

Oracle® Java Micro Edition Embedded Client
Customization Guide

Release 1.1

E23815-01

June 2012

This documentation is for customizers who want to
configure or extend the Oracle Java Micro Edition Embedded
Client. Topics include changing locales, timezones, and
character sets; installing and removing optional components;
and tuning performance.

Oracle Java Micro Edition Embedded Client Customization Guide, Release 1.1

E23815-01

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix

1 Footprints and Optional Components

Static and Dynamic Memory Footprints.. 1-1
Installing and Removing Optional Components... 1-1

2 Globalization

Adding Character Sets... 2-1
Timezones .. 2-1
Adding Locales ... 2-1

3 Security

Overview .. 3-1
Built-in Security Features.. 3-2
Security Policy Framework... 3-2
Security Provider Architecture .. 3-3
Custom JSSE Provider Plug-ins ... 3-4
Oracle JSSE Cipher Suite Support.. 3-4
Self-Integrity Checks.. 3-4

Security Procedures.. 3-4
Using Alternate Security Providers... 3-4
Public Key Management ... 3-4
Security Policy Management .. 3-5
Seed Generation for Random Number Generation... 3-5

Security Files ... 3-5

4 Tuning

Dynamic Compiler Tuning ... 4-1
Dynamic Compiler Overview .. 4-1
Dynamic Compiler Policies .. 4-3

Managing the Popularity Threshold.. 4-3
Managing Compiled Code Quality .. 4-4

iv

Managing the Code Cache... 4-5
Setting the Maximum Working Memory for the Dynamic Compiler.. 4-5

Memory Management Tuning ... 4-5
The Java Heap... 4-5

Garbage Collection ... 4-6
Young Generation Collection... 4-7
Old Generation Collection.. 4-8

Java and Native Stacks .. 4-8
Class Verification.. 4-8

5 Connecting a Database to JDBC

6 Ahead-of-Time Compilation

How Ahead-of-Time Compilation Works ... 6-1
Determining the Methods to Precompile .. 6-2

v

vi

List of Tables

1–1 Optional Components and Files .. 1-2
1–2 Removable Security Optional Package Subcomponents.. 1-2
3–1 Security Documentation for the Java SE Platform .. 3-1
3–2 Security Files... 3-6

vii

List of Figures

3–1 Java Security Policy Model .. 3-3
4–1 Interpreter-Based Method Execution... 4-2
4–2 Compiling a Method... 4-2
4–3 Executing a Compiled Method ... 4-2
4–4 Young and Old Java Heap Generations at Startup .. 4-6
4–5 Young Generation From-space and To-space... 4-7

viii

ix

Preface

This guide describes how to customize Oracle Java Micro Edition Embedded Client.
Examples of customization include removing unneeded components, replacing
selected components with your code, and tuning performance.

Audience
This document is intended for engineers who want to customize Oracle Java Micro
Edition Embedded Client to prepare it for application development and deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Java Micro Edition
Embedded Client documentation set:

■ Oracle Java Micro Edition Embedded Client Architecture Guide

■ Oracle Java Micro Edition Embedded Client Developer’s Guide

Note: The Oracle Java Micro Edition Embedded Client Architecture Guide
is a prerequisite for all Oracle Java Micro Edition Embedded Client
guides. It defines concepts that are mentioned in the other guides.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

1

Footprints and Optional Components 1-1

1Footprints and Optional Components

This chapter describes static and dynamic footprints, and how the static footprint is
affected by the presence of optional components.

This chapter includes these topics:

■ Section 1.1, "Static and Dynamic Memory Footprints"

■ Section 1.2, "Installing and Removing Optional Components"

1.1 Static and Dynamic Memory Footprints
The static footprint is the amount of nonvolatile memory required to hold the Oracle
Java Micro Edition Embedded Client code. The dynamic memory footprint is the
maximum RAM consumed during execution, which is highly dependent on
application and device user behavior. Profiling with real applications under real work
loads is best way to estimate RAM requirements and observe the effects of
memory/performance tradeoffs. The Oracle Java Micro Edition Embedded Client
Developer’s Guide describes profiling.

You can adjust the amount of dynamic memory used by the compiler, as described in
Section 4.1.2. You can uninstall optional components to reduce static memory
footprint, or add optional components, which has the side effect of increasing the static
footprint as described in Section 1.2.

1.2 Installing and Removing Optional Components
The directory ojec1.1/lib contains optional components that are installed. The
virtual machine loads components in this directory when it starts. The directory
ojec1.1/extras/lib contains optional components that are not installed. If you
move the files corresponding to a component from one directory to the other, you
install or uninstall the component.

The cvm -version command lists the installed components.

Table 1–1 lists the optional components, if they are installed by default, their sizes, and
the files that must be moved to install or uninstall them.

