
J2ME CLDC API

1.0

Copyright © 2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,

worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are

essential to practice the K Virtual Machine (KVM) or J2ME CLDC Reference Implementation technology to

use this document for internal evaluation purposes only. Other than this limited license, you acquire no

right, title, or interest in or to the document and you shall have no right to use the document for productive

or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)

and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A

RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JDK, and Solaris are trademarks or

registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX® is a

registered trademark in the United States and other countries, exclusively licensed through X/Open

Company, Ltd.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE

INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE

IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED

IN THIS PUBLICATION AT ANY TIME.
2

Contents
..... 5
CLDC API ...
java.io .. 7

ByteArrayInputStream ... 9
ByteArrayOutputStream .. 14
DataInput .. 18
DataInputStream .. 24
DataOutput ... 32
DataOutputStream .. 37
EOFException .. 42
InputStream .. 44
InputStreamReader .. 49
InterruptedIOException ... 52
IOException ... 54
OutputStream ... 56
OutputStreamWriter ... 59
PrintStream .. 62
Reader .. 68
UnsupportedEncodingException ... 72
UTFDataFormatException ... 74
Writer ... 76

java.lang .. 81
ArithmeticException .. 83
ArrayIndexOutOfBoundsException .. 85
ArrayStoreException .. 87
Boolean .. 89
Byte .. 91
Character .. 94
Class ... 99
ClassCastException .. 104
ClassNotFoundException .. 106
Error ... 108
Exception ... 110
IllegalAccessException .. 112
IllegalArgumentException ... 114
IllegalMonitorStateException .. 116
IllegalThreadStateException .. 118
IndexOutOfBoundsException .. 120
InstantiationException ... 122
Integer .. 124
InterruptedException .. 131
Long ... 133
Math ... 138
NegativeArraySizeException ... 141
NullPointerException ... 143
NumberFormatException ... 145
Object ... 147
OutOfMemoryError ... 153
Runnable .. 155
Runtime .. 156
RuntimeException .. 158
SecurityException .. 160
3

Contents

.. 2
Short ... 162
String .. 165
StringBuffer ... 181
StringIndexOutOfBoundsException .. 193
System .. 195
Thread .. 199
Throwable .. 204
VirtualMachineError .. 207

java.util ... 209
Calendar ... 210
Date .. 220
EmptyStackException .. 223
Enumeration ... 225
Hashtable .. 227
NoSuchElementException ... 232
Random .. 234
Stack ... 237
TimeZone ... 240
Vector ... 243

javax.microedition.io ...53
Connection ... 254
ConnectionNotFoundException ... 255
Connector ... 257
ContentConnection .. 261
Datagram .. 263
DatagramConnection ... 267
InputConnection ... 271
OutputConnection .. 273
StreamConnection .. 275
StreamConnectionNotifier ... 276

Index .. 277
4

CLDC API
uage.

ies
Package Summary

CLDC API packages

java.io Provides for system input and output through data streams.

java.lang Provides classes that are fundamental to the design of the Java programming lang

java.util Contains the collections framework, legacy collection classes, date and time facilit
and miscellaneous utility classes.

javax.microedition.io The classes for the generic connections.
5

6

Package

java.io
n-

i-

ay.

erly-

ytes.

s

of

ters
Description
Provides for system input and output through data streams.

Since: JDK 1.0

Class Summary

Interfaces

DataInput TheDataInput interface provides for reading bytes from a binary stream and reco
structing from them data in any of the Java primitive types.

DataOutput TheDataOutput interface provides for converting data from any of the Java prim
tive types to a series of bytes and writing these bytes to a binary stream.

Classes

ByteArrayInputStream A ByteArrayInputStream contains an internal buffer that contains bytes that
may be read from the stream.

ByteArrayOutputStream This class implements an output stream in which the data is written into a byte arr

DataInputStream A data input stream lets an application read primitive Java data types from an und
ing input stream in a machine-independent way.

DataOutputStream A data input stream lets an application write primitive Java data types to an output
stream in a portable way.

InputStream This abstract class is the superclass of all classes representing an input stream of b

InputStreamReader An InputStreamReader is a bridge from byte streams to character streams: It read
bytes and translates them into characters.

OutputStream This abstract class is the superclass of all classes representing an output stream
bytes.

OutputStreamWriter An OutputStreamWriter is a bridge from character streams to byte streams: Charac
written to it are translated into bytes.

PrintStream A PrintStream adds functionality to another output stream, namely the ability to
print representations of various data values conveniently.

Reader Abstract class for reading character streams.

Writer Abstract class for writing to character streams.

Exceptions

EOFException Signals that an end of file or end of stream has been reached unexpectedly during
input.

InterruptedIOExcep-
tion

Signals that an I/O operation has been interrupted.

IOException Signals that an I/O exception of some sort has occurred.

UnsupportedEncod-
ingException

The Character Encoding is not supported.
7

java.io

 any
UTFDataFormatExcep-
tion

Signals that a malformed UTF-8 string has been read in a data input stream or by
class that implements the data input interface.

Class Summary
8

java.io ByteArrayInputStream

the

ng.
ream.
java.io

ByteArrayInputStream
Syntax
public class ByteArrayInputStream extends InputStream

Object
|
+-- InputStream

|
+-- java.io.ByteArrayInputStream

Description
A ByteArrayInputStream contains an internal buffer that contains bytes that may be read from
stream. An internal counter keeps track of the next byte to be supplied by theread method.

Since: JDK1.0

Member Summary

Fields
buf An array of bytes that was provided by the creator of the stream.
count The index one greater than the last valid character in the input stream buffer.
mark The currently marked position in the stream.
pos The index of the next character to read from the input stream buffer.

Constructors
ByteArrayInput-
Stream(byte[])

Creates aByteArrayInputStream so that it usesbuf as its buffer array.

ByteArrayInput-
Stream(byte[], int,
int)

CreatesByteArrayInputStream that usesbuf as its buffer array.

Methods
available() Returns the number of bytes that can be read from this input stream without blocki
close() Closes this input stream and releases any system resources associated with the st
mark(int) Set the current marked position in the stream.
markSupported() Tests if ByteArrayInputStream supports mark/reset.
read() Reads the next byte of data from this input stream.
read(byte[], int, int) Reads up tolen bytes of data into an array of bytes from this input stream.
reset() Resets the buffer to the marked position.
skip(long) Skipsn bytes of input from this input stream.

Inherited Member Summary

Methods inherited from classInputStream
9

ByteArrayInputStream java.io

buf

ays be
in

ero by

nnega-
e

Fields

buf

protected byte[] buf

An array of bytes that was provided by the creator of the stream. Elementsbuf[0] throughbuf[count-
1] are the only bytes that can ever be read from the stream; elementbuf[pos] is the next byte to be read.

count

protected int count

The index one greater than the last valid character in the input stream buffer. This value should alw
nonnegative and not larger than the length ofbuf . It is one greater than the position of the last byte with
buf that can ever be read from the input stream buffer.

mark

protected int mark

The currently marked position in the stream. ByteArrayInputStream objects are marked at position z
default when constructed. They may be marked at another position within the buffer by themark()
method. The current buffer position is set to this point by thereset() method.

Since: JDK1.1

pos

protected int pos

The index of the next character to read from the input stream buffer. This value should always be no
tive and not larger than the value ofcount . The next byte to be read from the input stream buffer will b
buf[pos] .

Constructors

ByteArrayInputStream(byte[])

read(byte[])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Inherited Member Summary
10

java.io ByteArrayInputStream

ByteArrayInputStream(byte[], int, int)

-

rned is

ero by
public ByteArrayInputStream(byte[] buf)

Creates aByteArrayInputStream so that it usesbuf as its buffer array. The buffer array is not cop
ied. The initial value ofpos is 0 and the initial value ofcount is the length ofbuf .

Parameters:
buf - the input buffer.

ByteArrayInputStream(byte[], int, int)

public ByteArrayInputStream(byte[] buf, int offset, int length)

CreatesByteArrayInputStream that usesbuf as its buffer array. The initial value ofpos is offset
and the initial value ofcount is offset+len . The buffer array is not copied.

Note that if bytes are simply read from the resulting input stream, elementsbuf[pos] through
buf[pos+len-1] will be read; however, if areset operation is performed, then bytesbuf[0]
through buf[pos-1] will then become available for input.

Parameters:
buf - the input buffer.

offset - the offset in the buffer of the first byte to read.

length - the maximum number of bytes to read from the buffer.

Methods

available()

public synchronized int available()

Returns the number of bytes that can be read from this input stream without blocking. The value retu
count - pos , which is the number of bytes remaining to be read from the input buffer.

Overrides: available() in classInputStream

Returns: the number of bytes that can be read from the input stream without blocking.

close()

public synchronized void close()

Closes this input stream and releases any system resources associated with the stream.

Overrides: close() in classInputStream

Throws: IOException

mark(int)

public void mark(int readAheadLimit)

Set the current marked position in the stream. ByteArrayInputStream objects are marked at position z
default when constructed. They may be marked at another position within the buffer by this method.
11

ByteArrayInputStream java.io

markSupported()

of

on was
Overrides: mark(int) in classInputStream

Since: JDK1.1

markSupported()

public boolean markSupported()

Tests if ByteArrayInputStream supports mark/reset.

Overrides: markSupported() in classInputStream

Since: JDK1.1

read()

public synchronized int read()

Reads the next byte of data from this input stream. The value byte is returned as anint in the range0 to
255 . If no byte is available because the end of the stream has been reached, the value-1 is returned.

This read method cannot block.

Overrides: read() in classInputStream

Returns: the next byte of data, or-1 if the end of the stream has been reached.

read(byte[], int, int)

public synchronized int read(byte[] b, int off, int len)

Reads up tolen bytes of data into an array of bytes from this input stream. Ifpos equalscount , then-1
is returned to indicate end of file. Otherwise, the numberk of bytes read is equal to the smaller oflen and
count-pos . If k is positive, then bytesbuf[pos] throughbuf[pos+k-1] are copied intob[off]
throughb[off+k-1] in the manner performed bySystem.arraycopy . The valuek is added into
pos andk is returned.

This read method cannot block.

Overrides: read(byte[], int, int) in classInputStream

Parameters:
b - the buffer into which the data is read.

off - the start offset of the data.

len - the maximum number of bytes read.

Returns: the total number of bytes read into the buffer, or-1 if there is no more data because the end
the stream has been reached.

reset()

public synchronized void reset()

Resets the buffer to the marked position. The marked position is the beginning unless another positi
marked. The value ofpos is set to 0.

Overrides: reset() in classInputStream
12

java.io ByteArrayInputStream

skip(long)

am is
skip(long)

public synchronized long skip(long n)

Skipsn bytes of input from this input stream. Fewer bytes might be skipped if the end of the input stre
reached. The actual numberk of bytes to be skipped is equal to the smaller ofn andcount-pos . The
valuek is added intopos andk is returned.

Overrides: skip(long) in classInputStream

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.
13

ByteArrayOutputStream java.io

skip(long)

tically

, in

s

ing
java.io

ByteArrayOutputStream
Syntax
public class ByteArrayOutputStream extends OutputStream

Object
|
+-- OutputStream

|
+-- java.io.ByteArrayOutputStream

Description
This class implements an output stream in which the data is written into a byte array. The buffer automa
grows as data is written to it. The data can be retrieved usingtoByteArray() andtoString() .

Since: JDK1.0

Member Summary

Fields
buf The buffer where data is stored.
count The number of valid bytes in the buffer.

Constructors
ByteArrayOutput-
Stream()

Creates a new byte array output stream.

ByteArrayOutput-
Stream(int)

Creates a new byte array output stream, with a buffer capacity of the specified size
bytes.

Methods
close() Closes this output stream and releases any system resources associated with thi

stream.
reset() Resets thecount field of this byte array output stream to zero, so that all currently

accumulated output in the output stream is discarded.
size() Returns the current size of the buffer.
toByteArray() Creates a newly allocated byte array.
toString() Converts the buffer's contents into a string, translating bytes into characters accord

to the platform's default character encoding.
write(byte[], int,
int)

Writeslen bytes from the specified byte array starting at offsetoff to this byte array
output stream.

write(int) Writes the specified byte to this byte array output stream.

Inherited Member Summary

Methods inherited from classOutputStream
14

java.io ByteArrayOutputStream

buf

ases if
Fields

buf

protected byte[] buf

The buffer where data is stored.

count

protected int count

The number of valid bytes in the buffer.

Constructors

ByteArrayOutputStream()

public ByteArrayOutputStream()

Creates a new byte array output stream. The buffer capacity is initially 32 bytes, though its size incre
necessary.

ByteArrayOutputStream(int)

public ByteArrayOutputStream(int size)

Creates a new byte array output stream, with a buffer capacity of the specified size, in bytes.

Parameters:
size - the initial size.

Throws: IllegalArgumentException - if size is negative.

Methods

write(byte[]) , flush()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Inherited Member Summary
15

ByteArrayOutputStream java.io

close()

d stream

ut in
d buffer

ontents

tform's
close()

public synchronized void close()

Closes this output stream and releases any system resources associated with this stream. A close
cannot perform output operations and cannot be reopened.

Overrides: close() in classOutputStream

Throws: IOException

reset()

public synchronized void reset()

Resets thecount field of this byte array output stream to zero, so that all currently accumulated outp
the output stream is discarded. The output stream can be used again, reusing the already allocate
space.

See Also: count

size()

public int size()

Returns the current size of the buffer.

Returns: the value of thecount field, which is the number of valid bytes in this output stream.

See Also: count

toByteArray()

public synchronized byte[] toByteArray()

Creates a newly allocated byte array. Its size is the current size of this output stream and the valid c
of the buffer have been copied into it.

Returns: the current contents of this output stream, as a byte array.

See Also: size()

toString()

public String toString()

Converts the buffer's contents into a string, translating bytes into characters according to the pla
default character encoding.

Overrides: toString() in classObject

Returns: String translated from the buffer's contents.

Since: JDK1.1

write(byte[], int, int)
16

java.io ByteArrayOutputStream

write(int)
public synchronized void write(byte[] b, int off, int len)

Writes len bytes from the specified byte array starting at offsetoff to this byte array output stream.

Overrides: write(byte[], int, int) in classOutputStream

Parameters:
b - the data.

off - the start offset in the data.

len - the number of bytes to write.

write(int)

public synchronized void write(int b)

Writes the specified byte to this byte array output stream.

Overrides: write(int) in classOutputStream

Parameters:
b - the byte to be written.
17

DataInput java.io

write(int)

data

sired
java.io

DataInput
Syntax
public abstract interface DataInput

All Known Subinterfaces: Datagram

All Known Implementing Classes: DataInputStream

Description
TheDataInput interface provides for reading bytes from a binary stream and reconstructing from them
in any of the Java primitive types. There is also a facility for reconstructing aString from data in Java modi-
fied UTF-8 format.

It is generally true of all the reading routines in this interface that if end of file is reached before the de
number of bytes has been read, anEOFException (which is a kind ofIOException) is thrown. If any byte
cannot be read for any reason other than end of file, anIOException other thanEOFException is thrown.
In particular, anIOException may be thrown if the input stream has been closed.

Since: JDK1.0

See Also: DataInputStream , DataOutput

Member Summary

Methods
readBoolean() Reads one input byte and returnstrue if that byte is nonzero,false if that byte is

zero.
readByte() Reads and returns one input byte.
readChar() Reads an inputchar and returns thechar value.
readFully(byte[]) Reads some bytes from an input stream and stores them into the buffer arrayb.
readFully(byte[],
int, int)

Readslen bytes from an input stream.

readInt() Reads four input bytes and returns anint value.
readLong() Reads eight input bytes and returns along value.
readShort() Reads two input bytes and returns ashort value.
readUnsignedByte() Reads one input byte, zero-extends it to typeint , and returns the result, which is

therefore in the range0 through255 .
readUnsignedShort() Reads two input bytes and returns anint value in the range0 through65535 .
readUTF() Reads in a string that has been encoded using a modified UTF-8 format.
skipBytes(int) Makes an attempt to skip overn bytes of data from the input stream, discarding the

skipped bytes.
18

java.io DataInput

readBoolean()
Methods

readBoolean()

public boolean readBoolean()

Reads one input byte and returnstrue if that byte is nonzero,false if that byte is zero. This method is
suitable for reading the byte written by thewriteBoolean method of interfaceDataOutput .

Returns: theboolean value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readByte()

public byte readByte()

Reads and returns one input byte. The byte is treated as a signed value in the range-128 through127 ,
inclusive. This method is suitable for reading the byte written by thewriteByte method of interface
DataOutput .

Returns: the 8-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readChar()

public char readChar()

Reads an inputchar and returns thechar value. A Unicodechar is made up of two bytes. Leta be the
first byte read andb be the second byte. The value returned is:

(char)((a << 8) | (b & 0xff))

This method is suitable for reading bytes written by thewriteChar method of interfaceDataOutput .

Returns: the Unicodechar read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readFully(byte[])

public void readFully(byte[] b)

Reads some bytes from an input stream and stores them into the buffer arrayb. The number of bytes read is
equal to the length ofb.

This method blocks until one of the following conditions occurs:

• b.length bytes of input data are available, in which case a normal return is made.
• End of file is detected, in which case anEOFException is thrown.
• An I/O error occurs, in which case anIOException other thanEOFException is thrown.
19

DataInput java.io

readFully(byte[], int, int)

-
If b is null , aNullPointerException is thrown. Ifb.length is zero, then no bytes are read. Oth
erwise, the first byte read is stored into elementb[0] , the next one intob[1] , and so on. If an exception is
thrown from this method, then it may be that some but not all bytes ofb have been updated with data from
the input stream.

Parameters:
b - the buffer into which the data is read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readFully(byte[], int, int)

public void readFully(byte[] b, int off, int len)

Readslen bytes from an input stream.

This method blocks until one of the following conditions occurs:

• len bytes of input data are available, in which case a normal return is made.
• End of file is detected, in which case anEOFException is thrown.
• An I/O error occurs, in which case anIOException other thanEOFException is thrown.

If b is null , a NullPointerException is thrown. If off is negative, orlen is negative, or
off+len is greater than the length of the arrayb, then anIndexOutOfBoundsException is thrown.
If len is zero, then no bytes are read. Otherwise, the first byte read is stored into elementb[off] , the next
one intob[off+1] , and so on. The number of bytes read is, at most, equal tolen .

Parameters:
b - the buffer into which the data is read.

off - an int specifying the offset into the data.

len - an int specifying the number of bytes to read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readInt()

public int readInt()

Reads four input bytes and returns anint value. Leta be the first byte read,b be the second byte,c be the
third byte, andd be the fourth byte. The value returned is:

(((a & 0xff) << 24) | ((b & 0xff) << 16) |
 ((c & 0xff) << 8) | (d & 0xff))

This method is suitable for reading bytes written by thewriteInt method of interfaceDataOutput .

Returns: the int value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readLong()
20

java.io DataInput

readShort()
public long readLong()

Reads eight input bytes and returns along value. Leta be the first byte read,b be the second byte,c be
the third byte,d be the fourth byte,e be the fifth byte,f be the sixth byte,g be the seventh byte, andh be
the eighth byte. The value returned is:

(((long)(a & 0xff) << 56) |
((long)(b & 0xff) << 48) |
((long)(c & 0xff) << 40) |
((long)(d & 0xff) << 32) |
((long)(e & 0xff) << 24) |
((long)(f & 0xff) << 16) |
((long)(g & 0xff) << 8) |
((long)(h & 0xff)))

This method is suitable for reading bytes written by thewriteLong method of interfaceDataOutput .

Returns: the long value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readShort()

public short readShort()

Reads two input bytes and returns ashort value. Leta be the first byte read andb be the second byte. The
value returned is:

(short)((a << 8) * | (b & 0xff))

This method is suitable for reading the bytes written by thewriteShort method of interfaceDataOut-
put .

Returns: the 16-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUnsignedByte()

public int readUnsignedByte()

Reads one input byte, zero-extends it to typeint , and returns the result, which is therefore in the range0
through255 . This method is suitable for reading the byte written by thewriteByte method of interface
DataOutput if the argument towriteByte was intended to be a value in the range0 through255 .

Returns: the unsigned 8-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUnsignedShort()

public int readUnsignedShort()
21

DataInput java.io

readUTF()

at; this

of the
f
ps. The

roup,

e

the same

g

Reads two input bytes and returns anint value in the range0 through65535 . Let a be the first byte read
andb be the second byte. The value returned is:

(((a & 0xff) << 8) | (b & 0xff))

This method is suitable for reading the bytes written by thewriteShort method of interfaceDataOut-
put if the argument towriteShort was intended to be a value in the range0 through65535 .

Returns: the unsigned 16-bit value read.

Throws: EOFException - if this stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readUTF()

public String readUTF()

Reads in a string that has been encoded using a modified UTF-8 format. The general contract ofreadUTF
is that it reads a representation of a Unicode character string encoded in Java modified UTF-8 form
string of characters is then returned as aString .

First, two bytes are read and used to construct an unsigned 16-bit integer in exactly the manner
readUnsignedShort method . This integer value is called theUTF lengthand specifies the number o
additional bytes to be read. These bytes are then converted to characters by considering them in grou
length of each group is computed from the value of the first byte of the group. The byte following a g
if any, is the first byte of the next group.

If the first byte of a group matches the bit pattern0xxxxxxx (wherex means "may be0 or 1"), then the
group consists of just that byte. The byte is zero-extended to form a character.

If the first byte of a group matches the bit pattern110xxxxx , then the group consists of that bytea and a
second byteb. If there is no byteb (because bytea was the last of the bytes to be read), or if byteb does
not match the bit pattern10xxxxxx , then aUTFDataFormatException is thrown. Otherwise, the
group is converted to the character:

(char)(((a& 0x1F) << 6) | (b & 0x3F))

If the first byte of a group matches the bit pattern1110xxxx , then the group consists of that bytea and
two more bytesb andc . If there is no bytec (because bytea was one of the last two of the bytes to b
read), or either byteb or bytec does not match the bit pattern10xxxxxx , then aUTFDataFormatEx-
ception is thrown. Otherwise, the group is converted to the character:

(char)(((a & 0x0F) << 12) | ((b & 0x3F) << 6) | (c & 0x3F))

If the first byte of a group matches the pattern1111xxxx or the pattern10xxxxxx , then aUTF-
DataFormatException is thrown.

If end of file is encountered at any time during this entire process, then anEOFException is thrown.

After every group has been converted to a character by this process, the characters are gathered, in
order in which their corresponding groups were read from the input stream, to form aString , which is
returned.

ThewriteUTF method of interfaceDataOutput may be used to write data that is suitable for readin
by this method.

Returns: a Unicode string.

Throws: EOFException - if this stream reaches the end before reading all the bytes.
22

java.io DataInput

skipBytes(int)

ow-
mber
od
IOException - if an I/O error occurs.

UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a string.

skipBytes(int)

public int skipBytes(int n)

Makes an attempt to skip overn bytes of data from the input stream, discarding the skipped bytes. H
ever, it may skip over some smaller number of bytes, possibly zero. This may result from any of a nu
of conditions; reaching end of file beforen bytes have been skipped is only one possibility. This meth
never throws anEOFException . The actual number of bytes skipped is returned.

Parameters:
n - the number of bytes to be skipped.

Returns: the number of bytes skipped, which is alwaysn.

Throws: EOFException - if this stream reaches the end before skipping all the bytes.

IOException - if an I/O error occurs.
23

DataInputStream java.io

skipBytes(int)

in a
y a data

ng.
ream.
java.io

DataInputStream
Syntax
public class DataInputStream extends InputStream implements DataInput

Object
|
+-- InputStream

|
+-- java.io.DataInputStream

All Implemented Interfaces: DataInput

Description
A data input stream lets an application read primitive Java data types from an underlying input stream
machine-independent way. An application uses a data output stream to write data that can later be read b
input stream.

Since: JDK1.0

See Also: DataOutputStream

Member Summary

Fields
in The input stream.

Constructors
DataInput-
Stream(InputStream)

Creates aDataInputStream and saves its argument, the input streamin , for later
use.

Methods
available() Returns the number of bytes that can be read from this input stream without blocki
close() Closes this input stream and releases any system resources associated with the st
mark(int) Marks the current position in this input stream.
markSupported() Tests if this input stream supports themark andreset methods.
read() Reads the next byte of data from this input stream.
read(byte[]) See the general contract of theread method ofDataInput .
read(byte[], int, int) Reads up tolen bytes of data from this input stream into an array of bytes.
readBoolean() See the general contract of thereadBoolean method ofDataInput .
readByte() See the general contract of thereadByte method ofDataInput .
readChar() See the general contract of thereadChar method ofDataInput .
readFully(byte[]) See the general contract of thereadFully method ofDataInput .
readFully(byte[],
int, int)

See the general contract of thereadFully method ofDataInput .

readInt() See the general contract of thereadInt method ofDataInput .
readLong() See the general contract of thereadLong method ofDataInput .
readShort() See the general contract of thereadShort method ofDataInput .
24

java.io DataInputStream

in
Fields

in

protected InputStream in

The input stream.

Constructors

DataInputStream(InputStream)

public DataInputStream(InputStream in)

Creates aDataInputStream and saves its argument, the input streamin , for later use.

Parameters:
in - the input stream.

Methods

available()

public int available()

readUnsignedByte() See the general contract of thereadUnsignedByte method ofDataInput .
readUnsignedShort() See the general contract of thereadUnsignedShort method ofDataInput .
readUTF() See the general contract of thereadUTF method ofDataInput .
readUTF(DataInput) Reads from the streamin a representation of a Unicode character string encoded in

Java modified UTF-8 format; this string of characters is then returned as aString .
reset() Repositions this stream to the position at the time themark method was last called on

this input stream.
skip(long) Skips over and discardsn bytes of data from the input stream.
skipBytes(int) See the general contract of theskipBytes method ofDataInput .

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Member Summary
25

DataInputStream java.io

close()

d simply

posi-

alid.

s

wn.
Returns the number of bytes that can be read from this input stream without blocking.

This method simply performsin.available(n) and returns the result.

Overrides: available() in classInputStream

Returns: the number of bytes that can be read from the input stream without blocking.

Throws: IOException - if an I/O error occurs.

close()

public void close()

Closes this input stream and releases any system resources associated with the stream. This metho
performsin.close() .

Overrides: close() in classInputStream

Throws: IOException - if an I/O error occurs.

mark(int)

public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to thereset method repositions this
stream at the last marked position so that subsequent reads re-read the same bytes.

Thereadlimit argument tells this input stream to allow that many bytes to be read before the mark
tion gets invalidated.

This method simply performsin.mark(readlimit) .

Overrides: mark(int) in classInputStream

Parameters:
readlimit - the maximum limit of bytes that can be read before the mark position becomes inv

markSupported()

public boolean markSupported()

Tests if this input stream supports themark and reset methods. This method simply perform
in.markSupported() .

Overrides: markSupported() in classInputStream

Returns: true if this stream type supports themark andreset method;false otherwise.

read()

public int read()

Reads the next byte of data from this input stream. The value byte is returned as anint in the range0 to
255 . If no byte is available because the end of the stream has been reached, the value-1 is returned. This
method blocks until input data is available, the end of the stream is detected, or an exception is thro

This method simply performsin.read() and returns the result.

Overrides: read() in classInputStream
26

java.io DataInputStream

read(byte[])

of

ome

f

Returns: the next byte of data, or-1 if the end of the stream is reached.

Throws: IOException - if an I/O error occurs.

read(byte[])

public final int read(byte[] b)

See the general contract of theread method ofDataInput .

Bytes for this operation are read from the contained input stream.

Overrides: read(byte[]) in classInputStream

Parameters:
b - the buffer into which the data is read.

Returns: the total number of bytes read into the buffer, or-1 if there is no more data because the end
the stream has been reached.

Throws: IOException - if an I/O error occurs.

See Also: read(byte[], int, int)

read(byte[], int, int)

public final int read(byte[] b, int off, int len)

Reads up tolen bytes of data from this input stream into an array of bytes. This method blocks until s
input is available.

This method simply performsin.read(b, off, len) and returns the result.

Overrides: read(byte[], int, int) in classInputStream

Parameters:
b - the buffer into which the data is read.

off - the start offset of the data.

len - the maximum number of bytes read.

Returns: the total number of bytes read into the buffer, or-1 if there is no more data because the end o
the stream has been reached.

Throws: IOException - if an I/O error occurs.

readBoolean()

public final boolean readBoolean()

See the general contract of thereadBoolean method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readBoolean() in interfaceDataInput

Returns: theboolean value read.

Throws: EOFException - if this input stream has reached the end.

IOException - if an I/O error occurs.
27

DataInputStream java.io

readByte()
readByte()

public final byte readByte()

See the general contract of thereadByte method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readByte() in interfaceDataInput

Returns: the next byte of this input stream as a signed 8-bitbyte .

Throws: EOFException - if this input stream has reached the end.

IOException - if an I/O error occurs.

readChar()

public final char readChar()

See the general contract of thereadChar method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readChar() in interfaceDataInput

Returns: the next two bytes of this input stream as a Unicode character.

Throws: EOFException - if this input stream reaches the end before reading two bytes.

IOException - if an I/O error occurs.

readFully(byte[])

public final void readFully(byte[] b)

See the general contract of thereadFully method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[]) in interfaceDataInput

Parameters:
b - the buffer into which the data is read.

Throws: EOFException - if this input stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readFully(byte[], int, int)

public final void readFully(byte[] b, int off, int len)

See the general contract of thereadFully method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readFully(byte[], int, int) in interfaceDataInput

Parameters:
b - the buffer into which the data is read.

off - the start offset of the data.
28

java.io DataInputStream

readInt()
len - the number of bytes to read.

Throws: EOFException - if this input stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

readInt()

public final int readInt()

See the general contract of thereadInt method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readInt() in interfaceDataInput

Returns: the next four bytes of this input stream, interpreted as anint .

Throws: EOFException - if this input stream reaches the end before reading four bytes.

IOException - if an I/O error occurs.

readLong()

public final long readLong()

See the general contract of thereadLong method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readLong() in interfaceDataInput

Returns: the next eight bytes of this input stream, interpreted as along .

Throws: EOFException - if this input stream reaches the end before reading eight bytes.

IOException - if an I/O error occurs.

readShort()

public final short readShort()

See the general contract of thereadShort method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readShort() in interfaceDataInput

Returns: the next two bytes of this input stream, interpreted as a signed 16-bit number.

Throws: EOFException - if this input stream reaches the end before reading two bytes.

IOException - if an I/O error occurs.

readUnsignedByte()

public final int readUnsignedByte()

See the general contract of thereadUnsignedByte method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readUnsignedByte() in interfaceDataInput
29

DataInputStream java.io

readUnsignedShort()

TF-8
-

e

Returns: the next byte of this input stream, interpreted as an unsigned 8-bit number.

Throws: EOFException - if this input stream has reached the end.

IOException - if an I/O error occurs.

readUnsignedShort()

public final int readUnsignedShort()

See the general contract of thereadUnsignedShort method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readUnsignedShort() in interfaceDataInput

Returns: the next two bytes of this input stream, interpreted as an unsigned 16-bit integer.

Throws: EOFException - if this input stream reaches the end before reading two bytes.

IOException - if an I/O error occurs.

readUTF()

public final String readUTF()

See the general contract of thereadUTF method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: readUTF() in interfaceDataInput

Returns: a Unicode string.

Throws: EOFException - if this input stream reaches the end before reading all the bytes.

IOException - if an I/O error occurs.

See Also: readUTF(DataInput)

readUTF(DataInput)

public static final String readUTF(DataInput in)

Reads from the streamin a representation of a Unicode character string encoded in Java modified U
format; this string of characters is then returned as aString . The details of the modified UTF-8 represen
tation are exactly the same as for thereadUTF method ofDataInput .

Parameters:
in - a data input stream.

Returns: a Unicode string.

Throws: EOFException - if the input stream reaches the end before all the bytes.

IOException - if an I/O error occurs.

UTFDataFormatException - if the bytes do not represent a valid UTF-8 encoding of a Unicod
string.

See Also: readUnsignedShort()
30

java.io DataInputStream

reset()

's in the
andled
ception
d try

d

reset()

public synchronized void reset()

Repositions this stream to the position at the time themark method was last called on this input stream.

This method simply performsin.reset() .

Stream marks are intended to be used in situations where you need to read ahead a little to see what
stream. Often this is most easily done by invoking some general parser. If the stream is of the type h
by the parse, it just chugs along happily. If the stream is not of that type, the parser should toss an ex
when it fails. If this happens within readlimit bytes, it allows the outer code to reset the stream an
another parser.

Overrides: reset() in classInputStream

Throws: IOException - if the stream has not been marked or if the mark has been invalidated.

skip(long)

public long skip(long n)

Skips over and discardsn bytes of data from the input stream. Theskip method may, for a variety of rea-
sons, end up skipping over some smaller number of bytes, possibly0. The actual number of bytes skippe
is returned.

This method simply performsin.skip(n) .

Overrides: skip(long) in classInputStream

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.

skipBytes(int)

public final int skipBytes(int n)

See the general contract of theskipBytes method ofDataInput .

Bytes for this operation are read from the contained input stream.

Specified By: skipBytes(int) in interfaceDataInput

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.
31

DataOutput java.io

write(byte[])

s of

r any
java.io

DataOutput
Syntax
public abstract interface DataOutput

All Known Subinterfaces: Datagram

All Known Implementing Classes: DataOutputStream

Description
The DataOutput interface provides for converting data from any of the Java primitive types to a serie
bytes and writing these bytes to a binary stream. There is also a facility for converting aString into Java mod-
ified UTF-8 format and writing the resulting series of bytes.

For all the methods in this interface that write bytes, it is generally true that if a byte cannot be written fo
reason, anIOException is thrown.

Since: JDK1.0

See Also: DataInput , DataOutputStream

Methods

write(byte[])

Member Summary

Methods
write(byte[]) Writes to the output stream all the bytes in arrayb.
write(byte[], int,
int)

Writes len bytes from arrayb, in order, to the output stream.

write(int) Writes to the output stream the eight low-order bits of the argumentb.
writeBoolean(boolean) Writes aboolean value to this output stream.
writeByte(int) Writes to the output stream the eight low- order bits of the argumentv.
writeChar(int) Writes achar value, which is comprised of two bytes, to the output stream.
writeChars(String) Writes every character in the strings , to the output stream, in order, two bytes per

character.
writeInt(int) Writes anint value, which is comprised of four bytes, to the output stream.
writeLong(long) Writes anlong value, which is comprised of four bytes, to the output stream.
writeShort(int) Writes two bytes to the output stream to represent the value of the argument.
writeUTF(String) Writes two bytes of length information to the output stream, followed by the Java

modified UTF representation of every character in the strings .
32

java.io DataOutput

write(byte[], int, int)

e

public void write(byte[] b)

Writes to the output stream all the bytes in arrayb. If b is null , aNullPointerException is thrown.
If b.length is zero, then no bytes are written. Otherwise, the byteb[0] is written first, thenb[1] , and
so on; the last byte written isb[b.length-1] .

Parameters:
b - the data.

Throws: IOException - if an I/O error occurs.

write(byte[], int, int)

public void write(byte[] b, int off, int len)

Writeslen bytes from arrayb, in order, to the output stream. Ifb is null , aNullPointerException
is thrown. Ifoff is negative, orlen is negative, oroff+len is greater than the length of the arrayb, then
anIndexOutOfBoundsException is thrown. If len is zero, then no bytes are written. Otherwise, th
byteb[off] is written first, thenb[off+1] , and so on; the last byte written isb[off+len-1] .

Parameters:
b - the data.

off - the start offset in the data.

len - the number of bytes to write.

Throws: IOException - if an I/O error occurs.

write(int)

public void write(int b)

Writes to the output stream the eight low-order bits of the argumentb. The 24 high-order bits ofb are
ignored.

Parameters:
b - the byte to be written.

Throws: IOException - if an I/O error occurs.

writeBoolean(boolean)

public void writeBoolean(boolean v)

Writes aboolean value to this output stream. If the argumentv is true , the value(byte)1 is written;
if v is false , the value(byte)0 is written. The byte written by this method may be read by theread-
Boolean method of interfaceDataInput , which will then return aboolean equal tov.

Parameters:
v - the boolean to be written.

Throws: IOException - if an I/O error occurs.

writeByte(int)

public void writeByte(int v)
33

DataOutput java.io

writeChar(int)

itten,

e,

f the

itten,
Writes to the output stream the eight low- order bits of the argumentv. The 24 high-order bits ofv are
ignored. (This means thatwriteByte does exactly the same thing aswrite for an integer argument.)
The byte written by this method may be read by thereadByte method of interfaceDataInput , which
will then return abyte equal to(byte)v .

Parameters:
v - the byte value to be written.

Throws: IOException - if an I/O error occurs.

writeChar(int)

public void writeChar(int v)

Writes achar value, which is comprised of two bytes, to the output stream. The byte values to be wr
in the order shown, are:

(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadChar method of interfaceDataInput , which
will then return achar equal to(char)v .

Parameters:
v - thechar value to be written.

Throws: IOException - if an I/O error occurs.

writeChars(String)

public void writeChars(String s)

Writes every character in the strings , to the output stream, in order, two bytes per character. Ifs is null ,
aNullPointerException is thrown. Ifs.length is zero, then no characters are written. Otherwis
the characters[0] is written first, thens[1] , and so on; the last character written iss[s.length-1] .
For each character, two bytes are actually written, high-order byte first, in exactly the manner o
writeChar method.

Parameters:
s - the string value to be written.

Throws: IOException - if an I/O error occurs.

writeInt(int)

public void writeInt(int v)

Writes anint value, which is comprised of four bytes, to the output stream. The byte values to be wr
in the order shown, are:

(byte)(0xff & (v >> 24))
(byte)(0xff & (v >> 16))
(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadInt method of interfaceDataInput , which
will then return anint equal tov.
34

java.io DataOutput

writeLong(long)

writ-

ritten,

enta-

f the
Parameters:
v - theint value to be written.

Throws: IOException - if an I/O error occurs.

writeLong(long)

public void writeLong(long v)

Writes anlong value, which is comprised of four bytes, to the output stream. The byte values to be
ten, in the order shown, are:

(byte)(0xff & (v >> 48))
(byte)(0xff & (v >> 40))
(byte)(0xff & (v >> 32))
(byte)(0xff & (v >> 24))
(byte)(0xff & (v >> 16))
(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadLong method of interfaceDataInput , which
will then return along equal tov.

Parameters:
v - thelong value to be written.

Throws: IOException - if an I/O error occurs.

writeShort(int)

public void writeShort(int v)

Writes two bytes to the output stream to represent the value of the argument. The byte values to be w
in the order shown, are:

(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadShort method of interfaceDataInput ,
which will then return ashort equal to(short)v .

Parameters:
v - theshort value to be written.

Throws: IOException - if an I/O error occurs.

writeUTF(String)

public void writeUTF(String str)

Writes two bytes of length information to the output stream, followed by the Java modified UTF repres
tion of every character in the strings . If s is null , aNullPointerException is thrown. Each char-
acter in the strings is converted to a group of one, two, or three bytes, depending on the value o
character.

