

Oracle® Java ME Embedded
Application Management System API Guide

Release 3.3

E35109-02

April 2013

The Oracle Java ME Embedded Application Management
System API Guide describes the APIs for the Application
Management System (AMS) of the Oracle Java ME
Embedded software. The AMS APIs contain low-level
management functionalities, including application and
library installation and storage, certificate maintenance, and
task management.

Oracle Java ME Embedded Application Management System API Guide, Release 3.3

E35109-02

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documentation... vii
Conventions .. vii

1 AMS Introduction

Connecting to the Headless AMS CLI ... 1-1
AmsFactory Class ... 1-3

2 Application and Library Suites

The SuiteInfo Interface ... 2-1
AppSuite Interface ... 2-3
LibSuite Interface ... 2-4
SuiteSetting Interface .. 2-4
SuiteSettingsGroup Interface .. 2-5
SuiteSettings Interfaces .. 2-5

3 Installing Suites

SuiteInstaller Interface.. 3-1
AppInstaller Interface ... 3-1
LinkInstaller Interface... 3-3
SuiteInstallerProgressListener Interface ... 3-3
AppInstallerProgressListener Interface ... 3-4
LinkInstallerProgressListener Interface .. 3-6
InstallerErrorCode.. 3-7

4 Suite Storage Manager

SuiteStoreManager Interface ... 4-1
SuiteStoreListener Interface... 4-2

5 AMS Request Manager

AMSRequestListener Interface ... 5-1

iv

6 Tasks

TaskManager Interface .. 6-1
TaskInfo.. 6-2
TaskManagerListener Interface ... 6-3
LoggerInfo Interface .. 6-3

7 The Certificate Info Manager

CertificateInfo Interface.. 7-1
CertificateManagerListener Interface .. 7-2

8 The Locale Change Notifier

LocaleChangeListener Interface .. 8-1

Glossary ..

Index

v

vi

List of Tables

1–1 Ports Used by the Embedded Board ... 1-1
1–2 AMS CLI Commands .. 1-1
1–3 Additional System Commands Available in the AMS CLI ... 1-2
2–1 AMS Suite Types.. 2-1
2–2 AMS Suite States .. 2-1
2–3 Application Suite Types.. 2-3
2–4 Library Suite Types.. 2-4
3–1 Progress Constants While Installing a Suite .. 3-3
3–2 Installer Error Codes.. 3-7
6–1 Task Status Constants in the TaskInfo Interface.. 6-2
7–1 Certificate Domains ... 7-1

vii

Preface

This document describes the Application Management System (AMS) APIs of the
Oracle Java ME Embedded. The AMS APIs contain lower-level management
functionality, including application and library installation and storage, certificate
maintenance, and task management. You can use these APIs to create a new AMS UI
front-end for the Oracle Java ME Embedded, which can be substituted for the legacy
AMS UI.

Audience
This document focuses on providing information and guidelines for ISV engineers
who want to create their own user interface for the AMS. Together with this document,
ISV Java ME engineers should have access to the Oracle Java ME Embedded SDK, a
compatible IDE, and a Win32 Runtime Environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documentation
For a complete list of documents included with the Oracle Java ME Embedded
software, see the Release Notes.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

viii

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

AMS Introduction 1-1

1AMS Introduction

This chapter introduces the "headless" Application Management System (AMS) APIs
that are used to interface with the Oracle Java ME Embedded device. The AMS APIs
contain management functionality, including application and library installation and
storage, certificate maintenance, and task management. The AMS is typically accessed
through a command-line interface, or via a remote protocol and a remote tool with a
user interface.

Connecting to the Headless AMS CLI
With the Java ME Embedded distribution running, start a terminal emulator (such as
PuTTY) and create a raw socket connection to the device address shown on the board.
The default ports that are used are shown in Table 1–1.

Once you have a successful connection to the AMS CLI, you can use it to install Java
embedded programs with the AMS commands shown in Table 1–2. Note that the AMS
syntax may change in future releases; entering help [command] is the best way to
obtain the latest CLI syntax.

WARNING: The command-line interface (CLI) feature in this
Oracle Java ME Embedded software release is provided only as a
concept for your reference. It uses insecure connections with no
encryption, authentication, or authorization.

Table 1–1 Ports Used by the Embedded Board

Port Description

65000 Logging / Java VM System Output

65002 Command-line interface

Table 1–2 AMS CLI Commands

Syntax Description

ams-list [INDEX or NAME|VENDOR] List all installed IMlet suites and their
statuses or show the detail of a single
suite

ams-install <URL> [username:password] Install an IMlet using the specified
JAR or JAD file, specified as a URL.
An optional username and password
can be supplied for login information
as well.

Connecting to the Headless AMS CLI

1-2 Oracle Java ME Embedded Application Management System API Guide

When the sysmenu command is entered with the on option, additional system menu
commands are available with the AMS CLI, as shown in Table 1–3.

ams-update <INDEX or NAME|VENDOR> Update the installed IMlet

ams-remove <INDEX or NAME|VENDOR> Remove an installed IMlet

ams-run <INDEX or NAME|VENDOR> [IMLET_ID]
[-debug]

Execute the specified IMlet or the
default if none is specified. An
optional debug parameter can be
specified to run the IMlet in debug
mode.

ams-stop <INDEX or NAME|VENDOR> [IMLET_ID] Stop the specified IMlet or the default
if none is specified

ams-suspend <INDEX or NAME|VENDOR> [IMLET_
ID]

Suspend (pause) the specified IMlet
or the default if none is specified

ams-resume <INDEX or NAME|VENDOR> [IMLET_ID] Resume the specified IMlet or the
default if none is specified

ams-setup <INDEX or NAME|VENDOR> Display the setup menu of the IMlet

ams-info <INDEX or NAME|VENDOR> Show information about the installed
IMlet

ams-log <command> [param1, param2, ...,
paramN]

ams-log wdog

Display the IMlet log or watchdog log
if recorded by the watchdog handler
in the platform

ams-logger-list [INDEX or NAME|VENDOR] Retrieve the logger list for the IMlet or
all the tasks if one is not specified

ams-logger-info <INDEX or NAME|VENDOR>
[LOGGER_NAME]

Retrieve logger info for the specified
IMlet and logger or all the loggers if is
one is not specified

ams-logger-level-set <INDEX or NAME|VENDOR>
[LOGGER_NAME] <LOGGER_LEVEL>

Set the logger level for specified IMlet
or all loggers if one is not specified

help [command name] List the available commands or
detailed usages for a single command

sysmenu <on PASSWORD|off> Enable hidden system menu
commands. Currently, the password
is 12345.

exit Terminates the current session.

Table 1–3 Additional System Commands Available in the AMS CLI

Syntax Description

setprop <KEY> <VALUE> Sets a property identified by <KEY> with the value <VALUE>

getprop <KEY> Returns a property identified by <KEY>

odd [on|off] Explicitly sets the on-device debugging (ODD) property to on or
off. If no parameters are passed, returns the current ODD value.

shutdown [-r] Perform either a shutdown of the board, or a reboot if the -r
parameter has been passed. Note that the watchdog property
should be set to true for some platforms (see appropriate
reference documentation) to successfully reboot the board.

Table 1–2 (Cont.) AMS CLI Commands

Syntax Description

AmsFactory Class

AMS Introduction 1-3

Installed IMlets can be in one of three states: stopped, suspended, or running. Here is a
typical example of using the AMS to install, list, run, and remove an application.

oracle>> ams-install file:///helloworld.jad
<<ams-install,start install,file:///helloworld.jad
<<ams-install,install status: stage 0, 5%
<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

oracle>> ams-list
<<ams-list,0.helloworld|Oracle,STOPPED
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232demo|Oracle,RUNNING
<<ams-list,OK,3 suites are installed

oracle>> ams-remove 0
<<ams-remove,OK,helloworld removed

oracle>> ams-list
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232demo|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

oracle>> ams-run 1
<<ams-run,OK,started

oracle>> ams-list
<<ams-list,1.netdemo|Oracle,RUNNING
<<ams-list,2.rs232demo|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

AmsFactory Class
Certain Java ME Embedded applications may interface with the low-level API classes
for the AMS. The entry point for all AMS functionality is provided by the AmsFactory
class. The AmsFactory must not be instantiated. Instead, the AmsFactory class provides
seven static methods which return objects that provide AMS operations, including
application and library installation and storage, certificate maintenance, and task
management.

