J2ME CLDC API
1.0

Copyright © 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the K Virtual Machine (KVM) or J2ME CLDC Reference Implementation technology to
use this document for internal evaluation purposes only. Other than this limited license, you acquire no
right, title, or interest in or to the document and you shall have no right to use the document for productive
or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JDK, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX® is a
registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents

(O I D L O PP

java.io ..

BYtEAITaYINPUESTIEAM ...t e e e e e eeenan
BYEAITaYOULPULSIIEAM ...ttt e e e et e e e e e s e s st e b e e et et e+ smm—— e
[F21 =111 01U PP
DAtAINPUESTIEAIM ..ottt e e e e et e e e e et e e e e e e s sa e ae b e s emmmeeeeeeneeeeeeeeaesaaannnrnne
[0 1= = T 11 1 11 | OO
DataOULPUESTIEAM ...ttt e et e ettt e e e e e st e e e et e e e e e s smmmmneeeeeeeee s nnnrn e neeeeeeees
L@ o= [SRR

InputStream

INPUESTIFEAMREAUET ...ttt et e e e e bt et e e e sa b et e e e+ 41t s ¢ com—— 111 12t e 2110
eI g0 o] r=To | [@T = Ced=T o] i o] o NN PP PPPP P
1@ = (oT=T o] 1T] o PP PUP SRR
L@ 11110181 5 1 £ 1 o o SO PPRPRRIN
L@ W1 01U A (== U 411] (= PP

PrintStream

[RNCT=To [S PPN
0T aIS107 o] o o] g C=To | =l gTetoTo 1 Te] ot (o =T o] (o] o R
UTFDataFOrmMatEXCEPLIONceeiiiiiiiieieei et e e e e e e e e e e e e e e s s aes e e e mmmmmmmmmmmnen e e eeeeeee s

Writer
java.lang

ANTNMELICEXCEPUION ..oeeiiiie e it e e e e e e e e e e s s st e e e e e aeeeaas s ansns s e s e s eomm—— 11112 e e a1 s nnnns

ArraylndexOutOfBoundsException

F N =NV (0] (= = CoT= o 1o) o S UPPRRRRR
1270 0] - 1 o PP PT PP

Byte

(O 3 F= U= (o1 (= (R

Class
ClassCastException

(O F= TS |\ o) 4 00T T To | =brCoT=7 o) i o] o SRS

Error

o =T 1110 o OSSP
1E@QAIACCESSEXCEPLION ...veiiiiiiiie e eiei ittt e et e e e e e e e e s e e e eaeee e e s s nne s eememmmmmm———— s nneeeeeees
1 =To Eo T VAN o T8 g g LT a1 b CoT= o) o] o P
1=ToEo U\ FoT T (o) oS3 = (=] b Ced=T) 1o o PR
llegal TRread StatEEXCEPLIONuuuiiiiieiee e i e i e e e e e s e r e et e e e e s s e e aae e er e et e e e eeeeeeeneneansnnnnrnnnees
TaTo =X (@] U1 (@] =70 10 gTo Y T (o =T o] 1 o] o E P
T 1S3 = VLU=V o] T (o =T o T} o SRR
L1 C=To =T P SOPPPPPTRRTPPPIS
T 10T U] 0 (=0 |t (o =T o1 o] o PR

Long
Math

NEeQgatIVEAITAY SIZEEXCEPUION ...vvieiiieiei et iecciitie et et e e e e e s s s e e et e e e e e e s s st aeeeeeeaee e s s s mm— s

NullPointerException

N[0] o =T o T = L (ot =] o) 1o o P
L] 1T o P

OutOfMemoryError

RUNNGDIE .o sttt e e s snae e e e e s

RUNTIME .ottt e ettt e e sttt e e s sbb e e e e e s nnneeee s

L 11 g1 b CoT= o) 1o) o PP
Y=o U] Y 0ol = o o) o PSSR

Contents

S 1 o RPN

SHNGBUTTEE et e e e e e e e e et et e et e e et ee e eme———————————— e a e e e aaaaaaaeaes

StringlndexOutOfBoundsException

2] =] 1 PP

TRFEAM ...ttt e e e e e e e e e e e e e e

TRIOWADIE ... ettt e e oot e e et e e e e s e e e rreee e e e e e e e e e s nnebeenees

A E= 1LY = Tl o T =T = (o] SO P TR UPPPUPPTN
java.util

L0112 0 To b= T P PPUUT RSP

D 1 (<O TP TP U PO PP P UPPPPPTPPPTTRRPON

EMPtyStaCKEXCEPLIONcoiiiiiiiiiiie et e e e

ENUMEIATION ...ttt e e e e e e e e e e e nnnbnb e eeeeas

HASIEADIE ...t e e e e e

NOSUChEIEMENIEXCEPLION ...eeiiiiiiiiiiii e

LR ¥= 110 (o] o o TR PP UUUTTUT PP

V2= o1 (o) PP PU PP PP TTPT
LYz D 1ol (01T [o] 1Y o PP
L00] o] 1= Tox 1o o PO
ConnectioNNOtFOUNAEXCEPLIONuviiiiiiiiiiie ittt e e st e e snn e e e e s anreeee s
Connector
1070] a11T 01 (00 o1 1= 1o o [P PRPP
D2 U= (o] £=1 1o PP TP PP PPPPPRR
DatagramConnection
1] o181 (®% o] o g =T ox i o o [PP PURUPRRRRRRR
OutputConnection
StreamConnection

CLDC API

Package Summary

CLDC API packages

java.io Provides for system input and output through data streams.
javalang Provides classes that are fundamental to the design of the Java programming language.
java.util Contains the collections framework, legacy collection classes, date and time facilities

and miscellaneous utility classes.

javax.microedition.io The classes for the generic connections.

I.Dackagg
java.io

Description

Provides for system input and output through data streams.

Since: JDK 1.0

Class Summary

Interfaces
Datalnput

DataOutput

Classes

ByteArraylnputStream

ByteArrayOutputStream

DatalnputStream

DataOutputStream

InputStream

InputStreamReader

OutputStream

OutputStreamWriter

PrintStream

Reader

Writer

Exceptions
EOFException

InterruptedlOExcep-

tion
IOException

UnsupportedEncod-

ingException

TheDatalnput interface provides for reading bytes from a binary stream and re|
structing from them data in any of the Java primitive types.

TheDataOutput interface provides for converting data from any of the Java pri
tive types to a series of bytes and writing these bytes to a binary stream.

A ByteArraylnputStream
may be read from the stream.

contains an internal buffer that contains bytes tha

This class implements an output stream in which the data is written into a byte &

A data input stream lets an application read primitive Java data types from an u
ing input stream in a machine-independent way.

A data input stream lets an application write primitive Java data types to an outp
stream in a portable way.

This abstract class is the superclass of all classes representing an input stream @

An InputStreamReader is a bridge from byte streams to character streams: It re
bytes and translates them into characters.

This abstract class is the superclass of all classes representing an output strear
bytes.

An OutputStreamWriter is a bridge from character streams to byte streams: Char
written to it are translated into bytes.

A PrintStream adds functionality to another output stream, namely the ability
print representations of various data values conveniently.

Abstract class for reading character streams.

Abstract class for writing to character streams.

Signals that an end of file or end of stream has been reached unexpectedly duri
input.

Signals that an 1/O operation has been interrupted.

Signals that an 1/0 exception of some sort has occurred.

The Character Encoding is not supported.

con-

mi-

rray.

nderly-

ut

f bytes.

ads

n of

acters

to

java.io

Class Summary

UTFDataFormatExcep- Signals that a malformed UTF-8 string has been read in a data input stream or by any
tion class that implements the data input interface.

java.io

ByteArrayin

java.io ByteArraylnputStream

putStream

Syntax
public class ByteArraylnputStream extends InputStream
Object

|
+-- InputStream
I

+-- java.io.ByteArraylnputStream

Description

A ByteArraylnputStream contains an internal buffer that contains bytes that may be read from the
stream. An internal counter keeps track of the next byte to be suppliedrepdhenethod.

Since: JDK1.0

Member Summary

Fields
buf_

count
mark

pos

Constructors
ByteArraylnput-
Stream(byte[])
ByteArraylnput-
Stream(byte[], int,

int)

Methods
available()

close

mark(int)
markSupported()

read()

read(byte(], int, int)
reset()

skip(long)

An array of bytes that was provided by the creator of the stream.

The index one greater than the last valid character in the input stream buffer.
The currently marked position in the stream.

The index of the next character to read from the input stream buffer.

Creates @8yteArraylnputStream so that it usebuf as its buffer array.

CreateByteArraylnputStream that usebuf as its buffer array.

Returns the number of bytes that can be read from this input stream without blo
Closes this input stream and releases any system resources associated with the
Set the current marked position in the stream.

Tests if ByteArraylnputStream supports mark/reset.

Reads the next byte of data from this input stream.

Reads up téen bytes of data into an array of bytes from this input stream.
Resets the buffer to the marked position.

Skipsn bytes of input from this input stream.

Inherited Member Summary

Methods inherited from classlnputStream

king.
stream.

ByteArraylnputStream java.io

buf

Inherited Member Summary

read(bytel])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll()
wait(long) , wait(long, int) . wait()

Fields

buf

protected byte[] buf

An array of bytes that was provided by the creator of the stream. Eleinefi@ throughbuf[count-

1] are the only bytes that can ever be read from the stream; eldmfpbs] is the next byte to be read.

count

protected int count
The index one greater than the last valid character in the input stream buffer. This value should always be

nonnegative and not larger than the lengttoof . It is one greater than the position of the last byte within
buf that can ever be read from the input stream buffer.

mark

protected int mark

The currently marked position in the stream. ByteArraylnputStream objects are marked at position zero by
default when constructed. They may be marked at another position within the buffer byaitk¢)
method. The current buffer position is set to this point bydket() = method.

Since: JDK1.1

pos

protected int pos

The index of the next character to read from the input stream buffer. This value should always be nonnega-
tive and not larger than the value cdunt . The next byte to be read from the input stream buffer will be
buf[pos]

Constructors

ByteArraylnputStream(bytel[])

10

java.io ByteArraylnputStream
ByteArraylnputStream(byte[], int, int)

public ByteArraylnputStream(byte[] buf)

Creates @yteArraylnputStream so that it useduf as its buffer array. The buffer array is not cop-
ied. The initial value opos is 0 and the initial value ofount is the length obuf .

Parameters:
buf - the input buffer.

ByteArraylnputStream(byte[], int, int)
public ByteArraylnputStream(byte[] buf, int offset, int length)

CreateByteArraylnputStream that useduf as its buffer array. The initial value pbs is offset
and the initial value ofount isoffset+len . The buffer array is not copied.

Note that if bytes are simply read from the resulting input stream, elemaunfpos] through
buf[pos+len-1] will be read; however, if aeset operation is performed, then bytésf[0]
through huf[pos-1] will then become available for input.

Parameters:
buf - the input buffer.

offset - the offset in the buffer of the first byte to read.

length - the maximum number of bytes to read from the buffer.

Methods

available()
public synchronized int available()

Returns the number of bytes that can be read from this input stream without blocking. The value returned is
count- pos , which is the number of bytes remaining to be read from the input buffer.

Overrides: available() in classinputStream
Returns: the number of bytes that can be read from the input stream without blocking.

close()
public synchronized void close()
Closes this input stream and releases any system resources associated with the stream.
Overrides: close() in classinputStream
Throws: |OException

mark(int)
public void mark(int readAheadLimit)

Set the current marked position in the stream. ByteArraylnputStream objects are marked at position zero by
default when constructed. They may be marked at another position within the buffer by this method.

11

ByteArraylnputStream java.io
markSupported()

Overrides: mark(int) in classinputStream
Since: JDK1.1

markSupported()
public boolean markSupported()
Tests if ByteArraylnputStream supports mark/reset.
Overrides: markSupported() in classinputStream
Since: JDK1.1

read()
public synchronized int read()

Reads the next byte of data from this input stream. The value byte is returnedrds @mthe ranged to
255. If no byte is available because the end of the stream has been reached, tiie iataturned.

Thisread method cannot block.

Overrides: read() _in classinputStream
Returns: the next byte of data, et if the end of the stream has been reached.

read(byte[], int, int)
public synchronized int read(byte[] b, int off, int len)

Reads up tden bytes of data into an array of bytes from this input strearpol equalscount , then-1
is returned to indicate end of file. Otherwise, the nunibef bytes read is equal to the smallerlefi and
count-pos . If k is positive, then bytebuf[pos] throughbuf[pos+k-1] are copied intd[off]
throughb[off+k-1] in the manner performed bgystem.arraycopy . The valuek is added into
pos andk is returned.

Thisread method cannot block.

Overrides: read(byte[]. int, int) in classinputStream

Parameters:
b - the buffer into which the data is read.

off - the start offset of the data.
len - the maximum number of bytes read.

Returns: the total number of bytes read into the buffer;brif there is no more data because the end of
the stream has been reached.

reset()
public synchronized void reset()

Resets the buffer to the marked position. The marked position is the beginning unless another position was
marked. The value gjos is set to 0.

Overrides: reset() in classinputStream

12

java.io ByteArraylnputStream
skip(long)

skip(long)
public synchronized long skip(long n)

Skipsn bytes of input from this input stream. Fewer bytes might be skipped if the end of the input stream is
reached. The actual numblerof bytes to be skipped is equal to the smallemadndcount-pos . The
valuek is added intgos andk is returned.

Overrides: skip(long) in classinputStream

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

13

ByteArrayOutputStream
skip(long)

java.io

ByteArrayO

java.io

utputStream

Syntax
public class ByteArrayOutputStream extends OutputStream
Object

|
+-- OutputStream
I

+-- java.io.ByteArrayOutputStream

Description

This class implements an output stream in which the data is written into a byte array. The buffer automatically

grows as data is written to it. The

Since: JDK1.0

data can be retrieved taygeArray() andtoString()

Member Summary

Fields
buf_

count

Constructors
ByteArrayOutput-

Stream()
ByteArrayOutput-

Stream(int)

Methods
close

reset()

size()
toByteArray()
toString()

write(byte[], int,
int)
write(int)

The buffer where data is stored.
The number of valid bytes in the buffer.

Creates a new byte array output stream.

Creates a new byte array output stream, with a buffer capacity of the specified si
bytes.

Closes this output stream and releases any system resources associated with {
stream.

Resets theount field of this byte array output stream to zero, so that all curren
accumulated output in the output stream is discarded.

Returns the current size of the buffer.

Creates a newly allocated byte array.

Converts the buffer's contents into a string, translating bytes into characters accq
to the platform's default character encoding.

Writeslen bytes from the specified byte array starting at oftgét to this byte array
output stream.

Writes the specified byte to this byte array output stream.

ze, in

his

y

rding

Inherited Member Summary

Methods inherited from classQutputStream

14

java.io ByteArrayOutputStream
buf

Inherited Member Summary

write(byte[]) , flush()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() _, notifyAll() , wait(long) , wait(long,
int) , wait()

Fields

buf

protected byte[] buf
The buffer where data is stored.

count
protected int count

The number of valid bytes in the buffer.

Constructors

ByteArrayOutputStream()
public ByteArrayOutputStream()

Creates a new byte array output stream. The buffer capacity is initially 32 bytes, though its size increases if
necessary.

ByteArrayOutputStream(int)
public ByteArrayOutputStream(int size)
Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.

Parameters:
size - the initial size.

Throws: lllegalArgumentException - if size is negative.

Methods

15

ByteArrayOutputStream java.io

close()

close()

public synchronized void close()

Closes this output stream and releases any system resources associated with this stream. A closed stream
cannot perform output operations and cannot be reopened.

Overrides: close() in classOutputStream
Throws: |OException

reset()

public synchronized void reset()

Resets theount field of this byte array output stream to zero, so that all currently accumulated output in
the output stream is discarded. The output stream can be used again, reusing the already allocated buffer
space.

See Also: count

size()

public int size()

Returns the current size of the buffer.

Returns: the value of theount field, which is the number of valid bytes in this output stream.
See Also: count

toByteArray()

public synchronized byte[] toByteArray()

Creates a newly allocated byte array. Its size is the current size of this output stream and the valid contents
of the buffer have been copied into it.

Returns: the current contents of this output stream, as a byte array.

See Also: size()

toString()

public String _ toString()

Converts the buffer's contents into a string, translating bytes into characters according to the platform's
default character encoding.

Overrides: toString() in classObject
Returns: String translated from the buffer's contents.
Since: JDK1.1

write(byte[], int, int)

16

java.io ByteArrayOutputStream
write(int)

public synchronized void write(byte[] b, int off, int len)
Writeslen bytes from the specified byte array starting at offffet to this byte array output stream.
Overrides: write(byte[], int, int) in classOutputStream

Parameters:
b - the data.

off - the start offset in the data.

len - the number of bytes to write.

write(int)
public synchronized void write(int b)
Writes the specified byte to this byte array output stream.

Overrides: write(int) in classOutputStream

Parameters:
b - the byte to be written.

17

Datalnput java.io
write(int)

java.io

Datalnput

Syntax

public abstract interface Datalnput

All Known Subinterfaces: Datagram

All Known Implementing Classes: DatalnputStream

Description

TheDatalnput interface provides for reading bytes from a binary stream and reconstructing from them data
in any of the Java primitive types. There is also a facility for reconstructitging from data in Java modi-

fied UTF-8 format.

It is generally true of all the reading routines in this interface that if end of file is reached before the desired
number of bytes has been read EB@FException (which is a kind oflOException) is thrown. If any byte
cannot be read for any reason other than end of filéO&ixception other tharEOFException is thrown.

In particular, anOException may be thrown if the input stream has been closed.

Since: JDK1.0

See Also: DatalnputStream __, DataOutput

Member Summary

Methods

readBoolean() Reads one input byte and retutnge if that byte is nonzerdalse if that byte is
zero.

readByte() Reads and returns one input byte.

readChar() Reads an inputhar and returns thehar value.

readFully(byte[]) Reads some bytes from an input stream and stores them into the buffér. array

readFully(byte[], Readden bytes from an input stream.

int, int)

readint() Reads four input bytes and returnsrn value.

readlong() Reads eight input bytes and returreray value.

readShort() Reads two input bytes and returnshart value.

readUnsignedByte() Reads one input byte, zero-extends it to fyppe, and returns the result, which is
therefore in the range through255.

readUnsignedShort() Reads two input bytes and returnsirain value in the rang@ through65535 .

readUTF() Reads in a string that has been encoded using a modified UTF-8 format.

skipBytes(int) Makes an attempt to skip overbytes of data from the input stream, discarding the
skipped bytes.

18

java.io Datalnput
readBoolean()

Methods

readBoolean()
public boolean readBoolean()

Reads one input byte and retutnge if that byte is nonzerdialse if that byte is zero. This method is
suitable for reading the byte written by thgteBoolean method of interfac®ataOutput

Returns: theboolean value read.
Throws: EOFException - if this stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readByte()
public byte readByte()

Reads and returns one input byte. The byte is treated as a signed value in thel@hgdrough127,
inclusive. This method is suitable for reading the byte written bywvthigeByte = method of interface
DataOutput

Returns: the 8-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readChar()
public char readChar()

Reads an inputhar and returns thehar value. A Unicodechar is made up of two bytes. Let be the
first byte read andd be the second byte. The value returned is:

(char)((a << 8) | (b & 0xff))
This method is suitable for reading bytes written bywheeChar method of interfac®ataOutput
Returns: the Unicodechar read.

Throws: EOFException _ - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readFully(byte[])
public void readFully(byte[] b)

Reads some bytes from an input stream and stores them into the buffeb afitay number of bytes read is
equal to the length df.

This method blocks until one of the following conditions occurs:

« b.length bytes of input data are available, in which case a normal return is made.
« End of file is detected, in which caseEB@FException is thrown.
« An I/O error occurs, in which case HDException other tharEOFException is thrown.

19

Datalnput java.io
readFully(byte[], int, int)

If bisnull , aNullPointerException is thrown. Ifb.length is zero, then no bytes are read. Oth-
erwise, the first byte read is stored into elemg0] , the next one intdb[1] , and so on. If an exception is
thrown from this method, then it may be that some but not all bytdslave been updated with data from
the input stream.

Parameters:
b - the buffer into which the data is read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readFully(byte[], int, int)
public void readFully(byte[] b, int off, int len)
Readden bytes from an input stream.
This method blocks until one of the following conditions occurs:

« len bytes of input data are available, in which case a normal return is made.

» End of file is detected, in which caseE@FException is thrown.

< An I/O error occurs, in which case HDException other tharEOFException is thrown.
If b is null , a NullPointerException is thrown. If off is negative, orlen is negative, or
offtlen s greater than the length of the arfaythen anndexOutOfBoundsException is thrown.
If len is zero, then no bytes are read. Otherwise, the first byte read is stored into elfafignt , the next
one intob[off+1] , and so on. The number of bytes read is, at most, eqjaal to

Parameters:
b - the buffer into which the data is read.

off - an int specifying the offset into the data.
len - an int specifying the number of bytes to read.
Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readint()
public int readInt()

Reads four input bytes and returnsian value. Leta be the first byte readh be the second byte, be the
third byte, andl be the fourth byte. The value returned is:

(((a & Oxff) << 24) | ((b & Oxff) << 16) |
 ((c & Oxff) << 8) | (d & O0xff))

This method is suitable for reading bytes written bywheInt method of interfac®ataOutput
Returns: theint value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readLong()

20

java.io Datalnput
readShort()

public long readLong()

Reads eight input bytes and returnbag value. Leta be the first byte ready be the second byte, be
the third byted be the fourth bytee be the fifth bytef be the sixth byteg be the seventh byte, aidbe
the eighth byte. The value returned is:

(((long)(a & Oxff) << 56) |
((long)(b & Oxff) << 48) |
((long)(c & Oxff) << 40) |
((long)(d & 0Oxff) << 32) |
((long)(e & Oxff) << 24) |
((long)(f & Oxff) << 16) |
((long)(g & Oxff) << 8) |
((long)(h & Oxff))

This method is suitable for reading bytes written bywhteLong method of interfac®ataOutput
Returns: thelong value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readShort()
public short readShort()

Reads two input bytes and returnsteort value. Leta be the first byte read aribe the second byte. The
value returned is:

(short)((a << 8) * | (b & 0xff)

This method is suitable for reading the bytes written bywhiéeeShort ~ method of interfac®ataOut-
put .

Returns: the 16-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUnsignedByte()
public int readUnsignedByte()

Reads one input byte, zero-extends it to tygte , and returns the result, which is therefore in the rabge
through255. This method is suitable for reading the byte written bywhi#eByte method of interface
DataOutput if the argument tovriteByte was intended to be a value in the rafighrough255.

Returns: the unsigned 8-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUnsignedShort()
public int readUnsignedShort()

21

Datalnput java.io

readUTF()

Reads two input bytes and returnsiah value in the rang@ through65535 . Leta be the first byte read
andb be the second byte. The value returned is:

(((a & Oxff) << 8) | (b & O0xff))

This method is suitable for reading the bytes written bywhiéeShort ~ method of interfac®ataOut-
put if the argument tavriteShort was intended to be a value in the raighrough65535 .

Returns: the unsigned 16-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUTF()

22

public String readUTF()

Reads in a string that has been encoded using a modified UTF-8 format. The general contat/at
is that it reads a representation of a Unicode character string encoded in Java modified UTF-8 format; this
string of characters is then returned &tring

First, two bytes are read and used to construct an unsigned 16-bit integer in exactly the manner of the
readUnsignedShort ~ method . This integer value is called tbd F lengthand specifies the number of
additional bytes to be read. These bytes are then converted to characters by considering them in groups. The
length of each group is computed from the value of the first byte of the group. The byte following a group,

if any, is the first byte of the next group.

If the first byte of a group matches the bit patt@sxxxxxx (wherex means "may b@ or 1"), then the
group consists of just that byte. The byte is zero-extended to form a character.

If the first byte of a group matches the bit pattéftOxxxxx , then the group consists of that byeand a
second byté. If there is no bytéh (because byta was the last of the bytes to be read), or if bigtdoes
not match the bit patterOxxxxxx , then aUTFDataFormatException is thrown. Otherwise, the
group is converted to the character:

(char)(((@a& Ox1F) << 6) | (b & Ox3F))
If the first byte of a group matches the bit pattdrtilOxxxx , then the group consists of that bygeand
two more byted andc. If there is no bytec (because byta was one of the last two of the bytes to be

read), or either byt or bytec does not match the bit patteti®@xxxxxx , then aUTFDataFormatEx-
ception is thrown. Otherwise, the group is converted to the character:

(char)(((a & OxOF) << 12) | ((b & Ox3F) << 6) | (c & O0x3F))

If the first byte of a group matches the patterhl1ixxxx or the patternlOxxxxxx , then aUTF-
DataFormatException is thrown.

If end of file is encountered at any time during this entire process, tie@RException is thrown.

After every group has been converted to a character by this process, the characters are gathered, in the same
order in which their corresponding groups were read from the input stream, to f8tnng , which is
returned.

ThewriteUTF method of interfacdataOutput may be used to write data that is suitable for reading
by this method.

Returns: a Unicode string.
Throws: EOFException - if this stream reaches the end before reading all the bytes.

java.io Datalnput

skipBytes(int)
IOException - if an I/O error occurs.
UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a string.

skipBytes(int)
public int skipBytes(int n)

Makes an attempt to skip overbytes of data from the input stream, discarding the skipped bytes. How-
ever, it may skip over some smaller number of bytes, possibly zero. This may result from any of a number
of conditions; reaching end of file beforebytes have been skipped is only one possibility. This method
never throws akEOFException . The actual number of bytes skipped is returned.

Parameters:
n - the number of bytes to be skipped.

Returns: the number of bytes skipped, which is always

Throws: EOFException - if this stream reaches the end before skipping all the bytes.

IOException - if an I/O error occurs.

23

DatalnputStream java.io
skipBytes(int)

java.io

DatalnputStream

Syntax
public class DatalnputStream extends InputStream _ implements Datalnput
Object

|
+-- InputStream
I

+-- java.io.DatalnputStream

All Implemented Interfaces: Datalnput

Description

A data input stream lets an application read primitive Java data types from an underlying input stream in a
machine-independent way. An application uses a data output stream to write data that can later be read by a data
input stream.

Since: JDK1.0

See Also: DataOutputStream

Member Summary

Fields

in The input stream.

Constructors

Datalnput- Creates @atalnputStream and saves its argument, the input stréamfor later
Stream(InputStream) use.

Methods

available() Returns the number of bytes that can be read from this input stream without blogking.
close Closes this input stream and releases any system resources associated with the| stream.
mark(int) Marks the current position in this input stream.

markSupported() Tests if this input stream supports thark andreset methods.

read() Reads the next byte of data from this input stream.

read(bytel]) See the general contract of tead method oDatalnput

read(byte]], int, _int) Reads up tten bytes of data from this input stream into an array of bytes.
readBoolean() See the general contract of teadBoolean method ofDatalnput

readByte() See the general contract of teadByte method ofDatalnput

readChar() See the general contract of tleadChar method oDatalnput .
readFully(byte[]) See the general contract of teadFully ~ method oDatalnput

readFully(byte]. See the general contract of teadFully ~ method oDatalnput

int, int)

readint() See the general contract of teadIint method oDatalnput

readLong() See the general contract of teadLong method oDatalnput .

readShort() See the general contract of teadShort method oDatalnput

24

java.io DatalnputStream

in
Member Summary
readUnsignedByte() See the general contract of teadUnsignedByte = method ofDatalnput
readUnsignedShort() See the general contract of teadUnsignedShort method oDatalnput
readUTF() See the general contract of teadUTF method oDatalnput
readUTF(Datalnput) Reads from the streaim a representation of a Unicode character string encoded in
Java modified UTF-8 format; this string of characters is then returneStea@ .
reset() Repositions this stream to the position at the timentlagk method was last called or]
this input stream.
skip(long) Skips over and discarasbytes of data from the input stream.
skipBytes(int) See the general contract of #lépBytes method ofDatalnput

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , hotify() , hotifyAll()
wait(long) , wait(long, int) ., wait()

Fields

in

protected InputStream __in
The input stream.

Constructors

DatalnputStream(InputStream)
public DatalnputStream(InputStream __in)
Creates ®atalnputStream and saves its argument, the input strégamfor later use.

Parameters:
in - the input stream.

Methods

available()

public int available()

25

DatalnputStream java.io
close()

Returns the number of bytes that can be read from this input stream without blocking.
This method simply performia.available(n) and returns the result.

Overrides: available() in classinputStream

Returns: the number of bytes that can be read from the input stream without blocking.

Throws: 10Exception - if an I/O error occurs.

close()
public void close()

Closes this input stream and releases any system resources associated with the stream. This method simply
performsin.close()

Overrides: close() _ in classnputStream
Throws: 10Exception - if an I/O error occurs.

mark(int)
public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call toetbet method repositions this
stream at the last marked position so that subsequent reads re-read the same bytes.

Thereadlimit argument tells this input stream to allow that many bytes to be read before the mark posi-
tion gets invalidated.

This method simply perfornmia.mark(readlimit)

Overrides: mark(int) in classinputStream

Parameters:
readlimit - the maximum limit of bytes that can be read before the mark position becomes invalid.

markSupported()
public boolean markSupported()

Tests if this input stream supports thmeark and reset methods. This method simply performs
in.markSupported()

Overrides: markSupported() in classinputStream

Returns: true if this stream type supports theark andreset methodfalse otherwise.

read()

public int read()

Reads the next byte of data from this input stream. The value byte is returnedrds amthe ranged to
255. If no byte is available because the end of the stream has been reached, thé vislueturned. This
method blocks until input data is available, the end of the stream is detected, or an exception is thrown.

This method simply perfornia.read() and returns the result.
Overrides: read() in classnputStream

26

java.io DatalnputStream
read(byte[])

Returns: the next byte of data, et if the end of the stream is reached.

Throws: 10Exception - if an I/O error occurs.

read(bytel])
public final int read(byte[] b)
See the general contract of ttead method oDatalnput

Bytes for this operation are read from the contained input stream.

Overrides: read(byte[]) in classinputStream

Parameters:
b - the buffer into which the data is read.

Returns: the total number of bytes read into the buffer;brif there is no more data because the end of
the stream has been reached.

Throws: 10Exception - if an I/O error occurs.
See Also: read(byte[], int, int)

read(byte[], int, int)
public final int read(byte[] b, int off, int len)

Reads up tden bytes of data from this input stream into an array of bytes. This method blocks until some
input is available.

This method simply performa.read(b, off, len) and returns the result.
Overrides: read(byte[], int, int) in classinputStream
Parameters:

b - the buffer into which the data is read.
off - the start offset of the data.
len - the maximum number of bytes read.

Returns: the total number of bytes read into the buffer,-dr if there is no more data because the end of
the stream has been reached.

Throws: |0Exception - if an I/O error occurs.

readBoolean()
public final boolean readBoolean()
See the general contract of tteadBoolean method oDatalnput
Bytes for this operation are read from the contained input stream.

Specified By: readBoolean() in interfaceDatalnput

Returns: theboolean value read.

Throws: EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.

27

DatalnputStream java.io

readByte()

readByte()

public final byte readByte()

See the general contract of tteadByte method ofDatalnput

Bytes for this operation are read from the contained input stream.

Specified By: readByte() _ in interfaceDatalnput

Returns: the next byte of this input stream as a signed &pie .

Throws: EOFException - if this input stream has reached the end.
IOException - if an I/O error occurs.

readChar()

public final char readChar()

See the general contract of tteadChar method ofDatalnput

Bytes for this operation are read from the contained input stream.

Specified By: readChar() in interfaceDatalnput

Returns: the next two bytes of this input stream as a Unicode character.

Throws: EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

readFully(byte[])

public final void readFully(byte[] b)
See the general contract of ieadFully method ofDatalnput
Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[]) in interfaceDatalnput

Parameters:
b - the buffer into which the data is read.

Throws: EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readFully(byte[], int, int)

28

public final void readFully(byte[] b, int off, int len)
See the general contract of teadFully method oDatalnput
Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[], int, int) in interfaceDatalnput

Parameters:
b - the buffer into which the data is read.

off - the start offset of the data.

java.io DatalnputStream
readint()

len -the number of bytes to read.
Throws: EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

readint()
public final int readint()
See the general contract of tteadint method ofDatalnput
Bytes for this operation are read from the contained input stream.
Specified By: readint() in interfaceDatalnput
Returns: the next four bytes of this input stream, interpreted astan

Throws: EOFException - if this input stream reaches the end before reading four bytes.
IOException - if an I/O error occurs.

readLong()
public final long readLong()
See the general contract of tteadLong method ofDatalnput
Bytes for this operation are read from the contained input stream.
Specified By: readLong() in interfaceDatalnput
Returns: the next eight bytes of this input stream, interpretedi@sca .
Throws: EOFException - if this input stream reaches the end before reading eight bytes.
IOException - if an I/O error occurs.

readShort()
public final short readShort()
See the general contract of teadShort method ofDatalnput
Bytes for this operation are read from the contained input stream.
Specified By: readShort() in interfaceDatalnput
Returns: the next two bytes of this input stream, interpreted as a signed 16-bit number.

Throws: EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

readUnsignedByte()
public final int readUnsignedByte()
See the general contract of teadUnsignedByte ~ method ofDatalnput
Bytes for this operation are read from the contained input stream.

Specified By: readUnsignedByte() in interfaceDatalnput

29

DatalnputStream java.io

readUnsignedShort()

Returns: the next byte of this input stream, interpreted as an unsigned 8-bit number.
Throws: EOFException - if this input stream has reached the end.

IOException - if an I/O error occurs.

readUnsignedShort()

public final int readUnsignedShort()

See the general contract of teadUnsignedShort method ofDatalnput
Bytes for this operation are read from the contained input stream.
Specified By: readUnsignedShort() in interfaceDatalnput

Returns: the next two bytes of this input stream, interpreted as an unsigned 16-bit integer.

Throws: EOFException - if this input stream reaches the end before reading two bytes.
IOException - if an I/O error occurs.

readUTF()

public final String readUTF()

See the general contract of teadUTF method ofDatalnput

Bytes for this operation are read from the contained input stream.

Specified By: readUTF() in interfaceDatalnput

Returns: a Unicode string.

Throws: EOFException - if this input stream reaches the end before reading all the bytes.
IOException - if an I/O error occurs.

See Also: readUTF(Datalnput)

readUTF(Datalnput)

30

public static final String _ readUTF(Datalnput _in)

Reads from the streain a representation of a Unicode character string encoded in Java modified UTF-8
format; this string of characters is then returned &rang . The details of the modified UTF-8 represen-
tation are exactly the same as fortbadUTF method ofDatalnput

Parameters:
in - adata input stream.

Returns: a Unicode string.
Throws: EOFException - if the input stream reaches the end before all the bytes.
IOException - if an I/O error occurs.

UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a Unicode
string.

See Also: readUnsignedShort()

java.io DatalnputStream
reset()

reset()
public synchronized void reset()
Repositions this stream to the position at the timertAkk method was last called on this input stream.
This method simply performa.reset()

Stream marks are intended to be used in situations where you need to read ahead a little to see what's in the
stream. Often this is most easily done by invoking some general parser. If the stream is of the type handled
by the parse, it just chugs along happily. If the stream is not of that type, the parser should toss an exception
when it fails. If this happens within readlimit bytes, it allows the outer code to reset the stream and try
another parser.

Overrides: reset() in classinputStream
Throws: |0OException - if the stream has not been marked or if the mark has been invalidated.

skip(long)
public long skip(long n)

Skips over and discardsbytes of data from the input stream. Téldp method may, for a variety of rea-
sons, end up skipping over some smaller number of bytes, po$siblige actual number of bytes skipped
is returned.

This method simply performia.skip(n)

Overrides: skip(long) in classinputStream

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: 10Exception - if an I/O error occurs.

skipBytes(int)
public final int skipBytes(int n)
See the general contract of $lepBytes method ofDatalnput
Bytes for this operation are read from the contained input stream.

Specified By: skipBytes(int) in interfaceDatalnput

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: |0OException - if an I/O error occurs.

31

DataOutput java.io
write(byte[])

java.io

DataOutput

Syntax

public abstract interface DataOutput

All Known Subinterfaces: Datagram

All Known Implementing Classes: DataOutputStream

Description

The DataOutput interface provides for converting data from any of the Java primitive types to a series of
bytes and writing these bytes to a binary stream. There is also a facility for conve8ingg into Java mod-

ified UTF-8 format and writing the resulting series of bytes.

For all the methods in this interface that write bytes, it is generally true that if a byte cannot be written for any
reason, alOException s thrown.

Since: JDK1.0

See Also: Datalnput , DataQutputStream

Member Summary
Methods
write(bytell) Writes to the output stream all the bytes in abray
write(byte[]. int. Writeslen bytes from array, in order, to the output stream.
int)
write(int) Writes to the output stream the eight low-order bits of the argument
writeBoolean(boolean) Writes aboolean value to this output stream.
writeByte(int) Writes to the output stream the eight low- order bits of the argument
writeChar(int) Writes achar value, which is comprised of two bytes, to the output stream.
writeChars(String) Writes every character in the striagto the output stream, in order, two bytes per
character.
writent(int) Writes anint value, which is comprised of four bytes, to the output stream.
writeLong(long) Writes anlong value, which is comprised of four bytes, to the output stream.
writeShort(int) Writes two bytes to the output stream to represent the value of the argument.
writeUTF(String) Writes two bytes of length information to the output stream, followed by the Java
modified UTF representation of every character in the string
Methods
write(bytel[])

32

java.io DataOutput
write(byte[], int, int)

public void write(byte[] b)

Writes to the output stream all the bytes in arbayf b isnull , aNullPointerException is thrown.
If b.length is zero, then no bytes are written. Otherwise, the by is written first, therb[1] , and
so on; the last byte written ligb.length-1]

Parameters:
b - the data.

Throws: |0Exception - if an I/O error occurs.

write(byte[], int, int)
public void write(byte[] b, int off, int len)

Writeslen bytes from array, in order, to the output stream.bfis null , aNullPointerException
is thrown. Ifoff is negative, oten is negative, ooff+len is greater than the length of the ardaythen

anIndexOutOfBoundsException is thrown. Iflen is zero, then no bytes are written. Otherwise, the
byteb[off] is written first, therb[off+1] , and so on; the last byte writterbj®ff+len-1]
Parameters:

b - the data.

off - the start offset in the data.
len - the number of bytes to write.

Throws: 10Exception - if an I/O error occurs.

write(int)
public void write(int b)

Writes to the output stream the eight low-order bits of the argurbefithe 24 high-order bits o are
ignored.

Parameters:
b - the byte to be written.

Throws: 10Exception - if an I/O error occurs.

writeBoolean(boolean)
public void writeBoolean(boolean v)

Writes aboolean value to this output stream. If the argumenis true , the valuglbyte)l is written;
if v isfalse , the valuglbyte)0 is written. The byte written by this method may be read byrtfeel-
Boolean method of interfac®atalnput , which will then return &oolean equal tov.

Parameters:
v - the boolean to be written.

Throws: |0Exception - if an I/O error occurs.

writeByte(int)

public void writeByte(int v)

33

DataOutput java.io

writeChar(int)

Writes to the output stream the eight low- order bits of the argumeithe 24 high-order bits of are
ignored. (This means thairiteByte does exactly the same thing asite for an integer argument.)
The byte written by this method may be read by tkadByte method of interfac®atalnput , which
will then return éyte equal to(byte)v

Parameters:
v - the byte value to be written.