If a characterc is in the range\u0001 through\u007f , it is represented by one byte:
35

DataOutput java.io

writeUTF(String)

e

t-
p-
(byte)c
If a characterc is \u0000 or is in the range\u0080 through\u07ff , then it is repre-
sented by two bytes, to be written in the order shown:

(byte)(0xc0 | (0x1f & (c >> 6)))
(byte)(0x80 | (0x3f & c))

If a characterc is in the range\u0800 throughuffff , then it is represented by three bytes, to b
written in the order shown:

(byte)(0xe0 | (0x0f & (c >> 12)))
(byte)(0x80 | (0x3f & (c >> 6)))
(byte)(0x80 | (0x3f & c))

First, the total number of bytes needed to represent all the characters ofs is calculated. If this number is
larger than65535 , then aUTFDataFormatError is thrown. Otherwise, this length is written to the ou
put stream in exactly the manner of thewriteShort method; after this, the one-, two-, or three-byte re
resentation of each character in the strings is written.

The bytes written by this method may be read by thereadUTF method of interfaceDataInput , which
will then return aString equal tos .

Parameters:
str - the string value to be written.

Throws: IOException - if an I/O error occurs.
36

java.io DataOutputStream

writeUTF(String)

ay. An

e-
java.io

DataOutputStream
Syntax
public class DataOutputStream extends OutputStream implements DataOutput

Object
|
+-- OutputStream

|
+-- java.io.DataOutputStream

All Implemented Interfaces: DataOutput

Description
A data input stream lets an application write primitive Java data types to an output stream in a portable w
application can then use a data input stream to read the data back in.

Since: JDK1.0

See Also: DataInputStream

Member Summary

Fields
out The output stream.

Constructors
DataOutputStream(Out-
putStream)

Creates a new data output stream to write data to the specified underlying output
stream.

Methods
close() Closes this output stream and releases any system resources associated with the

stream.
flush() Flushes this data output stream.
write(byte[], int,
int)

Writes len bytes from the specified byte array starting at offsetoff to the underly-
ing output stream.

write(int) Writes the specified byte (the low eight bits of the argumentb) to the underlying out-
put stream.

writeBoolean(boolean) Writes aboolean to the underlying output stream as a 1-byte value.
writeByte(int) Writes out abyte to the underlying output stream as a 1-byte value.
writeChar(int) Writes achar to the underlying output stream as a 2-byte value, high byte first.
writeChars(String) Writes a string to the underlying output stream as a sequence of characters.
writeInt(int) Writes anint to the underlying output stream as four bytes, high byte first.
writeLong(long) Writes along to the underlying output stream as eight bytes, high byte first.
writeShort(int) Writes ashort to the underlying output stream as two bytes, high byte first.
writeUTF(String) Writes a string to the underlying output stream using UTF-8 encoding in a machin

independent manner.
37

DataOutputStream java.io

out

ounter
Fields

out

protected OutputStream out

The output stream.

Constructors

DataOutputStream(OutputStream)

public DataOutputStream(OutputStream out)

Creates a new data output stream to write data to the specified underlying output stream. The c
written is set to zero.

Parameters:
out - the underlying output stream, to be saved for later use.

Methods

close()

public void close()

Closes this output stream and releases any system resources associated with the stream.

The close method calls itsflush method, and then calls theclose method of its underlying output
stream.

Inherited Member Summary

Methods inherited from classOutputStream

write(byte[])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Methods inherited from interface DataOutput

write(byte[])
38

java.io DataOutputStream

flush()

.

-

Overrides: close() in classOutputStream

Throws: IOException - if an I/O error occurs.

flush()

public void flush()

Flushes this data output stream. This forces any buffered output bytes to be written out to the stream

Theflush method ofDataOutputStream calls theflush method of its underlying output stream.

Overrides: flush() in classOutputStream

Throws: IOException - if an I/O error occurs.

write(byte[], int, int)

public void write(byte[] b, int off, int len)

Writes len bytes from the specified byte array starting at offsetoff to the underlying output stream. If no
exception is thrown, the counterwritten is incremented bylen .

Specified By: write(byte[], int, int) in interfaceDataOutput

Overrides: write(byte[], int, int) in classOutputStream

Parameters:
b - the data.

off - the start offset in the data.

len - the number of bytes to write.

Throws: IOException - if an I/O error occurs.

write(int)

public void write(int b)

Writes the specified byte (the low eight bits of the argumentb) to the underlying output stream. If no excep
tion is thrown, the counterwritten is incremented by1.

Implements thewrite method ofOutputStream .

Specified By: write(int) in interfaceDataOutput

Overrides: write(int) in classOutputStream

Parameters:
b - thebyte to be written.

Throws: IOException - if an I/O error occurs.

writeBoolean(boolean)

public final void writeBoolean(boolean v)
39

DataOutputStream java.io

writeByte(int)

nter

wn,

n to the
Writes aboolean to the underlying output stream as a 1-byte value. The valuetrue is written out as the
value (byte)1 ; the valuefalse is written out as the value(byte)0 . If no exception is thrown, the
counterwritten is incremented by1.

Specified By: writeBoolean(boolean) in interfaceDataOutput

Parameters:
v - aboolean value to be written.

Throws: IOException - if an I/O error occurs.

writeByte(int)

public final void writeByte(int v)

Writes out abyte to the underlying output stream as a 1-byte value. If no exception is thrown, the cou
written is incremented by1.

Specified By: writeByte(int) in interfaceDataOutput

Parameters:
v - abyte value to be written.

Throws: IOException - if an I/O error occurs.

writeChar(int)

public final void writeChar(int v)

Writes achar to the underlying output stream as a 2-byte value, high byte first. If no exception is thro
the counterwritten is incremented by2.

Specified By: writeChar(int) in interfaceDataOutput

Parameters:
v - achar value to be written.

Throws: IOException - if an I/O error occurs.

writeChars(String)

public final void writeChars(String s)

Writes a string to the underlying output stream as a sequence of characters. Each character is writte
data output stream as if by thewriteChar method. If no exception is thrown, the counterwritten is
incremented by twice the length ofs .

Specified By: writeChars(String) in interfaceDataOutput

Parameters:
s - aString value to be written.

Throws: IOException - if an I/O error occurs.

See Also: writeChar(int)

writeInt(int)

public final void writeInt(int v)
40

java.io DataOutputStream

writeLong(long)

, the

, the

, the

nner.

low-
harac-

to
f

Writes anint to the underlying output stream as four bytes, high byte first. If no exception is thrown
counterwritten is incremented by4.

Specified By: writeInt(int) in interfaceDataOutput

Parameters:
v - anint to be written.

Throws: IOException - if an I/O error occurs.

writeLong(long)

public final void writeLong(long v)

Writes along to the underlying output stream as eight bytes, high byte first. In no exception is thrown
counterwritten is incremented by8.

Specified By: writeLong(long) in interfaceDataOutput

Parameters:
v - a long to be written.

Throws: IOException - if an I/O error occurs.

writeShort(int)

public final void writeShort(int v)

Writes ashort to the underlying output stream as two bytes, high byte first. If no exception is thrown
counterwritten is incremented by2.

Specified By: writeShort(int) in interfaceDataOutput

Parameters:
v - ashort to be written.

Throws: IOException - if an I/O error occurs.

writeUTF(String)

public final void writeUTF(String str)

Writes a string to the underlying output stream using UTF-8 encoding in a machine-independent ma

First, two bytes are written to the output stream as if by thewriteShort method giving the number of
bytes to follow. This value is the number of bytes actually written out, not the length of the string. Fol
ing the length, each character of the string is output, in sequence, using the UTF-8 encoding for the c
ter. If no exception is thrown, the counterwritten is incremented by the total number of bytes written
the output stream. This will be at least two plus the length ofstr , and at most two plus thrice the length o
str .

Specified By: writeUTF(String) in interfaceDataOutput

Parameters:
str - a string to be written.

Throws: IOException - if an I/O error occurs.
41

EOFException java.io

writeUTF(String)

rmat,
on end
java.io

EOFException
Syntax
public class EOFException extends IOException

Object
|
+-- Throwable

|
+-- Exception

|
+-- IOException

|
+-- java.io.EOFException

Description
Signals that an end of file or end of stream has been reached unexpectedly during input.

This exception is mainly used by data input streams, which generally expect a binary file in a specific fo
and for which an end of stream is an unusual condition. Most other input streams return a special value
of stream.

Note that some input operations react to end-of-file by returning a distinguished value (such as-1) rather than
by throwing an exception.

Since: JDK1.0

See Also: DataInputStream , IOException

Member Summary

Constructors
EOFException() Constructs anEOFException with null as its error detail message.
EOFException(String) Constructs anEOFException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
42

java.io EOFException

EOFException()
Constructors

EOFException()

public EOFException()

Constructs anEOFException with null as its error detail message.

EOFException(String)

public EOFException(String s)

Constructs anEOFException with the specified detail message. The strings may later be retrieved by
thegetMessage() method of classjava.lang.Throwable .

Parameters:
s - the detail message.
43

InputStream java.io

EOFException(String)

e

am

ream.

er
java.io

InputStream
Syntax
public abstract class InputStream

Object
|
+-- java.io.InputStream

Direct Known Subclasses: ByteArrayInputStream , DataInputStream

Description
This abstract class is the superclass of all classes representing an input stream of bytes.

Applications that need to define a subclass ofInputStream must always provide a method that returns th
next byte of input.

Since: JDK1.0

See Also: ByteArrayInputStream , DataInputStream , read() , OutputStream

Member Summary

Constructors
InputStream()

Methods
available() Returns the number of bytes that can be read (or skipped over) from this input stre

without blocking by the next caller of a method for this input stream.
close() Closes this input stream and releases any system resources associated with the st
mark(int) Marks the current position in this input stream.
markSupported() Tests if this input stream supports themark andreset methods.
read() Reads the next byte of data from the input stream.
read(byte[]) Reads some number of bytes from the input stream and stores them into the buff

arrayb.
read(byte[], int, int) Reads up tolen bytes of data from the input stream into an array of bytes.
reset() Repositions this stream to the position at the time themark method was last called on

this input stream.
skip(long) Skips over and discardsn bytes of data from this input stream.

Inherited Member Summary

Methods inherited from classObject
44

java.io InputStream

InputStream()

ing by
hread.

mark

and
Constructors

InputStream()

public InputStream()

Methods

available()

public int available()

Returns the number of bytes that can be read (or skipped over) from this input stream without block
the next caller of a method for this input stream. The next caller might be the same thread or another t

Theavailable method for classInputStream always returns0.

This method should be overridden by subclasses.

Returns: the number of bytes that can be read from this input stream without blocking.

Throws: IOException - if an I/O error occurs.

close()

public void close()

Closes this input stream and releases any system resources associated with the stream.

Theclose method ofInputStream does nothing.

Throws: IOException - if an I/O error occurs.

mark(int)

public synchronized void mark(int readlimit)

Marks the current position in this input stream. A subsequent call to thereset method repositions this
stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit arguments tells this input stream to allow that many bytes to be read before the
position gets invalidated.

The general contract ofmark is that, if the methodmarkSupported returnstrue , the stream somehow
remembers all the bytes read after the call tomark and stands ready to supply those same bytes again if

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Inherited Member Summary
45

InputStream java.io

markSupported()

all if

alid.

wn.

file is

d
use the

be
whenever the methodreset is called. However, the stream is not required to remember any data at
more thanreadlimit bytes are read from the stream beforereset is called.

Themark method ofInputStream does nothing.

Parameters:
readlimit - the maximum limit of bytes that can be read before the mark position becomes inv

See Also: reset()

markSupported()

public boolean markSupported()

Tests if this input stream supports themark and reset methods. ThemarkSupported method of
InputStream returnsfalse .

Returns: true if this true type supports the mark and reset method;false otherwise.

See Also: mark(int) , reset()

read()

public abstract int read()

Reads the next byte of data from the input stream. The value byte is returned as anint in the range0 to
255 . If no byte is available because the end of the stream has been reached, the value-1 is returned. This
method blocks until input data is available, the end of the stream is detected, or an exception is thro

A subclass must provide an implementation of this method.

Returns: the next byte of data, or-1 if the end of the stream is reached.

Throws: IOException - if an I/O error occurs.

read(byte[])

public int read(byte[] b)

Reads some number of bytes from the input stream and stores them into the buffer arrayb. The number of
bytes actually read is returned as an integer. This method blocks until input data is available, end of
detected, or an exception is thrown.

If b is null , a NullPointerException is thrown. If the length ofb is zero, then no bytes are rea
and0 is returned; otherwise, there is an attempt to read at least one byte. If no byte is available beca
stream is at end of file, the value-1 is returned; otherwise, at least one byte is read and stored intob.

The first byte read is stored into elementb[0] , the next one intob[1] , and so on. The number of bytes
read is, at most, equal to the length ofb. Let k be the number of bytes actually read; these bytes will
stored in elementsb[0] throughb[k-1] , leaving elementsb[k] throughb[b.length-1] unaffected.

If the first byte cannot be read for any reason other than end of file, then anIOException is thrown. In
particular, anIOException is thrown if the input stream has been closed.

Theread(b) method for classInputStream has the same effect as:

read(b, 0, b.length)

Parameters:
b - the buffer into which the data is read.
46

java.io InputStream

read(byte[], int, int)

f

ad as
ead is

one
t

d in

e

rovide a

f

Returns: the total number of bytes read into the buffer, or-1 is there is no more data because the end o
the stream has been reached.

Throws: IOException - if an I/O error occurs.

See Also: read(byte[], int, int)

read(byte[], int, int)

public int read(byte[] b, int off, int len)

Reads up tolen bytes of data from the input stream into an array of bytes. An attempt is made to re
many aslen bytes, but a smaller number may be read, possibly zero. The number of bytes actually r
returned as an integer.

This method blocks until input data is available, end of file is detected, or an exception is thrown.

If b is null , aNullPointerException is thrown.

If off is negative, orlen is negative, oroff+len is greater than the length of the arrayb, then an
IndexOutOfBoundsException is thrown.

If len is zero, then no bytes are read and0 is returned; otherwise, there is an attempt to read at least
byte. If no byte is available because the stream is at end of file, the value-1 is returned; otherwise, at leas
one byte is read and stored intob.

The first byte read is stored into elementb[off] , the next one intob[off+1] , and so on. The number of
bytes read is, at most, equal tolen . Let k be the number of bytes actually read; these bytes will be store
elementsb[off] throughb[off+ k-1] , leaving elementsb[off+ k] throughb[off+len-1] unaf-
fected.

In every case, elementsb[0] throughb[off] and elementsb[off+len] throughb[b.length-1]
are unaffected.

If the first byte cannot be read for any reason other than end of file, then anIOException is thrown. In
particular, anIOException is thrown if the input stream has been closed.

The read(b, off, len) method for classInputStream simply calls the methodread() repeat-
edly. If the first such call results in anIOException , that exception is returned from the call to th
read(b, off, len) method. If any subsequent call toread() results in aIOException , the excep-
tion is caught and treated as if it were end of file; the bytes read up to that point are stored intob and the
number of bytes read before the exception occurred is returned. Subclasses are encouraged to p
more efficient implementation of this method.

Parameters:
b - the buffer into which the data is read.

off - the start offset in arrayb at which the data is written.

len - the maximum number of bytes to read.

Returns: the total number of bytes read into the buffer, or-1 if there is no more data because the end o
the stream has been reached.

Throws: IOException - if an I/O error occurs.

See Also: read()

reset()
47

InputStream java.io

skip(long)

d from

read

ve

rticu-
t call-

r
m-

more effi-
public synchronized void reset()

Repositions this stream to the position at the time themark method was last called on this input stream.

The general contract ofreset is:

• If the methodmarkSupported returnstrue , then:
• If the methodmark has not been called since the stream was created, or the number of bytes rea

the stream sincemark was last called is larger than the argument tomark at that last call, then an
IOException might be thrown.

• If such anIOException is not thrown, then the stream is reset to a state such that all the bytes
since the most recent call tomark (or since the start of the file, ifmark has not been called) will be
resupplied to subsequent callers of theread method, followed by any bytes that otherwise would ha
been the next input data as of the time of the call toreset .

• If the methodmarkSupported returnsfalse , then:
• The call toreset may throw anIOException .
• If an IOException is not thrown, then the stream is reset to a fixed state that depends on the pa

lar type of the input stream and how it was created. The bytes that will be supplied to subsequen
ers of theread method depend on the particular type of the input stream.

The methodreset for classInputStream does nothing and always throws anIOException .

Throws: IOException - if this stream has not been marked or if the mark has been invalidated.

See Also: mark(int) , IOException

skip(long)

public long skip(long n)

Skips over and discardsn bytes of data from this input stream. Theskip method may, for a variety of rea-
sons, end up skipping over some smaller number of bytes, possibly0. This may result from any of a numbe
of conditions; reaching end of file beforen bytes have been skipped is only one possibility. The actual nu
ber of bytes skipped is returned. Ifn is negative, no bytes are skipped.

The skip method ofInputStream creates a byte array and then repeatedly reads into it untiln bytes
have been read or the end of the stream has been reached. Subclasses are encouraged to provide a
cient implementation of this method.

Parameters:
n - the number of bytes to be skipped.

Returns: the actual number of bytes skipped.

Throws: IOException - if an I/O error occurs.
48

java.io InputStreamReader

skip(long)

tes them
may be

ad from
ay be
java.io

InputStreamReader
Syntax
public class InputStreamReader extends Reader

Object
|
+-- Reader

|
+-- java.io.InputStreamReader

Description
An InputStreamReader is a bridge from byte streams to character streams: It reads bytes and transla
into characters. The encoding that it uses may be specified by name, or the platform's default encoding
accepted.

Each invocation of one of an InputStreamReader's read() methods may cause one or more bytes to be re
the underlying byte-input stream. To enable the efficient conversion of bytes to characters, more bytes m
read ahead from the underlying stream than are necessary to satisfy the current read operation.

Member Summary

Constructors
InputStream-
Reader(InputStream)

Create an InputStreamReader that uses the default character encoding.

InputStream-
Reader(InputStream,
String)

Create an InputStreamReader that uses the named character encoding.

Methods
close() Close the stream.
mark(int) Mark the present position in the stream.
markSupported() Tell whether this stream supports the mark() operation.
read() Read a single character.
read(char[], int, int) Read characters into a portion of an array.
ready() Tell whether this stream is ready to be read.
reset() Reset the stream.
skip(long) Skip characters.

Inherited Member Summary

Fields inherited from classReader

lock

Methods inherited from classReader

read(char[])
49

InputStreamReader java.io

InputStreamReader(InputStream)
Constructors

InputStreamReader(InputStream)

public InputStreamReader(InputStream is)

Create an InputStreamReader that uses the default character encoding.

Parameters:
is - An InputStream

InputStreamReader(InputStream, String)

public InputStreamReader(InputStream is, String enc)

Create an InputStreamReader that uses the named character encoding.

Parameters:
is - An InputStream

enc - The name of a supported

Throws: UnsupportedEncodingException - If the named encoding is not supported

Methods

close()

public void close()

Close the stream.

Overrides: close() in classReader

Throws: IOException - If an I/O error occurs

mark(int)

public void mark(int readAheadLimit)

Mark the present position in the stream.

Overrides: mark(int) in classReader

Throws: IOException - If an I/O error occurs

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Inherited Member Summary
50

java.io InputStreamReader

markSupported()
markSupported()

public boolean markSupported()

Tell whether this stream supports the mark() operation.

Overrides: markSupported() in classReader

read()

public int read()

Read a single character.

Overrides: read() in classReader

Throws: IOException - If an I/O error occurs

read(char[], int, int)

public int read(char[] cbuf, int off, int len)

Read characters into a portion of an array.

Overrides: read(char[], int, int) in classReader

Throws: IOException - If an I/O error occurs

ready()

public boolean ready()

Tell whether this stream is ready to be read.

Overrides: ready() in classReader

Throws: IOException - If an I/O error occurs

reset()

public void reset()

Reset the stream.

Overrides: reset() in classReader

Throws: IOException - If an I/O error occurs

skip(long)

public long skip(long n)

Skip characters.

Overrides: skip(long) in classReader

Throws: IOException - If an I/O error occurs
51

InterruptedIOException java.io

skip(long)

he field
tion

 it
java.io

InterruptedIOException
Syntax
public class InterruptedIOException extends IOException

Object
|
+-- Throwable

|
+-- Exception

|
+-- IOException

|
+-- java.io.InterruptedIOException

Description
Signals that an I/O operation has been interrupted. AnInterruptedIOException is thrown to indicate
that an input or output transfer has been terminated because the thread performing it was terminated. T
bytesTransferred indicates how many bytes were successfully transferred before the interrup
occurred.

Since: JDK1.0

See Also: InputStream , OutputStream

Member Summary

Fields
bytesTransferred Reports how many bytes had been transferred as part of the I/O operation before

was interrupted.

Constructors
InterruptedIOExcep-
tion()

Constructs anInterruptedIOException with null as its error detail message.

InterruptedIOExcep-
tion(String)

Constructs anInterruptedIOException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
52

java.io InterruptedIOException

bytesTransferred
Fields

bytesTransferred

public int bytesTransferred

Reports how many bytes had been transferred as part of the I/O operation before it was interrupted.

Constructors

InterruptedIOException()

public InterruptedIOException()

Constructs anInterruptedIOException with null as its error detail message.

InterruptedIOException(String)

public InterruptedIOException(String s)

Constructs anInterruptedIOException with the specified detail message. The strings can be
retrieved later by thegetMessage() method of classjava.lang.Throwable .

Parameters:
s - the detail message.
53

IOException java.io

InterruptedIOException(String)

roduced
java.io

IOException
Syntax
public class IOException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.io.IOException

Direct Known Subclasses: ConnectionNotFoundException , EOFException , Interrupte-
dIOException , UnsupportedEncodingException , UTFDataFormatException

Description
Signals that an I/O exception of some sort has occurred. This class is the general class of exceptions p
by failed or interrupted I/O operations.

Since: JDK1.0

See Also: InputStream , OutputStream

Constructors

Member Summary

Constructors
IOException() Constructs anIOException with null as its error detail message.
IOException(String) Constructs anIOException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
54

java.io IOException

IOException()
IOException()

public IOException()

Constructs anIOException with null as its error detail message.

IOException(String)

public IOException(String s)

Constructs anIOException with the specified detail message. The error message strings can later be
retrieved by thegetMessage() method of classjava.lang.Throwable .

Parameters:
s - the detail message.
55

OutputStream java.io

IOException(String)

t stream

at

s

java.io

OutputStream
Syntax
public abstract class OutputStream

Object
|
+-- java.io.OutputStream

Direct Known Subclasses: ByteArrayOutputStream , DataOutputStream , PrintStream

Description
This abstract class is the superclass of all classes representing an output stream of bytes. An outpu
accepts output bytes and sends them to some sink.

Applications that need to define a subclass ofOutputStream must always provide at least a method th
writes one byte of output.

Since: JDK1.0

See Also: ByteArrayOutputStream , DataOutputStream , InputStream , write(int)

Member Summary

Constructors
OutputStream()

Methods
close() Closes this output stream and releases any system resources associated with thi

stream.
flush() Flushes this output stream and forces any buffered output bytes to be written out.
write(byte[]) Writesb.length bytes from the specified byte array to this output stream.
write(byte[], int,
int)

Writes len bytes from the specified byte array starting at offsetoff to this output
stream.

write(int) Writes the specified byte to this output stream.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
56

java.io OutputStream

OutputStream()

eral con-
s and

tract of
the
stina-

t for
Constructors

OutputStream()

public OutputStream()

Methods

close()

public void close()

Closes this output stream and releases any system resources associated with this stream. The gen
tract of close is that it closes the output stream. A closed stream cannot perform output operation
cannot be reopened.

Theclose method ofOutputStream does nothing.

Throws: IOException - if an I/O error occurs.

flush()

public void flush()

Flushes this output stream and forces any buffered output bytes to be written out. The general con
flush is that calling it is an indication that, if any bytes previously written have been buffered by
implementation of the output stream, such bytes should immediately be written to their intended de
tion.

Theflush method ofOutputStream does nothing.

Throws: IOException - if an I/O error occurs.

write(byte[])

public void write(byte[] b)

Writes b.length bytes from the specified byte array to this output stream. The general contrac
write(b) is that it should have exactly the same effect as the callwrite(b, 0, b.length) .

Parameters:
b - the data.

Throws: IOException - if an I/O error occurs.

See Also: write(byte[], int, int)

write(byte[], int, int)

public void write(byte[] b, int off, int len)
57

OutputStream java.io

write(int)

l

be
menta-
Writes len bytes from the specified byte array starting at offsetoff to this output stream. The genera
contract forwrite(b, off, len) is that some of the bytes in the arrayb are written to the output
stream in order; elementb[off] is the first byte written andb[off+len-1] is the last byte written by
this operation.

Thewrite method ofOutputStream calls the write method of one argument on each of the bytes to
written out. Subclasses are encouraged to override this method and provide a more efficient imple
tion.

If b is null , aNullPointerException is thrown.

If off is negative, orlen is negative, oroff+len is greater than the length of the arrayb, then an
IndexOutOfBoundsException is thrown.

Parameters:
b - the data.

off - the start offset in the data.

len - the number of bytes to write.

Throws: IOException - if an I/O error occurs. In particular, anIOException is thrown if the output
stream is closed.

write(int)

public abstract void write(int b)

Writes the specified byte to this output stream. The general contract forwrite is that one byte is written to
the output stream. The byte to be written is the eight low-order bits of the argumentb. The 24 high-order
bits ofb are ignored.

Subclasses ofOutputStream must provide an implementation for this method.

Parameters:
b - thebyte .

Throws: IOException - if an I/O error occurs. In particular, anIOException may be thrown if the
output stream has been closed.
58

java.io OutputStreamWriter

write(int)

trans-
may be

(s). The
of this
ssed to
java.io

OutputStreamWriter
Syntax
public class OutputStreamWriter extends Writer

Object
|
+-- Writer

|
+-- java.io.OutputStreamWriter

Description
An OutputStreamWriter is a bridge from character streams to byte streams: Characters written to it are
lated into bytes. The encoding that it uses may be specified by name, or the platform's default encoding
accepted.

Each invocation of a write() method causes the encoding converter to be invoked on the given character
resulting bytes are accumulated in a buffer before being written to the underlying output stream. The size
buffer may be specified, but by default it is large enough for most purposes. Note that the characters pa
the write() methods are not buffered.

Member Summary

Constructors
OutputStream-
Writer(OutputStream)

Create an OutputStreamWriter that uses the default character encoding.

OutputStream-
Writer(OutputStream,
String)

Create an OutputStreamWriter that uses the named character encoding.

Methods
close() Close the stream.
flush() Flush the stream.
write(char[], int,
int)

Write a portion of an array of characters.

write(int) Write a single character.
write(String, int,
int)

Write a portion of a string.

Inherited Member Summary

Fields inherited from classWriter

lock

Methods inherited from classWriter

write(char[]) , write(String)
59

OutputStreamWriter java.io

OutputStreamWriter(OutputStream)
Constructors

OutputStreamWriter(OutputStream)

public OutputStreamWriter(OutputStream os)

Create an OutputStreamWriter that uses the default character encoding.

Parameters:
os - An OutputStream

OutputStreamWriter(OutputStream, String)

public OutputStreamWriter(OutputStream os, String enc)

Create an OutputStreamWriter that uses the named character encoding.

Parameters:
os - An OutputStream

enc - The name of a supported

Throws: UnsupportedEncodingException - If the named encoding is not supported

Methods

close()

public void close()

Close the stream.

Overrides: close() in classWriter

Throws: IOException - If an I/O error occurs

flush()

public void flush()

Flush the stream.

Overrides: flush() in classWriter

Throws: IOException - If an I/O error occurs

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Inherited Member Summary
60

java.io OutputStreamWriter

write(char[], int, int)
write(char[], int, int)

public void write(char[] cbuf, int off, int len)

Write a portion of an array of characters.

Overrides: write(char[], int, int) in classWriter

Parameters:
cbuf - Buffer of characters to be written

off - Offset from which to start reading characters

len - Number of characters to be written

Throws: IOException - If an I/O error occurs

write(int)

public void write(int c)

Write a single character.

Overrides: write(int) in classWriter

Throws: IOException - If an I/O error occurs

write(String, int, int)

public void write(String str, int off, int len)

Write a portion of a string.

Overrides: write(String, int, int) in classWriter

Parameters:
str - String to be written

off - Offset from which to start reading characters

len - Number of characters to be written

Throws: IOException - If an I/O error occurs
61

PrintStream java.io

write(String, int, int)

s of
ms, a
ag
h
of

ter
java.io

PrintStream
Syntax
public class PrintStream extends OutputStream

Object
|
+-- OutputStream

|
+-- java.io.PrintStream

Description
A PrintStream adds functionality to another output stream, namely the ability to print representation
various data values conveniently. Two other features are provided as well. Unlike other output strea
PrintStream never throws anIOException ; instead, exceptional situations merely set an internal fl
that can be tested via thecheckError method. Optionally, aPrintStream can be created so as to flus
automatically; this means that theflush method is automatically invoked after a byte array is written, one
theprintln methods is invoked, or a newline character or byte ('\n') is written.

All characters printed by aPrintStream are converted into bytes using the platform's default charac
encoding.

Since: JDK1.0

Member Summary

Constructors
PrintStream(Output-
Stream)

Create a new print stream.

Methods
checkError() Flush the stream and check its error state.
close() Close the stream.
flush() Flush the stream.
print(boolean) Print a boolean value.
print(char) Print a character.
print(char[]) Print an array of characters.
print(int) Print an integer.
print(long) Print a long integer.
print(Object) Print an object.
print(String) Print a string.
println() Terminate the current line by writing the line separator string.
println(boolean) Print a boolean and then terminate the line.
println(char) Print a character and then terminate the line.
println(char[]) Print an array of characters and then terminate the line.
println(int) Print an integer and then terminate the line.
println(long) Print a long and then terminate the line.
println(Object) Print an Object and then terminate the line.
println(String) Print a String and then terminate the line.
62

java.io PrintStream

PrintStream(OutputStream)

.

Constructors

PrintStream(OutputStream)

public PrintStream(OutputStream out)

Create a new print stream. This stream will not flush automatically.

Parameters:
out - The output stream to which values and objects will be printed

Methods

checkError()

public boolean checkError()

Flush the stream and check its error state. The internal error state is set totrue when the underlying output
stream throws anIOException , and when thesetError method is invoked.

Returns: True if and only if this stream has encountered anIOException , or thesetError method
has been invoked

close()

public void close()

Close the stream. This is done by flushing the stream and then closing the underlying output stream

Overrides: close() in classOutputStream

setError() Set the error state of the stream totrue .
write(byte[], int,
int)

Write len bytes from the specified byte array starting at offsetoff to this stream.

write(int) Write the specified byte to this stream.

Inherited Member Summary

Methods inherited from classOutputStream

write(byte[])

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Member Summary
63

PrintStream java.io

flush()

d then

of the

lt char-

lt char-

t-
See Also: close()

flush()

public void flush()

Flush the stream. This is done by writing any buffered output bytes to the underlying output stream an
flushing that stream.

Overrides: flush() in classOutputStream

See Also: flush()

print(boolean)

public void print(boolean b)

Print a boolean value. The string produced byvalueOf(boolean) is translated into bytes according to
the platform's default character encoding, and these bytes are written in exactly the manner
write(int) method.

Parameters:
b - Theboolean to be printed

print(char)

public void print(char c)

Print a character. The character is translated into one or more bytes according to the platform's defau
acter encoding, and these bytes are written in exactly the manner of thewrite(int) method.

Parameters:
c - Thechar to be printed

print(char[])

public void print(char[] s)

Print an array of characters. The characters are converted into bytes according to the platform's defau
acter encoding, and these bytes are written in exactly the manner of thewrite(int) method.

Parameters:
s - The array of chars to be printed

Throws: NullPointerException - If s is null

print(int)

public void print(int i)

Print an integer. The string produced byvalueOf(int) is translated into bytes according to the pla
form's default character encoding, and these bytes are written in exactly the manner of thewrite(int)
method.

Parameters:
i - Theint to be printed
64

java.io PrintStream

print(long)

e
f the

-
of the

rs
written

y the
See Also: toString(int)

print(long)

public void print(long l)

Print a long integer. The string produced byvalueOf(long) is translated into bytes according to th
platform's default character encoding, and these bytes are written in exactly the manner o
write(int) method.

Parameters:
l - Thelong to be printed

See Also: toString(long)

print(Object)

public void print(Object obj)

Print an object. The string produced by thevalueOf(Object) method is translated into bytes accord
ing to the platform's default character encoding, and these bytes are written in exactly the manner
write(int) method.

Parameters:
obj - TheObject to be printed

See Also: toString()

print(String)

public void print(String s)

Print a string. If the argument isnull then the string"null" is printed. Otherwise, the string's characte
are converted into bytes according to the platform's default character encoding, and these bytes are
in exactly the manner of thewrite(int) method.

Parameters:
s - TheString to be printed

println()

public void println()

Terminate the current line by writing the line separator string. The line separator string is defined b
system propertyline.separator , and is not necessarily a single newline character ('\n').

println(boolean)

public void println(boolean x)

Print a boolean and then terminate the line. This method behaves as though it invokesprint(boolean)
and thenprintln() .

Parameters:
x - Theboolean to be printed
65

PrintStream java.io

println(char)

vokes
println(char)

public void println(char x)

Print a character and then terminate the line. This method behaves as though it invokesprint(char)
and thenprintln() .

Parameters:
x - Thechar to be printed.

println(char[])

public void println(char[] x)

Print an array of characters and then terminate the line. This method behaves as though it in
print(char[]) and thenprintln() .

Parameters:
x - an array of chars to print.

println(int)

public void println(int x)

Print an integer and then terminate the line. This method behaves as though it invokesprint(int) and
thenprintln() .

Parameters:
x - Theint to be printed.

println(long)

public void println(long x)

Print a long and then terminate the line. This method behaves as though it invokesprint(long) and
thenprintln() .

Parameters:
x - a Thelong to be printed.

println(Object)

public void println(Object x)

Print an Object and then terminate the line. This method behaves as though it invokesprint(Object)
and thenprintln() .

Parameters:
x - TheObject to be printed.

println(String)

public void println(String x)
66

java.io PrintStream

setError()

plat-

en the

orm's
Print a String and then terminate the line. This method behaves as though it invokesprint(String)
and thenprintln() .

Parameters:
x - TheString to be printed.

setError()

protected void setError()

Set the error state of the stream totrue .

Since: JDK1.1

write(byte[], int, int)

public void write(byte[] buf, int off, int len)

Write len bytes from the specified byte array starting at offsetoff to this stream. If automatic flushing is
enabled then theflush method will be invoked.

Note that the bytes will be written as given; to write characters that will be translated according to the
form's default character encoding, use theprint(char) or println(char) methods.

Overrides: write(byte[], int, int) in classOutputStream

Parameters:
buf - A byte array

off - Offset from which to start taking bytes

len - Number of bytes to write

write(int)

public void write(int b)

Write the specified byte to this stream. If the byte is a newline and automatic flushing is enabled th
flush method will be invoked.

Note that the byte is written as given; to write a character that will be translated according to the platf
default character encoding, use theprint(char) or println(char) methods.

Overrides: write(int) in classOutputStream

Parameters:
b - The byte to be written

See Also: print(char) , println(char)
67

Reader java.io

write(int)

d(char[],
to pro-

 the

 the
java.io

Reader
Syntax
public abstract class Reader

Object
|
+-- java.io.Reader

Direct Known Subclasses: InputStreamReader

Description
Abstract class for reading character streams. The only methods that a subclass must implement are rea
int, int) and close(). Most subclasses, however, will override some of the methods defined here in order
vide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: InputStreamReader , Writer

Member Summary

Fields
lock The object used to synchronize operations on this stream.

Constructors
Reader() Create a new character-stream reader whose critical sections will synchronize on

reader itself.
Reader(Object) Create a new character-stream reader whose critical sections will synchronize on

given object.

Methods
close() Close the stream.
mark(int) Mark the present position in the stream.
markSupported() Tell whether this stream supports the mark() operation.
read() Read a single character.
read(char[]) Read characters into an array.
read(char[], int, int) Read characters into a portion of an array.
ready() Tell whether this stream is ready to be read.
reset() Reset the stream.
skip(long) Skip characters.
68

java.io Reader

lock

ay use
is field

ons will
Fields

lock

protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream object m
an object other than itself to protect critical sections. A subclass should therefore use the object in th
rather thanthis or a synchronized method.

Constructors

Reader()

protected Reader()

Create a new character-stream reader whose critical sections will synchronize on the reader itself.

Reader(Object)

protected Reader(Object lock)

Create a new character-stream reader whose critical sections will synchronize on the given object.

Parameters:
lock - The Object to synchronize on.

Methods

close()

public abstract void close()

Close the stream. Once a stream has been closed, further read(), ready(), mark(), or reset() invocati
throw an IOException. Closing a previously-closed stream, however, has no effect.

Throws: IOException - If an I/O error occurs

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
69

Reader java.io

mark(int)

eam to

he

false.

e end

rs, or

error
mark(int)

public void mark(int readAheadLimit)

Mark the present position in the stream. Subsequent calls to reset() will attempt to reposition the str
this point. Not all character-input streams support the mark() operation.

Parameters:
readAheadLimit - Limit on the number of characters that may be read while still preserving t
mark. After reading this many characters, attempting to reset the stream may fail.

Throws: IOException - If the stream does not support mark(), or if some other I/O error occurs

markSupported()

public boolean markSupported()

Tell whether this stream supports the mark() operation. The default implementation always returns
Subclasses should override this method.

Returns: true if and only if this stream supports the mark operation.

read()

public int read()

Read a single character. This method will block until a character is available, an I/O error occurs, or th
of the stream is reached.

Subclasses that intend to support efficient single-character input should override this method.

Returns: The character read, as an integer in the range 0 to 65535 (0x00-0xffff), or -1 if the end of
the stream has been reached

Throws: IOException - If an I/O error occurs

read(char[])

public int read(char[] cbuf)

Read characters into an array. This method will block until some input is available, an I/O error occu
the end of the stream is reached.

Parameters:
cbuf - Destination buffer

Returns: The number of bytes read, or -1 if the end of the stream has been reached

Throws: IOException - If an I/O error occurs

read(char[], int, int)

public abstract int read(char[] cbuf, int off, int len)

Read characters into a portion of an array. This method will block until some input is available, an I/O
occurs, or the end of the stream is reached.

Parameters:
70

java.io Reader

ready()

ning

am has
ple by
some

or if

e end
cbuf - Destination buffer

off - Offset at which to start storing characters

len - Maximum number of characters to read

Returns: The number of characters read, or -1 if the end of the stream has been reached

Throws: IOException - If an I/O error occurs

ready()

public boolean ready()

Tell whether this stream is ready to be read.

Returns: True if the next read() is guaranteed not to block for input, false otherwise. Note that retur
false does not guarantee that the next read will block.

Throws: IOException - If an I/O error occurs

reset()

public void reset()

Reset the stream. If the stream has been marked, then attempt to reposition it at the mark. If the stre
not been marked, then attempt to reset it in some way appropriate to the particular stream, for exam
repositioning it to its starting point. Not all character-input streams support the reset() operation, and
support reset() without supporting mark().