The seven static methods are:

■ static AMSRequestManager getAMSRequestManager() throws
SecurityException, UnsupportedServiceException

This static method returns the AMSRequestManager, which is responsible for
handling special user requests, such as pressing a "Home" button or switching to
another running application. This method can throw a SecurityException if the
user does not have the required permission (for example, if the calling MIDlet is
untrusted or unsigned as an AMS UI MIDlet), or an
UnsupportedServiceException if the service is not implemented.

■ static AppInstaller getAppInstaller() throws SecurityException

This static method returns the AppInstaller, which is responsible for
downloading and installing applications and subordinate libraries. This method
can throw a SecurityException if the user does not have the required
permissions.

AmsFactory Class

1-4 Oracle Java ME Embedded Application Management System API Guide

■ static CertificateInfoManager getCertificateInfoManager() throws
SecurityException

This static method returns the CertificateInfoManager, which manages the
certificates installed on the system. Certificates are used to authenticate apps that
are downloaded to the system. This method can throw a SecurityException if the
user does not have the required permissions.

■ static LinkInstaller getLinkInstaller() throws SecurityException,
UnsupportedServiceException

This static method returns the LinkInstaller, which is responsible for
downloading and installing links to applications. This method can throw a
SecurityException if the user does not have the required permissions, or an
UnsupportedServiceException if the service is not supported.

■ static LocaleChangeNotifier getLocaleChangeNotifier() throws
SecurityException

This static method returns a LocaleChangeNotifier, which alerts applications
when a change in locale occurs. This method can throw a SecurityException if
the user does not have the required permissions.

■ static SuiteStoreManager getStoreManager() throws SecurityException

This static method returns the SuiteStoreManager, which is responsible for
providing a data store for installed suites. This object does not provide access to
any purchasing mechanism, but instead assists in storing and managing
applications on the local device. This method can throw a SecurityException if
the user does not have the required permissions.

■ static TaskManager getTaskManager() throws SecurityException,
UnsupportedServiceException

This static method returns the TaskManager, which is responsible for organizing,
identifying, and starting applications. This method can throw a
SecurityException if the user does not have the required permissions, or an
UnsupportedServiceException if the service is not supported.

The seven static methods of the AmsFactory class provide a complete view of the AMS
itself. The AMS consists of two installers:

■ App Installer

■ Link Installer

In this context, an app is synonymous with an application: a MIDlet that is running in
the Oracle Java ME Embedded. A link is a reference to an application or library that is
yet to be downloaded. Apps, libraries, and links are the three unique entities that are
installed and managed in the AMS.

In addition, two managers assist with installing and monitoring application suites:

■ Suite Store Manager

■ Task Manager

The AMS also contains the AMS Request Manager, which notifies the UI of requests
such as pressing a "Home" button or switching between applications. In addition, the
Certificate Info Manager is responsible for managing certificates. Finally, the AMS
contains a notification mechanism, the Locale Change Notifier, that alerts interested
listeners if the current locale changes.

AmsFactory Class

AMS Introduction 1-5

The AmsFactory is the only class in the AMS APIs. The rest of the objects that are
presented to the programmer are implementations of interfaces defined throughout
the remainder of this document. The use of encapsulated classes is a common software
design pattern that decouples the AMS implementation from the means of accessing it,
allowing further development and improvement of the AMS without the risk of
breaking the API.

AmsFactory Class

1-6 Oracle Java ME Embedded Application Management System API Guide

2

Application and Library Suites 2-1

2Application and Library Suites

This chapter introduces the basic data interfaces used throughout the AMS APIs.

The SuiteInfo Interface
All apps, libraries, and links maintain a basic set of identification and state information
that acts as a descriptor. This descriptor is represented by an implementation of the
SuiteInfo interface.

Suites can be one of four types, as shown in Table 2–1:

In addition, suites contain five binary flags that describe their state, as shown in
Table 2–2:

The suite state flags are not enforced by the AMS APIs. In other words, even though
the STATE_REMOVE_DENIED or STATE_UPDATE_DENIED flags may be set to true, the AMS
APIs do not prevent a removal or update if the appropriate method is invoked. It is up
to the UI that implements the AMS APIs to enforce this behavior.

Table 2–1 AMS Suite Types

Suite Type Description

ST_APPLICATION The suite contains one or more MIDlets with an entry point that
can be executed by the AMS.

ST_LIBRARY The suite is a library that can be used by one or more
applications.

ST_LINK The suite is a link, which references another application that has
yet to be downloaded.

ST_INVALID The suite is invalid and cannot be found or executed.

Table 2–2 AMS Suite States

State Description

STATE_AVAILABLE The suite is available for use.

STATE_ENABLED The suite is enabled. When a suite is disabled, any attempt to
run application or use a library from this suite should fail.

STATE_HIDDEN The suite is hidden, and should not be visible to the user.

STATE_REMOVE_DENIED The suite should not be removed.

STATE_UPDATE_DENIED The suite should not be updated.

The SuiteInfo Interface

2-2 Oracle Java ME Embedded Application Management System API Guide

Programmers can use the getState() method to obtain the state information for the
suites, then use the logical AND operator (&) to test if a given state is true. For
example, to test if a suite is disabled:

if ((appSuite.getState() & SuiteInfo.STATE_DISABLED) != 0) {
 // The app is disabled
}

The SuiteInfo interface contains the following methods to access basic information
about a suite. Many methods throw a SuiteNotFoundException if the AMS can no
longer locate the suite described by the SuiteInfo:

■ java.lang.String[] getAvailableProperties() throws
SuiteNotFoundException

This method returns a String array that provides the names of the available
properties. The properties returned are those from the JAD file and the manifest
combined into a single array.

■ java.lang.String getDownloadUrl()

This method returns the URL that the JAD or JAR was downloaded from.

■ byte[] getIcon()

This method returns the icon representing the suite as a byte array. The AMS does
not perform any decoding of the image, as this is the job of the AMS UI, so the
image format is undefined.

■ java.lang.String getName()

This method returns the name for given suite.

■ java.lang.String getProperty(java.lang.String name) throws
SuiteNotFoundException

This method returns the value of the property with the given name.

■ SuiteSettings getSettings() throws SuiteNotFoundException

This method returns the settings of the suite encapsulated in a SuiteSettings
class. See "SuiteSetting Interface" on page 2-4 for more details on suite settings.

■ int getState() throws SuiteNotFoundException

This method returns the current state of the suite as a combination of flags: STATE_
DISABLED, STATE_HIDDEN, STATE_AVAILABLE, STATE_REMOVE_DENIED, or STATE_
UPDATE_DENIED. See Table 2–2 for more information.

■ int getSuiteType() throws SuiteNotFoundException

This method returns the suite type as one of the predefined constants shown in
Table 2–1.

■ java.lang.String getVendor()

This method retrieves the vendor name for given suite

■ void remove() throws SuiteLockedException, SuiteNotFoundException,
SecurityException

This method is used to remove the suite from the AMS. The method throws a
SuiteLockedException if the suite is currently locked by the AMS. A suite is
locked if the STATE_REMOVE_DENIED boolean is set to true.

■ void remove(boolean ignoreRemoveLock) throws SuiteLockedException,
SuiteNotFoundException, SecurityException

AppSuite Interface

Application and Library Suites 2-3

This method is used to remove the suite from the AMS, ignoring the STATE_
REMOVE_DENIED lock if the boolean parameter is set to true.

■ boolean setState(int state, boolean value) throws SuiteLockedException,
SuiteNotFoundException, ConcurrentModificationException

This method modifies the state of the suite, as per the constants shown in
Table 2–2. The method returns the previous value of the state. If the suite is locked,
the method throws a SuiteLockedException. A suite is locked if the STATE_
REMOVE_DENIED boolean is set to true.

Alternatively, if two threads attempt to modify the state of the suite at the same
time, the method can throw a ConcurrentModificationException.

AppSuite Interface
The AppSuite interface extends the SuiteInfo interface, and is used to describe
executable apps that are installed in the Oracle Java ME Embedded.