Throws: 10Exception - if an I/O error occurs.

writeChar(int)

public void writeChar(int v)

Writes achar value, which is comprised of two bytes, to the output stream. The byte values to be written,
in the order shown, are:

(byte)(Oxff & (v >> 8))
(byte)(Oxff & v)

The bytes written by this method may be read byredChar method of interfac®atalnput , which
will then return achar equal to(char)v

Parameters:
v - thechar value to be written.

Throws: |0Exception - if an I/O error occurs.

writeChars(String)

public void writeChars(String _s)

Writes every character in the strisg to the output stream, in order, two bytes per characterisfnull
aNullPointerException is thrown. Ifs.length is zero, then no characters are written. Otherwise,
the charactes[0] is written first, thers[1] , and so on; the last character writtersfs.length-1]

For each character, two bytes are actually written, high-order byte first, in exactly the manner of the
writeChar method.

Parameters:
s - the string value to be written.

Throws: 10Exception - if an I/O error occurs.

writelnt(int)

34

public void writelnt(int v)

Writes anint value, which is comprised of four bytes, to the output stream. The byte values to be written,
in the order shown, are:

(byte)(Oxff & (v >> 24))

(byte)(Oxff & (v >> 16))

(byte)(Oxff & (v >> 8))
(byte)(Oxff & v)

The bytes written by this method may be read byrdmdint method of interfac®atalnput , which
will then return anint equal tov.

java.io DataOutput
writeLong(long)

Parameters:
v - theint value to be written.

Throws: 10Exception - if an I/O error occurs.

writeLong(long)
public void writeLong(long v)

Writes anlong value, which is comprised of four bytes, to the output stream. The byte values to be writ-
ten, in the order shown, are:

(byte)(Oxff & (v >> 48))

(byte)(Oxff & (v >> 40))

(byte)(Oxff & (v >> 32))

(byte)(Oxff & (v >> 24))

(byte)(Oxff & (v >> 16))

(byte)(Oxff & (v >> 8))

(byte)(Oxff & v)

The bytes written by this method may be read byrgmdLong method of interfac®atalnput , which
will then return dong equal tov.

Parameters:
v - thelong value to be written.

Throws: 10Exception - if an I/O error occurs.

writeShort(int)
public void writeShort(int v)

Writes two bytes to the output stream to represent the value of the argument. The byte values to be written,
in the order shown, are:

(byte)(Oxff & (v >> 8))
(byte)(Oxff & v)

The bytes written by this method may be read by thadShort method of interfacéDatalnput
which will then return @hort equal to(short)v

Parameters:
v - theshort value to be written.

Throws: 10Exception - if an I/O error occurs.

writeUTF(String)
public void writeUTF(String _str)
Writes two bytes of length information to the output stream, followed by the Java modified UTF representa-
tion of every character in the strirgy If s isnull , aNullPointerException is thrown. Each char-
acter in the strings is converted to a group of one, two, or three bytes, depending on the value of the
character.

If a charactec is in the rang\u0001 through\u007f , it is represented by one byte:

35

DataOutput java.io

writeUTF(String)

36

(byte)c
If a character is \u0000 or is in the rang\u0080 through\u07ff |, thenitis repre-

sented by two bytes, to be written in the order shown:

(byte)(0xcO | (0x1f & (c >> 6))

(byte)(0x80 | (0x3f & c))

If a characterc is in the range\u0800 throughuffff , then it is represented by three bytes, to be
written in the order shown:

(byte)(0xe0 | (OxOf & (c >> 12)))

(byte)(0x80 | (0x3f & (c >> 6)))
(byte)(0x80 | (0Ox3f & c))

First, the total number of bytes needed to represent all the characteris aflculated. If this number is
larger thar65535 , then aUTFDataFormatError is thrown. Otherwise, this length is written to the out-
put stream in exactly the manner of tweiteShort ~ method; after this, the one-, two-, or three-byte rep-
resentation of each character in the sterig written.

The bytes written by this method may be read byrmdUTF method of interfac®atalnput , which
will then return &tring equal tos.

Parameters:
str - the string value to be written.

Throws: 10Exception - if an I/O error occurs.

java.io DataOutputStream
writeUTF(String)

java.io

DataOutputStream

Syntax
public class DataOutputStream extends OutputStream _implements ~ DataOutput
Object

|
+-- OutputStream
I

+-- java.io.DataOutputStream

All Implemented Interfaces: DataOutput

Description
A data input stream lets an application write primitive Java data types to an output stream in a portable way. An
application can then use a data input stream to read the data back in.

Since: JDK1.0

See Also: DatalnputStream

Member Summary

Fields

out_ The output stream.

Constructors

DataOutputStream(Out- Creates a new data output stream to write data to the specified underlying output

putStream) stream.

Methods

close Closes this output stream and releases any system resources associated with the
stream.

flush Flushes this data output stream.

write(bytef], int, Writeslen bytes from the specified byte array starting at ofiffet to the underly-

int) ing output stream.

write(int) Writes the specified byte (the low eight bits of the argurbtd the underlying out-
put stream.

writeBoolean(boolean) Writes aboolean to the underlying output stream as a 1-byte value.

writeByte(int) Writes out ebyte to the underlying output stream as a 1-byte value.

writeChar(int) Writes achar to the underlying output stream as a 2-byte value, high byte first.

writeChars(String) Writes a string to the underlying output stream as a sequence of characters.

writelnt(int) Writes anint to the underlying output stream as four bytes, high byte first.

writeLong(long) Writes along to the underlying output stream as eight bytes, high byte first.

writeShort(int) Writes ashort to the underlying output stream as two bytes, high byte first.

writeUTF(String) Writes a string to the underlying output stream using UTF-8 encoding in a machine-
independent manner.

37

DataOutputStream java.io
out

Inherited Member Summary

Methods inherited from classQutputStream

write(byte[])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()

Methods inherited from interface DataOutput
write(byte[])

Fields

out

protected OutputStream _ out
The output stream.

Constructors

DataOutputStream(OutputStream)
public DataOutputStream(OutputStream _ out)

Creates a new data output stream to write data to the specified underlying output stream. The counter
written is set to zero.

Parameters:
out - the underlying output stream, to be saved for later use.

Methods

close()
public void close()
Closes this output stream and releases any system resources associated with the stream.

Theclose method calls itflush method, and then calls trdose method of its underlying output
stream.

38

java.io DataOutputStream
flush()

Overrides: close() in classOutputStream
Throws: 10Exception - if an I/O error occurs.

flush()
public void flush()
Flushes this data output stream. This forces any buffered output bytes to be written out to the stream.
Theflush method ofDataOutputStream calls theflush method of its underlying output stream.
Overrides: flush() in clasOutputStream
Throws: 10Exception - if an I/O error occurs.

write(byte[], int, int)
public void write(byte[] b, int off, int len)

Writeslen bytes from the specified byte array starting at oftsét to the underlying output stream. If no
exception is thrown, the counteritten is incremented bien .

Specified By: write(byte[], int, int) in interfaceDataOutput
Overrides: write(byte[]. int, int) in classOutputStream
Parameters:

b - the data.

off - the start offset in the data.
len - the number of bytes to write.

Throws: 10Exception - if an I/O error occurs.

write(int)
public void write(int b)

Writes the specified byte (the low eight bits of the argunigrib the underlying output stream. If no excep-
tion is thrown, the countevritten is incremented by.

Implements thevrite method ofOutputStream
Specified By: write(int) in interfaceDataOutput
Overrides: write(int) in classOutputStream

Parameters:
b - thebyte to be written.

Throws: 10Exception - if an I/O error occurs.

writeBoolean(boolean)

public final void writeBoolean(boolean v)

39

DataOutputStream java.io

writeByte(int)

Writes aboolean to the underlying output stream as a 1-byte value. The valge is written out as the
value (byte)1 ; the valuefalse is written out as the valuéoyte)0 . If no exception is thrown, the
counterwritten is incremented by .

Specified By: writeBoolean(boolean) in interfaceDataOutput

Parameters:
v - aboolean value to be written.

Throws: 10Exception - if an I/O error occurs.

writeByte(int)

public final void writeByte(int v)

Writes out abyte to the underlying output stream as a 1-byte value. If no exception is thrown, the counter
written is incremented by.

Specified By: writeByte(int) in interfaceDataOutput

Parameters:
v - abyte value to be written.

Throws: 10Exception - if an I/O error occurs.

writeChar(int)

public final void writeChar(int v)

Writes achar to the underlying output stream as a 2-byte value, high byte first. If no exception is thrown,
the countewvritten is incremented bg.

Specified By: writeChar(int) in interfaceDataOutput

Parameters:
v - achar value to be written.

Throws: 10Exception - if an I/O error occurs.

writeChars(String)

public final void writeChars(String __s)

Writes a string to the underlying output stream as a sequence of characters. Each character is written to the
data output stream as if by theriteChar method. If no exception is thrown, the counteritten is
incremented by twice the length ©f

Specified By: writeChars(String) in interfaceDataOutput

Parameters:
s - aString value to be written.

Throws: 10Exception - if an I/O error occurs.
See Also: writeChar(int)

writelnt(int)

40

public final void writelnt(int v)

java.io DataOutputStream
writeLong(long)

Writes anint to the underlying output stream as four bytes, high byte first. If no exception is thrown, the
counterwritten is incremented b.

Specified By: writelnt(int) in interfaceDataOutput

Parameters:
Vv - anint to be written.

Throws: |0Exception - if an I/O error occurs.

writeLong(long)
public final void writeLong(long v)

Writes along to the underlying output stream as eight bytes, high byte first. In no exception is thrown, the
counterwritten is incremented b§.

Specified By: writeLong(long) in interfaceDataOutput

Parameters:
v - along to be written.

Throws: 10Exception - if an I/O error occurs.

writeShort(int)
public final void writeShort(int v)

Writes ashort to the underlying output stream as two bytes, high byte first. If no exception is thrown, the
counterwritten is incremented bg.

Specified By: writeShort(int) in interfaceDataOutput

Parameters:
v - ashort to be written.

Throws: |0Exception - if an I/O error occurs.

writeUTF(String)
public final void writeUTF(String __ str)

Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent manner.

First, two bytes are written to the output stream as if bywhigeShort method giving the number of

bytes to follow. This value is the number of bytes actually written out, not the length of the string. Follow-
ing the length, each character of the string is output, in sequence, using the UTF-8 encoding for the charac-
ter. If no exception is thrown, the counteritten is incremented by the total number of bytes written to

the output stream. This will be at least two plus the lengtbtof, and at most two plus thrice the length of

str .

Specified By: writeUTF(String) in interfaceDataOutput

Parameters:
str - a string to be written.

Throws: 10Exception - if an I/O error occurs.

41

EOFException java.io
writeUTF(String)

java.io

EOFEXxception

Syntax
public class EOFException extends IOException

Object

+-- Throwable

I
+-- Exception
|
+-- |0Exception
I

+-- java.io.EOFException

Description
Signals that an end of file or end of stream has been reached unexpectedly during input.

This exception is mainly used by data input streams, which generally expect a binary file in a specific format,
and for which an end of stream is an unusual condition. Most other input streams return a special value on end
of stream.

Note that some input operations react to end-of-file by returning a distinguished value (s@ichrather than
by throwing an exception.

Since: JDK1.0

See Also: DatalnputStream , IOException

Member Summary

Constructors
EOFException() Constructs aiEOFException with null as its error detail message.
EOFException(String) Constructs afEOFException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

42

java.io EOFException
EOFException()

Constructors

EOFEXxception()
public EOFException()
Constructs aEOFException with null as its error detail message.

EOFException(String)
public EOFException(String __ s)

Constructs afcOFException with the specified detail message. The stringay later be retrieved by
thegetMessage() method of clasgva.lang. Throwable

Parameters:
s - the detail message.

43

InputStream

EOFException(String)

java.io

java.io

InputStream

Syntax

public abstract class InputStream

Object
|

+-- java.io.lnputStream

Direct Known Subclasses: ByteArraylnputStream

Description

, DatalnputStream

This abstract class is the superclass of all classes representing an input stream of bytes.

Applications that need to define a subclassnpfutStream

next byte of input.

Since: JDK1.0

See Also: ByteArraylnputStream

must always provide a method that returns

, DatalnputStream __, read() , OutputStream

Member Summary

Constructors

InputStream()

Methods
available()

close

mark(int)
markSupported()

read()
read(byte[])

read(byte[], int, int)

reset()
skip(long)

Returns the number of bytes that can be read (or skipped over) from this input st
without blocking by the next caller of a method for this input stream.
Closes this input stream and releases any system resources associated with the
Marks the current position in this input stream.

Tests if this input stream supports thark andreset methods.
Reads the next byte of data from the input stream.

the

ream

stream.

Reads some number of bytes from the input stream and stores them into the buffer

arrayb.

Reads up téen bytes of data from the input stream into an array of bytes.
Repositions this stream to the position at the timentlaek method was last called on
this input stream.

Skips over and discardasbytes of data from this input stream.

Inherited Member Summary

Methods inherited from classObject

44

java.io InputStream
InputStream()

Inherited Member Summary

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) . wait()

Constructors

InputStream()

public InputStream()

Methods

available()
public int available()

Returns the number of bytes that can be read (or skipped over) from this input stream without blocking by
the next caller of a method for this input stream. The next caller might be the same thread or another thread.

Theavailable = method for clastputStream always return§.
This method should be overridden by subclasses.
Returns: the number of bytes that can be read from this input stream without blocking.

Throws: 10Exception - if an I/O error occurs.

close()
public void close()
Closes this input stream and releases any system resources associated with the stream.
Theclose method ofinputStream does nothing.

Throws: |0Exception - if an I/O error occurs.

mark(int)
public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call toetbet method repositions this
stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit arguments tells this input stream to allow that many bytes to be read before the mark
position gets invalidated.

The general contract ohark is that, if the methoanarkSupported returnstrue , the stream somehow
remembers all the bytes read after the cathtark and stands ready to supply those same bytes again if and

45

InputStream java.io

markSupported()

whenever the methogkset is called. However, the stream is not required to remember any data at all if
more tharreadlimit bytes are read from the stream befawset is called.

Themark method ofinputStream does nothing.

Parameters:
readlimit - the maximum limit of bytes that can be read before the mark position becomes invalid.

See Also: reset()

markSupported()

public boolean markSupported()

Tests if this input stream supports theark andreset methods. ThanarkSupported method of
InputStream returnsfalse

Returns: true if this true type supports the mark and reset mettadee otherwise.
See Also: mark(int) , reset()

read()

public abstract int read()

Reads the next byte of data from the input stream. The value byte is returnednas amthe ranged to
255. If no byte is available because the end of the stream has been reached, thé vslueturned. This
method blocks until input data is available, the end of the stream is detected, or an exception is thrown.

A subclass must provide an implementation of this method.
Returns: the next byte of data, et if the end of the stream is reached.

Throws: |0Exception - if an I/O error occurs.

read(bytel[])

46

public int read(byte[] b)

Reads some number of bytes from the input stream and stores them into the buffdr. din@ynumber of
bytes actually read is returned as an integer. This method blocks until input data is available, end of file is
detected, or an exception is thrown.

If b is null , aNullPointerException is thrown. If the length ob is zero, then no bytes are read
andO is returned; otherwise, there is an attempt to read at least one byte. If no byte is available because the
stream is at end of file, the valde is returned; otherwise, at least one byte is read and stordd into

The first byte read is stored into elemdafi] , the next one intd[1] , and so on. The number of bytes
read is, at most, equal to the lengthtofLet k be the number of bytes actually read; these bytes will be
stored in elements[0] throughb[k-1] , leaving elementb[K] throughb[b.length-1] unaffected.

If the first byte cannot be read for any reason other than end of file, thEDEception s thrown. In
particular, anOException is thrown if the input stream has been closed.

Theread(b) method for clastputStream has the same effect as:
read(b, 0, b.length)

Parameters:
b - the buffer into which the data is read.

java.io InputStream
read(byte[], int, int)

Returns: the total number of bytes read into the buffer,-dr is there is no more data because the end of
the stream has been reached.

Throws: 10Exception - if an I/O error occurs.
See Also: read(byte([]. int, int)

read(bytef[], int, int)
public int read(byte[] b, int off, int len)

Reads up tden bytes of data from the input stream into an array of bytes. An attempt is made to read as
many aden bytes, but a smaller number may be read, possibly zero. The number of bytes actually read is
returned as an integer.

This method blocks until input data is available, end of file is detected, or an exception is thrown.
If b isnull , aNullPointerException is thrown.

If off is negative, oden is negative, ooff+tlen is greater than the length of the arrby then an
IndexOutOfBoundsException is thrown.

If len is zero, then no bytes are read &hés returned; otherwise, there is an attempt to read at least one
byte. If no byte is available because the stream is at end of file, the \aligreturned; otherwise, at least
one byte is read and stored iito

The first byte read is stored into elemépoff] |, the next one intd[off+1] , and so on. The number of
bytes read is, at most, equallem . Letk be the number of bytes actually read; these bytes will be stored in
elements[off] throughboff+ k-1] , leaving elementd[off+ K] throughb[off+len-1] unaf-
fected.

In every case, element§0] throughblofff] and elementb[off+len] throughblb.length-1]
are unaffected.

If the first byte cannot be read for any reason other than end of file, théDException is thrown. In
particular, arOException is thrown if the input stream has been closed.

The read(b, off, len) method for classnputStream simply calls the methodead() repeat-

edly. If the first such call results in al®Exception , that exception is returned from the call to the
read(b, off, len) method. If any subsequent calltead() results in dOException , the excep-

tion is caught and treated as if it were end of file; the bytes read up to that point are storbdhimdcthe

number of bytes read before the exception occurred is returned. Subclasses are encouraged to provide a
more efficient implementation of this method.

Parameters:
b - the buffer into which the data is read.

off - the start offset in arrdy at which the data is written.
len - the maximum number of bytes to read.

Returns: the total number of bytes read into the buffer,-dr if there is no more data because the end of
the stream has been reached.

Throws: |0Exception - if an I/O error occurs.
See Also: read()

reset()

47

InputStream java.io

skip(long)

public synchronized void reset()
Repositions this stream to the position at the timerthkk method was last called on this input stream.
The general contract oéset is:

« If the methodmarkSupported returnstrue , then:

« If the methodmark has not been called since the stream was created, or the number of bytes read from
the stream sincenark was last called is larger than the argumenttark at that last call, then an
IOException might be thrown.

« If such anlOException is not thrown, then the stream is reset to a state such that all the bytes read
since the most recent call toark (or since the start of the file, ihark has not been called) will be
resupplied to subsequent callers of tead method, followed by any bytes that otherwise would have
been the next input data as of the time of the cadidet

« If the methodmarkSupported returnsfalse , then:

¢ The call toreset may throw ariOException

« IfanIOException is not thrown, then the stream is reset to a fixed state that depends on the particu-
lar type of the input stream and how it was created. The bytes that will be supplied to subsequent call-
ers of theeead method depend on the particular type of the input stream.

The methodeset for classnputStream does nothing and always throwsl&Exception

Throws: |0OException - if this stream has not been marked or if the mark has been invalidated.
See Also: mark(int) , IOException

skip(long)

48

public long skip(long n)

Skips over and discardsbytes of data from this input stream. Teldp method may, for a variety of rea-
sons, end up skipping over some smaller number of bytes, pos§siiblyis may result from any of a number
of conditions; reaching end of file befonebytes have been skipped is only one possibility. The actual num-
ber of bytes skipped is returnednlis negative, no bytes are skipped.

Theskip method oflnputStream creates a byte array and then repeatedly reads into it ujites
have been read or the end of the stream has been reached. Subclasses are encouraged to provide a more effi-
cient implementation of this method.

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: |0Exception - if an I/O error occurs.

java.io InputStreamReader
skip(long)

java.io

InputStreamReader

Syntax

public class InputStreamReader extends Reader

Object
|

+-- Reader

+-- java.io.InputStreamReader

Description

An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and translates them
into characters. The encoding that it uses may be specified by name, or the platform's default encoding may be
accepted.

Each invocation of one of an InputStreamReader's read() methods may cause one or more bytes to be read from
the underlying byte-input stream. To enable the efficient conversion of bytes to characters, more bytes may be
read ahead from the underlying stream than are necessary to satisfy the current read operation.

Member Summary

Constructors

InputStream-___ Create an InputStreamReader that uses the default character encoding.
Reader(InputStream)

InputStream-___ Create an InputStreamReader that uses the named character encoding.
Reader(InputStream,

String)

Methods

close Close the stream.

mark(int) Mark the present position in the stream.

markSupported() Tell whether this stream supports the mark() operation.

read() Read a single character.

read(charf]. int, __int) Read characters into a portion of an array.

ready() Tell whether this stream is ready to be read.

reset() Reset the stream.

skip(lon Skip characters.

Inherited Member Summary

Fields inherited from classReader

lock

Methods inherited from classReader

read(char[])

49

InputStreamReader java.io

InputStreamReader(InputStream)

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()
Constructors

InputStreamReader(InputStream)
public InputStreamReader(InputStream __is)

Create an InputStreamReader that uses the default character encoding.

Parameters:
is - An InputStream

InputStreamReader(InputStream, String)

public InputStreamReader(InputStream __is, String __ enc)

Create an InputStreamReader that uses the named character encoding.

Parameters:
is - An InputStream

enc - The name of a supported

Throws: UnsupportedEncodingException

Methods

- If the named encoding is not supported

close()
public void close()
Close the stream.
Overrides: close() _in classReader
Throws: 10Exception - If an I/O error occurs

mark(int)
public void mark(int readAheadLimit)
Mark the present position in the stream.
Overrides: mark(int) in classReader
Throws: 10Exception - If an I/O error occurs

50

java.io InputStreamReader
markSupported()

markSupported()
public boolean markSupported()

Tell whether this stream supports the mark() operation.
Overrides: markSupported() in classReader

read()

public int read()

Read a single character.

Overrides: read() _ in classReader

Throws: 10Exception - If an I/O error occurs

read(char[], int, int)
public int read(char[] cbuf, int off, int len)
Read characters into a portion of an array.

Overrides: read(char[], int, int) in classReader

Throws: 10Exception - If an I/O error occurs

ready()
public boolean ready()
Tell whether this stream is ready to be read.
Overrides: ready() in classReader
Throws: 10Exception - If an I/O error occurs

reset()
public void reset()
Reset the stream.
Overrides: reset() _in classReader
Throws: 10Exception - If an I/O error occurs

skip(long)
public long skip(long n)

Skip characters.
Overrides: skip(long) in classReader
Throws: 10Exception - If an I/O error occurs

51

InterruptedlOException java.io
skip(long)

java.io

InterruptedIOEXception

Syntax
public class InterruptedlOException extends IOException
Object

+-- Throwable
I
+-- Exception
|
+-- |0Exception
I

+-- java.io.InterruptedlOException

Description
Signals that an I/O operation has been interrupted. IAterruptedIlOEXxception is thrown to indicate
that an input or output transfer has been terminated because the thread performing it was terminated. The field
bytesTransferred indicates how many bytes were successfully transferred before the interruption
occurred.
Since: JDK1.0
See Also: InputStream , OutputStream
Member Summary
Fields
bytesTransferred Reports how many bytes had been transferred as part of the 1/0 operation befgre it
was interrupted.
Constructors
InterruptedlOExcep- Constructs amnterruptedlOException with null as its error detail message.
tion()
InterruptedOExcep- Constructs amnterruptedlOException with the specified detail message.
tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

52

java.io InterruptedlOException
bytesTransferred

Fields

bytesTransferred
public int bytesTransferred

Reports how many bytes had been transferred as part of the 1/0O operation before it was interrupted.

Constructors

InterruptedlOEXxception()
public InterruptedlOException()

Constructs ainterruptedlOException with null as its error detail message.

InterruptedlOException(String)

public InterruptedlOException(String __s)

Constructs arinterruptedlOException with the specified detail message. The strexgan be
retrieved later by thgetMessage() method of clasgva.lang. Throwable

Parameters:

s - the detail message.

53

IOException java.io
Interruptedl OException(String)

java.io

|OEXxception

Syntax
public class IOException extends Exception
Object

+-- Throwable
I
+-- Exception
|

+-- java.io.lOException

Direct Known Subclasses: ConnectionNotFoundException , EOFException , Interrupte-
dIOException , UnsupportedEncodingException , UTFDataFormatException
Description

Signals that an 1/0O exception of some sort has occurred. This class is the general class of exceptions produced
by failed or interrupted 1/O operations.

Since: JDK1.0

See Also: InputStream , OutputStream

Member Summary

Constructors
IOException Constructs ahOException with null as its error detail message.
IOException(String) Constructs ahOException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

54

java.io IOException
IOException()

IOException()
public IOException()

Constructs afOException with null as its error detail message.

IOException(String)
public IOException(String__s)

Constructs anOException with the specified detail message. The error message stroam later be
retrieved by th@etMessage() method of clasgva.lang.Throwable

Parameters:
s - the detail message.

55

OutputStream java.io

IOException(String)
java.io

OutputStream

Syntax

public abstract class OutputStream

Object
|

+-- java.io.OutputStream

Direct Known Subclasses: ByteArrayOutputStream , DataOutputStream __, PrintStream

Description
This abstract class is the superclass of all classes representing an output stream of bytes. An output stream
accepts output bytes and sends them to some sink.

Applications that need to define a subclasQuftputStream must always provide at least a method that
writes one byte of output.

Since: JDK1.0
See Also: ByteArrayOutputStream , DataOutputStream _, InputStream _, write(int)
Member Summary
Constructors
OutputStream()
Methods
close Closes this output stream and releases any system resources associated with this
stream.
flush Flushes this output stream and forces any buffered output bytes to be written o{it.
write(byte[l) Writesh.length bytes from the specified byte array to this output stream.
write(byte[]. int, Writeslen bytes from the specified byte array starting at offffet to this output
int) stream.
write(int) Writes the specified byte to this output stream.

Inherited Member Summary

equals(Object)

Methods inherited from classObject
getClass() , hashCode()

toString() , nhotify() , notifyAll()

wait(long) , wait(long, int)

wait()

56

java.io OutputStream
OutputStream()

Constructors

OutputStream()

public OutputStream()

Methods

close()
public void close()

Closes this output stream and releases any system resources associated with this stream. The general con-
tract ofclose is that it closes the output stream. A closed stream cannot perform output operations and
cannot be reopened.

Theclose method ofOutputStream does nothing.

Throws: 10Exception - if an I/O error occurs.

flush()

public void flush()

Flushes this output stream and forces any buffered output bytes to be written out. The general contract of
flush is that calling it is an indication that, if any bytes previously written have been buffered by the
implementation of the output stream, such bytes should immediately be written to their intended destina-
tion.

Theflush method ofOutputStream does nothing.
Throws: 10Exception - if an I/O error occurs.

write(byte[])
public void write(byte[] b)

Writes b.length bytes from the specified byte array to this output stream. The general contract for
write(b) is that it should have exactly the same effect as thevdédi(b, 0, b.length)

Parameters:
b - the data.

Throws: 10Exception - if an I/O error occurs.
See Also: write(byte[], int, int)

write(byte[], int, int)

public void write(byte[] b, int off, int len)

57

OutputStream java.io
write(int)

Writes len bytes from the specified byte array starting at offs#t to this output stream. The general
contract forwrite(b, off, len) is that some of the bytes in the arrhyare written to the output
stream in order; elemebf{off] is the first byte written an@[off+len-1] is the last byte written by
this operation.

Thewrite method ofOutputStream calls the write method of one argument on each of the bytes to be

written out. Subclasses are encouraged to override this method and provide a more efficient implementa-
tion.

If b isnull , aNullPointerException is thrown.

If off is negative, oden is negative, ooff+len is greater than the length of the arrby then an
IndexOutOfBoundsException is thrown.

Parameters:
b - the data.

off - the start offset in the data.
len -the number of bytes to write.

Throws: 10Exception - ifan I/O error occurs. In particular, d®@Exception is thrown if the output
stream is closed.

write(int)
public abstract void write(int b)

Writes the specified byte to this output stream. The general contrastifer is that one byte is written to
the output stream. The byte to be written is the eight low-order bits of the argum&he 24 high-order
bits ofb are ignored.

Subclasses dDutputStream must provide an implementation for this method.

Parameters:
b - thebyte .

Throws: 10Exception - if an I/O error occurs. In particular, #DException may be thrown if the
output stream has been closed.

58

java.io OutputStreamWriter
write(int)

java.io

OutputStreamWriter

Syntax

public class OutputStreamWriter extends Writer

Object
|

+-- Writer

+-- java.io.OutputStreamWriter

Description

An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to it are trans-
lated into bytes. The encoding that it uses may be specified by name, or the platform's default encoding may be
accepted.

Each invocation of a write() method causes the encoding converter to be invoked on the given character(s). The
resulting bytes are accumulated in a buffer before being written to the underlying output stream. The size of this
buffer may be specified, but by default it is large enough for most purposes. Note that the characters passed to
the write() methods are not buffered.

Member Summary

Constructors

OutputStream- Create an OutputStreamWriter that uses the default character encoding.
Writer(OutputStream)

OutputStream- Create an OutputStreamWriter that uses the named character encoding.
Writer(OutputStream,

String)

Methods

close Close the stream.

flush Flush the stream.

write(char[], int, Write a portion of an array of characters.
int)

write(int) Write a single character.

write(String, int, Write a portion of a string.

int)

Inherited Member Summary

Fields inherited from classWriter
lock

Methods inherited from classWriter

write(char[]) , write(String)

59

OutputStreamWriter java.io
OutputStreamWriter(OutputStream)

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()
Constructors

OutputStreamWriter(OutputStream)
public OutputStreamWriter(OutputStream _ 0s)
Create an OutputStreamWriter that uses the default character encoding.

Parameters:
0S - An OutputStream

OutputStreamWriter(OutputStream, String)

public OutputStreamWriter(OutputStream _os, String _ enc)

Create an OutputStreamWriter that uses the named character encoding.

Parameters:
0s - An OutputStream

enc - The name of a supported
Throws: UnsupportedEncodingException - If the named encoding is not supported

Methods

close()
public void close()
Close the stream.
Overrides: close() _in classWriter
Throws: 10Exception - If an I/O error occurs

flush()
public void flush()

Flush the stream.
Overrides: flush() in classWriter
Throws: 10Exception - If an I/O error occurs

60

java.io OutputStreamWriter
write(char(], int, int)

write(char[], int, int)
public void write(char[] cbuf, int off, int len)
Write a portion of an array of characters.

Overrides: write(char[]. int, int) in classWriter

Parameters:
cbuf - Buffer of characters to be written

off - Offset from which to start reading characters
len - Number of characters to be written

Throws: 10Exception - If an I/O error occurs

write(int)
public void write(int c)
Write a single character.
Overrides: write(int) in classWriter
Throws: 10Exception - If an I/O error occurs

write(String, int, int)
public void write(String _ str, int off, int len)
Write a portion of a string.

Overrides: write(String. int, int) in classWriter

Parameters:
str - String to be written

off - Offset from which to start reading characters
len - Number of characters to be written

Throws: I0Exception - If an I/O error occurs

61

PrintStream java.io
write(String, int, int)

java.io

PrintStream

Syntax
public class PrintStream extends OutputStream
Object

|
+-- OutputStream
I

+-- java.io.PrintStream

Description

A PrintStream adds functionality to another output stream, namely the ability to print representations of
various data values conveniently. Two other features are provided as well. Unlike other output streams, a
PrintStream never throws anOException ; instead, exceptional situations merely set an internal flag
that can be tested via tleheckError method. Optionally, &rintStream can be created so as to flush
automatically; this means that tflash method is automatically invoked after a byte array is written, one of
theprintin - methods is invoked, or a newline character or Byiie () is written.

All characters printed by &rintStream are converted into bytes using the platform's default character
encoding.

Since: JDK1.0

Member Summary

Constructors

PrintStream(Output- Create a new print stream.

Stream)

Methods

checkError() Flush the stream and check its error state.
close Close the stream.

flush Flush the stream.

print(boolean) Print a boolean value.

print(char) Print a character.

print(charl]) Print an array of characters.

print(int) Print an integer.

print(long) Print a long integer.

print(Object) Print an object.

print(String) Print a string.

printin) Terminate the current line by writing the line separator string.
printin(boolean) Print a boolean and then terminate the line.
printin(char) Print a character and then terminate the line.
printin(char(]) Print an array of characters and then terminate the line.
printin(int) Print an integer and then terminate the line.
printin(long) Print a long and then terminate the line.
printin(Object) Print an Object and then terminate the line.
printin(String) Print a String and then terminate the line.

62

java.io PrintStream
PrintStream(OutputStream)

Member Summary

setError() Set the error state of the streantrie .

write(byte[], int, Write len bytes from the specified byte array starting at offffet to this stream.
int)

write(int) Write the specified byte to this stream.

Inherited Member Summary

Methods inherited from classQutputStream

write(byte[])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , hotify() , hotifyAll()
wait(long) , wait(long, int) ., wait()

Constructors

PrintStream(OutputStream)
public PrintStream(OutputStream _ out)
Create a new print stream. This stream will not flush automatically.

Parameters:
out - The output stream to which values and objects will be printed

Methods

checkError()

public boolean checkError()

Flush the stream and check its error state. The internal error state igrset tavhen the underlying output
stream throws alDException , and when theetError method is invoked.

Returns: True if and only if this stream has encountered@&xception , or thesetError method
has been invoked

close()
public void close()
Close the stream. This is done by flushing the stream and then closing the underlying output stream.
Overrides: close() _in clasQutputStream

63

PrintStream java.io

flush()

See Also: close()

flush()

public void flush()

Flush the stream. This is done by writing any buffered output bytes to the underlying output stream and then
flushing that stream.

Overrides: flush() in clas0utputStream
See Also: flush()

print(boolean)

public void print(boolean b)

Print a boolean value. The string producedvayueOf(boolean) is translated into bytes according to
the platform's default character encoding, and these bytes are written in exactly the manner of the

write(int) method.

Parameters:
b - Theboolean to be printed

print(char)

public void print(char c)

Print a character. The character is translated into one or more bytes according to the platform's default char-
acter encoding, and these bytes are written in exactly the mannemofté{at) method.

Parameters:
¢ - Thechar to be printed

print(charl])

public void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the platform's default char-

acter encoding, and these bytes are written in exactly the mannemofté{at) method.
Parameters:
s - The array of chars to be printed
Throws: NullPointerException - If s isnull
print(int)

64

public void print(int i)

Print an integer. The string produced bglueOf(int) is translated into bytes according to the plat-

form's default character encoding, and these bytes are written in exactly the mannewdfeliat)
method.

Parameters:
i - Theint to be printed

java.io PrintStream

print(long)
See Also: toString(int)
print(long)
public void print(long 1)
Print a long integer. The string produced ¥8iueOf(long) is translated into bytes according to the

platform’'s default character encoding, and these bytes are written in exactly the manner of the

write(int) method.

Parameters:
| - Thelong to be printed

See Also: toString(long)

print(Object)
public void print(Object _ obj)
Print an object. The string produced by teueOf(Object) method is translated into bytes accord-

ing to the platform's default character encoding, and these bytes are written in exactly the manner of the

write(int) method.

Parameters:
obj - TheObject to be printed

See Also: toString()

print(String)
public void print(String _ s)
Print a string. If the argument iull then the stringnull* is printed. Otherwise, the string's characters

are converted into bytes according to the platform's default character encoding, and these bytes are written
in exactly the manner of therite(int) method.

Parameters:
s - TheString to be printed

printin()
public void printin()

Terminate the current line by writing the line separator string. The line separator string is defined by the
system propertline.separator , and is not necessarily a single newline charaéter ().

printin(boolean)
public void printin(boolean x)

Print a boolean and then terminate the line. This method behaves as though it ipriok®olean

and therprintin() .

Parameters:
X - Theboolean to be printed

65

PrintStream java.io
printin(char)

printin(char)
public void printin(char x)

Print a character and then terminate the line. This method behaves as though it ipiokebar)
and therprintin() .

Parameters:
X - Thechar to be printed.

printin(char(])
public void printin(char(] x)

Print an array of characters and then terminate the line. This method behaves as though it invokes

print(char[]) and therprintin())

Parameters:
X - an array of chars to print.

printin(int)
public void println(int x)
Print an integer and then terminate the line. This method behaves as though it ipviok@st) and
thenprintin() .
Parameters:

X - Theint to be printed.

printin(long)
public void printin(long x)

Print a long and then terminate the line. This method behaves as though it inui&®ng) and
thenprintin() .

Parameters:
X - a Thelong to be printed.

printin(Object)
public void printin(Object x)

Print an Object and then terminate the line. This method behaves as though it ipvinité&Sbject)
and therprintin() .

Parameters:
X - TheObject to be printed.

printin(String)

public void printin(String __ x)

66

java.io PrintStream
setError()

Print a String and then terminate the line. This method behaves as though it iprakigString)
and therprintin() .

Parameters:
X - TheString to be printed.

setError()
protected void setError()
Set the error state of the streantrtee .
Since: JDK1.1

write(byte[], int, int)
public void write(byte[] buf, int off, int len)

Write len bytes from the specified byte array starting at offsfét to this stream. If automatic flushing is
enabled then thitush method will be invoked.

Note that the bytes will be written as given; to write characters that will be translated according to the plat-

form's default character encoding, useghat(char) or printin(char) methods.
Overrides: write(byte[], int, int) in classQutputStream
Parameters:

buf - A byte array
off - Offset from which to start taking bytes

len - Number of bytes to write

write(int)
public void write(int b)

Write the specified byte to this stream. If the byte is a newline and automatic flushing is enabled then the
flush method will be invoked.

Note that the byte is written as given; to write a character that will be translated according to the platform's
default character encoding, use gnmt(char) or printin(char) methods.

Overrides: write(int) in classOutputStream

Parameters:
b - The byte to be written

See Also: print(char) , println(char)

67

Reader java.io
write(int)

java.io

Reader

Syntax

public abstract class Reader

Object
|

+-- java.io.Reader

Direct Known Subclasses: InputStreamReader

Description

Abstract class for reading character streams. The only methods that a subclass must implement are read(charf],
int, int) and close(). Most subclasses, however, will override some of the methods defined here in order to pro-
vide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: InputStreamReader _, Writer

Member Summary

Fields

lock The object used to synchronize operations on this stream.

Constructors

Reader() Create a new character-stream reader whose critical sections will synchronize on the
reader itself.

Reader(Object) Create a new character-stream reader whose critical sections will synchronize on the
given object.

Methods

close Close the stream.

mark(int) Mark the present position in the stream.

markSupported() Tell whether this stream supports the mark() operation.

read() Read a single character.

read(charl]) Read characters into an array.

read(charf]. int, _int) Read characters into a portion of an array.

ready() Tell whether this stream is ready to be read.

reset() Reset the stream.

skip(lon Skip characters.

68

java.io Reader
lock

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()

Fields

lock

protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream object may use
an object other than itself to protect critical sections. A subclass should therefore use the object in this field
rather tharthis or a synchronized method.

Constructors

Reader()

protected Reader()
Create a new character-stream reader whose critical sections will synchronize on the reader itself.

Reader(Object)
protected Reader(Object lock)
Create a new character-stream reader whose critical sections will synchronize on the given object.

Parameters:
lock - The Object to synchronize on.

Methods

close()
public abstract void close()

Close the stream. Once a stream has been closed, further read(), ready(), mark(), or reset() invocations will
throw an IOException. Closing a previously-closed stream, however, has no effect.

Throws: 10Exception - If an I/O error occurs

69

Reader java.io

mark(int)

mark(int)

public void mark(int readAheadLimit)

Mark the present position in the stream. Subsequent calls to reset() will attempt to reposition the stream to
this point. Not all character-input streams support the mark() operation.