Throws: IOException - If the stream has not been marked, or if the mark has been invalidated,
the stream does not support reset(), or if some other I/O error occurs

skip(long)

public long skip(long n)

Skip characters. This method will block until some characters are available, an I/O error occurs, or th
of the stream is reached.

Parameters:
n - The number of characters to skip

Returns: The number of characters actually skipped

Throws: IllegalArgumentException - If n is negative.

IOException - If an I/O error occurs
71

UnsupportedEncodingException java.io

UnsupportedEncodingException()
java.io

UnsupportedEncodingException
Syntax
public class UnsupportedEncodingException extends IOException

Object
|
+-- Throwable

|
+-- Exception

|
+-- IOException

|
+-- java.io.UnsupportedEncodingException

Description
The Character Encoding is not supported.

Since: JDK1.1

Constructors

UnsupportedEncodingException()

public UnsupportedEncodingException()

Member Summary

Constructors
UnsupportedEncod-
ingException()

Constructs an UnsupportedEncodingException without a detail message.

UnsupportedEncod-
ingException(String)

Constructs an UnsupportedEncodingException with a detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
72

java.io UnsupportedEncodingException

UnsupportedEncodingException(String)
Constructs an UnsupportedEncodingException without a detail message.

UnsupportedEncodingException(String)

public UnsupportedEncodingException(String s)

Constructs an UnsupportedEncodingException with a detail message.

Parameters:
s - Describes the reason for the exception.
73

UTFDataFormatException java.io

UnsupportedEncodingException(String)

ents the
java.io

UTFDataFormatException
Syntax
public class UTFDataFormatException extends IOException

Object
|
+-- Throwable

|
+-- Exception

|
+-- IOException

|
+-- java.io.UTFDataFormatException

Description
Signals that a malformed UTF-8 string has been read in a data input stream or by any class that implem
data input interface. See thewriteUTF method for the format in which UTF-8 strings are read and written.

Since: JDK1.0

See Also: DataInput , readUTF(DataInput) , IOException

Constructors

Member Summary

Constructors
UTFDataFormatExcep-
tion()

Constructs aUTFDataFormatException with null as its error detail message.

UTFDataFormatExcep-
tion(String)

Constructs aUTFDataFormatException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
74

java.io UTFDataFormatException

UTFDataFormatException()
UTFDataFormatException()

public UTFDataFormatException()

Constructs aUTFDataFormatException with null as its error detail message.

UTFDataFormatException(String)

public UTFDataFormatException(String s)

Constructs aUTFDataFormatException with the specified detail message. The strings can be
retrieved later by thegetMessage() method of classjava.lang.Throwable .

Parameters:
s - the detail message.
75

Writer java.io

UTFDataFormatException(String)

nt are
efined

he

he
java.io

Writer
Syntax
public abstract class Writer

Object
|
+-- java.io.Writer

Direct Known Subclasses: OutputStreamWriter

Description
Abstract class for writing to character streams. The only methods that a subclass must impleme
write(char[], int, int), flush(), and close(). Most subclasses, however, will override some of the methods d
here in order to provide higher efficiency, additional functionality, or both.

Since: JDK1.1

See Also: Writer , OutputStreamWriter , Reader

Member Summary

Fields
lock The object used to synchronize operations on this stream.

Constructors
Writer() Create a new character-stream writer whose critical sections will synchronize on t

writer itself.
Writer(Object) Create a new character-stream writer whose critical sections will synchronize on t

given object.

Methods
close() Close the stream, flushing it first.
flush() Flush the stream.
write(char[]) Write an array of characters.
write(char[], int,
int)

Write a portion of an array of characters.

write(int) Write a single character.
write(String) Write a string.
write(String, int,
int)

Write a portion of a string.
76

java.io Writer

lock

ay use
is field

s will
Fields

lock

protected Object lock

The object used to synchronize operations on this stream. For efficiency, a character-stream object m
an object other than itself to protect critical sections. A subclass should therefore use the object in th
rather thanthis or a synchronized method.

Constructors

Writer()

protected Writer()

Create a new character-stream writer whose critical sections will synchronize on the writer itself.

Writer(Object)

protected Writer(Object lock)

Create a new character-stream writer whose critical sections will synchronize on the given object.

Parameters:
lock - Object to synchronize on.

Methods

close()

public abstract void close()

Close the stream, flushing it first. Once a stream has been closed, further write() or flush() invocation
cause an IOException to be thrown. Closing a previously-closed stream, however, has no effect.

Throws: IOException - If an I/O error occurs

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
77

Writer java.io

flush()

r, write
tream,
.

inte-
flush()

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various write() methods in a buffe
them immediately to their intended destination. Then, if that destination is another character or byte s
flush it. Thus one flush() invocation will flush all the buffers in a chain of Writers and OutputStreams

Throws: IOException - If an I/O error occurs

write(char[])

public void write(char[] cbuf)

Write an array of characters.

Parameters:
cbuf - Array of characters to be written

Throws: IOException - If an I/O error occurs

write(char[], int, int)

public abstract void write(char[] cbuf, int off, int len)

Write a portion of an array of characters.

Parameters:
cbuf - Array of characters

off - Offset from which to start writing characters

len - Number of characters to write

Throws: IOException - If an I/O error occurs

write(int)

public void write(int c)

Write a single character. The character to be written is contained in the 16 low-order bits of the given
ger value; the 16 high-order bits are ignored.

Subclasses that intend to support efficient single-character output should override this method.

Parameters:
c - int specifying a character to be written.

Throws: IOException - If an I/O error occurs

write(String)

public void write(String str)

Write a string.

Parameters:
str - String to be written
78

java.io Writer

write(String, int, int)
Throws: IOException - If an I/O error occurs

write(String, int, int)

public void write(String str, int off, int len)

Write a portion of a string.

Parameters:
str - A String

off - Offset from which to start writing characters

len - Number of characters to write

Throws: IOException - If an I/O error occurs
79

Writer java.io

write(String, int, int)
80

Package

java.lang
e

li-

-

ct

hich
Description
Provides classes that are fundamental to the design of the Java programming language.

Since: JDK 1.0

Class Summary

Interfaces

Runnable TheRunnable interface should be implemented by any class whose instances ar
intended to be executed by a thread.

Classes

Boolean The Boolean class wraps a value of the primitive typeboolean in an object.

Byte The Byte class is the standard wrapper for byte values.

Character The Character class wraps a value of the primitive typechar in an object.

Class Instances of the classClass represent classes and interfaces in a running Java app
cation.

Integer The Integer class wraps a value of the primitive typeint in an object.

Long The Long class wraps a value of the primitive typelong in an object.

Math The classMath contains methods for performing basic numeric operations.

Object ClassObject is the root of the class hierarchy.

Runtime Every Java application has a single instance of classRuntime that allows the appli-
cation to interface with the environment in which the application is running.

Short The Short class is the standard wrapper for short values.

String TheString class represents character strings.

StringBuffer A string buffer implements a mutable sequence of characters.

System TheSystem class contains several useful class fields and methods.

Thread A thread is a thread of execution in a program.

Throwable TheThrowable class is the superclass of all errors and exceptions in the Java lan
guage.

Exceptions

ArithmeticException Thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBound-
sException

Thrown to indicate that an array has been accessed with an illegal index.

ArrayStoreException Thrown to indicate that an attempt has been made to store the wrong type of obje
into an array of objects.

ClassCastException Thrown to indicate that the code has attempted to cast an object to a subclass of w
it is not an instance.
81

java.lang

he

od
not

ent.

ni-

era-

o a

d

d

the

r-

ing.

-

 of

es
ClassNotFoundExcep-
tion

Thrown when an application tries to load in a class through its string name using t
forName method in classClass but no definition for the class with the specified
name could be found.

Exception The classException and its subclasses are a form ofThrowable that indicates
conditions that a reasonable application might want to catch.

IllegalAccessExcep-
tion

Thrown when an application tries to load in a class, but the currently executing meth
does not have access to the definition of the specified class, because the class is
public and in another package.

IllegalArgumentExcep-
tion

Thrown to indicate that a method has been passed an illegal or inappropriate argum

IllegalMonitorState-
Exception

Thrown to indicate that a thread has attempted to wait on an object's monitor or to
notify other threads waiting on an object's monitor without owning the specified mo
tor.

IllegalThreadStateEx-
ception

Thrown to indicate that a thread is not in an appropriate state for the requested op
tion.

IndexOutOfBoundsEx-
ception

Thrown to indicate that an index of some sort (such as to an array, to a string, or t
vector) is out of range.

InstantiationExcep-
tion

Thrown when an application tries to create an instance of a class using thenewIn-
stance method in classClass , but the specified class object cannot be instantiate
because it is an interface or is an abstract class.

InterruptedException Thrown when a thread is waiting, sleeping, or otherwise paused for a long time an
another thread interrupts it using theinterrupt method in classThread .

NegativeArraySizeEx-
ception

Thrown if an application tries to create an array with negative size.

NullPointerException Thrown when an application attempts to usenull in a case where an object is
required.

NumberFormatException Thrown to indicate that the application has attempted to convert a string to one of
numeric types, but that the string does not have the appropriate format.

RuntimeException RuntimeException is the superclass of those exceptions that can be thrown du
ing the normal operation of the Java Virtual Machine.

SecurityException Thrown by the security manager to indicate a security violation.

StringIndexOutOf-
BoundsException

Thrown by thecharAt method in classString and by otherString methods to
indicate that an index is either negative or greater than or equal to the size of the str

Errors

Error An Error is a subclass ofThrowable that indicates serious problems that a reason
able application should not try to catch.

OutOfMemoryError Thrown when the Java Virtual Machine cannot allocate an object because it is out
memory, and no more memory could be made available by the garbage collector.

VirtualMachineError Thrown to indicate that the Java Virtual Machine is broken or has run out of resourc
necessary for it to continue operating.

Class Summary
82

java.lang ArithmeticException

ArithmeticException()

hrows
java.lang

ArithmeticException
Syntax
public class ArithmeticException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.ArithmeticException

Description
Thrown when an exceptional arithmetic condition has occurred. For example, an integer "divide by zero" t
an instance of this class.

Since: JDK1.0

Constructors

ArithmeticException()

public ArithmeticException()

Member Summary

Constructors
ArithmeticException() Constructs anArithmeticException with no detail message.
ArithmeticExcep-
tion(String)

Constructs anArithmeticException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
83

ArithmeticException java.lang

ArithmeticException(String)
Constructs anArithmeticException with no detail message.

ArithmeticException(String)

public ArithmeticException(String s)

Constructs anArithmeticException with the specified detail message.

Parameters:
s - the detail message.
84

java.lang ArrayIndexOutOfBoundsException

ArithmeticException(String)

greater
java.lang

ArrayIndexOutOfBoundsException
Syntax
public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- IndexOutOfBoundsException

|
+-- java.lang.ArrayIndexOutOfBoundsException

Description
Thrown to indicate that an array has been accessed with an illegal index. The index is either negative or
than or equal to the size of the array.

Since: JDK1.0

Constructors

Member Summary

Constructors
ArrayIndexOutOfBound-
sException()

Constructs anArrayIndexOutOfBoundsException with no detail message.

ArrayIndexOutOfBound-
sException(int)

Constructs a newArrayIndexOutOfBoundsException class with an argu-
ment indicating the illegal index.

ArrayIndexOutOfBound-
sException(String)

Constructs anArrayIndexOutOfBoundsException class with the specified
detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
85

ArrayIndexOutOfBoundsException java.lang

ArrayIndexOutOfBoundsException()

l

ArrayIndexOutOfBoundsException()

public ArrayIndexOutOfBoundsException()

Constructs anArrayIndexOutOfBoundsException with no detail message.

ArrayIndexOutOfBoundsException(int)

public ArrayIndexOutOfBoundsException(int index)

Constructs a newArrayIndexOutOfBoundsException class with an argument indicating the illega
index.

Parameters:
index - the illegal index.

ArrayIndexOutOfBoundsException(String)

public ArrayIndexOutOfBoundsException(String s)

Constructs anArrayIndexOutOfBoundsException class with the specified detail message.

Parameters:
s - the detail message.
86

java.lang ArrayStoreException

ArrayIndexOutOfBoundsException(String)

ts. For
java.lang

ArrayStoreException
Syntax
public class ArrayStoreException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.ArrayStoreException

Description
Thrown to indicate that an attempt has been made to store the wrong type of object into an array of objec
example, the following code generates anArrayStoreException :

Object x[] = new String[3];
x[0] = new Integer(0);

Since: JDK1.0

Constructors

Member Summary

Constructors
ArrayStoreException() Constructs anArrayStoreException with no detail message.
ArrayStoreExcep-
tion(String)

Constructs anArrayStoreException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
87

ArrayStoreException java.lang

ArrayStoreException()
ArrayStoreException()

public ArrayStoreException()

Constructs anArrayStoreException with no detail message.

ArrayStoreException(String)

public ArrayStoreException(String s)

Constructs anArrayStoreException with the specified detail message.

Parameters:
s - the detail message.
88

java.lang Boolean

Boolean(boolean)
java.lang

Boolean
Syntax
public final class Boolean

Object
|
+-- java.lang.Boolean

Description
The Boolean class wraps a value of the primitive typeboolean in an object. An object of typeBoolean con-
tains a single field whose type isboolean .

Since: JDK1.0

Constructors

Boolean(boolean)

public Boolean(boolean value)

Allocates aBoolean object representing thevalue argument.

Parameters:

Member Summary

Constructors
Boolean(boolean) Allocates aBoolean object representing thevalue argument.

Methods
booleanValue() Returns the value of thisBoolean object as a boolean primitive.
equals(Object) Returnstrue if and only if the argument is notnull and is aBoolean object that

represents the sameboolean value as this object.
hashCode() Returns a hash code for thisBoolean object.
toString() Returns a String object representing this Boolean's value.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
89

Boolean java.lang

booleanValue()

e

value - the value of theBoolean .

Methods

booleanValue()

public boolean booleanValue()

Returns the value of thisBoolean object as a boolean primitive.

Returns: the primitiveboolean value of this object.

equals(Object)

public boolean equals(Object obj)

Returnstrue if and only if the argument is notnull and is aBoolean object that represents the sam
boolean value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the Boolean objects represent the same value;false otherwise.

hashCode()

public int hashCode()

Returns a hash code for thisBoolean object.

Overrides: hashCode() in classObject

Returns: the integer1231 if this object representstrue ; returns the integer1237 if this object
representsfalse .

toString()

public String toString()

Returns a String object representing this Boolean's value. If this object represents the valuetrue , a string
equal to"true" is returned. Otherwise, a string equal to"false" is returned.

Overrides: toString() in classObject

Returns: a string representation of this object.
90

java.lang Byte

MAX_VALUE
java.lang

Byte
Syntax
public final class Byte

Object
|
+-- java.lang.Byte

Description
The Byte class is the standard wrapper for byte values.

Since: JDK1.1

Fields

MAX_VALUE

Member Summary

Fields
MAX_VALUE The maximum value a Byte can have.
MIN_VALUE The minimum value a Byte can have.

Constructors
Byte(byte) Constructs a Byte object initialized to the specified byte value.

Methods
byteValue() Returns the value of this Byte as a byte.
equals(Object) Compares this object to the specified object.
hashCode() Returns a hashcode for this Byte.
parseByte(String) Assuming the specified String represents a byte, returns that byte's value.
parseByte(String,
int)

Assuming the specified String represents a byte, returns that byte's value.

toString() Returns a String object representing this Byte's value.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
91

Byte java.lang

MIN_VALUE
public static final byte MAX_VALUE

The maximum value a Byte can have.

MIN_VALUE

public static final byte MIN_VALUE

The minimum value a Byte can have.

Constructors

Byte(byte)

public Byte(byte value)

Constructs a Byte object initialized to the specified byte value.

Parameters:
value - the initial value of the Byte

Methods

byteValue()

public byte byteValue()

Returns the value of this Byte as a byte.

Returns: the value of this Byte as a byte.

equals(Object)

public boolean equals(Object obj)

Compares this object to the specified object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()

public int hashCode()

Returns a hashcode for this Byte.

Overrides: hashCode() in classObject
92

java.lang Byte

parseByte(String)

String

String
parseByte(String)

public static byte parseByte(String s)

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the
cannot be parsed as a byte. The radix is assumed to be 10.

Parameters:
s - the String containing the byte

Returns: the parsed value of the byte

Throws: NumberFormatException - If the string does not contain a parsable byte.

parseByte(String, int)

public static byte parseByte(String s, int radix)

Assuming the specified String represents a byte, returns that byte's value. Throws an exception if the
cannot be parsed as a byte.

Parameters:
s - the String containing the byte

radix - the radix to be used

Returns: the parsed value of the byte

Throws: NumberFormatException - If the String does not contain a parsable byte.

toString()

public String toString()

Returns a String object representing this Byte's value.

Overrides: toString() in classObject
93

Character java.lang

toString()

racters

low-
java.lang

Character
Syntax
public final class Character

Object
|
+-- java.lang.Character

Description
The Character class wraps a value of the primitive typechar in an object. An object of typeCharacter con-
tains a single field whose type ischar .

In addition, this class provides several methods for determining the type of a character and converting cha
from uppercase to lowercase and vice versa.

Since: JDK1.0

Member Summary

Fields
MAX_RADIX The maximum radix available for conversion to and from Strings.
MAX_VALUE The constant value of this field is the largest value of typechar .
MIN_RADIX The minimum radix available for conversion to and from Strings.
MIN_VALUE The constant value of this field is the smallest value of typechar .

Constructors
Character(char) Constructs aCharacter object and initializes it so that it represents the primitive

value argument.

Methods
charValue() Returns the value of this Character object.
digit(char, int) Returns the numeric value of the characterch in the specified radix.
equals(Object) Compares this object against the specified object.
hashCode() Returns a hash code for this Character.
isDigit(char) Determines if the specified character is a digit.
isLowerCase(char) Determines if the specified character is a lowercase character.
isUpperCase(char) Determines if the specified character is an uppercase character.
toLowerCase(char) The given character is mapped to its lowercase equivalent; if the character has no

ercase equivalent, the character itself is returned.
toString() Returns a String object representing this character's value.
toUpperCase(char) Converts the character argument to uppercase; if the character has no lowercase

equivalent, the character itself is returned.
94

java.lang Character

MAX_RADIX
Fields

MAX_RADIX

public static final int MAX_RADIX

The maximum radix available for conversion to and from Strings.

See Also: toString(int, int) , valueOf(String)

MAX_VALUE

public static final char MAX_VALUE

The constant value of this field is the largest value of typechar .

Since: JDK1.0.2

MIN_RADIX

public static final int MIN_RADIX

The minimum radix available for conversion to and from Strings.

See Also: toString(int, int) , valueOf(String)

MIN_VALUE

public static final char MIN_VALUE

The constant value of this field is the smallest value of typechar .

Since: JDK1.0.2

Constructors

Character(char)

public Character(char value)

Constructs aCharacter object and initializes it so that it represents the primitivevalue argument.

Parameters:
value - value for the newCharacter object.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
95

Character java.lang

charValue()
Methods

charValue()

public char charValue()

Returns the value of this Character object.

Returns: the primitivechar value represented by this object.

digit(char, int)

public static int digit(char ch, int radix)

Returns the numeric value of the characterch in the specified radix.

Parameters:
ch - the character to be converted.

radix - the radix.

Returns: the numeric value represented by the character in the specified radix.

Since: JDK1.0

See Also: isDigit(char)

equals(Object)

public boolean equals(Object obj)

Compares this object against the specified object. The result istrue if and only if the argument is not
null and is aCharacter object that represents the samechar value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the same;false otherwise.

hashCode()

public int hashCode()

Returns a hash code for this Character.

Overrides: hashCode() in classObject

Returns: a hash code value for this object.

isDigit(char)

public static boolean isDigit(char ch)

Determines if the specified character is a digit.

Parameters:
96

java.lang Character

isLowerCase(char)

lent, the
ch - the character to be tested.

Returns: true if the character is a digit;false otherwise.

Since: JDK1.0

isLowerCase(char)

public static boolean isLowerCase(char ch)

Determines if the specified character is a lowercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is lowercase;false otherwise.

Since: JDK1.0

isUpperCase(char)

public static boolean isUpperCase(char ch)

Determines if the specified character is an uppercase character.

Parameters:
ch - the character to be tested.

Returns: true if the character is uppercase;false otherwise.

Since: 1.0

See Also: isLowerCase(char) , toUpperCase(char)

toLowerCase(char)

public static char toLowerCase(char ch)

The given character is mapped to its lowercase equivalent; if the character has no lowercase equiva
character itself is returned.

Parameters:
ch - the character to be converted.

Returns: the lowercase equivalent of the character, if any; otherwise the character itself.

Since: JDK1.0

See Also: isLowerCase(char) , isUpperCase(char) , toUpperCase(char)

toString()

public String toString()

Returns a String object representing this character's value. Converts thisCharacter object to a string.
The result is a string whose length is1. The string's sole component is the primitivechar value repre-
sented by this object.

Overrides: toString() in classObject
97

Character java.lang

toUpperCase(char)

haracter
Returns: a string representation of this object.

toUpperCase(char)

public static char toUpperCase(char ch)

Converts the character argument to uppercase; if the character has no lowercase equivalent, the c
itself is returned.

Parameters:
ch - the character to be converted.

Returns: the uppercase equivalent of the character, if any; otherwise the character itself.

Since: JDK1.0

See Also: isLowerCase(char) , isUpperCase(char) , toLowerCase(char)
98

java.lang Class

toUpperCase(char)

also
and

al

e

d by
java.lang

Class
Syntax
public final class Class

Object
|
+-- java.lang.Class

Description
Instances of the classClass represent classes and interfaces in a running Java application. Every array
belongs to a class that is reflected as aClass object that is shared by all arrays with the same element type
number of dimensions.

Class has no public constructor. InsteadClass objects are constructed automatically by the Java Virtu
Machine as classes are loaded.

The following example uses aClass object to print the class name of an object:

void printClassName(Object obj) {
System.out.println("The class o f " + obj +

" is " + obj.getClass().getName());
}

Since: JDK1.0

Member Summary

Methods
forName(String) Returns theClass object associated with the class with the given string name.
getName() Returns the fully-qualified name of the entity (class, interface, array class, primitiv

type, or void) represented by thisClass object, as aString .
getResourceAs-
Stream(String)

Finds a resource with a given name.

isArray() Determines if thisClass object represents an array class.
isAssignable-
From(Class)

Determines if the class or interface represented by thisClass object is either the
same as, or is a superclass or superinterface of, the class or interface represente
the specifiedClass parameter.

isInstance(Object) Determines if the specifiedObject is assignment-compatible with the object repre-
sented by thisClass .

isInterface() Determines if the specifiedClass object represents an interface type.
newInstance() Creates a new instance of a class.
toString() Converts the object to a string.
99

Class java.lang

forName(String)

ified
returns

epre-

me of
f

Methods

forName(String)

public static native Class forName(String className)

Returns theClass object associated with the class with the given string name. Given the fully-qual
name for a class or interface, this method attempts to locate, load and link the class. If it succeeds,
the Class object representing the class. If it fails, the method throws a ClassNotFoundException.

For example, the following code fragment returns the runtimeClass descriptor for the class named
java.lang.Thread : Class t = Class.forName("java.lang.Thread")

Parameters:
className - the fully qualified name of the desired class.

Returns: theClass descriptor for the class with the specified name.

Throws: ClassNotFoundException - if the class could not be found.

Since: JDK1.0

getName()

public native String getName()

Returns the fully-qualified name of the entity (class, interface, array class, primitive type, or void) r
sented by thisClass object, as aString .

If this Class object represents a class of arrays, then the internal form of the name consists of the na
the element type in Java signature format, preceded by one or more "[" characters representing the depth o
array nesting. Thus:

(new Object[3]).getClass().getName()

returns "[Ljava.lang.Object; " and:

(new int[3][4][5][6][7][8][9]).getClass().getName()

returns "[[[[[[[I ". The encoding of element type names is as follows:

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
100

java.lang Class

getResourceAsStream(String)

.

. The

ss

ce
B byte
C char
D double
F float
I int
J long
Lclassname; class or interface
S short
Z boolean

The class or interface nameclassname is given in fully qualified form as shown in the example above

Returns: the fully qualified name of the class or interface represented by this object.

getResourceAsStream(String)

public InputStream getResourceAsStream(String name)

Finds a resource with a given name. This method returns null if no resource with this name is found
rules for searching resources associated with a given class are profile specific.

Parameters:
name - name of the desired resource

Returns: a java.io.InputStream object.

Since: JDK1.1

isArray()

public native boolean isArray()

Determines if thisClass object represents an array class.

Returns: true if this object represents an array class;false otherwise.

Since: JDK1.1

isAssignableFrom(Class)

public native boolean isAssignableFrom(Class cls)

Determines if the class or interface represented by thisClass object is either the same as, or is a supercla
or superinterface of, the class or interface represented by the specifiedClass parameter. It returnstrue if
so; otherwise it returnsfalse . If this Class object represents a primitive type, this method returnstrue
if the specifiedClass parameter is exactly thisClass object; otherwise it returnsfalse .

Specifically, this method tests whether the type represented by the specifiedClass parameter can be con-
verted to the type represented by thisClass object via an identity conversion or via a widening referen
conversion. SeeThe Java Language Specification, sections 5.1.1 and 5.1.4 , for details.

Parameters:
cls - theClass object to be checked

Returns: theboolean value indicating whether objects of the typecls can be assigned to objects of
this class

Throws: NullPointerException - if the specified Class parameter is null.

Since: JDK1.1
101

Class java.lang

isInstance(Object)

d by

refer-
d

t

f by a

ce,

by a
isInstance(Object)

public native boolean isInstance(Object obj)

Determines if the specifiedObject is assignment-compatible with the object represented by thisClass .
This method is the dynamic equivalent of the Java languageinstanceof operator. The method returns
true if the specifiedObject argument is non-null and can be cast to the reference type represente
this Class object without raising aClassCastException. It returnsfalse otherwise.

Specifically, if thisClass object represents a declared class, this method returnstrue if the specified
Object argument is an instance of the represented class (or of any of its subclasses); it returnsfalse oth-
erwise. If thisClass object represents an array class, this method returnstrue if the specifiedObject
argument can be converted to an object of the array class by an identity conversion or by a widening
ence conversion; it returnsfalse otherwise. If thisClass object represents an interface, this metho
returnstrue if the class or any superclass of the specifiedObject argument implements this interface; i
returnsfalse otherwise. If thisClass object represents a primitive type, this method returnsfalse .

Parameters:
obj - the object to check

Returns: true if obj is an instance of this class

Since: JDK1.1

isInterface()

public native boolean isInterface()

Determines if the specifiedClass object represents an interface type.

Returns: true if this object represents an interface;false otherwise.

newInstance()

public native Object newInstance()

Creates a new instance of a class.

Returns: a newly allocated instance of the class represented by this object. This is done exactly as i
new expression with an empty argument list.

Throws: IllegalAccessException - if the class or initializer is not accessible.

InstantiationException - if an application tries to instantiate an abstract class or an interfa
or if the instantiation fails for some other reason.

Since: JDK1.0

toString()

public String toString()

Converts the object to a string. The string representation is the string "class" or "interface", followed
space, and then by the fully qualified name of the class in the format returned bygetName . If this Class
object represents a primitive type, this method returns the name of the primitive type. If thisClass object
represents void this method returns "void".
102

java.lang Class

toString()
Overrides: toString() in classObject

Returns: a string representation of this class object.
103

ClassCastException java.lang

toString()

ce. For
java.lang

ClassCastException
Syntax
public class ClassCastException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.ClassCastException

Description
Thrown to indicate that the code has attempted to cast an object to a subclass of which it is not an instan
example, the following code generates aClassCastException :

Objec t x = new Integer(0);
System.out.println((String)x);

Since: JDK1.0

Constructors

Member Summary

Constructors
ClassCastException() Constructs aClassCastException with no detail message.
ClassCastExcep-
tion(String)

Constructs aClassCastException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
104

java.lang ClassCastException

ClassCastException()
ClassCastException()

public ClassCastException()

Constructs aClassCastException with no detail message.

ClassCastException(String)

public ClassCastException(String s)

Constructs aClassCastException with the specified detail message.

Parameters:
s - the detail message.
105

ClassNotFoundException java.lang

ClassNotFoundException()
java.lang

ClassNotFoundException
Syntax
public class ClassNotFoundException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.lang.ClassNotFoundException

Description
Thrown when an application tries to load in a class through its string name using theforName method in class
Class but no definition for the class with the specified name could be found.

Since: JDK1.0

See Also: forName(String)

Constructors

ClassNotFoundException()

Member Summary

Constructors
ClassNotFoundExcep-
tion()

Constructs aClassNotFoundException with no detail message.

ClassNotFoundExcep-
tion(String)

Constructs aClassNotFoundException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
106

java.lang ClassNotFoundException

ClassNotFoundException(String)
public ClassNotFoundException()

Constructs aClassNotFoundException with no detail message.

ClassNotFoundException(String)

public ClassNotFoundException(String s)

Constructs aClassNotFoundException with the specified detail message.

Parameters:
s - the detail message.
107

Error java.lang

Error()

ould

r occur.
java.lang

Error
Syntax
public class Error extends Throwable

Object
|
+-- Throwable

|
+-- java.lang.Error

Direct Known Subclasses: VirtualMachineError

Description
An Error is a subclass ofThrowable that indicates serious problems that a reasonable application sh
not try to catch. Most such errors are abnormal conditions.

A method is not required to declare in itsthrows clause any subclasses ofError that might be thrown during
the execution of the method but not caught, since these errors are abnormal conditions that should neve

Since: JDK1.0

Constructors

Error()

Member Summary

Constructors
Error() Constructs anError with no specified detail message.
Error(String) Constructs an Error with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
108

java.lang Error

Error(String)
public Error()

Constructs anError with no specified detail message.

Error(String)

public Error(String s)

Constructs an Error with the specified detail message.

Parameters:
s - the detail message.
109

Exception java.lang

Error(String)

le
java.lang

Exception
Syntax
public class Exception extends Throwable

Object
|
+-- Throwable

|
+-- java.lang.Exception

Direct Known Subclasses: ClassNotFoundException , IllegalAccessException ,
InstantiationException , InterruptedException , IOException , RuntimeExcep-
tion

Description
The classException and its subclasses are a form ofThrowable that indicates conditions that a reasonab
application might want to catch.

Since: JDK1.0

See Also: Error

Constructors

Member Summary

Constructors
Exception() Constructs anException with no specified detail message.
Exception(String) Constructs anException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
110

java.lang Exception

Exception()
Exception()

public Exception()

Constructs anException with no specified detail message.

Exception(String)

public Exception(String s)

Constructs anException with the specified detail message.

Parameters:
s - the detail message.
111

IllegalAccessException java.lang

Exception(String)

cess to

sing the
zero-
java.lang

IllegalAccessException
Syntax
public class IllegalAccessException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.lang.IllegalAccessException

Description
Thrown when an application tries to load in a class, but the currently executing method does not have ac
the definition of the specified class, because the class is not public and in another package.

An instance of this class can also be thrown when an application tries to create an instance of a class u
newInstance method in classClass , but the current method does not have access to the appropriate
argument constructor.

Since: JDK1.0

See Also: forName(String) , newInstance()

Member Summary

Constructors
IllegalAccessExcep-
tion()

Constructs anIllegalAccessException without a detail message.

IllegalAccessExcep-
tion(String)

Constructs anIllegalAccessException with a detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
112

java.lang IllegalAccessException

IllegalAccessException()
Constructors

IllegalAccessException()

public IllegalAccessException()

Constructs anIllegalAccessException without a detail message.

IllegalAccessException(String)

public IllegalAccessException(String s)

Constructs anIllegalAccessException with a detail message.

Parameters:
s - the detail message.
113

IllegalArgumentException java.lang

IllegalAccessException(String)
java.lang

IllegalArgumentException
Syntax
public class IllegalArgumentException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.IllegalArgumentException

Direct Known Subclasses: IllegalThreadStateException , NumberFormatException

Description
Thrown to indicate that a method has been passed an illegal or inappropriate argument.

Since: JDK1.0

See Also: setPriority(int)

Constructors

Member Summary

Constructors
IllegalArgumentExcep-
tion()

Constructs anIllegalArgumentException with no detail message.

IllegalArgumentExcep-
tion(String)

Constructs anIllegalArgumentException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
114

java.lang IllegalArgumentException

IllegalArgumentException()
IllegalArgumentException()

public IllegalArgumentException()

Constructs anIllegalArgumentException with no detail message.

IllegalArgumentException(String)

public IllegalArgumentException(String s)

Constructs anIllegalArgumentException with the specified detail message.

Parameters:
s - the detail message.
115

IllegalMonitorStateException java.lang

IllegalArgumentException(String)

aiting
java.lang

IllegalMonitorStateException
Syntax
public class IllegalMonitorStateException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.IllegalMonitorStateException

Description
Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads w
on an object's monitor without owning the specified monitor.

Since: JDK1.0

See Also: notify() , notifyAll() , wait() , wait(long) , wait(long, int)

Constructors

Member Summary

Constructors
IllegalMonitorState-
Exception()

Constructs anIllegalMonitorStateException with no detail message.

IllegalMonitorState-
Exception(String)

Constructs anIllegalMonitorStateException with the specified detail
message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
116

java.lang IllegalMonitorStateException

IllegalMonitorStateException()
IllegalMonitorStateException()

public IllegalMonitorStateException()

Constructs anIllegalMonitorStateException with no detail message.

IllegalMonitorStateException(String)

public IllegalMonitorStateException(String s)

Constructs anIllegalMonitorStateException with the specified detail message.

Parameters:
s - the detail message.
117

IllegalThreadStateException java.lang

IllegalMonitorStateException(String)

ple, the
java.lang

IllegalThreadStateException
Syntax
public class IllegalThreadStateException extends IllegalArgumentException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- IllegalArgumentException

|
+-- java.lang.IllegalThreadStateException

Description
Thrown to indicate that a thread is not in an appropriate state for the requested operation. See, for exam
suspend andresume methods in classThread .

Since: JDK1.0

Constructors

Member Summary

Constructors
IllegalThreadStateEx-
ception()

Constructs anIllegalThreadStateException with no detail message.

IllegalThreadStateEx-
ception(String)

Constructs anIllegalThreadStateException with the specified detail mes-
sage.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
118

java.lang IllegalThreadStateException

IllegalThreadStateException()
IllegalThreadStateException()

public IllegalThreadStateException()

Constructs anIllegalThreadStateException with no detail message.

IllegalThreadStateException(String)

public IllegalThreadStateException(String s)

Constructs anIllegalThreadStateException with the specified detail message.

Parameters:
s - the detail message.
119

IndexOutOfBoundsException java.lang

IllegalThreadStateException(String)

nge.
java.lang

IndexOutOfBoundsException
Syntax
public class IndexOutOfBoundsException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.IndexOutOfBoundsException

Direct Known Subclasses: ArrayIndexOutOfBoundsException , StringIndexOutOf-
BoundsException

Description
Thrown to indicate that an index of some sort (such as to an array, to a string, or to a vector) is out of ra

Applications can subclass this class to indicate similar exceptions.

Since: JDK1.0

Constructors

Member Summary

Constructors
IndexOutOfBoundsEx-
ception()

Constructs anIndexOutOfBoundsException with no detail message.

IndexOutOfBoundsEx-
ception(String)

Constructs anIndexOutOfBoundsException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
120

java.lang IndexOutOfBoundsException

IndexOutOfBoundsException()
IndexOutOfBoundsException()

public IndexOutOfBoundsException()

Constructs anIndexOutOfBoundsException with no detail message.

IndexOutOfBoundsException(String)

public IndexOutOfBoundsException(String s)

Constructs anIndexOutOfBoundsException with the specified detail message.

Parameters:
s - the detail message.
121

InstantiationException java.lang

InstantiationException()

lass.
java.lang

InstantiationException
Syntax
public class InstantiationException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.lang.InstantiationException

Description
Thrown when an application tries to create an instance of a class using thenewInstance method in class
Class , but the specified class object cannot be instantiated because it is an interface or is an abstract c

Since: JDK1.0

See Also: newInstance()

Constructors

InstantiationException()

Member Summary

Constructors
InstantiationExcep-
tion()

Constructs anInstantiationException with no detail message.

InstantiationExcep-
tion(String)

Constructs anInstantiationException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
122

java.lang InstantiationException

InstantiationException(String)
public InstantiationException()

Constructs anInstantiationException with no detail message.

InstantiationException(String)

public InstantiationException(String s)

Constructs anInstantiationException with the specified detail message.

Parameters:
s - the detail message.
123

Integer java.lang

InstantiationException(String)

d

 base

 base

 base

ec-
java.lang

Integer
Syntax
public final class Integer

Object
|
+-- java.lang.Integer

Description
The Integer class wraps a value of the primitive typeint in an object. An object of typeInteger contains a
single field whose type isint .

In addition, this class provides several methods for converting anint to aString and aString to anint ,
as well as other constants and methods useful when dealing with anint .

Since: JDK1.0

Member Summary

Fields
MAX_VALUE The largest value of typeint .
MIN_VALUE The smallest value of typeint .

Constructors
Integer(int) Constructs a newly allocatedInteger object that represents the primitiveint argu-

ment.

Methods
byteValue() Returns the value of this Integer as a byte.
equals(Object) Compares this object to the specified object.
hashCode() Returns a hashcode for this Integer.
intValue() Returns the value of this Integer as an int.
longValue() Returns the value of this Integer as along .
parseInt(String) Parses the string argument as a signed decimal integer.
parseInt(String, int) Parses the string argument as a signed integer in the radix specified by the secon

argument.
shortValue() Returns the value of this Integer as a short.
toBinaryString(int) Creates a string representation of the integer argument as an unsigned integer in

2.
toHexString(int) Creates a string representation of the integer argument as an unsigned integer in

16.
toOctalString(int) Creates a string representation of the integer argument as an unsigned integer in

8.
toString() Returns a String object representing this Integer's value.
toString(int) Returns a new String object representing the specified integer.
toString(int, int) Creates a string representation of the first argument in the radix specified by the s

ond argument.
valueOf(String) Returns a new Integer object initialized to the value of the specified String.
124

java.lang Integer

MAX_VALUE
Fields

MAX_VALUE

public static final int MAX_VALUE

The largest value of typeint . The constant value of this field is2147483647 .

MIN_VALUE

public static final int MIN_VALUE

The smallest value of typeint . The constant value of this field is-2147483648 .

Constructors

Integer(int)

public Integer(int value)

Constructs a newly allocatedInteger object that represents the primitiveint argument.

Parameters:
value - the value to be represented by theInteger .

Methods

byteValue()

public byte byteValue()

Returns the value of this Integer as a byte.

valueOf(String, int) Returns a new Integer object initialized to the value of the specified String.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()

Member Summary
125

Integer java.lang

equals(Object)

mal dig-

ven as
Returns: the value of this Integer as a byte.

Since: JDK1.1

equals(Object)

public boolean equals(Object obj)

Compares this object to the specified object. The result istrue if and only if the argument is notnull and
is anInteger object that contains the sameint value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the same;false otherwise.

hashCode()

public int hashCode()

Returns a hashcode for this Integer.