Apps can be one of three types: regular apps, system apps, or preinstalled apps, as
shown in Table 2–3:

To determine the type that this suite belongs to, use the getType() method, int
getType() throws SuiteNotFoundException. This method returns the type of the suite
as one of the predefined constants shown in Table 2–3. If the suite can no longer locate
information about the app referenced by this descriptor, this method throws a
SuiteNotFoundException.

The programmer can also obtain more detailed information about the suite with the
following methods:

■ java.lang.String getDefaultApp() throws SuiteNotFoundException

This method returns the name of the default MIDlet from the suite. If the suite can
no longer locate information about the app referenced by this descriptor, this
method throws a SuiteNotFoundException.

■ int getType() throws SuiteNotFoundException

This method returns the type of the suite. If the suite cannot be found, this method
throws a SuiteNotFoundException.

■ java.util.Enumeration getDependencies()

This method returns the dynamic components that this MIDlet suite depends on
as an Enumeration of LibSuite object instances. Library suites are only installed
when an application that has a dependency on them specifies them using this
method.

■ boolean isTrusted()

This method returns a boolean indicating whether the AMS considers this
application trusted via its signature and certificate authorities.

Table 2–3 Application Suite Types

Type Description

AT_PREINSTALLED The application suite is preinstalled.

AT_REGULAR A normal application suite.

AT_SYSTEM A system application suite.

LibSuite Interface

2-4 Oracle Java ME Embedded Application Management System API Guide

■ String getSecurityDomain() throws SuiteNotFoundException

This method returns the security domain that the suite is bound to.

In addition, you can use the AMS to start the app as a running task with either of the
following methods:

■ TaskInfo startTask(java.lang.String className)

This method starts the application as a task from this suite, returning information
about the executing task in a TaskInfo class. TaskInfo is covered in more detail in
"TaskManager Interface" on page 6-1.

■ TaskInfo debugTask(java.lang.String className)

This method starts the application as a task from this suite in debug mode,
returning information about the executing task in a TaskInfo class. TaskInfo is
covered in more detail in"TaskManager Interface" on page 6-1.

LibSuite Interface
The LibSuite interface is used to provide descriptive information about a library suite
that has been installed on the system. A library suite can have one of two types:
regular and system, as shown in Table 2–4. Library suites can only be installed on a
system if there is an application that has a dependency on them. See
AppSuite.getDependencies() for more information.

To determine the type that this suite belongs to, use the getType() method, int
getType(). This method returns the type of the suite as one of the predefined
constants shown in Table 2–4 above.

SuiteSetting Interface
The SuiteSetting interface provides the data for a single suite setting. Each setting
has an optional title to be displayed to user, an optional description, and number of
choices. For example, the following represents a possible suite setting:

Title:
 Check for New Mail
Description:
 How often should the application check for new mail?
Choices:
 -Every 5 Minutes
 -Every 10 Minutes
 -Every 30 Minutes
 -Every Hour
 -Only When Requested

The following methods are provided by the SuiteSetting interface:

■ int getIdx()

Table 2–4 Library Suite Types

Type Description

LT_REGULAR A regular application library.

LT_SYSTEM A system library.

SuiteSettings Interfaces

Application and Library Suites 2-5

This method returns the integer index of the setting in the suite settings group. See
below for more information on the SuiteSettingsGroup interface.

■ java.lang.String getTitle()

This method returns the title of the setting.

■ java.lang.String getDescription()

This method returns the description of the setting.

■ int getChoicesCount()

This method returns an integer indicating the number of choices for this setting.

■ int getSelectedChoice()

This method returns the index of the currently selected choice.

■ void setSelectedChoice(int newSelection) throws
java.lang.IndexOutOfBoundsException

This method sets the current choice. This method throws a
java.lang.IndexOutOfBoundsException if the selection index is not valid

■ java.lang.String getChoiceTitle(int idx)

This method returns the title of choice with specified index.

SuiteSettingsGroup Interface
SuiteSettingsGroup is an interface for a logical group of settings. Each group has an
optional title, an optional description, and contains several individual settings defined
using the SuiteSetting interface in "SuiteSetting Interface" on page 2-4. Each
SuiteSettingsGroup can be part of a larger SuiteSettings object, defined in
"SuiteSettings Interfaces" on page 2-5.

■ int getIdx()

This method returns the index of this settings group in a SuiteSettings object,
defined in "SuiteSettings Interfaces" on page 2-5.

■ java.lang.String getTitle()

This method returns the settings group title.

■ java.lang.String getDescription()

This method returns the settings group description.

■ int getSettingsCount()

This method returns the number of individual settings in the group.

■ SuiteSetting getSetting(int idx)

This method returns the SuiteSetting with specified index.

SuiteSettings Interfaces
The SuiteSettings interface provides access to several SuiteSettingsGroup objects.
Do not confuse the SuiteSettings (note the plural) object with the SuiteSetting
object defined in "SuiteSetting Interface" on page 2-4.

The SuiteSettings interface provides the ability to save the settings to persistent
storage using the save() method. Before doing so, however, the programmer must call

SuiteSettings Interfaces

2-6 Oracle Java ME Embedded Application Management System API Guide

the checkForError() method to ensure that no settings, especially those from other
MIDlet suites, contain a mutually exclusive combination with settings in this object.

■ int getGroupsCount()

This method returns the number of suite settings groups contained in this object.

■ SuiteSettingsGroup getGroup(int idx)

This method return the suite settings group with specified index.

■ java.lang.String checkForError()

This method checks if any settings contain a mutually exclusive combination of
setting values, including those from other MIDlet suites. If so, the method returns
an error message; otherwise, it returns null. Only the first error is reported.
Settings containing mutually exclusive combinations cannot be saved using the
save() method of this interface.

■ java.lang.String checkForWarning()

This method checks if a given settings contain a potentially dangerous
combination of setting values. If so, the method returns a warning message;
otherwise the method returns null.

■ void save() throws java.lang.IllegalArgumentException

This method saves the suite settings. Before saving the settings, the programmer
must check if these are valid using the checkForError() method. Settings are not
be saved if there are errors. Settings should also be checked for warnings. If there
are warnings, those must be shown to the user as per the MIDP 2.0 specification.
This method throws a java.lang.IllegalArgumentException if the settings
contain errors.

3

Installing Suites 3-1

3Installing Suites

This chapter discusses how to install suites using the AMS APIs.

First, any MIDlet that requires permission to install or remove other MIDlets must
declare the respective permissions in its JAD descriptor:

MIDlet-Permissions: com.sun.ams.SuiteInstaller.start,
com.sun.ams.SuiteInfo.remove

The AMS APIs contain two installer interfaces: AppInstaller and LinkInstaller,
both of which extend the base SuiteInstaller interface. Likewise, each installer
provides for a listener, AppInstallerListener or LinkInstallerListener, which both
extend from the SuiteInstallerListener interface, used to monitor an installer's
progress.

SuiteInstaller Interface
The SuiteInstaller interface is a sub-interface that consists of only two methods: one
that starts the installation and one that cancels the installation.

■ void start() throws SecurityException

This method begins the installation of a suite. This method returns immediately;
the caller can observe the progress of the installation using a listener. A
SecurityException can be thrown if installation of the MIDlet is prohibited.

■ void cancel()

This method cancels an installation that is in progress.

AppInstaller Interface
The AppInstaller interface is obtained from the AmsFactory class and extends the
SuiteInstaller interface, and consists of five methods to initialize an app installation.
With each installation, the programmer must provide the location of the app using
either a URL that points to a JAR/JAD or a SuiteInfo, and an
AppInstallerProgressListener that is called while the app is being installed. In
addition, the programmer can provide an optional series of bytes that represents the
app icon.

Each initialize() method returns a class that implements the SuiteInfo interface,
which is a descriptor of the application that is being downloaded. Note that if the
descriptor is not provided (for example, the locationUrl in the initialize() method
points to a JAR file instead of a JAD), then the returned SuiteInfo object will return
null for all methods except getDownloadUrl() and getSuiteType().

