

Oracle® Java ME Embedded
Device Access API Guide

Release 3.3

E35134-02

April 2013

This document is a resource for software developers who
want to program embedded peripherals using the Device
Access APIs of the Oracle Java ME Embedded software.

Oracle Java ME Embedded Device Access API Guide, Release 3.3

E35134-02

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documentation.. ix
Conventions ... ix

1 Introduction

Device Access API Permissions... 1-1
The Peripheral Interface ... 1-2
The PeripheralConfig Interface... 1-3
The PeripheralEventListener Interface .. 1-4
The Transactional Interface .. 1-4
The PeripheralEvent Class ... 1-5
The PeripheralManager Class.. 1-6
Exceptions .. 1-7

2 Analog-to-Digital Converter

The AcquisitionListener Interface .. 2-3
The ADCChannel Interface.. 2-3
The MonitoringListener Interface... 2-6
The AcquisitionEvent Class ... 2-6
The ADCChannelConfig Class ... 2-6
The MonitoringEvent Class ... 2-7
Exceptions .. 2-8

3 AT Commands

The ATDevice Interface .. 3-3
The ATModem Interface ... 3-6
The CommandResponseHandler Interface... 3-6
The DataConnection Interface... 3-6
The DataConnectionHandler Interface.. 3-7
The UnsolicitedResponseHandler Class ... 3-7

iv

4 Pulse Counters

The PulseCounter Interface.. 4-2
The CountingEvent Class ... 4-4
The PulseCounterConfig Class ... 4-4

5 Digital-to-Analog Converter

The DACChannel Interface.. 5-2
The GenerationListener Interface ... 5-4
The DACChannelConfig Class ... 5-5
The GenerationEvent Class .. 5-5
Exceptions .. 5-6

6 Generic Input/Output Classes

The GenericBufferIODevice Interface ... 6-4
The GenericDevice Interface ... 6-4
The GenericEventListener Class ... 6-5
The GenericStreamIODevice Class .. 6-5
The GenericEvent Class .. 6-6

7 General Purpose Input/Output (GPIO)

The GPIOPin Interface.. 7-3
The GPIOPort Interface .. 7-4
The PinListener Interface ... 7-6
The PortListener Interface .. 7-6
The GPIOPinConfig Class ... 7-6
The GPIOPortConfig Class .. 7-8
The PinEvent Class .. 7-9
The PortEvent Class ... 7-9

8 Inter-Integrated Circuit Bus

The I2CDevice Interface ... 8-3
The I2CDeviceConfig Class ... 8-5

9 Memory-Mapped Input/Output

The MMIODevice Interface ... 9-3
The MMIOEventListener Interface .. 9-5
The RawMemory Interface... 9-5
The RawBlock Interface .. 9-5
The RawByte Interface .. 9-6
The RawInt Interface ... 9-7
The RawShort Interface .. 9-7
The MMIOEvent Class.. 9-7
The MMIODeviceConfig Class ... 9-8
The MMIODeviceConfig.RawMemoryConfig Class ... 9-9
The MMIODeviceConfig.RawBlockConfig Class .. 9-9

v

The MMIODeviceConfig.RawRegisterConfig Class.. 9-9
The MMIOEvent Class... 9-10
AccessOutOfBoundsException... 9-10

10 Modem Control Signals

The ModemSignalListener Interface... 10-1
The ModemSignalsControl Class .. 10-1
The ModemSignalEvent Class.. 10-2

11 Power Management

The PowerManaged Interface ... 11-2
The PowerSavingsHandler Class ... 11-4

12 Serial Peripheral Interface Bus

The SPIDevice Interface .. 12-2
The SPIDeviceConfig Class .. 12-4
InvalidWordLengthException... 12-5

13 UART

The ModemUART Interface.. 13-3
The UART Interface .. 13-3
The UARTEventListener Interface... 13-5
The UARTConfig Class.. 13-5
The UARTEvent Class .. 13-7

14 Watchdog Timers

The WatchdogTimer Interface... 14-2
The WindowedWatchdogTimer Interface .. 14-3

A Migrating from Device Access Version 3.2

The PeripheralManager Class... A-1

Glossary ..