Note: Do not delete or move any other file in ojec1.1/lib.

When you install or uninstall a component, be sure to move all the
corresponding files to or from ojec1.1/lib.

Table 1–1 Optional Components and Files

Component Default Size (KB) Files

Java Database Connectivity (JDBC) Installed 20 jdbc.jar

Remote Method Invocation (RMI) Installed 111 rmi.jar

XML API (JSR 280) Installed 179 jsr280.jar

jsr280_xmlparser.jar

abstractions.jar

abstractions_agent.jar

Security Optional Package Installed 977 ext/sunjce_provider.jar

jaas.jar

jce.jar

jsse_unsigned.jar

jsse-cdc.jar

secop_cmn.jar

sunrsasign.jar

Web Services (JSR 172) Not installed 83 jsr172.jar

jsr172_xmlparser.jar

Additional character sets Not installed 2,413 converters.jar

Note: XML API and Web Services are mutually exclusive. Install
either or neither but not both.

Installing and Removing Optional Components

1-2 Oracle Java Micro Edition Embedded Client Customization Guide

Instead of installing or uninstalling the entire Security optional package, you can
change subcomponents as shown in Table 1–2.

Table 1–2 Removable Security Optional Package Subcomponents

Subcomponent Size (KB) Remove from lib/

Java Authentication and
Authorization Service
(JAAS)

91 jaas.jar

Java Cryptography
Extension (JCE)

109 ext/sunjce_provider.jar

Java Secure Socket
Extensions (JSSE)

489 jsse_unsigned.jar

jsse-cdc.jar

RSA-signed Jar files 88 sunrsasign.jar

2

Globalization 2-1

2Globalization

This chapter describes how to customize globalization features: character sets,
timesones, and locales.

This chapter includes these topics:

■ Section 2.1, "Adding Character Sets"

■ Section 2.2, "Timezones"

■ Section 2.3, "Adding Locales"

2.1 Adding Character Sets
Oracle Java Micro Edition Embedded Client supports the character sets mandated by
the CDC 1.1.2 specification.

You can add character sets in any combination of the following ways:

■ Copy ojec1.1/extras/lib/converters.jar to ojec1.1/lib/. converters.jar
contains additional character sets.

■ Add any charset that is compatible with the sun.io.converters API to the
-bootclasspath option.

You cannot delete character sets that are mandated by the CDC specification.

2.2 Timezones
Oracle Java Micro Edition Embedded Client supports all Olson time zones. You
cannot delete time zones.

2.3 Adding Locales
Oracle Java Micro Edition Embedded Client supports the en_US locale. You can add
the locales defined in the Java SE Runtime Environment (JRE) version 1.4.2.

To add the JRE locales, copy jre/lib/ext/localedata.jar to ojec1.1/lib/ext/.

Adding Locales

2-2 Oracle Java Micro Edition Embedded Client Customization Guide

3

Security 3-1

3Security

Thus chapter describes security features of Oracle Java Micro Edition Embedded
Client in comparison to Java Standard Edition (SE).

This chapter includes these topics:

■ Section 3.1, "Overview"

■ Section 3.2, "Security Procedures"

■ Section 3.3, "Security Files"

3.1 Overview
Security is a principal feature of Java technology and an important requirement for
mobile and enterprise applications. Oracle Java Micro Edition Embedded Client
includes the same security features that are in the Java SE platform. These include
built-in security features of the Java programming language and virtual machine in
addition to a flexible security framework for more advanced application scenarios.

This chapter provides an overview of the security framework in addition to an outline
of the kinds of security procedures that might be performed at run time. It is not
meant to replace the security documentation available for the Java SE platform, but
rather to supplement it and show how Oracle Java Micro Edition Embedded Client
and the JAAS, JCE and JSSE security optional packages are related to their
counterparts in the Java SE platform.

Table 3–1 describes the security documentation for the Java SE platform.

Table 3–1 Security Documentation for the Java SE Platform

Document Description

Inside Java 2
Platform Security

Describes the Java security framework, including security
architecture, deployment and customization. Chapter 12
describes deployment and run-time procedures. See
documentation at

http://java.sun.com/docs/books/security.

Security and the
Java Platform

Main web page for Java security issues. See documentation at

http://www.oracle.com/technetwork/java/javase/t
ech/index-jsp-136007.html.

http://java.sun.com/docs/books/security
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Overview

3-2 Oracle Java Micro Edition Embedded Client Customization Guide

The security framework shared by the Java SE platform and Oracle Java Micro Edition
Embedded Client is based on three key components:

■ Built-in Security Features

■ Security Policy Framework

■ Security Provider Architecture

These provide a solid base for application and run-time security, a flexible mechanism
for defining deployment-based security needs and a plug-in mechanism for supplying
alternate security implementations.

