to cvm with jdb"

3.1 Introduction
You can remotely debug a CDC application with most debuggers that support the Java
Virtual Machine Tool Interface (JVMTI) described in
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.ht
ml. The most likely choices are the NetBeans, Oracle JDeveloper, and Eclipse
integrated development environments, but you can also use the Java SE jdb command
line debugger or another compatible debugger. You run the debugger on a
development host, and the application plus CDC on the target device. CDC and the
debugger communicate over a network.

CDC debugging has the following limitations:

■ Only interpreted code can be debugged.

■ CDC-debugger connections must use sockets. Shared memory connections are not
supported.

3.2 Launching cvm in Debug Mode
Regardless of the debugger you choose, you launch cvm running the application in the
same way.

3.2.1 cvm Debug Mode Syntax
Example 3–1 and Example 3–2 show how to launch cvm in debug mode on a target
device. These examples assume that the target device runs a Unix-style operating

Note: With the Oracle Java ME Embedded Client, cvm is installed on
your system in the following location:

InstallDir/Oracle_JavaME_Embedded_Client/binaries/bin/cvm

http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

Launching cvm in Debug Mode

3-2 Oracle Java Micro Edition Embedded Client Developer's Guide

system and that socket networking is operational. Make adjustments as necessary for
your target device. Use nfs networking if available to mount the workstation directory
containing the compiled classfiles on the target device. Or, copy the classfiles from the
workstation to the device using ftp or scp.

Be sure to set up the environment variables correctly before running cvm. For
example,

CVM_HOME=/mnt/sda1/work/cvm
CLASSPATH=/mnt/sda1/work
CLASSNAME=helloworld.Helloworld
Chose the appropriate command syntax and sub-options to launch cvm in debug
mode.

For the appropriate command syntax and a list of debug sub-options, run

cvm -agentlib:jdwp=help

or refer to
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.
html.

Example 3–1 cvm Listens for Connection from Debugger

% cvm -agentlib:jdwp=transport=dt_socket,server=y,address=port -Xdebug \
-classpath $CLASSPATH $CLASSNAME

Example 3–2 cvm Connects to Debugger

% cvm -agentlib:jdwp=transport=dt_socket,server=n,address=host:port -Xdebug \
-classpath $CLASSPATH $CLASSNAME

When launching cvm in debug mode, observe the following requirements:

■ -agentlib:jdwp and the transport and address sub-options must be
specified.

■ The transport value must be dt_socket.

■ Set server to y to direct cvm to listen for a connection from the debugger (the
most likely case). Set server to n to direct cvm to attach to a listening debugger.

■ If server=y, set port to the socket port on the target host at which cvm listens for
a connection. If server=n, set host:port to the host and socket port at which the
debugger waits for a connection from cvm.

■ -Xdebug disables the compiler so the virtual machine interprets the application's
bytecodes.

3.2.2 cvm Debug Mode Example
Example 3–3 shows a simple example of launching cvm as a server to debug a
HelloWorld application.

Example 3–3 Launching cvm as a Server

% cvm -agentlib:jdwp=transport=dt_socket,server=y,address=8000 -Xdebug -classpath
/home/mydir/myclasses.zip HelloWorld
Listening for transport dt_socket at address: 8000

http://download.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.html
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.html

Attaching the NetBeans IDE Debugger to cvm

Debugging With NetBeans 3-3

3.3 Attaching the NetBeans IDE Debugger to cvm
Although this section describes the NetBeans debugger, other IDE debuggers that are
compatible with the Java Virtual Machine Tool Interface (JVMTI) can be used similarly.
This section first describes the most common arrangement in which cvm acts as a
server for the debugger, then the converse case.

1. Load the NetBeans project you want to debug and create a debugger operation,
such as a breakpoint. Figure 3–1 shows an example.

Ensure that the project's compiled class files are accessible to the target host and
that the class files correspond to the source files loaded in the IDE.

Figure 3–1 Breakpoint in HelloWorld.java

2. On the target host, launch cvm with server=y and, for this example,
address=8000, similar to the example in Section 3.2.2, "cvm Debug Mode
Example".