Index

vi

List of Examples

2–1 Using the ADC APIs... 2-1
3–1 Using the AT Commands API .. 3-1
4–1 Using the Pulse Counter API .. 4-1
5–1 Using the DAC API .. 5-1
6–1 Creating an Alarm using the Generic APIs... 6-2
6–2 An Audio Capture Using the Generic APIs.. 6-3
7–1 Using the GPIO APIs.. 7-1
8–1 Using the I2C APIs to Interact with LEDs... 8-1
8–2 Writing and Reading Data Using the I2C APIs .. 8-2
11–1 Using the Power Management APIs ... 11-1
12–1 Using the SPI APIs to Communicate with SPI Slaves .. 12-1
13–1 Communicating using the UART API .. 13-1
13–2 Using a ModemUART to Communicate .. 13-2
14–1 Using the Watchdog API .. 14-1

vii

viii

List of Tables

1–1 Device Access API Permissions ... 1-2
1–2 Exceptions of the com.oracle.deviceaccess Package ... 1-7
2–1 Exceptions of the com.oracle.deviceaccess.adc Package.. 2-8
3–1 Permissions for Using the AT Command APIs ... 3-3
3–2 Properties of the ATDevice Interface .. 3-3
5–1 Exceptions of the com.oracle.deviceaccess.dac Package.. 5-6
7–1 GPIO API Permissions .. 7-3
7–2 GPIOPin Direction Constants .. 7-3
7–3 GPIOPort Direction Constants... 7-5
7–4 Direction Constants in the GPIOPinConfig Class... 7-7
7–5 Mode Constants in the GPIOPinConfig Class ... 7-7
7–6 Trigger Constants in the GPIOPinConfig Class .. 7-7
7–7 Direction Constants in the GPIOPortConfig Class ... 7-8
12–1 Clock Modes in the SPIDeviceConfig Class.. 12-4
13–1 UARTConfig Constants ... 13-5

ix

Preface

This document describes the Device Access APIs of the Oracle Java ME Embedded
product. The Device Access APIs contain classes and interfaces for communicating
with peripherals that are connected to an embedded development board using one of
several communication buses.

Audience
This document focuses on providing information and guidelines for ISV engineers
who want to communicate with peripheral devices. Together with this document, ISV
Java ME engineers should have access to the Oracle Java ME Embedded SDK, a
compatible IDE, and an embedded development board or appropriate emulator.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documentation
For a complete list of documents included with the Oracle Java ME Embedded
software, see the Release Notes.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

x

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction 1-1

1Introduction

The Device Access APIs provides interfaces and classes for communicating with and
controlling peripheral devices attached to the embedded board. This chapter gives an
introduction to the common interfaces and classes that are used throughout the Device
Access API packages.

Device Access API Permissions
In order to utilize the Device Access APIs, applications must present the proper
permissions. These permission must be requested in the application’s JAD file under
either the MIDlet-Permissions or MIDlet-Permissions-Opt entry and the application
must be digitally signed by a trusted authority, or the permission may be granted to all
applications by adding it to the untrusted domain of the Java security policy file
(policy.txt).

Peripheral devices are registered, un-registered, configured and listed by invoking one
of the open(), register(), unregister() and list() methods of PeripheralManager.
The four PeripheralManager permissions allow access to be granted for registration,
configuration, un-registration and listing of peripheral devices. Note that these
permissions must be granted in addition to the permissions granting access to a
specific peripheral type. For example, opening a GPIO pin with an ad-hoc
configuration requires both the com.oracle.deviceaccess.gpio and
com.oracle.deviceaccess.PeripheralManager.configure to be granted. Similarly,
registering a GPIO pin with an ad-hoc configuration requires both the
com.oracle.deviceaccess.gpio and
com.oracle.deviceaccess.PeripheralManager.register to be granted.

Table 1–1 shows the API Permissions that are required in an application’s JAD file or
security policy file in order to access the various Device Access APIs.

WARNING: Any IMlet that accesses the Device Access APIs must
be digitally signed using a trusted certificate authority, or the
appropriate permissions of the Device Access APIs must be added
to the policy file for your platform. An IMlet that is not signed or is
not granted the appropriate permissions will encounter an
authentication error when attempting to access the Device Access
APIs. See the Getting Started Guide for your target platform for
more information..

The Peripheral Interface

1-2 Oracle Java ME Embedded Device Access API Guide

For individual peripheral mappings, see the appropriate appendix in the Getting
Started Guide for your hardware development platform.