AppInstaller Interface

3-2 Oracle Java ME Embedded Application Management System API Guide

The SuiteInfo object returned by each of the initialize() methods has no suite
management methods implemented, so any calls to the following methods results in a
RuntimeException:

■ SuiteInfo.getIcon()

■ SuiteInfo.getDownloadUrl()

■ SuiteInfo.remove()

■ SuiteInfo.getState()

■ SuiteInfo.setState(int state, boolean value)

■ SuiteInfo.getSettings()

Once the AppInstaller method is initialized, the programmer can call the start()
method to begin the download and installation, monitoring the results with an
AppInstallerProgressListener.

Here are the initialize() methods provided by the AppInstaller interface.

■ SuiteInfo initialize(java.lang.String locationUrl,
AppInstallerProgressListener listener)

This method initializes an installer with the URL address of an app's JAD or JAR
file and provides an installation progress listener. The function can result in
network access. The installation progress listener must be present and ready to
handle callback requests, such as querying the user for a valid login and
password.

■ SuiteInfo initialize(java.lang.String locationUrl,
AppInstallerProgressListener listener, boolean ignoreUpdateLock)

This method initializes an installer with the URL address of an app's JAD or JAR
file and provides an installation progress listener. The function can result in
network access. The installation progress listener must be present and ready to
handle callback requests, such as querying the user for a valid login and
password. This method contains a boolean parameter that, if set to true, ignores an
update lock for an app if it is present.

■ SuiteInfo initialize(java.lang.String locationUrl, byte[] iconBytes,
AppInstallerProgressListener listener)

This method initializes an installer with the URL address of an app's JAD or JAR
file, a byte array that represents the icon of the app, and an installation progress
listener. The function can result in network access. The installation progress
listener must be present and ready to handle callback requests, such as querying
the user for a valid login and password.

■ SuiteInfo initialize(java.lang.String jadUrl, java.lang.String jarUrl,
AppInstallerProgressListener listener)

This method initializes an installer with the URL address of an app's JAD and JAR
file and provides an installation progress listener. The function can result in
network access. The installation progress listener must be present and ready to
handle callback requests, such as querying the user for a valid login and
password.

■ SuiteInfo initialize(java.lang.String jadUrl, java.lang.String jarUrl,
byte[] iconBytes, AppInstallerProgressListener listener)

This method initializes an installer with the URL address of the app's JAD and the
URL address of the app's JAR file, a byte array that represents the icon of the app,

SuiteInstallerProgressListener Interface

Installing Suites 3-3

and an installation progress listener. The function can result in network access. The
installation progress listener must be present and ready to handle callback
requests, such as querying the user for a valid login and password.

■ SuiteInfo initialize(SuiteInfo suiteInfo,
AppInstallerProgressListener listener) throws
UnsupportedServiceException

This method initializes an installer the specified SuiteInfo descriptor, and an
installation progress listener. The function is intended to use for installation from
local storage but is not limited by such use case. The installation progress listener
must be present and ready to handle callback requests, such as querying the user
for a valid login and password. As this method is not yet implemented, it
persistently throws an UnsupportedServiceException.

If the program must cancel the installation of the app, use the cancel() method.

LinkInstaller Interface
The LinkInstaller is obtained from the AmsFactory class and is used to download a
link that references another application. It consists of only one initialize() method.
Once the program has initialized a LinkInstaller, call the start() method to begin
the download, monitoring the results with an LinkInstallerProgressListener.

SuiteInfo initialize(java.lang.String jadUrl, java.lang.String iconUrl,
LinkInstallerProgressListener listener)

This method initializes a link installer with the URL address of a JAD and icon file and
provides an installation progress listener. The function can result in network access.
The installation progress listener must be present and ready to handle callback
requests, such as querying the user for a valid login and password.

If the program must cancel the installation of the link, use the cancel() method.

SuiteInstallerProgressListener Interface
SuiteInstallerProgressListener is a sub-interface that provides progress data for an
installer that is downloading an app or a link.

The interface consists of two methods, both of which are called at certain times during
installation. One is the done() method, which provides only a single code, the
definitions of which can be found in the InstallerErrorCode interface. The other is
the updateStatus() method, which identifies the current task as one of the five
constants that are shown in Table 3–1, and provides an integer percentage of
completeness.

Table 3–1 Progress Constants While Installing a Suite

Name Description

DOWNLOADING_BODY Install stage: downloading application body.

DOWNLOADING_DATA Install stage: downloading additional application
data.

DOWNLOADING_DESCRIPTOR Install stage: downloading application descriptor.

STORING Install stage: storing application.

VERIFYING Install stage: verifying downloaded content.

AppInstallerProgressListener Interface

3-4 Oracle Java ME Embedded Application Management System API Guide

Here are the two method defined in the SuiteInstallerProgressListener interface:

■ void done(int errorCode)

This method is called by the installer to report that the installation has completed.
The resulting integer code is contained in the InstallerErrorCode class. See
"InstallerErrorCode" on page 3-7 for more information on installation error codes.

■ void updateStatus(int stage, int percent)

This method is called by the installer to inform the listener of the current status of
the install. The stage is given by an integer constant as shown in Table 3–1. The
percent is an integer between 0 and 100.

AppInstallerProgressListener Interface
The AppInstallerProgressListener interface extends
SuiteInstallerProgressListener and contains methods that the AppInstaller calls
as it is downloading and installing an app. Any of the methods are called to request
additional information from the user.

■ java.lang.String[] getNetworkAccessCredentials()

This method is called to ask user for login and password for network access.
Typically the function is used for proxy authorization. This method should return
a String array where first element is the login ID and the second element is the
password. If the user wants to cancel the installation, the method should return
NULL; doing so results in a call to the done() method with the
InstallerErrorCodes.CANCEL constant. See "InstallerErrorCode" on page 3-7 for
more information on installation error codes. The credentials provided are stored
and reused, unless the credentials are invalid, at which point the user will be
repeatedly asked for a proper login ID and password combination.

■ java.lang.String[] getResourceAccessCredentials()

This method is called to ask user for login and password for network resource
access. This method should return a String array where first element is the login
ID and the second element is the password. If the user wants to cancel the
installation, the method should return NULL; doing so results in a call to the done()
method with the InstallerErrorCodes.CANCEL constant. See "InstallerErrorCode"
on page 3-7 for more information on installation error codes. The credentials
provided are stored and reused, unless the credentials are invalid, at which point
the user will be repeatedly asked for a proper login ID and password combination.

■ boolean confirmUpdate(int status)

This method is called to ask the user to confirm an update of an installed
application. The integer status parameter can be one of InstallerErrorCode.OLD_
VERSION, InstallerErrorCode.ALREADY_INSTALLED, or InstallerErrorCode.NEW_
VERSION. This method should return true if the user wants to continue, or false if
the user wants to cancel. Cancelling results in a call to the done() method with the
InstallerErrorCodes.CANCEL constant. See "InstallerErrorCode" on page 3-7 for
more information on installation error codes.

■ boolean confirmJarDownload(int totalSize)

This method is called to confirm an application download with the specified size
in bytes. Dynamic components and RMS data are included as well. This method
should return true if the user wants to continue, or false if the user wants to cancel.
Cancelling results in a call to the done() method with the

AppInstallerProgressListener Interface

Installing Suites 3-5

InstallerErrorCodes.CANCEL constant. See "InstallerErrorCode" on page 3-7 for
more information on installation error codes.

■ boolean keepRMS()

This method is called to ask the user to confirm if the Record Management Store
(RMS) data should be kept for new version of an updated suite. This method
should return true if the user wants to keep the RMS data for the suite, false
otherwise.

■ boolean confirmAuthPath(java.lang.String[] authPath)

This method is called to ask the user to confirm the authentication path, presented
as a String array. The authentication path is a list of certificate authorities. Here,
descriptions of all the certificates in the chain should be provided for the user to
review and authorize. The method should return true if the user wants to
continue, or false if the user wants to cancel. Cancelling results in a call to the
done() method with the InstallerErrorCodes.CANCEL constant. See
"InstallerErrorCode" on page 3-7 for more information on installation error codes.

■ boolean confirmRedirect(java.lang.String newLocation)

This method is called with the URL when a request to be redirected to a new
location is made. The method should return true if user wants to install the
application suite from the new location, or false if the user wants to cancel.
Cancelling results in a call to the done() method with the
InstallerErrorCodes.CANCEL constant. See "InstallerErrorCode" on page 3-7 for
more information on installation error codes.