Parameters:

readAheadLimit - Limit on the number of characters that may be read while still preserving the
mark. After reading this many characters, attempting to reset the stream may fail.

Throws: |0Exception - If the stream does not support mark(), or if some other I/O error occurs

markSupported()

public boolean markSupported()

Tell whether this stream supports the mark() operation. The default implementation always returns false.
Subclasses should override this method.

Returns: true if and only if this stream supports the mark operation.

read()

public int read()

Read a single character. This method will block until a character is available, an I/O error occurs, or the end
of the stream is reached.

Subclasses that intend to support efficient single-character input should override this method.

Returns: The character read, as an integer in the range 0 to 66538-Qxffff), or -1 if the end of
the stream has been reached

Throws: 10Exception - If an I/O error occurs

read(char[])

public int read(char[] cbuf)

Read characters into an array. This method will block until some input is available, an I/O error occurs, or
the end of the stream is reached.

Parameters:
cbuf - Destination buffer

Returns: The number of bytes read, or -1 if the end of the stream has been reached

Throws: 10Exception - If an I/O error occurs

read(char[], int, int)

70

public abstract int read(char[] cbuf, int off, int len)

Read characters into a portion of an array. This method will block until some input is available, an I/O error
occurs, or the end of the stream is reached.

Parameters:

java.io Reader
ready()

cbuf - Destination buffer
off - Offset at which to start storing characters
len - Maximum number of characters to read
Returns: The number of characters read, or -1 if the end of the stream has been reached

Throws: 10Exception - If an I/O error occurs

ready()
public boolean ready()
Tell whether this stream is ready to be read.

Returns: True if the next read() is guaranteed not to block for input, false otherwise. Note that returning
false does not guarantee that the next read will block.

Throws: 10Exception - If an I/O error occurs

reset()
public void reset()

Reset the stream. If the stream has been marked, then attempt to reposition it at the mark. If the stream has
not been marked, then attempt to reset it in some way appropriate to the particular stream, for example by
repositioning it to its starting point. Not all character-input streams support the reset() operation, and some
support reset() without supporting mark().

Throws: 10Exception - If the stream has not been marked, or if the mark has been invalidated, or if
the stream does not support reset(), or if some other 1/O error occurs

skip(long)
public long skip(long n)

Skip characters. This method will block until some characters are available, an 1/O error occurs, or the end
of the stream is reached.

Parameters:
n - The number of characters to skip

Returns: The number of characters actually skipped

Throws: lllegalArgumentException - If n is negative.

IOException - If an I/O error occurs

71

UnsupportedEncodingException java.io
UnsupportedEncodingException()

java.io

UnsupportedEncodingException

Syntax
public class UnsupportedEncodingException extends IOException
Object

+-- Throwable

I
+-- Exception
|
+-- |0Exception
I

+-- java.io.UnsupportedEncodingException

Description
The Character Encoding is not supported.

Since: JDK1.1

Member Summary

Constructors

UnsupportedEncod- Constructs an UnsupportedEncodingException without a detail message.
ingException()

UnsupportedEncod- Constructs an UnsupportedEncodingException with a detail message.
ingException(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject
getClass() , hashCode() , equals(Object) , hotify() ., hotifyAll() , wait(long) , wait(long,

int) , wait()

Constructors

UnsupportedEncodingException()

public UnsupportedEncodingException()

72

java.io UnsupportedEncodingException
UnsupportedEncodingException(String)

Constructs an UnsupportedEncodingException without a detail message.

UnsupportedEncodingException(String)
public UnsupportedEncodingException(String__s)
Constructs an UnsupportedEncodingException with a detail message.

Parameters:
s - Describes the reason for the exception.

73

UTFDataFormatException java.io
UnsupportedEncodingException(String)

java.io

UTFDataFormatException

Syntax
public class UTFDataFormatException extends IOException
Object

+-- Throwable

I
+-- Exception
|
+-- |0Exception
I

+-- java.io.UTFDataFormatException

Description
Signals that a malformed UTF-8 string has been read in a data input stream or by any class that implements the
data input interface. See theiteUTF method for the format in which UTF-8 strings are read and written.

Since: JDK1.0

See Also: Datalnput , readUTF(Datalnput) , IOException

Member Summary

Constructors
UTFDataFormatExcep- Constructs &) TFDataFormatException ~ with null as its error detail message.
tion()

UTFEDataFormatExcep- Constructs &J TFDataFormatException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , nhotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

74

java.io UTFDataFormatException
UTFDataFormatException()

UTFDataFormatException()
public UTFDataFormatException()

Constructs & TFDataFormatException with null as its error detail message.

UTFDataFormatException(String)
public UTFDataFormatException(String __s)

Constructs aUTFDataFormatException with the specified detail message. The stringcan be
retrieved later by thgetMessage() _ method of clasgva.lang.Throwable

Parameters:
s - the detail message.

75

Writer

UTFDataFormatException(String)

java.io

Writer

Syntax

public abstract class Writer

Object
|

+-- java.io.Writer

java.io

Direct Known Subclasses: OutputStreamWriter

Description

Abstract class for writing to character streams. The only methods that a subclass must implement are
write(char[], int, int), flush(), and close(). Most subclasses, however, will override some of the methods defined
here in order to provide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: Writer , OutputStreamWriter , Reader

Member Summary

Fields
lock

Constructors
Writer()

Writer(Object)

Methods
close

flush
write(char[])

write(char[], int,

int)
write(int)
write(String)

write(String, int,

int)

The object used to synchronize operations on this stream.

Create a new character-stream writer whose critical sections will synchronize o
writer itself.

Create a new character-stream writer whose critical sections will synchronize o
given object.

Close the stream, flushing it first.

Flush the stream.

Write an array of characters.

Write a portion of an array of characters.

Write a single character.
Write a string.
Write a portion of a string.

h the

h the

76

java.io Writer
lock

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()

Fields

lock

protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream object may use
an object other than itself to protect critical sections. A subclass should therefore use the object in this field
rather tharthis or a synchronized method.

Constructors

Writer()
protected Writer()
Create a new character-stream writer whose critical sections will synchronize on the writer itself.

Writer(Object)
protected Writer(Object lock)
Create a new character-stream writer whose critical sections will synchronize on the given object.

Parameters:
lock - Object to synchronize on.

Methods

close()
public abstract void close()

Close the stream, flushing it first. Once a stream has been closed, further write() or flush() invocations will
cause an IOException to be thrown. Closing a previously-closed stream, however, has no effect.

Throws: 10Exception - If an I/O error occurs

77

Writer java.io
flush()

flush()

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various write() methods in a buffer, write
them immediately to their intended destination. Then, if that destination is another character or byte stream,
flush it. Thus one flush() invocation will flush all the buffers in a chain of Writers and OutputStreams.

Throws: 10Exception - If an I/O error occurs

write(char[])
public void write(char[] cbuf)
Write an array of characters.

Parameters:
cbuf - Array of characters to be written

Throws: 10Exception - If an I/O error occurs

write(char[], int, int)
public abstract void write(char[] cbuf, int off, int len)
Write a portion of an array of characters.

Parameters:
cbuf - Array of characters

off - Offset from which to start writing characters
len - Number of characters to write

Throws: 10Exception - If an I/O error occurs

write(int)
public void write(int c)

Write a single character. The character to be written is contained in the 16 low-order bits of the given inte-
ger value; the 16 high-order bits are ignored.

Subclasses that intend to support efficient single-character output should override this method.

Parameters:
c - int specifying a character to be written.

Throws: 10Exception - If an I/O error occurs

write(String)
public void write(String _ str)
Write a string.

Parameters:
str - String to be written

78

java.io Writer
write(String, int, int)

Throws: 10Exception - If an I/O error occurs

write(String, int, int)
public void write(String _ str, int off, int len)
Write a portion of a string.

Parameters:
str - A String

off - Offset from which to start writing characters
len - Number of characters to write

Throws: 10Exception - If an I/O error occurs

79

Writer java.io
write(String, int, int)

80

Package

java.lang

Description

Provides classes that are fundamental to the design of the Java programming language.

Since: JDK 1.0

Class Summary

Interfaces
Runnable

Classes
Boolean

Byte
Character

Class

Integer

Long
Math

Object

Runtime

Short
String
StringBuffer

System
Thread

Throwable

Exceptions
ArithmeticException

ArraylndexOutOfBound-

sException
ArrayStoreException

ClassCastException

TheRunnable interface should be implemented by any class whose instances
intended to be executed by a thread.

The Boolean class wraps a value of the primitive typalean in an object.
The Byte class is the standard wrapper for byte values.
The Character class wraps a value of the primitive tyy@e¢ in an object.

Instances of the clagdlass represent classes and interfaces in a running Java a
cation.

The Integer class wraps a value of the primitive ippe in an object.
The Long class wraps a value of the primitive tigyey in an object.
The classviath contains methods for performing basic numeric operations.
ClassObject

Every Java application has a single instance of dRagstime that allows the appli-
cation to interface with the environment in which the application is running.

is the root of the class hierarchy.

The Short class is the standard wrapper for short values.
TheString class represents character strings.

A string buffer implements a mutable sequence of characters.

The System class contains several useful class fields and methods.
A threadis a thread of execution in a program.

TheThrowable class is the superclass of all errors and exceptions in the Java
guage.

Thrown when an exceptional arithmetic condition has occurred.

Thrown to indicate that an array has been accessed with an illegal index.

Thrown to indicate that an attempt has been made to store the wrong type of ob
into an array of objects.

Thrown to indicate that the code has attempted to cast an object to a subclass of

are

ppli-

an-

ject

which

it is not an instance.

81

java.lang

Class Summary

ClassNotFoundExcep-

tion

Exception

lllegalAccessExcep-

tion

lllegalArgumentExcep-

tion
lllegalMonitorState-

Exception

lllegalThreadStateEx-

ception
IndexOutOfBoundsEx-

ception

InstantiationExcep-

tion

InterruptedException

NegativeArraySizeEx-

ception
NullPointerException

NumberFormatException

RuntimeException

SecurityException

StringIndexOutOf-

BoundsException

Errors

Error

OutOfMemoryError

VirtualMachineError

Thrown when an application tries to load in a class through its string name using the

forName method in clas€lass but no definition for the class with the specified
name could be found.

The clas€xception and its subclasses are a formnTbfowable that indicates
conditions that a reasonable application might want to catch.

Thrown when an application tries to load in a class, but the currently executing me
does not have access to the definition of the specified class, because the class
public and in another package.

Thrown to indicate that a method has been passed an illegal or inappropriate arg

Thrown to indicate that a thread has attempted to wait on an object's monitor or

thod
s not

Lment.

to

notify other threads waiting on an object's monitor without owning the specified moni-

tor.

Thrown to indicate that a thread is not in an appropriate state for the requested
tion.

Thrown to indicate that an index of some sort (such as to an array, to a string, of

vector) is out of range.

Thrown when an application tries to create an instance of a class usireyime
stance method in clas€lass , but the specified class object cannot be instantis
because it is an interface or is an abstract class.

Thrown when a thread is waiting, sleeping, or otherwise paused for a long time
another thread interrupts it using theerrupt method in clas$hread .

Thrown if an application tries to create an array with negative size.

Thrown when an application attempts to ngé
required.

in a case where an object is

Thrown to indicate that the application has attempted to convert a string to one
numeric types, but that the string does not have the appropriate format.

RuntimeException is the superclass of those exceptions that can be thrown
ing the normal operation of the Java Virtual Machine.

Thrown by the security manager to indicate a security violation.

Thrown by thecharAt method in clasString and by otheBtring methods to
indicate that an index is either negative or greater than or equal to the size of the

An Error is a subclass ofhrowable that indicates serious problems that a reas
able application should not try to catch.

Thrown when the Java Virtual Machine cannot allocate an object because it is 0
memory, and no more memory could be made available by the garbage collectg

Thrown to indicate that the Java Virtual Machine is broken or has run out of resoy
necessary for it to continue operating.

opera-

toa

ted

and

of the

dur-

string.

ut of
r.

rces

82

java.lang ArithmeticException
ArithmeticException()

java.lang

ArithmeticException

Syntax

public class ArithmeticException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.ArithmeticException

Description
Thrown when an exceptional arithmetic condition has occurred. For example, an integer "divide by zero" throws
an instance of this class.

Since: JDK1.0

Member Summary

Constructors

ArithmeticException() Constructs adrithmeticException with no detail message.
ArithmeticExcep- Constructs adrithmeticException with the specified detail message.
tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

ArithmeticException()

public ArithmeticException()

83

ArithmeticException java.lang
ArithmeticException(String)

Constructs airithmeticException with no detail message.

ArithmeticException(String)

public ArithmeticException(String__ s)
Constructs arithmeticException with the specified detail message.
Parameters:

s - the detail message.

84

java.lang ArraylndexOutOfBoundsException
ArithmeticException(String)

java.lang

ArraylndexOutOfBoundsException

Syntax

public class ArraylndexOutOfBoundsException extends IndexOutOfBoundsException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- IndexOutOfBoundsException

+-- java.lang.ArraylndexOutOfBoundsException

Description
Thrown to indicate that an array has been accessed with an illegal index. The index is either negative or greater
than or equal to the size of the array.

Since: JDK1.0

Member Summary

Constructors

ArrayIndexOutOfBound- Constructs aArraylndexOutOfBoundsException with no detail message.
sException()

Arravlno!eXQUtOfBound- Constructs a newrraylndexOutOfBoundsException class with an argu-
sException(int) ment indicating the illegal index.

ArraylndexOutOfBound- Constructs adrraylndexOutOfBoundsException class with the specified
sException(String) detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

85

ArraylndexOutOfBoundsException java.lang
ArraylndexOutOfBoundsException()

ArraylndexOutOfBoundsException()
public ArraylndexOutOfBoundsException()

Constructs adrraylndexOutOfBoundsException

with no detail message.

ArraylndexOutOfBoundsException(int)
public ArraylndexOutOfBoundsException(int index)

Constructs a newrraylndexOutOfBoundsException
index.

Parameters:
index - the illegal index.

class with an argument indicating the illegal

ArraylindexOutOfBoundsException(String)
public ArraylndexOutOfBoundsException(String __s)
Constructs adrraylndexOutOfBoundsException

Parameters:
S - the detail message.

86

class with the specified detail message.

java.lang ArrayStoreException
ArraylndexOutOfBoundsException(String)

java.lang

ArrayStoreException

Syntax

public class ArrayStoreException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.ArrayStoreException

Description
Thrown to indicate that an attempt has been made to store the wrong type of object into an array of objects. For
example, the following code generatesfarayStoreException

Object x[] = new String[3];
X[0] = new Integer(0);

Since: JDK1.0

Member Summary

Constructors

ArrayStoreException() Constructs airrayStoreException with no detail message.
ArrayStoreExcep- Constructs airrayStoreException with the specified detail message.
tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

87

ArrayStoreException java.lang
ArrayStoreException()

ArrayStoreException()
public ArrayStoreException()

Constructs adrrayStoreException with no detail message.

ArrayStoreException(String)

public ArrayStoreException(String__s)
Constructs adrrayStoreException with the specified detail message.
Parameters:

s - the detail message.

88

java.lang Boolean
Boolean(boolean)

java.lang

Boolean

Syntax

public final class Boolean

Object
|

+-- java.lang.Boolean
Description

The Boolean class wraps a value of the primitive tppelean in an object. An object of typBoolean con-
tains a single field whose typelisolean

Since: JDK1.0

Member Summary

Constructors

Boolean(boolean) Allocates aBoolean object representing thalue argument.

Methods

booleanValue() Returns the value of thBoolean object as a boolean primitive.

equals(Object) Returngrue if and only if the argumentis notull and is aBoolean object that
represents the sarbeolean value as this object.

hashCode Returns a hash code for tfisolean object.

toString() Returns a String object representing this Boolean's value.

Inherited Member Summary

Methods inherited from classObject
getClass() , notify() , hotifyAll() , wait(long) , wait(long, int) , wait()

Constructors

Boolean(boolean)
public Boolean(boolean value)
Allocates aBoolean object representing thalue argument.

Parameters:

89

Boolean java.lang
booleanValue()

value - the value of th&oolean .

Methods

booleanValue()
public boolean booleanValue()
Returns the value of thBoolean object as a boolean primitive.

Returns: the primitiveboolean value of this object.

equals(Object)
public boolean equals(Object _ obj)

Returnstrue if and only if the argument is notull and is aBoolean object that represents the same

boolean value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the Boolean objects represent the same védlse otherwise.

hashCode()
public int hashCode()
Returns a hash code for tldsolean object.

Overrides: hashCode() in classObject

Returns: the integerl231 if this object representsue ; returns the integek237 if this object
representfalse

toString()

public String _ toString()

Returns a String object representing this Boolean's value. If this object represents thienealya string
equal to'true" is returned. Otherwise, a string equalfedse” s returned.

Overrides: toString() in classObject
Returns: a string representation of this object.

90

java.lang

Byte

Syntax

public final class Byte

Object
|

+-- java.lang.Byte

Description

java.lang

Byte

MAX_VALUE

The Byte class is the standard wrapper for byte values.

Since: JDK1.1

Member Summary

Fields
MAX_VALUE

MIN_VALUE

Constructors
Byte(byte)

Methods
byteValue()

equals(Object)

hashCode()

parseByte(String)

parseByte(String,

int)
toString()

The maximum value a Byte can have.
The minimum value a Byte can have.

Constructs a Byte object initialized to the specified byte value.

Returns the value of this Byte as a byte.
Compares this object to the specified object.
Returns a hashcode for this Byte.

Assuming the specified String represents a byte, returns that byte's value.

Assuming the specified String represents a byte, returns that byte's value.

Returns a String object representing this Byte's value.

Inherited Member Summary

notifyAll() , wait(long)

Methods inherited from classObject
getClass() , notify()

wait(long, int) , wait()

Fields

MAX_VALUE

91

Byte java.lang
MIN_VALUE

public static final byte MAX_VALUE

The maximum value a Byte can have.

MIN_VALUE
public static final byte MIN_VALUE

The minimum value a Byte can have.

Constructors

Byte(byte)
public Byte(byte value)
Constructs a Byte object initialized to the specified byte value.

Parameters:
value - the initial value of the Byte

Methods

byteValue()
public byte byteValue()
Returns the value of this Byte as a byte.

Returns: the value of this Byte as a byte.

equals(Object)
public boolean equals(Object _obj)
Compares this object to the specified object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()
public int hashCode()
Returns a hashcode for this Byte.

Overrides: hashCode() in classObject

92

java.lang Byte
parseByte(String)

parseByte(String)
public static byte parseByte(String _s)

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the String
cannot be parsed as a byte. The radix is assumed to be 10.

Parameters:
s - the String containing the byte

Returns: the parsed value of the byte

Throws: NumberFormatException - If the string does not contain a parsable byte.

parseByte(String, int)
public static byte parseByte(String _s, int radix)

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the String
cannot be parsed as a byte.

Parameters:
s - the String containing the byte

radix - the radix to be used

Returns: the parsed value of the byte

Throws: NumberFormatException - If the String does not contain a parsable byte.

toString()

public String toString()
Returns a String object representing this Byte's value.

Overrides: toString() in classObject

93

Character

toString()
java.lang

Character

Syntax

public final class Character

Object
|

+-- java.lang.Character

Description

java.lang

The Character class wraps a value of the primitive tghpr in an object. An object of typ€haracter con-
tains a single field whose typedkar .

In addition, this class provides several methods for determining the type of a character and converting characters
from uppercase to lowercase and vice versa.

Since: JDK1.0

Member Summary

Fields
MAX_RADIX

MAX_VALUE
MIN_RADIX
MIN_VALUE

Constructors
Character(char)

Methods
charValue()
digit(char, int)
equals(Object)
hashCode()
isDigit(char)
isLowerCase(char)
isUpperCase(char)
toLowerCase(char)

toString()

toUpperCase(char)

The maximum radix available for conversion to and from Strings.
The constant value of this field is the largest value of type .

The minimum radix available for conversion to and from Strings.
The constant value of this field is the smallest value oftipe .

Constructs &haracter object and initializes it so that it represents the primitiv
value argument.

Returns the value of this Character object.

Returns the numeric value of the characteiin the specified radix.
Compares this object against the specified object.

Returns a hash code for this Character.

Determines if the specified character is a digit.

Determines if the specified character is a lowercase character.
Determines if the specified character is an uppercase character.
The given character is mapped to its lowercase equivalent; if the character has n
ercase equivalent, the character itself is returned.

Returns a String object representing this character's value.

Converts the character argument to uppercase; if the character has no lowerca
equivalent, the character itself is returned.

11°]

0 low-

94

java.lang Character
MAX_RADIX
Inherited Member Summary
Methods inherited from classObject
getClass() , notify() , hotifyAll() , wait(long) , wait(long, int) wait()

Fields

MAX_ RADIX
public static final int MAX_RADIX

The maximum radix available for conversion to and from Strings.

See Also: toString(int, int) , valueOf(String)

MAX_VALUE
public static final char MAX_VALUE
The constant value of this field is the largest value of tye .
Since: JDK1.0.2

MIN_RADIX
public static final int MIN_RADIX
The minimum radix available for conversion to and from Strings.

See Also: toString(int, int) , valueOf(String)

MIN_VALUE
public static final char MIN_VALUE
The constant value of this field is the smallest value of¢ipe .
Since: JDK1.0.2

Constructors

Character(char)

public Character(char value)

Constructs £haracter object and initializes it so that it represents the primitdlee argument.

Parameters:
value - value for the neWCharacter obiject.

95

Character java.lang
charValue()

Methods

charValue()
public char charValue()
Returns the value of this Character object.

Returns: the primitivechar value represented by this object.

digit(char, int)
public static int digit(char ch, int radix)
Returns the numeric value of the charactelin the specified radix.

Parameters:
ch - the character to be converted.

radix - the radix.
Returns: the numeric value represented by the character in the specified radix.
Since: JDK1.0
See Also: isDigit(char)

equals(Object)
public boolean equals(Object _obj)

Compares this object against the specified object. The resuligs if and only if the argument is not
null andis &haracter object that represents the sachar value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the sanfalse otherwise.

hashCode()
public int hashCode()

Returns a hash code for this Character.

Overrides: hashCode() in classObject
Returns: a hash code value for this object.

isDigit(char)
public static boolean isDigit(char ch)
Determines if the specified character is a digit.

Parameters:

96

java.lang Character
isLowerCase(char)

ch - the character to be tested.
Returns: true if the character is a digifalse otherwise.
Since: JDK1.0

isLowerCase(char)
public static boolean isLowerCase(char ch)
Determines if the specified character is a lowercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is lowercadajse otherwise.
Since: JDK1.0

isUpperCase(char)
public static boolean isUpperCase(char ch)
Determines if the specified character is an uppercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is uppercadatse otherwise.
Since: 1.0

See Also: isLowerCase(char) , toUpperCase(char)

toLowerCase(char)
public static char toLowerCase(char ch)

The given character is mapped to its lowercase equivalent; if the character has no lowercase equivalent, the
character itself is returned.

Parameters:
ch - the character to be converted.

Returns: the lowercase equivalent of the character, if any; otherwise the character itself.
Since: JDK1.0

See Also: isLowerCase(char) , isUpperCase(char) , toUpperCase(char)

toString()

public String toString()

Returns a String object representing this character's value. ConverShiiacter object to a string.
The result is a string whose lengthis The string's sole component is the primitislear value repre-
sented by this object.

Overrides: toString() in classObject

97

Character java.lang
toUpperCase(char)

Returns: a string representation of this object.

toUpperCase(char)
public static char toUpperCase(char ch)

Converts the character argument to uppercase; if the character has no lowercase equivalent, the character
itself is returned.

Parameters:
ch - the character to be converted.

Returns: the uppercase equivalent of the character, if any; otherwise the character itself.
Since: JDK1.0

See Also: isLowerCase(char) , isUpperCase(char) , toLowerCase(char)

98

java.lang Class
toUpperCase(char)

java.lang

Class

Syntax

public final class Class

Object
|

+-- java.lang.Class

Description

Instances of the clagSlass represent classes and interfaces in a running Java application. Every array also
belongs to a class that is reflected &lass object that is shared by all arrays with the same element type and
number of dimensions.

Class has no public constructor. Inste&@lass objects are constructed automatically by the Java Virtual
Machine as classes are loaded.

The following example uses@ass object to print the class hame of an object:

void printClassName(Object obj) {
System.out.printin("The class o f" + ob +
" is " + obj.getClass().getName());

Since: JDK1.0

Member Summary

Methods

forName(String) Returns the€Class object associated with the class with the given string name.

getName() Returns the fully-qualified name of the entity (class, interface, array class, primitive
type, or void) represented by tl@i$ass object, as &tring

getResourceAs- Finds a resource with a given name.

Stream(String)

isArray() Determines if thiClass object represents an array class.

isAssignable- Determines if the class or interface represented bydllaiss object is either the

From(Class) same as, or is a superclass or superinterface of, the class or interface represented by
the specifiecClass parameter.

isinstance(Object) Determines if the specifig@bject is assignment-compatible with the object reprie-
sented by thi€lass .

isinterface() Determines if the specifie@lass object represents an interface type.

newlnstance() Creates a new instance of a class.

toString() Converts the object to a string.

99

Class java.lang

forN

ame(String)

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()
Methods
forName(String)
public static native Class forName(String className)

Returns theClass object associated with the class with the given string name. Given the fully-qualified
name for a class or interface, this method attempts to locate, load and link the class. If it succeeds, returns
the Class object representing the class. If it fails, the method throws a ClassNotFoundException.

For example, the following code fragment returns the runttda@ss descriptor for the class named
java.lang.Thread : Class t = Class.forName("java.lang.Thread")

Parameters:
className - the fully qualified name of the desired class.

Returns: theClass descriptor for the class with the specified name.

Throws: ClassNotFoundException - if the class could not be found.
Since: JDK1.0
getName()

100

public native String getName()

Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void) repre-
sented by thi€lass object, as &tring

If this Class object represents a class of arrays, then the internal form of the name consists of the name of
the element type in Java signature format, preceded by one or [nbcb&racters representing the depth of
array nesting. Thus:

(new Object[3]).getClass().getName()

returns [Ljava.lang.Object; and:
(new int[3][4][5][6][7]1[8][9]).getClass().getName()

returns T[[[[[[I ". The encoding of element type names is as follows:

java.lang Class
getResourceAsStream(String)

B byte

C char

D double

F float

| int

J long

Lclassname; class or interface
S short

4 boolean

The class or interface narkassname is given in fully qualified form as shown in the example above.

Returns: the fully qualified name of the class or interface represented by this object.

getResourceAsStream(String)
public InputStream _ getResourceAsStream(String __name)

Finds a resource with a given name. This method returns null if no resource with this name is found. The
rules for searching resources associated with a given class are profile specific.

Parameters:
name - name of the desired resource
Returns: ajava.io.InputStream object.
Since: JDK1.1
isArray()

public native boolean isArray()

Determines if thiClass object represents an array class.

Returns: true if this object represents an array cldatse otherwise.
Since: JDK1.1

isAssignableFrom(Class)
public native boolean isAssignableFrom(Class cls)

Determines if the class or interface represented byGlass object is either the same as, or is a superclass
or superinterface of, the class or interface represented by the spé&lidiesl parameter. It returnisue if

so; otherwise it returnfalse . If this Class object represents a primitive type, this method rettinns

if the specifiedClass parameter is exactly thiSlass object; otherwise it returrfalse

Specifically, this method tests whether the type represented by the sp€idssi parameter can be con-
verted to the type represented by tBikss object via an identity conversion or via a widening reference
conversion. Se€he Java Language Specificatiaections 5.1.1 and 5.1.4 , for details.

Parameters:
cls -theClass objectto be checked

Returns: theboolean value indicating whether objects of the tygle can be assigned to objects of
this class

Throws: NullPointerException - if the specified Class parameter is null.
Since: JDK1.1

101

Class java.lang

isInstance(Object)

isInstance(Object)

public native boolean isinstance(Object obj)

Determines if the specifie@bject is assignment-compatible with the object represented byalaiss .

This method is the dynamic equivalent of the Java languragtanceof = operator. The method returns
true if the specifiedObject argument is non-null and can be cast to the reference type represented by
thisClass object without raising €lassCastException. It returnsfalse otherwise.

Specifically, if thisClass object represents a declared class, this method returas if the specified

Object argumentis an instance of the represented class (or of any of its subclasses); ifaédarnth-

erwise. If thisClass object represents an array class, this method retanes if the specifiedObject
argument can be converted to an object of the array class by an identity conversion or by a widening refer-
ence conversion; it returrfalse otherwise. If thisClass object represents an interface, this method
returnstrue if the class or any superclass of the specifdgject argument implements this interface; it
returnsfalse otherwise. If thi<Class object represents a primitive type, this method retiaiss

Parameters:
obj - the object to check

Returns: true ifobj is an instance of this class
Since: JDK1.1

isinterface()

public native boolean isinterface()
Determines if the specifigdlass object represents an interface type.

Returns: true if this object represents an interfataEse otherwise.

newlnstance()

public native Object newlnstance()
Creates a new instance of a class.

Returns: a newly allocated instance of the class represented by this object. This is done exactly as if by a
new expression with an empty argument list.

Throws: lllegalAccessException - if the class or initializer is not accessible.
InstantiationException - if an application tries to instantiate an abstract class or an interface,
or if the instantiation fails for some other reason.

Since: JDK1.0

toString()

102

public String _ toString()

Converts the object to a string. The string representation is the string "class" or "interface", followed by a
space, and then by the fully qualified name of the class in the format returrgetigme . If this Class

object represents a primitive type, this method returns the name of the primitive type.Qldss object
represents void this method returns "void".

java.lang Class
toString()

Overrides: toString() in classObject
Returns: a string representation of this class object.

103

ClassCastException java.lang
toString()

java.lang

ClassCastException

Syntax

public class ClassCastException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.ClassCastException

Description
Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an instance. For
example, the following code generateSlassCastException

Objec t x = new Integer(0);
System.out.printin((String)x);

Since: JDK1.0

Member Summary

Constructors

ClassCastException() Constructs £lassCastException with no detail message.
ClassCastExcep- Constructs &lassCastException with the specified detail message.
tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

104

java.lang ClassCastException
ClassCastException()

ClassCastException()
public ClassCastException()
Constructs &lassCastException with no detail message.

ClassCastException(String)
public ClassCastException(String __s)
Constructs &lassCastException with the specified detail message.

Parameters:
s - the detail message.

105

ClassNotFoundException java.lang
ClassNotFoundException()

java.lang

ClassNotFoundException

Syntax
public class ClassNotFoundException extends Exception
Object

+-- Throwable

I
+-- Exception
|

+-- java.lang.ClassNotFoundException

Description
Thrown when an application tries to load in a class through its string name usifayf@me method in class
Class but no definition for the class with the specified name could be found.

Since: JDK1.0

See Also: forName(String)

Member Summary

Constructors

ClassNotFoundExcep- Constructs &lassNotFoundException with no detail message.

tion()

ClassNotFoundExcep- Constructs &lassNotFoundException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

ClassNotFoundException()

106

java.lang ClassNotFoundException
ClassNotFoundException(String)

public ClassNotFoundException()

Constructs &lassNotFoundException with no detail message.

ClassNotFoundException(String)
public ClassNotFoundException(String __s)
Constructs &lassNotFoundException with the specified detail message.

Parameters:
s - the detail message.

107

Error java.lang
Error()

java.lang

Error

Syntax

public class Error extends Throwable

Object
|

+-- Throwable

+-- java.lang.Error

Direct Known Subclasses: VirtualMachineError

Description
An Error is a subclass ofhrowable that indicates serious problems that a reasonable application should
not try to catch. Most such errors are abnormal conditions.

A method is not required to declare in ttwows clause any subclassestrfror that might be thrown during
the execution of the method but not caught, since these errors are abnormal conditions that should never occur.

Since: JDK1.0

Member Summary

Constructors
Error() Constructs afError with no specified detail message.
Error(String) Constructs an Error with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

Error()

108

java.lang

public Error()
Constructs afrror with no specified detail message.

Error

Error(String)

Error(String)

public Error(String __s)

Constructs an Error with the specified detail message.

Parameters:
s - the detail message.

109

Exception java.lang
Error(String)

java.lang

Exception

Syntax

public class Exception extends Throwable

Object

+-- Throwable

+-- java.lang.Exception

Direct Known Subclasses: ClassNotFoundException , llegalAccessException ,
InstantiationException , InterruptedException , IOException , RuntimeExcep-
tion

Description

The clasException and its subclasses are a formIgirowable that indicates conditions that a reasonable
application might want to catch.

Since: JDK1.0

See Also: Error

Member Summary

Constructors
Exception() Constructs afException with no specified detail message.
Exception(String) Constructs aException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

110

java.lang

Exception

Exception()

Exception()
public Exception()
Constructs aftxception with no specified detail message.

Exception(String)
public Exception(String __s)

Constructs aftxception with the specified detail message.

Parameters:
s - the detail message.

111

lllegalAccessException java.lang
Exception(String)

java.lang

lllegalAccessException

Syntax
public class lllegalAccessException extends Exception
Object

+-- Throwable

I
+-- Exception
|

+-- java.lang.lllegalAccessException

Description
Thrown when an application tries to load in a class, but the currently executing method does not have access to
the definition of the specified class, because the class is not public and in another package.

An instance of this class can also be thrown when an application tries to create an instance of a class using the
newlnstance method in clas€lass , but the current method does not have access to the appropriate zero-
argument constructor.

Since: JDK1.0

See Also: forName(String) , newlInstance()

Member Summary

Constructors

lllegalAccessExcep- Constructs atilegalAccessException without a detail message.
tion()

llegalAccessExcep- Constructs atilegalAccessException with a detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hnotify() _, notifyAll() , wait(long) , wait(long,
int) , wait()

112

java.lang IllegalAccessException
IllegalAccessException()

Constructors

IllegalAccessException()
public lllegalAccessException()

Constructs afilegalAccessException without a detail message.

lllegalAccessException(String)

public lllegalAccessException(String__s)
Constructs afilegalAccessException with a detail message.
Parameters:

s - the detail message.

113

lllegalArgumentException java.lang
lllegalAccessException(String)

java.lang

lllegalArgumentException

Syntax

public class lllegalArgumentException extends RuntimeException

Object
|
+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.lllegalArgumentException

Direct Known Subclasses: lllegalThreadStateException , NumberFormatException

Description
Thrown to indicate that a method has been passed an illegal or inappropriate argument.

Since: JDK1.0

See Also: setPriority(int)

Member Summary

Constructors

llegalArgumentExcep- Constructs afilegalArgumentException with no detail message.
tion()

lllegalArgumentExcep- Constructs afllegalArgumentException with the specified detail messags.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

114

java.lang lllegalArgumentException
lllegalArgumentException()

lllegalArgumentException()
public lllegalArgumentException()

Constructs afilegalArgumentException with no detail message.

lllegalArgumentException(String)

public lllegalArgumentException(String__s)
Constructs afilegalArgumentException with the specified detail message.
Parameters:

s - the detail message.

115

lllegalMonitorStateException java.lang
lllegalArgumentException(String)

java.lang

lllegalMonitorStateException

Syntax

public class lllegalMonitorStateException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.lllegalMonitorStateException

Description
Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting
on an object's monitor without owning the specified monitor.

Since: JDK1.0

See Also: notify() , notifyAll() ,wait() , wait(long) , wait(long. int)

Member Summary

Constructors

lllegalMonitorState- Constructs afilegalMonitorStateException with no detail message.
Exception()

lllegalMonitorState- Constructs atilegalMonitorStateException with the specified detalil
Exception(String) message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

116

java.lang lllegalMonitorStateException
lllegalMonitorStateException()

lllegalMonitorStateException()
public lllegalMonitorStateException()

Constructs afilegalMonitorStateException with no detail message.

lllegalMonitorStateException(String)

public lllegalMonitorStateException(String__s)
Constructs afilegalMonitorStateException with the specified detail message.
Parameters:

s - the detail message.

117

lllegalThreadStateException java.lang
lllegalMonitorStateException(String)

java.lang

lllegalThreadStateException

Syntax

public class lllegalThreadStateException extends lllegalArgumentException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- lllegalArgumentException

+-- java.lang.lllegalThreadStateException

Description
Thrown to indicate that a thread is not in an appropriate state for the requested operation. See, for example, the
suspend andresume methods in clasShread .

Since: JDK1.0

Member Summary

Constructors
lllegalThreadStateEx- Constructs atilegalThreadStateException with no detail message.

ception()

lllegalThreadStateEx- Constructs afilegalThreadStateException with the specified detail mes
ception(String) sage.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

118

java.lang lllegalThreadStateException
lllegalThreadStateException()

lllegalThreadStateException()
public lllegalThreadStateException()

Constructs afilegalThreadStateException with no detail message.

lllegalThreadStateException(String)

public lllegalThreadStateException(String__s)
Constructs afilegalThreadStateException with the specified detail message.
Parameters:

s - the detail message.

119

IndexOutOfBoundsException java.lang
lllegalThreadStateException(String)

java.lang

IndexOutOfBoundsException

Syntax

public class IndexOutOfBoundsException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.IndexOutOfBoundsException

Direct Known Subclasses: ArraylndexOutOfBoundsException , StringlndexOutOf-
BoundsException

Description
Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of range.

Applications can subclass this class to indicate similar exceptions.

Since: JDK1.0

Member Summary

Constructors
IndexOutOfBoundsEx- Constructs amdexOutOfBoundsException with no detail message.

ception()
IndexOutOfBoundsEx- Constructs andexOutOfBoundsException with the specified detail messagp.
ception(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

120

java.lang IndexOutOfBoundsException
IndexOutOfBoundsException()

IndexOutOfBoundsException()
public IndexOutOfBoundsException()

Constructs atndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException(String)

public IndexOutOfBoundsException(String __s)
Constructs atndexOutOfBoundsException with the specified detail message.
Parameters:

s - the detail message.

121

InstantiationException java.lang
InstantiationException()

java.lang

InstantiationException

Syntax
public class InstantiationException extends Exception
Object

+-- Throwable

I
+-- Exception
|

+-- java.lang.InstantiationException

Description
Thrown when an application tries to create an instance of a class usingtlastance method in class
Class , but the specified class object cannot be instantiated because it is an interface or is an abstract class.

Since: JDK1.0

See Also: newlnstance()

Member Summary

Constructors

InstantiationExcep- Constructs amnstantiationException with no detail message.

tion()

InstantiationExcep- Constructs amstantiationException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

InstantiationException()

122

java.lang InstantiationException
InstantiationException(String)

public InstantiationException()

Constructs ainstantiationException with no detail message.

InstantiationException(String)

public InstantiationException(String __s)
Constructs atnstantiationException with the specified detail message.
Parameters:

s - the detail message.

123

Integer

InstantiationException(String)

java.lang

Integer

Syntax

public final class Integer

Object
|

+-- java.lang.Integer

Description

The Integer class wraps a value of the primitive tyte in an object. An object of typtnteger

single field whose type ist

java.lang

In addition, this class provides several methods for convertinigtanto aString and aString to anint
as well as other constants and methods useful when dealing viith an

Since: JDK1.0

Member Summary

Fields
MAX_VALUE

MIN_VALUE

Constructors
Integer(int)

Methods
byteValue()
equals(Object)
hashCode()
intValue()
longValue()

parselnt(String)
parselnt(String, int)

shortvalue()
toBinaryString(int)

toHexString(int)

toOctalString(int)

toString()

toString(int)
toString(int, int)

valueOf(String)

The largest value of tygat .
The smallest value of typet .