3. In NetBeans, choose Debug > Attach Debugger.

4. Set up the Attach Debugger dialog as shown in Figure 3–2.

Substitute the target host name for (Target Host).

Attaching the NetBeans IDE Debugger to cvm

3-4 Oracle Java Micro Edition Embedded Client Developer's Guide

Figure 3–2 Attach Debugger Dialog (Debugger as Client)

The debugger connects and indicates that execution has stopped at the breakpoint as
similar to Figure 3–3.

Figure 3–3 Debugger Connected and Stopped at Breakpoint

If you want the debugger to be the server, complete the Attach Debugger dialog
similar to Figure 3–4. After clicking OK, launch cvm on the target host with server=n
and address= the debuggers' host and port.

Attaching to cvm with jdb

Debugging With NetBeans 3-5

Figure 3–4 Debugger as Server Attach Debugger Setup

3.4 Attaching to cvm with jdb
After launching cvm as a debug server (see Section 3.2.2, "cvm Debug Mode Example")
on the target host, you can connect to it with the jdb command line debugger using
syntax similar to Example 3–4. The jdb command is in JavaSEinstall/bin/.

Example 3–4 Attaching to cvm with jdb

% jdb -connect com.sun.jdi.SocketAttach:hostname=hostname,port=8000
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>
VM Started: No frames on the current call stack
main[1]

Attaching to cvm with jdb

3-6 Oracle Java Micro Edition Embedded Client Developer's Guide

4

Profiling With NetBeans and jvmtihprof 4-1

4Profiling With NetBeans and jvmtihprof

This chapter describes two options for profiling application performance and memory
usage.

This chapter includes these topics:

■ Section 4.1, "Introduction"

■ Section 4.2, "Remote Profiling with the NetBeans IDE"

■ Section 4.3, "Simple Local Profiling with jvmtihprof"

4.1 Introduction
Profiling is the acquisition of runtime performance data for an application on a target
runtime system. Understanding the runtime behavior of an application allows the
developer to identify performance-sensitive components when tuning an application's
implementation or selecting runtime features. cvm profiling provides reports that
include CPU usage, heap allocation statistics, and monitor contention profiles. For
more information, see
http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.htm
l

4.2 Remote Profiling with the NetBeans IDE
This section describes how to profile remotely with the NetBeans IDE. The steps are:

■ Calibrate the Profiler Agent (a one-time operation)

■ Start cvm with the Profiler Agent

■ Attach the NetBeans Profiler

Before you begin, ensure that the project's compiled class files are accessible to the
target host and correspond to source files loaded in the IDE. Also be sure that the
profiler agent native classes are accessible on the target host. For platforms directly
supported by CDC (see the Build Guide), the build creates the profiler agent as a .so or
.dll library called profiler interface. For platforms that use a CDC port, the
details of the profiler agent are platform-specific.

Note: This section covers only the basics of remote profiling. Read
the NetBeans online help if you need more information on the subject.

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

Remote Profiling with the NetBeans IDE

4-2 Oracle Java Micro Edition Embedded Client Developer's Guide

4.2.1 Calibrate the Profiler Agent
1. On the target host, calibrate the profiler agent by issuing commands equivalent to

those shown in Example 4–1.

Calibration measures the profiler agent overhead so it can be subtracted out of
measurements obtained in a profiler run. To run the NetBeans calibrator, the target
host must have access to the files jfluid-server.jar and
jfluid-server-cvm.jar. These are NetBeans libraries modified for CDC so
they consume less target device file system space. The location of these files is
target host-dependent.

Example 4–1 Calibrating the Profiler

% set CVM_HOME=yourCVM
% $CVM_HOME/bin/cvm \
-classpath $CVM_HOME/lib/profiler/lib/jfluid-server.jar:\
$CVM_HOME/lib/profiler/lib/jfluid-server-cvm.jar \
-Djava.library.path=$CVM_HOME/bin \
org.netbeans.lib.profiler.server.ProfilerCalibrator
Profiler Agent: JNI On Load Initializing...
Profiler Agent: JNI OnLoad Initialized successfully
Starting calibration...
Calibration performed successfully
For your reference, obtained results are as follows:
Approximate time in one methodEntry()/methodExit() call pair:
When getting absolute timestamp only: 3.085 microseconds
When getting thread CPU timestamp only: 3.1022 microseconds
When getting both timestamps: 5.2254 microseconds

Approximate time in one methodEntry()/methodExit() call pair
in sampled instrumentation mode: 0.7299 microseconds

4.2.2 Start cvm with the Profiler Agent
1. Launch cvm with the profiler agent using a command equivalent to that shown in

Example 4–2 for a Linux target host.