Overrides: hashCode() in classObject

Returns: a hash code value for this object, equal to the primitiveint value represented by this
Integer object.

intValue()

public int intValue()

Returns the value of this Integer as an int.

Returns: the int value represented by this object.

longValue()

public long longValue()

Returns the value of this Integer as along .

Returns: the int value represented by this object that is converted to typelong and the result of the
conversion is returned.

parseInt(String)

public static int parseInt(String s)

Parses the string argument as a signed decimal integer. The characters in the string must all be deci
its, except that the first character may be an ASCII minus sign'-' ('\u002d') to indicate a nega-
tive value. The resulting integer value is returned, exactly as if the argument and the radix 10 were gi
arguments to theparseInt(String, int) method.

Parameters:
s - a string.
126

java.lang Integer

parseInt(String, int)

aracters

be a
Returns: the integer represented by the argument in decimal.

Throws: NumberFormatException - if the string does not contain a parsable integer.

parseInt(String, int)

public static int parseInt(String s, int radix)

Parses the string argument as a signed integer in the radix specified by the second argument. The ch
in the string must all be digits of the specified radix (as determined by whetherdigit(char, int)
returns a nonnegative value), except that the first character may be an ASCII minus sign'-'
('\u002d') to indicate a negative value. The resulting integer value is returned.

An exception of typeNumberFormatException is thrown if any of the following situations occurs:

• The first argument isnull or is a string of length zero.
• The radix is either smaller thanMIN_RADIX or larger thanMAX_RADIX.
• Any character of the string is not a digit of the specified radix, except that the first character may

minus sign'-' ('\u002d') provided that the string is longer than length 1.
• The integer value represented by the string is not a value of typeint .

Examples:

parseInt("0", 10) returns 0
parseInt("473", 10) returns 473
parseInt("-0", 10) returns 0
parseInt("-FF", 16) returns -255
parseInt("1100110", 2) returns 102
parseInt("2147483647", 10) returns 2147483647
parseInt("-2147483648", 10) returns -2147483648
parseInt("2147483648", 10) throws a NumberFormatException
parseInt("99", 8) throws a NumberFormatException
parseInt("Kona", 10) throws a NumberFormatException
parseInt("Kona", 27) returns 411787

Parameters:
s - theString containing the integer.

radix - the radix to be used.

Returns: the integer represented by the string argument in the specified radix.

Throws: NumberFormatException - if the string does not contain a parsable integer.

shortValue()

public short shortValue()

Returns the value of this Integer as a short.

Returns: the value of this Integer as a short.

Since: JDK1.1

toBinaryString(int)

public static String toBinaryString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 2.
127

Integer java.lang

toHexString(int)

e

er. The

ary

e
ading

racter.

e

racter.
The unsigned integer value is the argument plus 232if the argument is negative; otherwise it is equal to th
argument. This value is converted to a string of ASCII digits in binary (base 2) with no extra leading0s. If
the unsigned magnitude is zero, it is represented by a single zero character'0' ('\u0030'); other-
wise, the first character of the representation of the unsigned magnitude will not be the zero charact
characters'0' ('\u0030') and'1' ('\u0031') are used as binary digits.

Parameters:
i - an integer.

Returns: the string representation of the unsigned integer value represented by the argument in bin
(base 2).

Since: JDK1.0.2

toHexString(int)

public static String toHexString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 16.

The unsigned integer value is the argument plus 232 if the argument is negative; otherwise, it is equal to th
argument. This value is converted to a string of ASCII digits in hexadecimal (base 16) with no extra le
0s. If the unsigned magnitude is zero, it is represented by a single zero character'0' ('\u0030');
otherwise, the first character of the representation of the unsigned magnitude will not be the zero cha
The following characters are used as hexadecimal digits:

0123456789abcdef

These are the characters'\u0030' through '\u0039' and 'u\0039' through
'\u0066' .

Parameters:
i - an integer.

Returns: the string representation of the unsigned integer value represented by the argument in
hexadecimal (base 16).

Since: JDK1.0.2

toOctalString(int)

public static String toOctalString(int i)

Creates a string representation of the integer argument as an unsigned integer in base 8.

The unsigned integer value is the argument plus 232 if the argument is negative; otherwise, it is equal to th
argument. This value is converted to a string of ASCII digits in octal (base 8) with no extra leading0s.

If the unsigned magnitude is zero, it is represented by a single zero character'0' ('\u0030'); oth-
erwise, the first character of the representation of the unsigned magnitude will not be the zero cha
The octal digits are:

01234567

These are the characters'\u0030' through'\u0037' .

Parameters:
i - an integer
128

java.lang Integer

toString()

l (base

presen-
to the

decimal

tude is
f
e used
Returns: the string representation of the unsigned integer value represented by the argument in octa
8).

Since: JDK1.0.2

toString()

public String toString()

Returns a String object representing this Integer's value. The value is converted to signed decimal re
tation and returned as a string, exactly as if the integer value were given as an argument
toString(int) method.

Overrides: toString() in classObject

Returns: a string representation of the value of this object in base 10.

toString(int)

public static String toString(int i)

Returns a new String object representing the specified integer. The argument is converted to signed
representation and returned as a string, exactly as if the argument and radix10 were given as arguments to
thetoString(int, int) method.

Parameters:
i - an integer to be converted.

Returns: a string representation of the argument in base 10.

toString(int, int)

public static String toString(int i, int radix)

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller thanCharacter.MIN_RADIX or larger thanCharacter.MAX_RADIX , then the
radix10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus character'-'
('\u002d'). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magni
zero, it is represented by a single zero character'0' ('\u0030'); otherwise, the first character o
the representation of the magnitude will not be the zero character. The following ASCII characters ar
as digits:

0123456789abcdefghijklmnopqrstuvwxyz

These are'\u0030' through'\u0039' and '\u0061' through'\u007a' .
If the radix is N, then the firstN of these characters are used as radix-N digits in the order shown. Thus,
the digits for hexadecimal (radix 16) are

0123456789abcdef.

Parameters:
i - an integer.
129

Integer java.lang

valueOf(String)

ted as

reted
uments

he
radix - the radix.

Returns: a string representation of the argument in the specified radix.

See Also: MAX_RADIX, MIN_RADIX

valueOf(String)

public static Integer valueOf(String s)

Returns a new Integer object initialized to the value of the specified String. The argument is interpre
representing a signed decimal integer, exactly as if the argument were given to theparseInt(String)
method. The result is anInteger object that represents the integer value specified by the string.

In other words, this method returns anInteger object equal to the value of:

new Integer(Integer.parseInt(s))

Parameters:
s - the string to be parsed.

Returns: a newly constructedInteger initialized to the value represented by the string argument.

Throws: NumberFormatException - if the string cannot be parsed as an integer.

valueOf(String, int)

public static Integer valueOf(String s, int radix)

Returns a new Integer object initialized to the value of the specified String. The first argument is interp
as representing a signed integer in the radix specified by the second argument, exactly as if the arg
were given to theparseInt(String, int) method. The result is anInteger object that represents
the integer value specified by the string.

In other words, this method returns anInteger object equal to the value of:

new Integer(Integer.parseInt(s, radix))

Parameters:
s - the string to be parsed.

radix - the radix of the integer represented by strings

Returns: a newly constructedInteger initialized to the value represented by the string argument in t
specified radix.

Throws: NumberFormatException - if the String cannot be parsed as anint .
130

java.lang InterruptedException

InterruptedException()

rupts it
java.lang

InterruptedException
Syntax
public class InterruptedException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.lang.InterruptedException

Description
Thrown when a thread is waiting, sleeping, or otherwise paused for a long time and another thread inter
using theinterrupt method in classThread .

Since: JDK1.0

See Also: wait() , wait(long) , wait(long, int) , sleep(long)

Constructors

InterruptedException()

Member Summary

Constructors
InterruptedExcep-
tion()

Constructs anInterruptedException with no detail message.

InterruptedExcep-
tion(String)

Constructs anInterruptedException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
131

InterruptedException java.lang

InterruptedException(String)
public InterruptedException()

Constructs anInterruptedException with no detail message.

InterruptedException(String)

public InterruptedException(String s)

Constructs anInterruptedException with the specified detail message.

Parameters:
s - the detail message.
132

java.lang Long

InterruptedException(String)

ec-
java.lang

Long
Syntax
public final class Long

Object
|
+-- java.lang.Long

Description
The Long class wraps a value of the primitive typelong in an object. An object of typeLong contains a single
field whose type islong .

In addition, this class provides several methods for converting along to aString and aString to a long ,
as well as other constants and methods useful when dealing with along .

Since: JDK1.0

Member Summary

Fields
MAX_VALUE The largest value of typelong .
MIN_VALUE The smallest value of typelong .

Constructors
Long(long) Constructs a newly allocatedLong object that represents the primitivelong argu-

ment.

Methods
equals(Object) Compares this object against the specified object.
hashCode() Computes a hashcode for this Long.
longValue() Returns the value of this Long as a long value.
parseLong(String) Parses the string argument as a signed decimallong .
parseLong(String,
int)

Parses the string argument as a signedlong in the radix specified by the second argu-
ment.

toString() Returns a String object representing this Long's value.
toString(long) Returns a new String object representing the specified integer.
toString(long, int) Creates a string representation of the first argument in the radix specified by the s

ond argument.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
133

Long java.lang

MAX_VALUE
Fields

MAX_VALUE

public static final long MAX_VALUE

The largest value of typelong .

MIN_VALUE

public static final long MIN_VALUE

The smallest value of typelong .

Constructors

Long(long)

public Long(long value)

Constructs a newly allocatedLong object that represents the primitivelong argument.

Parameters:
value - the value to be represented by theLong object.

Methods

equals(Object)

public boolean equals(Object obj)

Compares this object against the specified object. The result istrue if and only if the argument is not
null and is aLong object that contains the samelong value as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the same;false otherwise.

hashCode()

public int hashCode()

Computes a hashcode for this Long. The result is the exclusive OR of the two halves of the primitivelong
value represented by thisLong object. That is, the hashcode is the value of the expression:
134

java.lang Long

longValue()

g-

per-

ters

per-
(int)(this.longValue()^(this.longValue()>>>32))

Overrides: hashCode() in classObject

Returns: a hash code value for this object.

longValue()

public long longValue()

Returns the value of this Long as a long value.

Returns: the long value represented by this object.

parseLong(String)

public static long parseLong(String s)

Parses the string argument as a signed decimallong . The characters in the string must all be decimal di
its, except that the first character may be an ASCII minus sign'-' (\u002d') to indicate a negative
value. The resulting long value is returned, exactly as if the argument and the radix10 were given as argu-
ments to theparseLong(String, int) method that takes two arguments.

Note that neitherL nor l is permitted to appear at the end of the string as a type indicator, as would be
mitted in Java programming language source code.

Parameters:
s - a string.

Returns: the long represented by the argument in decimal.

Throws: NumberFormatException - if the string does not contain a parsablelong .

parseLong(String, int)

public static long parseLong(String s, int radix)

Parses the string argument as a signedlong in the radix specified by the second argument. The charac
in the string must all be digits of the specified radix (as determined by whetherCharacter.digit
returns a nonnegative value), except that the first character may be an ASCII minus sign'-'
('\u002d' to indicate a negative value. The resultinglong value is returned.

Note that neitherL nor l is permitted to appear at the end of the string as a type indicator, as would be
mitted in Java programming language source code - except that eitherL or l may appear as a digit for a
radix greater than 22.

An exception of typeNumberFormatException is thrown if any of the following situations occurs:

• The first argument isnull or is a string of length zero.
• Theradix is either smaller thanMIN_RADIX or larger thanMAX_RADIX.
• The first character of the string is not a digit of the specifiedradix and is not a minus sign'-'

('\u002d').
• The first character of the string is a minus sign and the string is of length 1.
• Any character of the string after the first is not a digit of the specifiedradix .
• The integer value represented by the string cannot be represented as a value of typelong .

Examples:
135

Long java.lang

toString()

Long
g value

decimal
uments

tude is
f
e used
parseLong("0", 10) returns 0L
parseLong("473", 10) returns 473L
parseLong("-0", 10) returns 0L
parseLong("-FF", 16) returns -255L
parseLong("1100110", 2) returns 102L
parseLong("99", 8) throws a NumberFormatException
parseLong("Hazelnut", 10) throws a NumberFormatException
parseLong("Hazelnut", 36) returns 1356099454469L

Parameters:
s - theString containing thelong .

radix - the radix to be used.

Returns: the long represented by the string argument in the specified radix.

Throws: NumberFormatException - if the string does not contain a parsable integer.

toString()

public String toString()

Returns a String object representing this Long's value. The long integer value represented by this
object is converted to signed decimal representation and returned as a string, exactly as if the lon
were given as an argument to thetoString(long) method that takes one argument.

Overrides: toString() in classObject

Returns: a string representation of this object in base 10.

toString(long)

public static String toString(long i)

Returns a new String object representing the specified integer. The argument is converted to signed
representation and returned as a string, exactly as if the argument and the radix 10 were given as arg
to thetoString(long, int) method that takes two arguments.

Parameters:
i - a long to be converted.

Returns: a string representation of the argument in base 10.

toString(long, int)

public static String toString(long i, int radix)

Creates a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller thanCharacter.MIN_RADIX or larger thanCharacter.MAX_RADIX , then the
radix10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus sign'-'
('\u002d' . If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magni
zero, it is represented by a single zero character'0' ('\u0030'); otherwise, the first character o
the representation of the magnitude will not be the zero character. The following ASCII characters ar
as digits:
136

java.lang Long

toString(long, int)
0123456789abcdefghijklmnopqrstuvwxyz

These are'\u0030' through'\u0039' and '\u0061' through'\u007a' .
If the radix isN, then the firstN of these characters are used as radix-N digits in the order shown. Thus, the
digits for hexadecimal (radix 16) are

0123456789abcdef.

Parameters:
i - a long.

radix - the radix.

Returns: a string representation of the argument in the specified radix.

See Also: MAX_RADIX, MIN_RADIX
137

Math java.lang

abs(int)

the

e

java.lang

Math
Syntax
public final class Math

Object
|
+-- java.lang.Math

Description
The classMath contains methods for performing basic numeric operations.

Since: 1.3

Methods

abs(int)

public static int abs(int a)

Returns the absolute value of anint value. If the argument is not negative, the argument is returned. If
argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the value ofInteger.MIN_VALUE , the most negative representabl
int value, the result is that same value, which is negative.

Member Summary

Methods
abs(int) Returns the absolute value of anint value.
abs(long) Returns the absolute value of along value.
max(int, int) Returns the greater of twoint values.
max(long, long) Returns the greater of twolong values.
min(int, int) Returns the smaller of twoint values.
min(long, long) Returns the smaller of twolong values.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
138

java.lang Math

abs(long)

the

e

of
Parameters:
a - anint value.

Returns: the absolute value of the argument.

See Also: MIN_VALUE

abs(long)

public static long abs(long a)

Returns the absolute value of along value. If the argument is not negative, the argument is returned. If
argument is negative, the negation of the argument is returned.

Note that if the argument is equal to the value ofLong.MIN_VALUE , the most negative representabl
long value, the result is that same value, which is negative.

Parameters:
a - a long value.

Returns: the absolute value of the argument.

See Also: MIN_VALUE

max(int, int)

public static int max(int a, int b)

Returns the greater of twoint values. That is, the result is the argument closer to the value ofInte-
ger.MAX_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
a - anint value.

b - anint value.

Returns: the larger ofa andb.

See Also: MAX_VALUE

max(long, long)

public static long max(long a, long b)

Returns the greater of twolong values. That is, the result is the argument closer to the value
Long.MAX_VALUE. If the arguments have the same value, the result is that same value.

Parameters:
a - a long value.

b - a long value.

Returns: the larger ofa andb.

See Also: MAX_VALUE

min(int, int)

public static int min(int a, int b)
139

Math java.lang

min(long, long)

of
Returns the smaller of twoint values. That is, the result the argument closer to the value ofInte-
ger.MIN_VALUE . If the arguments have the same value, the result is that same value.

Parameters:
a - anint value.

b - anint value.

Returns: the smaller ofa andb.

See Also: MIN_VALUE

min(long, long)

public static long min(long a, long b)

Returns the smaller of twolong values. That is, the result is the argument closer to the value
Long.MIN_VALUE . If the arguments have the same value, the result is that same value.

Parameters:
a - a long value.

b - a long value.

Returns: the smaller ofa andb.

See Also: MIN_VALUE
140

java.lang NegativeArraySizeException

NegativeArraySizeException()
java.lang

NegativeArraySizeException
Syntax
public class NegativeArraySizeException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.NegativeArraySizeException

Description
Thrown if an application tries to create an array with negative size.

Since: JDK1.0

Constructors

NegativeArraySizeException()

public NegativeArraySizeException()

Member Summary

Constructors
NegativeArraySizeEx-
ception()

Constructs aNegativeArraySizeException with no detail message.

NegativeArraySizeEx-
ception(String)

Constructs aNegativeArraySizeException with the specified detail mes-
sage.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
141

NegativeArraySizeException java.lang

NegativeArraySizeException(String)
Constructs aNegativeArraySizeException with no detail message.

NegativeArraySizeException(String)

public NegativeArraySizeException(String s)

Constructs aNegativeArraySizeException with the specified detail message.

Parameters:
s - the detail message.
142

java.lang NullPointerException

NegativeArraySizeException(String)
java.lang

NullPointerException
Syntax
public class NullPointerException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.NullPointerException

Description
Thrown when an application attempts to usenull in a case where an object is required. These include:

• Calling the instance method of anull object.
• Accessing or modifying the field of anull object.
• Taking the length ofnull as if it were an array.
• Accessing or modifying the slots ofnull as if it were an array.
• Throwingnull as if it were aThrowable value.

Applications should throw instances of this class to indicate other illegal uses of thenull object.

Since: JDK1.0

Member Summary

Constructors
NullPointerExcep-
tion()

Constructs aNullPointerException with no detail message.

NullPointerExcep-
tion(String)

Constructs aNullPointerException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
143

NullPointerException java.lang

NullPointerException()
Constructors

NullPointerException()

public NullPointerException()

Constructs aNullPointerException with no detail message.

NullPointerException(String)

public NullPointerException(String s)

Constructs aNullPointerException with the specified detail message.

Parameters:
s - the detail message.
144

java.lang NumberFormatException

NullPointerException(String)

hat the
java.lang

NumberFormatException
Syntax
public class NumberFormatException extends IllegalArgumentException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- IllegalArgumentException

|
+-- java.lang.NumberFormatException

Description
Thrown to indicate that the application has attempted to convert a string to one of the numeric types, but t
string does not have the appropriate format.

Since: JDK1.0

See Also: toString()

Constructors

Member Summary

Constructors
NumberFormatExcep-
tion()

Constructs aNumberFormatException with no detail message.

NumberFormatExcep-
tion(String)

Constructs aNumberFormatException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
145

NumberFormatException java.lang

NumberFormatException()
NumberFormatException()

public NumberFormatException()

Constructs aNumberFormatException with no detail message.

NumberFormatException(String)

public NumberFormatException(String s)

Constructs aNumberFormatException with the specified detail message.

Parameters:
s - the detail message.
146

java.lang Object

Object()

-

java.lang

Object
Syntax
public class Object

java.lang.Object

Description
ClassObject is the root of the class hierarchy. Every class hasObject as a superclass. All objects, including
arrays, implement the methods of this class.

Since: JDK1.0

See Also: Class

Constructors

Object()

public Object()

Member Summary

Constructors
Object()

Methods
equals(Object) Indicates whether some other object is "equal to" this one.
getClass() Returns the runtime class of an object.
hashCode() Returns a hash code value for the object.
notify() Wakes up a single thread that is waiting on this object's monitor.
notifyAll() Wakes up all threads that are waiting on this object's monitor.
toString() Returns a string representation of the object.
wait() Causes current thread to wait until another thread invokes thenotify() method or

thenotifyAll() method for this object.
wait(long) Causes current thread to wait until either another thread invokes thenotify()

method or thenotifyAll() method for this object, or a specified amount of time
has elapsed.

wait(long, int) Causes current thread to wait until another thread invokes thenotify() method or
thenotifyAll() method for this object, or some other thread interrupts the cur
rent thread, or a certain amount of real time has elapsed.
147

Object java.lang

equals(Object)

ion

such as

cation,
d in
exe-
Methods

equals(Object)

public boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

Theequals method implements an equivalence relation:

• It is reflexive: for any reference valuex , x.equals(x) should returntrue .
• It is symmetric: for any reference valuesx andy, x.equals(y) should returntrue if and only if

y.equals(x) returnstrue .
• It is transitive: for any reference valuesx , y, and z , if x.equals(y) returns true and

y.equals(z) returnstrue , thenx.equals(z) should returntrue .
• It is consistent: for any reference valuesx andy, multiple invocations ofx.equals(y) consistently

returntrue or consistently returnfalse , provided no information used inequals comparisons on
the object is modified.

• For any non-null reference valuex , x.equals(null) should returnfalse .
Theequals method for classObject implements the most discriminating possible equivalence relat
on objects; that is, for any reference valuesx andy, this method returnstrue if and only if x andy refer to
the same object (x==y has the valuetrue).

Parameters:
obj - the reference object with which to compare.

Returns: true if this object is the same as the obj argument;false otherwise.

See Also: hashCode() , Hashtable

getClass()

public final native Class getClass()

Returns the runtime class of an object. ThatClass object is the object that is locked bystatic syn-
chronized methods of the represented class.

Returns: the object of typeClass that represents the runtime class of the object.

hashCode()

public native int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hashtables
those provided byjava.util.Hashtable .

The general contract ofhashCode is:

• Whenever it is invoked on the same object more than once during an execution of a Java appli
the hashCode method must consistently return the same integer, provided no information use
equals comparisons on the object is modified. This integer need not remain consistent from one
cution of an application to another execution of the same application.

• If two objects are equal according to theequals(Object) method, then calling thehashCode
method on each of the two objects must produce the same integer result.

• It is not required that if two objects are unequal according to theequals(Object) method, then
148

java.lang Object

notify()

ow-
ts may

bject
age.)

bject,
lemen-

object.
com-

disad-

omes

's

y call-

n this
ght be
e priv-

's
calling thehashCode method on each of the two objects must produce distinct integer results. H
ever, the programmer should be aware that producing distinct integer results for unequal objec
improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by classObject does return distinct
integers for distinct objects. (This is typically implemented by converting the internal address of the o
into an integer, but this implementation technique is not required by the JavaTM programming langu

Returns: a hash code value for this object.

See Also: equals(Object) , Hashtable

notify()

public final native void notify()

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this o
one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the imp
tation. A thread waits on an object's monitor by calling one of thewait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this
The awakened thread will compete in the usual manner with any other threads that might be actively
peting to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or
vantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. A thread bec
the owner of the object's monitor in one of three ways:

• By executing a synchronized instance method of that object.
• By executing the body of asynchronized statement that synchronizes on the object.
• For objects of typeClass, by executing a synchronized static method of that class.

Only one thread at a time can own an object's monitor.

Throws: IllegalMonitorStateException - if the current thread is not the owner of this object
monitor.

See Also: notifyAll() , wait()

notifyAll()

public final native void notifyAll()

Wakes up all threads that are waiting on this object's monitor. A thread waits on an object's monitor b
ing one of thewait methods.

The awakened threads will not be able to proceed until the current thread relinquishes the lock o
object. The awakened threads will compete in the usual manner with any other threads that mi
actively competing to synchronize on this object; for example, the awakened threads enjoy no reliabl
ilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this object's monitor. See thenotify
method for a description of the ways in which a thread can become the owner of a monitor.

Throws: IllegalMonitorStateException - if the current thread is not the owner of this object
monitor.

See Also: notify() , wait()
149

Object java.lang

toString()

-
y for a

the
ash

call

d waits
to the
the

's

o
l-
toString()

public String toString()

Returns a string representation of the object. In general, thetoString method returns a string that "textu
ally represents" this object. The result should be a concise but informative representation that is eas
person to read. It is recommended that all subclasses override this method.

ThetoString method for classObject returns a string consisting of the name of the class of which
object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the h
code of the object. In other words, this method returns a string equal to the value of:

getClass().getName() + '@' + Integer.toHexString(hashCode())

Returns: a string representation of the object.

wait()

public final void wait()

Causes current thread to wait until another thread invokes thenotify() method or thenotifyAll()
method for this object. In other word's this method behaves exactly as if it simply performs the
wait(0) .

The current thread must own this object's monitor. The thread releases ownership of this monitor an
until another thread notifies threads waiting on this object's monitor to wake up either through a call
notify method or thenotifyAll method. The thread then waits until it can re-obtain ownership of
monitor and resumes execution.

This method should only be called by a thread that is the owner of this object's monitor. See thenotify
method for a description of the ways in which a thread can become the owner of a monitor.

Throws: IllegalMonitorStateException - if the current thread is not the owner of the object
monitor.

InterruptedException - if another thread has interrupted the current thread. Theinterrupted
status of the current thread is cleared when this exception is thrown.

See Also: notify() , notifyAll()

wait(long)

public final native void wait(long timeout)

Causes current thread to wait until either another thread invokes thenotify() method or the
notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor.

This method causes the current thread (call itT) to place itself in the wait set for this object and then t
relinquish any and all synchronization claims on this object. ThreadT becomes disabled for thread schedu
ing purposes and lies dormant until one of four things happens:

• Some other thread invokes thenotify method for this object and threadT happens to be arbitrarily
chosen as the thread to be awakened.

• Some other thread invokes thenotifyAll method for this object.
• The specified amount of real time has elapsed, more or less. Iftimeout is zero, however, then real
150

java.lang Object

wait(long, int)

then
it has
ante -

e

this
thread

al time

of
given

d waits

to the

s

time is not taken into consideration and the thread simply waits until notified.
The threadT is then removed from the wait set for this object and re-enabled for thread scheduling. It
competes in the usual manner with other threads for the right to synchronize on the object; once
gained control of the object, all its synchronization claims on the object are restored to the status quo
that is, to the situation as of the time that thewait method was invoked. ThreadT then returns from the
invocation of thewait method. Thus, on return from thewait method, the synchronization state of th
object and of threadT is exactly as it was when thewait method was invoked.

Note that thewait method, as it places the current thread into the wait set for this object, unlocks only
object; any other objects on which the current thread may be synchronized remain locked while the
waits.

This method should only be called by a thread that is the owner of this object's monitor. See thenotify
method for a description of the ways in which a thread can become the owner of a monitor.

Parameters:
timeout - the maximum time to wait in milliseconds.

Throws: IllegalArgumentException - if the value of timeout is negative.

IllegalMonitorStateException - if the current thread is not the owner of the object's
monitor.

InterruptedException - if another thread has interrupted the current thread. Theinterrupted
status of the current thread is cleared when this exception is thrown.

See Also: notify() , notifyAll()

wait(long, int)

public final void wait(long timeout, int nanos)

Causes current thread to wait until another thread invokes thenotify() method or thenotifyAll()
method for this object, or some other thread interrupts the current thread, or a certain amount of re
has elapsed.

This method is similar to thewait method of one argument, but it allows finer control over the amount
time to wait for a notification before giving up. The amount of real time, measured in nanoseconds, is
by:

1000000*millis+nanos
In all other respects, this method does the same thing as the methodwait(long) of one argument. In
particular,wait(0, 0) means the same thing aswait(0) .

The current thread must own this object's monitor. The thread releases ownership of this monitor an
until either of the following two conditions has occurred:

• Another thread notifies threads waiting on this object's monitor to wake up either through a call
notify method or thenotifyAll method.

• The timeout period, specified bytimeout milliseconds plusnanos nanoseconds arguments, ha
elapsed.

The thread then waits until it can re-obtain ownership of the monitor and resumes execution

This method should only be called by a thread that is the owner of this object's monitor. See thenotify
method for a description of the ways in which a thread can become the owner of a monitor.

Parameters:
timeout - the maximum time to wait in milliseconds.
151

Object java.lang

wait(long, int)

is
nanos - additional time, in nanoseconds range 0-999999.

Throws: IllegalArgumentException - if the value of timeout is negative or the value of nanos
not in the range 0-999999.

IllegalMonitorStateException - if the current thread is not the owner of this object's
monitor.

InterruptedException - if another thread has interrupted the current thread. Theinterrupted
status of the current thread is cleared when this exception is thrown.
152

java.lang OutOfMemoryError

OutOfMemoryError()

more
java.lang

OutOfMemoryError
Syntax
public class OutOfMemoryError extends VirtualMachineError

Object
|
+-- Throwable

|
+-- Error

|
+-- VirtualMachineError

|
+-- java.lang.OutOfMemoryError

Description
Thrown when the Java Virtual Machine cannot allocate an object because it is out of memory, and no
memory could be made available by the garbage collector.

Since: JDK1.0

Constructors

OutOfMemoryError()

public OutOfMemoryError()

Member Summary

Constructors
OutOfMemoryError() Constructs anOutOfMemoryError with no detail message.
OutOfMemoryEr-
ror(String)

Constructs anOutOfMemoryError with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
153

OutOfMemoryError java.lang

OutOfMemoryError(String)
Constructs anOutOfMemoryError with no detail message.

OutOfMemoryError(String)

public OutOfMemoryError(String s)

Constructs anOutOfMemoryError with the specified detail message.

Parameters:
s - the detail message.
154

java.lang Runnable

run()

ed by a

ey are
s

r-
sub-
s.

the
java.lang

Runnable
Syntax
public abstract interface Runnable

All Known Implementing Classes: Thread

Description
TheRunnable interface should be implemented by any class whose instances are intended to be execut
thread. The class must define a method of no arguments calledrun .

This interface is designed to provide a common protocol for objects that wish to execute code while th
active. For example,Runnable is implemented by classThread . Being active simply means that a thread ha
been started and has not yet been stopped.

In addition,Runnable provides the means for a class to be active while not subclassingThread . A class that
implementsRunnable can run without subclassingThread by instantiating aThread instance and passing
itself in as the target. In most cases, theRunnable interface should be used if you are only planning to ove
ride therun() method and no otherThread methods. This is important because classes should not be
classed unless the programmer intends on modifying or enhancing the fundamental behavior of the clas

Since: JDK1.0

See Also: Thread

Methods

run()

public void run()

When an object implementing interfaceRunnable is used to create a thread, starting the thread causes
object'srun method to be called in that separately executing thread.

The general contract of the methodrun is that it may take any action whatsoever.

See Also: run()

Member Summary

Methods
run() When an object implementing interfaceRunnable is used to create a thread, starting

the thread causes the object'srun method to be called in that separately executing
thread.
155

Runtime java.lang

exit(int)
java.lang

Runtime
Syntax
public class Runtime

Object
|
+-- java.lang.Runtime

Description
Every Java application has a single instance of classRuntime that allows the application to interface with the
environment in which the application is running. The current runtime can be obtained from thegetRuntime
method.

An application cannot create its own instance of this class.

Since: JDK1.0

See Also: getRuntime()

Methods

exit(int)

public void exit(int status)

Member Summary

Methods
exit(int) Terminates the currently running Java application.
freeMemory() Returns the amount of free memory in the system.
gc() Runs the garbage collector.
getRuntime() Returns the runtime object associated with the current Java application.
totalMemory() Returns the total amount of memory in the Java Virtual Machine.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
156

java.lang Runtime

freeMemory()

ination.

e

cts,

toward
euse.
cle all

cess

f class

may

ation-
Terminates the currently running Java application. This method never returns normally.

The argument serves as a status code; by convention, a nonzero status code indicates abnormal term

Parameters:
status - exit status.

Since: JDK1.0

freeMemory()

public native long freeMemory()

Returns the amount of free memory in the system. Calling thegc method may result in increasing the valu
returned byfreeMemory.

Returns: an approximation to the total amount of memory currently available for future allocated obje
measured in bytes.

gc()

public native void gc()

Runs the garbage collector. Calling this method suggests that the Java Virtual Machine expend effort
recycling unused objects in order to make the memory they currently occupy available for quick r
When control returns from the method call, the Java Virtual Machine has made its best effort to recy
discarded objects.

The namegc stands for "garbage collector". The Java Virtual Machine performs this recycling pro
automatically as needed, in a separate thread, even if thegc method is not invoked explicitly.

The methodgc() is hte conventional and convenient means of invoking this method.

getRuntime()

public static Runtime getRuntime()

Returns the runtime object associated with the current Java application. Most of the methods o
Runtime are instance methods and must be invoked with respect to the current runtime object.

Returns: theRuntime object associated with the current Java application.

totalMemory()

public native long totalMemory()

Returns the total amount of memory in the Java Virtual Machine. The value returned by this method
vary over time, depending on the host environment.

Note that the amount of memory required to hold an object of any given type may be implement
dependent.

Returns: the total amount of memory currently available for current and future objects, measured in
bytes.
157

RuntimeException java.lang

totalMemory()

ion of
java.lang

RuntimeException
Syntax
public class RuntimeException extends Exception

Object
|
+-- Throwable

|
+-- Exception

|
+-- java.lang.RuntimeException

Direct Known Subclasses: ArithmeticException , ArrayStoreException , ClassCastEx-
ception , EmptyStackException , IllegalArgumentException , IllegalMoni-
torStateException , IndexOutOfBoundsException , NegativeArraySizeException ,
NoSuchElementException , NullPointerException , SecurityException

Description
RuntimeException is the superclass of those exceptions that can be thrown during the normal operat
the Java Virtual Machine.

A method is not required to declare in itsthrows clause any subclasses ofRuntimeException that might
be thrown during the execution of the method but not caught.

Since: JDK1.0

Member Summary

Constructors
RuntimeException() Constructs aRuntimeException with no detail message.
RuntimeExcep-
tion(String)

Constructs aRuntimeException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
158

java.lang RuntimeException

RuntimeException()
Constructors

RuntimeException()

public RuntimeException()

Constructs aRuntimeException with no detail message.

RuntimeException(String)

public RuntimeException(String s)

Constructs aRuntimeException with the specified detail message.

Parameters:
s - the detail message.
159

SecurityException java.lang

SecurityException()
java.lang

SecurityException
Syntax
public class SecurityException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.lang.SecurityException

Description
Thrown by the security manager to indicate a security violation.

Since: JDK1.0

Constructors

SecurityException()

public SecurityException()

Member Summary

Constructors
SecurityException() Constructs aSecurityException with no detail message.
SecurityExcep-
tion(String)

Constructs aSecurityException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
160

java.lang SecurityException

SecurityException(String)
Constructs aSecurityException with no detail message.

SecurityException(String)

public SecurityException(String s)

Constructs aSecurityException with the specified detail message.

Parameters:
s - the detail message.
161

Short java.lang

MAX_VALUE
java.lang

Short
Syntax
public final class Short

Object
|
+-- java.lang.Short

Description
The Short class is the standard wrapper for short values.

Since: JDK1.1

Fields

MAX_VALUE

Member Summary

Fields
MAX_VALUE The maximum value a Short can have.
MIN_VALUE The minimum value a Short can have.

Constructors
Short(short) Constructs a Short object initialized to the specified short value.

Methods
equals(Object) Compares this object to the specified object.
hashCode() Returns a hashcode for this Short.
parseShort(String) Assuming the specified String represents a short, returns that short's value.
parseShort(String,
int)

Assuming the specified String represents a short, returns that short's value.

shortValue() Returns the value of this Short as a short.
toString() Returns a String object representing this Short's value.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
162

java.lang Short

MIN_VALUE

if the
public static final short MAX_VALUE

The maximum value a Short can have.

MIN_VALUE

public static final short MIN_VALUE

The minimum value a Short can have.

Constructors

Short(short)

public Short(short value)

Constructs a Short object initialized to the specified short value.

Parameters:
value - the initial value of the Short

Methods

equals(Object)

public boolean equals(Object obj)

Compares this object to the specified object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with

Returns: true if the objects are the same; false otherwise.

hashCode()

public int hashCode()

Returns a hashcode for this Short.

Overrides: hashCode() in classObject

parseShort(String)

public static short parseShort(String s)

Assuming the specified String represents a short, returns that short's value. Throws an exception
String cannot be parsed as a short. The radix is assumed to be 10.
163

Short java.lang

parseShort(String, int)

if the
Parameters:
s - the String containing the short

Returns: short the value represented by the specified string

Throws: NumberFormatException - If the string does not contain a parsable short.

parseShort(String, int)

public static short parseShort(String s, int radix)

Assuming the specified String represents a short, returns that short's value. Throws an exception
String cannot be parsed as a short.

Parameters:
s - the String containing the short

radix - the radix to be used

Returns: The short value represented by the specified string in the specified radix.

Throws: NumberFormatException - If the String does not contain a parsable short.

shortValue()

public short shortValue()

Returns the value of this Short as a short.

Returns: the value of this Short as a short.

toString()

public String toString()

Returns a String object representing this Short's value.

Overrides: toString() in classObject
164

java.lang String

toString()

mutable

aring
acters

sion of

e Gos-
java.lang

String
Syntax
public final class String

Object
|
+-- java.lang.String

Description
TheString class represents character strings. All string literals in Java programs, such as"abc" , are imple-
mented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support
strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

is equivalent to:

char data[] = {'a', 'b', 'c'};
String str = new String(data);

Here are some more examples of how strings can be used:

System.out.println("abc");
String cde = "cde";
System.out.println("abc" + cde);
Strin g c = "abc".substring(2,3);
Strin g d = cde.substring(1, 2);

The classString includes methods for examining individual characters of the sequence, for comp
strings, for searching strings, for extracting substrings, and for creating a copy of a string with all char
translated to uppercase or to lowercase.

The Java language provides special support for the string concatenation operator (+), and for conver
other objects to strings. String concatenation is implemented through theStringBuffer class and its
append method. String conversions are implemented through the methodtoString , defined byObject
and inherited by all classes in Java. For additional information on string concatenation and conversion, se
ling, Joy, and Steele,The Java Language Specification.

Since: JDK1.0

See Also: toString() , StringBuffer , append(boolean) , append(char) ,
append(char[]) , append(char[], int, int) , append(int) , append(long) ,
append(Object) , append(String)

Member Summary

Constructors
165

String java.lang

toString()

t-

-

f
the

d in

-

g

er.
er,

g.
g,

r.
r,
String() Initializes a newly createdString object so that it represents an empty character
sequence.

String(byte[]) Construct a newString by converting the specified array of bytes using the plat-
form's default character encoding.

String(byte[], int,
int)

Construct a newString by converting the specified subarray of bytes using the pla
form's default character encoding.

String(byte[], int,
int, String)

Construct a newString by converting the specified subarray of bytes using the
specified character encoding.

String(byte[],
String)

Construct a newString by converting the specified array of bytes using the speci
fied character encoding.

String(char[]) Allocates a newString so that it represents the sequence of characters currently
contained in the character array argument.

String(char[], int,
int)

Allocates a newString that contains characters from a subarray of the character
array argument.

String(String) Initializes a newly createdString object so that it represents the same sequence o
characters as the argument; in other words, the newly created string is a copy of
argument string.

String(StringBuffer) Allocates a new string that contains the sequence of characters currently containe
the string buffer argument.