Constructs a newly allocatdédteger object that represents the primitive argu-
ment.

Returns the value of this Integer as a byte.

Compares this object to the specified object.

Returns a hashcode for this Integer.

Returns the value of this Integer as an int.

Returns the value of this Integer asiag .

Parses the string argument as a signed decimal integer.
Parses the string argument as a signed integer in the radix specified by the seq
argument.

Returns the value of this Integer as a short.

Creates a string representation of the integer argument as an unsigned integer
2.

Creates a string representation of the integer argument as an unsigned integer
16.

Creates a string representation of the integer argument as an unsigned integer
8.

Returns a String object representing this Integer's value.

Returns a new String object representing the specified integer.

Creates a string representation of the first argument in the radix specified by th
ond argument.

contains a

ond

in base

in base

in base

e Sec-

Returns a new Integer object initialized to the value of the specified String.

124

java.lang Integer
MAX_VALUE

Member Summary

valueOf(String, int) Returns a new Integer object initialized to the value of the specified String.

Inherited Member Summary

Methods inherited from classObject
getClass() , notify() , hotifyAll() , wait(long) , wait(long, int) , wait()

Fields

MAX_VALUE
public static final int MAX_VALUE

The largest value of tygat . The constant value of this field4447483647 .

MIN_VALUE
public static final int MIN_VALUE

The smallest value of typet . The constant value of this field-&147483648 .

Constructors

Integer(int)
public Integer(int value)
Constructs a newly allocatédteger object that represents the primitimé argument.

Parameters:
value - the value to be represented by lifieger

Methods

byteValue()
public byte byteValue()
Returns the value of this Integer as a byte.

125

Integer java.lang
equals(Object)

Returns: the value of this Integer as a byte.

Since: JDK1.1
equals(Object)
public boolean equals(Object obj)

Compares this object to the specified object. The restriiés if and only if the argument is notull and
is aninteger object that contains the saim¢ value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the sanfalse otherwise.

hashCode()
public int hashCode()
Returns a hashcode for this Integer.

Overrides: hashCode() in classObject

Returns: a hash code value for this object, equal to the primiitive value represented by this
Integer object.

intvValue()
public int intValue()
Returns the value of this Integer as an int.

Returns: theint value represented by this object.

longValue()
public long longValue()
Returns the value of this Integer asag .

Returns: theint value represented by this object that is converted toléyyge and the result of the
conversion is returned.

parselnt(String)
public static int parselnt(String__s)

Parses the string argument as a signed decimal integer. The characters in the string must all be decimal dig-
its, except that the first character may be an ASCII minus 'sign (‘'\u002d') to indicate a nega-

tive value. The resulting integer value is returned, exactly as if the argument and the radix 10 were given as
arguments to thparselnt(String, int) method.

Parameters:
S - a string.

126

java.lang Integer
parselnt(String, int)

Returns: the integer represented by the argument in decimal.

Throws: NumberFormatException - if the string does not contain a parsable integer.

parselnt(String, int)
public static int parselnt(String s, int radix)

Parses the string argument as a signed integer in the radix specified by the second argument. The characters
in the string must all be digits of the specified radix (as determined by whdibisfchar, int)

returns a nonnegative value), except that the first character may be an ASCIlI minus'sign
(‘'\u002d') to indicate a negative value. The resulting integer value is returned.

An exception of typ&lumberFormatException is thrown if any of the following situations occurs:

» The first argument isull or is a string of length zero.
» The radix is either smaller thanIN_RADIX or larger thatMAX_RADIX
» Any character of the string is not a digit of the specified radix, except that the first character may be a
minus sign-" (‘\u002d") provided that the string is longer than length 1.
* The integer value represented by the string is not a value oiintype
Examples:

parselnt("0", 10) returns O

parselnt("473", 10) returns 473

parselnt("-0", 10) returns 0O

parselnt("-FF", 16) returns -255

parselnt("1100110", 2) returns 102
parselnt("2147483647", 10) returns 2147483647
parselnt("-2147483648", 10) returns -2147483648
parselnt("2147483648", 10) throws a NumberFormatException
parselnt("99", 8) throws a NumberFormatException
parselnt("Kona", 10) throws a NumberFormatException
parselnt("Kona", 27) returns 411787

Parameters:
s - theString containing the integer.
radix - the radix to be used.

Returns: the integer represented by the string argument in the specified radix.

Throws: NumberFormatException - if the string does not contain a parsable integer.

shortValue()
public short shortValue()
Returns the value of this Integer as a short.
Returns: the value of this Integer as a short.
Since: JDK1.1

toBinaryString(int)
public static String __ toBinaryString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 2.

127

Integer java.lang

toHexString(int)

The unsigned integer value is the argument pRfif 2he argument is negative; otherwise it is equal to the
argument. This value is converted to a string of ASCII digits in binary (base 2) with no extra |d€litfg

the unsigned magnitude is zero, it is represented by a single zero ch&acté\u0030"); other-

wise, the first character of the representation of the unsigned magnitude will not be the zero character. The
characterd)' (‘\u0030")andl" (‘\u0031") are used as binary digits.

Parameters:
i -aninteger.

Returns: the string representation of the unsigned integer value represented by the argument in binary
(base 2).

Since: JDK1.0.2

toHexString(int)

public static String _ toHexString(int i)
Creates a string representation of the integer argument as an unsigned integer in base 16.

The unsigned integer value is the argument pﬁfs’fﬂhe argument is negative; otherwise, it is equal to the
argument. This value is converted to a string of ASCII digits in hexadecimal (base 16) with no extra leading
Os. If the unsigned magnitude is zero, it is represented by a single zero ch&acté\u0030");
otherwise, the first character of the representation of the unsigned magnitude will not be the zero character.
The following characters are used as hexadecimal digits:

0123456789abcdef

These are the character\u0030' through '\u0039' and 'u\0039' through
'\u0066'

Parameters:
i - an integer.

Returns: the string representation of the unsigned integer value represented by the argument in
hexadecimal (base 16).

Since: JDK1.0.2

toOctalString(int)

128

public static String __ toOctalString(int i)
Creates a string representation of the integer argument as an unsigned integer in base 8.

The unsigned integer value is the argument pRfsfzhe argument is negative; otherwise, it is equal to the
argument. This value is converted to a string of ASCII digits in octal (base 8) with no extra B=ading

If the unsigned magnitude is zero, it is represented by a single zero chaBact€\u0030'); oth-
erwise, the first character of the representation of the unsigned magnitude will not be the zero character.
The octal digits are:

01234567
These are the characté$£92;u0030' through'\u0037*

Parameters:
i -aninteger

java.lang Integer
toString()

Returns: the string representation of the unsigned integer value represented by the argument in octal (base
8).

Since: JDK1.0.2

toString()

public String toString()

Returns a String object representing this Integer's value. The value is converted to signed decimal represen-
tation and returned as a string, exactly as if the integer value were given as an argument to the
toString(int) method.

Overrides: toString() in classObject
Returns: a string representation of the value of this object in base 10.

toString(int)
public static String __ toString(int i)

Returns a new String object representing the specified integer. The argument is converted to signed decimal
representation and returned as a string, exactly as if the argument and@agaiere given as arguments to
thetoString(int, int) method.

Parameters:
i - an integer to be converted.

Returns: a string representation of the argument in base 10.

toString(int, int)
public static String __ toString(int i, int radix)
Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller tha@€haracter.MIN_RADIX or larger tharCharacter. MAX_RADIX , then the
radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCIlI minus chatacter
(‘\u002d'). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magnitude is
zero, it is represented by a single zero chara®er ('\u0030"); otherwise, the first character of

the representation of the magnitude will not be the zero character. The following ASCII characters are used
as digits:

0123456789abcdefghijkimnopgrstuvwxyz
These aré\u0030" through'\u0039' and'\u0061' through'\u007a’

If the radix is N, then the firsN of these characters are used as radidigits in the order shown. Thus,
the digits for hexadecimal (radix 16) are

0123456789abcdef.

Parameters:
i -aninteger.

129

Integer java.lang

valueOf(String)

radix - the radix.
Returns: a string representation of the argument in the specified radix.
See Also: MAX_RADIXMIN_RADIX

valueOf(String)

public static Integer valueOf(String s)

Returns a new Integer object initialized to the value of the specified String. The argument is interpreted as
representing a signed decimal integer, exactly as if the argument were giverpirseént(String)
method. The result is dnteger object that represents the integer value specified by the string.

In other words, this method returnslateger object equal to the value of:

new Integer(Integer.parselnt(s))
Parameters:
s - the string to be parsed.
Returns: a newly constructethteger initialized to the value represented by the string argument.

Throws: NumberFormatException - if the string cannot be parsed as an integer.

valueOf(String, int)

130

public static Integer _ valueOf(String s, int radix)

Returns a new Integer object initialized to the value of the specified String. The first argument is interpreted
as representing a signed integer in the radix specified by the second argument, exactly as if the arguments
were given to the@arselnt(String, int) method. The result is dnteger object that represents

the integer value specified by the string.

In other words, this method returnslateger object equal to the value of:

new Integer(Integer.parselnt(s, radix))
Parameters:
s - the string to be parsed.
radix - the radix of the integer represented by string

Returns: a newly constructethteger initialized to the value represented by the string argument in the
specified radix.

Throws: NumberFormatException - if the String cannot be parsed asran .

java.lang InterruptedException
InterruptedException()

java.lang

InterruptedException

Syntax
public class InterruptedException extends Exception
Object

+-- Throwable

I
+-- Exception
|

+-- java.lang.InterruptedException

Description
Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread interrupts it
using thenterrupt method in clas$hread .

Since: JDK1.0

See Also: wait() _, wait(long) __, wait(long, int) , sleep(long)

Member Summary

Constructors

InterruptedExcep- Constructs amterruptedException with no detail message.

tion()

InterruptedExcep- Constructs amnterruptedException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

InterruptedException()

131

InterruptedException java.lang
InterruptedException(String)

public InterruptedException()

Constructs amnterruptedException with no detail message.

InterruptedException(String)

public InterruptedException(String__s)
Constructs ainterruptedException with the specified detail message.
Parameters:

s - the detail message.

132

java.lang

java.lang

Long

Syntax

public final class Long

Object
|

+-- java.lang.Long

Description

Long

InterruptedException(String)

The Long class wraps a value of the primitive typeg in an object. An object of typeong contains a single

field whose type ifong .

In addition, this class provides several methods for convertiogg to aString

as well as other constants and methods useful when dealing laith a

Since: JDK1.0

and aString

toalong ,

Member Summary

Fields

MAX_VALUE The largest value of tydeng .

MIN_VALUE The smallest value of tydeng .

Constructors

Long(long) Constructs a newly allocatésng object that represents the primitieeg argu-
ment.

Methods

equals(Object) Compares this object against the specified object.

hashCode() Computes a hashcode for this Long.

longvalue() Returns the value of this Long as a long value.

parselLong(String)

parseLong(String,

inf)
toString()
toString(long)
toString(long, int)

Parses the string argument as a signed dedimal .

Parses the string argument as a sigioed in the radix specified by the second arg
ment.

Returns a String object representing this Long's value.

Returns a new String object representing the specified integer.

Creates a string representation of the first argument in the radix specified by th

e SecC-

ond argument.

Inherited Member Summary

Methods inherited from classObject

getClass()

notify() notifyAll()

wait(long) wait(long, int) , wait()

133

Long
MAX_VALUE

Fields

java.lang

MAX_VALUE
public static final long MAX_VALUE

The largest value of tydeng .

MIN_VALUE

public static final long MIN_VALUE

The smallest value of typgeng .

Constructors

Long(long)

public Long(long value)

Constructs a newly allocatésng object that represents the primitiemg argument.

Parameters:

value - the value to be represented by tloeg object.

Methods
equals(Object)
public boolean equals(Object obj)

Compares this object against the specified object. The resuligs if and only if the argument is not
null and is dong object that contains the saoag value as this object.

Overrides: equals(Object)

Parameters:

obj - the object to compare with.

Returns: true if the objects are the sanfalse otherwise.

in classObject

hashCode()
public int hashCode()

Computes a hashcode for this Long. The result is the exclusive OR of the two halves of the ptondive
value represented by tHi®ng object. That is, the hashcode is the value of the expression:

java.lang Long
longValue()

(int)(this.longValue()*\(this.longValue()>>>32))

Overrides: hashCode() in classObject
Returns: a hash code value for this object.

longValue()
public long longValue()
Returns the value of this Long as a long value.

Returns: thelong value represented by this object.

parseLong(String)
public static long parseLong(String _s)

Parses the string argument as a signed dedonal . The characters in the string must all be decimal dig-
its, except that the first character may be an ASCII minus'sign(\u002d') to indicate a negative
value. The resulting long value is returned, exactly as if the argument and theltadigre given as argu-
ments to th@arselLong(String, int) method that takes two arguments.

Note that neithek norl is permitted to appear at the end of the string as a type indicator, as would be per-
mitted in Java programming language source code.

Parameters:
S - a string.

Returns: thelong represented by the argument in decimal.

Throws: NumberFormatException - if the string does not contain a parsdbley .

parseLong(String, int)
public static long parseLong(String s, int radix)

Parses the string argument as a sigioag) in the radix specified by the second argument. The characters
in the string must all be digits of the specified radix (as determined by whé&tharacter.digit

returns a nonnegative value), except that the first character may be an ASCIlI minus-'sign
(‘\u002d' to indicate a negative value. The resulfimgg value is returned.

Note that neithek norl is permitted to appear at the end of the string as a type indicator, as would be per-
mitted in Java programming language source code - except that kittrer may appear as a digit for a
radix greater than 22.

An exception of typ&lumberFormatException is thrown if any of the following situations occurs:

* The first argument isull or is a string of length zero.

e Theradix is either smaller thaMIN_RADIX or larger thatMAX_ RADIX

« The first character of the string is not a digit of the specifiadix and is not a minus sigh'

(‘\u002d').

» The first character of the string is a minus sign and the string is of length 1.

< Any character of the string after the first is not a digit of the spec#utia

* The integer value represented by the string cannot be represented as a valuewd type
Examples:

135

Long java.lang

toString()

parseLong("0", 10) returns OL

parseLong("473", 10) returns 473L

parseLong("-0", 10) returns OL

parseLong("-FF", 16) returns -255L

parseLong("1100110", 2) returns 102L

parseLong("99", 8) throws a NumberFormatException
parseLong("Hazelnut", 10) throws a NumberFormatException
parseLong("Hazelnut", 36) returns 1356099454469L

Parameters:
s - theString containing théong .

radix - the radix to be used.
Returns: thelong represented by the string argument in the specified radix.

Throws: NumberFormatException - if the string does not contain a parsable integer.

toString()

public String toString()

Returns a String object representing this Long's value. The long integer value represented by this Long
object is converted to signed decimal representation and returned as a string, exactly as if the long value
were given as an argument to tb&tring(lonqg) method that takes one argument.

Overrides: toString() in classObject
Returns: a string representation of this object in base 10.

toString(long)

public static String __ toString(long i)

Returns a new String object representing the specified integer. The argument is converted to signed decimal
representation and returned as a string, exactly as if the argument and the radix 10 were given as arguments
to thetoString(long, int) method that takes two arguments.

Parameters:
i -along to be converted.

Returns: a string representation of the argument in base 10.

toString(long, int)

136

public static String _ toString(long i, int radix)
Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller tha@€haracter.MIN_RADIX or larger tharCharacter. MAX_RADIX , then the
radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCIlI minus 'sign
(‘\u002d" . If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magnitude is
zero, it is represented by a single zero chara®er ('\u0030"); otherwise, the first character of

the representation of the magnitude will not be the zero character. The following ASCII characters are used
as digits:

java.lang Long
toString(long, int)

0123456789abcdefghijkimnopqgrstuvwxyz

These aré\u0030" through'\u0039' and'\u0061" through'\u007a’

If the radix isN, then the firstN of these characters are used as raditigits in the order shown. Thus, the
digits for hexadecimal (radix 16) are

0123456789abcdef.
Parameters:

i -along.

radix - the radix.

Returns: a string representation of the argument in the specified radix.
See Also: MAX_RADIXMIN_RADIX

137

Math java.lang
abs(int)

java.lang

Math

Syntax

public final class Math

Object
|

+-- java.lang.Math

Description
The clasdMath contains methods for performing basic numeric operations.

Since: 1.3

Member Summary

Methods

abs(int) Returns the absolute value ofiah value.
abs(long) Returns the absolute value dbag value.
max(int, int) Returns the greater of twot values.
max(long, long) Returns the greater of twong values.
min(int, int) Returns the smaller of twint values.
min(long, long) Returns the smaller of twlong values.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) ., wait()

Methods

abs(int)

public static int abs(int a)

Returns the absolute value of ext value. If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the valudrdeéger.MIN_VALUE , the most negative representable
int value, the result is that same value, which is negative.

138

java.lang Math
abs(long)

Parameters:
a - anint value.

Returns: the absolute value of the argument.
See Also: MIN_VALUE

abs(long)

public static long abs(long a)

Returns the absolute value ofang value. If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the valueLoing.MIN_VALUE , the most negative representable
long value, the result is that same value, which is negative.

Parameters:
a - along value.

Returns: the absolute value of the argument.
See Also: MIN_VALUE

max(int, int)

public static int max(int a, int b)

Returns the greater of twint values. That is, the result is the argument closer to the valuetef
ger.MAX_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
a - anint value.

b - anint value.
Returns: the larger ol andb.
See Also: MAX_VALUE

max(long, long)

public static long max(long a, long b)

Returns the greater of twtbng values. That is, the result is the argument closer to the value of
Long.MAX_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
a - along value.

b - along value.
Returns: the larger ofr andb.
See Also: MAX_VALUE

min(int, int)

public static int min(int a, int b)

139

Math java.lang
min(long, long)

Returns the smaller of twint values. That is, the result the argument closer to the valuatef
ger.MIN_VALUE . If the arguments have the same value, the result is that same value.

Parameters:
a - anint value.

b - anint value.
Returns: the smaller ofh andb.
See Also: MIN VALUE

min(long, long)
public static long min(long a, long b)

Returns the smaller of twéong values. That is, the result is the argument closer to the value of
Long.MIN_VALUE . If the arguments have the same value, the result is that same value.

Parameters:
a - along value.

b - along value.
Returns: the smaller of andb.
See Also: MIN_VALUE

140

java.lang

java.lang

NegativeArraySizeException

NegativeArraySizeException()

NegativeArraySizeException

Syntax

public class NegativeArraySizeException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.NegativeArraySizeException

Description
Thrown if an application tries to create an array with negative size.

Since: JDK1.0

Member Summary

Constructors

NegativeArraySizeEx- Constructs dNegativeArraySizeException
ception()

NegativeArraySizeEx- Constructs &egativeArraySizeException
ception(String) sage.

with no detail message.

with the specified detail mes-

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject
getClass() , hashCode() , equals(Object) , hnotify() _, notifyAll()

, wait(long) , wait(long,

int) , wait()

Constructors

NegativeArraySizeException()

public NegativeArraySizeException()

141

NegativeArraySizeException java.lang
NegativeArraySizeException(String)

Constructs &NegativeArraySizeException with no detail message.

NegativeArraySizeException(String)

public NegativeArraySizeException(String _s)
Constructs &NegativeArraySizeException with the specified detail message.
Parameters:

s - the detail message.

142

java.lang NullPointerException
NegativeArraySizeException(String)

java.lang

NullPointerException

Syntax

public class NullPointerException extends RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.NullPointerException

Description
Thrown when an application attempts to ngél in a case where an object is required. These include:

 Calling the instance method ohall object.
» Accessing or modifying the field ofraull object.
« Taking the length ofiull as if it were an array.
« Accessing or modifying the slots o@ill as if it were an array.
e Throwingnull as if it were a’hrowable value.
Applications should throw instances of this class to indicate other illegal useshoflthebject.

Since: JDK1.0

Member Summary

Constructors

NullPointerExcep- Constructs &ullPointerException with no detail message.

tion

NullPointerExcep- Constructs alullPointerException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

143

NullPointerException java.lang
NullPointerException()

Constructors

NullPointerException()
public NullPointerException()

Constructs &ullPointerException with no detail message.

NullPointerException(String)

public NullPointerException(String__s)
Constructs aNullPointerException with the specified detail message.
Parameters:

s - the detail message.

144

java.lang NumberFormatException
NullPointerException(String)

java.lang

NumberFormatException

Syntax

public class NumberFormatException extends lllegalArgumentException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- lllegalArgumentException

+-- java.lang.NumberFormatException

Description
Thrown to indicate that the application has attempted to convert a string to one of the numeric types, but that the
string does not have the appropriate format.

Since: JDK1.0

See Also: toString()

Member Summary

Constructors

NumberFormatExcep- Constructs &lumberFormatException with no detail message.

tion()

NumberFormatExcep- Constructs &lumberFormatException with the specified detail message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hnotify() _, notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

145

NumberFormatException java.lang
NumberFormatException()

NumberFormatException()
public NumberFormatException()

Constructs &NumberFormatException with no detail message.

NumberFormatException(String)
public NumberFormatException(String _s)
Constructs &NumberFormatException with the specified detail message.

Parameters:
s - the detail message.

146

java.lang

Object

Syntax

public class Object

java.lang.Object

Description

java.lang Object
Object()

ClassObject is the root of the class hierarchy. Every class@agect as a superclass. All objects, including
arrays, implement the methods of this class.

Since: JDK1.0

See Also: Class

Member Summary

Constructors
Object()

Methods
equals(Object)
getClass()
hashCode()
notify()
notifyAll()
toString()
wait()

wait(long)

wait(long, int)

Indicates whether some other object is "equal to" this one.

Returns the runtime class of an object.

Returns a hash code value for the object.

Wakes up a single thread that is waiting on this object's monitor.

Wakes up all threads that are waiting on this object's monitor.

Returns a string representation of the object.

Causes current thread to wait until another thread invokesdtify() method or
the notifyAll() method for this object.

Causes current thread to wait until either another thread invokestih)

method or thaeotifyAll() method for this object, or a specified amount of tin
has elapsed.

Causes current thread to wait until another thread invokesdtify() method or
the notifyAll() method for this object, or some other thread interrupts the ¢
rent thread, or a certain amount of real time has elapsed.

Constructors

Object()
public Object()

147

Object java.lang

equals(Object)
Methods
equals(Object)
public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.
Theequals method implements an equivalence relation:

« It is reflexive for any reference value x.equals(x) should returrirue .

« It is symmetricfor any reference values andy, x.equals(y) should returrtrue if and only if
y.equals(x) returnstrue .

It is transitive for any reference valuex, y, and z, if x.equals(y) returns true and
y.equals(z) returnstrue , thenx.equals(z) should returrirue .

« It is consistentfor any reference values andy, multiple invocations ok.equals(y) consistently
returntrue or consistently returfalse , provided no information used mquals comparisons on
the object is modified.

« For any non-null reference valuex.equals(null) should returrfalse

Theequals method for clas©bject implements the most discriminating possible equivalence relation
on objects; that is, for any reference valuesndy, this method returnsue if and only if x andy refer to
the same objecké=y has the valugue).

Parameters:
obj - the reference object with which to compare.

Returns: true if this object is the same as the obj argumiatée otherwise.
See Also: hashCode() , Hashtable

getClass()
public final native Class getClass()

Returns the runtime class of an object. Thd#ss object is the object that is locked Isyatic syn-
chronized methods of the represented class.

Returns: the object of typ&€lass that represents the runtime class of the object.

hashCode()

public native int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hashtables such as
those provided bjava.util. Hashtable

The general contract bashCode is:

* Whenever it is invoked on the same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer, provided no information used in
equals comparisons on the object is modified. This integer need not remain consistent from one exe-
cution of an application to another execution of the same application.

« If two objects are equal according to teguals(Object) method, then calling thbashCode
method on each of the two objects must produce the same integer result.

« It is not required that if two objects are unequal according togheals(Object) method, then

148

java.lang Object

notify()

calling thehashCode method on each of the two objects must produce distinct integer results. How-
ever, the programmer should be aware that producing distinct integer results for unequal objects may
improve the performance of hashtables.
As much as is reasonably practical, the hashCode method defined byOtlgst does return distinct
integers for distinct objects. (This is typically implemented by converting the internal address of the object
into an integer, but this implementation technique is not required by the JavaTM programming language.)

Returns: a hash code value for this object.
See Also: equals(Object) , Hashtable

notify()

public final native void notify()

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object,
one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the implemen-
tation. A thread waits on an object's monitor by calling one oivilie methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object.
The awakened thread will compete in the usual manner with any other threads that might be actively com-
peting to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disad-
vantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread becomes
the owner of the object's monitor in one of three ways:

» By executing a synchronized instance method of that object.

» By executing the body ofsynchronized statement that synchronizes on the object.

« For objects of typ€lass, by executing a synchronized static method of that class.
Only one thread at a time can own an object's monitor.

Throws: lllegalMonitorStateException - if the current thread is not the owner of this object's
monitor.
See Also: notifyAll() , wait()
notifyAll()

public final native void notifyAll()

Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor by call-
ing one of thavait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this
object. The awakened threads will compete in the usual manner with any other threads that might be
actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable priv-
ilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. Sexifyjhe
method for a description of the ways in which a thread can become the owner of a monitor.

Throws: lllegalMonitorStateException - if the current thread is not the owner of this object's
monitor.

See Also: notify() , wait()

149

Object java.lang
toString()

toString()

public String toString()
Returns a string representation of the object. In generatpBiging method returns a string that "textu-

ally represents" this object. The result should be a concise but informative representation that is easy for a

person to read. It is recommended that all subclasses override this method.

ThetoString method for clas©bject returns a string consisting of the name of the class of which the
object is an instance, the at-sign charactér and the unsigned hexadecimal representation of the hash
code of the object. In other words, this method returns a string equal to the value of:

getClass().getName() + '@' + Integer.toHexString(hashCode())

Returns: a string representation of the object.

wait()
public final void wait()

Causes current thread to wait until another thread invokegndligy() method or thenotifyAll()

method for this object. In other word's this method behaves exactly as if it simply performs the call
wait(0)

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits
until another thread notifies threads waiting on this object's monitor to wake up either through a call to the

notify method or thenotifyAll method. The thread then waits until it can re-obtain ownership of the
monitor and resumes execution.

This method should only be called by a thread that is the owner of this object's monitor. Sexifthe
method for a description of the ways in which a thread can become the owner of a monitor.

Throws: lllegalMonitorStateException - if the current thread is not the owner of the object's
monitor.
InterruptedException - if another thread has interrupted the current threadiniéseupted

statusof the current thread is cleared when this exception is thrown.
See Also: notify() , notifyAll()

wait(long)
public final native void wait(long timeout)
Causes current thread to wait until either another thread invokesnaiiéy() method or the
notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call)ito place itself in the wait set for this object and then to
relinquish any and all synchronization claims on this object. Thiielagcomes disabled for thread schedul-
ing purposes and lies dormant until one of four things happens:

« Some other thread invokes thetify = method for this object and threddhappens to be arbitrarily
chosen as the thread to be awakened.

« Some other thread invokes thetifyAll method for this object.

» The specified amount of real time has elapsed, more or leimdbut is zero, however, then real

150

java.lang Object
wait(long, int)

time is not taken into consideration and the thread simply waits until notified.
The threadr is then removed from the wait set for this object and re-enabled for thread scheduling. It then
competes in the usual manner with other threads for the right to synchronize on the object; once it has
gained control of the object, all its synchronization claims on the object are restored to the status quo ante -
that is, to the situation as of the time that tlvait method was invoked. Threadthen returns from the
invocation of thewait method. Thus, on return from theait method, the synchronization state of the
object and of threail is exactly as it was when theit method was invoked.

Note that thevait method, as it places the current thread into the wait set for this object, unlocks only this
object; any other objects on which the current thread may be synchronized remain locked while the thread
waits.

This method should only be called by a thread that is the owner of this object's monitor. Sexifhe
method for a description of the ways in which a thread can become the owner of a monitor.

Parameters:
timeout - the maximum time to wait in milliseconds.

Throws: lllegalArgumentException - if the value of timeout is negative.
lllegalMonitorStateException - if the current thread is not the owner of the object's
monitor.

InterruptedException - if another thread has interrupted the current threadiniéaeupted

statusof the current thread is cleared when this exception is thrown.
See Also: notify() , notifyAll()

wait(long, int)
public final void wait(long timeout, int nanos)

Causes current thread to wait until another thread invokegndligy() method or thenotifyAll()
method for this object, or some other thread interrupts the current thread, or a certain amount of real time
has elapsed.

This method is similar to thevait method of one argument, but it allows finer control over the amount of
time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is given
by:

1000000*millis+nanos
In all other respects, this method does the same thing as the matitgtbng) of one argument. In
particular,wait(0, 0) means the same thingwaait(0)

The current thread must own this object's monitor. The thread releases ownership of this monitor and waits
until either of the following two conditions has occurred:

< Another thread notifies threads waiting on this object's monitor to wake up either through a call to the

notify method or thaotifyAll method.
» The timeout period, specified lymeout milliseconds plusnanos nanoseconds arguments, has
elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution

This method should only be called by a thread that is the owner of this object's monitor. Sexifjhe
method for a description of the ways in which a thread can become the owner of a monitor.

Parameters:
timeout - the maximum time to wait in milliseconds.

151

Object java.lang
wait(long, int)

nanos - additional time, in nanoseconds range 0-999999.

Throws: lllegalArgumentException - if the value of timeout is negative or the value of nanos is
not in the range 0-999999.
IllegalMonitorStateException - if the current thread is not the owner of this object's
monitor.
InterruptedException - if another thread has interrupted the current threadiniéeupted

statusof the current thread is cleared when this exception is thrown.

152

java.lang OutOfMemoryError
OutOfMemoryError()

java.lang

OutOfMemoryError

Syntax

public class OutOfMemoryError extends VirtualMachineError

Object

+-- Throwable

+-- Error

+-- VirtualMachineError

+-- java.lang.OutOfMemoryError

Description
Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and no more
memory could be made available by the garbage collector.

Since: JDK1.0

Member Summary

Constructors

OutOfMemoryError() Constructs a®utOfMemoryError with no detail message.
OutOfMemoryEr- Constructs a®utOfMemoryError with the specified detail message.
ror(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

OutOfMemoryError()
public OutOfMemoryError ()

153

OutOfMemoryError java.lang
OutOfMemoryError(String)

Constructs a®utOfMemoryError with no detail message.

OutOfMemoryError(String)
public OutOfMemoryError(String__s)
Constructs a®utOfMemoryError with the specified detail message.

Parameters:
s - the detail message.

154

java.lang Runnable
run()

java.lang

Runnable

Syntax

public abstract interface Runnable
All Known Implementing Classes: Thread

Description

TheRunnable interface should be implemented by any class whose instances are intended to be executed by a
thread. The class must define a method of no arguments ailed

This interface is designed to provide a common protocol for objects that wish to execute code while they are
active. For exampléRunnable is implemented by clasBhread . Being active simply means that a thread has
been started and has not yet been stopped.

In addition,Runnable provides the means for a class to be active while not subcla$iread . A class that
implementsRunnable can run without subclassinthread by instantiating alhread instance and passing
itself in as the target. In most cases, Rennable interface should be used if you are only planning to over-
ride therun() method and no othéfrhread methods. This is important because classes should not be sub-
classed unless the programmer intends on modifying or enhancing the fundamental behavior of the class.

Since: JDK1.0

See Also: Thread

Member Summary
Methods
runQ) When an object implementing interfaBeinnable is used to create a thread, starting
the thread causes the objeatis method to be called in that separately executing
thread.
Methods
run()

public void run()

When an object implementing interfaBeinnable is used to create a thread, starting the thread causes the
object'srun method to be called in that separately executing thread.

The general contract of the methah is that it may take any action whatsoever.

See Also: run()

155

Runtime java.lang
exit(int)

java.lang

Runtime

Syntax

public class Runtime

Object
|

+-- java.lang.Runtime

Description

Every Java application has a single instance of cRagtime that allows the application to interface with the
environment in which the application is running. The current runtime can be obtained frayatfRentime
method.

An application cannot create its own instance of this class.

Since: JDK1.0

See Also: getRuntime()

Member Summary

Methods

exit(int) Terminates the currently running Java application.

freeMemory() Returns the amount of free memory in the system.

ac() Runs the garbage collector.

getRuntime() Returns the runtime object associated with the current Java application.
totalMemory() Returns the total amount of memory in the Java Virtual Machine.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , hotify() , hotifyAll()
wait(long) , wait(long, int) , wait()

Methods

exit(int)

public void exit(int status)

156

java.lang Runtime
freeMemory()

Terminates the currently running Java application. This method never returns normally.
The argument serves as a status code; by convention, a nonzero status code indicates abnormal termination.

Parameters:
status - exit status.

Since: JDK1.0

freeMemory()
public native long freeMemory()

Returns the amount of free memory in the system. Callinggthenethod may result in increasing the value
returned byfreeMemory.

Returns: an approximation to the total amount of memory currently available for future allocated objects,
measured in bytes.

gc()
public native void gc()
Runs the garbage collector. Calling this method suggests that the Java Virtual Machine expend effort toward
recycling unused objects in order to make the memory they currently occupy available for quick reuse.

When control returns from the method call, the Java Virtual Machine has made its best effort to recycle all
discarded objects.

The namegc stands for "garbage collector”. The Java Virtual Machine performs this recycling process
automatically as needed, in a separate thread, eveng€ theethod is not invoked explicitly.

The methodyc() is hte conventional and convenient means of invoking this method.

getRuntime()

public static Runtime getRuntime()

Returns the runtime object associated with the current Java application. Most of the methods of class
Runtime are instance methods and must be invoked with respect to the current runtime object.

Returns: theRuntime object associated with the current Java application.

totalMemory()
public native long totalMemory()

Returns the total amount of memory in the Java Virtual Machine. The value returned by this method may
vary over time, depending on the host environment.

Note that the amount of memory required to hold an object of any given type may be implementation-
dependent.

Returns: the total amount of memory currently available for current and future objects, measured in
bytes.

157

RuntimeException java.lang
totalMemory()

java.lang

RuntimeException

Syntax
public class RuntimeException extends Exception
Object

+-- Throwable

I
+-- Exception
|

+-- java.lang.RuntimeException

Direct Known Subclasses: ArithmeticException , ArrayStoreException , ClassCastEx-
ception , EmptyStackException , lllegalArgumentException , lllegalMoni-
torStateException , IndexOutOfBoundsException , NegativeArraySizeException
NoSuchElementException , NullPointerException , SecurityException

Description
RuntimeException is the superclass of those exceptions that can be thrown during the normal operation of
the Java Virtual Machine.

A method is not required to declare in tti'ows clause any subclassesRfintimeException that might
be thrown during the execution of the method but not caught.

Since: JDK1.0

Member Summary

Constructors

RuntimeException() Constructs &untimeException with no detail message.
RuntimeExcep- Constructs &untimeException with the specified detail message.
tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() ., hotifyAll() , wait(long) , wait(long,
int) , wait()

158

java.lang RuntimeException
RuntimeException()

Constructors

RuntimeException()
public RuntimeException()

Constructs &untimeException with no detail message.

RuntimeException(String)
public RuntimeException(String__s)
Constructs &kuntimeException with the specified detail message.

Parameters:
s - the detail message.

159

SecurityException java.lang
SecurityException()

java.lang

SecurityeException

Syntax

public class SecurityException extends RuntimeException

Object
|
+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.lang.SecurityException

Description

Thrown by the security manager to indicate a security violation.

Since: JDK1.0

Member Summary

Constructors

SecurityException() Constructs &ecurityException
SecurityExcep- Constructs &ecurityException
tion(String)

with no detail message.
with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,

int) , wait()

Constructors

SecurityException()

public SecurityException()

160

java.lang SecurityException
SecurityException(String)

Constructs &ecurityException with no detail message.

SecurityException(String)

public SecurityException(String __s)
Constructs &ecurityException with the specified detail message.
Parameters:

s - the detail message.

161

Short

MAX_VALUE

java.lang

Short

Syntax

public final class Short

Object
|

+-- java.lang.Short

Description

java.lang

The Short class is the standard wrapper for short values.

Since: JDK1.1

Member Summary

Fields
MAX_VALUE

MIN_VALUE

Constructors
Short(short)

Methods
equals(Object)

hashCode
parseShort(String)

parseShort(String,

int)
shortValue()
toString()

The maximum value a Short can have.
The minimum value a Short can have.

Constructs a Short object initialized to the specified short value.

Compares this object to the specified object.

Returns a hashcode for this Short.

Assuming the specified String represents a short, returns that short's value.
Assuming the specified String represents a short, returns that short's value.

Returns the value of this Short as a short.
Returns a String object representing this Short's value.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() notifyAll() , wait(long) , wait(long, int) , wait()

Fields

MAX_VALUE

162

java.lang Short
MIN_VALUE

public static final short MAX_VALUE
The maximum value a Short can have.

MIN_VALUE
public static final short MIN_VALUE

The minimum value a Short can have.

Constructors

Short(short)
public Short(short value)
Constructs a Short object initialized to the specified short value.

Parameters:
value - the initial value of the Short

Methods
equals(Object)
public boolean equals(Object obj)

Compares this object to the specified object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()
public int hashCode()
Returns a hashcode for this Short.

Overrides: hashCode() in classObject

parseShort(String)
public static short parseShort(String__s)

Assuming the specified String represents a short, returns that short's value. Throws an exception if the
String cannot be parsed as a short. The radix is assumed to be 10.

163

Short java.lang
parseShort(String, int)

Parameters:
s - the String containing the short

Returns: short the value represented by the specified string

Throws: NumberFormatException - If the string does not contain a parsable short.

parseShort(String, int)
public static short parseShort(String s, int radix)

Assuming the specified String represents a short, returns that short's value. Throws an exception if the
String cannot be parsed as a short.

Parameters:
s - the String containing the short

radix - the radix to be used
Returns: The short value represented by the specified string in the specified radix.

Throws: NumberFormatException - If the String does not contain a parsable short.

shortValue()
public short shortValue()
Returns the value of this Short as a short.

Returns: the value of this Short as a short.

toString()

public String _ toString()
Returns a String object representing this Short's value.

Overrides: toString() in classObject

164

java.lang String
toString()

java.lang

String

Syntax

public final class String

Object
|

+-- java.lang.String

Description
TheString class represents character strings. All string literals in Java programs, staiftas, are imple-
mented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable
strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

is equivalent to:

char data[] = {a, 'b', 'c'}
String str = new String(data);

Here are some more examples of how strings can be used:

System.out.printin("abc");

String cde = "cde";
System.out.printin("abc" + cde);
Strin g ¢ = "abc".substring(2,3);
Strin g d cde.substring(1, 2);

The classString includes methods for examining individual characters of the sequence, for comparing
strings, for searching strings, for extracting substrings, and for creating a copy of a string with all characters
translated to uppercase or to lowercase.