3.1.1 Built-in Security Features
Java security is based on built-in language and VM security features that have been
part of Java technology from its beginning:

■ Strongly typed language (run-time/compile-time/link-time)

■ Bytecode verification (classloading-time)

■ Safety checks (run time)

■ Dynamic class loaders (classloading-time)

3.1.2 Security Policy Framework
A security policy controls how system resources are accessed by applications at run
time. The Java security framework includes both a default security policy and a
mechanism for describing alternate security policies for application and
deployment-specific needs. The main benefits of this security policy framework are:

■ Code-centric, not identity-centric architecture

■ Security policies are described separately from both the applications they control
and the Java run-time environment.

■ Fine-grained access control at the package, class or field level

■ Flexible permission mechanism

■ Protection domains provide a layer of abstraction between permissions and code.

The main elements of a security policy are the following:

■ permission set, a list of permissions granted to the code

■ codeBase, the location from where the code is loaded

Java Tutorial,
Security Trail

A tutorial section that describes many of the security
procedures for the Java platform. Because these are identical
between Oracle Java Micro Edition Embedded Client and the
Java SE platform, they are not duplicated in this chapter. See
documentation at

http://download.oracle.com/javase/tutorial/secu
rity/index.html.

Security Java SE platform security documentation. See documentation at

http://download.oracle.com/javase/1.4.2/docs/gu
ide/security/spec/security-spec.doc.html.

Table 3–1 (Cont.) Security Documentation for the Java SE Platform

Document Description

http://download.oracle.com/javase/tutorial/security/index.html
http://download.oracle.com/javase/tutorial/security/index.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html

Overview

Security 3-3

■ signedBy, the author of the code

■ principal, the identity of the entity running the code

Figure 3–1 illustrates the Java security model by showing how application code can be
loaded from different sources: local and remote. The security manager controls access
to system resources by comparing properties of the application code with the current
security policy. The default security policy allows full access to local application code
and limited access to remote application code. But other security policies are possible.
For example, application code from a trusted yet remote source may be given greater
access than untrusted code from a local source.

Figure 3–1 Java Security Policy Model

3.1.3 Security Provider Architecture
Beginning with version 1.2, the Java SE platform added some security optional
packages that allow Java technology to adapt to more specific requirements of
applications and deployments. These security optional packages include a security
provider architecture that is interoperable because it is based on publicly available
security standards, and extensible because alternate security provider implementations can
be supplied without requiring modifications to application code.

For example, the JAAS, JCE and JSSE security optional packages include several service
provider interfaces (SPIs) that describe the requirements of a security provider
implementation. Table 3–2 describes the default implementations for these security
components.

3.1.4 Custom JSSE Provider Plug-ins
JSSE supports custom Provider plug-ins which can be implemented as extensions of
SSLSocketFactory.

Security Procedures

3-4 Oracle Java Micro Edition Embedded Client Customization Guide

3.1.5 Oracle JSSE Cipher Suite Support
Many of the standard JSSE algorithm names are prefixed with SSL_. JSSE now
supports the TLS_ prefix to be used as an alias to a standard algorithm name.

3.1.6 Self-Integrity Checks
In general, a JCE Provider implementation should include self-integrity checks. For
example, Oracle's current JCE provider (called SunJCE Provider) includes
self-integrity checks. However, this is not a requirement of the JCE or Oracle for a
third-party JCE provider. A third-party JCE provider should make its own choice
regarding whether including self-integrity checks or not.

3.2 Security Procedures
This section outlines the security procedures surrounding the Java security framework
described in the previous section. Because these procedures are identical to the
procedures used for the Java SE platform, this section just describes the procedure and
indicates where to find the appropriate Java SE platform documentation.

3.2.1 Using Alternate Security Providers
From an administrator's perspective, the first step is to choose whether to install and
use any alternate security providers. In most cases, the default security providers
described in Table 3–2 are sufficient.

For a description of how to install alternate security providers, see Inside Java 2
Platform Security, Second Edition. Section 12.5, Installing Provider Packages, describes how
to install alternate security providers.

3.2.2 Public Key Management
The JAAS optional package includes an extensible authentication framework that can
use different forms of authentication. The default LoginModule is the
KeyStoreLoginModule, which uses a protected database (Oracle's JKS keystore file)
to store public key data. Other forms of authentication are possible like smart card or
Kerberos.

The main tool for managing keystore files is keytool(1), which is included in the Java
SE platform toolset. keytool can be used for

■ importing a key

■ listing available keys

■ replacing a key

■ deleting a key

The default keystore file is in lib/security/cacerts, described in Table 3–2.

For a description of how to use keytool to add and modify keystore entries, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The security
trail in the Java Tutorial also covers how to use keytool.