Methods
charAt(int) Returns the character at the specified index.
compareTo(String) Compares two strings lexicographically.
concat(String) Concatenates the specified string to the end of this string.
endsWith(String) Tests if this string ends with the specified suffix.
equals(Object) Compares this string to the specified object.
getBytes() Convert thisString into bytes according to the platform's default character encod

ing, storing the result into a new byte array.
getBytes(String) Convert thisString into bytes according to the specified character encoding, storin

the result into a new byte array.
getChars(int, int,
char[], int)

Copies characters from this string into the destination character array.

hashCode() Returns a hashcode for this string.
indexOf(int) Returns the index within this string of the first occurrence of the specified charact
indexOf(int, int) Returns the index within this string of the first occurrence of the specified charact

starting the search at the specified index.
indexOf(String) Returns the index within this string of the first occurrence of the specified substrin
indexOf(String, int) Returns the index within this string of the first occurrence of the specified substrin

starting at the specified index.
lastIndexOf(int) Returns the index within this string of the last occurrence of the specified characte
lastIndexOf(int, int) Returns the index within this string of the last occurrence of the specified characte

searching backward starting at the specified index.
length() Returns the length of this string.
regionMatches(bool-
ean, int, String, int,
int)

Tests if two string regions are equal.

replace(char, char) Returns a new string resulting from replacing all occurrences ofoldChar in this
string withnewChar .

startsWith(String) Tests if this string starts with the specified prefix.
startsWith(String,
int)

Tests if this string starts with the specified prefix beginning a specified index.

substring(int) Returns a new string that is a substring of this string.
substring(int, int) Returns a new string that is a substring of this string.
toCharArray() Converts this string to a new character array.

Member Summary
166

java.lang String

String()

cter
the

rac-
l to
Constructors

String()

public String()

Initializes a newly createdString object so that it represents an empty character sequence.

String(byte[])

public String(byte[] bytes)

Construct a newString by converting the specified array of bytes using the platform's default chara
encoding. The length of the newString is a function of the encoding, and hence may not be equal to
length of the byte array.

Parameters:
bytes - The bytes to be converted into characters

Since: JDK1.1

String(byte[], int, int)

public String(byte[] bytes, int off, int len)

Construct a newString by converting the specified subarray of bytes using the platform's default cha
ter encoding. The length of the newString is a function of the encoding, and hence may not be equa
the length of the subarray.

toLowerCase() Converts all of the characters in this String to lower case.
toString() This object (which is already a string!) is itself returned.
toUpperCase() Converts all of the characters in this String to upper case.
trim() Removes white space from both ends of this string.
valueOf(boolean) Returns the string representation of theboolean argument.
valueOf(char) Returns the string representation of thechar argument.
valueOf(char[]) Returns the string representation of thechar array argument.
valueOf(char[], int,
int)

Returns the string representation of a specific subarray of thechar array argument.

valueOf(int) Returns the string representation of theint argument.
valueOf(long) Returns the string representation of thelong argument.
valueOf(Object) Returns the string representation of theObject argument.

Inherited Member Summary

Methods inherited from classObject

getClass() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()

Member Summary
167

String java.lang

String(byte[], int, int, String)

cod-
gth

ding.
h of

arac-
aracter
Parameters:
bytes - The bytes to be converted into characters

off - Index of the first byte to convert

len - Number of bytes to convert

Since: JDK1.1

String(byte[], int, int, String)

public String(byte[] bytes, int off, int len, String enc)

Construct a newString by converting the specified subarray of bytes using the specified character en
ing. The length of the newString is a function of the encoding, and hence may not be equal to the len
of the subarray.

Parameters:
bytes - The bytes to be converted into characters

off - Index of the first byte to convert

len - Number of bytes to convert

enc - The name of a character encoding

Throws: UnsupportedEncodingException - If the named encoding is not supported

Since: JDK1.1

String(byte[], String)

public String(byte[] bytes, String enc)

Construct a newString by converting the specified array of bytes using the specified character enco
The length of the newString is a function of the encoding, and hence may not be equal to the lengt
the byte array.

Parameters:
bytes - The bytes to be converted into characters

enc - The name of a supported character encoding

Throws: UnsupportedEncodingException - If the named encoding is not supported

Since: JDK1.1

String(char[])

public String(char[] value)

Allocates a newString so that it represents the sequence of characters currently contained in the ch
ter array argument. The contents of the character array are copied; subsequent modification of the ch
array does not affect the newly created string.

Parameters:
value - the initial value of the string.

Throws: NullPointerException - if value is null .
168

java.lang String

String(char[], int, int)

. The

aracter

argu-

r argu-
es not
String(char[], int, int)

public String(char[] value, int offset, int count)

Allocates a newString that contains characters from a subarray of the character array argument
offset argument is the index of the first character of the subarray and thecount argument specifies the
length of the subarray. The contents of the subarray are copied; subsequent modification of the ch
array does not affect the newly created string.

Parameters:
value - array that is the source of characters.

offset - the initial offset.

count - the length.

Throws: IndexOutOfBoundsException - if theoffset andcount arguments index characters
outside the bounds of thevalue array.

NullPointerException - if value is null .

String(String)

public String(String value)

Initializes a newly createdString object so that it represents the same sequence of characters as the
ment; in other words, the newly created string is a copy of the argument string.

Parameters:
value - aString .

String(StringBuffer)

public String(StringBuffer buffer)

Allocates a new string that contains the sequence of characters currently contained in the string buffe
ment. The contents of the string buffer are copied; subsequent modification of the string buffer do
affect the newly created string.

Parameters:
buffer - aStringBuffer .

Throws: NullPointerException - If buffer is null .

Methods

charAt(int)

public native char charAt(int index)

Returns the character at the specified index. An index ranges from0 to length() - 1 . The first charac-
ter of the sequence is at index0, the next at index1, and so on, as for array indexing.

Parameters:
169

String java.lang

compareTo(String)

acter in

rent
f they
g
cally
at

s the
he

ence rep-
index - the index of the character.

Returns: the character at the specified index of this string. The first character is at index0.

Throws: IndexOutOfBoundsException - if the index argument is negative or not less than the
length of this string.

compareTo(String)

public int compareTo(String anotherString)

Compares two strings lexicographically. The comparison is based on the Unicode value of each char
the strings. The character sequence represented by thisString object is compared lexicographically to the
character sequence represented by the argument string. The result is a negative integer if thisString
object lexicographically precedes the argument string. The result is a positive integer if thisString object
lexicographically follows the argument string. The result is zero if the strings are equal;compareTo
returns0 exactly when theequals(Object) method would returntrue .

This is the definition of lexicographic ordering. If two strings are different, then either they have diffe
characters at some index that is a valid index for both strings, or their lengths are different, or both. I
have different characters at one or more index positions, letk be the smallest such index; then the strin
whose character at positionk has the smaller value, as determined by using the < operator, lexicographi
precedes the other string. In this case,compareTo returns the difference of the two character values
positionk in the two string -- that is, the value:

this.charAt(k)-anotherString.charAt(k)

If there is no index position at which they differ, then the shorter string lexicographically precede
longer string. In this case,compareTo returns the difference of the lengths of the strings -- that is, t
value:

this.length()-anotherString.length()

Parameters:
anotherString - theString to be compared.

Returns: the value0 if the argument string is equal to this string; a value less than0 if this string is
lexicographically less than the string argument; and a value greater than0 if this string is
lexicographically greater than the string argument.

Throws: NullPointerException - if anotherString is null .

concat(String)

public String concat(String str)

Concatenates the specified string to the end of this string.

If the length of the argument string is0, then thisString object is returned. Otherwise, a newString
object is created, representing a character sequence that is the concatenation of the character sequ
resented by thisString object and the character sequence represented by the argument string.

Examples:

"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"

Parameters:
170

java.lang String

endsWith(String)

esult

new
str - theString that is concatenated to the end of thisString .

Returns: a string that represents the concatenation of this object's characters followed by the string
argument's characters.

Throws: NullPointerException - if str is null .

endsWith(String)

public boolean endsWith(String suffix)

Tests if this string ends with the specified suffix.

Parameters:
suffix - the suffix.

Returns: true if the character sequence represented by the argument is a suffix of the character
sequence represented by this object;false otherwise. Note that the result will betrue if the
argument is the empty string or is equal to thisString object as determined by the
equals(Object) method.

Throws: NullPointerException - if suffix is null .

equals(Object)

public native boolean equals(Object anObject)

Compares this string to the specified object. The result istrue if and only if the argument is notnull and
is aString object that represents the same sequence of characters as this object.

Overrides: equals(Object) in classObject

Parameters:
anObject - the object to compare thisString against.

Returns: true if theString are equal;false otherwise.

See Also: compareTo(String)

getBytes()

public byte[] getBytes()

Convert thisString into bytes according to the platform's default character encoding, storing the r
into a new byte array.

Returns: the resultant byte array.

Since: JDK1.1

getBytes(String)

public byte[] getBytes(String enc)

Convert thisString into bytes according to the specified character encoding, storing the result into a
byte array.

Parameters:
171

String java.lang

getChars(int, int, char[], int)
enc - A character-encoding name

Returns: The resultant byte array

Throws: UnsupportedEncodingException - If the named encoding is not supported

Since: JDK1.1

getChars(int, int, char[], int)

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Copies characters from this string into the destination character array.

The first character to be copied is at indexsrcBegin ; the last character to be copied is at indexsrcEnd-
1 (thus the total number of characters to be copied issrcEnd-srcBegin). The characters are copied
into the subarray ofdst starting at indexdstBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1

Parameters:
srcBegin - index of the first character in the string to copy.

srcEnd - index after the last character in the string to copy.

dst - the destination array.

dstBegin - the start offset in the destination array.

Throws: IndexOutOfBoundsException - If any of the following is true:

• srcBegin is negative.
• srcBegin is greater thansrcEnd
• srcEnd is greater than the length of this string
• dstBegin is negative
• dstBegin+(srcEnd-srcBegin) is larger thandst.length

NullPointerException - if dst is null

hashCode()

public int hashCode()

Returns a hashcode for this string. The hashcode for aString object is computed as

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

usingint arithmetic, wheres[i] is theith character of the string,n is the length of the string, and̂indi-
cates exponentiation. (The hash value of the empty string is zero.)

Overrides: hashCode() in classObject

Returns: a hash code value for this object.

indexOf(int)

public native int indexOf(int ch)
172

java.lang String

indexOf(int, int)

r with

y this

rch at

llest

o:
as if it

y this

ned is
Returns the index within this string of the first occurrence of the specified character. If a characte
valuech occurs in the character sequence represented by thisString object, then the index of the first
such occurrence is returned -- that is, the smallest valuek such that:

this.charAt(k) == ch

is true . If no such character occurs in this string, then-1 is returned.

Parameters:
ch - a character.

Returns: the index of the first occurrence of the character in the character sequence represented b
object, or-1 if the character does not occur.

indexOf(int, int)

public native int indexOf(int ch, int fromIndex)

Returns the index within this string of the first occurrence of the specified character, starting the sea
the specified index.

If a character with valuech occurs in the character sequence represented by thisString object at an index
no smaller thanfromIndex , then the index of the first such occurrence is returned--that is, the sma
valuek such that:

(this.charAt(k) == ch) && (k >= fromIndex)

is true. If no such character occurs in this string at or after positionfromIndex , then-1 is returned.

There is no restriction on the value offromIndex . If it is negative, it has the same effect as if it were zer
this entire string may be searched. If it is greater than the length of this string, it has the same effect
were equal to the length of this string:-1 is returned.

Parameters:
ch - a character.

fromIndex - the index to start the search from.

Returns: the index of the first occurrence of the character in the character sequence represented b
object that is greater than or equal tofromIndex , or -1 if the character does not occur.

indexOf(String)

public int indexOf(String str)

Returns the index within this string of the first occurrence of the specified substring. The integer retur
the smallest valuek such that:

this.startsWith(str, k)

is true .

Parameters:
str - any string.

Returns: if the string argument occurs as a substring within this object, then the index of the first
character of the first such substring is returned; if it does not occur as a substring,-1 is returned.

Throws: NullPointerException - if str is null .
173

String java.lang

indexOf(String, int)

cified

o:
as if it

than
 not

index

y this

kward

 one
indexOf(String, int)

public int indexOf(String str, int fromIndex)

Returns the index within this string of the first occurrence of the specified substring, starting at the spe
index. The integer returned is the smallest valuek such that:

this.startsWith(str, k) && (k >= fromIndex)

is true .

There is no restriction on the value offromIndex . If it is negative, it has the same effect as if it were zer
this entire string may be searched. If it is greater than the length of this string, it has the same effect
were equal to the length of this string:-1 is returned.

Parameters:
str - the substring to search for.

fromIndex - the index to start the search from.

Returns: If the string argument occurs as a substring within this object at a starting index no smaller
fromIndex , then the index of the first character of the first such substring is returned. If it does
occur as a substring starting atfromIndex or beyond,-1 is returned.

Throws: NullPointerException - if str is null

lastIndexOf(int)

public int lastIndexOf(int ch)

Returns the index within this string of the last occurrence of the specified character. That is, the
returned is the largest valuek such that:

this.charAt(k) == ch

is true. The String is searched backwards starting at the last character.

Parameters:
ch - a character.

Returns: the index of the last occurrence of the character in the character sequence represented b
object, or-1 if the character does not occur.

lastIndexOf(int, int)

public int lastIndexOf(int ch, int fromIndex)

Returns the index within this string of the last occurrence of the specified character, searching bac
starting at the specified index. That is, the index returned is the largest valuek such that:

this.charAt(k) == ch) && (k <= fromIndex)

is true.

Parameters:
ch - a character.

fromIndex - the index to start the search from. There is no restriction on the value offromIndex .
If it is greater than or equal to the length of this string, it has the same effect as if it were equal to
174

java.lang String

length()

ame

y this
t.

in the
less than the length of this string: this entire string may be searched. If it is negative, it has the s
effect as if it were -1: -1 is returned.

Returns: the index of the last occurrence of the character in the character sequence represented b
object that is less than or equal tofromIndex , or -1 if the character does not occur before that poin

length()

public int length()

Returns the length of this string. The length is equal to the number of 16-bit Unicode characters
string.

Returns: the length of the sequence of characters represented by this object.

regionMatches(boolean, int, String, int, int)

public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset,

int len)

Tests if two string regions are equal.

A substring of thisString object is compared to a substring of the argumentother . The result istrue
if these substrings represent character sequences that are the same, ignoring case if and only ifignore-
Case is true. The substring of thisString object to be compared begins at indextoffset and has
length len . The substring ofother to be compared begins at indexooffset and has lengthlen . The
result isfalse if and only if at least one of the following is true:

• toffset is negative.
• ooffset is negative.
• toffset+len is greater than the length of thisString object.
• ooffset+len is greater than the length of the other argument.
• There is some nonnegative integerk less thanlen such that:

this.charAt(toffset+k) != other.charAt(ooffset+k)

• ignoreCase is true and there is some nonnegative integerk less thanlen such that:
Character.toLowerCase(this.charAt(toffset+k)) !=

Character.toLowerCase(other.charAt(ooffset+k))

and:

Character.toUpperCase(this.charAt(toffset+k)) !=
Character.toUpperCase(other.charAt(ooffset+k))

Parameters:
ignoreCase - if true , ignore case when comparing characters.

toffset - the starting offset of the subregion in this string.

other - the string argument.

ooffset - the starting offset of the subregion in the string argument.

len - the number of characters to compare.

Returns: true if the specified subregion of this string matches the specified subregion of the string
argument;false otherwise. Whether the matching is exact or case insensitive depends on the
ignoreCase argument.
175

String java.lang

replace(char, char)

of this
replace(char, char)

public String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences ofoldChar in this string withnewChar .

If the characteroldChar does not occur in the character sequence represented by thisString object,
then a reference to thisString object is returned. Otherwise, a newString object is created that repre-
sents a character sequence identical to the character sequence represented by thisString object, except
that every occurrence ofoldChar is replaced by an occurrence ofnewChar .

Examples:

"mesquite in your cellar".replace('e', 'o')
returns "mosquito in your collar"

"the war of baronets".replace('r', 'y')
returns "the way of bayonets"

"sparring with a purple porpoise".replace('p', 't')
returns "starring with a turtle tortoise"

"JonL".replace('q', 'x') returns "JonL" (no change)

Parameters:
oldChar - the old character.

newChar - the new character.

Returns: a string derived from this string by replacing every occurrence ofoldChar with newChar .

startsWith(String)

public boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.

Parameters:
prefix - the prefix.

Returns: true if the character sequence represented by the argument is a prefix of the character
sequence represented by this string;false otherwise. Note also thattrue will be returned if the
argument is an empty string or is equal to thisString object as determined by the
equals(Object) method.

Throws: NullPointerException - if prefix is null .

Since: JDK1. 0

startsWith(String, int)

public boolean startsWith(String prefix, int toffset)

Tests if this string starts with the specified prefix beginning a specified index.

Parameters:
prefix - the prefix.

toffset - where to begin looking in the string.

Returns: true if the character sequence represented by the argument is a prefix of the substring
object starting at indextoffset ; false otherwise. The result isfalse if toffset is negative or
176

java.lang String

substring(int)

ecified

f

ts are
greater than the length of thisString object; otherwise the result is the same as the result of the
expression

this.subString(toffset).startsWith(prefix)

Throws: NullPointerException - if prefix is null .

substring(int)

public String substring(int beginIndex)

Returns a new string that is a substring of this string. The substring begins with the character at the sp
index and extends to the end of this string.

Examples:

"unhappy".substring(2) returns "happy"
"Harbison".substring(3) returns "bison"
"emptiness".substring(9) returns "" (an empty string)

Parameters:
beginIndex - the beginning index, inclusive.

Returns: the specified substring.

Throws: IndexOutOfBoundsException - if beginIndex is negative or larger than the length o
this String object.

substring(int, int)

public String substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string. The substring begins at the specifiedbeginIndex
and extends to the character at indexendIndex - 1 . Thus the length of the substring isendIndex-
beginIndex .

Examples:

"hamburger".substring(4, 8) returns "urge"
"smiles".substring(1, 5) returns "mile"

Parameters:
beginIndex - the beginning index, inclusive.

endIndex - the ending index, exclusive.

Returns: the specified substring.

Throws: IndexOutOfBoundsException - if the beginIndex is negative, orendIndex is larger
than the length of thisString object, orbeginIndex is larger thanendIndex .

toCharArray()

public char[] toCharArray()

Converts this string to a new character array.

Returns: a newly allocated character array whose length is the length of this string and whose conten
initialized to contain the character sequence represented by this string.
177

String java.lang

toLowerCase()

aracter

dex

s all
toLowerCase()

public String toLowerCase()

Converts all of the characters in this String to lower case.

Returns: the String, converted to lowercase.

See Also: toLowerCase(char) , toUpperCase()

toString()

public String toString()

This object (which is already a string!) is itself returned.

Overrides: toString() in classObject

Returns: the string itself.

toUpperCase()

public String toUpperCase()

Converts all of the characters in this String to upper case.

Returns: the String, converted to uppercase.

See Also: toLowerCase(char) , toUpperCase()

trim()

public String trim()

Removes white space from both ends of this string.

If this String object represents an empty character sequence, or the first and last characters of ch
sequence represented by thisString object both have codes greater than'\u0020' (the space
character), then a reference to thisString object is returned.

Otherwise, if there is no character with a code greater than'\u0020' in the string, then a new
String object representing an empty string is created and returned.

Otherwise, letk be the index of the first character in the string whose code is greater than'\u0020' ,
and letmbe the index of the last character in the string whose code is greater than'\u0020' . A new
String object is created, representing the substring of this string that begins with the character at ink
and ends with the character at indexm-that is, the result ofthis.substring(k, m+1) .

This method may be used to trim whitespace from the beginning and end of a string; in fact, it trim
ASCII control characters as well.

Returns: this string, with white space removed from the front and end.

valueOf(boolean)

public static String valueOf(boolean b)

Returns the string representation of theboolean argument.
178

java.lang String

valueOf(char)

op-

aracter

aracter

of the
Parameters:
b - aboolean .

Returns: if the argument istrue , a string equal to"true" is returned; otherwise, a string equal to
"false" is returned.

valueOf(char)

public static String valueOf(char c)

Returns the string representation of thechar argument.

Parameters:
c - achar .

Returns: a newly allocated string of length1 containing as its single character the argumentc .

valueOf(char[])

public static String valueOf(char[] data)

Returns the string representation of thechar array argument. The contents of the character array are c
ied; subsequent modification of the character array does not affect the newly created string.

Parameters:
data - achar array.

Returns: a newly allocated string representing the same sequence of characters contained in the ch
array argument.

valueOf(char[], int, int)

public static String valueOf(char[] data, int offset, int count)

Returns the string representation of a specific subarray of thechar array argument.

Theoffset argument is the index of the first character of the subarray. Thecount argument specifies the
length of the subarray. The contents of the subarray are copied; subsequent modification of the ch
array does not affect the newly created string.

Parameters:
data - the character array.

offset - the initial offset into the value of theString .

count - the length of the value of theString .

Returns: a newly allocated string representing the sequence of characters contained in the subarray
character array argument.

Throws: NullPointerException - if data is null .

IndexOutOfBoundsException - if offset is negative, orcount is negative, or
offset+count is larger thandata.length .

valueOf(int)

public static String valueOf(int i)
179

String java.lang

valueOf(long)
Returns the string representation of theint argument.

The representation is exactly the one returned by theInteger.toString method of one argument.

Parameters:
i - anint .

Returns: a newly allocated string containing a string representation of theint argument.

See Also: toString(int, int)

valueOf(long)

public static String valueOf(long l)

Returns the string representation of thelong argument.

The representation is exactly the one returned by theLong.toString method of one argument.

Parameters:
l - a long .

Returns: a newly allocated string containing a string representation of thelong argument.

See Also: toString(long)

valueOf(Object)

public static String valueOf(Object obj)

Returns the string representation of theObject argument.

Parameters:
obj - anObject .

Returns: if the argument isnull , then a string equal to"null" ; otherwise, the value of
obj.toString() is returned.

See Also: toString()
180

java.lang StringBuffer

valueOf(Object)

tent of

at all the
ith the

to the
eating

r inserts
of

g buffer
buffer
java.lang

StringBuffer
Syntax
public final class StringBuffer

Object
|
+-- java.lang.StringBuffer

Description
A string buffer implements a mutable sequence of characters. A string buffer is like aString , but can be
modified. At any point in time it contains some particular sequence of characters, but the length and con
the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where necessary so th
operations on any particular instance behave as if they occur in some serial order that is consistent w
order of the method calls made by each of the individual threads involved.

String buffers are used by the compiler to implement the binary string concatenation operator+. For example,
the code:

x = "a" + 4 + "c"

is compiled to the equivalent of:

x = new StringBuffer().append("a").append(4).append("c")
.toString()

which creates a new string buffer (initially empty), appends the string representation of each operand
string buffer in turn, and then converts the contents of the string buffer to a string. Overall, this avoids cr
many temporary strings.

The principal operations on aStringBuffer are theappend andinsert methods, which are overloaded
so as to accept data of any type. Each effectively converts a given datum to a string and then appends o
the characters of that string to the string buffer. Theappend method always adds these characters at the end
the buffer; theinsert method adds the characters at a specified point.

For example, ifz refers to a string buffer object whose current contents are "start ", then the method call
z.append("le") would cause the string buffer to contain "startle ", whereasz.insert(4, "le")
would alter the string buffer to contain "starlet ".

In general, if sb refers to an instance of aStringBuffer , thensb.append(x) has the same effect as
sb.insert(sb.length(), x) .

Every string buffer has a capacity. As long as the length of the character sequence contained in the strin
does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If the internal
overflows, it is automatically made larger.

Since: JDK1.0

See Also: ByteArrayOutputStream , String
181

StringBuffer java.lang

valueOf(Object)

ac-

by

s the
e

r, as

the
Member Summary

Constructors
StringBuffer() Constructs a string buffer with no characters in it and an initial capacity of 16 char

ters.
StringBuffer(int) Constructs a string buffer with no characters in it and an initial capacity specified

the length argument.
StringBuffer(String) Constructs a string buffer so that it represents the same sequence of characters a

string argument; in other words, the initial contents of the string buffer is a copy of th
argument string.

Methods
append(boolean) Appends the string representation of theboolean argument to the string buffer.
append(char) Appends the string representation of thechar argument to this string buffer.
append(char[]) Appends the string representation of thechar array argument to this string buffer.
append(char[], int,
int)

Appends the string representation of a subarray of thechar array argument to this
string buffer.

append(int) Appends the string representation of theint argument to this string buffer.
append(long) Appends the string representation of thelong argument to this string buffer.
append(Object) Appends the string representation of theObject argument to this string buffer.
append(String) Appends the string to this string buffer.
capacity() Returns the current capacity of the String buffer.
charAt(int) The specified character of the sequence currently represented by the string buffe

indicated by theindex argument, is returned.
delete(int, int) Removes the characters in a substring of thisStringBuffer .
deleteCharAt(int) Removes the character at the specified position in thisStringBuffer (shortening

theStringBuffer by one character).
ensureCapacity(int) Ensures that the capacity of the buffer is at least equal to the specified minimum.
getChars(int, int,
char[], int)

Characters are copied from this string buffer into the destination character arraydst .

insert(int, boolean) Inserts the string representation of theboolean argument into this string buffer.
insert(int, char) Inserts the string representation of thechar argument into this string buffer.
insert(int, char[]) Inserts the string representation of thechar array argument into this string buffer.
insert(int, int) Inserts the string representation of the secondint argument into this string buffer.
insert(int, long) Inserts the string representation of thelong argument into this string buffer.
insert(int, Object) Inserts the string representation of theObject argument into this string buffer.
insert(int, String) Inserts the string into this string buffer.
length() Returns the length (character count) of this string buffer.
reverse() The character sequence contained in this string buffer is replaced by the reverse of

sequence.
setCharAt(int, char) The character at the specified index of this string buffer is set toch .
setLength(int) Sets the length of this String buffer.
toString() Converts to a string representing the data in this string buffer.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
182

java.lang StringBuffer

StringBuffer()

ment; in
ity of

t

Constructors

StringBuffer()

public StringBuffer()

Constructs a string buffer with no characters in it and an initial capacity of 16 characters.

StringBuffer(int)

public StringBuffer(int length)

Constructs a string buffer with no characters in it and an initial capacity specified by thelength argument.

Parameters:
length - the initial capacity.

Throws: NegativeArraySizeException - if the length argument is less than0.

StringBuffer(String)

public StringBuffer(String str)

Constructs a string buffer so that it represents the same sequence of characters as the string argu
other words, the initial contents of the string buffer is a copy of the argument string. The initial capac
the string buffer is16 plus the length of the string argument.

Parameters:
str - the initial contents of the buffer.

Methods

append(boolean)

public StringBuffer append(boolean b)

Appends the string representation of theboolean argument to the string buffer.

The argument is converted to a string as if by the methodString.valueOf , and the characters of tha
string are then appended to this string buffer.

Parameters:
b - aboolean .

Returns: a reference to thisStringBuffer .

See Also: valueOf(boolean) , append(String)

append(char)

public synchronized StringBuffer append(char c)

Appends the string representation of thechar argument to this string buffer.
183

StringBuffer java.lang

append(char[])

ses by

thod

length

thod

of
The argument is appended to the contents of this string buffer. The length of this string buffer increa
1.

The overall effect is exactly as if the argument were converted to a string by the me
valueOf(char) and the character in that string were thenappend(String) to this String-
Buffer object.

Parameters:
c - achar .

Returns: a reference to thisStringBuffer object.

append(char[])

public synchronized StringBuffer append(char[] str)

Appends the string representation of thechar array argument to this string buffer.

The characters of the array argument are appended, in order, to the contents of this string buffer. The
of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the me
valueOf(char[]) and the characters of that string were thenappend(String) to thisString-
Buffer object.

Parameters:
str - the characters to be appended.

Returns: a reference to thisStringBuffer object.

append(char[], int, int)

public synchronized StringBuffer append(char[] str, int offset, int len)

Appends the string representation of a subarray of thechar array argument to this string buffer.

Characters of the character arraystr , starting at indexoffset , are appended, in order, to the contents
this string buffer. The length of this string buffer increases by the value oflen .

The overall effect is exactly as if the arguments were converted to a string by the methodval-
ueOf(char[], int, int) and the characters of that string were thenappend(String) to this
StringBuffer object.

Parameters:
str - the characters to be appended.

offset - the index of the first character to append.

len - the number of characters to append.

Returns: a reference to thisStringBuffer object.

append(int)

public native StringBuffer append(int i)

Appends the string representation of theint argument to this string buffer.
184

java.lang StringBuffer

append(long)

t

t

t

ffer,

execu-
he
t

The argument is converted to a string as if by the methodString.valueOf , and the characters of tha
string are then appended to this string buffer.

Parameters:
i - anint .

Returns: a reference to thisStringBuffer object.

See Also: valueOf(int) , append(String)

append(long)

public StringBuffer append(long l)

Appends the string representation of thelong argument to this string buffer.

The argument is converted to a string as if by the methodString.valueOf , and the characters of tha
string are then appended to this string buffer.

Parameters:
l - a long .

Returns: a reference to thisStringBuffer object.

See Also: valueOf(long) , append(String)

append(Object)

public synchronized StringBuffer append(Object obj)

Appends the string representation of theObject argument to this string buffer.

The argument is converted to a string as if by the methodString.valueOf , and the characters of tha
string are then appended to this string buffer.

Parameters:
obj - anObject .

Returns: a reference to thisStringBuffer object.

See Also: valueOf(Object) , append(String)

append(String)

public native synchronized StringBuffer append(String str)

Appends the string to this string buffer.

The characters of theString argument are appended, in order, to the contents of this string bu
increasing the length of this string buffer by the length of the argument. Ifstr is null , then the four char-
acters"null" are appended to this string buffer.

Let n be the length of the old character sequence, the one contained in the string buffer just prior to
tion of theappend method. Then the character at indexk in the new character sequence is equal to t
character at indexk in the old character sequence, ifk is less thann; otherwise, it is equal to the character a
indexk-n in the argumentstr .

Parameters:
str - a string.
185

StringBuffer java.lang

capacity()

newly

by the

d

Returns: a reference to thisStringBuffer .

capacity()

public int capacity()

Returns the current capacity of the String buffer. The capacity is the amount of storage available for
inserted characters; beyond which an allocation will occur.

Returns: the current capacity of this string buffer.

charAt(int)

public synchronized char charAt(int index)

The specified character of the sequence currently represented by the string buffer, as indicated
index argument, is returned. The first character of a string buffer is at index0, the next at index1, and so
on, for array indexing.

The index argument must be greater than or equal to0, and less than the length of this string buffer.

Parameters:
index - the index of the desired character.

Returns: the character at the specified index of this string buffer.

Throws: IndexOutOfBoundsException - if index is negative or greater than or equal to
length() .

See Also: length()

delete(int, int)

public synchronized StringBuffer delete(int start, int end)

Removes the characters in a substring of thisStringBuffer . The substring begins at the specifie
start and extends to the character at indexend - 1 or to the end of theStringBuffer if no such
character exists. Ifstart is equal toend , no changes are made.

Parameters:
start - The beginning index, inclusive.

end - The ending index, exclusive.

Returns: This string buffer.

Throws: StringIndexOutOfBoundsException - if start is negative, greater thanlength() ,
or greater thanend .

Since: 1.2

deleteCharAt(int)

public synchronized StringBuffer deleteCharAt(int index)

Removes the character at the specified position in thisStringBuffer (shortening theStringBuffer
by one character).
186

java.lang StringBuffer

ensureCapacity(int)

city of
y. The
Parameters:
index - Index of character to remove

Returns: This string buffer.

Throws: StringIndexOutOfBoundsException - if the index is negative or greater than or
equal to length() .

Since: 1.2

ensureCapacity(int)

public synchronized void ensureCapacity(int minimumCapacity)

Ensures that the capacity of the buffer is at least equal to the specified minimum. If the current capa
this string buffer is less than the argument, then a new internal buffer is allocated with greater capacit
new capacity is the larger of:

• TheminimumCapacity argument.
• Twice the old capacity, plus2.

If the minimumCapacity argument is nonpositive, this method takes no action and simply returns.

Parameters:
minimumCapacity - the minimum desired capacity.

getChars(int, int, char[], int)

public synchronized void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)

Characters are copied from this string buffer into the destination character arraydst . The first character to
be copied is at indexsrcBegin ; the last character to be copied is at indexsrcEnd-1 . The total number
of characters to be copied issrcEnd-srcBegin . The characters are copied into the subarray ofdst
starting at indexdstBegin and ending at index:

dstbegin + (srcEnd-srcBegin) - 1

Parameters:
srcBegin - start copying at this offset in the string buffer.

srcEnd - stop copying at this offset in the string buffer.

dst - the array to copy the data into.

dstBegin - offset intodst .

Throws: NullPointerException - if dst is null .

IndexOutOfBoundsException - if any of the following is true:

• srcBegin is negative
• dstBegin is negative
• thesrcBegin argument is greater than thesrcEnd argument.
• srcEnd is greater thanthis.length() , the current length of this string buffer.
• dstBegin+srcEnd-srcBegin is greater thandst.length

insert(int, boolean)

public StringBuffer insert(int offset, boolean b)
187

StringBuffer java.lang

insert(int, char)

g

thod

g

n indi-

thod
Inserts the string representation of theboolean argument into this string buffer.

The second argument is converted to a string as if by the methodString.valueOf , and the characters of
that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

b - aboolean .

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(boolean) , insert(int, String) , length()

insert(int, char)

public synchronized StringBuffer insert(int offset, char c)

Inserts the string representation of thechar argument into this string buffer.

The second argument is inserted into the contents of this string buffer at the position indicated byoffset .
The length of this string buffer increases by one.

The overall effect is exactly as if the argument were converted to a string by the me
valueOf(char) and the character in that string were theninsert(int, String) into this
StringBuffer object at the position indicated byoffset .

The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

c - achar .

Returns: a reference to thisStringBuffer object.

Throws: IndexOutOfBoundsException - if the offset is invalid.

See Also: length()

insert(int, char[])

public synchronized StringBuffer insert(int offset, char[] str)

Inserts the string representation of thechar array argument into this string buffer.

The characters of the array argument are inserted into the contents of this string buffer at the positio
cated byoffset . The length of this string buffer increases by the length of the argument.

The overall effect is exactly as if the argument were converted to a string by the me
valueOf(char[]) and the characters of that string were theninsert(int, String) into this
StringBuffer object at the position indicated byoffset .

Parameters:
offset - the offset.
188

java.lang StringBuffer

insert(int, int)

g

g

str - a character array.

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

insert(int, int)

public StringBuffer insert(int offset, int i)

Inserts the string representation of the secondint argument into this string buffer.

The second argument is converted to a string as if by the methodString.valueOf , and the characters of
that string are then inserted into this string buffer at the indicated offset.

The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

i - anint .

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(int) , insert(int, String) , length()

insert(int, long)

public StringBuffer insert(int offset, long l)

Inserts the string representation of thelong argument into this string buffer.

The second argument is converted to a string as if by the methodString.valueOf , and the characters of
that string are then inserted into this string buffer at the position indicated byoffset .

The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

l - a long .

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(long) , insert(int, String) , length()

insert(int, Object)

public synchronized StringBuffer insert(int offset, Object obj)

Inserts the string representation of theObject argument into this string buffer.

The second argument is converted to a string as if by the methodString.valueOf , and the characters of
that string are then inserted into this string buffer at the indicated offset.
189

StringBuffer java.lang

insert(int, String)

g

set,
by the

g

The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

obj - anObject .

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: valueOf(Object) , insert(int, String) , length()

insert(int, String)

public synchronized StringBuffer insert(int offset, String str)

Inserts the string into this string buffer.

The characters of theString argument are inserted, in order, into this string buffer at the indicated off
moving up any characters originally above that position and increasing the length of this string buffer
length of the argument. Ifstr is null , then the four characters"null" are inserted into this string
buffer.

The character at indexk in the new character sequence is equal to:

• the character at indexk in the old character sequence, ifk is less thanoffset
• the character at indexk-offset in the argumentstr , if k is not less thanoffset but is less than

offset+str.length()
• the character at indexk-str.length() in the old character sequence, ifk is not less thanoff-

set+str.length()
The offset argument must be greater than or equal to0, and less than or equal to the length of this strin
buffer.

Parameters:
offset - the offset.

str - a string.

Returns: a reference to thisStringBuffer object.

Throws: StringIndexOutOfBoundsException - if the offset is invalid.

See Also: length()

length()

public int length()

Returns the length (character count) of this string buffer.

Returns: the length of the sequence of characters currently represented by this string buffer.

reverse()

public synchronized StringBuffer reverse()

The character sequence contained in this string buffer is replaced by the reverse of the sequence.
190

java.lang StringBuffer

setCharAt(int, char)

execu-
he

t
haracter

uence

r is

cters
Let n be the length of the old character sequence, the one contained in the string buffer just prior to
tion of thereverse method. Then the character at indexk in the new character sequence is equal to t
character at indexn-k-1 in the old character sequence.

Returns: a reference to thisStringBuffer object..

Since: JDK1.0.2

setCharAt(int, char)

public synchronized void setCharAt(int index, char ch)

The character at the specified index of this string buffer is set toch . The string buffer is altered to represen
a new character sequence that is identical to the old character sequence, except that it contains the c
ch at positionindex .

The offset argument must be greater than or equal to0, and less than the length of this string buffer.

Parameters:
index - the index of the character to modify.

ch - the new character.

Throws: IndexOutOfBoundsException - if index is negative or greater than or equal to
length() .

See Also: length()

setLength(int)

public synchronized void setLength(int newLength)

Sets the length of this String buffer. This string buffer is altered to represent a new character seq
whose length is specified by the argument. For every nonnegative indexk less thannewLength , the char-
acter at indexk in the new character sequence is the same as the character at indexk in the old sequence ifk
is less than the length of the old character sequence; otherwise, it is the null character'\x00 ' . In other
words, if thenewLength argument is less than the current length of the string buffer, the string buffe
truncated to contain exactly the number of characters given by thenewLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null chara
('\u0000') are appended to the string buffer so that length becomes thenewLength argument.

ThenewLength argument must be greater than or equal to0.

Parameters:
newLength - the new length of the buffer.

Throws: IndexOutOfBoundsException - if thenewLength argument is negative.

See Also: length()

toString()

public native String toString()

Converts to a string representing the data in this string buffer. A newString object is allocated and initial-
ized to contain the character sequence currently represented by this string buffer. ThisString is then
returned. Subsequent changes to the string buffer do not affect the contents of theString .
191

StringBuffer java.lang

toString()

d by the
t then
mory
Implementation advice: This method can be coded so as to create a newString object without allocating
new memory to hold a copy of the character sequence. Instead, the string can share the memory use
string buffer. Any subsequent operation that alters the content or capacity of the string buffer mus
make a copy of the internal buffer at that time. This strategy is effective for reducing the amount of me
allocated by a string concatenation operation when it is implemented using a string buffer.

Overrides: toString() in classObject

Returns: a string representation of the string buffer.
192

java.lang StringIndexOutOfBoundsException

toString()
java.lang

StringIndexOutOfBoundsException
Syntax
public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- IndexOutOfBoundsException

|
+-- java.lang.StringIndexOutOfBoundsException

Description
Thrown by thecharAt method in classString and by otherString methods to indicate that an index is
either negative or greater than or equal to the size of the string.