■ boolean confirmUnsignedFxInstall()

This method is called to confirm to the user that they indeed with to install an
unsigned JavaFX application. This method should return true if the user wants to
continue, or false if the user wants to cancel. Cancelling results in a call to the
done() method with the InstallerErrorCodes.CANCEL constant. See
"InstallerErrorCode" on page 3-7 for more information on installation error codes.

■ boolean confirmGrantMaximumPermissions(Vector groupNames, boolean
hasRisks)

This method is called during an installation or update to ask if the user wants to
grant the maximum permissions allowed by MIDP specification to the MIDlet
suite. The groupNames parameter is a Vector containing the names of permission
groups that match permissions requested by this suite in its JAD or JAR. The
hasRisks parameter can be set to true if groupNames contains high risk
combinations. The method should return true if the user wants to grant
permissions, false otherwise.

■ boolean confirmCurrentScreenSaverUpdate(java.lang.String name)

This method is called when the current screen saver MIDlet is being updated by a
new screen saver MIDlet. The name of the MIDlet is provided. The method should
return true if the user agrees with the update, or false if the user wants to stop
the installation. Returning false results in a
SuiteInstallerProgressListener.done(InstallerErrorCodes.CANCELED)
progress update.

■ boolean confirmCurrentScreenSaverUnset(java.lang.String name)

This method is called when the current screen saver MIDlet is no longer set as the
system screen saver. The name of the MIDlet is provided. The method should
return true if the user agrees with the unsetting, or false if the user wants to stop

LinkInstallerProgressListener Interface

3-6 Oracle Java ME Embedded Application Management System API Guide

the unsetting. Returning false results in a
SuiteInstallerProgressListener.done(InstallerErrorCodes.CANCELED)
progress update.

■ boolean confirmPersistentSuiteInstallation()

This method is called during an installation to ask if the user wants to install a
permanent MIDlet suite. The method should return true if the user wants to
continue, false otherwise.

■ java.lang.String getRmsEncryptionPassword()

This method is called to request the RMS encryption password from the user.

■ java.lang.String getRmsDecryptionPassword()

This method is called to request the RMS decryption password from the user.

■ boolean confirmInstallUnverified()

This method is called to ask the user to confirm an untrusted installation even
though the MIDlet suite does not pass verification, likely due to an unknown
certificate authority. This functionality is optional and may absent in some
configurations. The method should return true if the user agrees with the install,
or false if the user wants to stop the install. Returning false results in a
SuiteInstallerProgressListener.done(InstallerErrorCodes.CANCELED)
progress update.

■ boolean confirmRebindingServiceProviders(String[] serviceNames)

This method is called if new service providers are installed. The user can then be
asked to confirm if he wants to perform rebinding existing applications with these
new service providers. The method should return true if the user wants to perform
the rebinding, false otherwise.

■ boolean confirmCertificateImport(Certificate cert)

This method is called to ask the user to confirm that a certificate that the MIDlet
suite is signed with may be imported into the internal keystore. This functionality
is optional and may absent in some configurations. The method should return true
if the user wants to import the certificate, false otherwise.

LinkInstallerProgressListener Interface
The LinkInstallerProgressListener interface extends
SuiteInstallerProgressListener and is used for processing link installer
notifications, including asking for user credentials, and confirming if the user wants to
perform an update. The interface consists of only two methods:

■ boolean confirmUpdate()

This method is called to ask the user to confirm an update of an installed link. This
method should return true if the user wants to continue, or false if the user wants
to cancel. If the user cancels, the SuiteInstallerProgressListener.done()
method is called with InstallerErrorCodes.CANCELED constant.

■ java.lang.String[] getNetworkAccessCredentials()

This method is called to ask user for login and password for network access.
Typically the function is used for proxy authorization. This method should return
a String array where first element is the login ID and the second element is the
password. The credentials provided are stored and reused, unless the credentials

InstallerErrorCode

Installing Suites 3-7

are invalid, at which point the user will be repeatedly asked for a proper login ID
and password combination.

InstallerErrorCode
The InstallerErrorCode provides several constants used by the installation routines.
These constants are shown in Table 3–2.

Table 3–2 Installer Error Codes

Constant Error Code Description

ALAA_ALIAS_NOT_FOUND 78 Application Level Access Authorization:
The alias definition is missing.

ALAA_ALIAS_WRONG 80 Application Level Access Authorization:
The alias definition is wrong.

ALAA_MULTIPLE_ALIAS 79 Application Level Access Authorization:
An alias has multiple entries that match.

ALAA_TYPE_WRONG 77 Application Level Access Authorization:
The MIDlet-Access-Auth-Type has
missing parameters.

ALREADY_INSTALLED 39 The JAD matches a version of a suite
already installed.

APP_INTEGRITY_FAILURE_
DEPENDENCY_CONFLICT

69 Application Integrity Failure: two or
more dependencies exist on the
component with the same name and
vendor, but have different versions or
hashs.

APP_INTEGRITY_FAILURE_
DEPENDENCY_MISMATCH

70 Application Integrity Failure: there is a
component name or vendor mismatch
between the component JAD and IMlet
or component JAD that depends on it.

APP_INTEGRITY_FAILURE_HASH_
MISMATCH

68 Application Integrity Failure: hash
mismatch.

ATTRIBUTE_MISMATCH 50 A attribute in both the JAD and JAR
manifest does not match.

AUTHORIZATION_FAILURE 49 Application authorization failure,
possibly indicating that the application
was not digitally signed.

CA_DISABLED 60 Indicates that the trusted certificate
authority (CA) for this suite has been
disabled for software authorization.

CANCELED 101 Canceled by user.

CANNOT_AUTH 35 The server does not support basic
authentication.

CIRCULAR_COMPONENT_DEPENDENCY 64 Circular dynamic component
dependency.

COMPONENT_DEPS_LIMIT_EXCEEDED 65 Dynamic component dependencies limit
exceeded.

COMPONENT_NAMESPACE_COLLISION 72 The namespace used by a component is
the same as another.

InstallerErrorCode

3-8 Oracle Java ME Embedded Application Management System API Guide

CONTENT_HANDLER_CONFLICT 55 The installation of a content handler
would conflict with an already installed
handler.

CORRUPT_DEPENDENCY_HASH 71 A dependency has a corrupt hash code.

CORRUPT_JAR 36 An entry could not be read from the
JAR.

CORRUPT_PROVIDER_CERT 5 The content provider certificate cannot
be decoded.

CORRUPT_SIGNATURE 8 The JAR signature cannot be decoded.

DEVICE_INCOMPATIBLE 40 The device does not support either the
configuration or profile in the JAD.

DUPLICATED_KEY 88 Duplicated JAD/manifest key attribute

EXPIRED_CA_KEY 12 The certificate authority's public key has
expired.

EXPIRED_PROVIDER_CERT 11 The content provider certificate has
expired.

INCORRECT_FONT_LOADING 82 A font that is contained with the JAR
cannot be loaded.

INSUFFICIENT_STORAGE 30 Not enough storage for this suite to be
installed.

INVALID_CONTENT_HANDLER 54 The MicroEdition-Handler-<n> JAD
attribute has invalid values.

INVALID_JAD_TYPE 37 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_JAD_URL 43 The JAD URL is invalid.

INVALID_JAR_TYPE 38 The server did not have a resource with
the correct type or the JAR downloaded
has the wrong media type.

INVALID_JAR_URL 44 The JAR URL is invalid.

INVALID_KEY 28 A key for an attribute is not formatted
correctly.

INVALID_NATIVE_LIBRARY 85 A native library contained within the
JAR cannot be loaded.

INVALID_PACKAGING 87 A dependency cannot be satisfied.

INVALID_PAYMENT_INFO 58 Indicates that the payment information
provided with the IMlet suite is
incomplete or incorrect.

INVALID_PROVIDER_CERT 7 The signature of the content provider
certificate is invalid.

INVALID_RMS_DATA_TYPE 76 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_RMS_DATA_URL 73 The RMS data file URL is invalid.

Table 3–2 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

Installing Suites 3-9

INVALID_SERVICE_EXPORT 86 A LIBlet that exports a service with a
LIBlet Services attribute does not contain
the matching service provider
configuration information.

INVALID_SIGNATURE 9 The signature of the JAR is invalid.