Example 4–2 Launching cvm with the Profiler Agent

% set CVM_HOME=yourCVM
% $CVM_HOME/bin/cvm -Xmx32M
-agentpath:profilerInstallDir/lib/deployed/cvm/linux/libprofilerinterface.so=profi
lerInstallDir/lib,5140 -cp /home/mydir/myclasses.zip helloworld.HelloWorld
Profiler Agent: Initializing...
Profiler Agent: Options: >profilerInstallDir/lib,5140<
Profiler Agent: Initialized successfully
Profiler Agent: Waiting for connection on port 5140 (Protocol version: 9)

5140 is the default NetBeans profiler port, which you can change in NetBeans Tools >
Options > Miscellaneous > Profiler.

libprofilerinterface.so is a shared native code library. Building CDC creates
this file.

4.2.3 Attach the NetBeans Profiler
1. Load the project to be profiled, and choose Profile > Attach Profiler.

The Attach Profiler dialog appears, similar to Figure 4–1.

Remote Profiling with the NetBeans IDE

Profiling With NetBeans and jvmtihprof 4-3

Figure 4–1 Attach Profiler Dialog

2. Near the bottom of the dialog, click define.

The Select Target Type screen appears, similar to Figure 4–2.

Remote Profiling with the NetBeans IDE

4-4 Oracle Java Micro Edition Embedded Client Developer's Guide

Figure 4–2 Select Target Type Screen

3. Set the values as follows, then click Next>:

■ Target Type: Application

■ Attach method: Remote

■ Attach invocation: Direct

The Remote System screen appears, similar to Figure 4–3.

Remote Profiling with the NetBeans IDE

Profiling With NetBeans and jvmtihprof 4-5

Figure 4–3 Remote System Screen

4. Enter the target host's name or IP address, select its operating system and Java
virtual machine from the drop-down, then click Next>.

The Review Attach Settings screen appears, similar to Figure 4–4.

Figure 4–4 Review Attach Settings Screen

5. Verify that the settings are correct, then click Next>.

Remote Profiling with the NetBeans IDE

4-6 Oracle Java Micro Edition Embedded Client Developer's Guide

The Manual Integration screen appears, similar to Figure 4–5.

Figure 4–5 Manual Integration Screen

6. In the Manual Integration screen, click Finish.

7. In the Attach Profiler dialog click Attach.

Profiling results begin to appear, for example, the heap profile shown in
Figure 4–6.

Simple Local Profiling with jvmtihprof

Profiling With NetBeans and jvmtihprof 4-7

Figure 4–6 Sample Profile Results

Subsequent profiling runs are simpler because the NetBeans IDE remembers settings:

1. On the target host, start the application with the -agentpath option shown in
Example 4–2.

2. In the NetBeans IDE, choose Profile > Attach Profiler.

3. In the Attach Profile dialog, click Attach.

4.3 Simple Local Profiling with jvmtihprof
Example 4–3 is a simple profiling example that creates a file of profiling data for a
HelloWorld application.

Example 4–3 Using jvmtihprof

% cvm -agentlib:jvmtihprof -Xbootclasspath/a:./lib/mysamples.jar -classpath
/home/mydir/myclasses.zip HelloWorld
Hello world.
Dumping Java heap ... allocation sites ... done.

The -Xbootclasspath option specifies the location of mysamples.jar, which is
required for profiling. In this example, no output file name is given, so the profile data
is in the default file java.hprof.txt.

The -agentlib:jvmtihprof option controls profiling features. For example:

% cvm -agentlib:jvmtihprof=heap=all,cpu=samples,file=profile.txt ...

Table 4–1 lists the profiling options.

Simple Local Profiling with jvmtihprof

4-8 Oracle Java Micro Edition Embedded Client Developer's Guide

Table 4–1 Profiling Command-Line Options

Option Default Description

-agentlib:jmvtihprof[=option=value,
...]