Since: JDK1.0

See Also: charAt(int)

Member Summary

Constructors
StringIndexOutOf-
BoundsException()

Constructs aStringIndexOutOfBoundsException with no detail message.

StringIndexOutOf-
BoundsException(int)

Constructs a newStringIndexOutOfBoundsException class with an argu-
ment indicating the illegal index.

StringIndexOutOf-
BoundsExcep-
tion(String)

Constructs aStringIndexOutOfBoundsException with the specified detail
message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
193

StringIndexOutOfBoundsException java.lang

StringIndexOutOfBoundsException()

-

Constructors

StringIndexOutOfBoundsException()

public StringIndexOutOfBoundsException()

Constructs aStringIndexOutOfBoundsException with no detail message.

Since: JDK1.0.

StringIndexOutOfBoundsException(int)

public StringIndexOutOfBoundsException(int index)

Constructs a newStringIndexOutOfBoundsException class with an argument indicating the ille
gal index.

Parameters:
index - the illegal index.

StringIndexOutOfBoundsException(String)

public StringIndexOutOfBoundsException(String s)

Constructs aStringIndexOutOfBoundsException with the specified detail message.

Parameters:
s - the detail message.
194

java.lang System

err

, to

ult
).
java.lang

System
Syntax
public final class System

Object
|
+-- java.lang.System

Description
TheSystem class contains several useful class fields and methods. It cannot be instantiated.

Since: JDK1.0

Fields

err

public static final PrintStream err

Member Summary

Fields
err The "standard" error output stream.
out The "standard" output stream.

Methods
arraycopy(Object,
int, Object, int, int)

Copies an array from the specified source array, beginning at the specified position
the specified position of the destination array.

currentTimeMillis() Returns the current time in milliseconds.
exit(int) Terminates the currently running Java application.
gc() Runs the garbage collector.
getProperty(String) Gets the system property indicated by the specified key.
identityHash-
Code(Object)

Returns the same hashcode for the given object as would be returned by the defa
method hashCode(), whether or not the given object's class overrides hashCode(

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
195

System java.lang

out

t envi-
mation
of the
ored.

lly this
ent or

osition
nced by

com-

itions

tive
The "standard" error output stream. This stream is already open and ready to accept output data.

Typically this stream corresponds to display output or another output destination specified by the hos
ronment or user. By convention, this output stream is used to display error messages or other infor
that should come to the immediate attention of a user even if the principal output stream, the value
variableout , has been redirected to a file or other destination that is typically not continuously monit

out

public static final PrintStream out

The "standard" output stream. This stream is already open and ready to accept output data. Typica
stream corresponds to display output or another output destination specified by the host environm
user.

For simple stand-alone Java applications, a typical way to write a line of output data is:

System.out.println(data)

See theprintln methods in classPrintStream .

See Also: println() , println(boolean) , println(char) , println(char[]) ,
println(int) , println(long) , println(Object) , println(String)

Methods

arraycopy(Object, int, Object, int, int)

public static native void arraycopy(Object src, int src_position, Object dst,

int dst_position, int length)

Copies an array from the specified source array, beginning at the specified position, to the specified p
of the destination array. A subsequence of array components are copied from the source array refere
src to the destination array referenced bydst . The number of components copied is equal to thelength
argument. The components at positionssrcOffset through srcOffset+length-1 in the source
array are copied into positionsdstOffset throughdstOffset+length-1 , respectively, of the desti-
nation array.

If the src anddst arguments refer to the same array object, then the copying is performed as if the
ponents at positionssrcOffset throughsrcOffset+length-1 were first copied to a temporary
array with length components and then the contents of the temporary array were copied into pos
dstOffset throughdstOffset+length-1 of the destination array.

If dst is null , then aNullPointerException is thrown.

If src is null , then aNullPointerException is thrown and the destination array is not modified.

Otherwise, if any of the following is true, anArrayStoreException is thrown and the destination is
not modified:

• Thesrc argument refers to an object that is not an array.
• Thedst argument refers to an object that is not an array.
• The src argument anddst argument refer to arrays whose component types are different primi

types.
196

java.lang System

currentTimeMillis()

t con-
r
na-

f the
s have

 1,

ntion, a
• Thesrc argument refers to an array with a primitive component type and thedst argument refers to
an array with a reference component type.

• Thesrc argument refers to an array with a reference component type and thedst argument refers to
an array with a primitive component type.

Otherwise, if any of the following is true, anIndexOutOfBoundsException is thrown and the desti-
nation is not modified:

• ThesrcOffset argument is negative.
• ThedstOffset argument is negative.
• The length argument is negative.
• srcOffset+length is greater thansrc.length , the length of the source array.
• dstOffset+length is greater thandst.length , the length of the destination array.

Otherwise, if any actual component of the source array from positionsrcOffset throughsrcOff-
set+length-1 cannot be converted to the component type of the destination array by assignmen
version, anArrayStoreException is thrown. In this case, letk be the smallest nonnegative intege
less than length such thatsrc[srcOffset+ k] cannot be converted to the component type of the desti
tion array; when the exception is thrown, source array components from positionssrcOffset through
srcOffset+ k-1 will already have been copied to destination array positionsdstOffset through
dstOffset+ k-1 and no other positions of the destination array will have been modified. (Because o
restrictions already itemized, this paragraph effectively applies only to the situation where both array
component types that are reference types.)

Parameters:
src - the source array.

src_position - start position in the source array.

dst - the destination array.

dst_position - pos start position in the destination data.

length - the number of array elements to be copied.

Throws: IndexOutOfBoundsException - if copying would cause access of data outside array
bounds.

ArrayStoreException - if an element in thesrc array could not be stored into thedest array
because of a type mismatch.

NullPointerException - if eithersrc or dst is null .

currentTimeMillis()

public static native long currentTimeMillis()

Returns the current time in milliseconds.

Returns: the difference, measured in milliseconds, between the current time and midnight, January
1970 UTC.

exit(int)

public static void exit(int status)

Terminates the currently running Java application. The argument serves as a status code; by conve
nonzero status code indicates abnormal termination.
197

System java.lang

gc()

used
turns
arded

Code(),
 zero.
This method calls theexit method in classRuntime . This method never returns normally.

The callSystem.exit(n) is effectively equivalent to the call:

Runtime.getRuntime().exit(n)

Parameters:
status - exit status.

See Also: exit(int)

gc()

public static void gc()

Runs the garbage collector.

Calling the gc method suggests that the Java Virtual Machine expend effort toward recycling un
objects in order to make the memory they currently occupy available for quick reuse. When control re
from the method call, the Java Virtual Machine has made a best effort to reclaim space from all disc
objects.

The callSystem.gc() is effectively equivalent to the call:

Runtime.getRuntime().gc()

See Also: gc()

getProperty(String)

public static String getProperty(String key)

Gets the system property indicated by the specified key.

Parameters:
key - the name of the system property.

Returns: the string value of the system property, ornull if there is no property with that key.

Throws: NullPointerException - if key is null .

IllegalArgumentException - if key is empty.

identityHashCode(Object)

public static native int identityHashCode(Object x)

Returns the same hashcode for the given object as would be returned by the default method hash
whether or not the given object's class overrides hashCode(). The hashcode for the null reference is

Parameters:
x - object for which the hashCode is to be calculated

Returns: the hashCode

Since: JDK1.1
198

java.lang Thread

identityHashCode(Object)

ltiple

prior-

o-
n as fol-

n creat-
java.lang

Thread
Syntax
public class Thread implements Runnable

Object
|
+-- java.lang.Thread

All Implemented Interfaces: Runnable

Description
A threadis a thread of execution in a program. The Java Virtual Machine allows an application to have mu
threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower
ity.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass ofThread .
This subclass should override therun method of classThread . An instance of the subclass can then be all
cated and started. For example, a thread that computes primes larger than a stated value could be writte
lows:

class PrimeThread extends Thread {
long minPrime;
PrimeThread(long minPrime) {

this.minPrime = minPrime;
}
public void run() {

// compute primes larger than minPrime
. . .

}
}

The following code would then create a thread and start it running:

PrimeThrea d p = new PrimeThread(143);
p.start();

The other way to create a thread is to declare a class that implements theRunnable interface. That class then
implements therun method. An instance of the class can then be allocated, passed as an argument whe
ing Thread , and started. The same example in this other style looks like the following:

class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {

this.minPrime = minPrime;
}
public void run() {

// compute primes larger than minPrime
. . .

}
}

The following code would then create a thread and start it running:
199

Thread java.lang

identityHashCode(Object)

the

ti-

r

PrimeRu n p = new PrimeRun(143);
new Thread(p).start();

Since: JDK1.0

See Also: Runnable , exit(int) , run()

Fields

Member Summary

Fields
MAX_PRIORITY The maximum priority that a thread can have.
MIN_PRIORITY The minimum priority that a thread can have.
NORM_PRIORITY The default priority that is assigned to a thread.

Constructors
Thread() Allocates a newThread object.
Thread(Runnable) Allocates a newThread object with a specific target object whoserun method is

called.

Methods
activeCount() Returns the current number of active threads in the VM.
currentThread() Returns a reference to the currently executing thread object.
getPriority() Returns this thread's priority.
isAlive() Tests if this thread is alive.
join() Waits for this thread to die.
run() If this thread was constructed using a separateRunnable run object, then thatRun-

nable object'srun method is called; otherwise, this method does nothing and
returns.

setPriority(int) Changes the priority of this thread.
sleep(long) Causes the currently executing thread to sleep (temporarily cease execution) for

specified number of milliseconds.
start() Causes this thread to begin execution; the Java Virtual Machine calls therun method

of this thread.
toString() Returns a string representation of this thread, including a unique number that iden

fies the thread and the thread's priority.
yield() Causes the currently executing thread object to temporarily pause and allow othe

threads to execute.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
200

java.lang Thread

MAX_PRIORITY
MAX_PRIORITY

public static final int MAX_PRIORITY

The maximum priority that a thread can have.

MIN_PRIORITY

public static final int MIN_PRIORITY

The minimum priority that a thread can have.

NORM_PRIORITY

public static final int NORM_PRIORITY

The default priority that is assigned to a thread.

Constructors

Thread()

public Thread()

Allocates a newThread object.

Threads created this way must have overridden theirrun() method to actually do anything.

See Also: Runnable

Thread(Runnable)

public Thread(Runnable target)

Allocates a newThread object with a specific target object whoserun method is called.

Parameters:
target - the object whoserun method is called.

Methods

activeCount()

public static native int activeCount()

Returns the current number of active threads in the VM.

Returns: the current number of threads in this thread's thread group.
201

Thread java.lang

currentThread()
currentThread()

public static native Thread currentThread()

Returns a reference to the currently executing thread object.

Returns: the currently executing thread.

getPriority()

public final int getPriority()

Returns this thread's priority.

Returns: this thread's name.

See Also: setPriority(int) , setPriority(int)

isAlive()

public final native boolean isAlive()

Tests if this thread is alive. A thread is alive if it has been started and has not yet died.

Returns: true if this thread is alive;false otherwise.

join()

public final void join()

Waits for this thread to die.

Throws: InterruptedException - if another thread has interrupted the current thread. The
interrupted status of the current thread is cleared when this exception is thrown.

run()

public void run()

If this thread was constructed using a separateRunnable run object, then thatRunnable object'srun
method is called; otherwise, this method does nothing and returns.

Subclasses ofThread should override this method.

Specified By: run() in interfaceRunnable

See Also: start() , run()

setPriority(int)

public final void setPriority(int newPriority)

Changes the priority of this thread.

Parameters:
newPriority - priority to set this thread to
202

java.lang Thread

sleep(long)

ber of

to the

nd the

te.
Throws: IllegalArgumentException - If the priority is not in the rangeMIN_PRIORITY to
MAX_PRIORITY.

See Also: getPriority() , getPriority() , MAX_PRIORITY, MIN_PRIORITY

sleep(long)

public static native void sleep(long millis)

Causes the currently executing thread to sleep (temporarily cease execution) for the specified num
milliseconds. The thread does not lose ownership of any monitors.

Parameters:
millis - the length of time to sleep in milliseconds.

Throws: InterruptedException - if another thread has interrupted the current thread. The
interrupted status of the current thread is cleared when this exception is thrown.

See Also: notify()

start()

public native synchronized void start()

Causes this thread to begin execution; the Java Virtual Machine calls therun method of this thread.

The result is that two threads are running concurrently: the current thread (which returns from the call
start method) and the other thread (which executes itsrun method).

Throws: IllegalThreadStateException - if the thread was already started.

See Also: run()

toString()

public String toString()

Returns a string representation of this thread, including a unique number that identifies the thread a
thread's priority.

Overrides: toString() in classObject

Returns: a string representation of this thread.

yield()

public static native void yield()

Causes the currently executing thread object to temporarily pause and allow other threads to execu
203

Throwable java.lang

yield()

hat are
own by
e in a

it-
ation so

s and

It can
java.lang

Throwable
Syntax
public class Throwable

Object
|
+-- java.lang.Throwable

Direct Known Subclasses: Error , Exception

Description
TheThrowable class is the superclass of all errors and exceptions in the Java language. Only objects t
instances of this class (or of one of its subclasses) are thrown by the Java Virtual Machine or can be thr
the Javathrow statement. Similarly, only this class or one of its subclasses can be the argument typ
catch clause.

Instances of two subclasses,Error andException , are conventionally used to indicate that exceptional s
uations have occurred. Typically, these instances are freshly created in the context of the exceptional situ
as to include relevant information (such as stack trace data).

By convention, classThrowable and its subclasses have two constructors, one that takes no argument
one that takes aString argument that can be used to produce an error message.

A Throwable class contains a snapshot of the execution stack of its thread at the time it was created.
also contain a message string that gives more information about the error.

Here is one example of catching an exception:

try {
int a[] = new int[2];
a[4];

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("exception: " + e.getMessage());
e.printStackTrace();

}

Since: JDK1.0

Member Summary

Constructors
Throwable() Constructs a newThrowable with null as its error message string.
Throwable(String) Constructs a newThrowable with the specified error message.

Methods
getMessage() Returns the error message string of this throwable object.
printStackTrace() Prints thisThrowable and its backtrace to the standard error stream.
toString() Returns a short description of this throwable object.
204

java.lang Throwable

Throwable()

ce for
Constructors

Throwable()

public Throwable()

Constructs a newThrowable with null as its error message string.

Throwable(String)

public Throwable(String message)

Constructs a newThrowable with the specified error message.

Parameters:
message - the error message. The error message is saved for later retrieval by thegetMessage()
method.

Methods

getMessage()

public String getMessage()

Returns the error message string of this throwable object.

Returns: the error message string of thisThrowable object if it wasThrowable(String) with an
error message string; ornull if it wasThrowable() with no error message.

printStackTrace()

public void printStackTrace()

Prints thisThrowable and its backtrace to the standard error stream. This method prints a stack tra
this Throwable object on the error output stream that is the value of the fieldSystem.err . The first
line of output contains the result of thetoString() method for this object.

The format of the backtrace information depends on the implementation.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
205

Throwable java.lang

toString()

ings:

ual
toString()

public String toString()

Returns a short description of this throwable object. If thisThrowable object was
Throwable(String) with an error message string, then the result is the concatenation of three str

• The name of the actual class of this object
• ": " (a colon and a space)
• The result of thegetMessage() method for this object

If this Throwable object wasThrowable() with no error message string, then the name of the act
class of this object is returned.

Overrides: toString() in classObject

Returns: a string representation of thisThrowable .
206

java.lang VirtualMachineError

VirtualMachineError()

o con-
java.lang

VirtualMachineError
Syntax
public abstract class VirtualMachineError extends Error

Object
|
+-- Throwable

|
+-- Error

|
+-- java.lang.VirtualMachineError

Direct Known Subclasses: OutOfMemoryError

Description
Thrown to indicate that the Java Virtual Machine is broken or has run out of resources necessary for it t
tinue operating.

Since: JDK1.0

Constructors

VirtualMachineError()

Member Summary

Constructors
VirtualMachineError() Constructs aVirtualMachineError with no detail message.
VirtualMachineEr-
ror(String)

Constructs aVirtualMachineError with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
207

VirtualMachineError java.lang

VirtualMachineError(String)
public VirtualMachineError()

Constructs aVirtualMachineError with no detail message.

VirtualMachineError(String)

public VirtualMachineError(String s)

Constructs aVirtualMachineError with the specified detail message.

Parameters:
s - the detail message.
208

Package

java.util
utility

ts,

lds

.

Description
Contains the collections framework, legacy collection classes, date and time facilities and miscellaneous
classes.

Since: JDK 1.0

Class Summary

Interfaces

Enumeration An object that implements the Enumeration interface generates a series of elemen
one at a time.

Classes

Calendar Calendar is an abstract class for getting and setting dates using a set of integer fie
such asYEAR, MONTH, DAY, and so on.

Date The class Date represents a specific instant in time, with millisecond precision.

Hashtable This class implements a hashtable, which maps keys to values.

Random An instance of this class is used to generate a stream of pseudorandom numbers

Stack TheStack class represents a last-in-first-out (LIFO) stack of objects.

TimeZone TimeZone represents a time zone offset, and also figures out daylight savings.

Vector TheVector class implements a growable array of objects.

Exceptions

EmptyStackException Thrown by methods in theStack class to indicate that the stack is empty.

NoSuchElementExcep-
tion

Thrown by thenextElement method of anEnumeration to indicate that there
are no more elements in the enumeration.
209

Calendar java.util

for a

ary
ch: i.e.,

sub-
cluded.

s" to

ever

time

ned, and
java.util

Calendar
Syntax
public abstract class Calendar

Object
|
+-- java.util.Calendar

Description
Calendar is an abstract class for getting and setting dates using a set of integer fields such asYEAR, MONTH,
DAY, and so on. (ADate object represents a specific instant in time with millisecond precision. SeeDate for
information about theDate class.)

Subclasses ofCalendar interpret aDate according to the rules of a specific calendar system.

Like other locale-sensitive classes,Calendar provides a class method,getInstance , for getting a gener-
ally useful object of this type.

Calendar rightNow = Calendar.getInstance();

A Calendar object can produce all the time field values needed to implement the date-time formatting
particular language and calendar style (for example, Japanese-Gregorian, Japanese-Traditional).

When computing aDate from time fields, there may be insufficient information to compute theDate (such as
only year and month but no day in the month).

Insufficient information. The calendar will use default information to specify the missing fields. This may v
by calendar; for the Gregorian calendar, the default for a field is the same as that of the start of the epo
YEAR = 1970, MONTH = JANUARY, DATE = 1, etc.

Inconsistent information. In the J2SE calendar, it is possible to set fields inconsistently. However, in this
set, the DAY_OF_WEEK field cannot be set, and only a subset of the other J2SE Calendar fields are in
So it is not possible to set inconsistent data.

Note: The ambiguity in interpretation of what day midnight belongs to, is resolved as so: midnight "belong
the following day.

23:59 on Dec 31, 1969 < 00:00 on Jan 1, 1970.

12:00 PM is midday, and 12:00 AM is midnight.

11:59 PM on Jan 1 < 12:00 AM on Jan 2 < 12:01 AM on Jan 2.

11:59 AM on Mar 10 < 12:00 PM on Mar 10 < 12:01 PM on Mar 10.

24:00 or greater are invalid. Hours greater than 12 are invalid in AM/PM mode. Setting the time will n
change the date.

If equivalent times are entered in AM/PM or 24 hour mode, equality will be determined by the actual
rather than the entered time.

This class is a subset for J2ME of the J2SE Calendar class. Many methods and variables have been pru
other methods simplified, in an effort to reduce the size of this class.

See Also: TimeZone
210

java.util Calendar

ry 1,
Member Summary

Fields
AM Value of theAM_PMfield indicating the period of the day from midnight to just before

noon.
AM_PM Field number forget andset indicating whether theHOUR is before or after noon.
APRIL Value of theMONTH field indicating the fourth month of the year.
AUGUST Value of theMONTH field indicating the eighth month of the year.
DATE Field number forget andset indicating the day of the month.
DAY_OF_MONTH Field number forget andset indicating the day of the month.
DAY_OF_WEEK Field number forget andset indicating the day of the week.
DECEMBER Value of theMONTH field indicating the twelfth month of the year.
FEBRUARY Value of theMONTH field indicating the second month of the year.
FRIDAY Value of theDAY_OF_WEEK field indicating Friday.
HOUR Field number forget andset indicating the hour of the morning or afternoon.
HOUR_OF_DAY Field number forget andset indicating the hour of the day.
JANUARY Value of theMONTH field indicating the first month of the year.
JULY Value of theMONTH field indicating the seventh month of the year.
JUNE Value of theMONTH field indicating the sixth month of the year.
MARCH Value of theMONTH field indicating the third month of the year.
MAY Value of theMONTH field indicating the fifth month of the year.
MILLISECOND Field number forget andset indicating the millisecond within the second.
MINUTE Field number forget andset indicating the minute within the hour.
MONDAY Value of theDAY_OF_WEEK field indicating Monday.
MONTH Field number forget andset indicating the month.
NOVEMBER Value of theMONTH field indicating the eleventh month of the year.
OCTOBER Value of theMONTH field indicating the tenth month of the year.
PM Value of theAM_PM field indicating the period of the day from noon to just before

midnight.
SATURDAY Value of theDAY_OF_WEEK field indicating Saturday.
SECOND Field number forget andset indicating the second within the minute.
SEPTEMBER Value of theMONTH field indicating the ninth month of the year.
SUNDAY Value of theDAY_OF_WEEK field indicating Sunday.
THURSDAY Value of theDAY_OF_WEEK field indicating Thursday.
TUESDAY Value of theDAY_OF_WEEK field indicating Tuesday.
WEDNESDAY Value of theDAY_OF_WEEK field indicating Wednesday.
YEAR Field number forget andset indicating the year.

Constructors
Calendar() Constructs a Calendar with the default time zone and default locale.

Methods
after(Object) Compares the time field records.
before(Object) Compares the time field records.
equals(Object) Compares this calendar to the specified object.
get(int) Gets the value for a given time field.
getInstance() Gets a calendar using the default time zone and default locale.
getInstance(TimeZone) Gets a calendar using the specified time zone and default locale.
getTime() Gets this Calendar's current time.
getTimeInMillis() Gets this Calendar's current time as a long expressed in milliseconds after Janua

1970, 0:00:00 GMT (the epoch).
getTimeZone() Gets the time zone.
211

Calendar java.util

AM

0

Fields

AM

public static final int AM

Value of theAM_PM field indicating the period of the day from midnight to just before noon.

AM_PM

public static final int AM_PM

Field number forget andset indicating whether theHOURis before or after noon. E.g., at 10:04:15.25
PM theAM_PM is PM.

See Also: AM, PM, HOUR

APRIL

public static final int APRIL

Value of theMONTH field indicating the fourth month of the year.

AUGUST

public static final int AUGUST

Value of theMONTH field indicating the eighth month of the year.

DATE

public static final int DATE

Field number forget andset indicating the day of the month. This is a synonym forDAY_OF_MONTH.

set(int, int) Sets the time field with the given value.
setTime(Date) Sets this Calendar's current time with the given Date.
setTimeInMillis(long) Sets this Calendar's current time from the given long value.
setTimeZone(TimeZone) Sets the time zone with the given time zone value.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , toString() , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Member Summary
212

java.util Calendar

DAY_OF_MONTH
See Also: DAY_OF_MONTH

DAY_OF_MONTH

public static final int DAY_OF_MONTH

Field number forget andset indicating the day of the month. This is a synonym forDATE.

See Also: DATE

DAY_OF_WEEK

public static final int DAY_OF_WEEK

Field number forget andset indicating the day of the week.

DECEMBER

public static final int DECEMBER

Value of theMONTH field indicating the twelfth month of the year.

FEBRUARY

public static final int FEBRUARY

Value of theMONTH field indicating the second month of the year.

FRIDAY

public static final int FRIDAY

Value of theDAY_OF_WEEK field indicating Friday.

HOUR

public static final int HOUR

Field number forget andset indicating the hour of the morning or afternoon.HOURis used for the 12-
hour clock. E.g., at 10:04:15.250 PM theHOUR is 10.

See Also: AM_PM, HOUR_OF_DAY

HOUR_OF_DAY

public static final int HOUR_OF_DAY

Field number forget andset indicating the hour of the day.HOUR_OF_DAYis used for the 24-hour
clock. E.g., at 10:04:15.250 PM theHOUR_OF_DAY is 22.

JANUARY

public static final int JANUARY
213

Calendar java.util

JULY

the

he
Value of theMONTH field indicating the first month of the year.

JULY

public static final int JULY

Value of theMONTH field indicating the seventh month of the year.

JUNE

public static final int JUNE

Value of theMONTH field indicating the sixth month of the year.

MARCH

public static final int MARCH

Value of theMONTH field indicating the third month of the year.

MAY

public static final int MAY

Value of theMONTH field indicating the fifth month of the year.

MILLISECOND

public static final int MILLISECOND

Field number forget andset indicating the millisecond within the second. E.g., at 10:04:15.250 PM
MILLISECOND is 250.

MINUTE

public static final int MINUTE

Field number forget and set indicating the minute within the hour. E.g., at 10:04:15.250 PM t
MINUTE is 4.

MONDAY

public static final int MONDAY

Value of theDAY_OF_WEEK field indicating Monday.

MONTH

public static final int MONTH

Field number forget andset indicating the month. This is a calendar-specific value.
214

java.util Calendar

NOVEMBER

the
NOVEMBER

public static final int NOVEMBER

Value of theMONTH field indicating the eleventh month of the year.

OCTOBER

public static final int OCTOBER

Value of theMONTH field indicating the tenth month of the year.

PM

public static final int PM

Value of theAM_PM field indicating the period of the day from noon to just before midnight.

SATURDAY

public static final int SATURDAY

Value of theDAY_OF_WEEK field indicating Saturday.

SECOND

public static final int SECOND

Field number forget and set indicating the second within the minute. E.g., at 10:04:15.250 PM
SECOND is 15.

SEPTEMBER

public static final int SEPTEMBER

Value of theMONTH field indicating the ninth month of the year.

SUNDAY

public static final int SUNDAY

Value of theDAY_OF_WEEK field indicating Sunday.

THURSDAY

public static final int THURSDAY

Value of theDAY_OF_WEEK field indicating Thursday.

TUESDAY

public static final int TUESDAY
215

Calendar java.util

WEDNESDAY

.

se.
Value of theDAY_OF_WEEK field indicating Tuesday.

WEDNESDAY

public static final int WEDNESDAY

Value of theDAY_OF_WEEK field indicating Wednesday.

YEAR

public static final int YEAR

Field number forget andset indicating the year. This is a calendar-specific value.

Constructors

Calendar()

protected Calendar()

Constructs a Calendar with the default time zone and default locale.

See Also: getDefault()

Methods

after(Object)

public boolean after(Object when)

Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns: true if the current time of this Calendar is after the time of Calendar when; false otherwise

before(Object)

public boolean before(Object when)

Compares the time field records. Equivalent to comparing result of conversion to UTC.

Parameters:
when - the Calendar to be compared with this Calendar.

Returns: true if the current time of this Calendar is before the time of Calendar when; false otherwi

equals(Object)
216

java.util Calendar

get(int)
public boolean equals(Object obj)

Compares this calendar to the specified object. The result istrue if and only if the argument is notnull
and is aCalendar object that represents the same calendar as this object.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the same;false otherwise.

get(int)

public final int get(int field)

Gets the value for a given time field.

Parameters:
field - the given time field (either YEAR, MONTH, DATE, DAY_OF_WEEK, HOUR_OF_DAY,
HOUR, AM_PM, MINUTE, SECOND, or MILLISECOND

Returns: the value for the given time field.

Throws: ArrayIndexOutOfBoundsException - if the parameter is not one of the above.

getInstance()

public static synchronized Calendar getInstance()

Gets a calendar using the default time zone and default locale.

Returns: a Calendar.

getInstance(TimeZone)

public static synchronized Calendar getInstance(TimeZone zone)

Gets a calendar using the specified time zone and default locale.

Parameters:
zone - the time zone to use

Returns: a Calendar.

getTime()

public final Date getTime()

Gets this Calendar's current time.

Returns: the current time.

See Also: setTime(Date)

getTimeInMillis()

protected long getTimeInMillis()
217

Calendar java.util

getTimeZone()

0 GMT
Gets this Calendar's current time as a long expressed in milliseconds after January 1, 1970, 0:00:0
(the epoch).

Returns: the current time as UTC milliseconds from the epoch.

See Also: setTimeInMillis(long)

getTimeZone()

public TimeZone getTimeZone()

Gets the time zone.

Returns: the time zone object associated with this calendar.

See Also: setTimeZone(TimeZone)

set(int, int)

public final void set(int field, int value)

Sets the time field with the given value.

Parameters:
field - the given time field. Note that the DAY_OF_WEEK field cannot be set.

value - the value to be set for the given time field.

Throws: ArrayIndexOutOfBoundsException - if an illegal field parameter is received.

setTime(Date)

public final void setTime(Date date)

Sets this Calendar's current time with the given Date.

Note: CallingsetTime() with Date(Long.MAX_VALUE) or Date(Long.MIN_VALUE) may yield
incorrect field values fromget() .

Parameters:
date - the given Date.

See Also: getTime()

setTimeInMillis(long)

protected void setTimeInMillis(long millis)

Sets this Calendar's current time from the given long value.

Parameters:
millis - the new time in UTC milliseconds from the epoch.

See Also: getTimeInMillis()

setTimeZone(TimeZone)

public void setTimeZone(TimeZone value)
218

java.util Calendar

setTimeZone(TimeZone)
Sets the time zone with the given time zone value.

Parameters:
value - the given time zone.

See Also: getTimeZone()
219

Date java.util

setTimeZone(TimeZone)

addi-
lues. It
t ame-
tes and
g meth-

actly,
ssume

re is an
d always
ks to an

distinc-

-
anu-

970,
java.util

Date
Syntax
public class Date

Object
|
+-- java.util.Date

Description
The class Date represents a specific instant in time, with millisecond precision.

This Class has been subset for the MID Profile based on JDK 1.3. In the full API, the class Date had two
tional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second va
also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was no
nable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between da
time fields and the DateFormat class should be used to format and parse date strings. The correspondin
ods in Date are deprecated.

Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so ex
depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems a
that 1 day = 24x60x60 = 86400 seconds in all cases. In UTC, however, about once every year or two the
extra second, called a "leap second." The leap second is always added as the last second of the day, an
on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, than
added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second
tion.

See Also: TimeZone , Calendar

Member Summary

Constructors
Date() Allocates aDate object and initializes it to represent the current time specified num

ber of milliseconds since the standard base time known as "the epoch", namely J
ary 1, 1970, 00:00:00 GMT.

Date(long) Allocates aDate object and initializes it to represent the specified number of milli-
seconds since the standard base time known as "the epoch", namely January 1, 1
00:00:00 GMT.

Methods
equals(Object) Compares two dates for equality.
getTime() Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT repre-

sented by thisDate object.
hashCode() Returns a hash code value for this object.
setTime(long) Sets thisDate object to represent a point in time that istime milliseconds after Jan-

uary 1, 1970 00:00:00 GMT.
220

java.util Date

Date()

nds

stan-
Constructors

Date()

public Date()

Allocates aDate object and initializes it to represent the current time specified number of milliseco
since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

See Also: currentTimeMillis()

Date(long)

public Date(long date)

Allocates aDate object and initializes it to represent the specified number of milliseconds since the
dard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

Parameters:
date - the milliseconds since January 1, 1970, 00:00:00 GMT.

See Also: currentTimeMillis()

Methods

equals(Object)

public boolean equals(Object obj)

Compares two dates for equality. The result istrue if and only if the argument is notnull and is aDate
object that represents the same point in time, to the millisecond, as this object.

Thus, twoDate objects are equal if and only if thegetTime method returns the samelong value for
both.

Overrides: equals(Object) in classObject

Parameters:
obj - the object to compare with.

Returns: true if the objects are the same;false otherwise.

See Also: getTime()

Inherited Member Summary

Methods inherited from classObject

getClass() , toString() , notify() , notifyAll() , wait(long) , wait(long, int) , wait()
221

Date java.util

getTime()

e.

mitive
:

0

getTime()

public long getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by thisDate object.

Returns: the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this dat

See Also: setTime(long)

hashCode()

public int hashCode()

Returns a hash code value for this object. The result is the exclusive OR of the two halves of the pri
long value returned by thegetTime() method. That is, the hash code is the value of the expression

(int)(this.getTime()^(this.getTime() >>> 32))

Overrides: hashCode() in classObject

Returns: a hash code value for this object.

setTime(long)

public void setTime(long time)

Sets thisDate object to represent a point in time that istime milliseconds after January 1, 1970 00:00:0
GMT.

Parameters:
time - the number of milliseconds.

See Also: getTime()
222

java.util EmptyStackException

EmptyStackException()
java.util

EmptyStackException
Syntax
public class EmptyStackException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.util.EmptyStackException

Description
Thrown by methods in theStack class to indicate that the stack is empty.

Since: JDK1.0

See Also: Stack

Constructors

EmptyStackException()

public EmptyStackException()

Member Summary

Constructors
EmptyStackException() Constructs a newEmptyStackException with null as its error message string.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
223

EmptyStackException java.util

EmptyStackException()
Constructs a newEmptyStackException with null as its error message string.
224

java.util Enumeration

hasMoreElements()

ccessive

lues in a

st
java.util

Enumeration
Syntax
public abstract interface Enumeration

Description
An object that implements the Enumeration interface generates a series of elements, one at a time. Su
calls to thenextElement method return successive elements of the series.

For example, to print all elements of a vectorv:

for (Enumeratio n e = v.elements() ; e.hasMoreElements() ;) {
System.out.println(e.nextElement());

}

Methods are provided to enumerate through the elements of a vector, the keys of a hashtable, and the va
hashtable.

Since: JDK1.0

See Also: nextElement() , Hashtable , elements() , keys() , Vector , elements()

Methods

hasMoreElements()

public boolean hasMoreElements()

Tests if this enumeration contains more elements.

Returns: true if and only if this enumeration object contains at least one more element to provide;
false otherwise.

nextElement()

public Object nextElement()

Member Summary

Methods
hasMoreElements() Tests if this enumeration contains more elements.
nextElement() Returns the next element of this enumeration if this enumeration object has at lea

one more element to provide.
225

Enumeration java.util

nextElement()

ent to
Returns the next element of this enumeration if this enumeration object has at least one more elem
provide.

Returns: the next element of this enumeration.

Throws: NoSuchElementException - if no more elements exist.
226

java.util Hashtable

nextElement()

s

oduct of

e
table.
java.util

Hashtable
Syntax
public class Hashtable

Object
|
+-- java.util.Hashtable

Description
This class implements a hashtable, which maps keys to values. Any non-null object can be used as a key or a
a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement thehash-
Code method and theequals method.

An instance ofHashtable has two parameters that affect its efficiency: itscapacityand itsload factor. The
load factor should be between 0.0 and 1.0. When the number of entries in the hashtable exceeds the pr
the load factor and the current capacity, the capacity is increased by calling therehash method. Larger load
factors use memory more efficiently, at the expense of larger expected time per lookup.

If many entries are to be made into aHashtable , creating it with a sufficiently large capacity may allow th
entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

Hashtable numbers = new Hashtable();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));

To retrieve a number, use the following code:

Intege r n = (Integer)numbers.get("two");
if (n != null) {

System.out.println("tw o = " + n);
}

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.

Since: JDK1.0

See Also: equals(Object) , hashCode() , rehash()

Member Summary

Constructors
Hashtable() Constructs a new, empty hashtable with a default capacity and load factor.
Hashtable(int) Constructs a new, empty hashtable with the specified initial capacity.

Methods
clear() Clears this hashtable so that it contains no keys.
227

Hashtable java.util

Hashtable()
Constructors

Hashtable()

public Hashtable()

Constructs a new, empty hashtable with a default capacity and load factor.

Since: JDK1.0

Hashtable(int)

public Hashtable(int initialCapacity)

Constructs a new, empty hashtable with the specified initial capacity.

Parameters:
initialCapacity - the initial capacity of the hashtable.

Throws: IllegalArgumentException - if the initial capacity is less than zero

Since: JDK1.0

Methods

contains(Object) Tests if some key maps into the specified value in this hashtable.
containsKey(Object) Tests if the specified object is a key in this hashtable.
elements() Returns an enumeration of the values in this hashtable.
get(Object) Returns the value to which the specified key is mapped in this hashtable.
isEmpty() Tests if this hashtable maps no keys to values.
keys() Returns an enumeration of the keys in this hashtable.
put(Object, Object) Maps the specifiedkey to the specifiedvalue in this hashtable.
rehash() Rehashes the contents of the hashtable into a hashtable with a larger capacity.
remove(Object) Removes the key (and its corresponding value) from this hashtable.
size() Returns the number of keys in this hashtable.
toString() Returns a rather long string representation of this hashtable.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Member Summary
228

java.util Hashtable

clear()

han the

d object
clear()

public synchronized void clear()

Clears this hashtable so that it contains no keys.

Since: JDK1.0

contains(Object)

public synchronized boolean contains(Object value)

Tests if some key maps into the specified value in this hashtable. This operation is more expensive t
containsKey method.

Parameters:
value - a value to search for.

Returns: true if some key maps to thevalue argument in this hashtable;false otherwise.

Throws: NullPointerException - if the value isnull .

Since: JDK1.0

See Also: containsKey(Object)

containsKey(Object)

public synchronized boolean containsKey(Object key)

Tests if the specified object is a key in this hashtable.

Parameters:
key - possible key.

Returns: true if the specified object is a key in this hashtable;false otherwise.

Since: JDK1.0

See Also: contains(Object)

elements()

public synchronized Enumeration elements()

Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returne
to fetch the elements sequentially.

Returns: an enumeration of the values in this hashtable.

Since: JDK1.0

See Also: Enumeration , keys()

get(Object)

public synchronized Object get(Object key)

Returns the value to which the specified key is mapped in this hashtable.
229

Hashtable java.util

isEmpty()

be

d auto-
or.
Parameters:
key - a key in the hashtable.

Returns: the value to which the key is mapped in this hashtable;null if the key is not mapped to any
value in this hashtable.

Since: JDK1.0

See Also: put(Object, Object)

isEmpty()

public boolean isEmpty()

Tests if this hashtable maps no keys to values.

Returns: true if this hashtable maps no keys to values;false otherwise.

Since: JDK1.0

keys()

public synchronized Enumeration keys()

Returns an enumeration of the keys in this hashtable.

Returns: an enumeration of the keys in this hashtable.

Since: JDK1.0

See Also: Enumeration , elements()

put(Object, Object)

public synchronized Object put(Object key, Object value)

Maps the specifiedkey to the specifiedvalue in this hashtable. Neither the key nor the value can
null .

The value can be retrieved by calling theget method with a key that is equal to the original key.

Parameters:
key - the hashtable key.

value - the value.

Returns: the previous value of the specified key in this hashtable, ornull if it did not have one.

Throws: NullPointerException - if the key or value isnull .