3.2.3 Security Policy Management
Security policies are stored in security policy files. policytool is a convenient
GUI-based tool for managing security policies. With it, a system administrator can

Security Files

Security 3-5

■ identify a keystore

■ specify permissions

■ specify a codebase

The location of the default security policy file is lib/security.policy, described
in Table 3–2. Alternate locations can be defined with the -Djava.security.policy
command-line option.

For a description of how to use the policytool to manage security policies, see
Section 12.8, Security Tools, in Inside Java 2 Platform Security, Second Edition. The security
trail in the Java Tutorial also covers how to use keytool.

3.2.4 Seed Generation for Random Number Generation
The Oracle Java Micro Edition Embedded Client uses a native platform-provided
source as an entropy gathering device for seed generation indicated by the
securerandom.source system property. The Linux default for this system property
is file:/dev/random.

On some Linux systems, /dev/random can block if it hasn't generated sufficient
entropy before a random seed is needed and this can cause applications using
java.security.SecureRandom to hang while waiting for the entropy pool to fill.
To avoid this hang problem, the Oracle Java Micro Edition Embedded Client has a
fallback mechanism to read from the /dev/urandom device when it determines that
there is not enough entropy for /dev/random to work promptly.

/dev/urandom is not generally considered strong enough to support applications like
keypair generation. If the strongest possible seed generation is required, this fallback
mechanism can be disabled by setting the
microedition.securerandom.nofallback property to true. Doing so may run
the risk of application hangs on certain devices where the entropy pool is subject to
early exhaustion.

3.3 Security Files
Table 3–2 describes the Oracle Java Micro Edition Embedded Client security files. See
Inside Java 2 Platform Security: Architecture, API Design, and Implementation by Li Gong
(second edition, Addison-Wesley, 2003) for more information about Java SE security
features.

Table 3–2 Security Files

File Description

lib/jaas.jar Java Authentication and Authorization Service (JAAS) Optional Package is a
part of JSR-219 which is a framework for enforcing access control to
resources using a CodeSource-based and Subject-based security model.
jaas.jar contains the JAAS Optional Package implementation and the
KeyStoreLoginModule authentication module, which is a subset of
what is available in J2SE version 1.4.2.

lib/jce.jar
lib/ext/sunjce_provider.jar
lib/sunrsasign.jar

Java Cryptography Extension (JCE) Optional Package is a part of JSR-219
which extends the Java Cryptography Architecture (JCA) to include key
generation and agreement, encryption and message authentication code
(MAC) generation services. jce.jar contains the JCE Optional Package
implementation which is fully compatible with J2SE version 1.4.2.

sunjce_provider.jar contains the default provider implementation
of the JCE service provider interface (SPI) and is fully compatible with
J2SE version 1.4.2. lib/ext is part of the extension class search path, but
not part of the system class search path. See the Architecture Guide for
more information about class search paths.

sunrsasign.jar contains the default provider implementation of the
RSA signature SPI and is fully compatible with the default provider
implementation in J2SE version 1.4.2. See "How to Implement a Provider
for the Java Cryptography Architecture" in JSR-219.

lib/jsse-cdc.jar Java Secure Socket Extension (JSSE) Optional Package is a part of JSR-219
which provides support for secure communication. jsse.jar contains
both the JSSE Optional Package implementation and the default provider
implementation, which is fully compatible with the default provider
implementation in J2SE version 1.4.2.

lib/security/cacerts Certificate authority (CA) keystore file. The default keystore password is
"changeit". See keytool(1) for more information about how to use the
Java SE SDK key and certificate management tool to change the keystore
password.

lib/security/local_policy.jar
lib/security/US_export_policy.jar

Security jurisdiction policy files.

Security Files

3-6 Oracle Java Micro Edition Embedded Client Customization Guide

4

Tuning 4-1

4Tuning

This chapter describes how to use runtime options to adjust the performance of the
compiler, heap, and class verification to fit your deployment’s characteristics and
requirements.

This chapter includes the following topics:

■ Dynamic Compiler Tuning

■ Memory Management Tuning

■ Class Verification

4.1 Dynamic Compiler Tuning
This section shows how to use cvm command-line options that control the behavior of
the Oracle Java Micro Edition Embedded Client Java virtual machine's dynamic
compiler for different purposes:

■ Optimizing a specific application's performance.

■ Configuring the dynamic compiler's performance for a target device.

■ Exercising run-time behavior to aid the porting process.

Using these options effectively requires an understanding of how a dynamic compiler
operates and the kind of situations it can exploit. During its operation the Oracle Java
Micro Edition Embedded Client virtual machine instruments the code it executes to
look for popular methods. Improving the performance of these popular methods
accelerates overall application performance.

The following subsections describe how the dynamic compiler operates and provides
some examples of performance tuning. For a complete description of the dynamic
compiler-specific command-line options, see the Oracle Java Micro Edition Embedded
Client Architecture Guide.