Run the VM with profiling
enabled using options
specified

heap=dump|sites|all all Heap profiling

cpu=samples|times|old off CPU usage

monitor=y|n n Monitor contention

format=a|b a ASCII or binary output

file=name java.hprof.txt Write data to file name and
append .txt for ASCII
format

net=host:port (off) Send data over a socket

depth=size 4 Stack trace depth

cutoff=value 0.0001 Output cutoff point

lineno=y|n y Display line numbers in
traces

thread=y|n n Thread in trace

doe=y|n y Dump on exit

5

Diagnosing Memory Leaks 5-1

5Diagnosing Memory Leaks

This chapter describes options for finding and diagnosing application memory leaks.

This chapter includes these topics:

■ Section 5.1, "VM Inspector and cvmsh"

■ Section 5.2, "jvmtihprof and jhat"

5.1 VM Inspector and cvmsh
The VM inspector is a collection of utilities that report virtual machine state, including
memory-related state, during execution. To use the VM inspector, you must run an
Oracle Java Micro Edition Embedded Client binary that was built with CVM_
INSPECTOR=true. To verify your build, run cvm with this option: -XbuildOptions.

cvmsh is a command-line front end that sends VM inspector commands to a running
cvm process. Launch cvmsh and cvm as illustrated by the following simple example:

% cvm -cp testclasses.zip cvmsh

For a description of the VM inspector and cvmsh, refer to:

https://weblogs.java.net/blog/2007/07/31/cvms-vm-inspector.

5.2 jvmtihprof and jhat
jhat is a web-based Java heap analysis tool, which is described at
http://download.oracle.com/javase/6/docs/technotes/tools/share/j
hat.html. To create the data for jhat to display, run a command like this on the
target device:

% bin/cvm -Xbootclasspath/a:lib/java_crw_demo.jar \
-agentlib:jvmtihprof=heap=dump,format=b -cp yourApp.jar yourMainMethod

Your application must be in the Jar file designated by yourApp.jar. The command
creates a heap dump in java.hprof.txt. To display the heap with jhat, copy
java.hprof.txt to your host, then run this command:

% jhat java.hprof

The jhat command starts a web server on port 7000. View the data in a web browser
with this URL: http://localhost:7000, then drill down into the objects that were
dumped.

https://weblogs.java.net/blog/2007/07/31/cvms-vm-inspector
http://download.oracle.com/javase/6/docs/technotes/tools/share/jhat.html
http://download.oracle.com/javase/6/docs/technotes/tools/share/jhat.html

jvmtihprof and jhat

5-2 Oracle Java Micro Edition Embedded Client Developer's Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Operating System Commands
	Related Documents
	Conventions

	1 Introduction
	1.1 Overview
	1.2 Developer Tools
	1.3 Finding API Documentation

	2 Compiling Your Application
	2.1 Compiling from the Command Line
	2.1.1 Prerequisites
	2.1.1.1 Installing the JDK

	2.1.2 Bytecode Requirements for CDC Applications
	2.1.3 Compiling an Application
	2.1.4 Setting Environment Variables
	2.1.4.1 CVM_HOME
	2.1.4.2 PATH

	2.1.5 Running an Application on the Target Device

	2.2 Compiling in an IDE
	2.2.1 Setting bootclasspath in an IDE

	3 Debugging With NetBeans
	3.1 Introduction
	3.2 Launching cvm in Debug Mode
	3.2.1 cvm Debug Mode Syntax
	3.2.2 cvm Debug Mode Example

	3.3 Attaching the NetBeans IDE Debugger to cvm
	3.4 Attaching to cvm with jdb

	4 Profiling With NetBeans and jvmtihprof
	4.1 Introduction
	4.2 Remote Profiling with the NetBeans IDE
	4.2.1 Calibrate the Profiler Agent
	4.2.2 Start cvm with the Profiler Agent
	4.2.3 Attach the NetBeans Profiler

	4.3 Simple Local Profiling with jvmtihprof

	5 Diagnosing Memory Leaks
	5.1 VM Inspector and cvmsh
	5.2 jvmtihprof and jhat