Since: JDK1.0

See Also: equals(Object) , get(Object)

rehash()

protected void rehash()

Rehashes the contents of the hashtable into a hashtable with a larger capacity. This method is calle
matically when the number of keys in the hashtable exceeds this hashtable's capacity and load fact
230

java.util Hashtable

remove(Object)

key is
Since: JDK1.0

remove(Object)

public synchronized Object remove(Object key)

Removes the key (and its corresponding value) from this hashtable. This method does nothing if the
not in the hashtable.

Parameters:
key - the key that needs to be removed.

Returns: the value to which the key had been mapped in this hashtable, ornull if the key did not have a
mapping.

Since: JDK1.0

size()

public int size()

Returns the number of keys in this hashtable.

Returns: the number of keys in this hashtable.

Since: JDK1.0

toString()

public synchronized String toString()

Returns a rather long string representation of this hashtable.

Overrides: toString() in classObject

Returns: a string representation of this hashtable.

Since: JDK1.0
231

NoSuchElementException java.util

toString()

he
java.util

NoSuchElementException
Syntax
public class NoSuchElementException extends RuntimeException

Object
|
+-- Throwable

|
+-- Exception

|
+-- RuntimeException

|
+-- java.util.NoSuchElementException

Description
Thrown by thenextElement method of anEnumeration to indicate that there are no more elements in t
enumeration.

Since: JDK1.0

See Also: Enumeration , nextElement()

Constructors

Member Summary

Constructors
NoSuchElementExcep-
tion()

Constructs aNoSuchElementException with null as its error message string.

NoSuchElementExcep-
tion(String)

Constructs aNoSuchElementException , saving a reference to the error mes-
sage strings for later retrieval by thegetMessage method.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
232

java.util NoSuchElementException

NoSuchElementException()
NoSuchElementException()

public NoSuchElementException()

Constructs aNoSuchElementException with null as its error message string.

NoSuchElementException(String)

public NoSuchElementException(String s)

Constructs aNoSuchElementException , saving a reference to the error message strings for later
retrieval by thegetMessage method.

Parameters:
s - the detail message.
233

Random java.util

NoSuchElementException(String)

-bit seed,

ade for
particu-
ere

s.
java.util

Random
Syntax
public class Random

Object
|
+-- java.util.Random

Description
An instance of this class is used to generate a stream of pseudorandom numbers. The class uses a 48
which is modified using a linear congruential formula. (See Donald Knuth,The Art of Computer Programming,
Volume 2, Section 3.2.1.)

If two instances ofRandomare created with the same seed, and the same sequence of method calls is m
each, they will generate and return identical sequences of numbers. In order to guarantee this property,
lar algorithms are specified for the classRandom. Java implementations must use all the algorithms shown h
for the classRandom, for the sake of absolute portability of Java code. However, subclasses of classRandom
are permitted to use other algorithms, so long as they adhere to the general contracts for all the method

The algorithms implemented by classRandomuse aprotected utility method that on each invocation can
supply up to 32 pseudorandomly generated bits.

Since: JDK1.0

Member Summary

Constructors
Random() Creates a new random number generator.
Random(long) Creates a new random number generator using a singlelong seed:

public Random(long seed) { setSeed(seed); }
Used by methodnext to hold the state of the pseudorandom number generator.

Methods
next(int) Generates the next pseudorandom number.
nextInt() Returns the next pseudorandom, uniformly distributedint value from this random

number generator's sequence.
nextLong() Returns the next pseudorandom, uniformly distributedlong value from this random

number generator's sequence.
setSeed(long) Sets the seed of this random number generator using a singlelong seed.

Inherited Member Summary

Methods inherited from classObject
234

java.util Random

Random()

:

er meth-

cho-

ibed by
Constructors

Random()

public Random()

Creates a new random number generator. Its seed is initialized to a value based on the current time

public Random() { this(System.currentTimeMillis()); }

See Also: currentTimeMillis()

Random(long)

public Random(long seed)

Creates a new random number generator using a singlelong seed:

public Random(long seed) { setSeed(seed); }
Used by methodnext to hold the state of the pseudorandom number generator.

Parameters:
seed - the initial seed.

See Also: setSeed(long)

Methods

next(int)

protected synchronized int next(int bits)

Generates the next pseudorandom number. Subclass should override this, as this is used by all oth
ods.

The general contract ofnext is that it returns anint value and if the argument bits is between1 and32
(inclusive), then that many low-order bits of the returned value will be (approximately) independently
sen bit values, each of which is (approximately) equally likely to be0 or 1. The methodnext is imple-
mented by classRandom as follows:

synchronized protected int next(int bits) {
seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
return (int)(seed >>> (48 - bits));

}
This is a linear congruential pseudorandom number generator, as defined by D. H. Lehmer and descr
Donald E. Knuth inThe Art of Computer Programming,Volume 2: Seminumerical Algorithms, section
3.2.1.

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Inherited Member Summary
235

Random java.util

nextInt()

's
d
od

s

's
nd
od

s

as if it

n-
Parameters:
bits - random bits

Returns: the next pseudorandom value from this random number generator's sequence.

Since: JDK1.1

nextInt()

public int nextInt()

Returns the next pseudorandom, uniformly distributedint value from this random number generator
sequence. The general contract ofnextInt is that oneint value is pseudorandomly generated an
returned. All 232 possibleint values are produced with (approximately) equal probability. The meth
nextInt is implemented by classRandom as follows:

public int nextInt() { return next(32); }

Returns: the next pseudorandom, uniformly distributedint value from this random number generator'
sequence.

nextLong()

public long nextLong()

Returns the next pseudorandom, uniformly distributedlong value from this random number generator
sequence. The general contract ofnextLong is that one long value is pseudorandomly generated a
returned. All 264 possiblelong values are produced with (approximately) equal probability. The meth
nextLong is implemented by classRandom as follows:

public long nextLong() {
return ((long)next(32) << 32) + next(32);

}

Returns: the next pseudorandom, uniformly distributedlong value from this random number generator'
sequence.

setSeed(long)

public synchronized void setSeed(long seed)

Sets the seed of this random number generator using a singlelong seed. The general contract ofsetSeed
is that it alters the state of this random number generator object so as to be in exactly the same state
had just been created with the argumentseed as a seed. The methodsetSeed is implemented by class
Random as follows:

synchronized public void setSeed(long seed) {
this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);

}
The implementation ofsetSeed by classRandomhappens to use only 48 bits of the given seed. In ge
eral, however, an overriding method may use all 64 bits of the long argument as a seed value.

Parameters:
seed - the initial seed.
236

java.util Stack

setSeed(long)

a

 this
java.util

Stack
Syntax
public class Stack extends Vector

Object
|
+-- Vector

|
+-- java.util.Stack

Description
TheStack class represents a last-in-first-out (LIFO) stack of objects. It extends classVector with five oper-
ations that allow a vector to be treated as a stack. The usualpush andpop operations are provided, as well as
method topeek at the top item on the stack, a method to test for whether the stack isempty , and a method to
search the stack for an item and discover how far it is from the top.

When a stack is first created, it contains no items.

Since: JDK1.0

Member Summary

Constructors
Stack() Creates an empty Stack.

Methods
empty() Tests if this stack is empty.
peek() Looks at the object at the top of this stack without removing it from the stack.
pop() Removes the object at the top of this stack and returns that object as the value of

function.
push(Object) Pushes an item onto the top of this stack.
search(Object) Returns the 1-based position where an object is on this stack.

Inherited Member Summary

Fields inherited from classVector

elementData , elementCount , capacityIncrement

Methods inherited from classVector
237

Stack java.util

Stack()
Constructors

Stack()

public Stack()

Creates an empty Stack.

Methods

empty()

public boolean empty()

Tests if this stack is empty.

Returns: true if and only if this stack contains no items;false otherwise.

peek()

public synchronized Object peek()

Looks at the object at the top of this stack without removing it from the stack.

Returns: the object at the top of this stack (the last item of theVector object).

Throws: EmptyStackException - if this stack is empty.

pop()

public synchronized Object pop()

Removes the object at the top of this stack and returns that object as the value of this function.

Returns: The object at the top of this stack (the last item of theVector object).

Throws: EmptyStackException - if this stack is empty.

copyInto(Object[]) , trimToSize() , ensureCapacity(int) , setSize(int) , capacity() ,
size() , isEmpty() , elements() , contains(Object) , indexOf(Object) , indexOf(Object,
int) , lastIndexOf(Object) , lastIndexOf(Object, int) , elementAt(int) , firstElement() ,
lastElement() , setElementAt(Object, int) , removeElementAt(int) , insertElemen-
tAt(Object, int) , addElement(Object) , removeElement(Object) , removeAllElements() ,
toString()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Inherited Member Summary
238

java.util Stack

push(Object)

,
ck; the

e

push(Object)

public Object push(Object item)

Pushes an item onto the top of this stack. This has exactly the same effect as:

addElement(item)

Parameters:
item - the item to be pushed onto this stack.

Returns: the item argument.

See Also: addElement(Object)

search(Object)

public synchronized int search(Object o)

Returns the 1-based position where an object is on this stack. If the objecto occurs as an item in this stack
this method returns the distance from the top of the stack of the occurrence nearest the top of the sta
topmost item on the stack is considered to be at distance1. Theequals method is used to compareo to
the items in this stack.

Parameters:
o - the desired object.

Returns: the 1-based position from the top of the stack where the object is located; the return valu-1
indicates that the object is not on the stack.
239

TimeZone java.util

search(Object)

D

also be
java.util

TimeZone
Syntax
public abstract class TimeZone

Object
|
+-- java.util.TimeZone

Description
TimeZone represents a time zone offset, and also figures out daylight savings.

Typically, you get aTimeZone using getDefault which creates aTimeZone based on the time zone
where the program is running. For example, for a program running in Japan,getDefault creates aTime-
Zone object based on Japanese Standard Time.

You can also get aTimeZone usinggetTimeZone along with a time zone ID. For instance, the time zone I
for the Pacific Standard Time zone is "PST". So, you can get a PSTTimeZone object with:

TimeZone tz = TimeZone.getTimeZone("PST");

This class is a pure subset of the java.util.TimeZone class in J2SE.

The only time zone ID that is required to be supported is "GMT".

Apart from the methods and variables being subset, the semantics of the getTimeZone() method may
subset: custom IDs such as "GMT-8:00" are not required to be supported.

See Also: Calendar

Member Summary

Constructors
TimeZone()

Methods
getAvailableIDs() Gets all the available IDs supported.
getDefault() Gets the defaultTimeZone for this host.
getID() Gets the ID of this time zone.
getOffset(int, int,
int, int, int, int)

Gets offset, for current date, modified in case of daylight savings.

getRawOffset() Gets the GMT offset for this time zone.
getTimeZone(String) Gets theTimeZone for the given ID.
useDaylightTime() Queries if this time zone uses Daylight Savings Time.
240

java.util TimeZone

TimeZone()

o get
offset
may
Constructors

TimeZone()

public TimeZone()

Methods

getAvailableIDs()

public static String [] getAvailableIDs()

Gets all the available IDs supported.

Returns: an array of IDs.

getDefault()

public static synchronized TimeZone getDefault()

Gets the defaultTimeZone for this host. The source of the defaultTimeZone may vary with implemen-
tation.

Returns: a defaultTimeZone .

getID()

public String getID()

Gets the ID of this time zone.

Returns: the ID of this time zone.

getOffset(int, int, int, int, int, int)

public abstract int getOffset(int era, int year, int month, int day, int dayOfWeek,

int millis)

Gets offset, for current date, modified in case of daylight savings. This is the offset to add *to* GMT t
local time. Gets the time zone offset, for current date, modified in case of daylight savings. This is the
to add *to* GMT to get local time. Assume that the start and end month are distinct. This method

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()
241

TimeZone java.util

getRawOffset()

begin-

re

ica/
return incorrect results for rules that start at the end of February (e.g., last Sunday in February) or the
ning of March (e.g., March 1).

Parameters:
era - The era of the given date (0 = BC, 1 = AD).

year - The year in the given date.

month - The month in the given date. Month is 0-based. e.g., 0 for January.

day - The day-in-month of the given date.

dayOfWeek - The day-of-week of the given date.

millis - The milliseconds in day instandard local time.

Returns: The offset to add *to* GMT to get local time.

Throws: IllegalArgumentException - the era, month, day, dayOfWeek, or millis parameters a
out of range

getRawOffset()

public abstract int getRawOffset()

Gets the GMT offset for this time zone.

Returns: the GMT offset for this time zone.

getTimeZone(String)

public static synchronized TimeZone getTimeZone(String ID)

Gets theTimeZone for the given ID.

Parameters:
ID - the ID for aTimeZone , either an abbreviation such as "GMT", or a full name such as "Amer
Los_Angeles".

The only time zone ID that is required to be supported is "GMT".

Returns: the specified TimeZone, or the GMT zone if the given ID cannot be understood.

useDaylightTime()

public abstract boolean useDaylightTime()

Queries if this time zone uses Daylight Savings Time.

Returns: if this time zone uses Daylight Savings Time.
242

java.util Vector

useDaylightTime()

an be
te

onents

ces the

its

ent.

.

t the
java.util

Vector
Syntax
public class Vector

Object
|
+-- java.util.Vector

Direct Known Subclasses: Stack

Description
TheVector class implements a growable array of objects. Like an array, it contains components that c
accessed using an integer index. However, the size of aVector can grow or shrink as needed to accommoda
adding and removing items after theVector has been created.

Each vector tries to optimize storage management by maintaining acapacity and acapacityIncre-
ment . Thecapacity is always at least as large as the vector size; it is usually larger because as comp
are added to the vector, the vector's storage increases in chunks the size ofcapacityIncrement . An appli-
cation can increase the capacity of a vector before inserting a large number of components; this redu
amount of incremental reallocation.

Note: To conserve space, the CLDC implementation is based on JDK 1.1.8, not JDK 1.3.

Since: JDK1.0

Member Summary

Fields
capacityIncrement The amount by which the capacity of the vector is automatically incremented when

size becomes greater than its capacity.
elementCount The number of valid components in the vector.
elementData The array buffer into which the components of the vector are stored.

Constructors
Vector() Constructs an empty vector.
Vector(int) Constructs an empty vector with the specified initial capacity.
Vector(int, int) Constructs an empty vector with the specified initial capacity and capacity increm

Methods
addElement(Object) Adds the specified component to the end of this vector, increasing its size by one
capacity() Returns the current capacity of this vector.
contains(Object) Tests if the specified object is a component in this vector.
copyInto(Object[]) Copies the components of this vector into the specified array.
elementAt(int) Returns the component at the specified index.
elements() Returns an enumeration of the components of this vector.
ensureCapacity(int) Increases the capacity of this vector, if necessary, to ensure that it can hold at leas

number of components specified by the minimum capacity argument.
243

Vector java.util

capacityIncrement

greater
to

he

d

Fields

capacityIncrement

protected int capacityIncrement

The amount by which the capacity of the vector is automatically incremented when its size becomes
than its capacity. If the capacity increment is0, the capacity of the vector is doubled each time it needs
grow.

Since: JDK1.0

elementCount

protected int elementCount

The number of valid components in the vector.

Since: JDK1.0

firstElement() Returns the first component of this vector.
indexOf(Object) Searches for the first occurence of the given argument, testing for equality using t

equals method.
indexOf(Object, int) Searches for the first occurence of the given argument, beginning the search at

index , and testing for equality using theequals method.
insertElemen-
tAt(Object, int)

Inserts the specified object as a component in this vector at the specifiedindex .

isEmpty() Tests if this vector has no components.
lastElement() Returns the last component of the vector.
lastIndexOf(Object) Returns the index of the last occurrence of the specified object in this vector.
lastIndexOf(Object,
int)

Searches backwards for the specified object, starting from the specified index, an
returns an index to it.

removeAllElements() Removes all components from this vector and sets its size to zero.
removeElement(Object) Removes the first occurrence of the argument from this vector.
removeElementAt(int) Deletes the component at the specified index.
setElementAt(Object,
int)

Sets the component at the specifiedindex of this vector to be the specified object.

setSize(int) Sets the size of this vector.
size() Returns the number of components in this vector.
toString() Returns a string representation of this vector.
trimToSize() Trims the capacity of this vector to be the vector's current size.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()

Member Summary
244

java.util Vector

elementData

length

ws.

is vec-
elementData

protected Object [] elementData

The array buffer into which the components of the vector are stored. The capacity of the vector is the
of this array buffer.

Since: JDK1.0

Constructors

Vector()

public Vector()

Constructs an empty vector.

Since: JDK1.0

Vector(int)

public Vector(int initialCapacity)

Constructs an empty vector with the specified initial capacity.

Parameters:
initialCapacity - the initial capacity of the vector.

Since: JDK1.0

Vector(int, int)

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment.

Parameters:
initialCapacity - the initial capacity of the vector.

capacityIncrement - the amount by which the capacity is increased when the vector overflo

Throws: IllegalArgumentException - if the specified initial capacity is negative

Methods

addElement(Object)

public synchronized void addElement(Object obj)

Adds the specified component to the end of this vector, increasing its size by one. The capacity of th
tor is increased if its size becomes greater than its capacity.
245

Vector java.util

capacity()

all the
Parameters:
obj - the component to be added.

Since: JDK1.0

capacity()

public int capacity()

Returns the current capacity of this vector.

Returns: the current capacity of this vector.

Since: JDK1.0

contains(Object)

public boolean contains(Object elem)

Tests if the specified object is a component in this vector.

Parameters:
elem - an object.

Returns: true if the specified object is a component in this vector;false otherwise.

Since: JDK1.0

copyInto(Object[])

public synchronized void copyInto(Object [] anArray)

Copies the components of this vector into the specified array. The array must be big enough to hold
objects in this vector.

Parameters:
anArray - the array into which the components get copied.

Since: JDK1.0

elementAt(int)

public synchronized Object elementAt(int index)

Returns the component at the specified index.

Parameters:
index - an index into this vector.

Returns: the component at the specified index.

Throws: ArrayIndexOutOfBoundsException - if an invalid index was given.

Since: JDK1.0

elements()

public synchronized Enumeration elements()
246

java.util Vector

ensureCapacity(int)

compo-
Returns an enumeration of the components of this vector.

Returns: an enumeration of the components of this vector.

Since: JDK1.0

See Also: Enumeration

ensureCapacity(int)

public synchronized void ensureCapacity(int minCapacity)

Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of
nents specified by the minimum capacity argument.

Parameters:
minCapacity - the desired minimum capacity.

Since: JDK1.0

firstElement()

public synchronized Object firstElement()

Returns the first component of this vector.

Returns: the first component of this vector.

Throws: NoSuchElementException - if this vector has no components.

Since: JDK1.0

indexOf(Object)

public int indexOf(Object elem)

Searches for the first occurence of the given argument, testing for equality using theequals method.

Parameters:
elem - an object.

Returns: the index of the first occurrence of the argument in this vector; returns-1 if the object is not
found.

Since: JDK1.0

See Also: equals(Object)

indexOf(Object, int)

public synchronized int indexOf(Object elem, int index)

Searches for the first occurence of the given argument, beginning the search atindex , and testing for
equality using theequals method.

Parameters:
elem - an object.

index - the index to start searching from.
247

Vector java.util

insertElementAt(Object, int)

er

tor.
Returns: the index of the first occurrence of the object argument in this vector at positionindex or later
in the vector; returns-1 if the object is not found.

Since: JDK1.0

See Also: equals(Object)

insertElementAt(Object, int)

public synchronized void insertElementAt(Object obj, int index)

Inserts the specified object as a component in this vector at the specifiedindex . Each component in this
vector with an index greater or equal to the specifiedindex is shifted upward to have an index one great
than the value it had previously.

The index must be a value greater than or equal to0 and less than or equal to the current size of the vec

Parameters:
obj - the component to insert.

index - where to insert the new component.

Throws: ArrayIndexOutOfBoundsException - if the index was invalid.

Since: JDK1.0

See Also: size()

isEmpty()

public boolean isEmpty()

Tests if this vector has no components.

Returns: true if this vector has no components;false otherwise.

Since: JDK1.0

lastElement()

public synchronized Object lastElement()

Returns the last component of the vector.

Returns: the last component of the vector, i.e., the component at indexsize() - 1 .

Throws: NoSuchElementException - if this vector is empty.

Since: JDK1.0

lastIndexOf(Object)

public int lastIndexOf(Object elem)

Returns the index of the last occurrence of the specified object in this vector.

Parameters:
elem - the desired component.
248

java.util Vector

lastIndexOf(Object, int)

 to it.

each
ave an

r equal
sly.
Returns: the index of the last occurrence of the specified object in this vector; returns-1 if the object is
not found.

Since: JDK1.0

lastIndexOf(Object, int)

public synchronized int lastIndexOf(Object elem, int index)

Searches backwards for the specified object, starting from the specified index, and returns an index

Parameters:
elem - the desired component.

index - the index to start searching from.

Returns: the index of the last occurrence of the specified object in this vector at position less thanindex
in the vector;-1 if the object is not found.

Since: JDK1.0

removeAllElements()

public synchronized void removeAllElements()

Removes all components from this vector and sets its size to zero.

Since: JDK1.0

removeElement(Object)

public synchronized boolean removeElement(Object obj)

Removes the first occurrence of the argument from this vector. If the object is found in this vector,
component in the vector with an index greater or equal to the object's index is shifted downward to h
index one smaller than the value it had previously.

Parameters:
obj - the component to be removed.

Returns: true if the argument was a component of this vector;false otherwise.

Since: JDK1.0

removeElementAt(int)

public synchronized void removeElementAt(int index)

Deletes the component at the specified index. Each component in this vector with an index greater o
to the specifiedindex is shifted downward to have an index one smaller than the value it had previou

The index must be a value greater than or equal to0 and less than the current size of the vector.

Parameters:
index - the index of the object to remove.

Throws: ArrayIndexOutOfBoundsException - if the index was invalid.

Since: JDK1.0
249

Vector java.util

setElementAt(Object, int)

o-
See Also: size()

setElementAt(Object, int)

public synchronized void setElementAt(Object obj, int index)

Sets the component at the specifiedindex of this vector to be the specified object. The previous comp
nent at that position is discarded.

The index must be a value greater than or equal to0 and less than the current size of the vector.

Parameters:
obj - what the component is to be set to.

index - the specified index.

Throws: ArrayIndexOutOfBoundsException - if the index was invalid.

Since: JDK1.0

See Also: size()

setSize(int)

public synchronized void setSize(int newSize)

Sets the size of this vector. If the new size is greater than the current size, newnull items are added to the
end of the vector. If the new size is less than the current size, all components at indexnewSize and greater
are discarded.

Parameters:
newSize - the new size of this vector.

Since: JDK1.0

size()

public int size()

Returns the number of components in this vector.

Returns: the number of components in this vector.

Since: JDK1.0

toString()

public synchronized String toString()

Returns a string representation of this vector.

Overrides: toString() in classObject

Returns: a string representation of this vector.

Since: JDK1.0

trimToSize()
250

java.util Vector

trimToSize()

o min-
public synchronized void trimToSize()

Trims the capacity of this vector to be the vector's current size. An application can use this operation t
imize the storage of a vector.

Since: JDK1.0
251

Vector java.util

trimToSize()
252

Package

javax.microedition.io
.

on-
Description
The classes for the generic connections.

Since: CLDC 1.0

Class Summary

Interfaces

Connection This is the most basic type of generic connection.

ContentConnection This interface defines the stream connection over which content is passed.

Datagram This is the generic datagram interface.

DatagramConnection This interface defines the capabilities that a datagram connection must have.

InputConnection This interface defines the capabilities that an input stream connection must have.

OutputConnection This interface defines the capabilities that an output stream connection must have

StreamConnection This interface defines the capabilities that a stream connection must have.

StreamConnectionNoti-
fier

This interface defines the capabilities that a connection notifier must have.

Classes

Connector This class is a placeholder for the static methods that are used for creating all the C
nection objects.

Exceptions

ConnectionNotFoundEx-
ception

This class is used to signal that a connection target cannot be found.
253

Connection javax.microedition.io

close()

defined

n IOEx-
onnec-
n until
the con-
javax.microedition.io

Connection
Syntax
public abstract interface Connection

All Known Subinterfaces: ContentConnection , DatagramConnection , InputConnec-
tion , OutputConnection , StreamConnection , StreamConnectionNotifier

Description
This is the most basic type of generic connection. Only the close method is defined. The open method
here because opening is always done by the Connector.open() methods.

Methods

close()

public void close()

Close the connection.

When a connection has been closed, access to any of its methods except this close() will cause an a
ception to be thrown. Closing an already closed connection has no effect. Streams derived from the c
tion may be open when method is called. Any open streams will cause the connection to be held ope
they themselves are closed. In this latter case access to the open streams is permitted, but access to
nection is not.

Throws: IOException - If an I/O error occurs

Member Summary

Methods
close() Close the connection.
254

javax.microedition.io ConnectionNotFoundException

ConnectionNotFoundException()

g that
javax.microedition.io

ConnectionNotFoundException
Syntax
public class ConnectionNotFoundException extends IOException

Object
|
+-- Throwable

|
+-- Exception

|
+-- IOException

|
+-- javax.microedition.io.ConnectionNotFoundException

Description
This class is used to signal that a connection target cannot be found.

Constructors

ConnectionNotFoundException()

public ConnectionNotFoundException()

Constructs a ConnectionNotFoundException with no detail message. A detail message is a Strin
describes this particular exception.

Member Summary

Constructors
ConnectionNotFoundEx-
ception()

Constructs a ConnectionNotFoundException with no detail message.

ConnectionNotFoundEx-
ception(String)

Constructs a ConnectionNotFoundException with the specified detail message.

Inherited Member Summary

Methods inherited from classThrowable

getMessage() , toString() , printStackTrace()

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , notify() , notifyAll() , wait(long) , wait(long,
int) , wait()
255

ConnectionNotFoundException javax.microedition.io

ConnectionNotFoundException(String)

a String
ConnectionNotFoundException(String)

public ConnectionNotFoundException(String s)

Constructs a ConnectionNotFoundException with the specified detail message. A detail message is
that describes this particular exception.

Parameters:
s - the detail message
256

javax.microedition.io Connector

ConnectionNotFoundException(String)

hose
uested
r string
general

to the
e read
ent.
ntEx-

ons. If
eout
s will

r conve-
javax.microedition.io

Connector
Syntax
public class Connector

Object
|
+-- javax.microedition.io.Connector

Description
This class is a placeholder for the static methods that are used for creating all the Connection objects.

The creation of Connections is performed dynamically by looking up a protocol implementation class w
name is formed from the platform name (read from a system property) and the protocol name of the req
connection (extracted from the parameter string supplied by the application programmer.) The paramete
that describes the target should conform to the URL format as described in RFC 2396. This takes the
form:

{scheme}:[{target}][{parms}]

where{scheme} is the name of a protocol such ashttp}.

The{target} is normally some kind of network address.

Any {parms} are formed as a series of equates of the form ";x=y". Example: ";type=a".

An optional second parameter may be specified to the open function. This is a mode flag that indicates
protocol handler the intentions of the calling code. The options here specify if the connection is going to b
(READ), written (WRITE), or both (READ_WRITE). The validity of these flag settings is protocol depend
For instance, a connection for a printer would not allow read access, and would throw an IllegalArgume
ception. If the mode parameter is not specified, READ_WRITE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout excepti
this flag is set, the protocol implementation may throw an InterruptedIOException when it detects a tim
condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exception
actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.

Because connections are frequently opened just to gain access to a specific input or output stream, fou
nience functions are provided for this purpose. See also:DatagramConnection for information relating to
datagram addressing

Member Summary

Fields
READ Access mode READ.
READ_WRITE Access mode READ_WRITE.
WRITE Access mode WRITE.

Methods
open(String) Create and open a Connection.
open(String, int) Create and open a Connection.
257

Connector javax.microedition.io

READ
Fields

READ

public static final int READ

Access mode READ.

READ_WRITE

public static final int READ_WRITE

Access mode READ_WRITE.

WRITE

public static final int WRITE

Access mode WRITE.

Methods

open(String)

public static Connection open(String name)

open(String, int,
boolean)

Create and open a Connection.

openDataInput-
Stream(String)

Create and open a connection input stream.

openDataOutput-
Stream(String)

Create and open a connection output stream.

openInput-
Stream(String)

Create and open a connection input stream.

openOutput-
Stream(String)

Create and open a connection output stream.

Inherited Member Summary

Methods inherited from classObject

getClass() , hashCode() , equals(Object) , toString() , notify() , notifyAll() ,
wait(long) , wait(long, int) , wait()

Member Summary
258

javax.microedition.io Connector

open(String, int)

col

col

col
Create and open a Connection.

Parameters:
name - The URL for the connection.

Returns: A new Connection object.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be make, or the proto
type does not exist.

IOException - If some other kind of I/O error occurs.

open(String, int)

public static Connection open(String name, int mode)

Create and open a Connection.

Parameters:
name - The URL for the connection.

mode - The access mode.

Returns: A new Connection object.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be make, or the proto
type does not exist.

IOException - If some other kind of I/O error occurs.

open(String, int, boolean)

public static Connection open(String name, int mode, boolean timeouts)

Create and open a Connection.

Parameters:
name - The URL for the connection

mode - The access mode

timeouts - A flag to indicate that the caller wants timeout exceptions

Returns: A new Connection object

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - if the requested connection cannot be make, or the proto
type does not exist.

IOException - If some other kind of I/O error occurs.

openDataInputStream(String)

public static DataInputStream openDataInputStream(String name)

Create and open a connection input stream.
259

Connector javax.microedition.io

openDataOutputStream(String)
Parameters:
name - The URL for the connection.

Returns: A DataInputStream.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.

openDataOutputStream(String)

public static DataOutputStream openDataOutputStream(String name)

Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: A DataOutputStream.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.

openInputStream(String)

public static InputStream openInputStream(String name)

Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: An InputStream.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.

openOutputStream(String)

public static OutputStream openOutputStream(String name)

Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: An OutputStream.

Throws: IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

IOException - If some other kind of I/O error occurs.
260

javax.microedition.io ContentConnection

getEncoding()

E.g. if

ted
javax.microedition.io

ContentConnection
Syntax
public abstract interface ContentConnection extends StreamConnection

All Superinterfaces: Connection , InputConnection , OutputConnection , StreamConnec-
tion

Description
This interface defines the stream connection over which content is passed.

Methods

getEncoding()

public String getEncoding()

Returns a string describing the encoding of the content which the resource connected to is providing.
the connection is via HTTP, the value of thecontent-encoding header field is returned.

Returns: the content encoding of the resource that the URL references, ornull if not known.

Member Summary

Methods
getEncoding() Returns a string describing the encoding of the content which the resource connec

to is providing.
getLength() Returns the length of the content which is being provided.
getType() Returns the type of content that the resource connected to is providing.

Inherited Member Summary

Methods inherited from interface InputConnection

openInputStream() , openDataInputStream()

Methods inherited from interface Connection

close()

Methods inherited from interface OutputConnection

openOutputStream() , openDataOutputStream()
261

ContentConnection javax.microedition.io

getLength()

value

n is via
getLength()

public long getLength()

Returns the length of the content which is being provided. E.g. if the connection is via HTTP, then the
of thecontent-length header field is returned.

Returns: the content length of the resource that this connection's URL references, or-1 if the content
length is not known.

getType()

public String getType()

Returns the type of content that the resource connected to is providing. For instance, if the connectio
HTTP, then the value of thecontent-type header field is returned.

Returns: the content type of the resource that the URL references, ornull if not known.
262

javax.microedition.io Datagram

getType()

sent or

ad and
et the

y simple.

PI for
not an
portant
ted here
ng, it is
can be

vari-
sed
rfaces

of the
ust be
le

) func-
read()
y the

s will
e data

e place.
f the
javax.microedition.io

Datagram
Syntax
public abstract interface Datagram extends DataInput , DataOutput

All Superinterfaces: DataInput , DataOutput

Description
This is the generic datagram interface. It represents an object that will act as the holder of data to be
received from a datagram connection.

The DataInput and DataOutput interfaces are extended by this interface to provide a simple way to re
write binary data in and out of the datagram buffer. An additional function reset() may be called to res
read/write point to the beginning of the buffer.

It should be noted that in the interests of reducing space and speed concerns, these mechanisms are ver
In order to use them correctly the following restrictions should be observed:

1) The use of the standard DataInput and DataOutput interfaces is done in order to provide a familiar A
reading and writing data into and out of a Datagram buffer. It should be understood however that this is
API to a Java stream and does not exhibit all of the features normally associated with one. The most im
difference here is that a Java stream is either an InputStream or an OutputStream. The interface presen
is, essentially, both at the same time. As the datagram object does not have a mode for reading and writi
necessary for the application programmer to realize that no automatic detection of the wrong mode usage
done.

2) The DataInput and DataOutput interfaces will not work with any arbitrary settings of the Datagram state
ables. The main restriction here is that theoffsetstate variable must at all times be zero. Datagrams may be u
in the normal way where the offset is non-zero but when this is done the DataInput and DataOutput inte
cannot be used.

3) The DataInput and DataOutput read() and write() functions work by using an invisible state variable
Datagram object. Before any data is read from or written to the datagram buffer, this state variable m
zeroed using the reset() function. This variable is not theoffsetstate variable but an additional state variab
used only for the read() and write() functions.

4) Before data is to be received into the datagram's buffer, theoffsetstate variable and thelengthstate variable
must first be set up to the part of the buffer the data should be written to. If the intention is to use the read(
tions, the offset must be zero. After receive() is called, the data can be read from the buffer using the
functions until an EOF condition is found. This will occur when the number of characters represented b
length parameter have been read.

5) To write data into the buffer prior to a send() operation, the reset() function should first be called. Thi
zero the read/write pointer along with the offset and length parameters of the Datagram object. Then th
can be written using the write() functions. When this process is complete, thelengthstate variable will be set to
the correct value for the send() function of the datagram's connection, and so the send operation can tak
An IndexOutOfBoundsException will be thrown if the number of characters written exceeds the size o
buffer.
263

Datagram javax.microedition.io

getAddress()
Methods

getAddress()

public String getAddress()

Get the address in the datagram.

Returns: the address in string form, or null if no address was set

See Also: setAddress(String)

getData()

public byte[] getData()

Get the buffer.

Returns: the data buffer

See Also: setData(byte[], int, int)

Member Summary

Methods
getAddress() Get the address in the datagram.
getData() Get the buffer.
getLength() Get the length.
getOffset() Get the offset.
reset() Zero the read/write pointer as well as the offset and length parameters.
setAddress(Datagram) Set datagram address, copying the address from another datagram.
setAddress(String) Set datagram address.
setData(byte[], int,
int)

Set the buffer, offset and length.

setLength(int) Set the length.

Inherited Member Summary

Methods inherited from interface DataInput

readFully(byte[]) , readFully(byte[], int, int) , skipBytes(int) , readBoolean() , read-
Byte() , readUnsignedByte() , readShort() , readUnsignedShort() , readChar() , readInt() ,
readLong() , readUTF()

Methods inherited from interface DataOutput

write(int) , write(byte[]) , write(byte[], int, int) , writeBoolean(boolean) , write-
Byte(int) , writeShort(int) , writeChar(int) , writeInt(int) , writeLong(long) , write-
Chars(String) , writeUTF(String)
264

javax.microedition.io Datagram

getLength()

gram.

datagram
getLength()

public int getLength()

Get the length.

Returns: the length of the data

See Also: setLength(int)

getOffset()

public int getOffset()

Get the offset.

Returns: the offset into the data buffer

reset()

public void reset()

Zero the read/write pointer as well as the offset and length parameters.

setAddress(Datagram)

public void setAddress(Datagram reference)

Set datagram address, copying the address from another datagram.

Parameters:
reference - the datagram who's address will be copied as the new target address for this data

Throws: IllegalArgumentException - if the address is not valid

See Also: getAddress()

setAddress(String)

public void setAddress(String addr)

Set datagram address.

The actual addressing scheme is implementation-dependent. Please read the general comments on
addressing inDatagramConnection.java.

Note that if the address of a datagram is not specified, then it defaults to that of the connection.

Parameters:
addr - the new target address as a URL

Throws: IllegalArgumentException - if the address is not valid

IOException - if a some kind of I/O error occurs

See Also: getAddress()

setData(byte[], int, int)
265

Datagram javax.microedition.io

setLength(int)
public void setData(byte[] buffer, int offset, int len)

Set the buffer, offset and length.

Parameters:
buffer - the data buffer

offset - the offset into the data buffer

len - the length of the data in the buffer

Throws: IllegalArgumentException - if the length or offset fall outside the buffer

See Also: getData()

setLength(int)

public void setLength(int len)

Set the length.

Parameters:
len - the new length of the data

Throws: IllegalArgumentException - if the length is negative or larger than the buffer

See Also: getLength()
266

javax.microedition.io DatagramConnection

setLength(int)

agram
level.

s kinds
sed by

dress-

the fol-

then
ation).

t num-
never
ode",

e plat-
ted by
using
javax.microedition.io

DatagramConnection
Syntax
public abstract interface DatagramConnection extends Connection

All Superinterfaces: Connection

Description
This interface defines the capabilities that a datagram connection must have.

Reminder: In common with all the other addressing schemes used for I/O in CLDC, the syntax for dat
addressing is not defined in the CLDC Specification. Syntax definition can only be take place at the profile
The reason for this is that the datagram interface classes of CLDC can be used for implementing variou
of datagram protocols. Examples include IP and WDP networks as well as infrared beaming protocols u
various PDAs and other devices. All these protocols use very different addressing mechanisms.

In the sample implementation provided as part of the CLDC reference implementation, the following ad
ing scheme is used for UDP datagrams.

The parameter string describing the target of a connection in the CLDC reference implementation takes
lowing form:

{protocol}://[{host}]:[{port}]

A datagram connection can be opened in a "client" mode or "server" mode. If the "//{host}" part is missing
the connection is opened as a "server" (by "server", we mean that a client application initiates communic
When the "//{host}" part is specified, the connection is opened as a "client".

Examples:

A datagram connection for accepting datagrams

datagram://:1234

A datagram connection for sending to a server:

datagram://123.456.789.12:1234

Note that the port number in "server mode" (unspecified host name) is that of the receiving port. The por
ber in "client mode" (host name specified) is that of the target port. The reply-to port in both cases is
unspecified. In "server mode", the same port number is used for both receiving and sending. In "client m
the reply-to port is always dynamically allocated.

The allocation of datagram objects is done in a more abstract way than in J2SE. This is to allow a singl
form to support several different datagram interfaces simultaneously. Datagram objects must be alloca
calling the "newDatagram" method of the DatagramConnection object. The resulting object is defined
another interface type called "javax.microedition.io.Datagram".

Member Summary

Methods
getMaximumLength() Get the maximum length a datagram can be.
267

DatagramConnection javax.microedition.io

getMaximumLength()
Methods

getMaximumLength()

public int getMaximumLength()

Get the maximum length a datagram can be.

Returns: The maximum length a datagram can be.

Throws: IOException - If an I/O error occurs.

getNominalLength()

public int getNominalLength()

Get the nominal length of a datagram.

Returns: The nominal length a datagram can be.

Throws: IOException - If an I/O error occurs.

newDatagram(byte[], int)

public Datagram newDatagram(byte[] buf, int size)

Make a new datagram object.