The Java language provides special support for the string concatenation operator (+), and for conversion of
other objects to strings. String concatenation is implemented througlsttivegBuffer class and its
append method. String conversions are implemented through the met®itdng , defined byObject

and inherited by all classes in Java. For additional information on string concatenation and conversion, see Gos-
ling, Joy, and Steeld@he Java Language Specification

Since: JDK1.0

See Also: toString() , StringBuffer , append(boolean) _, append(char)
append(char[]) , append(char[], int, int) ,append(int) _, append(long)
append(Object) , append(String)

Member Summary

Constructors

165

String

toString()

java.lang

Member Summary

String(byte[], int,

String() Initializes a newly createSitring object so that it represents an empty characte
sequence.
String(byte[]) Construct a nevtring by converting the specified array of bytes using the plat

int)
String(byte[], int,

int, String)
String(byte(],

String)
String(charf[])

String(char[], int,

int)
String(String)

String(StringBuffer)

Methods
charAt(int)

compareTo(String)

concat(String)
endsWith(String)

equals(Object)
getBytes()

getBytes(String)

getChars(int, int,

charl], int)
hashCode()

indexOf(int)
indexOf(int, int)

indexOf(String)
indexOf(String, int)

lastindexOf(int)

lastindexOf(int, int)

length()

regionMatches(bool-

ean, int, String,

int,

int)

replace(char, char)

startsWith(String)

startsWith(String,

int)
substring(int)
substring(int, int)

toCharArray()

form's default character encoding.

Construct a nevtring by converting the specified subarray of bytes using the g
form's default character encoding.

Construct a nevtring by converting the specified subarray of bytes using the
specified character encoding.

Construct a newtring by converting the specified array of bytes using the spe
fied character encoding.

Allocates a nevistring so that it represents the sequence of characters curren
contained in the character array argument.

Allocates a nevistring that contains characters from a subarray of the charact
array argument.

Initializes a newly createSitring object so that it represents the same sequenc
characters as the argument; in other words, the newly created string is a copy
argument string.

Allocates a new string that contains the sequence of characters currently contai
the string buffer argument.

Returns the character at the specified index.

Compares two strings lexicographically.

Concatenates the specified string to the end of this string.

Tests if this string ends with the specified suffix.

Compares this string to the specified object.

Convert thisString into bytes according to the platform's default character enc
ing, storing the result into a new byte array.

Convert thisString into bytes according to the specified character encoding, sto
the result into a new byte array.

Copies characters from this string into the destination character array.

Returns a hashcode for this string.
Returns the index within this string of the first occurrence of the specified charal
Returns the index within this string of the first occurrence of the specified charal
starting the search at the specified index.

Returns the index within this string of the first occurrence of the specified subst
Returns the index within this string of the first occurrence of the specified subst
starting at the specified index.

Returns the index within this string of the last occurrence of the specified charaj
Returns the index within this string of the last occurrence of the specified charaj
searching backward starting at the specified index.

Returns the length of this string.

Tests if two string regions are equal.

Returns a new string resulting from replacing all occurrenceklGhar in this
string withnewChar.

Tests if this string starts with the specified prefix.

Tests if this string starts with the specified prefix beginning a specified index.

Returns a new string that is a substring of this string.
Returns a new string that is a substring of this string.

lat-

[¢]
=

ly

D
=

e of
f the

hed in

od-

ring

icter.
cter,

ing.
ing,

cter.
cter,

Converts this string to a new character array.

166

java.lang String

String()
Member Summary
toLowerCase() Converts all of the characters in this String to lower case.
toString() This object (which is already a string!) is itself returned.
toUpperCase() Converts all of the characters in this String to upper case.
trim() Removes white space from both ends of this string.
valueOf(boolean) Returns the string representation of bioelean argument.
valueOf(char) Returns the string representation of thar argument.
valueOf(char(]) Returns the string representation of thar array argument.
valueOf(char(], int, Returns the string representation of a specific subarray oh#re array argument.
int)
valueOf(int) Returns the string representation ofitite argument.
valueOf(long) Returns the string representation of libieg argument.
valueOf(Object) Returns the string representation of @igect argument.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , Wwait(long) _, wait(long, int) , wait()
Constructors
String()

public String()

Initializes a newly create8tring object so that it represents an empty character sequence.

String(bytel])
public String(byte[] bytes)

Construct a nevstring by converting the specified array of bytes using the platform's default character
encoding. The length of the neBtring is a function of the encoding, and hence may not be equal to the
length of the byte array.

Parameters:
bytes - The bytes to be converted into characters

Since: JDK1.1

String(byte[], int, int)
public String(byte[] bytes, int off, int len)

Construct a nevistring by converting the specified subarray of bytes using the platform's default charac-
ter encoding. The length of the neBtring is a function of the encoding, and hence may not be equal to
the length of the subarray.

167

String java.lang
String(byte][], int, int, String)

Parameters:
bytes - The bytes to be converted into characters

off - Index of the first byte to convert
len - Number of bytes to convert
Since: JDK1.1

String(byte[], int, int, String)
public String(byte[] bytes, int off, int len, String _ enc)

Construct a nevetring by converting the specified subarray of bytes using the specified character encod-
ing. The length of the newtring is a function of the encoding, and hence may not be equal to the length
of the subarray.

Parameters:
bytes - The bytes to be converted into characters

off - Index of the first byte to convert

len - Number of bytes to convert

enc - The name of a character encoding
Throws: UnsupportedEncodingException - If the named encoding is not supported
Since: JDK1.1

String(byte[], String)
public String(byte[] bytes, String __ enc)

Construct a nevtring by converting the specified array of bytes using the specified character encoding.
The length of the nevétring is a function of the encoding, and hence may not be equal to the length of
the byte array.

Parameters:
bytes - The bytes to be converted into characters

enc - The name of a supported character encoding

Throws: UnsupportedEncodingException - If the named encoding is not supported
Since: JDK1.1
String(char(])

public String(char(] value)

Allocates a newstring so that it represents the sequence of characters currently contained in the charac-
ter array argument. The contents of the character array are copied; subsequent modification of the character
array does not affect the newly created string.

Parameters:
value - the initial value of the string.

Throws: NullPointerException - if value isnull

168

java.lang String
String(charf], int, int)

String(charf], int, int)
public String(char[] value, int offset, int count)

Allocates a newString that contains characters from a subarray of the character array argument. The
offset argument is the index of the first character of the subarray ancoilng argument specifies the

length of the subarray. The contents of the subarray are copied; subsequent modification of the character
array does not affect the newly created string.

Parameters:
value - array that is the source of characters.

offset - the initial offset.

count - the length.

Throws: IndexOutOfBoundsException - iftheoffset andcount arguments index characters
outside the bounds of thvalue array.
NullPointerException - if value isnull
String(String)

public String(String _ value)

Initializes a newly create8tring object so that it represents the same sequence of characters as the argu-
ment; in other words, the newly created string is a copy of the argument string.

Parameters:
value - aString

String(StringBuffer)

public String(StringBuffer buffer)

Allocates a new string that contains the sequence of characters currently contained in the string buffer argu-
ment. The contents of the string buffer are copied; subsequent modification of the string buffer does not
affect the newly created string.

Parameters:
buffer - aStringBuffer

Throws: NullPointerException - If buffer isnull

Methods

charAt(int)

public native char charAt(int index)

Returns the character at the specified index. An index rangestfrimfength() - 1 . The first charac-
ter of the sequence is at ind@xthe next at indeg, and so on, as for array indexing.

Parameters:

169

String java.lang

compareTo(String)

index - the index of the character.
Returns: the character at the specified index of this string. The first character is abindex

Throws: IndexOutOfBoundsException - if theindex argument is negative or not less than the
length of this string.

compareTo(String)

public int compareTo(String _ anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each character in
the strings. The character sequence represented bgtting object is compared lexicographically to the
character sequence represented by the argument string. The result is a negative integ&trihthis

object lexicographically precedes the argument string. The result is a positive intege6ifrithis object
lexicographically follows the argument string. The result is zero if the strings are exprahareTo

returnsO exactly when thequals(Object) method would returtrue .

This is the definition of lexicographic ordering. If two strings are different, then either they have different
characters at some index that is a valid index for both strings, or their lengths are different, or both. If they
have different characters at one or more index positions bet the smallest such index; then the string
whose character at positibrhas the smaller value, as determined by using the < operator, lexicographically
precedes the other string. In this casempareTo returns the difference of the two character values at
positionk in the two string -- that is, the value:

this.charAt(k)-anotherString.charAt(k)
If there is no index position at which they differ, then the shorter string lexicographically precedes the

longer string. In this casesompareTo returns the difference of the lengths of the strings -- that is, the
value:

this.length()-anotherString.length()

Parameters:
anotherString - theString to be compared.

Returns: the value0 if the argument string is equal to this string; a value lesstlithis string is
lexicographically less than the string argument; and a value greatd) ihtdis string is
lexicographically greater than the string argument.

Throws: NullPointerException - if anotherString is null

concat(String)

170

public ~ String concat(String _ str)
Concatenates the specified string to the end of this string.

If the length of the argument string @5 then thisString object is returned. Otherwise, a n&tring
object is created, representing a character sequence that is the concatenation of the character sequence rep-
resented by thiString object and the character sequence represented by the argument string.

Examples:

"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"

Parameters:

java.lang String
endsWith(String)

str -theString that is concatenated to the end of @iisng

Returns: a string that represents the concatenation of this object's characters followed by the string
argument's characters.

Throws: NullPointerException -if str isnull
endsWith(String)
public boolean endsWith(String _ suffix)

Tests if this string ends with the specified suffix.

Parameters:
suffix - the suffix.

Returns: true if the character sequence represented by the argument is a suffix of the character
sequence represented by this objiedse otherwise. Note that the result will ree if the
argument is the empty string or is equal to 8tisng object as determined by the

equals(Object) method.
Throws: NullPointerException - if suffix isnull
equals(Object)
public native boolean equals(Object anObiject)

Compares this string to the specified object. The restidues if and only if the argument is notull and
is aString object that represents the same sequence of characters as this object.

Overrides: equals(Object) in classObject

Parameters:
anObject - the object to compare thtring against.

Returns: true iftheString are equalfalse otherwise.
See Also: compareTo(String)

getBytes()
public byte[] getBytes()

Convert thisString into bytes according to the platform's default character encoding, storing the result
into a new byte array.

Returns: the resultant byte array.

Since: JDK1.1
getBytes(String)
public byte[] getBytes(String__enc)

Convert thisString into bytes according to the specified character encoding, storing the result into a new
byte array.

Parameters:

171

String java.lang
getChars(int, int, charf], int)

enc - A character-encoding name
Returns: The resultant byte array
Throws: UnsupportedEncodingException - If the named encoding is not supported
Since: JDK1.1

getChars(int, int, charf], int)
public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
Copies characters from this string into the destination character array.

The first character to be copied is at indegBegin ; the last character to be copied is at indesEnd-
1 (thus the total number of characters to be copiedisEnd-srcBegin). The characters are copied
into the subarray alst starting at indexistBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1
Parameters:
srcBegin - index of the first character in the string to copy.
srcEnd - index after the last character in the string to copy.
dst - the destination array.
dstBegin - the start offset in the destination array.

Throws: IndexOutOfBoundsException - If any of the following is true:

« srcBegin is negative.

« srcBegin is greater thasrcEnd

» srcend is greater than the length of this string
e dstBegin is negative

* dstBegin+(srcEnd-srcBegin) is larger thamst.length
NullPointerException - if dst isnull
hashCode()

public int hashCode()
Returns a hashcode for this string. The hashcode &iring object is computed as
s[0]*317(n-1) + s[1]*31"(n-2) + ... + s[n-1]

usingint arithmetic, wheres[i] is theith character of the string, is the length of the string, artdindi-
cates exponentiation. (The hash value of the empty string is zero.)

Overrides: hashCode() in classObject
Returns: a hash code value for this object.

indexOf(int)

public native int indexOf(int ch)

172

java.lang String
indexOf(int, int)

Returns the index within this string of the first occurrence of the specified character. If a character with
valuech occurs in the character sequence represented bysthizgy object, then the index of the first
such occurrence is returned -- that is, the smallest ¥edueh that:

this.charAt(k) == ch
istrue . If no such character occurs in this string, tkeris returned.

Parameters:
ch - a character.

Returns: the index of the first occurrence of the character in the character sequence represented by this
object, or-1 if the character does not occur.

indexOf(int, int)
public native int indexOf(int ch, int fromindex)

Returns the index within this string of the first occurrence of the specified character, starting the search at
the specified index.

If a character with valueh occurs in the character sequence represented b@tifingy object at an index
no smaller tharfromindex , then the index of the first such occurrence is returned--that is, the smallest
valuek such that:

(this.charAt(k) == ch) && (k >= fromindex)
is true. If no such character occurs in this string at or after po§itiorindex , then-1 is returned.

There is no restriction on the valuefodbmindex . If it is negative, it has the same effect as if it were zero:
this entire string may be searched. If it is greater than the length of this string, it has the same effect as if it
were equal to the length of this string: is returned.

Parameters:
ch - a character.

fromIindex - the index to start the search from.

Returns: the index of the first occurrence of the character in the character sequence represented by this
object that is greater than or equafrtamindex , or-1 if the character does not occur.

indexOf(String)

public int indexOf(String _ str)

Returns the index within this string of the first occurrence of the specified substring. The integer returned is
the smallest valuk such that:

this.startsWith(str, k)
istrue .

Parameters:
str - any string.

Returns: if the string argument occurs as a substring within this object, then the index of the first
character of the first such substring is returned; if it does not occur as a subktigggturned.

Throws: NullPointerException -if str isnull

173

String java.lang
indexOf(String, int)

indexOf(String, int)
public int indexOf(String _ str, int fromindex)

Returns the index within this string of the first occurrence of the specified substring, starting at the specified
index. The integer returned is the smallest v&laach that:

this.startsWith(str, k) && (k >= fromindex)
istrue .

There is no restriction on the valuefodbmindex . If it is negative, it has the same effect as if it were zero:
this entire string may be searched. If it is greater than the length of this string, it has the same effect as if it
were equal to the length of this string: is returned.

Parameters:
str - the substring to search for.

fromindex - the index to start the search from.

Returns: If the string argument occurs as a substring within this object at a starting index no smaller than
fromindex , then the index of the first character of the first such substring is returned. If it does not
occur as a substring startingflamindex or beyond;1 is returned.

Throws: NullPointerException - if str isnull

lastindexOf(int)
public int lastindexOf(int ch)

Returns the index within this string of the last occurrence of the specified character. That is, the index
returned is the largest valdesuch that:

this.charAt(k) == ch
is true. The String is searched backwards starting at the last character.

Parameters:
ch - a character.

Returns: the index of the last occurrence of the character in the character sequence represented by this
object, or-1 if the character does not occur.

lastindexOf(int, int)
public int lastindexOf(int ch, int fromIndex)

Returns the index within this string of the last occurrence of the specified character, searching backward
starting at the specified index. That is, the index returned is the largesk gaicte that:

this.charAt(k) == ch) && (k <= fromindex)
is true.

Parameters:
ch - a character.

fromindex - the index to start the search from. There is no restriction on the valnerofndex
If it is greater than or equal to the length of this string, it has the same effect as if it were equal to one

174

java.lang String
length()

less than the length of this string: this entire string may be searched. If it is negative, it has the same
effect as if it were -1: -1 is returned.

Returns: the index of the last occurrence of the character in the character sequence represented by this
object that is less than or equalftomindex , or-1 if the character does not occur before that point.

length()
public int length()

Returns the length of this string. The length is equal to the number of 16-bit Unicode characters in the
string.

Returns: the length of the sequence of characters represented by this object.

regionMatches(boolean, int, String, int, int)

public boolean regionMatches(boolean ignoreCase, int toffset, String __ other, int ooffset,
int len)

Tests if two string regions are equal.

A substring of thisString object is compared to a substring of the argumagher . The result igrue

if these substrings represent character sequences that are the same, ignoring case if afmghondy if
Case is true. The substring of thiString object to be compared begins at indexfset and has
lengthlen . The substring obther to be compared begins at inderffset and has lengtlen . The
result isfalse if and only if at least one of the following is true:

« toffset is negative.

« ooffset is negative.

« toffset+len is greater than the length of ti8tring object.

« ooffset+len is greater than the length of the other argument.

» There is some nonnegative integdess thaden such that:
this.charAt(toffset+k) != other.charAt(ooffset+k)

* ignoreCase istrue and there is some nonnegative intdgkass thaden such that:

Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))

and:

Character.toUpperCase(this.charAt(toffset+k)) =
Character.toUpperCase(other.charAt(ooffset+k))

Parameters:
ignoreCase - if true , ignore case when comparing characters.

toffset - the starting offset of the subregion in this string.

other - the string argument.

ooffset - the starting offset of the subregion in the string argument.
len -the number of characters to compare.

Returns: true if the specified subregion of this string matches the specified subregion of the string
argument;false otherwise. Whether the matching is exact or case insensitive depends on the
ignoreCase argument.

175

String java.lang
replace(char, char)

replace(char, char)
public String replace(char oldChar, char newChar)
Returns a new string resulting from replacing all occurrencekl@har in this string withnewChar.

If the characteoldChar does not occur in the character sequence represented b$tting object,
then a reference to thiString object is returned. Otherwise, a n&tring object is created that repre-
sents a character sequence identical to the character sequence representeSittipghisobject, except
that every occurrence ofdChar is replaced by an occurrencengfwChar .

Examples:

"mesquite in your cellar".replace('e’, '0")
returns "mosquito in your collar"
"the war of baronets".replace('r', 'y")
returns "the way of bayonets"
"sparring with a purple porpoise".replace('p’, 't')
returns "starring with a turtle tortoise"
"JonL".replace('q’, 'x') returns "JonL" (no change)

Parameters:
oldChar - the old character.
newChar - the new character.

Returns: a string derived from this string by replacing every occurreno&d@har with newChar.

startsWith(String)
public boolean startsWith(String __ prefix)
Tests if this string starts with the specified prefix.

Parameters:
prefix - the prefix.

Returns: true if the character sequence represented by the argument is a prefix of the character
sequence represented by this striafge otherwise. Note also thtatie will be returned if the
argument is an empty string or is equal to 8tisng object as determined by the

equals(Object) method.
Throws: NullPointerException - if prefix isnull
Since: JDK1.0

startsWith(String, int)
public boolean startsWith(String _ prefix, int toffset)
Tests if this string starts with the specified prefix beginning a specified index.

Parameters:
prefix - the prefix.

toffset - where to begin looking in the string.

Returns: true if the character sequence represented by the argument is a prefix of the substring of this
object starting at indetoffset ; false otherwise. The result false if toffset is negative or

176

java.lang String
substring(int)

greater than the length of tidéring object; otherwise the result is the same as the result of the
expression

this.subString(toffset).startsWith(prefix)

Throws: NullPointerException - if prefix isnull

substring(int)
public String substring(int beginindex)

Returns a new string that is a substring of this string. The substring begins with the character at the specified
index and extends to the end of this string.

Examples:

"unhappy".substring(2) returns "happy"
"Harbison".substring(3) returns "bison"
"emptiness".substring(9) returns "™ (an empty string)

Parameters:
beginindex - the beginning index, inclusive.
Returns: the specified substring.

Throws: IndexOutOfBoundsException - if beginindex is negative or larger than the length of
thisString object.

substring(int, int)
public String substring(int beginindex, int endindex)

Returns a new string that is a substring of this string. The substring begins at the spzaifiieithdex
and extends to the character at ingadindex - 1 . Thus the length of the substringesdindex-
beginindex

Examples:
"hamburger".substring(4, 8) returns "urge"

"smiles".substring(1, 5) returns "mile"

Parameters:
beginindex - the beginning index, inclusive.

endindex - the ending index, exclusive.
Returns: the specified substring.

Throws: IndexOutOfBoundsException - ifthe beginindex is negative, oendindex is larger
than the length of thiString object, obeginindex is larger tharendindex .

toCharArray()
public char[] toCharArray()
Converts this string to a new character array.

Returns: a newly allocated character array whose length is the length of this string and whose contents are
initialized to contain the character sequence represented by this string.

177

String java.lang
toLowerCase()

toLowerCase()
public String toLowerCase()
Converts all of the characters in this String to lower case.
Returns: the String, converted to lowercase.
See Also: toLowerCase(char) , toUpperCase()

toString()

public String _ toString()
This object (which is already a string!) is itself returned.

Overrides: toString() in classObject
Returns: the string itself.

toUpperCase()
public String _ toUpperCase()
Converts all of the characters in this String to upper case.
Returns: the String, converted to uppercase.
See Also: toLowerCase(char) , toUpperCase()

trim()

public String _ trim()
Removes white space from both ends of this string.

If this String object represents an empty character sequence, or the first and last characters of character

sequence represented by tisising object both have codes greater tH\u0020’ (the space
character), then a reference to thisng object is returned.

Otherwise, if there is no character with a code greater tRu0020' in the string, then a new
String object representing an empty string is created and returned.

Otherwise, lek be the index of the first character in the string whose code is greate®#@p;u0020'

and letm be the index of the last character in the string whose code is greateyu0020' . A new
String object is created, representing the substring of this string that begins with the character &t index
and ends with the character at inagethat is, the result dhis.substring(k, m+1)

This method may be used to trim whitespace from the beginning and end of a string; in fact, it trims all
ASCII control characters as well.

Returns: this string, with white space removed from the front and end.

valueOf(boolean)
public static String valueOf(boolean b)
Returns the string representation of tle®lean argument.

178

java.lang String
valueOf(char)

Parameters:
b - aboolean .
Returns: if the argument isrue , a string equal tttrue" s returned; otherwise, a string equal to
"false" s returned.
valueOf(char)
public static String _ valueOf(char c)

Returns the string representation of thar argument.

Parameters:
c - achar .

Returns: a newly allocated string of lengihcontaining as its single character the argurnent

valueOf(charl])
public static String __ valueOf(char[] data)

Returns the string representation of ttfe&ar array argument. The contents of the character array are cop-
ied; subsequent modification of the character array does not affect the newly created string.

Parameters:
data - achar array.

Returns: a newly allocated string representing the same sequence of characters contained in the character
array argument.

valueOf(char], int, int)
public static String _ valueOf(char[] data, int offset, int count)
Returns the string representation of a specific subarray oh#re array argument.

Theoffset argument is the index of the first character of the subarraycdhat argument specifies the
length of the subarray. The contents of the subarray are copied; subsequent modification of the character
array does not affect the newly created string.

Parameters:
data - the character array.

offset - the initial offset into the value of th8tring
count - the length of the value of tt&tring

Returns: a newly allocated string representing the sequence of characters contained in the subarray of the
character array argument.

Throws: NullPointerException - if data isnull

IndexOutOfBoundsException - if offset is negative, ocount is negative, or
offset+count is larger thamata.length

valueOf(int)
public static String __ valueOf(int i)

179

String java.lang
valueOf(long)

Returns the string representation of ithte argument.

The representation is exactly the one returned binteger.toString method of one argument.
Parameters:
i -anint .
Returns: a newly allocated string containing a string representation afitheargument.
See Also: toString(int, int)

valueOf(long)
public static String _ valueOf(long)
Returns the string representation of vy argument.

The representation is exactly the one returned by dhg.toString method of one argument.

Parameters:
| -along .

Returns: a newly allocated string containing a string representation détige argument.
See Also: toString(long)

valueOf(Object)
public static String _ valueOf(Object obj)
Returns the string representation of @tgect argument.

Parameters:
obj - anObject .

Returns: if the argument isull , then a string equal towll* ; otherwise, the value of
obj.toString() is returned.

See Also: toString()

180

java.lang StringBuffer
valueOf(Object)

java.lang

StringBuffer

Syntax

public final class StringBuffer

Object
|

+-- java.lang.StringBuffer

Description

A string buffer implements a mutable sequence of characters. A string buffer is $keng , but can be
modified. At any point in time it contains some particular sequence of characters, but the length and content of
the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where necessary so that all the
operations on any particular instance behave as if they occur in some serial order that is consistent with the
order of the method calls made by each of the individual threads involved.

String buffers are used by the compiler to implement the binary string concatenation opeiadorexample,
the code:

X = "a" + 4 + "¢"

is compiled to the equivalent of:

x = new StringBuffer().append("a").append(4).append("c")
.toString()

which creates a new string buffer (initially empty), appends the string representation of each operand to the
string buffer in turn, and then converts the contents of the string buffer to a string. Overall, this avoids creating
many temporary strings.

The principal operations on@tringBuffer are theappend andinsert methods, which are overloaded

S0 as to accept data of any type. Each effectively converts a given datum to a string and then appends or inserts
the characters of that string to the string buffer. Bppend method always adds these characters at the end of

the buffer; thensert method adds the characters at a specified point.

For example, ifz refers to a string buffer object whose current contents stat' ", then the method call
z.append('le™) would cause the string buffer to contaistdrtle ", whereasz.insert(4, "le")
would alter the string buffer to contaistarlet .

In general, if sb refers to an instance ofS&ingBuffer , thensb.append(x) has the same effect as
sb.insert(sb.length(), x)

Every string buffer has a capacity. As long as the length of the character sequence contained in the string buffer
does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If the internal buffer
overflows, it is automatically made larger.

Since: JDK1.0

See Also: ByteArrayOutputStream , String

181

StringBuffer

valueOf(Object)

java.lang

Member Summary

Constructors
StringBuffer()

StringBuffer(int)

StringBuffer(String)

Methods
append(boolean)

append(char)
append(char(])

append(char[], int,

int)
append(int)
append(long)
append(Object)
append(String)
capacity()
charAt(int)

delete(int, int)

deleteCharAt(int)

ensureCapacity(int)

getChars(int, int,

charl], int)

insert(int, boolean)

insert(int, char)

insert(int, char[])

insert(int, int)

insert(int, long)

insert(int, Object)

insert(int, String)

length()
reverse()

setCharAt(int, char)

setLength(int)
toString()

Constructs a string buffer with no characters in it and an initial capacity of 16 ch
ters.

Constructs a string buffer with no characters in it and an initial capacity specifie
thelength argument.

Constructs a string buffer so that it represents the same sequence of character
string argument; in other words, the initial contents of the string buffer is a copy o
argument string.

Appends the string representation of tio®wlean argument to the string buffer.
Appends the string representation of ¢thar argument to this string buffer.
Appends the string representation of thar array argument to this string buffer.
Appends the string representation of a subarray otttee array argument to this
string buffer.

Appends the string representation of itte argument to this string buffer.
Appends the string representation of litreg argument to this string buffer.
Appends the string representation of @igiect argument to this string buffer.
Appends the string to this string buffer.

Returns the current capacity of the String buffer.

The specified character of the sequence currently represented by the string buf
indicated by théndex argument, is returned.

Removes the characters in a substring of$tismgBuffer
Removes the character at the specified position irSthisgBuffer
the StringBuffer by one character).

Ensures that the capacity of the buffer is at least equal to the specified minimur
Characters are copied from this string buffer into the destination charactedatray|

(shortening

Inserts the string representation of Howlean argument into this string buffer.
Inserts the string representation of tar argument into this string buffer.
Inserts the string representation of tmar array argument into this string buffer.
Inserts the string representation of the sednhd argument into this string buffer.
Inserts the string representation of kiveg argument into this string buffer.
Inserts the string representation of @igject argument into this string buffer.
Inserts the string into this string buffer.

Returns the length (character count) of this string buffer.

The character sequence contained in this string buffer is replaced by the reverse
sequence.

The character at the specified index of this string buffer is sét.to
Sets the length of this String buffer.

Converts to a string representing the data in this string buffer.

arac-
d by

5 as the
the

fer, as

of the

Inherited Member Summary

equals(Object) , notify()

Methods inherited from classObject
getClass() , hashCode()

notifyAll() wait(long) wait(long,

int) , wait()

182

java.lang StringBuffer
StringBuffer()

Constructors

StringBuffer()
public StringBuffer()
Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer(int)
public StringBuffer(int length)
Constructs a string buffer with no characters in it and an initial capacity specified l3nth argument.

Parameters:
length - the initial capacity.

Throws: NegativeArraySizeException - if thelength argument is less thdh

StringBuffer(String)
public StringBuffer(String__ str)

Constructs a string buffer so that it represents the same sequence of characters as the string argument; in
other words, the initial contents of the string buffer is a copy of the argument string. The initial capacity of
the string buffer i46 plus the length of the string argument.

Parameters:
str - the initial contents of the buffer.

Methods

append(boolean)
public StringBuffer append(boolean b)
Appends the string representation of lo®lean argument to the string buffer.

The argument is converted to a string as if by the metBwohg.valueOf , and the characters of that
string are then appended to this string buffer.

Parameters:
b - aboolean .

Returns: a reference to thiStringBuffer

See Also: valueOf(boolean) , append(String)
append(char)
public synchronized StringBuffer append(char c)

Appends the string representation of thar argument to this string buffer.

183

StringBuffer java.lang
append(char[])

The argument is appended to the contents of this string buffer. The length of this string buffer increases by
1.

The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char) and the character in that string were thepend(String) to this String-
Buffer object.

Parameters:
c - achar .

Returns: a reference to thiStringBuffer object.

append(charf])
public synchronized StringBuffer append(charf] str)
Appends the string representation of thar array argument to this string buffer.

The characters of the array argument are appended, in order, to the contents of this string buffer. The length
of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char[]) and the characters of that string were tlagpend(String) to this String-
Buffer object.

Parameters:
str - the characters to be appended.

Returns: a reference to thiStringBuffer object.

append(char[], int, int)
public synchronized StringBuffer append(char[] str, int offset, int len)
Appends the string representation of a subarray ottiee array argument to this string buffer.

Characters of the character aristy , starting at indexffset , are appended, in order, to the contents of
this string buffer. The length of this string buffer increases by the valea of

The overall effect is exactly as if the arguments were converted to a string by the method
ueOf(charl], int, int) and the characters of that string were tlagapend(String) to this
StringBuffer object.

Parameters:
str - the characters to be appended.

offset - the index of the first character to append.
len -the number of characters to append.

Returns: a reference to thiStringBuffer object.

append(int)
public native StringBuffer append(int i)
Appends the string representation of itite argument to this string buffer.

184

java.lang StringBuffer

append(long)
The argument is converted to a string as if by the metBwohg.valueOf , and the characters of that
string are then appended to this string buffer.
Parameters:
i -anint .

Returns: a reference to thiStringBuffer object.
See Also: valueOf(int) , append(String)

append(long)
public StringBuffer append(long I)
Appends the string representation of litrey argument to this string buffer.
The argument is converted to a string as if by the metBwohg.valueOf , and the characters of that
string are then appended to this string buffer.
Parameters:

| -along .

Returns: a reference to thiStringBuffer object.
See Also: valueOf(lonqg) , append(String)

append(Object)
public synchronized StringBuffer append(Object obj)
Appends the string representation of @lgect argument to this string buffer.
The argument is converted to a string as if by the metBwohg.valueOf , and the characters of that

string are then appended to this string buffer.

Parameters:
obj - anObject .

Returns: a reference to thiStringBuffer object.

See Also: valueOf(Object) , append(String)
append(String)
public native synchronized StringBuffer append(String _ str)

Appends the string to this string buffer.

The characters of th&tring argument are appended, in order, to the contents of this string buffer,
increasing the length of this string buffer by the length of the argumesitt: Ifis null , then the four char-
acters'null" are appended to this string buffer.

Let n be the length of the old character sequence, the one contained in the string buffer just prior to execu-
tion of theappend method. Then the character at indein the new character sequence is equal to the
character at indek in the old character sequencekifs less tham; otherwise, it is equal to the character at
indexk-nin the argumerdtr .

Parameters:
str - a string.

185

StringBuffer java.lang
capacity()

Returns: a reference to thiStringBuffer

capacity()
public int capacity()

Returns the current capacity of the String buffer. The capacity is the amount of storage available for newly
inserted characters; beyond which an allocation will occur.

Returns: the current capacity of this string buffer.

charAt(int)
public synchronized char charAt(int index)

The specified character of the sequence currently represented by the string buffer, as indicated by the
index argument, is returned. The first character of a string buffer is at iAdée next at inded, and so
on, for array indexing.

The index argument must be greater than or equ@l #nd less than the length of this string buffer.

Parameters:
index - the index of the desired character.

Returns: the character at the specified index of this string buffer.

Throws: IndexOutOfBoundsException - if index is negative or greater than or equal to
length()

See Also: length()

delete(int, int)

public synchronized StringBuffer delete(int start, int end)
Removes the characters in a substring of ®igngBuffer . The substring begins at the specified
start and extends to the character at ingad - 1 or to the end of thé&tringBuffer if no such

character exists. Htart is equal teend, no changes are made.

Parameters:
start - The beginning index, inclusive.

end - The ending index, exclusive.
Returns: This string buffer.

Throws: StringlndexOutOfBoundsException - if start is negative, greater thdength()
or greater thaend.

Since: 1.2

’

deleteCharAt(int)
public synchronized StringBuffer deleteCharAt(int index)

Removes the character at the specified position inStrimgBuffer (shortening the&stringBuffer
by one character).

186

java.lang StringBuffer
ensureCapacity(int)

Parameters:
index - Index of character to remove

Returns: This string buffer.

Throws: StringlndexOutOfBoundsException - if theindex is negative or greater than or
equal tolength()

Since: 1.2

ensureCapacity(int)
public synchronized void ensureCapacity(int minimumCapacity)

Ensures that the capacity of the buffer is at least equal to the specified minimum. If the current capacity of
this string buffer is less than the argument, then a new internal buffer is allocated with greater capacity. The
new capacity is the larger of:

e TheminimumCapacity argument.
» Twice the old capacity, plua.
If the minimumCapacity argument is nonpositive, this method takes no action and simply returns.

Parameters:
minimumCapacity - the minimum desired capacity.

getChars(int, int, charf], int)
public synchronized void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Characters are copied from this string buffer into the destination charactedatrayhe first character to
be copied is at indesrcBegin ; the last character to be copied is at indegEnd-1 . The total number
of characters to be copied $scEnd-srcBegin . The characters are copied into the subarragsif
starting at indexistBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1
Parameters:
srcBegin - start copying at this offset in the string buffer.
srcEnd - stop copying at this offset in the string buffer.
dst - the array to copy the data into.
dstBegin - offset intodst .
Throws: NullPointerException - if dst isnull

IndexOutOfBoundsException - if any of the following is true:

» srcBegin is negative

dstBegin is negative

thesrcBegin argument is greater than tieEnd argument.

« srcEnd is greater thathis.length() , the current length of this string buffer.
dstBegin+srcEnd-srcBegin is greater thadst.length

insert(int, boolean)
public StringBuffer insert(int offset, boolean b)

187

StringBuffer java.lang

insert(int, char)

Inserts the string representation of Hmlean argument into this string buffer.

The second argument is converted to a string as if by the m&tody.valueOf , and the characters of
that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equd tand less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

b - aboolean .
Returns: a reference to thiStringBuffer object.

Throws: StringlndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(boolean) , insert(int, String) , length()

insert(int, char)

public synchronized StringBuffer insert(int offset, char c)
Inserts the string representation of ther argument into this string buffer.

The second argument is inserted into the contents of this string buffer at the position indicaféskby .
The length of this string buffer increases by one.

The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char) and the character in that string were thiasert(int, String) into this
StringBuffer object at the position indicated b¥fset

The offset argument must be greater than or equd tand less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

c - achar .
Returns: a reference to thiStringBuffer object.

Throws: IndexOutOfBoundsException - if the offset is invalid.

See Also: length()

insert(int, charl])

188

public synchronized StringBuffer insert(int offset, char[] str)
Inserts the string representation of ther array argument into this string buffer.

The characters of the array argument are inserted into the contents of this string buffer at the position indi-
cated byoffset . The length of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the method
valueOf(char[]) and the characters of that string were thesert(int, String) into this
StringBuffer object at the position indicated bifset

Parameters:
offset - the offset.

java.lang StringBuffer
insert(int, int)

str - a character array.
Returns: a reference to thiStringBuffer object.

Throws: StringlndexOutOfBoundsException - if the offset is invalid.

insert(int, int)
public StringBuffer insert(int offset, int i)
Inserts the string representation of the seéohd argument into this string buffer.

The second argument is converted to a string as if by the m&tody.value Of , and the characters of
that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equad t@and less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

i -anint .
Returns: a reference to thiStringBuffer object.

Throws: StringlndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(int) , insert(int, String) , length()

insert(int, long)
public StringBuffer insert(int offset, long 1)
Inserts the string representation of ibieg argument into this string buffer.

The second argument is converted to a string as if by the m&tody.valueOf , and the characters of
that string are then inserted into this string buffer at the position indicataftsby

The offset argument must be greater than or equad t@and less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

| -along .
Returns: a reference to thiStringBuffer object.

Throws: StringlndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(long) , insert(int, String) , length()

insert(int, Object)
public synchronized StringBuffer insert(int offset, Object obj)
Inserts the string representation of @igiect argument into this string buffer.

The second argument is converted to a string as if by the m&trody.valueOf , and the characters of
that string are then inserted into this string buffer at the indicated offset.

189

StringBuffer java.lang
insert(int, String)

The offset argument must be greater than or equad t@and less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

obj - anObject .
Returns: a reference to thiStringBuffer object.
Throws: StringlndexOutOfBoundsException - if the offset is invalid.
See Also: valueOf(Object) , insert(int, String) , length()

insert(int, String)
public synchronized StringBuffer insert(int offset, String _ str)
Inserts the string into this string buffer.

The characters of th&tring argument are inserted, in order, into this string buffer at the indicated offset,
moving up any characters originally above that position and increasing the length of this string buffer by the
length of the argument. I§tr is null , then the four charactefswull" are inserted into this string
buffer.

The character at indéxin the new character sequence is equal to:

« the character at indéxin the old character sequencek i less thamwffset
 the character at indexoffset in the argumenstr , if kis not less thamffset but is less than
offset+str.length()
« the character at indelstr.length() in the old character sequence kifs not less tharoff-
set+str.length()
The offset argument must be greater than or equa t@and less than or equal to the length of this string
buffer.

Parameters:
offset - the offset.

str - a string.
Returns: a reference to thiStringBuffer object.

Throws: StringlndexOutOfBoundsException - if the offset is invalid.

See Also: length()

length()
public int length()
Returns the length (character count) of this string buffer.

Returns: the length of the sequence of characters currently represented by this string buffer.

reverse()
public synchronized StringBuffer reverse()
The character sequence contained in this string buffer is replaced by the reverse of the sequence.

190

java.lang StringBuffer
setCharAt(int, char)

Let n be the length of the old character sequence, the one contained in the string buffer just prior to execu-
tion of thereverse method. Then the character at indein the new character sequence is equal to the
character at indem-k-1in the old character sequence.

Returns: a reference to thiStringBuffer object..
Since: JDK1.0.2

setCharAt(int, char)
public synchronized void setCharAt(int index, char ch)

The character at the specified index of this string buffer is seli tarhe string buffer is altered to represent
a new character sequence that is identical to the old character sequence, except that it contains the character
ch at positionindex .

The offset argument must be greater than or equ@l &nd less than the length of this string buffer.

Parameters:
index - the index of the character to modify.

ch - the new character.

Throws: IndexOutOfBoundsException - if index is negative or greater than or equal to
length()

See Also: length()

setLength(int)
public synchronized void setLength(int newLength)

Sets the length of this String buffer. This string buffer is altered to represent a new character sequence
whose length is specified by the argument. For every nonnegative kideg thamewLength , the char-

acter at indexX in the new character sequence is the same as the character dt indbz old sequence K

is less than the length of the old character sequence; otherwise, it is the null ch&x86ter . In other

words, if thenewLength argument is less than the current length of the string buffer, the string buffer is
truncated to contain exactly the number of characters given mehleength argument.

If the newLength argument is greater than or equal to the current length, sufficient null characters
('\u0000') are appended to the string buffer so that length becomaswhesngth argument.

ThenewlLength argument must be greater than or equél.to

Parameters:
newlLength - the new length of the buffer.

Throws: IndexOutOfBoundsException - if thenewLength argument is negative.