INVALID_VALUE 29 A value for an attribute is not formatted
correctly.

INVALID_VERSION 16 The format of the version is invalid.

IO_ERROR 102 A low-level hardware error has
occurred.

JAD_MOVED 34 The JAD URL for an installed suite is
different than the original JAD URL.

JAD_NOT_FOUND 2 The JAD was not found.

JAD_SERVER_NOT_FOUND 1 The server for the JAD was not found.

JAR_CLASSES_VERIFICATION_FAILED 56 Not all classes within JAR package can
be successfully verified with class
verifier.

JAR_IS_LOCKED 100 Component or MIDlet or IMlet suite is
locked by the system.

JAR_NOT_FOUND 20 The JAR was not found at the URL given
in the JAD.

JAR_SERVER_NOT_FOUND 19 The server for the JAR was not found at
the URL given in the JAD.

JAR_SIZE_MISMATCH 31 The JAR downloaded was not the same
size as given in the JAD.

MISSING_CONFIGURATION 41 The configuration is missing from the
manifest.

MISSING_DEPENDENCY_HASH 67 A dependency hash code is missing.

MISSING_DEPENDENCY_JAD_URL 66 A dependency JAD URL is missing.

MISSING_JAR_SIZE 21 The JAR size is missing.

MISSING_JAR_URL 18 The URL for the JAR is missing.

MISSING_PROFILE 42 The profile is missing from the manifest.

MISSING_PROVIDER_CERT 4 The content provider certificate is
missing.

MISSING_SUITE_NAME 13 The name of MIDlet or IMlet suite is
missing.

MISSING_VENDOR 14 The vendor is missing.

MISSING_VERSION 15 The version is missing.

NEW_VERSION 32 This suite is newer that the one currently
installed.

NO_ERROR 0 No error.

NOT_YET_VALID_PROVIDER_CERT 89 A certificate is not yet valid.

NOT_YET_VALID_CA_KEY 90 A CA’s public key is not yet valid.

Table 3–2 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

3-10 Oracle Java ME Embedded Application Management System API Guide

OLD_VERSION 17 This suite is older that the one currently
installed.

OTHER_ERROR 103 Other errors.

PROXY_AUTH 51 Indicates that the user must first
authenticate with the proxy.

PUSH_CLASS_FAILURE 48 The class in a push attribute is not in
MIDlet-<n> attribute.

PUSH_DUP_FAILURE 45 The connection in a push entry is
already taken.

PUSH_FORMAT_FAILURE 46 The format of a push attribute has an
invalid format.

PUSH_PROTO_FAILURE 47 The connection in a push attribute is not
supported.

REVOKED_CERT 62 The certificate has been revoked.

RMS_DATA_DECRYPT_PASSWORD 83 Indicates that a password is required to
decrypt RMS data.

RMS_DATA_ENCRYPT_PASSWORD 84 Indicates that a password is required to
encrypt RMS data.

RMS_DATA_NOT_FOUND 75 The RMS data file was not found at the
specified URL.

RMS_DATA_SERVER_NOT_FOUND 74 The server for the RMS data file was not
found at the specified URL.

RMS_INITIALIZATION_FAILURE 81 Failure to import RMS data.

SUITE_NAME_MISMATCH 25 The MIDlet or IMlet suite name does not
match the one in the JAR manifest.

TOO_MANY_PROPS 53 Indicates that either the JAD or manifest
has too many properties to fit into
memory.

TRUSTED_OVERWRITE_FAILURE 52 Indicates that the user tried to overwrite
a trusted suite with an untrusted suite
during an update.

UNAUTHORIZED 33 Web server authentication failed or is
required.

UNKNOWN_CA 6 The certificate authority (CA) that issued
the content provider certificate is
unknown.

UNKNOWN_CERT_STATUS 63 The certificate is unknown to OCSP
server.

UNSUPPORTED_CERT 10 The content provider certificate has an
unsupported version.

UNSUPPORTED_CHAR_ENCODING 61 Indicates that the character encoding
specified in the MIME type is not
supported.

UNSUPPORTED_PAYMENT_INFO 57 Indicates that the payment information
provided with the MIDlet or IMlet suite
is incompatible with the current
implementation.

Table 3–2 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

Installing Suites 3-11

UNTRUSTED_PAYMENT_SUITE 59 Indicates that the MIDlet or IMlet suite
has payment provisioning information
but it is not trusted.

VENDOR_MISMATCH 27 The vendor does not match the one in
the JAR manifest.

VERSION_MISMATCH 26 The version does not match the one in
the JAR manifest.

Table 3–2 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

3-12 Oracle Java ME Embedded Application Management System API Guide

4

Suite Storage Manager 4-1

4Suite Storage Manager

This chapter introduces the Suite Storage Manager. The Suite Storage Manager and its
associated classes provide the primary interface for accessing all application, library,
and link suites that are stored on the system.

SuiteStoreManager Interface
The SuiteStoreManager interface is obtained from the AmsFactory class and provides
the main access to the applications, libraries, and links that have been installed on the
AMS. Using the methods in this interface, the programmer can query against a suite
for a specific name, vendor, or suite type. In addition, the programmer can install a
listener that listens for changes in the suite storage.

The SuiteStoreManager interface has the following methods:

■ SuiteInfo getSuiteInfo(java.lang.String vendor, java.lang.String name)

This method returns a SuiteInfo descriptor of installed suite, given the name of
the vendor and the suite. See "SuiteInstaller Interface" on page 3-1 for more
information on the SuiteInfo interface.

■ SuiteInfo[] getSuites(int types)

This method returns list of installed suites of specified types, where the suite type
is a constant in the SuiteInfo interface (SuiteInfo.ST_APPLICATION,
SuiteInfo.ST_LIBRARY, or SuiteInfo.ST_LINK)

■ AppSuite[] getAppSuites()

This method returns a list of the currently installed app suites of type
SuiteInfo.ST_APPLICATION.

■ LibSuite[] getLibSuites()

This method returns a list of the currently installed library suites of type
SuiteInfo.ST_LIBRARY.

■ SuiteInfo[] getLinkSuites()

This method returns a list of the currently installed link suites of type
SuiteInfo.ST_LINK.

■ void setStatusListener(SuiteStoreListener theListener)

This method assigns a SuiteStoreListener implementation to listen for changes
to application suites. The programmer can also pass in null to remove the current
listener.

SuiteStoreListener Interface

4-2 Oracle Java ME Embedded Application Management System API Guide

SuiteStoreListener Interface
The SuiteStoreListener is an interface that is used to monitor changes to the suite
storage. There are five methods that are called by the SuiteStoreManager to indicate
that the state of a suite is changing. Each method passes in the SuiteInfo descriptor of
the app, library, or link in question.

■ void notifySuiteInstalled(SuiteInfo suite)

This method is called to notify a listener that a suite has been installed.

■ void notifySuiteRemoved(SuiteInfo suite)

This method is called to notify a listener that a suite has been removed.

■ SuiteInstallerProgressListener notifySuiteInstalling(SuiteInfo suite)

This method is called to notify a listener that a suite is installing. The method must
return an instance of SuiteInstallerProgressListener to be notified about
installation process, or null if no notifications are required.

■ void notifySuiteSettingsChanged(SuiteInfo suite)

This method is called to notify a listener that the suite settings have been changed.

■ void notifySuiteStateChanged(SuiteInfo suite)

This method is called to notify a listener that the state of a suite has changed.

5

AMS Request Manager 5-1

5AMS Request Manager

This chapter discusses how to use the AMS Request Manager. The AMSRequestManager
interface is obtained from the AmsFactory class and is used to set an
AMSRequestListener to listen for any special requests for the AMS UI MIDlet. The
interface consists of only one method, void
setEventListener(AMSRequestListener theListener). This method assigns the
request manager listener.

AMSRequestListener Interface
The AMSRequestListener interface is used for processing system requests to the AMS.
It consists of two methods:

■ void selectForegroundRequest()

This method notifies the listener that it has received a request to select one of
several running applications. The AMS UI MIDlet should present the user with a
list of possibilities, and allow he or she to select one application from the list. After
the particular application is selected, the AMS UI is responsible for requesting
foreground for it. This notification is delivered only to the MIDlet which is
registered to be the main AMS MIDlet.