Parameters:
buf - The buffer to be used in the datagram

size - The length of the buffer to be allocated for the datagram

getNominalLength() Get the nominal length of a datagram.
newDatagram(byte[],
int)

Make a new datagram object.

newDatagram(byte[],
int, String)

Make a new datagram object.

newDatagram(int) Make a new datagram object automatically allocating a buffer.
newDatagram(int,
String)

Make a new datagram object.

receive(Datagram) Receive a datagram.
send(Datagram) Send a datagram.

Inherited Member Summary

Methods inherited from interface Connection

close()

Member Summary
268

javax.microedition.io DatagramConnection

newDatagram(byte[], int, String)

r

s

s

Returns: A new datagram

Throws: IOException - If an I/O error occurs.

IllegalArgumentException - if the length is negative or larger than the buffer, or if the buffe
parameter is invalid

newDatagram(byte[], int, String)

public Datagram newDatagram(byte[] buf, int size, String addr)

Make a new datagram object.

Parameters:
buf - The buffer to be used in the datagram

size - The length of the buffer to be used

addr - The I/O address to which the datagram will be sent

Returns: A new datagram

Throws: IOException - If an I/O error occurs.

IllegalArgumentException - if the length is negative or larger than the buffer, or if the addres
or buffer parameters is invalid

newDatagram(int)

public Datagram newDatagram(int size)

Make a new datagram object automatically allocating a buffer.

Parameters:
size - The length of the buffer to be allocated for the datagram

Returns: A new datagram

Throws: IOException - If an I/O error occurs.

IllegalArgumentException - if the length is negative or larger than the buffer

newDatagram(int, String)

public Datagram newDatagram(int size, String addr)

Make a new datagram object.

Parameters:
size - The length of the buffer to be used

addr - The I/O address to which the datagram will be sent

Returns: A new datagram

Throws: IOException - If an I/O error occurs.

IllegalArgumentException - if the length is negative or larger than the buffer, or if the addres
parameter is invalid
269

DatagramConnection javax.microedition.io

receive(Datagram)
receive(Datagram)

public void receive(Datagram dgram)

Receive a datagram.

Parameters:
dgram - A datagram.

Throws: IOException - If an I/O error occurs.

InterruptedIOException - Timeout or upon closing the connection with outstanding I/O.

send(Datagram)

public void send(Datagram dgram)

Send a datagram.

Parameters:
dgram - A datagram.

Throws: IOException - If an I/O error occurs.

InterruptedIOException - Timeout or upon closing the connection with outstanding I/O.
270

javax.microedition.io InputConnection

openDataInputStream()
javax.microedition.io

InputConnection
Syntax
public abstract interface InputConnection extends Connection

All Known Subinterfaces: ContentConnection , StreamConnection

All Superinterfaces: Connection

Description
This interface defines the capabilities that an input stream connection must have.

Methods

openDataInputStream()

public DataInputStream openDataInputStream()

Open and return a data input stream for a connection.

Returns: An input stream

Throws: IOException - If an I/O error occurs

openInputStream()

public InputStream openInputStream()

Open and return an input stream for a connection.

Member Summary

Methods
openDataInputStream() Open and return a data input stream for a connection.
openInputStream() Open and return an input stream for a connection.

Inherited Member Summary

Methods inherited from interface Connection

close()
271

InputConnection javax.microedition.io

openInputStream()
Returns: An input stream

Throws: IOException - If an I/O error occurs
272

javax.microedition.io OutputConnection

openDataOutputStream()
javax.microedition.io

OutputConnection
Syntax
public abstract interface OutputConnection extends Connection

All Known Subinterfaces: ContentConnection , StreamConnection

All Superinterfaces: Connection

Description
This interface defines the capabilities that an output stream connection must have.

Methods

openDataOutputStream()

public DataOutputStream openDataOutputStream()

Open and return a data output stream for a connection.

Returns: An output stream

Throws: IOException - If an I/O error occurs

openOutputStream()

public OutputStream openOutputStream()

Member Summary

Methods
openDataOutput-
Stream()

Open and return a data output stream for a connection.

openOutputStream() Open and return an output stream for a connection.

Inherited Member Summary

Methods inherited from interface Connection

close()
273

OutputConnection javax.microedition.io

openOutputStream()
Open and return an output stream for a connection.

Returns: An output stream

Throws: IOException - If an I/O error occurs
274

javax.microedition.io StreamConnection

openOutputStream()
javax.microedition.io

StreamConnection
Syntax
public abstract interface StreamConnection extends InputConnection , OutputConnection

All Known Subinterfaces: ContentConnection

All Superinterfaces: Connection , InputConnection , OutputConnection

Description
This interface defines the capabilities that a stream connection must have.

Inherited Member Summary

Methods inherited from interface InputConnection

openInputStream() , openDataInputStream()

Methods inherited from interface Connection

close()

Methods inherited from interface OutputConnection

openOutputStream() , openDataOutputStream()
275

StreamConnectionNotifier javax.microedition.io

acceptAndOpen()
javax.microedition.io

StreamConnectionNotifier
Syntax
public abstract interface StreamConnectionNotifier extends Connection

All Superinterfaces: Connection

Description
This interface defines the capabilities that a connection notifier must have.

Methods

acceptAndOpen()

public StreamConnection acceptAndOpen()

Returns aStreamConnection that represents a server side socket connection.

Returns: A socket to communicate with a client.

Throws: IOException - If an I/O error occurs.

Member Summary

Methods
acceptAndOpen() Returns aStreamConnection that represents a server side socket connection.

Inherited Member Summary

Methods inherited from interface Connection

close()
276

Index
A
abs(int) - of java.lang.Math 138
abs(long) - of java.lang.Math 139
acceptAndOpen() - of javax.microedition.io.StreamConnectionNotifier 276
activeCount() - of java.lang.Thread 201
addElement(Object) - of java.util.Vector 245
after(Object) - of java.util.Calendar 216
AM - of java.util.Calendar 212
AM_PM - of java.util.Calendar 212
append(boolean) - of java.lang.StringBuffer 183
append(char) - of java.lang.StringBuffer 183
append(char[]) - of java.lang.StringBuffer 184
append(char[], int, int) - of java.lang.StringBuffer 184
append(int) - of java.lang.StringBuffer 184
append(long) - of java.lang.StringBuffer 185
append(Object) - of java.lang.StringBuffer 185
append(String) - of java.lang.StringBuffer 185
APRIL - of java.util.Calendar 212
ArithmeticException - of java.lang 83
ArithmeticException() - of java.lang.ArithmeticException 83
ArithmeticException(String) - of java.lang.ArithmeticException 84
arraycopy(Object, int, Object, int, int) - of java.lang.System 196
ArrayIndexOutOfBoundsException - of java.lang 85
ArrayIndexOutOfBoundsException() - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayIndexOutOfBoundsException(int) - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayIndexOutOfBoundsException(String) - of java.lang.ArrayIndexOutOfBoundsException 86
ArrayStoreException - of java.lang 87
ArrayStoreException() - of java.lang.ArrayStoreException 88
ArrayStoreException(String) - of java.lang.ArrayStoreException 88
AUGUST - of java.util.Calendar 212
available() - of java.io.ByteArrayInputStream 11
available() - of java.io.DataInputStream 25
available() - of java.io.InputStream 45

B
before(Object) - of java.util.Calendar 216
Boolean - of java.lang 89
Boolean(boolean) - of java.lang.Boolean 89
booleanValue() - of java.lang.Boolean 90
buf - of java.io.ByteArrayInputStream 10
buf - of java.io.ByteArrayOutputStream 15
Byte - of java.lang 91
Byte(byte) - of java.lang.Byte 92
ByteArrayInputStream - of java.io 9
ByteArrayInputStream(byte[]) - of java.io.ByteArrayInputStream 10
ByteArrayInputStream(byte[], int, int) - of java.io.ByteArrayInputStream 11
277

Index

6

ByteArrayOutputStream - of java.io 14
ByteArrayOutputStream() - of java.io.ByteArrayOutputStream 15
ByteArrayOutputStream(int) - of java.io.ByteArrayOutputStream 15
bytesTransferred - of java.io.InterruptedIOException 53
byteValue() - of java.lang.Byte 92
byteValue() - of java.lang.Integer 125

C
Calendar - of java.util 210
Calendar() - of java.util.Calendar 216
capacity() - of java.lang.StringBuffer 186
capacity() - of java.util.Vector 246
capacityIncrement - of java.util.Vector 244
Character - of java.lang 94
Character(char) - of java.lang.Character 95
charAt(int) - of java.lang.String 169
charAt(int) - of java.lang.StringBuffer 186
charValue() - of java.lang.Character 96
checkError() - of java.io.PrintStream 63
Class - of java.lang 99
ClassCastException - of java.lang 104
ClassCastException() - of java.lang.ClassCastException 105
ClassCastException(String) - of java.lang.ClassCastException 105
ClassNotFoundException - of java.lang 106
ClassNotFoundException() - of java.lang.ClassNotFoundException 106
ClassNotFoundException(String) - of java.lang.ClassNotFoundException 107
clear() - of java.util.Hashtable 229
close() - of java.io.ByteArrayInputStream 11
close() - of java.io.ByteArrayOutputStream 16
close() - of java.io.DataInputStream 26
close() - of java.io.DataOutputStream 38
close() - of java.io.InputStream 45
close() - of java.io.InputStreamReader 50
close() - of java.io.OutputStream 57
close() - of java.io.OutputStreamWriter 60
close() - of java.io.PrintStream 63
close() - of java.io.Reader 69
close() - of java.io.Writer 77
close() - of javax.microedition.io.Connection 254
compareTo(String) - of java.lang.String 170
concat(String) - of java.lang.String 170
Connection - of javax.microedition.io 254
ConnectionNotFoundException - of javax.microedition.io 255
ConnectionNotFoundException() - of javax.microedition.io.ConnectionNotFoundException 255
ConnectionNotFoundException(String) - of javax.microedition.io.ConnectionNotFoundException 25
Connector - of javax.microedition.io 257
contains(Object) - of java.util.Hashtable 229
contains(Object) - of java.util.Vector 246
containsKey(Object) - of java.util.Hashtable 229
278

Index
ContentConnection - of javax.microedition.io 261
copyInto(Object[]) - of java.util.Vector 246
count - of java.io.ByteArrayInputStream 10
count - of java.io.ByteArrayOutputStream 15
currentThread() - of java.lang.Thread 202
currentTimeMillis() - of java.lang.System 197

D
Datagram - of javax.microedition.io 263
DatagramConnection - of javax.microedition.io 267
DataInput - of java.io 18
DataInputStream - of java.io 24
DataInputStream(InputStream) - of java.io.DataInputStream 25
DataOutput - of java.io 32
DataOutputStream - of java.io 37
DataOutputStream(OutputStream) - of java.io.DataOutputStream 38
Date - of java.util 220
DATE - of java.util.Calendar 212
Date() - of java.util.Date 221
Date(long) - of java.util.Date 221
DAY_OF_MONTH - of java.util.Calendar 213
DAY_OF_WEEK - of java.util.Calendar 213
DECEMBER - of java.util.Calendar 213
delete(int, int) - of java.lang.StringBuffer 186
deleteCharAt(int) - of java.lang.StringBuffer 186
digit(char, int) - of java.lang.Character 96

E
elementAt(int) - of java.util.Vector 246
elementCount - of java.util.Vector 244
elementData - of java.util.Vector 245
elements() - of java.util.Hashtable 229
elements() - of java.util.Vector 246
empty() - of java.util.Stack 238
EmptyStackException - of java.util 223
EmptyStackException() - of java.util.EmptyStackException 223
endsWith(String) - of java.lang.String 171
ensureCapacity(int) - of java.lang.StringBuffer 187
ensureCapacity(int) - of java.util.Vector 247
Enumeration - of java.util 225
EOFException - of java.io 42
EOFException() - of java.io.EOFException 43
EOFException(String) - of java.io.EOFException 43
equals(Object) - of java.lang.Boolean 90
equals(Object) - of java.lang.Byte 92
equals(Object) - of java.lang.Character 96
equals(Object) - of java.lang.Integer 126
equals(Object) - of java.lang.Long 134
279

Index
equals(Object) - of java.lang.Object 148
equals(Object) - of java.lang.Short 163
equals(Object) - of java.lang.String 171
equals(Object) - of java.util.Calendar 216
equals(Object) - of java.util.Date 221
err - of java.lang.System 195
Error - of java.lang 108
Error() - of java.lang.Error 108
Error(String) - of java.lang.Error 109
Exception - of java.lang 110
Exception() - of java.lang.Exception 111
Exception(String) - of java.lang.Exception 111
exit(int) - of java.lang.Runtime 156
exit(int) - of java.lang.System 197

F
FEBRUARY - of java.util.Calendar 213
firstElement() - of java.util.Vector 247
flush() - of java.io.DataOutputStream 39
flush() - of java.io.OutputStream 57
flush() - of java.io.OutputStreamWriter 60
flush() - of java.io.PrintStream 64
flush() - of java.io.Writer 78
forName(String) - of java.lang.Class 100
freeMemory() - of java.lang.Runtime 157
FRIDAY - of java.util.Calendar 213

G
gc() - of java.lang.Runtime 157
gc() - of java.lang.System 198
get(int) - of java.util.Calendar 217
get(Object) - of java.util.Hashtable 229
getAddress() - of javax.microedition.io.Datagram 264
getAvailableIDs() - of java.util.TimeZone 241
getBytes() - of java.lang.String 171
getBytes(String) - of java.lang.String 171
getChars(int, int, char[], int) - of java.lang.String 172
getChars(int, int, char[], int) - of java.lang.StringBuffer 187
getClass() - of java.lang.Object 148
getData() - of javax.microedition.io.Datagram 264
getDefault() - of java.util.TimeZone 241
getEncoding() - of javax.microedition.io.ContentConnection 261
getID() - of java.util.TimeZone 241
getInstance() - of java.util.Calendar 217
getInstance(TimeZone) - of java.util.Calendar 217
getLength() - of javax.microedition.io.ContentConnection 262
getLength() - of javax.microedition.io.Datagram 265
getMaximumLength() - of javax.microedition.io.DatagramConnection 268
280

Index
getMessage() - of java.lang.Throwable 205
getName() - of java.lang.Class 100
getNominalLength() - of javax.microedition.io.DatagramConnection 268
getOffset() - of javax.microedition.io.Datagram 265
getOffset(int, int, int, int, int, int) - of java.util.TimeZone 241
getPriority() - of java.lang.Thread 202
getProperty(String) - of java.lang.System 198
getRawOffset() - of java.util.TimeZone 242
getResourceAsStream(String) - of java.lang.Class 101
getRuntime() - of java.lang.Runtime 157
getTime() - of java.util.Calendar 217
getTime() - of java.util.Date 222
getTimeInMillis() - of java.util.Calendar 217
getTimeZone() - of java.util.Calendar 218
getTimeZone(String) - of java.util.TimeZone 242
getType() - of javax.microedition.io.ContentConnection 262

H
hashCode() - of java.lang.Boolean 90
hashCode() - of java.lang.Byte 92
hashCode() - of java.lang.Character 96
hashCode() - of java.lang.Integer 126
hashCode() - of java.lang.Long 134
hashCode() - of java.lang.Object 148
hashCode() - of java.lang.Short 163
hashCode() - of java.lang.String 172
hashCode() - of java.util.Date 222
Hashtable - of java.util 227
Hashtable() - of java.util.Hashtable 228
Hashtable(int) - of java.util.Hashtable 228
hasMoreElements() - of java.util.Enumeration 225
HOUR - of java.util.Calendar 213
HOUR_OF_DAY - of java.util.Calendar 213

I
identityHashCode(Object) - of java.lang.System 198
IllegalAccessException - of java.lang 112
IllegalAccessException() - of java.lang.IllegalAccessException 113
IllegalAccessException(String) - of java.lang.IllegalAccessException 113
IllegalArgumentException - of java.lang 114
IllegalArgumentException() - of java.lang.IllegalArgumentException 115
IllegalArgumentException(String) - of java.lang.IllegalArgumentException 115
IllegalMonitorStateException - of java.lang 116
IllegalMonitorStateException() - of java.lang.IllegalMonitorStateException 117
IllegalMonitorStateException(String) - of java.lang.IllegalMonitorStateException 117
IllegalThreadStateException - of java.lang 118
IllegalThreadStateException() - of java.lang.IllegalThreadStateException 119
IllegalThreadStateException(String) - of java.lang.IllegalThreadStateException 119
281

Index
in - of java.io.DataInputStream 25
indexOf(int) - of java.lang.String 172
indexOf(int, int) - of java.lang.String 173
indexOf(Object) - of java.util.Vector 247
indexOf(Object, int) - of java.util.Vector 247
indexOf(String) - of java.lang.String 173
indexOf(String, int) - of java.lang.String 174
IndexOutOfBoundsException - of java.lang 120
IndexOutOfBoundsException() - of java.lang.IndexOutOfBoundsException 121
IndexOutOfBoundsException(String) - of java.lang.IndexOutOfBoundsException 121
InputConnection - of javax.microedition.io 271
InputStream - of java.io 44
InputStream() - of java.io.InputStream 45
InputStreamReader - of java.io 49
InputStreamReader(InputStream) - of java.io.InputStreamReader 50
InputStreamReader(InputStream, String) - of java.io.InputStreamReader 50
insert(int, boolean) - of java.lang.StringBuffer 187
insert(int, char) - of java.lang.StringBuffer 188
insert(int, char[]) - of java.lang.StringBuffer 188
insert(int, int) - of java.lang.StringBuffer 189
insert(int, long) - of java.lang.StringBuffer 189
insert(int, Object) - of java.lang.StringBuffer 189
insert(int, String) - of java.lang.StringBuffer 190
insertElementAt(Object, int) - of java.util.Vector 248
InstantiationException - of java.lang 122
InstantiationException() - of java.lang.InstantiationException 122
InstantiationException(String) - of java.lang.InstantiationException 123
Integer - of java.lang 124
Integer(int) - of java.lang.Integer 125
InterruptedException - of java.lang 131
InterruptedException() - of java.lang.InterruptedException 131
InterruptedException(String) - of java.lang.InterruptedException 132
InterruptedIOException - of java.io 52
InterruptedIOException() - of java.io.InterruptedIOException 53
InterruptedIOException(String) - of java.io.InterruptedIOException 53
intValue() - of java.lang.Integer 126
IOException - of java.io 54
IOException() - of java.io.IOException 55
IOException(String) - of java.io.IOException 55
isAlive() - of java.lang.Thread 202
isArray() - of java.lang.Class 101
isAssignableFrom(Class) - of java.lang.Class 101
isDigit(char) - of java.lang.Character 96
isEmpty() - of java.util.Hashtable 230
isEmpty() - of java.util.Vector 248
isInstance(Object) - of java.lang.Class 102
isInterface() - of java.lang.Class 102
isLowerCase(char) - of java.lang.Character 97
isUpperCase(char) - of java.lang.Character 97
282

Index
J
JANUARY - of java.util.Calendar 213
java.io - package 7
java.lang - package 81
java.util - package 209
javax.microedition.io - package 253
join() - of java.lang.Thread 202
JULY - of java.util.Calendar 214
JUNE - of java.util.Calendar 214

K
keys() - of java.util.Hashtable 230

L
lastElement() - of java.util.Vector 248
lastIndexOf(int) - of java.lang.String 174
lastIndexOf(int, int) - of java.lang.String 174
lastIndexOf(Object) - of java.util.Vector 248
lastIndexOf(Object, int) - of java.util.Vector 249
length() - of java.lang.String 175
length() - of java.lang.StringBuffer 190
lock - of java.io.Reader 69
lock - of java.io.Writer 77
Long - of java.lang 133
Long(long) - of java.lang.Long 134
longValue() - of java.lang.Integer 126
longValue() - of java.lang.Long 135

M
MARCH - of java.util.Calendar 214
mark - of java.io.ByteArrayInputStream 10
mark(int) - of java.io.ByteArrayInputStream 11
mark(int) - of java.io.DataInputStream 26
mark(int) - of java.io.InputStream 45
mark(int) - of java.io.InputStreamReader 50
mark(int) - of java.io.Reader 70
markSupported() - of java.io.ByteArrayInputStream 12
markSupported() - of java.io.DataInputStream 26
markSupported() - of java.io.InputStream 46
markSupported() - of java.io.InputStreamReader 51
markSupported() - of java.io.Reader 70
Math - of java.lang 138
max(int, int) - of java.lang.Math 139
max(long, long) - of java.lang.Math 139
MAX_PRIORITY - of java.lang.Thread 201
MAX_RADIX - of java.lang.Character 95
MAX_VALUE - of java.lang.Byte 91
283

Index
MAX_VALUE - of java.lang.Character 95
MAX_VALUE - of java.lang.Integer 125
MAX_VALUE - of java.lang.Long 134
MAX_VALUE - of java.lang.Short 162
MAY - of java.util.Calendar 214
MILLISECOND - of java.util.Calendar 214
min(int, int) - of java.lang.Math 139
min(long, long) - of java.lang.Math 140
MIN_PRIORITY - of java.lang.Thread 201
MIN_RADIX - of java.lang.Character 95
MIN_VALUE - of java.lang.Byte 92
MIN_VALUE - of java.lang.Character 95
MIN_VALUE - of java.lang.Integer 125
MIN_VALUE - of java.lang.Long 134
MIN_VALUE - of java.lang.Short 163
MINUTE - of java.util.Calendar 214
MONDAY - of java.util.Calendar 214
MONTH - of java.util.Calendar 214

N
NegativeArraySizeException - of java.lang 141
NegativeArraySizeException() - of java.lang.NegativeArraySizeException 141
NegativeArraySizeException(String) - of java.lang.NegativeArraySizeException 142
newDatagram(byte[], int) - of javax.microedition.io.DatagramConnection 268
newDatagram(byte[], int, String) - of javax.microedition.io.DatagramConnection 269
newDatagram(int) - of javax.microedition.io.DatagramConnection 269
newDatagram(int, String) - of javax.microedition.io.DatagramConnection 269
newInstance() - of java.lang.Class 102
next(int) - of java.util.Random 235
nextElement() - of java.util.Enumeration 225
nextInt() - of java.util.Random 236
nextLong() - of java.util.Random 236
NORM_PRIORITY - of java.lang.Thread 201
NoSuchElementException - of java.util 232
NoSuchElementException() - of java.util.NoSuchElementException 233
NoSuchElementException(String) - of java.util.NoSuchElementException 233
notify() - of java.lang.Object 149
notifyAll() - of java.lang.Object 149
NOVEMBER - of java.util.Calendar 215
NullPointerException - of java.lang 143
NullPointerException() - of java.lang.NullPointerException 144
NullPointerException(String) - of java.lang.NullPointerException 144
NumberFormatException - of java.lang 145
NumberFormatException() - of java.lang.NumberFormatException 146
NumberFormatException(String) - of java.lang.NumberFormatException 146

O
Object - of java.lang 147
284

Index
Object() - of java.lang.Object 147
OCTOBER - of java.util.Calendar 215
open(String) - of javax.microedition.io.Connector 258
open(String, int) - of javax.microedition.io.Connector 259
open(String, int, boolean) - of javax.microedition.io.Connector 259
openDataInputStream() - of javax.microedition.io.InputConnection 271
openDataInputStream(String) - of javax.microedition.io.Connector 259
openDataOutputStream() - of javax.microedition.io.OutputConnection 273
openDataOutputStream(String) - of javax.microedition.io.Connector 260
openInputStream() - of javax.microedition.io.InputConnection 271
openInputStream(String) - of javax.microedition.io.Connector 260
openOutputStream() - of javax.microedition.io.OutputConnection 273
openOutputStream(String) - of javax.microedition.io.Connector 260
out - of java.io.DataOutputStream 38
out - of java.lang.System 196
OutOfMemoryError - of java.lang 153
OutOfMemoryError() - of java.lang.OutOfMemoryError 153
OutOfMemoryError(String) - of java.lang.OutOfMemoryError 154
OutputConnection - of javax.microedition.io 273
OutputStream - of java.io 56
OutputStream() - of java.io.OutputStream 57
OutputStreamWriter - of java.io 59
OutputStreamWriter(OutputStream) - of java.io.OutputStreamWriter 60
OutputStreamWriter(OutputStream, String) - of java.io.OutputStreamWriter 60

P
parseByte(String) - of java.lang.Byte 93
parseByte(String, int) - of java.lang.Byte 93
parseInt(String) - of java.lang.Integer 126
parseInt(String, int) - of java.lang.Integer 127
parseLong(String) - of java.lang.Long 135
parseLong(String, int) - of java.lang.Long 135
parseShort(String) - of java.lang.Short 163
parseShort(String, int) - of java.lang.Short 164
peek() - of java.util.Stack 238
PM - of java.util.Calendar 215
pop() - of java.util.Stack 238
pos - of java.io.ByteArrayInputStream 10
print(boolean) - of java.io.PrintStream 64
print(char) - of java.io.PrintStream 64
print(char[]) - of java.io.PrintStream 64
print(int) - of java.io.PrintStream 64
print(long) - of java.io.PrintStream 65
print(Object) - of java.io.PrintStream 65
print(String) - of java.io.PrintStream 65
println() - of java.io.PrintStream 65
println(boolean) - of java.io.PrintStream 65
println(char) - of java.io.PrintStream 66
println(char[]) - of java.io.PrintStream 66
285

Index
println(int) - of java.io.PrintStream 66
println(long) - of java.io.PrintStream 66
println(Object) - of java.io.PrintStream 66
println(String) - of java.io.PrintStream 66
printStackTrace() - of java.lang.Throwable 205
PrintStream - of java.io 62
PrintStream(OutputStream) - of java.io.PrintStream 63
push(Object) - of java.util.Stack 239
put(Object, Object) - of java.util.Hashtable 230

R
Random - of java.util 234
Random() - of java.util.Random 235
Random(long) - of java.util.Random 235
READ - of javax.microedition.io.Connector 258
read() - of java.io.ByteArrayInputStream 12
read() - of java.io.DataInputStream 26
read() - of java.io.InputStream 46
read() - of java.io.InputStreamReader 51
read() - of java.io.Reader 70
read(byte[]) - of java.io.DataInputStream 27
read(byte[]) - of java.io.InputStream 46
read(byte[], int, int) - of java.io.ByteArrayInputStream 12
read(byte[], int, int) - of java.io.DataInputStream 27
read(byte[], int, int) - of java.io.InputStream 47
read(char[]) - of java.io.Reader 70
read(char[], int, int) - of java.io.InputStreamReader 51
read(char[], int, int) - of java.io.Reader 70
READ_WRITE - of javax.microedition.io.Connector 258
readBoolean() - of java.io.DataInput 19
readBoolean() - of java.io.DataInputStream 27
readByte() - of java.io.DataInput 19
readByte() - of java.io.DataInputStream 28
readChar() - of java.io.DataInput 19
readChar() - of java.io.DataInputStream 28
Reader - of java.io 68
Reader() - of java.io.Reader 69
Reader(Object) - of java.io.Reader 69
readFully(byte[]) - of java.io.DataInput 19
readFully(byte[]) - of java.io.DataInputStream 28
readFully(byte[], int, int) - of java.io.DataInput 20
readFully(byte[], int, int) - of java.io.DataInputStream 28
readInt() - of java.io.DataInput 20
readInt() - of java.io.DataInputStream 29
readLong() - of java.io.DataInput 20
readLong() - of java.io.DataInputStream 29
readShort() - of java.io.DataInput 21
readShort() - of java.io.DataInputStream 29
readUnsignedByte() - of java.io.DataInput 21
286

Index
readUnsignedByte() - of java.io.DataInputStream 29
readUnsignedShort() - of java.io.DataInput 21
readUnsignedShort() - of java.io.DataInputStream 30
readUTF() - of java.io.DataInput 22
readUTF() - of java.io.DataInputStream 30
readUTF(DataInput) - of java.io.DataInputStream 30
ready() - of java.io.InputStreamReader 51
ready() - of java.io.Reader 71
receive(Datagram) - of javax.microedition.io.DatagramConnection 270
regionMatches(boolean, int, String, int, int) - of java.lang.String 175
rehash() - of java.util.Hashtable 230
remove(Object) - of java.util.Hashtable 231
removeAllElements() - of java.util.Vector 249
removeElement(Object) - of java.util.Vector 249
removeElementAt(int) - of java.util.Vector 249
replace(char, char) - of java.lang.String 176
reset() - of java.io.ByteArrayInputStream 12
reset() - of java.io.ByteArrayOutputStream 16
reset() - of java.io.DataInputStream 31
reset() - of java.io.InputStream 47
reset() - of java.io.InputStreamReader 51
reset() - of java.io.Reader 71
reset() - of javax.microedition.io.Datagram 265
reverse() - of java.lang.StringBuffer 190
run() - of java.lang.Runnable 155
run() - of java.lang.Thread 202
Runnable - of java.lang 155
Runtime - of java.lang 156
RuntimeException - of java.lang 158
RuntimeException() - of java.lang.RuntimeException 159
RuntimeException(String) - of java.lang.RuntimeException 159

S
SATURDAY - of java.util.Calendar 215
search(Object) - of java.util.Stack 239
SECOND - of java.util.Calendar 215
SecurityException - of java.lang 160
SecurityException() - of java.lang.SecurityException 160
SecurityException(String) - of java.lang.SecurityException 161
send(Datagram) - of javax.microedition.io.DatagramConnection 270
SEPTEMBER - of java.util.Calendar 215
set(int, int) - of java.util.Calendar 218
setAddress(Datagram) - of javax.microedition.io.Datagram 265
setAddress(String) - of javax.microedition.io.Datagram 265
setCharAt(int, char) - of java.lang.StringBuffer 191
setData(byte[], int, int) - of javax.microedition.io.Datagram 265
setElementAt(Object, int) - of java.util.Vector 250
setError() - of java.io.PrintStream 67
setLength(int) - of java.lang.StringBuffer 191
287

Index
setLength(int) - of javax.microedition.io.Datagram 266
setPriority(int) - of java.lang.Thread 202
setSeed(long) - of java.util.Random 236
setSize(int) - of java.util.Vector 250
setTime(Date) - of java.util.Calendar 218
setTime(long) - of java.util.Date 222
setTimeInMillis(long) - of java.util.Calendar 218
setTimeZone(TimeZone) - of java.util.Calendar 218
Short - of java.lang 162
Short(short) - of java.lang.Short 163
shortValue() - of java.lang.Integer 127
shortValue() - of java.lang.Short 164
size() - of java.io.ByteArrayOutputStream 16
size() - of java.util.Hashtable 231
size() - of java.util.Vector 250
skip(long) - of java.io.ByteArrayInputStream 13
skip(long) - of java.io.DataInputStream 31
skip(long) - of java.io.InputStream 48
skip(long) - of java.io.InputStreamReader 51
skip(long) - of java.io.Reader 71
skipBytes(int) - of java.io.DataInput 23
skipBytes(int) - of java.io.DataInputStream 31
sleep(long) - of java.lang.Thread 203
Stack - of java.util 237
Stack() - of java.util.Stack 238
start() - of java.lang.Thread 203
startsWith(String) - of java.lang.String 176
startsWith(String, int) - of java.lang.String 176
StreamConnection - of javax.microedition.io 275
StreamConnectionNotifier - of javax.microedition.io 276
String - of java.lang 165
String() - of java.lang.String 167
String(byte[]) - of java.lang.String 167
String(byte[], int, int) - of java.lang.String 167
String(byte[], int, int, String) - of java.lang.String 168
String(byte[], String) - of java.lang.String 168
String(char[]) - of java.lang.String 168
String(char[], int, int) - of java.lang.String 169
String(String) - of java.lang.String 169
String(StringBuffer) - of java.lang.String 169
StringBuffer - of java.lang 181
StringBuffer() - of java.lang.StringBuffer 183
StringBuffer(int) - of java.lang.StringBuffer 183
StringBuffer(String) - of java.lang.StringBuffer 183
StringIndexOutOfBoundsException - of java.lang 193
StringIndexOutOfBoundsException() - of java.lang.StringIndexOutOfBoundsException 194
StringIndexOutOfBoundsException(int) - of java.lang.StringIndexOutOfBoundsException 194
StringIndexOutOfBoundsException(String) - of java.lang.StringIndexOutOfBoundsException 194
substring(int) - of java.lang.String 177
substring(int, int) - of java.lang.String 177
288

Index
SUNDAY - of java.util.Calendar 215
System - of java.lang 195

T
Thread - of java.lang 199
Thread() - of java.lang.Thread 201
Thread(Runnable) - of java.lang.Thread 201
Throwable - of java.lang 204
Throwable() - of java.lang.Throwable 205
Throwable(String) - of java.lang.Throwable 205
THURSDAY - of java.util.Calendar 215
TimeZone - of java.util 240
TimeZone() - of java.util.TimeZone 241
toBinaryString(int) - of java.lang.Integer 127
toByteArray() - of java.io.ByteArrayOutputStream 16
toCharArray() - of java.lang.String 177
toHexString(int) - of java.lang.Integer 128
toLowerCase() - of java.lang.String 178
toLowerCase(char) - of java.lang.Character 97
toOctalString(int) - of java.lang.Integer 128
toString() - of java.io.ByteArrayOutputStream 16
toString() - of java.lang.Boolean 90
toString() - of java.lang.Byte 93
toString() - of java.lang.Character 97
toString() - of java.lang.Class 102
toString() - of java.lang.Integer 129
toString() - of java.lang.Long 136
toString() - of java.lang.Object 150
toString() - of java.lang.Short 164
toString() - of java.lang.String 178
toString() - of java.lang.StringBuffer 191
toString() - of java.lang.Thread 203
toString() - of java.lang.Throwable 206
toString() - of java.util.Hashtable 231
toString() - of java.util.Vector 250
toString(int) - of java.lang.Integer 129
toString(int, int) - of java.lang.Integer 129
toString(long) - of java.lang.Long 136
toString(long, int) - of java.lang.Long 136
totalMemory() - of java.lang.Runtime 157
toUpperCase() - of java.lang.String 178
toUpperCase(char) - of java.lang.Character 98
trim() - of java.lang.String 178
trimToSize() - of java.util.Vector 250
TUESDAY - of java.util.Calendar 215

U
UnsupportedEncodingException - of java.io 72
289

Index
UnsupportedEncodingException() - of java.io.UnsupportedEncodingException 72
UnsupportedEncodingException(String) - of java.io.UnsupportedEncodingException 73
useDaylightTime() - of java.util.TimeZone 242
UTFDataFormatException - of java.io 74
UTFDataFormatException() - of java.io.UTFDataFormatException 75
UTFDataFormatException(String) - of java.io.UTFDataFormatException 75

V
valueOf(boolean) - of java.lang.String 178
valueOf(char) - of java.lang.String 179
valueOf(char[]) - of java.lang.String 179
valueOf(char[], int, int) - of java.lang.String 179
valueOf(int) - of java.lang.String 179
valueOf(long) - of java.lang.String 180
valueOf(Object) - of java.lang.String 180
valueOf(String) - of java.lang.Integer 130
valueOf(String, int) - of java.lang.Integer 130
Vector - of java.util 243
Vector() - of java.util.Vector 245
Vector(int) - of java.util.Vector 245
Vector(int, int) - of java.util.Vector 245
VirtualMachineError - of java.lang 207
VirtualMachineError() - of java.lang.VirtualMachineError 207
VirtualMachineError(String) - of java.lang.VirtualMachineError 208

W
wait() - of java.lang.Object 150
wait(long) - of java.lang.Object 150
wait(long, int) - of java.lang.Object 151
WEDNESDAY - of java.util.Calendar 216
WRITE - of javax.microedition.io.Connector 258
write(byte[]) - of java.io.DataOutput 32
write(byte[]) - of java.io.OutputStream 57
write(byte[], int, int) - of java.io.ByteArrayOutputStream 16
write(byte[], int, int) - of java.io.DataOutput 33
write(byte[], int, int) - of java.io.DataOutputStream 39
write(byte[], int, int) - of java.io.OutputStream 57
write(byte[], int, int) - of java.io.PrintStream 67
write(char[]) - of java.io.Writer 78
write(char[], int, int) - of java.io.OutputStreamWriter 61
write(char[], int, int) - of java.io.Writer 78
write(int) - of java.io.ByteArrayOutputStream 17
write(int) - of java.io.DataOutput 33
write(int) - of java.io.DataOutputStream 39
write(int) - of java.io.OutputStream 58
write(int) - of java.io.OutputStreamWriter 61
write(int) - of java.io.PrintStream 67
write(int) - of java.io.Writer 78
290

Index
write(String) - of java.io.Writer 78
write(String, int, int) - of java.io.OutputStreamWriter 61
write(String, int, int) - of java.io.Writer 79
writeBoolean(boolean) - of java.io.DataOutput 33
writeBoolean(boolean) - of java.io.DataOutputStream 39
writeByte(int) - of java.io.DataOutput 33
writeByte(int) - of java.io.DataOutputStream 40
writeChar(int) - of java.io.DataOutput 34
writeChar(int) - of java.io.DataOutputStream 40
writeChars(String) - of java.io.DataOutput 34
writeChars(String) - of java.io.DataOutputStream 40
writeInt(int) - of java.io.DataOutput 34
writeInt(int) - of java.io.DataOutputStream 40
writeLong(long) - of java.io.DataOutput 35
writeLong(long) - of java.io.DataOutputStream 41
Writer - of java.io 76
Writer() - of java.io.Writer 77
Writer(Object) - of java.io.Writer 77
writeShort(int) - of java.io.DataOutput 35
writeShort(int) - of java.io.DataOutputStream 41
writeUTF(String) - of java.io.DataOutput 35
writeUTF(String) - of java.io.DataOutputStream 41

Y
YEAR - of java.util.Calendar 216
yield() - of java.lang.Thread 203
291

Index
292

	Contents
	CLDC API
	java.io
	ByteArrayInputStream
	ByteArrayOutputStream
	DataInput
	DataInputStream
	DataOutput
	DataOutputStream
	EOFException
	InputStream
	InputStreamReader
	InterruptedIOException
	IOException
	OutputStream
	OutputStreamWriter
	PrintStream
	Reader
	UnsupportedEncodingException
	UTFDataFormatException
	Writer

	java.lang
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	Boolean
	Byte
	Character
	Class
	ClassCastException
	ClassNotFoundException
	Error
	Exception
	IllegalAccessException
	IllegalArgumentException
	IllegalMonitorStateException
	IllegalThreadStateException
	IndexOutOfBoundsException
	InstantiationException
	Integer
	InterruptedException
	Long
	Math
	NegativeArraySizeException
	NullPointerException
	NumberFormatException
	Object
	OutOfMemoryError
	Runnable
	Runtime
	RuntimeException
	SecurityException
	Short
	String
	StringBuffer
	StringIndexOutOfBoundsException
	System
	Thread
	Throwable
	VirtualMachineError

	java.util
	Calendar
	Date
	EmptyStackException
	Enumeration
	Hashtable
	NoSuchElementException
	Random
	Stack
	TimeZone
	Vector

	javax.microedition.io
	Connection
	ConnectionNotFoundException
	Connector
	ContentConnection
	Datagram
	DatagramConnection
	InputConnection
	OutputConnection
	StreamConnection
	StreamConnectionNotifier

	Index