4.1.1 Dynamic Compiler Overview
The Oracle Java Micro Edition Embedded Client virtual machine offers two
mechanisms for method execution: the interpreter and the dynamic compiler. The
interpreter is a straightforward mechanism for executing a method's bytecodes. For
each bytecode, the interpreter looks in a table for the equivalent native instructions,
executes them and advances to the next bytecode. Shown in Figure 4–1, this technique
is predictable and compact, yet slow.

Dynamic Compiler Tuning

4-2 Oracle Java Micro Edition Embedded Client Customization Guide

Figure 4–1 Interpreter-Based Method Execution

The dynamic compiler is an alternate mechanism that offers significantly faster
run-time execution. Because the compiler operates on a larger block of instructions, it
can use more aggressive optimizations and the resulting compiled methods run much
faster than the bytecode-at-a-time technique used by the interpreter. This process
occurs in two stages. First, the dynamic compiler takes the entire method's bytecodes,
compiles them as a group into native code and stores the resulting native code in an
area of memory called the code cache as shown in Figure 4–2.

Figure 4–2 Compiling a Method

Then the next time the method is called, the run-time system executes the compiled
method's native instructions from the code cache as shown in Figure 4–3.

Figure 4–3 Executing a Compiled Method

The dynamic compiler cannot compile every method because the overhead would be
too great and the start-up time for launching an application would be too noticeable.
Therefore, a mechanism is needed to determine which methods get compiled and for
how long they remain in the code cache.

Because compiling every method is too expensive, the dynamic compiler identifies
important methods that can benefit from compilation. The Oracle Java Micro Edition
Embedded Client Java virtual machine has a run-time instrumentation system that
measures statistics about methods as they are executed. cvm combines these statistics
into a single popularity index for each method. When the popularity index for a given

Dynamic Compiler Tuning

Tuning 4-3

method reaches a certain threshold, the method is compiled and stored in the code
cache.

■ The run-time statistics kept by cvm can be used in different ways to handle various
application scenarios. cvm exposes certain weighting factors as command-line
options. By changing the weighting factors, cvm can change the way it performs in
different application scenarios. A specific combination of these options express a
dynamic compiler policy for a target application. An example of these options and
their use is provided in Section 4.1.2.1, "Managing the Popularity Threshold".

■ The dynamic compiler has options for specifying code quality based on various
forms of inlining. These provide space-time tradeoffs: aggressive inlining provides
faster compiled methods, but consume more space in the code cache. An example
of the inlining options is provided in Section 4.1.2.2, "Managing Compiled Code
Quality".

■ Compiled methods are not kept in the code cache indefinitely. If the code cache
becomes full or nearly full, the dynamic compiler discards compiled code to obtain
memory for a new compilation. A method whose compiled code has been released
is interpreted when next invoked. An example of how to manage the code cache is
provided in Section 4.1.2.3, "Managing the Code Cache".

4.1.2 Dynamic Compiler Policies
The cvm application launcher has a group of command-line options that control how
the dynamic compiler behaves. These options form dynamic compiler policies that target
application or device-specific needs. The most common are space-time tradeoffs. For
example, one policy might cause the dynamic compiler to compile early and often
while another might set a higher threshold because memory is limited or the
application is short-lived.

The cvm Reference appendix in the Architecture Guide lists the dynamic compiler
command-line options (-Xjit) and their defaults. These defaults provide the best
overall performance based on experience with a large set of applications and
benchmarks and should be useful for most application scenarios. They might not
provide the best performance for a specific application or benchmark. Finding
alternate values requires experimentation, a knowledge of the target application's
run-time behavior and requirements in addition to an understanding of the dynamic
compiler's resource limitations and how it operates.

The following examples show how to experiment with these options to tune the
dynamic compiler's performance.

4.1.2.1 Managing the Popularity Threshold
When the popularity index for a given method reaches a certain threshold, it becomes
a candidate for compiling. cvm provides four command-line options that influence
when a given method is compiled: the popularity threshold and three weighting
factors that are combined into a single popularity index:

■ climit, the popularity threshold. The default is 20000.

■ bcost, the weight of a backwards branch. The default is 4.

■ icost, the weight of an interpreted to interpreted method call. The default is 20.

■ mcost, the weight of transitioning between a compiled method and an interpreted
method and vice versa. The default is 50.

Each time a method is called, its popularity index is incremented by an amount based
on the icost and mcost weighting factors. The default value for climit is 20000. By

Dynamic Compiler Tuning

4-4 Oracle Java Micro Edition Embedded Client Customization Guide

setting climit at different levels between 0 and 65535, you can find a popularity
threshold that produces good results for a specific application.