■ void switchToAMSRequest()

This method notifies the AMS UI that it has received a request to switch the main
AMS screen, possibly as the result of the user pressing the "Home" button on the
device. At this point, the AMS UI should set its main screen as the current
displayable. This notification is delivered only to the MIDlet which is registered to
be the main AMS MIDlet.

AMSRequestListener Interface

5-2 Oracle Java ME Embedded Application Management System API Guide

6

Tasks 6-1

6Tasks

This chapter discusses tasks in the AMS. A task is an application that is running,
usually started using information that the programmer provides. There can be several
tasks running at the same time. Use the TaskManager, which can be obtained from the
AmsFactory class, to manage classes.

TaskManager Interface
The TaskManager interface provides several helpful methods. You can obtain a list of
all tasks with the getTaskList() method. To obtain the TaskInfo for the application
that is currently making the call, use the getCurrentTask() method. To obtain the
TaskInfo of the task that the user is interacting with in the foreground, use the
getForegroundTask() method.

To initiate a task, call the startTask() method. The following information must be
provided:

■ suiteName – Name of the suite where the task is launched from

■ vendorName – Vendor of the suite

■ className – Startup class

The programmer can also do this from the AppSuite class that represents the app.

The AMS allows the programmer to assign a TaskManagerListener that listens to any
activity made by the TaskManager using the setStatusListener() method.

The TaskManager interface consists of the following methods:

■ TaskInfo startTask(java.lang.String suiteName,
java.lang.String vendorName, java.lang.String className)

This method starts a task with given parameters. It returns a task descriptor as a
TaskInfo class, which can control the task further, or null if the task cannot start.

■ TaskInfo startTaskWithOptions(java.lang.String suiteName,
java.lang.String vendorName, java.lang.String className, int options)

This method starts a task with given parameters and options. It returns a task
descriptor as a TaskInfo class, which can control the task further, or null if the
task cannot start. See the Javadocs documentation for more information on
possible options that can be passed into this method.

■ TaskInfo getForegroundTask()

This method returns the task descriptor of the current foreground task, or null if
there is no current foreground class.

TaskInfo

6-2 Oracle Java ME Embedded Application Management System API Guide

■ TaskInfo[] getTaskList(boolean includeSystem)

This method returns a list of running tasks, presented as an array of TaskInfo
classes. The boolean includeSystem parameter indicates whether system tasks
should be included in the list.

■ TaskInfo getCurrentTask()

This method returns the TaskInfo descriptor of the task the caller belongs to.

■ void setStatusListener(TaskManagerListener theListener)

This method assigns the task status update listener, using the
TaskManagerListener interface defined in "TaskManagerListener Interface" on
page 6-3.

TaskInfo
The TaskInfo interface describes information about any task this is currently running.
A task is always in one of four states, and has a priority from 1 to 10, as shown in
Table 6–1. You can also use this class to obtain the entry class of the task. Finally, the
class has three constants used to report how a task has exited.

The TaskInfo interface contains the following methods:

■ java.lang.String getClassName()

This method returns a name of the entry class.

■ int getHeapUse()

This method returns the current heap usage of the task, in bytes.

■ LoggerInfo getLogger(String name)

This method returns the logger associated with the specified name.

■ Enumeration getLoggerNames()

This method returns an enumeration of all the logger names currently in use.

■ int getPriority()

Table 6–1 Task Status Constants in the TaskInfo Interface

Name Description

DESTROYED The task was destroyed and the TaskInfo descriptor is invalid.

PAUSED The task has been paused.

RUNNING The task is currently running.

STARTING The task is starting up.

MIN_PRIORITY The minimum priority for a task. Equivalent to 1.

NORM_PRIORITY The normal priority for a task. Equivalent to 5.

MAX_PRIORITY The maximum priority for a task. Equivalent to 10.

EXIT_REGULAR The task has finished its execution without any errors.

EXIT_TERMINATED The task has been terminated.

EXIT_FATAL_ERROR The task has finished its execution with a fatal error.

LoggerInfo Interface

Tasks 6-3

This method returns the priority of given task, expressed as an integer between 1
and 10. A higher number indicates a higher priority. The programmer can also use
the three constants shown in Table 6–1.

■ int getStatus()

This method returns the current status of the task, expressed as an integer constant
shown in Table 6–1 above.

■ SuiteInfo getSuiteInfo()

This method returns suite descriptor representing the task is executing.

■ boolean pauseTask()

This method pauses the task. The method returns true if successful, false
otherwise.

■ boolean resumeTask()

This method resumes the task. The method returns true if successful, false
otherwise.

■ boolean setForegroundTask()

This method sets the current task as the foreground task. The method returns true
if successful, false otherwise.

■ boolean setPriority(int priority)

This method changes priority for the current task. A higher priority indicates a
higher priority. The method returns true if successful, false otherwise. A higher
number indicates a higher priority. The programmer can also use the three
constants shown in Table 6–1.

■ boolean stopTask()

This method stops the current task. The method returns true if successful, false
otherwise.

TaskManagerListener Interface
The TaskManagerListener interface is used to receive update information about a
change in status of a particular task. It consists of two methods.

■ void notifyStatusUpdate(TaskInfo task, int newStatus)

This method notifies a listener about a task's new status, defined by the constants
shown in Table 6–1.

■ void notifyTaskStopped(TaskInfo task, int exitCode)

This method notifies a listener when a task finishes its execution, providing an
integer exit code as defined in the TaskInfo class.

LoggerInfo Interface
The LoggerInfo interface is a named descriptor that is used to log output. It consists of
three methods.

■ com.oracle.util.logging.Level getLevel()

This method returns the log level that has been assigned to this logger.

■ void setLevel(com.oracle.logging.Level level)

LoggerInfo Interface

6-4 Oracle Java ME Embedded Application Management System API Guide

This method sets the log level for this logger. Only logging messages of this level
or higher are recorded to the log.

■ String getName()

This method returns the string-based name of the LoggerInfo descriptor.

7

The Certificate Info Manager 7-1

7The Certificate Info Manager

This chapter introduces the Certificate Info Manager. The CertificateInfoManager
interface, obtained from the AmsFactory class, is a starting point to begin working with
installed certificates. Certificates are used to verify the signature of MIDlet suites that
are installed by the AMS. The interface consists of only four methods:

■ CertificateInfo[] getCertificates()

This method returns an array containing all root certificates available in the
system.

■ CertificateInfo[] getCertificates(String domain)

This method fetches all installed certificates for a specific domain, presented as
one of three constants in Table 7–1.

■ void setStatusListener(CertificateManagerListener theListener)

This method assigns the certificate manager status listener.

CertificateInfo Interface
The CertificateInfo interface represents a Java ME certificate. The certificate can
exist in one of three domains, as shown inTable 7–1.

The CertificateInfo interface has the following methods:

■ String getDomain()

This method returns the domain the certificate is bound to as a constant shown in
Table 7–1.

■ long getNotAfter()

This method returns the end of the key's validity period in milliseconds since
January 1, 1970.

■ long getNotBefore()

Table 7–1 Certificate Domains

Name Description

DOMAIN_IDENTIFIED This constant indicates an identified third party security
domain.

DOMAIN_MANUFACTURER This constant indicates a manufacturer security domain.

DOMAIN_OPERATOR This constant indicates an operator security domain.

CertificateManagerListener Interface

7-2 Oracle Java ME Embedded Application Management System API Guide

This method returns the start of the key's validity period in milliseconds since
January 1, 1970.

■ java.lang.String getOwner()

This method returns the distinguished name of the key's owner.

■ boolean isEnabled()

This method returns a boolean indicating if the certificate is enabled.

■ void setEnabled(boolean enabled)

This method sets the enabled status for this certificate.

CertificateManagerListener Interface
The CertificateManagerListener is an interface for processing certificate updates. It
consists of four methods. Each method in the listener interface passes in a
CertificateInfo that describes the certificate in question.

■ void notifyCertificateInstalled(CertificateInfo cert)

This method notifies a listener the certificate has been installed.

■ void notifyCertificateRemoved(CertificateInfo cert)

This method notifies a listener the certificate has been removed.

■ void notifyCertificateEnabled(CertificateInfo cert)

This method notifies a listener the certificate has been enabled.