See Also: length()

toString()
public native String __ toString()

Converts to a string representing the data in this string buffer. AStewvg object is allocated and initial-
ized to contain the character sequence currently represented by this string buffestrifigs is then
returned. Subsequent changes to the string buffer do not affect the contentStohthe.

191

StringBuffer java.lang
toString()

Implementation advice: This method can be coded so as to create@triey object without allocating

new memory to hold a copy of the character sequence. Instead, the string can share the memory used by the
string buffer. Any subsequent operation that alters the content or capacity of the string buffer must then
make a copy of the internal buffer at that time. This strategy is effective for reducing the amount of memory
allocated by a string concatenation operation when it is implemented using a string buffer.

Overrides: toString() in classObject
Returns: a string representation of the string buffer.

192

java.lang StringlndexOutOfBoundsException
toString()

java.lang

StringIndexOutOfBoundsException

Syntax

public class StringindexOutOfBoundsException extends IndexOutOfBoundsException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- IndexOutOfBoundsException

+-- java.lang.StringIndexOutOfBoundsException

Description
Thrown by thecharAt method in clas$String and by otheiString methods to indicate that an index is
either negative or greater than or equal to the size of the string.

Since: JDK1.0

See Also: charAt(int)

Member Summary

Constructors

StringindexOutOf- Constructs &tringlndexOutOfBoundsException with no detail message.
BoundsException()

StringlndexOutOf- Constructs a neBtringindexOutOfBoundsException class with an argu-
BoundsException(int) ment indicating the illegal index.

StringindexOutOf- Constructs &tringindexOutOfBoundsException with the specified detail
BOUndSEXCQp- message.

tion(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() ., notifyAll() , wait(long) , wait(long,
int) , wait()

193

StringlndexOutOfBoundsException java.lang
StringIndexOutOfBoundsException()

Constructors

StringIndexOutOfBoundsException()
public StringindexOutOfBoundsException()
Constructs &tringindexOutOfBoundsException
Since: JDK1.0.

with no detail message.

StringIndexOutOfBoundsException(int)
public StringlndexOutOfBoundsException(int index)

Constructs a ne@tringindexOutOfBoundsException
gal index.

Parameters:
index - the illegal index.

class with an argument indicating the ille-

StringlndexOutOfBoundsException(String)
public StringlndexOutOfBoundsException(String__s)
Constructs &tringlndexOutOfBoundsException

Parameters:
s - the detail message.

194

with the specified detail message.

java.lang

System

Syntax

public final class System

Object
|

+-- java.lang.System

Description

java.lang System

err

TheSystem class contains several useful class fields and methods. It cannot be instantiated.

Since: JDK1.0

Member Summary

Fields
err

out

Methods
arraycopy(Object,
int, Object, int,

int)

The "standard" error output stream.
The "standard" output stream.

Copies an array from the specified source array, beginning at the specified positi
the specified position of the destination array.

currentTimeMillis()
exit(int)

gc()
getProperty(String)
identityHash-
Code(Object)

Returns the current time in milliseconds.

Terminates the currently running Java application.

Runs the garbage collector.

Gets the system property indicated by the specified key.
Returns the same hashcode for the given object as would be returned by the dg
method hashCode(), whether or not the given object's class overrides hashCod

on, to

cfault

e().

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) toString() , notify() , hotifyAll()
wait(long) , wait(long, int) wait()

Fields

err

public static final

PrintStream

err

195

System java.lang
out

The "standard" error output stream. This stream is already open and ready to accept output data.

Typically this stream corresponds to display output or another output destination specified by the host envi-
ronment or user. By convention, this output stream is used to display error messages or other information
that should come to the immediate attention of a user even if the principal output stream, the value of the
variableout , has been redirected to a file or other destination that is typically not continuously monitored.

out
public static final PrintStream __ out

The "standard" output stream. This stream is already open and ready to accept output data. Typically this
stream corresponds to display output or another output destination specified by the host environment or
user.

For simple stand-alone Java applications, a typical way to write a line of output data is:

System.out.printin(data)

See therintin -~ methods in clasBrintStream

See Also: printin() , printin(boolean) , printIn(char) , brintin(char[]) ,
printin(int) , printin(long) , printin(Object) , printIn(String)
Methods

arraycopy(Object, int, Object, int, int)

public static native void arraycopy(Object _src, int src_position, Object dst,
int dst_position, int length)

Copies an array from the specified source array, beginning at the specified position, to the specified position
of the destination array. A subsequence of array components are copied from the source array referenced by
src to the destination array referenceddst . The number of components copied is equal todémgth

argument. The components at positisrsOffset through srcOffset+length-1 in the source

array are copied into positiomstOffset throughdstOffset+length-1 , respectively, of the desti-

nation array.

If the src anddst arguments refer to the same array object, then the copying is performed as if the com-

ponents at positionsrcOffset through srcOffset+length-1 were first copied to a temporary
array withlength components and then the contents of the temporary array were copied into positions
dstOffset throughdstOffset+length-1 of the destination array.

If dst isnull , then aNullPointerException is thrown.

If src isnull , then aNullPointerException is thrown and the destination array is not modified.
Otherwise, if any of the following is true, afsrrayStoreException is thrown and the destination is

not modified:

* Thesrc argument refers to an object that is not an array.
« Thedst argument refers to an object that is not an array.
e Thesrc argument andist argument refer to arrays whose component types are different primitive

types.

196

java.lang System
currentTimeMillis()

« Thesrc argument refers to an array with a primitive component type andsheargument refers to
an array with a reference component type.
* Thesrc argument refers to an array with a reference component type am$thargument refers to
an array with a primitive component type.
Otherwise, if any of the following is true, dndexOutOfBoundsException is thrown and the desti-
nation is not modified:

e ThesrcOffset argument is negative.

» ThedstOffset argument is negative.

* Thelength argument is negative.

« srcOffset+length is greater thasrc.length , the length of the source array.

* dstOffset+length is greater thadst.length | the length of the destination array.
Otherwise, if any actual component of the source array from pos#iio®ffset throughsrcOff-
set+length-1 cannot be converted to the component type of the destination array by assignment con-
version, anArrayStoreException is thrown. In this case, ldt be the smallest nonnegative integer
less than length such thsiic[srcOffset+ k] cannot be converted to the component type of the destina-
tion array; when the exception is thrown, source array components from postoDffset through
srcOffset+ k-1 will already have been copied to destination array positidstOffset through
dstOffset+ k-1 and no other positions of the destination array will have been modified. (Because of the
restrictions already itemized, this paragraph effectively applies only to the situation where both arrays have
component types that are reference types.)

Parameters:
src - the source array.

src_position - start position in the source array.
dst - the destination array.
dst_position - pos start position in the destination data.

length - the number of array elements to be copied.

Throws: IndexOutOfBoundsException - if copying would cause access of data outside array
bounds.
ArrayStoreException - if an element in therc array could not be stored into ttiest array

because of a type mismatch.

NullPointerException - if eithersrc ordst isnull

currentTimeMillis()
public static native long currentTimeMillis()
Returns the current time in milliseconds.

Returns: the difference, measured in milliseconds, between the current time and midnight, January 1,
1970 UTC.

exit(int)
public static void exit(int status)

Terminates the currently running Java application. The argument serves as a status code; by convention, a
nonzero status code indicates abnormal termination.

197

System java.lang
gc()

This method calls thexit method in clasRuntime . This method never returns normally.
The callSystem.exit(n) is effectively equivalent to the call:

Runtime.getRuntime().exit(n)

Parameters:
status - exit status.

See Also: exit(int)

gc()
public static void gc()
Runs the garbage collector.

Calling thegc method suggests that the Java Virtual Machine expend effort toward recycling unused
objects in order to make the memory they currently occupy available for quick reuse. When control returns
from the method call, the Java Virtual Machine has made a best effort to reclaim space from all discarded
objects.

The callSystem.gc() is effectively equivalent to the call:
Runtime.getRuntime().gc()

See Also: gc()
getProperty(String)
public static String __ getProperty(String __ key)

Gets the system property indicated by the specified key.

Parameters:
key - the name of the system property.

Returns: the string value of the system propertynal if there is no property with that key.
Throws: NullPointerException - if key isnull

lllegalArgumentException - if key is empty.

identityHashCode(Object)
public static native int identityHashCode(Object x)

Returns the same hashcode for the given object as would be returned by the default method hashCode(),
whether or not the given object's class overrides hashCode(). The hashcode for the null reference is zero.

Parameters:
X - object for which the hashCode is to be calculated

Returns: the hashCode
Since: JDK1.1

198

java.lang Thread
identityHashCode(Object)

java.lang

Thread

Syntax

public class Thread implements Runnable

Object
|

+-- java.lang.Thread

All Implemented Interfaces: Runnable

Description

A threadis a thread of execution in a program. The Java Virtual Machine allows an application to have multiple
threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower prior-
ity.
There are two ways to create a new thread of execution. One is to declare a class to be a subblassl of
This subclass should override then method of clas3hread . An instance of the subclass can then be allo-
cated and started. For example, a thread that computes primes larger than a stated value could be written as fol-
lows:

class PrimeThread extends Thread {

long minPrime;

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}
public void run() {
/I compute primes larger than minPrime

}

The following code would then create a thread and start it running:

PrimeThrea d p = new PrimeThread(143);
p.start();

The other way to create a thread is to declare a class that implemeRarnhable interface. That class then
implements theun method. An instance of the class can then be allocated, passed as an argument when creat-
ing Thread , and started. The same example in this other style looks like the following:

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
/I compute primes larger than minPrime

}

The following code would then create a thread and start it running:

199

Thread

identityHashCode(Object)

PrimeRun p =

Since: JDK1.0

See Also: Runnable , exit(int)

java.lang

new PrimeRun(143);
new Thread(p).start();

, run()

Member Summary

Fields
MAX_PRIORITY

MIN_PRIORITY
NORM_PRIORITY

Constructors

Thread()
Thread(Runnable)

Methods
activeCount()
currentThread()
getPriority()
isAlive()

join()

run()

setPriority(int)
sleep(lon

start()
toString()
yield()

The maximum priority that a thread can have.
The minimum priority that a thread can have.
The default priority that is assigned to a thread.

Allocates a nevirhread object.
Allocates a nevirhread object with a specific target object whasa method is
called.

Returns the current number of active threads in the VM.

Returns a reference to the currently executing thread object.

Returns this thread's priority.

Tests if this thread is alive.

Waits for this thread to die.

If this thread was constructed using a sepaRatanable run object, then thaRun-
nable object'ssun method is called; otherwise, this method does nothing and
returns.

Changes the priority of this thread.

Causes the currently executing thread to sleep (temporarily cease execution) fd
specified number of milliseconds.

Causes this thread to begin execution; the Java Virtual Machine caligrthenethod
of this thread.

Returns a string representation of this thread, including a uniqgue number that ig
fies the thread and the thread's priority.

Causes the currently executing thread object to temporarily pause and allow ot
threads to execute.

r the

enti-

ner

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() equals(Object) notify() notifyAll() wait(long) , wait(long,
int) , wait()

Fields

200

java.lang Thread
MAX_PRIORITY

MAX_PRIORITY
public static final int MAX_PRIORITY

The maximum priority that a thread can have.

MIN_PRIORITY
public static final int MIN_PRIORITY
The minimum priority that a thread can have.

NORM_PRIORITY
public static final int NORM_PRIORITY
The default priority that is assigned to a thread.

Constructors

Thread()
public Thread()
Allocates a newhread object.
Threads created this way must have overridden the{) method to actually do anything.

See Also: Runnable

Thread(Runnable)
public Thread(Runnable target)

Allocates a newhread object with a specific target object whasa method is called.

Parameters:
target - the object whosmun method is called.

Methods

activeCount()
public static native int activeCount()
Returns the current number of active threads in the VM.

Returns: the current number of threads in this thread's thread group.

201

Thread java.lang
currentThread()

currentThread()

public static native Thread currentThread()

Returns a reference to the currently executing thread object.

Returns: the currently executing thread.

getPriority()
public final int getPriority()
Returns this thread's priority.
Returns: this thread's name.
See Also: setPriority(int) , SetPriority(int)

isAlive()
public final native boolean isAlive()
Tests if this thread is alive. A thread is alive if it has been started and has not yet died.

Returns: true if this thread is alivefalse otherwise.

join()
public final void join()
Waits for this thread to die.

Throws: InterruptedException - if another thread has interrupted the current thread. The
interrupted statusf the current thread is cleared when this exception is thrown.

run()
public void run()

If this thread was constructed using a sepaRuenable run object, then thaRunnable object'srun
method is called; otherwise, this method does nothing and returns.

Subclasses ofhread should override this method.
Specified By: run() _in interfaceRunnable
See Also: start() , run()

setPriority(int)
public final void setPriority(int newPriority)
Changes the priority of this thread.

Parameters:
newPriority - priority to set this thread to

202

java.lang Thread

sleep(long)
Throws: lllegalArgumentException - If the priority is not in the rangdIN_PRIORITY to
MAX_PRIORITY
See Also: getPriority() , getPriority() , MAX_PRIORITY, MIN_PRIORITY
sleep(long)

public static native void sleep(long millis)

Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of
milliseconds. The thread does not lose ownership of any monitors.

Parameters:
millis - the length of time to sleep in milliseconds.
Throws: InterruptedException - if another thread has interrupted the current thread. The

interrupted statusf the current thread is cleared when this exception is thrown.

See Also: notify()

start()
public native synchronized void start()
Causes this thread to begin execution; the Java Virtual Machine callmthmethod of this thread.

The result is that two threads are running concurrently: the current thread (which returns from the call to the
start method) and the other thread (which executasiits method).

Throws: lllegalThreadStateException - if the thread was already started.

See Also: run()

toString()

public String _ toString()

Returns a string representation of this thread, including a uniqgue number that identifies the thread and the
thread's priority.

Overrides: toString() in classObject

Returns: a string representation of this thread.

yield()
public static native void yield()

Causes the currently executing thread object to temporarily pause and allow other threads to execute.

203

Throwable java.lang
yield()

java.lang

Throwable

Syntax

public class Throwable

Object
|

+-- java.lang.Throwable

Direct Known Subclasses: Error _, Exception

Description

TheThrowable class is the superclass of all errors and exceptions in the Java language. Only objects that are
instances of this class (or of one of its subclasses) are thrown by the Java Virtual Machine or can be thrown by
the Javathrow statement. Similarly, only this class or one of its subclasses can be the argument type in a
catch clause.

Instances of two subclass&gror andException , are conventionally used to indicate that exceptional sit-
uations have occurred. Typically, these instances are freshly created in the context of the exceptional situation so
as to include relevant information (such as stack trace data).

By convention, clashrowable and its subclasses have two constructors, one that takes no arguments and
one that takes &tring argument that can be used to produce an error message.

A Throwable class contains a snapshot of the execution stack of its thread at the time it was created. It can
also contain a message string that gives more information about the error.

Here is one example of catching an exception:

int a[] = new int[2];
a[4];

} catch (ArraylndexOutOfBoundsException €) {
System.out.printin("exception: " + e.getMessage());
e.printStackTrace();

Since: JDK1.0

Member Summary

Constructors

Throwable Constructs a neWhrowable with null as its error message string.
Throwable(String) Constructs a neWhrowable with the specified error message.
Methods

getMessage() Returns the error message string of this throwable object.
printStackTrace() Prints thisThrowable and its backtrace to the standard error stream.
toString() Returns a short description of this throwable object.

204

java.lang Throwable
Throwable()

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., hotify() ., hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

Throwable()
public Throwable()
Constructs a neWhrowable with null as its error message string.

Throwable(String)
public Throwable(String message)
Constructs a neWhrowable with the specified error message.

Parameters:
message - the error message. The error message is saved for later retrieval diytiiessage()
method.

Methods

getMessage()
public ~ String getMessage()
Returns the error message string of this throwable object.

Returns: the error message string of tfisrowable object if it wasThrowable(String) with an
error message string; oull if it was Throwable() with no error message.

printStackTrace()
public void printStackTrace()

Prints thisThrowable and its backtrace to the standard error stream. This method prints a stack trace for
this Throwable object on the error output stream that is the value of the figlstem.err . The first
line of output contains the result of ttwString() method for this object.

The format of the backtrace information depends on the implementation.

205

Throwable java.lang
toString()

toString()

public String toString()

Returns a short description of this throwable object. If thiehrowable object was
Throwable(String) with an error message string, then the result is the concatenation of three strings:

« The name of the actual class of this object

« ":" (a colon and a space)

* The result of thgetMessage() method for this object
If this Throwable object wasThrowable() with no error message string, then the name of the actual
class of this object is returned.

Overrides: toString() in classObject
Returns: a string representation of thisfirowable

206

java.lang VirtualMachineError
VirtualMachineError()

java.lang

VirtualMachineError

Syntax

public abstract class VirtualMachineError extends Error

Object

+-- Throwable

+-- Error

+-- java.lang.VirtualMachineError

Direct Known Subclasses: OutOfMemoryError

Description
Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it to con-
tinue operating.

Since: JDK1.0

Member Summary

Constructors

VirtualMachineError() Constructs &irtualMachineError with no detail message.
VirtualMachineEr- Constructs &irtualMachineError with the specified detail message.
ror(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) ., notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

VirtualMachineError()

207

VirtualMachineError java.lang
VirtualMachineError(String)

public VirtualMachineError()

Constructs &irtualMachineError with no detail message.

VirtualMachineError(String)

public VirtualMachineError(String__s)
Constructs &irtualMachineError with the specified detail message.
Parameters:

s - the detail message.

208

Package

java.util

Description

Contains the collections framework, legacy collection classes, date and time facilities and miscellaneous utility

classes.

Since: JDK 1.0

Class Summary

Interfaces

Enumeration

Classes
Calendar

Date
Hashtable
Random
Stack
TimeZone

Vector

Exceptions
EmptyStackException

NoSuchElementExcep-

tion

An object that implements the Enumeration interface generates a series of elen
one at a time.

Calendar is an abstract class for getting and setting dates using a set of integer
such as*EAR MONTHDAY and so on.

The class Date represents a specific instant in time, with millisecond precision.
This class implements a hashtable, which maps keys to values.

An instance of this class is used to generate a stream of pseudorandom numbe
TheStack class represents a last-in-first-out (LIFO) stack of objects.
TimeZone represents a time zone offset, and also figures out daylight savings.

TheVector class implements a growable array of objects.

Thrown by methods in th8tack class to indicate that the stack is empty.

Thrown by thenextElement method of afEnumeration to indicate that there

are no more elements in the enumeration.

ents,

fields

IS.

209

Calendar java.util

java.util

Calendar

Syntax

public abstract class Calendar

Object

+-- java.util.Calendar

Description

Calendar is an abstract class for getting and setting dates using a set of integer fields SIEARMONTH
DAY and so on. (ADate object represents a specific instant in time with millisecond precisionD8t&e for
information about th®ate class.)

Subclasses dfalendar interpret éDate according to the rules of a specific calendar system.

Like other locale-sensitive classé&alendar provides a class methodetinstance , for getting a gener-
ally useful object of this type.

Calendar rightNow = Calendar.getinstance();

A Calendar object can produce all the time field values needed to implement the date-time formatting for a
particular language and calendar style (for example, Japanese-Gregorian, Japanese-Traditional).

When computing ®ate from time fields, there may be insufficient information to computeDhée (such as
only year and month but no day in the month).

Insufficient information. The calendar will use default information to specify the missing fields. This may vary
by calendar; for the Gregorian calendar, the default for a field is the same as that of the start of the epoch: i.e.,
YEAR = 1970, MONTH = JANUARY, DATE =1, efc.

Inconsistent information. In the J2SE calendar, it is possible to set fields inconsistently. However, in this sub-
set, the DAY _OF_WEEK field cannot be set, and only a subset of the other J2SE Calendar fields are included.
So it is not possible to set inconsistent data.

Note: The ambiguity in interpretation of what day midnight belongs to, is resolved as so: midnight "belongs" to
the following day.

23:59 on Dec 31, 1969 < 00:00 on Jan 1, 1970.

12:00 PM is midday, and 12:00 AM is midnight.

11:59 PM on Jan 1 < 12:00 AM on Jan 2 <12:01 AM on Jan 2.
11:59 AM on Mar 10 < 12:00 PM on Mar 10 < 12:01 PM on Mar 10.

24:00 or greater are invalid. Hours greater than 12 are invalid in AM/PM mode. Setting the time will never
change the date.

If equivalent times are entered in AM/PM or 24 hour mode, equality will be determined by the actual time
rather than the entered time.

This class is a subset for J2ME of the J2SE Calendar class. Many methods and variables have been pruned, and
other methods simplified, in an effort to reduce the size of this class.

See Also: TimeZone

210

java.util Calendar

Member Summary

Fields

DATE
DAY_OF_MONTH
DAY_OF_WEEK
DECEMBER
FEBRUARY
FRIDAY

HOUR
HOUR_OF_DAY
JANUARY
JULY

JUNE

MARCH

MAY
MILLISECOND
MINUTE
MONDAY
MONTH
NOVEMBER
OCTOBER

PM

SATURDAY
SECOND
SEPTEMBER
SUNDAY
THURSDAY
TUESDAY
WEDNESDAY
YEAR

Constructors
Calendar()

Methods

after(Object)
before(Object)

equals(Object)
get(int)
getinstance()

getinstance(TimeZone)

getTime()
getTimelnMillis()

getTimeZone()

Value of theAM_PMield indicating the period of the day from midnight to just befo
noon.

Field number foget andset indicating whether thelOURs before or after noon.
Value of theMONTHield indicating the fourth month of the year.

Value of theMONTHield indicating the eighth month of the year.

Field number foget andset indicating the day of the month.

Field number foget andset indicating the day of the month.

Field number foget andset indicating the day of the week.

Value of theMONTHield indicating the twelfth month of the year.

Value of theMONTHield indicating the second month of the year.

Value of theDAY_OF_WEEReld indicating Friday.

Field number foget andset indicating the hour of the morning or afternoon.
Field number foget andset indicating the hour of the day.

Value of theMONTHield indicating the first month of the year.

Value of theMONTHield indicating the seventh month of the year.

Value of theMONTHield indicating the sixth month of the year.

Value of theMONTHield indicating the third month of the year.

Value of theMONTHield indicating the fifth month of the year.

Field number foget andset indicating the millisecond within the second.

Field number foget andset indicating the minute within the hour.

Value of theDAY_OF_WEEReld indicating Monday.

Field number foget andset indicating the month.

Value of theMONTHield indicating the eleventh month of the year.

Value of theMONTHield indicating the tenth month of the year.

Value of theAM_PMield indicating the period of the day from noon to just before
midnight.

Value of theDAY_OF_WEEReld indicating Saturday.

Field number foget andset indicating the second within the minute.
Value of theMONTHield indicating the ninth month of the year.

Value of theDAY_OF_WEEReld indicating Sunday.

Value of theDAY_OF_WEEReld indicating Thursday.

Value of theDAY_OF_WEEReld indicating Tuesday.

Value of theDAY_OF_WEEReld indicating Wednesday.

Field number foget andset indicating the year.

Constructs a Calendar with the default time zone and default locale.

Compares the time field records.

Compares the time field records.

Compares this calendar to the specified object.

Gets the value for a given time field.

Gets a calendar using the default time zone and default locale.

Gets a calendar using the specified time zone and default locale.

Gets this Calendar's current time.

Gets this Calendar's current time as a long expressed in milliseconds after Jan
1970, 0:00:00 GMT (the epoch).

re

ary 1,

Gets the time zone.

211

Calendar java.util

AM
Member Summary
set(int, int) Sets the time field with the given value.
setTime(Date Sets this Calendar's current time with the given Date.
setTimelnMillis(long) Sets this Calendar's current time from the given long value.
setTimeZone(TimeZone) Sets the time zone with the given time zone value.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , toString() , notify() , hotifyAll() , wait(long) , wait(long,
int) , wait()

Fields

AM

public static final int AM
Value of theAM_PMield indicating the period of the day from midnight to just before noon.

AM_PM
public static final int AM_PM

Field number foget andset indicating whether th&lOURs before or after noon. E.g., at 10:04:15.250
PM theAM_PMs PM

See Also: AM PM HOUR

APRIL
public static final int APRIL
Value of theMONTHield indicating the fourth month of the year.

AUGUST
public static final int AUGUST
Value of theMONTHield indicating the eighth month of the year.

DATE
public static final int DATE
Field number foget andset indicating the day of the month. This is a synonynTf&ly OF MONTH

212

java.util Calendar
DAY_OF _MONTH

See Also: DAY _OF MONTH

DAY_OF_MONTH
public static final int DAY_OF_MONTH
Field number foget andset indicating the day of the month. This is a synonynTIATE
See Also: DATE

DAY_OF WEEK
public static final int DAY_OF_WEEK

Field number foget andset indicating the day of the week.

DECEMBER
public static final int DECEMBER
Value of theMONTHield indicating the twelfth month of the year.

FEBRUARY
public static final int FEBRUARY

Value of theMONTHield indicating the second month of the year.

FRIDAY
public static final int FRIDAY
Value of theDAY_OF_WEERKeld indicating Friday.

HOUR
public static final int HOUR

Field number forget andset indicating the hour of the morning or afternod#OURSs used for the 12-
hour clock. E.g., at 10:04:15.250 PM tH®URs 10.

See Also: AM_PMHOUR_OF_DAY

HOUR_OF_DAY
public static final int HOUR_OF_DAY

Field number forget andset indicating the hour of the dayfdOUR_OF_DAY used for the 24-hour
clock. E.g., at 10:04:15.250 PM thiOUR_OF_DAI 22.

JANUARY

public static final int JANUARY

213

Calendar java.util
JULY

Value of theMONTHield indicating the first month of the year.

JULY
public static final int JULY

Value of theMONTHield indicating the seventh month of the year.

JUNE
public static final int JUNE
Value of theMONTHield indicating the sixth month of the year.

MARCH
public static final int MARCH
Value of theMONTHield indicating the third month of the year.

MAY
public static final int MAY
Value of theMONTHield indicating the fifth month of the year.

MILLISECOND
public static final int MILLISECOND

Field number foget andset indicating the millisecond within the second. E.qg., at 10:04:15.250 PM the
MILLISECONDis 250.

MINUTE
public static final int MINUTE

Field number forget andset indicating the minute within the hour. E.g., at 10:04:15.250 PM the
MINUTE s 4.

MONDAY
public static final int MONDAY
Value of theDAY_OF_WEERKeld indicating Monday.

MONTH
public static final int MONTH

Field number foget andset indicating the month. This is a calendar-specific value.

214

java.util Calendar
NOVEMBER

NOVEMBER
public static final int NOVEMBER

Value of theMONTHield indicating the eleventh month of the year.

OCTOBER
public static final int OCTOBER
Value of theMONTHield indicating the tenth month of the year.

PM

public static final int PM
Value of theAM_PMield indicating the period of the day from noon to just before midnight.

SATURDAY
public static final int SATURDAY
Value of theDAY_OF_WEEReld indicating Saturday.

SECOND
public static final int SECOND

Field number forget andset indicating the second within the minute. E.g., at 10:04:15.250 PM the
SECONDs 15.

SEPTEMBER
public static final int SEPTEMBER
Value of theMONTHield indicating the ninth month of the year.

SUNDAY
public static final int SUNDAY
Value of theDAY_OF_WEERKeld indicating Sunday.

THURSDAY
public static final int THURSDAY
Value of theDAY_OF_WEEReld indicating Thursday.

TUESDAY
public static final int TUESDAY

215

Calendar java.util
WEDNESDAY

Value of theDAY_OF_WEEKeld indicating Tuesday.

WEDNESDAY
public static final int WEDNESDAY
Value of theDAY_OF_WEEReld indicating Wednesday.

YEAR
public static final int YEAR

Field number foget andset indicating the year. This is a calendar-specific value.

Constructors

Calendar()
protected Calendar()
Constructs a Calendar with the default time zone and default locale.
See Also: getDefault()

Methods
after(Object)
public boolean after(Object when)

Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns: true if the current time of this Calendar is after the time of Calendar when; false otherwise.

before(Object)
public boolean before(Object when)
Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns: true if the current time of this Calendar is before the time of Calendar when; false otherwise.

equals(Object)

216

java.util Calendar
get(int)

public boolean equals(Object _obj)

Compares this calendar to the specified object. The resuites if and only if the argument is natull
and is &Calendar object that represents the same calendar as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the sanfalse otherwise.

get(int)
public final int get(int field)
Gets the value for a given time field.

Parameters:
field - the given time field (either YEAR, MONTH, DATE, DAY_OF_WEEK, HOUR_OF_DAY,
HOUR, AM_PM, MINUTE, SECOND, or MILLISECOND

Returns: the value for the given time field.

Throws: ArraylndexOutOfBoundsException - if the parameter is not one of the above.

getinstance()
public static synchronized Calendar _ getinstance()
Gets a calendar using the default time zone and default locale.
Returns: a Calendar.

getinstance(TimeZone)
public static synchronized Calendar _ getinstance(TimeZone zone)
Gets a calendar using the specified time zone and default locale.

Parameters:
zone - the time zone to use

Returns: a Calendar.

getTime()
public final Date getTime()
Gets this Calendar's current time.
Returns: the current time.

See Also: setTime(Date)

getTimelnMillis()

protected long getTimelnMillis()

217

Calendar java.util
getTimeZone()

Gets this Calendar's current time as a long expressed in milliseconds after January 1, 1970, 0:00:00 GMT
(the epoch).

Returns: the current time as UTC milliseconds from the epoch.

See Also: setTimelnMillis(long)

getTimeZone()
public TimeZone getTimeZone()
Gets the time zone.
Returns: the time zone object associated with this calendar.
See Also: setTimeZone(TimeZone)

set(int, int)
public final void set(int field, int value)
Sets the time field with the given value.

Parameters:
field - the given time field. Note that the DAY_OF_WEEK field cannot be set.

value - the value to be set for the given time field.

Throws: ArraylndexOutOfBoundsException - if an illegal field parameter is received.

setTime(Date)
public final void setTime(Date date)
Sets this Calendar's current time with the given Date.

Note: CallingsetTime() with Date(Long.MAX_VALUE) or Date(Long.MIN_VALUE) may yield
incorrect field values frorget()

Parameters:
date - the given Date.

See Also: getTime()

setTimelnMillis(long)
protected void setTimelnMillis(long millis)
Sets this Calendar's current time from the given long value.

Parameters:
millis - the new time in UTC milliseconds from the epoch.

See Also: getTimelnMillis()

setTimeZone(TimeZone)

public void setTimeZone(TimeZone value)

218

java.util Calendar
setTimeZone(TimeZone)

Sets the time zone with the given time zone value.

Parameters:
value - the given time zone.

See Also: getTimeZone()

219

Date java.util
setTimeZone(TimeZone)

java.util

Date

Syntax

public class Date

Object

+-- java.util.Date

Description
The class Date represents a specific instant in time, with millisecond precision.

This Class has been subset for the MID Profile based on JDK 1.3. In the full API, the class Date had two addi-
tional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It
also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not ame-
nable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and
time fields and the DateFormat class should be used to format and parse date strings. The corresponding meth-
ods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly,
depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume
that 1 day = 24x60x60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an
extra second, called a "leap second." The leap second is always added as the last second of the day, and always
on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an
added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinc-
tion.

See Also: TimeZone , Calendar

Member Summary

Constructors

Date() Allocates aDate object and initializes it to represent the current time specified rjum-
ber of milliseconds since the standard base time known as "the epoch”, namely Janu-
ary 1, 1970, 00:00:00 GMT.

Date(long) Allocates aDate object and initializes it to represent the specified number of milli-
seconds since the standard base time known as "the epoch”, namely January 1, 1970,
00:00:00 GMT.

Methods

equals(Object) Compares two dates for equality.

getTime() Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT repre-
sented by thiPate object.

hashCode() Returns a hash code value for this object.

setTime(long) Sets thisDate object to represent a point in time thatiime milliseconds after Jan
uary 1, 1970 00:00:00 GMT.

220

java.util Date
Date()

Inherited Member Summary

Methods inherited from classObject

getClass() , toString() , notify() , hotifyAll() , wait(long) , wait(long, int) , wait()
Constructors
Date()

public Date()

Allocates aDate object and initializes it to represent the current time specified number of milliseconds
since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

See Also: currentTimeMillis()

Date(long)
public Date(long date)

Allocates aDate object and initializes it to represent the specified number of milliseconds since the stan-
dard base time known as "the epoch”, namely January 1, 1970, 00:00:00 GMT.

Parameters:
date - the milliseconds since January 1, 1970, 00:00:00 GMT.

See Also: currentTimeMillis()

Methods
equals(Object)
public boolean equals(Object obj)

Compares two dates for equality. The resuttige if and only if the argument is notull and is aDate
object that represents the same point in time, to the millisecond, as this object.

Thus, twoDate objects are equal if and only if thgetTime method returns the sanheng value for
both.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the sanfalse otherwise.

See Also: getTime()

221

Date java.util

getTime()

getTime()

public long getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT representediat¢hibject.
Returns: the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this date.
See Also: setTime(long)

hashCode()

public int hashCode()

Returns a hash code value for this object. The result is the exclusive OR of the two halves of the primitive
long value returned by thgetTime() method. That is, the hash code is the value of the expression:

(int)(this.getTime()(this.getTime() >>> 32))
Overrides: hashCode() in classObject
Returns: a hash code value for this object.

setTime(long)

222

public void setTime(long time)

Sets thidDate object to represent a point in time thatiime milliseconds after January 1, 1970 00:00:00
GMT.

Parameters:
time - the number of milliseconds.

See Also: getTime()

java.util EmptyStackException

EmptyStackException()

java.util
Syntax
public class EmptyStackException extends RuntimeException
Object

+-- Throwable

I
+-- Exception
|
+-- RuntimeException
I
+-- java.util. EmptyStackException

Description
Thrown by methods in th8tack class to indicate that the stack is empty.
Since: JDK1.0
See Also: Stack

Member Summary

Constructors

EmptyStackException() Constructs a neE@mptyStackException ~ with null as its error message string.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,

int) , wait()
Constructors
EmptyStackException()

public EmptyStackException()

223

EmptyStackException java.util
EmptyStackException()

Constructs a nelgmptyStackException with null as its error message string.

224

java.util Enumeration
hasMoreElements()

java.util

Enumeration

Syntax

public abstract interface Enumeration

Description
An object that implements the Enumeration interface generates a series of elements, one at a time. Successive
calls to thenextElement method return successive elements of the series.

For example, to print all elements of a veator

for (Enumeratio n e = v.elements() ; e.hasMoreElements() ;) {
System.out.printin(e.nextElement());
}

Methods are provided to enumerate through the elements of a vector, the keys of a hashtable, and the values in a
hashtable.

Since: JDK1.0

See Also: nextElement() , Hashtable ,elements() |, keys() , Vector , elements()

Member Summary
Methods
hasMoreElements() Tests if this enumeration contains more elements.
nextElement Returns the next element of this enumeration if this enumeration object has at least
one more element to provide.
Methods

hasMoreElements()
public boolean hasMoreElements()
Tests if this enumeration contains more elements.

Returns: true if and only if this enumeration object contains at least one more element to provide;
false otherwise.

nextElement()

public Object nextElement()

225

Enumeration java.util
nextElement()

Returns the next element of this enumeration if this enumeration object has at least one more element to

provide.
Returns: the next element of this enumeration.
Throws: NoSuchElementException - if no more elements exist.

226

java.util Hashtable
nextElement()

java.util

Hashtable

Syntax
public class Hashtable
Object

+-- java.util.Hashtable

Description
This class implements a hashtable, which maps keys to values. Anguilbn-object can be used as a key or as
a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must impldérasimt the
Code method and thequals method.

An instance oHashtable has two parameters that affect its efficiency.dépacityand itsload factor The

load factor should be between 0.0 and 1.0. When the number of entries in the hashtable exceeds the product of
the load factor and the current capacity, the capacity is increased by callinghidish method. Larger load

factors use memory more efficiently, at the expense of larger expected time per lookup.

If many entries are to be made intdHashtable , creating it with a sufficiently large capacity may allow the
entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

Hashtable numbers = new Hashtable();
numbers.put("one”, new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));

To retrieve a number, use the following code:

Intege r n = (Integer)numbers.get("two");
if (n != null) {

System.out.printin(“tw o="+n)
}

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.
Since: JDK1.0

See Also: equals(Object) , hashCode() , rehash()

Member Summary

Constructors
Hashtable Constructs a new, empty hashtable with a default capacity and load factor.
Hashtable(int) Constructs a new, empty hashtable with the specified initial capacity.

Methods
clear Clears this hashtable so that it contains no keys.

227

Hashtable

Hashtable()

java.util

Member Summary

contains(Object)
containsKey(Object)

elements
get(Object)
isEmpty()
keys()

put(Object, Object)

rehash()
remove(Object)
size()
toString()

Tests if some key maps into the specified value in this hashtable.

Tests if the specified object is a key in this hashtable.

Returns an enumeration of the values in this hashtable.

Returns the value to which the specified key is mapped in this hashtable.
Tests if this hashtable maps no keys to values.

Returns an enumeration of the keys in this hashtable.

Maps the specifiekley to the specifiedalue in this hashtable.

Rehashes the contents of the hashtable into a hashtable with a larger capacity.
Removes the key (and its corresponding value) from this hashtable.
Returns the number of keys in this hashtable.

Returns a rather long string representation of this hashtable.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode()

equals(Object) , hotify() , hotifyAll() , wait(long) , wait(long,

int) , wait()

Constructors

Hashtable()
public Hashtable()

Constructs a new, empty hashtable with a default capacity and load factor.

Since: JDK1.0

Hashtable(int)

public Hashtable(int initialCapacity)

Constructs a new, empty hashtable with the specified initial capacity.

Parameters:
initialCapacity

Throws: lllegalArgumentException

- the initial capacity of the hashtable.

- if the initial capacity is less than zero

Since: JDK1.0

Methods

228

java.util Hashtable
clear()

clear()
public synchronized void clear()
Clears this hashtable so that it contains no keys.
Since: JDK1.0

contains(Object)
public synchronized boolean contains(Object _value)

Tests if some key maps into the specified value in this hashtable. This operation is more expensive than the
containsKkey method.

Parameters:
value - avalue to search for.

Returns: true if some key maps to thalue argument in this hashtabliajse otherwise.
Throws: NullPointerException - if the value isull

Since: JDK1.0

See Also: containsKey(Object)

containsKey(Obiject)
public synchronized boolean containsKey(Object _key)
Tests if the specified object is a key in this hashtable.

Parameters:
key - possible key.

Returns: true if the specified object is a key in this hashtafadise otherwise.
Since: JDK1.0

See Also: contains(Object)

elements()
public synchronized Enumeration elements()

Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returned object
to fetch the elements sequentially.

Returns: an enumeration of the values in this hashtable.
Since: JDK1.0

See Also: Enumeration |, keys()

get(Object)
public synchronized Object get(Object key)

Returns the value to which the specified key is mapped in this hashtable.

229

Hashtable java.util
iSEmpty()

Parameters:
key - akey in the hashtable.

Returns: the value to which the key is mapped in this hashtaibilé; if the key is not mapped to any
value in this hashtable.

Since: JDK1.0
See Also: put(Object, Object)

iISEmpty()
public boolean isEmpty()
Tests if this hashtable maps no keys to values.
Returns: true if this hashtable maps no keys to valdfalse otherwise.
Since: JDK1.0

keys()
public synchronized Enumeration _ keys()
Returns an enumeration of the keys in this hashtable.
Returns: an enumeration of the keys in this hashtable.
Since: JDK1.0

See Also: Enumeration , elements()

put(Object, Object)

public synchronized Object put(Object key, Object value)

Maps the specifiettey to the specifiedralue in this hashtable. Neither the key nor the value can be
null

The value can be retrieved by calling ge2 method with a key that is equal to the original key.