The following example uses the -Xjit:option command-line option syntax to set an
alternate climit value:

% cvm -Xjit:climit=10000 MyTest

Setting the popularity threshold lower than the default causes the dynamic compiler to
more eagerly compile methods. Since this usually causes the code cache to fill up faster
than necessary, this approach is often combined with a larger code cache size to avoid
thrashing between compiling and discarding compiled methods.

4.1.2.2 Managing Compiled Code Quality
The dynamic compiler can choose to inline methods for providing better code quality
and improving the speed of a compiled method. Usually this involves a space-time
trade-off. Method inlining consumes more space in the code cache but improves
performance. For example, suppose a method to be compiled includes an instruction
that invokes an accessor method returning the value of a single variable.

public void popularMethod() {
...
 int i = getX();
...
}
public int getX() {
 return X;
}
getX() has overhead like creating a stack frame. By copying the method's
instructions directly into the calling method's instruction stream, the dynamic
compiler can avoid that overhead.

cvm has several options for controlling method inlining, including the following:

■ maxInliningCodeLength sets a limit on the bytecode size of methods to inline.
This value is used as a threshold that proportionally decreases with the depth of
inlining. Therefore, shorter methods are inlined at deeper depths. In addition, if
the inlined method is less than value/2, the dynamic compiler allows unquick
opcodes in the inlined method.

■ minInliningCodeLength sets the floor value for maxInliningCodeLength
when its size is proportionally decreased at greater inlining depths.

■ maxInliningDepth limits the number of levels that methods can be inlined.

For example, the following command-line specifies a larger maximum method
size.

% cvm -Xjit:inline=all,maxInliningCodeLength=80 MyTest
In one experiment, reducing code quality reduced the usage of code cache memory by
about 40% while reducing performance by about 5%. The values used were:

■ maxInliningDepth=3 (default 12)

■ maxInliningCodeLength=26 (default 64)

■ climit=60000 (default 20000)

4.1.2.3 Managing the Code Cache
On some systems, the benefits of compiled methods must be balanced against the
limited memory available for the code cache. cvm offers several command-line options

Memory Management Tuning

Tuning 4-5

for managing code cache behavior. The most important is the size of the code cache,
which is specified with the codeCacheSize option.

Increasing the default code cache size from the default 512KB is beneficial to many
applications. On the other hand, when minimizing dynamic memory usage is
paramount, you can reduce the code caches size. For example, the following
command-line specifies a code cache that is half the default size.

% cvm -Xjit:codeCacheSize=256k MyTest

A smaller code cache causes the dynamic compiler to discard compiled method code
more frequently. Therefore, you might also want to use a higher compilation threshold
in combination with a lower code cache size.

4.1.3 Setting the Maximum Working Memory for the Dynamic Compiler
The -Xjit:maxWorkingMemorySize command-line option sets the maximum
working memory size for the dynamic compiler. The 512 KB default can be
misleading. Under most circumstances the working memory for the dynamic compiler
is substantially less and is furthermore temporary. For example, when a method is
identified for compiling, the dynamic compiler allocates a temporary amount of
working memory that is proportional to the size of the target method. After compiling
and storing the method in the code buffer, the dynamic compiler releases this
temporary working memory.

The average method needs less than 30 KB but large methods with lots of inlining can
require much more. However since 95% of all methods use 30 KB or less, this is rarely
an issue. Setting the maximum working memory size to a lower threshold should not
adversely affect performance for the majority of applications.

4.2 Memory Management Tuning
This section provides an overview of how the Java virtual machine manages memory,
and the options that you can set to improve performance.

4.2.1 The Java Heap
The virtual machine uses the native platform's memory allocation mechanism to create
the Java heap, which is where it stores Java objects. The heap is divided into two areas
called the young and old generations as shown in Figure 4–4. The names refer to the
relative age of objects in the heap. Classifying objects by age is an optimzation
technique for garbage collection, which is described in Section 4.2.1.1. Functionally, the
heap is a single storage area for objects.

Memory Management Tuning

4-6 Oracle Java Micro Edition Embedded Client Customization Guide

Figure 4–4 Young and Old Java Heap Generations at Startup

When you launch the virtual machine with the cvm command (described in the
Architecture Guide), you can specify heap size options that trade memory consumption
for performance.

Heap options:

■ -Xmssize: The starting size of the heap, which is the space available for object
storage, default 2M (megabytes).

■ -Xgc:youngGen=size: The size of the young generation region within the heap,
default 1M.

■ -Xmxsize: The maximum size of the heap, default 7M. During execution, as
necessary, the virtual machine expands the old generation region to this
maximum. The young generation region does not expand. If the heap is at its
maximum size and there is insufficient memory for a new object, the result is an
OutOfMemoryError exception.

■ -Xmnsize: The minimum size of the heap, default 1M. During execution, when
demand for heap space is low, the virtual machine returns old generation memory
to the operating system, down to this minimum size.