■ void notifyCertificateDisabled(CertificateInfo cert)

This method notifies a listener the certificate has been disabled.

8

The Locale Change Notifier 8-1

8The Locale Change Notifier

This chapter discusses the Locale Change Notifier in the AMS. The
LocateChangeNotifier, which is obtained from the AmsFactory class, is an interface
for managing locale change notification subscriptions. It consists of two methods,
which allow the programmer to add or remove listeners from the AMS:

■ void addLocaleChangeListener(LocaleChangeListener listener)

This method registers the specified locale change listener with the AMS.

■ void removeLocaleChangeListener(LocaleChangeListener listener)

This method removes the specified locale change listener with the AMS.

LocaleChangeListener Interface
This LocaleChangeListener interface is used to receive locale change notifications. It
consists of only one method, void localeChanged(). This method is called to notify
about a locale change. The new locale can be retrieved by querying the
"microedition.locale" system property.

LocaleChangeListener Interface

8-2 Oracle Java ME Embedded Application Management System API Guide

Glossary-1

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time
and amplitude) into a stream of binary numbers that can be processed by a digital
device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

Foreground switching

Changing which application is in the foreground by shifting the focus from one
application to another.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

JAR file

Glossary-3

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

JCP

Glossary-4

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

RL-ARM

Glossary-5

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Glossary-6

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

RTX

The real-time operating system used on the Keil MCBSTM32F200 embedded platform.
The Oracle Java ME Embedded software runs on the Keil platform.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

UICC

Glossary-7

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Glossary-8

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

Index-1

Index

A
AMS, 1-1
AMS Request Manager, 1-4, 5-1
AmsFactory, 1-3, 1-5

getAMSRequestManager, 1-3
getAppInstaller, 1-3
getCertificateInfoManager, 1-4
getLinkInstaller, 1-4
getLocaleChangeNotifier, 1-4
getStoreManager, 1-4
getTaskManager, 1-4

AMSRequestListener, 5-1
selectForegroundRequest, 5-1
switchToAMSRequest, 5-1

AMSRequestManager, 1-3, 5-1
setEventListener, 5-1

app, 1-4
descriptor, 2-1

App Installer, 1-4
AppInstaller, 1-3, 3-1

initialize, 3-1, 3-2, 3-3
AppInstallerProgressListener, 3-4

confirmAuthPath, 3-5
confirmCertificateImport, 3-6
confirmCurrentScreenSaverUnset, 3-5
confirmCurrentScreenSaverUpdate, 3-5
confirmGrantMaximumPermissions, 3-5
confirmInstallUnverified, 3-6
confirmJarDownload, 3-4
confirmPersistentSuiteInstallation, 3-6
confirmRedirect, 3-5
confirmUnsignedFXInstall, 3-5
confirmUpdate, 3-4
getNetworkAccessCredentials, 3-4
getResourceAccessCredentials, 3-4
getRmsDecryptionPassword, 3-6
getRmsEncryptionPassword, 3-6
keepRMS, 3-5

AppSuite, 2-3
debugTask, 2-4
getDefaultApp, 2-3
getDependencies, 2-3
getSecurityDomain, 2-4
getType, 2-3
isTrusted, 2-3

startTask, 2-4

C
Certificate Info Manager, 1-4, 7-1
CertificateInfo, 7-1

getDomain, 7-1
getNotAfter, 7-1
getNotBefore, 7-2
getOwner, 7-2
isEnabled, 7-2
setEnabled, 7-2

CertificateInfoManager, 1-4, 7-1
getCertificates, 7-1
setStatusListener, 7-1

CertificateManagerListener, 7-2
notifyCertificateDisabled, 7-2
notifyCertificateEnabled, 7-2
notifyCertificateInstalled, 7-2
notifyCertificateRemoved, 7-2

com.sun.ams.SuiteInfo.remove, 3-1
com.sun.ams.SuiteInstaller.start, 3-1
ConcurrentModificationException, 2-3

I
InstallerErrorCode, 3-3, 3-7

L
library

descriptor, 2-1
LibSuite, 2-4

getType, 2-4
link, 1-4

descriptor, 2-1
Link Installer, 1-4
LinkInstaller, 1-4, 3-3

initialize, 3-3
LinkInstallerProgressListener, 3-6

confirmUpdate, 3-6
getNetworkAccessCredentials, 3-6

Locale Change Notifier, 1-4, 8-1
LocaleChangeListener, 8-1

localeChanged, 8-1
LocaleChangeNotifier, 1-4, 8-1

Index-2

addLocaleChangeListener, 8-1
removeLocaleChangeListener, 8-1

locking suites, 2-1
LoggerInfo, 6-3

M
MIDlet permissions, 3-1

S
Store Manager, 1-4
Suite Storage Manager, 4-1
SuiteInfo, 2-1

getAvailableProperties, 2-2
getDownloadURL, 2-2
getDownloadUrl, 3-2
getIcon, 2-2, 3-2
getName, 2-2
getProperty, 2-2
getSettings, 2-2, 3-2
getState, 2-2, 3-2
getSuiteType, 2-2
getVendor, 2-2
remove, 2-2, 2-3, 3-2
setState, 2-3, 3-2

SuiteInstaller, 3-1
cancel, 3-1
start, 3-1

SuiteInstallerProgressListener, 3-3
done, 3-4
updateStatus, 3-4

SuiteLockedException, 2-2, 2-3
SuiteNotFoundException, 2-2
SuiteSetting, 2-4

getChoicesCount, 2-5
getChoiceTitle, 2-5
getDescription, 2-5
getIdx, 2-5
getSelectedChoice, 2-5
getTitle, 2-5

SuiteSettings, 2-5
checkForError, 2-6
checkForWarning, 2-6
getGroup, 2-6
getGroupsCount, 2-6
save, 2-6

SuiteSettingsGroup, 2-5
getDescription, 2-5
getIdx, 2-5
getSetting, 2-5
getSettingsCount, 2-5
getTitle, 2-5

SuiteStoreListener, 4-2
notifySuiteInstalled, 4-2
notifySuiteInstalling, 4-2
notifySuiteRemoved, 4-2
notifySuiteSettingsChanged, 4-2
notifySuiteStateChanged, 4-2

SuiteStoreManager, 1-4, 4-1

getAppSuites, 4-1
getLibSuites, 4-1
getLinkSuites, 4-1
getSuiteInfo, 4-1
getSuites, 4-1
setStatusListener, 4-1

T
Task Manager, 1-4
TaskInfo, 2-4, 6-2

getClassName, 6-2, 6-3
getHeapUse, 6-2, 6-3
getLogger, 6-2
getLoggerNames, 6-2
getPriority, 6-3
getStatus, 6-3
getSuiteInfo, 6-3
pauseTask, 6-3
resumeTask, 6-3
setForegroundTask, 6-3
setPriority, 6-3
stopTask, 6-3

TaskManager, 1-4, 6-1
getCurrentTask, 6-2
getForegroundTask, 6-1
getTaskList, 6-2
setStatusListener, 6-2
startTask, 6-1

TaskManagerListener, 6-3
notifyStatusUpdate, 6-3
notifyTaskStopped, 6-3

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 AMS Introduction
	Connecting to the Headless AMS CLI
	AmsFactory Class

	2 Application and Library Suites
	The SuiteInfo Interface
	AppSuite Interface
	LibSuite Interface
	SuiteSetting Interface
	SuiteSettingsGroup Interface
	SuiteSettings Interfaces

	3 Installing Suites
	SuiteInstaller Interface
	AppInstaller Interface
	LinkInstaller Interface
	SuiteInstallerProgressListener Interface
	AppInstallerProgressListener Interface
	LinkInstallerProgressListener Interface
	InstallerErrorCode

	4 Suite Storage Manager
	SuiteStoreManager Interface
	SuiteStoreListener Interface

	5 AMS Request Manager
	AMSRequestListener Interface

	6 Tasks
	TaskManager Interface
	TaskInfo
	TaskManagerListener Interface
	LoggerInfo Interface

	7 The Certificate Info Manager
	CertificateInfo Interface
	CertificateManagerListener Interface

	8 The Locale Change Notifier
	LocaleChangeListener Interface

	Glossary
	Index
	A
	C
	I
	L
	M
	S
	T