Parameters:
key - the hashtable key.

value - the value.

Returns: the previous value of the specified key in this hashtableylbr if it did not have one.

Throws: NullPointerException - if the key or value isull
Since: JDK1.0
See Also: equals(Object) , get(Object)

rehash()

protected void rehash()

Rehashes the contents of the hashtable into a hashtable with a larger capacity. This method is called auto-
matically when the number of keys in the hashtable exceeds this hashtable's capacity and load factor.

230

java.util Hashtable
remove(Object)

Since: JDK1.0
remove(Object)
public synchronized Object remove(Object key)

Removes the key (and its corresponding value) from this hashtable. This method does nothing if the key is
not in the hashtable.

Parameters:
key - the key that needs to be removed.

Returns: the value to which the key had been mapped in this hashtalhellor if the key did not have a
mapping.
Since: JDK1.0

size()
public int size()
Returns the number of keys in this hashtable.

Returns: the number of keys in this hashtable.

Since: JDK1.0
toString()
public synchronized String __ toString()

Returns a rather long string representation of this hashtable.

Overrides: toString() in classObject
Returns: a string representation of this hashtable.
Since: JDK1.0

231

NoSuchElementException
toString()

java.util

java.util

NoSuchElementException

Syntax

public class NoSuchElementException extends

RuntimeException

Object

+-- Throwable
I
+-- Exception
|

+-- RuntimeException

+-- java.uti.NoSuchElementException

Description
Thrown by thenextElement
enumeration.

Since: JDK1.0

See Also: Enumeration , nextElement()

method of arEnumeration

to indicate that there are no more elements in the

Member Summary

Constructors
NoSuchElementExcep-

tion()

NoSuchElementExcep-

tion(String)

Constructs &loSuchElementException

Constructs &oSuchElementException
sage string for later retrieval by thgetMessage method.

with null as its error message string.

, saving a reference to the error mes-

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) notify()

, notifyAll() , wait(long) , wait(long,

int) , wait()

Constructors

232

java.util NoSuchElementException
NoSuchElementException()

NoSuchElementException()
public NoSuchElementException()

Constructs &NoSuchElementException with null as its error message string.

NoSuchElementException(String)

public NoSuchElementException(String __s)
Constructs aNoSuchElementException , saving a reference to the error message stirfgr later

retrieval by thegetMessage method.

Parameters:
s - the detail message.

233

Random java.util
NoSuchElementException(String)

java.util

Random

Syntax

public class Random

Object

+-- java.util.LRandom

Description

An instance of this class is used to generate a stream of pseudorandom numbers. The class uses a 48-bit seed,
which is modified using a linear congruential formula. (See Donald Krithk,Art of Computer Programming,

Volume 2 Section 3.2.1.)

If two instances oRandomare created with the same seed, and the same sequence of method calls is made for
each, they will generate and return identical sequences of numbers. In order to guarantee this property, particu-
lar algorithms are specified for the cld8andom Java implementations must use all the algorithms shown here

for the clasRandom for the sake of absolute portability of Java code. However, subclasses oReadem

are permitted to use other algorithms, so long as they adhere to the general contracts for all the methods.

The algorithms implemented by claBandomuse aprotected utility method that on each invocation can
supply up to 32 pseudorandomly generated bits.

Since: JDK1.0

Member Summary

Constructors

Random() Creates a new random number generator.

Random(long) Creates a new random number generator using a simgje seed:
public Random(long seed) { setSeed(seed); }
Used by methodext to hold the state of the pseudorandom number generator.

Methods

next(int) Generates the next pseudorandom number.

nextint() Returns the next pseudorandom, uniformly distribiiéd value from this random
number generator's sequence.

nextlong() Returns the next pseudorandom, uniformly distriblded value from this random
number generator's sequence.

setSeed(long) Sets the seed of this random number generator using alsingleseed.

Inherited Member Summary

Methods inherited from classObject

234

java.util Random
Random()

Inherited Member Summary

getClass() , hashCode() , equals(Object) , toString() , notify() , hotifyAll()
wait(long) , wait(long, int) . wait()

Constructors

Random()

public Random()

Creates a new random number generator. Its seed is initialized to a value based on the current time:
public Random() { this(System.currentTimeMillis()); }
See Also: currentTimeMillis()

Random(long)
public Random(long seed)
Creates a new random number generator using a simgje seed:

public Random(long seed) { setSeed(seed); }
Used by methodext to hold the state of the pseudorandom number generator.

Parameters:
seed - the initial seed.

See Also: setSeed(long)

Methods

next(int)

protected synchronized int next(int bits)

Generates the next pseudorandom number. Subclass should override this, as this is used by all other meth-

ods.

The general contract afext is that it returns aimnt value and if the argument bits is betwekmand32
(inclusive), then that many low-order bits of the returned value will be (approximately) independently cho-
sen bit values, each of which is (approximately) equally likely t®bar 1. The methochext is imple-
mented by clasRandomas follows:

synchronized protected int next(int bits) {

seed = (seed * OX5DEECE66DL + OxBL) & ((1L << 48) - 1);
return (int)(seed >>> (48 - bits));

}
This is a linear congruential pseudorandom number generator, as defined by D. H. Lehmer and described by
Donald E. Knuth inThe Art of Computer Programming/olume 2: Seminumerical Algorithmssection
3.2.1.

235

Random java.util
nextint()

Parameters:
bits - random bits

Returns: the next pseudorandom value from this random number generator's sequence.
Since: JDK1.1

nextint()
public int nextint()

Returns the next pseudorandom, uniformly distributedd value from this random number generator's
sequence. The general contractraxtint is that oneint value is pseudorandomly generated and
returned. All 232 possiblnt values are produced with (approximately) equal probability. The method
nextint is implemented by clag®@andomas follows:

public int nextint() { return next(32); }

Returns: the next pseudorandom, uniformly distributed value from this random number generator's
sequence.

nextLong()
public long nextLong()

Returns the next pseudorandom, uniformly distribdtedy value from this random number generator's
sequence. The general contractnaixtLong is that one long value is pseudorandomly generated and
returned. All 264 possibliong values are produced with (approximately) equal probability. The method
nextLong is implemented by claggandomas follows:

public long nextLong() {
return ((long)next(32) << 32) + next(32);

Returns: the next pseudorandom, uniformly distributedg value from this random number generator's
sequence.

setSeed(long)
public synchronized void setSeed(long seed)

Sets the seed of this random number generator using a simgje seed. The general contracts#tSeed

is that it alters the state of this random number generator object so as to be in exactly the same state as if it
had just been created with the argumseéd as a seed. The methaeetSeed is implemented by class
Random as follows:

synchronized public void setSeed(long seed) {
this.seed = (seed " OX5DEECE66DL) & ((1L << 48) - 1);

}
The implementation ofetSeed by classRandomhappens to use only 48 bits of the given seed. In gen-
eral, however, an overriding method may use all 64 bits of the long argument as a seed value.

Parameters:
seed - the initial seed.

236

java.util Stack
setSeed(long)

java.util

Stack

Syntax

public class Stack extends Vector

Object
|

+-- Vector

+-- java.util.Stack

Description

The Stack class represents a last-in-first-out (LIFO) stack of objects. It extends\¢dater with five oper-
ations that allow a vector to be treated as a stack. The psishl andpop operations are provided, as well as a
method topeek at the top item on the stack, a method to test for whether the stackpsy , and a method to
search the stack for an item and discover how far it is from the top.

When a stack is first created, it contains no items.

Since: JDK1.0

Member Summary
Constructors
Stack() Creates an empty Stack.
Methods
empty() Tests if this stack is empty.
eek Looks at the object at the top of this stack without removing it from the stack.
pop() Removes the object at the top of this stack and returns that object as the value |of this
function.
push(Object) Pushes an item onto the top of this stack.
search(Object) Returns the 1-based position where an object is on this stack.

Inherited Member Summary

Fields inherited from classVector

elementData , elementCount , capacitylncrement

Methods inherited from classVector

237

Stack java.util

Stack()

Inherited Member Summary

copylnto(Object[]) , trimToSize() , ensureCapacity(int) , setSize(int) , capacity()
size() , isEmpty() , elements() , contains(Object) , indexOf(Object) , indexOf(Object,
int) , lastindexOf(Object) , lastindexOf(Object, int) , elementAt(int) , firstElement()
lastElement() , setElementAt(Object, int) , removeElementAt(int) , insertElemen-
tAt(Object, int) , addElement(Object) , removeElement(Object) , removeAllElements()
toString()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hnotify() _, notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

Stack()

public Stack()
Creates an empty Stack.

Methods

empty()
public boolean empty()
Tests if this stack is empty.

Returns: true if and only if this stack contains no itenfialse otherwise.

peek()
public synchronized Object peek()
Looks at the object at the top of this stack without removing it from the stack.

Returns: the object at the top of this stack (the last item oMbetor object).

Throws: EmptyStackException - if this stack is empty.
pop()
public synchronized Object pop()

Removes the object at the top of this stack and returns that object as the value of this function.

Returns: The object at the top of this stack (the last item oMibetor object).
Throws: EmptyStackException - if this stack is empty.

238

java.util Stack
push(Object)

push(Obiject)
public Object push(Object item)

Pushes an item onto the top of this stack. This has exactly the same effect as:
addElement(item)

Parameters:
item - the item to be pushed onto this stack.

Returns: theitem argument.
See Also: addElement(Object)

search(Object)
public synchronized int search(Object 0)

Returns the 1-based position where an object is on this stack. If the obgecturs as an item in this stack,

this method returns the distance from the top of the stack of the occurrence nearest the top of the stack; the
topmost item on the stack is considered to be at distdnddeequals method is used to compaceto

the items in this stack.

Parameters:
o - the desired object.

Returns: the 1-based position from the top of the stack where the object is located; the returh value
indicates that the object is not on the stack.

239

TimeZone java.util
search(Object)

java.util

TimeZone

Syntax

public abstract class TimeZone

Object

+-- java.util.TimeZone

Description
TimeZone represents a time zone offset, and also figures out daylight savings.

Typically, you get aTimeZone usinggetDefault which creates &imeZone based on the time zone
where the program is running. For example, for a program running in Jgptbefault creates dime-
Zone object based on Japanese Standard Time.

You can also get &imeZone usinggetTimeZone along with a time zone ID. For instance, the time zone ID
for the Pacific Standard Time zone is "PST". So, you can get §iR&FZone object with:

TimeZone tz = TimeZone.getTimeZone("PST");
This class is a pure subset of the java.util. TimeZone class in J2SE.
The only time zone ID that is required to be supported is "GMT".

Apart from the methods and variables being subset, the semantics of the getTimeZone() method may also be
subset: custom IDs such as "GMT-8:00" are not required to be supported.

See Also: Calendar

Member Summary

Constructors

TimeZone()

Methods

getAvailablelDs() Gets all the available IDs supported.

getDefault() Gets the defaulfimeZone for this host.

getiD() Gets the ID of this time zone.

getOffset(int, int, Gets offset, for current date, modified in case of daylight savings.
int, int, int, int)

getRawOffset() Gets the GMT offset for this time zone.
getTimeZone(String) Gets theTimeZone for the given ID.
useDaylightTime() Queries if this time zone uses Daylight Savings Time.

240

java.util TimeZone
TimeZone()
Inherited Member Summary
Methods inherited from classObject
getClass() , hashCode() , equals(Object) toString() , notify() , hotifyAll()
wait(long) , wait(long, int) , wait()
Constructors
TimeZone()

public TimeZone()

Methods

getAvailablelDs()
public static String _[] getAvailablelDs()
Gets all the available IDs supported.

Returns: an array of IDs.

getDefault()

public static synchronized

TimeZone getDefault()

Gets the defaullimeZone for this host. The source of the defalliineZone may vary with implemen-

tation.

Returns: a defaulfTimeZone .

getiD()

public String _ getlD()
Gets the ID of this time zone.

Returns: the ID of this time zone.

getOffset(int, int, int, int, int, int)

public abstract int getOffset(int era, int year, int month, int day, int dayOfWeek,

int millis)

Gets offset, for current date, modified in case of daylight savings. This is the offset to add *to* GMT to get
local time. Gets the time zone offset, for current date, modified in case of daylight savings. This is the offset
to add *to* GMT to get local time. Assume that the start and end month are distinct. This method may

241

TimeZone java.util
getRawOffset()

return incorrect results for rules that start at the end of February (e.g., last Sunday in February) or the begin-
ning of March (e.g., March 1).

Parameters:
era - The era of the given date (0 = BC, 1 = AD).

year - The year in the given date.
month - The month in the given date. Month is 0-based. e.g., 0 for January.
day - The day-in-month of the given date.
dayOfWeek - The day-of-week of the given date.
millis - The milliseconds in day istandardlocal time.
Returns: The offset to add *to* GMT to get local time.

Throws: lllegalArgumentException - the era, month, day, dayOfWeek, or millis parameters are
out of range

getRawOffset()
public abstract int getRawOffset()
Gets the GMT offset for this time zone.

Returns: the GMT offset for this time zone.

getTimeZone(String)
public static synchronized TimeZone getTimeZone(String _ID)
Gets theTimeZone for the given ID.

Parameters:
ID -the ID for aTimeZone , either an abbreviation such as "GMT", or a full name such as "America/
Los_Angeles".

The only time zone ID that is required to be supported is "GMT".

Returns: the specified TimeZone, or the GMT zone if the given ID cannot be understood.

useDaylightTime()
public abstract boolean useDaylightTime()
Queries if this time zone uses Daylight Savings Time.

Returns: if this time zone uses Daylight Savings Time.

242

java.util Vector
useDaylightTime()

java.util

Vector

Syntax

public class Vector

Object

+-- java.util.Vector

Direct Known Subclasses: Stack

Description

TheVector class implements a growable array of objects. Like an array, it contains components that can be
accessed using an integer index. However, the sizé/afcdor can grow or shrink as needed to accommodate
adding and removing items after tlector has been created.

Each vector tries to optimize storage management by maintainocapacity and acapacitylncre-

ment. Thecapacity is always at least as large as the vector size; it is usually larger because as components
are added to the vector, the vector's storage increases in chunks thecpadfylncrement . An appli-

cation can increase the capacity of a vector before inserting a large number of components; this reduces the
amount of incremental reallocation.

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.

Since: JDK1.0

Member Summary

Fields

capacitylncrement The amount by which the capacity of the vector is automatically incremented when its
size becomes greater than its capacity.

elementCount The number of valid components in the vector.

elementData The array buffer into which the components of the vector are stored.

Constructors

Vector() Constructs an empty vector.

Vector(int) Constructs an empty vector with the specified initial capacity.

Vector(int, int) Constructs an empty vector with the specified initial capacity and capacity increment.

Methods

addElement(Object) Adds the specified component to the end of this vector, increasing its size by one.

capacity() Returns the current capacity of this vector.

contains(Object) Tests if the specified object is a component in this vector.

copylInto(Object[]) Copies the components of this vector into the specified array.

elementAt(int) Returns the component at the specified index.

elements Returns an enumeration of the components of this vector.

ensureCapacity(int) Increases the capacity of this vector, if necessary, to ensure that it can hold at least the
number of components specified by the minimum capacity argument.

243

Vector

capacitylncrement

java.util

Member Summary

firstElement()
indexOf(Object)

indexOf(Object, int)

insertElemen-
tAt(Object, int)
isSEmpty()
lastElement()
lastindexOf(Object)

lastindexOf(Object,

int)

removeAllElements()

removeElement(Object)

removeElementAt(int)

Returns the first component of this vector.

Searches for the first occurence of the given argument, testing for equality usin
equals method.

Searches for the first occurence of the given argument, beginning the search af
index , and testing for equality using tequals method.

Inserts the specified object as a component in this vector at the spiacified.

Tests if this vector has no components.

Returns the last component of the vector.

Returns the index of the last occurrence of the specified object in this vector.
Searches backwards for the specified object, starting from the specified index,
returns an index to it.

Removes all components from this vector and sets its size to zero.
Removes the first occurrence of the argument from this vector.
Deletes the component at the specified index.

g the

and

setElementAt(Object, Sets the component at the specifretex of this vector to be the specified object.
int)

setSize(int) Sets the size of this vector.

size() Returns the number of components in this vector.

toString() Returns a string representation of this vector.

trimToSize() Trims the capacity of this vector to be the vector's current size.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode()
int) , wait()

equals(Object) notify() notifyAll() wait(long) wait(long,

Fields

capacitylncrement
protected int capacitylncrement

The amount by which the capacity of the vector is automatically incremented when its size becomes greater
than its capacity. If the capacity incremenisthe capacity of the vector is doubled each time it needs to
grow.

Since: JDK1.0

elementCount
protected int elementCount
The number of valid components in the vector.
Since: JDK1.0

244

java.util Vector
elementData

elementData
protected Object [] elementData

The array buffer into which the components of the vector are stored. The capacity of the vector is the length
of this array buffer.

Since: JDK1.0

Constructors

Vector()
public Vector()
Constructs an empty vector.
Since: JDK1.0

Vector(int)
public Vector(int initialCapacity)
Constructs an empty vector with the specified initial capacity.

Parameters:
initialCapacity - the initial capacity of the vector.

Since: JDK1.0

Vector(int, int)
public Vector(int initialCapacity, int capacitylncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.

Parameters:
initialCapacity - the initial capacity of the vector.
capacitylncrement - the amount by which the capacity is increased when the vector overflows.
Throws: lllegalArgumentException - if the specified initial capacity is negative
Methods
addElement(Object)
public synchronized void addElement(Object _obj)

Adds the specified component to the end of this vector, increasing its size by one. The capacity of this vec-
tor is increased if its size becomes greater than its capacity.

245

Vector java.util
capacity()

Parameters:
obj - the component to be added.

Since: JDK1.0

capacity()
public int capacity()
Returns the current capacity of this vector.

Returns: the current capacity of this vector.

Since: JDK1.0
contains(Object)
public boolean contains(Object elem)

Tests if the specified object is a component in this vector.

Parameters:
elem - an object.

Returns: true if the specified object is a component in this vedalse otherwise.
Since: JDK1.0

copylnto(Object[])
public synchronized void copylInto(Object [] anArray)

Copies the components of this vector into the specified array. The array must be big enough to hold all the
objects in this vector.

Parameters:
anArray - the array into which the components get copied.

Since: JDK1.0

elementAt(int)
public synchronized Object elementAt(int index)
Returns the component at the specified index.

Parameters:
index - an index into this vector.

Returns: the component at the specified index.

Throws: ArraylndexOutOfBoundsException - if an invalid index was given.
Since: JDK1.0

elements()
public synchronized Enumeration elements()

246

java.util Vector
ensureCapacity(int)

Returns an enumeration of the components of this vector.
Returns: an enumeration of the components of this vector.
Since: JDK1.0

See Also: Enumeration

ensureCapacity(int)
public synchronized void ensureCapacity(int minCapacity)

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of compo-
nents specified by the minimum capacity argument.

Parameters:
minCapacity - the desired minimum capacity.

Since: JDK1.0

firstElement()
public synchronized Object firstElement()
Returns the first component of this vector.

Returns: the first component of this vector.

Throws: NoSuchElementException - if this vector has no components.
Since: JDK1.0

indexOf(Object)
public int indexOf(Object elem)

Searches for the first occurence of the given argument, testing for equality usingale method.

Parameters:
elem - an object.

Returns: the index of the first occurrence of the argument in this vector; returifdhe object is not
found.

Since: JDK1.0
See Also: equals(Object)

indexOf(Object, int)
public synchronized int indexOf(Object elem, int index)

Searches for the first occurence of the given argument, beginning the seandexat, and testing for
equality using thequals method.

Parameters:
elem - an object.

index - the index to start searching from.

247

Vector java.util
insertElementAt(Object, int)

Returns: the index of the first occurrence of the object argument in this vector at positer or later
in the vector; returnsl if the object is not found.

Since: JDK1.0
See Also: equals(Object)

insertElementAt(Object, int)
public synchronized void insertElementAt(Object obj, int index)

Inserts the specified object as a component in this vector at the spacodeed . Each component in this
vector with an index greater or equal to the speciiiet&x is shifted upward to have an index one greater
than the value it had previously.

The index must be a value greater than or equalaiod less than or equal to the current size of the vector.

Parameters:
obj - the component to insert.

index - where to insert the new component.
Throws: ArraylndexOutOfBoundsException - if the index was invalid.
Since: JDK1.0

See Also: size()

isEmpty()
public boolean isEmpty()
Tests if this vector has no components.
Returns: true if this vector has no componentalse otherwise.
Since: JDK1.0

lastElement()
public synchronized Object lastElement()
Returns the last component of the vector.

Returns: the last component of the vector, i.e., the component at gizeg - 1

Throws: NoSuchElementException - if this vector is empty.
Since: JDK1.0

lastindexOf(Object)
public int lastindexOf(Object elem)

Returns the index of the last occurrence of the specified object in this vector.

Parameters:
elem - the desired component.

248

java.util Vector
lastindexOf(Object, int)

Returns: the index of the last occurrence of the specified object in this vector; retuihthe object is
not found.

Since: JDK1.0

lastindexOf(Object, int)
public synchronized int lastindexOf(Object elem, int index)
Searches backwards for the specified object, starting from the specified index, and returns an index to it.

Parameters:
elem - the desired component.

index - the index to start searching from.

Returns: the index of the last occurrence of the specified object in this vector at position lessdban
in the vector:1 if the object is not found.

Since: JDK1.0

removeAllElements()
public synchronized void removeAllElements()
Removes all components from this vector and sets its size to zero.
Since: JDK1.0

removeElement(Object)
public synchronized boolean removeElement(Object _obj)

Removes the first occurrence of the argument from this vector. If the object is found in this vector, each
component in the vector with an index greater or equal to the object's index is shifted downward to have an
index one smaller than the value it had previously.

Parameters:
obj - the component to be removed.

Returns: true if the argument was a component of this vedadse otherwise.
Since: JDK1.0

removeElementAt(int)
public synchronized void removeElementAt(int index)

Deletes the component at the specified index. Each component in this vector with an index greater or equal
to the specifiethdex is shifted downward to have an index one smaller than the value it had previously.

The index must be a value greater than or equalaiod less than the current size of the vector.

Parameters:
index - the index of the object to remove.

Throws: ArraylndexOutOfBoundsException - if the index was invalid.
Since: JDK1.0

249

Vector java.util

setElementAt(Object, int)

See Also: size()

setElementAt(Obiject, int)

public synchronized void setElementAt(Object obj, int index)

Sets the component at the specifiedex of this vector to be the specified object. The previous compo-
nent at that position is discarded.

The index must be a value greater than or equalaiod less than the current size of the vector.

Parameters:
obj - what the component is to be set to.

index - the specified index.
Throws: ArraylndexOutOfBoundsException - if the index was invalid.
Since: JDK1.0

See Also: size()

setSize(int)

public synchronized void setSize(int newSize)

Sets the size of this vector. If the new size is greater than the current sizeutewitems are added to the
end of the vector. If the new size is less than the current size, all components ahévd8ize and greater
are discarded.

Parameters:
newSize - the new size of this vector.

Since: JDK1.0

size()

public int size()
Returns the number of components in this vector.

Returns: the number of components in this vector.

Since: JDK1.0
toString()
public synchronized String __ toString()

Returns a string representation of this vector.

Overrides: toString() in classObject
Returns: a string representation of this vector.

Since: JDK1.0

trimToSize()

250

java.util Vector
trimToSize()

public synchronized void trimToSize()

Trims the capacity of this vector to be the vector's current size. An application can use this operation to min-
imize the storage of a vector.

Since: JDK1.0

251

Vector java.util
trimToSize()

252

Package

javax.microedition.io

Description

The classes for the generic connections.

Since: CLDC 1.0

Class Summary

Interfaces

Connection

ContentConnection

Datagram

DatagramConnection

InputConnection

OutputConnection

StreamConnection

StreamConnectionNoti-

fier

Classes
Connector

Exceptions
ConnectionNotFoundEx-

ception

This is the most basic type of generic connection.

This interface defines the stream connection over which content is passed.

This is the generic datagram interface.

This interface defines the capabilities that a datagram connection must have.
This interface defines the capabilities that an input stream connection must havg
This interface defines the capabilities that an output stream connection must ha
This interface defines the capabilities that a stream connection must have.

This interface defines the capabilities that a connection notifier must have.

This class is a placeholder for the static methods that are used for creating all the
nection objects.

This class is used to signal that a connection target cannot be found.

\ve.

p Con-

253

Connection javax.microedition.io
close()

javax.microedition.io

Connection

Syntax

public abstract interface Connection

All Known Subinterfaces: ContentConnection , DatagramConnection _, InputConnec-
tion , OutputConnection , StreamConnection , StreamConnectionNotifier

Description
This is the most basic type of generic connection. Only the close method is defined. The open method defined
here because opening is always done by the Connector.open() methods.

Member Summary

Methods
close Close the connection.

Methods

close()
public void close()
Close the connection.

When a connection has been closed, access to any of its methods except this close() will cause an an IOEx-
ception to be thrown. Closing an already closed connection has no effect. Streams derived from the connec-
tion may be open when method is called. Any open streams will cause the connection to be held open until
they themselves are closed. In this latter case access to the open streams is permitted, but access to the con-
nection is not.

Throws: 10Exception - If an I/O error occurs

254

javax.microedition.io ConnectionNotFoundException
ConnectionNotFoundException()

javax.microedition.io

ConnectionNotFoundException

Syntax
public class ConnectionNotFoundException extends IOException
Object

+-- Throwable

I
+-- Exception
|
+-- |0Exception
I

+-- javax.microedition.io.ConnectionNotFoundException

Description
This class is used to signal that a connection target cannot be found.

Member Summary

Constructors
ConnectionNotFoundEx- Constructs a ConnectionNotFoundException with no detail message.

ception()

ConnectionNotFoundEx- Constructs a ConnectionNotFoundException with the specified detail message
ception(String)

Inherited Member Summary

Methods inherited from classThrowable
getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , hotify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Constructors

ConnectionNotFoundException()
public ConnectionNotFoundException()

Constructs a ConnectionNotFoundException with no detail message. A detail message is a String that
describes this particular exception.

255

ConnectionNotFoundException javax.microedition.io
ConnectionNotFoundException(String)

ConnectionNotFoundException(String)
public ConnectionNotFoundException(String __ s)

Constructs a ConnectionNotFoundException with the specified detail message. A detail message is a String
that describes this particular exception.

Parameters:
s - the detail message

256

javax.microedition.io Connector
ConnectionNotFoundException(String)

javax.microedition.io

Connector

Syntax

public class Connector

Object
|

+-- javax.microedition.io.Connector

Description
This class is a placeholder for the static methods that are used for creating all the Connection objects.

The creation of Connections is performed dynamically by looking up a protocol implementation class whose
name is formed from the platform name (read from a system property) and the protocol name of the requested
connection (extracted from the parameter string supplied by the application programmer.) The parameter string
that describes the target should conform to the URL format as described in RFC 2396. This takes the general
form:

{scheme}:[{target}][{parms}]

where{scheme} is the name of a protocol suchtsip}.

The{target} is normally some kind of network address.

Any {parms} are formed as a series of equates of the form ";x=y". Example: ";type=a".

An optional second parameter may be specified to the open function. This is a mode flag that indicates to the
protocol handler the intentions of the calling code. The options here specify if the connection is going to be read
(READ), written (WRITE), or both (READ_WRITE). The validity of these flag settings is protocol dependent.
For instance, a connection for a printer would not allow read access, and would throw an lllegalArgumentEx-
ception. If the mode parameter is not specified, READ_WRITE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptions. If
this flag is set, the protocol implementation may throw an InterruptedlOException when it detects a timeout
condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exceptions will
actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.

Because connections are frequently opened just to gain access to a specific input or output stream, four conve-
nience functions are provided for this purpose. See @lstagramConnection for information relating to
datagram addressing

Member Summary

Fields

READ Access mode READ.
READ_WRITE Access mode READ_WRITE.
WRITE Access mode WRITE.
Methods

open(String) Create and open a Connection.
open(String, int) Create and open a Connection.

257

Connector javax.microedition.io

READ

Member Summary

boolean)

Stream(String)

Stream(String)

Stream(String)

Stream(String)

open(String, int, Create and open a Connection.

openDatalnput- Create and open a connection input stream.
openDataOutput- Create and open a connection output stream.
openlnput- Create and open a connection input stream.

openOutput- Create and open a connection output stream.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() notify() notifyAll()
wait(long) , wait(long, int) . wait()

Fields

READ

public static final int READ
Access mode READ.

READ WRITE
public static final int READ_WRITE
Access mode READ_WRITE.

WRITE
public static final int WRITE
Access mode WRITE.

Methods
open(String)
public static Connection _open(String _ name)

258

javax.microedition.io Connector

open(String, int)
Create and open a Connection.

Parameters:
name - The URL for the connection.

Returns: A new Connection object.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be make, or the protocol
type does not exist.

IOException - If some other kind of 1/0 error occurs.

open(String, int)
public static Connection open(String name, int mode)
Create and open a Connection.

Parameters:
name - The URL for the connection.

mode - The access mode.
Returns: A new Connection object.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be make, or the protocol
type does not exist.

IOException - If some other kind of I/0O error occurs.

open(String, int, boolean)
public static Connection _open(String __name, int mode, boolean timeouts)
Create and open a Connection.

Parameters:
name - The URL for the connection

mode - The access mode
timeouts - A flag to indicate that the caller wants timeout exceptions
Returns: A new Connection object

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - if the requested connection cannot be make, or the protocol
type does not exist.

IOException - If some other kind of 1/0 error occurs.

openDatalnputStream(String)

public static DatalnputStream openDatalnputStream(String _ name)

Create and open a connection input stream.

259

Connector javax.microedition.io
openDataOutputStream(String)

Parameters:
name - The URL for the connection.

Returns: A DatalnputStream.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.

openDataOutputStream(String)

public static DataOutputStream openDataOutputStream(String name)

Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: A DataOutputStream.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of 1/0O error occurs.

openlinputStream(String)
public static InputStream __ openlnputStream(String __ name)
Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: An InputStream.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.
IOException - If some other kind of I/0O error occurs.

openOutputStream(String)
public static OutputStream _ openOutputStream(String__ name)
Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: An OutputStream.

Throws: lllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.

260

javax.microedition.io ContentConnection
getEncoding()

javax.microedition.io

ContentConnection

Syntax

public abstract interface ContentConnection extends StreamConnection

All Superinterfaces: Connection , InputConnection _, OutputConnection __, StreamConnec-
tion

Description
This interface defines the stream connection over which content is passed.

Member Summary

Methods

getEncoding() Returns a string describing the encoding of the content which the resource conrjected
to is providing.

getLength() Returns the length of the content which is being provided.

getType() Returns the type of content that the resource connected to is providing.

Inherited Member Summary

Methods inherited from interface InputConnection
openinputStream() , openDatalnputStream()

Methods inherited from interface Connection
close

Methods inherited from interface OutputConnection

openOutputStream() , openDataOutputStream()

Methods

getEncoding()

public String getEncoding()

Returns a string describing the encoding of the content which the resource connected to is providing. E.qg. if
the connection is via HTTP, the value of tomtent-encoding header field is returned.

Returns: the content encoding of the resource that the URL referenaadl] orif not known.

261

ContentConnection javax.microedition.io
getLength()

getLength()
public long getLength()

Returns the length of the content which is being provided. E.g. if the connection is via HTTP, then the value
of thecontent-length header field is returned.

Returns: the content length of the resource that this connection's URL refereneksif dihe content
length is not known.

getType()
public String _ getType()

Returns the type of content that the resource connected to is providing. For instance, if the connection is via
HTTP, then the value of thmntent-type header field is returned.

Returns: the content type of the resource that the URL referencasilor if not known.

262

javax.microedition.io Datagram
getType()

javax.microedition.io

Datagram

Syntax

public abstract interface Datagram extends Datalnput , DataOutput

All Superinterfaces: Datalnput , DataOutput

Description
This is the generic datagram interface. It represents an object that will act as the holder of data to be sent or
received from a datagram connection.

The Datalnput and DataOutput interfaces are extended by this interface to provide a simple way to read and
write binary data in and out of the datagram buffer. An additional function reset() may be called to reset the
read/write point to the beginning of the buffer.

It should be noted that in the interests of reducing space and speed concerns, these mechanisms are very simple.
In order to use them correctly the following restrictions should be observed:

1) The use of the standard Datalnput and DataOutput interfaces is done in order to provide a familiar API for
reading and writing data into and out of a Datagram buffer. It should be understood however that this is not an
API to a Java stream and does not exhibit all of the features normally associated with one. The most important
difference here is that a Java stream is either an InputStream or an OutputStream. The interface presented here
is, essentially, both at the same time. As the datagram object does not have a mode for reading and writing, it is
necessary for the application programmer to realize that no automatic detection of the wrong mode usage can be
done.

2) The Datalnput and DataOutput interfaces will not work with any arbitrary settings of the Datagram state vari-
ables. The main restriction here is that titsetstate variable must at all times be zero. Datagrams may be used

in the normal way where the offset is non-zero but when this is done the Datalnput and DataOutput interfaces
cannot be used.

3) The Datalnput and DataOutput read() and write() functions work by using an invisible state variable of the
Datagram object. Before any data is read from or written to the datagram buffer, this state variable must be
zeroed using the reset() function. This variable is notdfisetstate variable but an additional state variable
used only for the read() and write() functions.

4) Before data is to be received into the datagram's buffepffisetstate variable and thengthstate variable

must first be set up to the part of the buffer the data should be written to. If the intention is to use the read() func-
tions, the offset must be zero. After receive() is called, the data can be read from the buffer using the read()
functions until an EOF condition is found. This will occur when the number of characters represented by the
length parameter have been read.

5) To write data into the buffer prior to a send() operation, the reset() function should first be called. This will
zero the read/write pointer along with the offset and length parameters of the Datagram object. Then the data
can be written using the write() functions. When this process is completkerththstate variable will be set to

the correct value for the send() function of the datagram's connection, and so the send operation can take place.
An IndexOutOfBoundsException will be thrown if the number of characters written exceeds the size of the
buffer.

263

Datagram

getAddress()

javax.microedition.io

Member Summary

Methods

getAddress() Get the address in the datagram.

getData() Get the buffer.

getLength() Get the length.

getOffset() Get the offset.

reset() Zero the read/write pointer as well as the offset and length parameters.
setAddress(Datagram) Set datagram address, copying the address from another datagram.

setAddress(String)
setData(byte[], int,
int)
setLength(int)

Set datagram address.
Set the buffer, offset and length.

Set the length.

Inherited Member Summary

Methods inherited from interface Datalnput
readFully(byte[]) readFully(byte[], int, int) skipBytes(int) readBoolean() , read-

Byte() , readUnsignedByte() , readShort() , readUnsignedShort() , readChar() , readint()

readLong() , readUTF()

Methods inherited from interface DataOutput

write(int) , write(byte[]) write(byte[], int, int) writeBoolean(boolean) , write-
Byte(int) , writeShort(int) writeChar(int) , writelnt(int) writeLong(long) , write-
Chars(String) writeUTF(String)

Methods

getAddress()

public String getAddress()

Get the address in the datagram.

Returns: the address in string form, or null if no address was set
See Also: setAddress(String)

getData()
public byte[] getData()
Get the buffer.
Returns: the data buffer
See Also: setData(byte[], int, int)

264

javax.microedition.io Datagram
getLength()

getLength()
public int getLength()
Get the length.
Returns: the length of the data
See Also: setlLength(int)

getOffset()
public int getOffset()
Get the offset.

Returns: the offset into the data buffer

reset()
public void reset()

Zero the read/write pointer as well as the offset and length parameters.

setAddress(Datagram)
public void setAddress(Datagram reference)
Set datagram address, copying the address from another datagram.

Parameters:
reference - the datagram who's address will be copied as the new target address for this datagram.

Throws: lllegalArgumentException - if the address is not valid
See Also: getAddress()

setAddress(String)
public void setAddress(String _ addr)
Set datagram address.

The actual addressing scheme is implementation-dependent. Please read the general comments on datagram
addressing iatagramConnection.java

Note that if the address of a datagram is not specified, then it defaults to that of the connection.

Parameters:
addr - the new target address as a URL

Throws: lllegalArgumentException - if the address is not valid

IOException - if a some kind of 1/O error occurs
See Also: getAddress()

setData(byte[], int, int)

265

Datagram javax.microedition.io
setLength(int)

public void setData(byte[] buffer, int offset, int len)
Set the buffer, offset and length.

Parameters:
buffer - the data buffer

offset - the offset into the data buffer
len - the length of the data in the buffer

Throws: lllegalArgumentException - if the length or offset fall outside the buffer

See Also: getData()

setLength(int)
public void setLength(int len)
Set the length.

Parameters:
len - the new length of the data

Throws: lllegalArgumentException - if the length is negative or larger than the buffer

See Also: getLength()

266

javax.microedition.io DatagramConnection
setLength(int)

javax.microedition.io

DatagramConnection

Syntax

public abstract interface DatagramConnection extends Connection

All Superinterfaces: Connection

Description
This interface defines the capabilities that a datagram connection must have.

Reminder: In common with all the other addressing schemes used for I/O in CLDC, the syntax for datagram
addressing is not defined in the CLDC Specification. Syntax definition can only be take place at the profile level.
The reason for this is that the datagram interface classes of CLDC can be used for implementing various kinds
of datagram protocols. Examples include IP and WDP networks as well as infrared beaming protocols used by
various PDAs and other devices. All these protocols use very different addressing mechanisms.

In the sample implementation provided as part of the CLDC reference implementation, the following address-
ing scheme is used for UDP datagrams.

The parameter string describing the target of a connection in the CLDC reference implementation takes the fol-
lowing form:

{protocol}://[{host}]:[{port}]
A datagram connection can be opened in a "client” mode or "server" mode. If the "//{host}" part is missing then

the connection is opened as a "server" (by "server”, we mean that a client application initiates communication).
When the "//{host}" part is specified, the connection is opened as a "client".

Examples:

A datagram connection for accepting datagrams
datagram://:1234

A datagram connection for sending to a server:
datagram://123.456.789.12:1234

Note that the port number in "server mode" (unspecified host name) is that of the receiving port. The port num-
ber in "client mode" (host name specified) is that of the target port. The reply-to port in both cases is never
unspecified. In "server mode", the same port number is used for both receiving and sending. In "client mode",
the reply-to port is always dynamically allocated.

The allocation of datagram objects is done in a more abstract way than in J2SE. This is to allow a single plat-

form to support several different datagram interfaces simultaneously. Datagram objects must be allocated by
calling the "newDatagram" method of the DatagramConnection object. The resulting object is defined using

another interface type called "javax.microedition.io.Datagram".

Member Summary

Methods
getMaximumLength() Get the maximum length a datagram can be.

267

DatagramConnection

getMaximumLength()

javax.microedition.io

Member Summary

getNominalLength()
newDatagram(byte([],

int)

newDatagram(byte[],

int, String)

newDatagram(int)
newDatagram(int,

String)

receive(Datagram)
send(Datagram)

Get the nominal length of a datagram.
Make a new datagram object.

Make a new datagram object.

Make a new datagram object automatically allocating a buffer.
Make a new datagram object.

Receive a datagram.
Send a datagram.

Inherited Member Summary

close

Methods inherited from interface Connection

Methods

getMaximumLength()

public int getMaximumLength()

Get the maximum length a datagram can be.