Heap usage is highly application-specific. Use profiling (described in the Developer’s
Guide) to monitor heap usage. You can also use the statistics produced by the cvm
command’s -Xgc:stat option.

4.2.1.1 Garbage Collection
When a Java application creates an object, the virtual machine allocates memory for
the object in the Java heap. After the object is no longer needed, the VM reclaims the
object’s memory so it can be allocated to new objects. The VM’s automatic garbage
collection (GC) system frees the application developer from the responsibility of
manually allocating and freeing memory, which is a major source of bugs with
conventional application platforms. GC has some additional costs, including run-time
pauses and memory footprint overhead. However, these costs are usually small in
comparison to the benefits of application reliability and developer productivity.

Because garbage collection suspends application execution, it is important to set
heap-related options so garbage collection does not violate application performance or
resource consumption requirements.

Memory Management Tuning

Tuning 4-7

4.2.1.1.1 Young Generation Collection The division of the heap into young and old
generations of objects is a performance optimization based on the observation that
most objects "die young". Young generation garbage collection uses a technique called
copy semispace. It is fast and productive and can be run frequently with little
noticeable application slowdown. The cost of fast collection is doubling the memory
space required to store the young generation (see Figure 4–5).

Figure 4–5 Young Generation From-space and To-space

As shown in Figure 4–5, when the the virtual machine creates the heap, it prepends a
region that is equal in size to youngGen. The expanded young generation region
consists of a from-space and a to-space. During execution, only the from-space is
active; new objects are allocated there. The to-space is only used during garbage
collection.

When the from-space fills, the young generation garbage collector copies live objects to
the to-space, updates references to the live objects, and switches its to-space and
from-space pointers, making the old from-space into the to-space. Under typical "most
objects die young" conditions, few objects are copied during garbage collection and
much of the old from-space is reclaimed. Young objects that survive a small number of
garbage collections are assumed to be long-lived, and are promoted to the old
generation to prevent further fruitless copying.

For the young generation to work effectively, youngGen must be large enough for a
substantial number of recently allocated objects to die before the from-space fills. If
youngGen is too small, the from-space will fill frequently, and the young generation
garbage collector will run frequently and reclaim a small percentage of the space. In
addition, some objects that will soon die will be promoted to the slower-to-collect old
generation. As a starting point, you can make youngGen about 1/8 of -Xmssize, but
understanding and profiling your application is the best practice for optimizing heap
options.

4.2.1.1.2 Old Generation Collection The old generation does not have the space overhead
of a to-space, but its garbage collector runs more slowly and reclaims fewer objects.
The trigger for running the old generation collector is a young generation collection
that does not reclaim sufficient space. For the best user experience, the old generation
collector should run infrequently, which can be realized by making youngGen large
enough. The old generation collector marks live objects, compacts them starting at the

Class Verification

4-8 Oracle Java Micro Edition Embedded Client Customization Guide

young generation boundary, and updates references to refer to the new object
locations.

The virtual machine expands the old generation when, following an old generation
garbage collection, the region occupied by old objects is larger than the "high water
mark". The high water mark indicates how much heap space was previously used by
live objects. Old generation expansion stops at the bound set by -Xmxsize.

4.2.2 Java and Native Stacks
Each Java thread has two stacks, one for Java code and one for native code. The size of
native stacks is affected by the following options, whose defaults should be changed
only if memory is an extremely scarce resource:

■ -Xopt:stackMinSize

■ -Xopt:stackMaxSize

■ -Xopt:stackChunkSize

The Architecture Guide gives the default and permitted values of these options.

By default, the native stack size is set by the target operating system, typically to 1MB.
For Linux operating systems, the limit command can change the default. A 1MB
stack is much larger than most threads need, but neither is it as wasteful as might
appear. On most target devices, unused stack space consumes only page table entries.
A 64KB native stack size is reasonable for applications whose native code does not
recursively enter Java code.

Depending on the target platform’s operating system, you can also change the native
default stack size with the -Xsssize option. On some operating systems, this option
has no effect. The default value of -Xss is 0, which means the operating system sets
the native stack size.

4.3 Class Verification
By default, Java class verification is performed at class loading time to insure that a
class is well-behaved. For large, trusted applications, you can disable Java class
verification as follows:

% cvm -Xverify:none -cp MyApp.jar MyApp

Disabling verification reduces both load time and security. Use it with caution.

5

Connecting a Database to JDBC 5-1

5Connecting a Database to JDBC

This chapter describes broadly how to set up a database so it can be used with the Java
Database Connectivity optional package (JSR 169) that is included with Oracle Java
Micro Edition Embedded Client.

JDBC for CDC (JSR 169) can provide a uniform interface to many databases. The
details of configuring a particular database to work with JDBC and Oracle Java Micro
Edition Embedded Client vary considerably from database to database and platform
to platform. For an overview and example of connecting and using a database with
Oracle Java Micro Edition Embedded Client, see the JDBC white paper at
http://www.oracle.com/technetwork/java/embedded/resources/me-emb
eddocs/index.html.

http://www.oracle.com/technetwork/java/embedded/resources/me-embeddocs/index.html
http://www.oracle.com/technetwork/java/embedded/resources/me-embeddocs/index.html

5-2 Oracle Java Micro Edition Embedded Client Customization Guide

6

Ahead-of-Time Compilation 6-1

6Ahead-of-Time Compilation

This chapter describes how to reduce device startup time with ahead-of-time
compilation (AOT, also called precompilation). In some cases, precompiling can also
improve system responsiveness by preventing dynamic compilation of methods you
have compiled ahead of time. Precompilation is an optimization technique to use after
application development is complete.

This chapter includes these topics:

■ Section 6.1, "How Ahead-of-Time Compilation Works"

■ Section 6.2, "Determining the Methods to Precompile"

Note: AOT compilation is not available for x86-based platforms.

6.1 How Ahead-of-Time Compilation Works
When the virtual machine starts, it loads the precompiled methods specified in a file
named in a command line option. To the degree that these methods are called during
system startup, startup time can be reduced by not interpreting, and, in some cases,
not dynamically compiling, the methods. To the degree that the precompiled methods
are not called during startup, startup time is increased by the time spent loading
precompiled methods that are not used. Section 6.2 describes how to determine which
methods are called during startup.

There is no separate precompiler tool. Invoking cvm with these -Xjit: suboptions
triggers precompilation:

■ aotMethodList=file - file names the methods to precompile. Section 6.2 describes
how to create a template for this file.

■ aotFile=file - optional; if specified, the AOT compiler writes the compiled
methods to file; if not specified, the compiler writes the compiled methods to
lib/cvm.aot.

If you change the method list, invoke cvm with -Xjit:recompileAOT=true to
rebuild the precompiled method file.

To direct the virtual machine to load the precompiled methods in the default
lib/cvm.aot, invoke cvm without -Xjit:aotxxx suboptions. To direct the virtual
machine to read compiled methods from a different location, use aotFile=file.

To run without precompiled methods, invoke cvm with -Xjit:aot=false.

Determining the Methods to Precompile

6-2 Oracle Java Micro Edition Embedded Client Customization Guide

6.2 Determining the Methods to Precompile
To determine a set of methods that yields the best performance when precompiled,
experiment with different combinations and measure their effect on performance. You
can combine entries from multiple runs to optimize for multiple applications.

To create a list of candidate methods, run your application with
-Xjit:generateAOTList=compiledMethodsFile. When the run completes,
compiledMethodsFile contains a list of the methods that were compiled in the run, in
other words, hot methods. The methods are listed in the order they were compiled.
compiledMethodsFile is in method list format, so you can specify it as the argument to
-Xjit:aotMethodList. However, you should first edit the file, commenting out
methods that you do not want precompiled. The generated compiledMethodsFile is a
template and a starting point. Experiment to create the final method list file.

	Contents
	List of Tables
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Footprints and Optional Components
	1.1 Static and Dynamic Memory Footprints
	1.2 Installing and Removing Optional Components

	2 Globalization
	2.1 Adding Character Sets
	2.2 Timezones
	2.3 Adding Locales

	3 Security
	3.1 Overview
	3.1.1 Built-in Security Features
	3.1.2 Security Policy Framework
	3.1.3 Security Provider Architecture
	3.1.4 Custom JSSE Provider Plug-ins
	3.1.5 Oracle JSSE Cipher Suite Support
	3.1.6 Self-Integrity Checks

	3.2 Security Procedures
	3.2.1 Using Alternate Security Providers
	3.2.2 Public Key Management
	3.2.3 Security Policy Management
	3.2.4 Seed Generation for Random Number Generation

	3.3 Security Files

	4 Tuning
	4.1 Dynamic Compiler Tuning
	4.1.1 Dynamic Compiler Overview
	4.1.2 Dynamic Compiler Policies
	4.1.2.1 Managing the Popularity Threshold
	4.1.2.2 Managing Compiled Code Quality
	4.1.2.3 Managing the Code Cache

	4.1.3 Setting the Maximum Working Memory for the Dynamic Compiler

	4.2 Memory Management Tuning
	4.2.1 The Java Heap
	4.2.1.1 Garbage Collection
	4.2.1.1.1 Young Generation Collection
	4.2.1.1.2 Old Generation Collection

	4.2.2 Java and Native Stacks

	4.3 Class Verification

	5 Connecting a Database to JDBC
	6 Ahead-of-Time Compilation
	6.1 How Ahead-of-Time Compilation Works
	6.2 Determining the Methods to Precompile