Returns: The maximum length a datagram can be.

Throws: 10Exception - If an I/O error occurs.

getNominalLength()

public int getNominalLength()

Get the nominal length of a datagram.

Returns: The nominal length a datagram can be.

Throws: 10Exception - If an I/O error occurs.

newDatagram(byte[], int)

public Datagram newDatagram(byte[] buf, int size)

Make a new datagram object.

Parameters:

buf - The buffer to be used in the datagram

size - The length of the buffer to be allocated for the datagram

268

javax.microedition.io DatagramConnection
newDatagram(byte[], int, String)

Returns: A new datagram

Throws: |0Exception - If an I/O error occurs.

lllegalArgumentException - if the length is negative or larger than the buffer, or if the buffer
parameter is invalid

newDatagram(byte[], int, String)
public Datagram newDatagram(byte[] buf, int size, String _ addr)
Make a new datagram object.

Parameters:
buf - The buffer to be used in the datagram

size - The length of the buffer to be used

addr - The I/O address to which the datagram will be sent
Returns: A new datagram
Throws: 10Exception - If an I/O error occurs.

lllegalArgumentException - if the length is negative or larger than the buffer, or if the address
or buffer parameters is invalid

newDatagram(int)
public Datagram newDatagram(int size)
Make a new datagram object automatically allocating a buffer.

Parameters:
size - The length of the buffer to be allocated for the datagram

Returns: A new datagram
Throws: |0Exception - If an I/O error occurs.

lllegalArgumentException - if the length is negative or larger than the buffer

newDatagram(int, String)
public Datagram newDatagram(int size, String _ addr)
Make a new datagram object.

Parameters:
size - The length of the buffer to be used

addr - The I/O address to which the datagram will be sent
Returns: A new datagram
Throws: 10Exception - If an I/O error occurs.

lllegalArgumentException - if the length is negative or larger than the buffer, or if the address
parameter is invalid

269

DatagramConnection javax.microedition.io

receive(Datagram)
receive(Datagram)
public void receive(Datagram dgram)

Receive a datagram.

Parameters:
dgram - A datagram.

Throws: 10Exception - If an I/O error occurs.

InterruptedIOException - Timeout or upon closing the connection with outstanding 1/O.

send(Datagram)
public void send(Datagram dgram)
Send a datagram.

Parameters:
dgram - A datagram.

Throws: 10Exception - If an I/O error occurs.

InterruptedIOException - Timeout or upon closing the connection with outstanding 1/O.

270

javax.microedition.io InputConnection
openDatalnputStream()

javax.microedition.io

InputConnection

Syntax

public abstract interface InputConnection extends Connection

All Known Subinterfaces: ContentConnection _, StreamConnection

All Superinterfaces: Connection

Description
This interface defines the capabilities that an input stream connection must have.

Member Summary

Methods
openDatalnputStream() Open and return a data input stream for a connection.
openinputStream() Open and return an input stream for a connection.

Inherited Member Summary

Methods inherited from interface Connection

close

Methods

openDatalnputStream()

public DatalnputStream openDatalnputStream()
Open and return a data input stream for a connection.
Returns: An input stream

Throws: 10Exception - If an I/O error occurs

openlnputStream()

public InputStream _ openlnputStream()
Open and return an input stream for a connection.

271

InputConnection javax.microedition.io
openinputStream()

Returns: An input stream

Throws: 10Exception - If an I/O error occurs

272

javax.microedition.io OutputConnection
openDataOutputStream()

javax.microedition.io

OutputConnection

Syntax

public abstract interface OutputConnection extends Connection

All Known Subinterfaces: ContentConnection _, StreamConnection

All Superinterfaces: Connection

Description
This interface defines the capabilities that an output stream connection must have.

Member Summary

Methods

openDataOutput- Open and return a data output stream for a connection.
Stream()

openOutputStream() Open and return an output stream for a connection.

Inherited Member Summary

Methods inherited from interface Connection

close

Methods

openDataOutputStream()

public DataOutputStream _ openDataOutputStream()

Open and return a data output stream for a connection.
Returns: An output stream

Throws: 10Exception - If an I/O error occurs

openOutputStream()
public OutputStream openOutputStream()

273

OutputConnection javax.microedition.io
openOutputStream()

Open and return an output stream for a connection.
Returns: An output stream

Throws: 10Exception - If an I/O error occurs

274

javax.microedition.io StreamConnection

openOutputStream()
javax.microedition.io
StreamConnection
Syntax
public abstract interface StreamConnection extends InputConnection , OutputConnection

All Known Subinterfaces: ContentConnection

All Superinterfaces: Connection , InputConnection __, OutputConnection

Description
This interface defines the capabilities that a stream connection must have.

Inherited Member Summary

Methods inherited from interface InputConnection
openinputStream() , openDatalnputStream()

Methods inherited from interface Connection
close

Methods inherited from interface OutputConnection

openOutputStream() , openDataOutputStream()

275

StreamConnectionNotifier javax.microedition.io
acceptAndOpen()

javax.microedition.io

StreamConnectionNotifier

Syntax

public abstract interface StreamConnectionNotifier extends Connection

All Superinterfaces: Connection

Description
This interface defines the capabilities that a connection notifier must have.

Member Summary

Methods
acceptAndOpen() Returns étreamConnection that represents a server side socket connection|

Inherited Member Summary

Methods inherited from interface Connection

close

Methods

acceptAndOpen()

public StreamConnection acceptAndOpen()

Returns é&treamConnection that represents a server side socket connection.
Returns: A socket to communicate with a client.

Throws: 10Exception - If an I/O error occurs.

276

Index

A

abs(int) - of java.lang.Math 138

abs(long) - of java.lang.Math 139

acceptAndOpen() - of javax.microedition.io.StreamConnectionNotifier 276
activeCount() - of java.lang.Thread 201

addElement(Object) - of java.util.Vector 245

after(Object) - of java.util.Calendar 216

AM - of java.util.Calendar 212

AM_PM - of java.util.Calendar 212

append(boolean) - of java.lang.StringBuffer 183

append(char) - of java.lang.StringBuffer 183

append(charf]) - of java.lang.StringBuffer 184

append(char[], int, int) - of java.lang.StringBuffer 184
append(int) - of java.lang.StringBuffer 184

append(long) - of java.lang.StringBuffer 185

append(Object) - of java.lang.StringBuffer 185

append(String) - of java.lang.StringBuffer 185

APRIL - of java.util.Calendar 212

ArithmeticException - of java.lang 83

ArithmeticException() - of java.lang.ArithmeticException 83
ArithmeticException(String) - of java.lang.ArithmeticException 84
arraycopy(Object, int, Object, int, int) - of java.lang.System 196
ArraylndexOutOfBoundsException - of java.lang 85

ArraylndexOutOfBoundsException() - of java.lang.ArraylndexOutOfBoundsException 86
ArraylndexOutOfBoundsException(int) - of java.lang.ArraylndexOutOfBoundsException 86

ArraylndexOutOfBoundsException(String) - of java.lang.ArraylndexOutOfBoundsException 86

ArrayStoreException - of java.lang 87

ArrayStoreException() - of java.lang.ArrayStoreException 88
ArrayStoreException(String) - of java.lang.ArrayStoreException 88
AUGUST - of java.util.Calendar 212

available() - of java.io.ByteArraylnputStream 11

available() - of java.io.DatalnputStream 25

available() - of java.io.InputStream 45

B

before(Object) - of java.util.Calendar 216

Boolean - of java.lang 89

Boolean(boolean) - of java.lang.Boolean 89

booleanValue() - of java.lang.Boolean 90

buf - of java.io.ByteArraylnputStream 10

buf - of java.io.ByteArrayOutputStream 15

Byte - of java.lang 91

Byte(byte) - of java.lang.Byte 92

ByteArraylnputStream - of java.io 9

ByteArraylnputStream(byte[]) - of java.io.ByteArraylnputStream 10
ByteArraylnputStream(byte[], int, int) - of java.io.ByteArraylnputStream 11

277

Index

ByteArrayOutputStream - of java.io 14

ByteArrayOutputStream() - of java.io.ByteArrayOutputStream 15
ByteArrayOutputStream(int) - of java.io.ByteArrayOutputStream 15
bytesTransferred - of java.io.InterruptedlOException 53
byteValue() - of java.lang.Byte 92

byteValue() - of java.lang.Integer 125

C

Calendar - of java.util 210

Calendar() - of java.util.Calendar 216

capacity() - of java.lang.StringBuffer 186

capacity() - of java.util.Vector 246

capacitylncrement - of java.util.Vector 244

Character - of java.lang 94

Character(char) - of java.lang.Character 95

charAt(int) - of java.lang.String 169

charAt(int) - of java.lang.StringBuffer 186

charValue() - of java.lang.Character 96

checkError() - of java.io.PrintStream 63

Class - of java.lang 99

ClassCastException - of java.lang 104

ClassCastException() - of java.lang.ClassCastException 105
ClassCastException(String) - of java.lang.ClassCastException 105
ClassNotFoundException - of java.lang 106
ClassNotFoundException() - of java.lang.ClassNotFoundException 106
ClassNotFoundException(String) - of java.lang.ClassNotFoundException 107
clear() - of java.util. Hashtable 229

close() - of java.io.ByteArraylnputStream 11

close() - of java.io.ByteArrayOutputStream 16

close() - of java.io.DatalnputStream 26

close() - of java.io.DataOutputStream 38

close() - of java.io.InputStream 45

close() - of java.io.InputStreamReader 50

close() - of java.io.OutputStream 57

close() - of java.io.OutputStreamWriter 60

close() - of java.io.PrintStream 63

close() - of java.io.Reader 69

close() - of java.io.Writer 77

close() - of javax.microedition.io.Connection 254
compareTo(String) - of java.lang.String 170

concat(String) - of java.lang.String 170

Connection - of javax.microedition.io 254
ConnectionNotFoundException - of javax.microedition.io 255
ConnectionNotFoundException() - of javax.microedition.io.ConnectionNotFoundException 255
ConnectionNotFoundException(String) - of javax.microedition.io.ConnectionNotFoundException 256
Connector - of javax.microedition.io 257

contains(Object) - of java.util. Hashtable 229

contains(Object) - of java.util.Vector 246

containsKey(Object) - of java.util.Hashtable 229

278

Index

ContentConnection - of javax.microedition.io 261
copylnto(Object[]) - of java.util.Vector 246

count - of java.io.ByteArraylnputStream 10
count - of java.io.ByteArrayOutputStream 15
currentThread() - of java.lang.Thread 202
currentTimeMillis() - of java.lang.System 197

D

Datagram - of javax.microedition.io 263

DatagramConnection - of javax.microedition.io 267

Datalnput - of java.io 18

DatalnputStream - of java.io 24

DatalnputStream(InputStream) - of java.io.DatalnputStream 25
DataOutput - of java.io 32

DataOutputStream - of java.io 37
DataOutputStream(OutputStream) - of java.io.DataOutputStream 38
Date - of java.util 220

DATE - of java.util.Calendar 212

Date() - of java.util.Date 221

Date(long) - of java.util.Date 221

DAY_OF_MONTH - of java.util.Calendar 213

DAY_OF_WEEK - of java.util.Calendar 213

DECEMBER - of java.util.Calendar 213

delete(int, int) - of java.lang.StringBuffer 186

deleteCharAt(int) - of java.lang.StringBuffer 186

digit(char, int) - of java.lang.Character 96

E

elementAt(int) - of java.util.Vector 246
elementCount - of java.util.Vector 244

elementData - of java.util.Vector 245

elements() - of java.util.Hashtable 229

elements() - of java.util.Vector 246

empty() - of java.util.Stack 238
EmptyStackException - of java.util 223
EmptyStackException() - of java.util. EmptyStackException 223
endsWith(String) - of java.lang.String 171
ensureCapacity(int) - of java.lang.StringBuffer 187
ensureCapacity(int) - of java.util.Vector 247
Enumeration - of java.util 225

EOFEXxception - of java.io 42

EOFException() - of java.io.EOFException 43
EOFException(String) - of java.io.EOFException 43
equals(Object) - of java.lang.Boolean 90
equals(Object) - of java.lang.Byte 92
equals(Object) - of java.lang.Character 96
equals(Object) - of java.lang.Integer 126
equals(Object) - of java.lang.Long 134

279

Index

equals(Object) - of java.lang.Object 148
equals(Object) - of java.lang.Short 163
equals(Object) - of java.lang.String 171
equals(Object) - of java.util.Calendar 216
equals(Object) - of java.util.Date 221

err - of java.lang.System 195

Error - of java.lang 108

Error() - of java.lang.Error 108
Error(String) - of java.lang.Error 109
Exception - of java.lang 110

Exception() - of java.lang.Exception 111
Exception(String) - of java.lang.Exception 111
exit(int) - of java.lang.Runtime 156
exit(int) - of java.lang.System 197

F

FEBRUARY - of java.util.Calendar 213
firstElement() - of java.util.Vector 247
flush() - of java.io.DataOutputStream 39
flush() - of java.io.OutputStream 57
flush() - of java.io.OutputStreamWriter 60
flush() - of java.io.PrintStream 64

flush() - of java.io.Writer 78
forName(String) - of java.lang.Class 100
freeMemory() - of java.lang.Runtime 157
FRIDAY - of java.util.Calendar 213

G

gc() - of java.lang.Runtime 157

gc() - of java.lang.System 198

get(int) - of java.util.Calendar 217

get(Object) - of java.util. Hashtable 229

getAddress() - of javax.microedition.io.Datagram 264
getAvailablelDs() - of java.util. TimeZone 241

getBytes() - of java.lang.String 171

getBytes(String) - of java.lang.String 171

getChars(int, int, charf], int) - of java.lang.String 172
getChars(int, int, charf], int) - of java.lang.StringBuffer 187
getClass() - of java.lang.Object 148

getData() - of javax.microedition.io.Datagram 264

getDefault() - of java.util. TimeZone 241

getEncoding() - of javax.microedition.io.ContentConnection 261
getID() - of java.util. TimeZone 241

getinstance() - of java.util.Calendar 217
getinstance(TimeZone) - of java.util.Calendar 217

getLength() - of javax.microedition.io.ContentConnection 262
getLength() - of javax.microedition.io.Datagram 265
getMaximumLength() - of javax.microedition.io.DatagramConnection 268

280

Index

getMessage() - of java.lang.Throwable 205

getName() - of java.lang.Class 100

getNominalLength() - of javax.microedition.io.DatagramConnection 268
getOffset() - of javax.microedition.io.Datagram 265
getOffset(int, int, int, int, int, int) - of java.util. TimeZone 241
getPriority() - of java.lang.Thread 202

getProperty(String) - of java.lang.System 198
getRawOffset() - of java.util. TimeZone 242
getResourceAsStream(String) - of java.lang.Class 101
getRuntime() - of java.lang.Runtime 157

getTime() - of java.util.Calendar 217

getTime() - of java.util.Date 222

getTimelnMillis() - of java.util.Calendar 217

getTimeZone() - of java.util. Calendar 218
getTimeZone(String) - of java.util. TimeZone 242

getType() - of javax.microedition.io.ContentConnection 262

F{

hashCode() - of java.lang.Boolean 90
hashCode() - of java.lang.Byte 92
hashCode() - of java.lang.Character 96
hashCode() - of java.lang.Integer 126
hashCode() - of java.lang.Long 134
hashCode() - of java.lang.Object 148
hashCode() - of java.lang.Short 163
hashCode() - of java.lang.String 172
hashCode() - of java.util.Date 222
Hashtable - of java.util 227

Hashtable() - of java.util.Hashtable 228
Hashtable(int) - of java.util. Hashtable 228
hasMoreElements() - of java.util. Enumeration 225
HOUR - of java.util.Calendar 213
HOUR_OF_DAY - of java.util.Calendar 213

identityHashCode(Object) - of java.lang.System 198

lllegalAccessException - of java.lang 112

lllegalAccessException() - of java.lang.lllegalAccessException 113
lllegalAccessException(String) - of java.lang.lllegalAccessException 113
lllegalArgumentException - of java.lang 114

IllegalArgumentException() - of java.lang.lllegalArgumentException 115
lllegalArgumentException(String) - of java.lang.lllegalArgumentException 115
lllegalMonitorStateException - of java.lang 116

lllegalMonitorStateException() - of java.lang.lllegalMonitorStateException 117
lllegalMonitorStateException(String) - of java.lang.lllegalMonitorStateException 117
lllegalThreadStateException - of java.lang 118

IllegalThreadStateException() - of java.lang.lllegalThreadStateException 119
lllegalThreadStateException(String) - of java.lang.lllegalThreadStateException 119

281

Index

in - of java.io.DatalnputStream 25

indexOf(int) - of java.lang.String 172

indexOf(int, int) - of java.lang.String 173

indexOf(Object) - of java.util.Vector 247

indexOf(Object, int) - of java.util.Vector 247

indexOf(String) - of java.lang.String 173

indexOf(String, int) - of java.lang.String 174
IndexOutOfBoundsException - of java.lang 120
IndexOutOfBoundsException() - of java.lang.IndexOutOfBoundsException 121
IndexOutOfBoundsException(String) - of java.lang.IndexOutOfBoundsException 121
InputConnection - of javax.microedition.io 271

InputStream - of java.io 44

InputStream() - of java.io.InputStream 45

InputStreamReader - of java.io 49

InputStreamReader(InputStream) - of java.io.lnputStreamReader 50
InputStreamReader(InputStream, String) - of java.io.InputStreamReader 50
insert(int, boolean) - of java.lang.StringBuffer 187

insert(int, char) - of java.lang.StringBuffer 188

insert(int, char[]) - of java.lang.StringBuffer 188

insert(int, int) - of java.lang.StringBuffer 189

insert(int, long) - of java.lang.StringBuffer 189

insert(int, Object) - of java.lang.StringBuffer 189

insert(int, String) - of java.lang.StringBuffer 190
insertElementAt(Object, int) - of java.util.Vector 248
InstantiationException - of java.lang 122

InstantiationException() - of java.lang.InstantiationException 122
InstantiationException(String) - of java.lang.InstantiationException 123
Integer - of java.lang 124

Integer(int) - of java.lang.Integer 125

InterruptedException - of java.lang 131

InterruptedException() - of java.lang.InterruptedException 131
InterruptedException(String) - of java.lang.InterruptedException 132
InterruptedlOEXxception - of java.io 52

InterruptedlOException() - of java.io.InterruptedlOException 53
InterruptedlOException(String) - of java.io.InterruptedlOException 53
intValue() - of java.lang.Integer 126

IOException - of java.io 54

IOException() - of java.io.|OException 55

IOEXxception(String) - of java.io.lIOException 55

isAlive() - of java.lang.Thread 202

isArray() - of java.lang.Class 101

isAssignableFrom(Class) - of java.lang.Class 101

isDigit(char) - of java.lang.Character 96

isEmpty() - of java.util.Hashtable 230

iIsEmpty() - of java.util.Vector 248

isinstance(Object) - of java.lang.Class 102

isInterface() - of java.lang.Class 102

isLowerCase(char) - of java.lang.Character 97

isUpperCase(char) - of java.lang.Character 97

282

Index

J

JANUARY - of java.util.Calendar 213
java.io - package 7

java.lang - package 81

java.util - package 209
javax.microedition.io - package 253
join() - of java.lang.Thread 202
JULY - of java.util.Calendar 214
JUNE - of java.util.Calendar 214

K

keys() - of java.util. Hashtable 230

L

lastElement() - of java.util.Vector 248
lastindexOf(int) - of java.lang.String 174
lastindexOf(int, int) - of java.lang.String 174
lastindexOf(Object) - of java.util.Vector 248
lastindexOf(Object, int) - of java.util.Vector 249
length() - of java.lang.String 175

length() - of java.lang.StringBuffer 190

lock - of java.io.Reader 69

lock - of java.io.Writer 77

Long - of java.lang 133

Long(long) - of java.lang.Long 134
longValue() - of java.lang.Integer 126
longValue() - of java.lang.Long 135

M

MARCH - of java.util.Calendar 214

mark - of java.io.ByteArraylnputStream 10
mark(int) - of java.io.ByteArraylnputStream 11
mark(int) - of java.io.DatalnputStream 26

mark(int) - of java.io.InputStream 45

mark(int) - of java.io.InputStreamReader 50
mark(int) - of java.io.Reader 70

markSupported() - of java.io.ByteArraylnputStream 12
markSupported() - of java.io.DatalnputStream 26
markSupported() - of java.io.InputStream 46
markSupported() - of java.io.InputStreamReader 51
markSupported() - of java.io.Reader 70

Math - of java.lang 138

max(int, int) - of java.lang.Math 139

max(long, long) - of java.lang.Math 139
MAX_PRIORITY - of java.lang.Thread 201
MAX_RADIX - of java.lang.Character 95
MAX_VALUE - of java.lang.Byte 91

283

Index

MAX_VALUE - of java.lang.Character 95
MAX_VALUE - of java.lang.Integer 125
MAX_VALUE - of java.lang.Long 134
MAX_VALUE - of java.lang.Short 162
MAY - of java.util.Calendar 214
MILLISECOND - of java.util.Calendar 214
min(int, int) - of java.lang.Math 139
min(long, long) - of java.lang.Math 140
MIN_PRIORITY - of java.lang.Thread 201
MIN_RADIX - of java.lang.Character 95
MIN_VALUE - of java.lang.Byte 92
MIN_VALUE - of java.lang.Character 95
MIN_VALUE - of java.lang.Integer 125
MIN_VALUE - of java.lang.Long 134
MIN_VALUE - of java.lang.Short 163
MINUTE - of java.util.Calendar 214
MONDAY - of java.util.Calendar 214
MONTH - of java.util.Calendar 214

N

NegativeArraySizeException - of java.lang 141

NegativeArraySizeException() - of java.lang.NegativeArraySizeException 141
NegativeArraySizeException(String) - of java.lang.NegativeArraySizeException 142
newDatagram(byte[], int) - of javax.microedition.io.DatagramConnection 268
newDatagram(byte[], int, String) - of javax.microedition.io.DatagramConnection 269
newDatagram(int) - of javax.microedition.io.DatagramConnection 269
newDatagram(int, String) - of javax.microedition.io.DatagramConnection 269
newlnstance() - of java.lang.Class 102

next(int) - of java.util. Random 235

nextElement() - of java.util. Enumeration 225

nextint() - of java.util. Random 236

nextLong() - of java.util.Random 236

NORM_PRIORITY - of java.lang.Thread 201

NoSuchElementException - of java.util 232

NoSuchElementException() - of java.uti.NoSuchElementException 233
NoSuchElementException(String) - of java.util. NoSuchElementException 233
notify() - of java.lang.Object 149

notifyAll() - of java.lang.Object 149

NOVEMBER - of java.util.Calendar 215

NullPointerException - of java.lang 143

NullPointerException() - of java.lang.NullPointerException 144
NullPointerException(String) - of java.lang.NullPointerException 144
NumberFormatException - of java.lang 145

NumberFormatException() - of java.lang.NumberFormatException 146
NumberFormatException(String) - of java.lang.NumberFormatException 146

O

Object - of java.lang 147

284

Index

Object() - of java.lang.Object 147

OCTOBER - of java.util.Calendar 215

open(String) - of javax.microedition.io.Connector 258

open(String, int) - of javax.microedition.io.Connector 259

open(String, int, boolean) - of javax.microedition.io.Connector 259
openDatalnputStream() - of javax.microedition.io.InputConnection 271
openDatalnputStream(String) - of javax.microedition.io.Connector 259
openDataOutputStream() - of javax.microedition.io.OutputConnection 273
openDataOutputStream(String) - of javax.microedition.io.Connector 260
openlnputStream() - of javax.microedition.io.InputConnection 271
openlnputStream(String) - of javax.microedition.io.Connector 260
openOutputStream() - of javax.microedition.io.OutputConnection 273
openOutputStream(String) - of javax.microedition.io.Connector 260

out - of java.io.DataOutputStream 38

out - of java.lang.System 196

OutOfMemoryError - of java.lang 153

OutOfMemaoryError() - of java.lang.OutOfMemoryError 153
OutOfMemoryError(String) - of java.lang.OutOfMemoryError 154
OutputConnection - of javax.microedition.io 273

OutputStream - of java.io 56

OutputStream() - of java.io.OutputStream 57

OutputStreamWriter - of java.io 59

OutputStreamWriter(OutputStream) - of java.io.OutputStreamWriter 60
OutputStreamWriter(OutputStream, String) - of java.io.OutputStreamWriter 60

P

parseByte(String) - of java.lang.Byte 93
parseByte(String, int) - of java.lang.Byte 93
parselnt(String) - of java.lang.Integer 126
parselnt(String, int) - of java.lang.Integer 127
parseLong(String) - of java.lang.Long 135
parseLong(String, int) - of java.lang.Long 135
parseShort(String) - of java.lang.Short 163
parseShort(String, int) - of java.lang.Short 164
peek() - of java.util.Stack 238

PM - of java.util.Calendar 215

pop() - of java.util.Stack 238

pos - of java.io.ByteArraylnputStream 10
print(boolean) - of java.io.PrintStream 64
print(char) - of java.io.PrintStream 64
print(char[]) - of java.io.PrintStream 64
print(int) - of java.io.PrintStream 64
print(long) - of java.io.PrintStream 65
print(Object) - of java.io.PrintStream 65
print(String) - of java.io.PrintStream 65
printin() - of java.io.PrintStream 65
printin(boolean) - of java.io.PrintStream 65
printin(char) - of java.io.PrintStream 66
printin(char(]) - of java.io.PrintStream 66

285

Index

printin(int) - of java.io.PrintStream 66

printin(long) - of java.io.PrintStream 66

printin(Object) - of java.io.PrintStream 66
printin(String) - of java.io.PrintStream 66
printStackTrace() - of java.lang.Throwable 205
PrintStream - of java.io 62

PrintStream(OutputStream) - of java.io.PrintStream 63
push(Obiject) - of java.util.Stack 239

put(Object, Object) - of java.util.Hashtable 230

R

Random - of java.util 234

Random() - of java.util.Random 235

Random(long) - of java.util. Random 235

READ - of javax.microedition.io.Connector 258

read() - of java.io.ByteArraylnputStream 12

read() - of java.io.DatalnputStream 26

read() - of java.io.InputStream 46

read() - of java.io.InputStreamReader 51

read() - of java.io.Reader 70

read(byte[]) - of java.io.DatalnputStream 27
read(byte[]) - of java.io.lnputStream 46

read(byte[], int, int) - of java.io.ByteArraylnputStream 12
read(byte([], int, int) - of java.io.DatalnputStream 27
read(byte[], int, int) - of java.io.InputStream 47
read(charf]) - of java.io.Reader 70

read(charf], int, int) - of java.io.InputStreamReader 51
read(charf], int, int) - of java.io.Reader 70
READ_WRITE - of javax.microedition.io.Connector 258
readBoolean() - of java.io.Datalnput 19
readBoolean() - of java.io.DatalnputStream 27
readByte() - of java.io.Datalnput 19

readByte() - of java.io.DatalnputStream 28
readChar() - of java.io.Datalnput 19

readChar() - of java.io.DatalnputStream 28

Reader - of java.io 68

Reader() - of java.io.Reader 69

Reader(Object) - of java.io.Reader 69
readFully(bytel]) - of java.io.Datalnput 19
readFully(bytel]) - of java.io.DatalnputStream 28
readFully(byte[], int, int) - of java.io.Datalnput 20
readFully(byte[], int, int) - of java.io.DatalnputStream 28
readint() - of java.io.Datalnput 20

readint() - of java.io.DatalnputStream 29

readLong() - of java.io.Datalnput 20

readLong() - of java.io.DatalnputStream 29
readShort() - of java.io.Datalnput 21

readShort() - of java.io.DatalnputStream 29
readUnsignedByte() - of java.io.Datalnput 21

286

Index

readUnsignedByte() - of java.io.DatalnputStream 29
readUnsignedShort() - of java.io.Datalnput 21
readUnsignedShort() - of java.io.DatalnputStream 30
readUTF() - of java.io.Datalnput 22

readUTF() - of java.io.DatalnputStream 30
readUTF(Datalnput) - of java.io.DatalnputStream 30
ready() - of java.io.lnputStreamReader 51

ready() - of java.io.Reader 71

receive(Datagram) - of javax.microedition.io.DatagramConnection 270
regionMatches(boolean, int, String, int, int) - of java.lang.String 175
rehash() - of java.util. Hashtable 230

remove(Object) - of java.util.Hashtable 231
removeAllElements() - of java.util.Vector 249
removeElement(Object) - of java.util.Vector 249
removeElementAt(int) - of java.util.Vector 249
replace(char, char) - of java.lang.String 176

reset() - of java.io.ByteArraylnputStream 12

reset() - of java.io.ByteArrayOutputStream 16

reset() - of java.io.DatalnputStream 31

reset() - of java.io.lnputStream 47

reset() - of java.io.InputStreamReader 51

reset() - of java.io.Reader 71

reset() - of javax.microedition.io.Datagram 265

reverse() - of java.lang.StringBuffer 190

run() - of java.lang.Runnable 155

run() - of java.lang.Thread 202

Runnable - of java.lang 155

Runtime - of java.lang 156

RuntimeException - of java.lang 158

RuntimeException() - of java.lang.RuntimeException 159
RuntimeException(String) - of java.lang.RuntimeException 159

S

SATURDAY - of java.util.Calendar 215

search(Object) - of java.util.Stack 239

SECOND - of java.util.Calendar 215

SecurityException - of java.lang 160

SecurityException() - of java.lang.SecurityException 160
SecurityException(String) - of java.lang.SecurityException 161
send(Datagram) - of javax.microedition.io.DatagramConnection 270
SEPTEMBER - of java.util.Calendar 215

set(int, int) - of java.util.Calendar 218

setAddress(Datagram) - of javax.microedition.io.Datagram 265
setAddress(String) - of javax.microedition.io.Datagram 265
setCharAt(int, char) - of java.lang.StringBuffer 191
setData(byte]], int, int) - of javax.microedition.io.Datagram 265
setElementAt(Object, int) - of java.util.Vector 250

setError() - of java.io.PrintStream 67

setLength(int) - of java.lang.StringBuffer 191

287

Index

setLength(int) - of javax.microedition.io.Datagram 266
setPriority(int) - of java.lang.Thread 202
setSeed(long) - of java.util.Random 236

setSize(int) - of java.util.Vector 250

setTime(Date) - of java.util.Calendar 218
setTime(long) - of java.util.Date 222
setTimelnMillis(long) - of java.util.Calendar 218
setTimeZone(TimeZone) - of java.util.Calendar 218
Short - of java.lang 162

Short(short) - of java.lang.Short 163

shortValue() - of java.lang.Integer 127

shortValue() - of java.lang.Short 164

size() - of java.io.ByteArrayOutputStream 16

size() - of java.util. Hashtable 231

size() - of java.util.Vector 250

skip(long) - of java.io.ByteArraylnputStream 13
skip(long) - of java.io.DatalnputStream 31

skip(long) - of java.io.InputStream 48

skip(long) - of java.io.InputStreamReader 51
skip(long) - of java.io.Reader 71

skipBytes(int) - of java.io.Datalnput 23

skipBytes(int) - of java.io.DatalnputStream 31
sleep(long) - of java.lang.Thread 203

Stack - of java.util 237

Stack() - of java.util.Stack 238

start() - of java.lang.Thread 203

startsWith(String) - of java.lang.String 176
startsWith(String, int) - of java.lang.String 176
StreamConnection - of javax.microedition.io 275
StreamConnectionNotifier - of javax.microedition.io 276
String - of java.lang 165

String() - of java.lang.String 167

String(byte([]) - of java.lang.String 167

String(byte[], int, int) - of java.lang.String 167
String(byte[], int, int, String) - of java.lang.String 168
String(byte[], String) - of java.lang.String 168
String(char[]) - of java.lang.String 168

String(char[], int, int) - of java.lang.String 169
String(String) - of java.lang.String 169
String(StringBuffer) - of java.lang.String 169
StringBuffer - of java.lang 181

StringBuffer() - of java.lang.StringBuffer 183
StringBuffer(int) - of java.lang.StringBuffer 183
StringBuffer(String) - of java.lang.StringBuffer 183
StringIndexOutOfBoundsException - of java.lang 193
StringIndexOutOfBoundsException() - of java.lang.StringindexOutOfBoundsException 194
StringIndexOutOfBoundsException(int) - of java.lang.StringIndexOutOfBoundsException 194
StringIndexOutOfBoundsException(String) - of java.lang.StringindexOutOfBoundsException 194
substring(int) - of java.lang.String 177

substring(int, int) - of java.lang.String 177

288

SUNDAY - of java.util.Calendar 215
System - of java.lang 195

T

Thread - of java.lang 199

Thread() - of java.lang.Thread 201
Thread(Runnable) - of java.lang.Thread 201
Throwable - of java.lang 204

Throwable() - of java.lang.Throwable 205
Throwable(String) - of java.lang.Throwable 205
THURSDAY - of java.util.Calendar 215
TimeZone - of java.util 240

TimeZone() - of java.util. TimeZone 241
toBinaryString(int) - of java.lang.Integer 127
toByteArray() - of java.io.ByteArrayOutputStream 16
toCharArray() - of java.lang.String 177
toHexString(int) - of java.lang.Integer 128
toLowerCase() - of java.lang.String 178
toLowerCase(char) - of java.lang.Character 97
toOctalString(int) - of java.lang.Integer 128
toString() - of java.io.ByteArrayOutputStream 16
toString() - of java.lang.Boolean 90

toString() - of java.lang.Byte 93

toString() - of java.lang.Character 97
toString() - of java.lang.Class 102

toString() - of java.lang.Integer 129

toString() - of java.lang.Long 136

toString() - of java.lang.Object 150

toString() - of java.lang.Short 164

toString() - of java.lang.String 178

toString() - of java.lang.StringBuffer 191
toString() - of java.lang.Thread 203

toString() - of java.lang.Throwable 206
toString() - of java.util. Hashtable 231
toString() - of java.util.Vector 250

toString(int) - of java.lang.Integer 129
toString(int, int) - of java.lang.Integer 129
toString(long) - of java.lang.Long 136
toString(long, int) - of java.lang.Long 136
totalMemory() - of java.lang.Runtime 157
toUpperCase() - of java.lang.String 178
toUpperCase(char) - of java.lang.Character 98
trim() - of java.lang.String 178

trimToSize() - of java.util.Vector 250
TUESDAY - of java.util.Calendar 215

U

UnsupportedEncodingException - of java.io 72

Index

289

Index

UnsupportedEncodingException() - of java.io.UnsupportedEncodingException 72
UnsupportedEncodingException(String) - of java.io.UnsupportedEncodingException 73
useDaylightTime() - of java.util. TimeZone 242

UTFDataFormatException - of java.io 74

UTFDataFormatException() - of java.io.UTFDataFormatException 75
UTFDataFormatException(String) - of java.io.UTFDataFormatException 75

V

valueOf(boolean) - of java.lang.String 178

valueOf(char) - of java.lang.String 179

valueOf(char[]) - of java.lang.String 179

valueOf(charf], int, int) - of java.lang.String 179

valueOf(int) - of java.lang.String 179

valueOf(long) - of java.lang.String 180

valueOf(Object) - of java.lang.String 180

valueOf(String) - of java.lang.Integer 130

valueOf(String, int) - of java.lang.Integer 130

Vector - of java.util 243

Vector() - of java.util.Vector 245

Vector(int) - of java.util.Vector 245

Vector(int, int) - of java.util.Vector 245

VirtualMachineError - of java.lang 207
VirtualMachineError() - of java.lang.VirtualMachineError 207
VirtualMachineError(String) - of java.lang.VirtualMachineError 208

W

wait() - of java.lang.Object 150

wait(long) - of java.lang.Object 150

wait(long, int) - of java.lang.Object 151
WEDNESDAY - of java.util.Calendar 216

WRITE - of javax.microedition.io.Connector 258
write(byte[]) - of java.io.DataOutput 32

write(byte[]) - of java.io.OutputStream 57
write(byte[], int, int) - of java.io.ByteArrayOutputStream 16
write(byte[], int, int) - of java.io.DataOutput 33
write(byte[], int, int) - of java.io.DataOutputStream 39
write(byte[], int, int) - of java.io.OutputStream 57
write(byte[], int, int) - of java.io.PrintStream 67
write(char[]) - of java.io.Writer 78

write(charf], int, int) - of java.io.OutputStreamWriter 61
write(char[], int, int) - of java.io.Writer 78

write(int) - of java.io.ByteArrayOutputStream 17
write(int) - of java.io.DataOutput 33

write(int) - of java.io.DataOutputStream 39

write(int) - of java.io.OutputStream 58

write(int) - of java.io.OutputStreamWriter 61
write(int) - of java.io.PrintStream 67

write(int) - of java.io.Writer 78

290

write(String) - of java.io.Writer 78

write(String, int, int) - of java.io.OutputStreamWriter 61
write(String, int, int) - of java.io.Writer 79
writeBoolean(boolean) - of java.io.DataOutput 33
writeBoolean(boolean) - of java.io.DataOutputStream 39
writeByte(int) - of java.io.DataOutput 33
writeByte(int) - of java.io.DataOutputStream 40
writeChar(int) - of java.io.DataOutput 34
writeChar(int) - of java.io.DataOutputStream 40
writeChars(String) - of java.io.DataOutput 34
writeChars(String) - of java.io.DataOutputStream 40
writelnt(int) - of java.io.DataOutput 34

writelnt(int) - of java.io.DataOutputStream 40
writeLong(long) - of java.io.DataOutput 35
writeLong(long) - of java.io.DataOutputStream 41
Writer - of java.io 76

Writer() - of java.io.Writer 77

Writer(Obiject) - of java.io.Writer 77

writeShort(int) - of java.io.DataOutput 35
writeShort(int) - of java.io.DataOutputStream 41
writeUTF(String) - of java.io.DataOutput 35
writeUTF(String) - of java.io.DataOutputStream 41

Y

YEAR - of java.util.Calendar 216
yield() - of java.lang.Thread 203

Index

291

Index

292

	Contents
	CLDC API
	java.io
	ByteArrayInputStream
	ByteArrayOutputStream
	DataInput
	DataInputStream
	DataOutput
	DataOutputStream
	EOFException
	InputStream
	InputStreamReader
	InterruptedIOException
	IOException
	OutputStream
	OutputStreamWriter
	PrintStream
	Reader
	UnsupportedEncodingException
	UTFDataFormatException
	Writer

	java.lang
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	Boolean
	Byte
	Character
	Class
	ClassCastException
	ClassNotFoundException
	Error
	Exception
	IllegalAccessException
	IllegalArgumentException
	IllegalMonitorStateException
	IllegalThreadStateException
	IndexOutOfBoundsException
	InstantiationException
	Integer
	InterruptedException
	Long
	Math
	NegativeArraySizeException
	NullPointerException
	NumberFormatException
	Object
	OutOfMemoryError
	Runnable
	Runtime
	RuntimeException
	SecurityException
	Short
	String
	StringBuffer
	StringIndexOutOfBoundsException
	System
	Thread
	Throwable
	VirtualMachineError

	java.util
	Calendar
	Date
	EmptyStackException
	Enumeration
	Hashtable
	NoSuchElementException
	Random
	Stack
	TimeZone
	Vector

	javax.microedition.io
	Connection
	ConnectionNotFoundException
	Connector
	ContentConnection
	Datagram
	DatagramConnection
	InputConnection
	OutputConnection
	StreamConnection
	StreamConnectionNotifier

	Index