The Peripheral Interface
The Peripheral interface provides generic methods for handling any peripheral. All
peripherals must implement this interface. There are four constants in the interface.

■ static final int LITTLE_ENDIAN

This constant represents little-endian byte or bit ordering.

■ static final int BIG_ENDIAN

This constant represents big-endian byte or bit ordering.

Table 1–1 Device Access API Permissions

Device Access API Description

com.oracle.deviceaccess.PeripheralManager.configure Ad-hoc configuration of
peripheral devices

com.oracle.deviceaccess.PeripheralManager.register Registration of peripheral
devices

com.oracle.deviceaccess.PeripheralManager.unregister Unregistration of peripheral
devices

com.oracle.deviceaccess.PeripheralManager.list Listing of registered
peripheral devices

com.oracle.deviceaccess.adc Analog-to-Digital Converter
(ADC) APIs

com.oracle.deviceaccess.atcmd Access to AT devices and
modems as a whole

com.oracle.deviceaccess.atcmd.ATDevice.openDataConne
ction

Opening data connections
with AT devices

com.oracle.deviceaccess.counter Pulse counter APIs

com.oracle.deviceaccess.dac Digital-to-Analog Converter
(DAC) APIs

com.oracle.deviceaccess.generic Generic APIs

com.oracle.deviceaccess.gpio Access to GPIO pins and
ports as a whole

com.oracle.deviceaccess.gpio.GPIOPin.setDirection Changing the direction of a
GPIO pin

com.oracle.deviceaccess.gpio.GPIOPort.setDirection Changing the direction of a
GPIO port

com.oracle.deviceaccess.i2c I²C slave devices as a whole

com.oracle.deviceaccess.mmio Memory-mapped IO devices

com.oracle.deviceaccess.power Power management
functionality

com.oracle.deviceaccess.spi Serial Peripheral Interface bus
devices

com.oracle.deviceaccess.uart UART devices

com.oracle.deviceaccess.watchdog Watchdog timers

The PeripheralConfig Interface

Introduction 1-3

■ static final int MIXED_ENDIAN

This constant represents mixed-endian (non-standard) byte ordering.

■ static final int UNIDENTIFIED_ID

This constant is used to signify an unidentified peripheral numerical ID.

The interface also has five methods.

■ void close() throws java.io.IOException

This method releases the underlying peripheral device, making it available to
other applications. Once released, subsequent operations on the same Peripheral
instance will throw a PeripheralNotAvailableException. This method has no
effects if the peripheral device has been released.

■ int getID()

This method returns the numerical ID of the underlying peripheral device.

■ java.lang.String getName()

This method returns the given name of the underlying peripheral device. A name
is a descriptive version of the peripheral ID, such as "LED1" or "BUTTON2".

■ java.lang.String[] getProperties()

This method returns the properties of the peripheral device.

■ boolean isOpen()

This method indicates whether this peripheral is open or available to the calling
application.

The PeripheralConfig Interface
The PeripheralConfig interface is a tagging interface for all peripheral configuration
classes. It contains the following elements.

■ Hardware Addressing Information

Information required to address the peripheral device. Examples are an I2C bus
number and slave device address, or a GPIO controller number and pin index.

■ Static Configuration Parameters

Static configuration parameters are configuration parameters that must be set
before the peripheral device is opened and may not be changed afterwards.
Examples of static configuration parameters are an SPI slave device clock mode or
word length.

■ Dynamic Configuration Parameters

Dynamic configuration parameters are configuration parameters for which a
default value may be set before the peripheral device is opened, and which may
still be changed while the peripheral is open. Dynamic configuration parameters
can be changed after the peripheral device is open through methods of the
Peripheral sub-interfaces. Examples of dynamic configuration parameters are a
UART baud rate or the current direction of a bidirectional GPIO pin.

PeripheralConfig instances should be immutable. A compliant implementation of
this specification must ensure that information encapsulated in a PeripheralConfig
instance cannot be altered while it is being accessed. It should either create its own
private copy of the instance, or a copy of the information it contains.

The PeripheralEventListener Interface

1-4 Oracle Java ME Embedded Device Access API Guide

Some hardware addressing parameters, as well as static and dynamic configuration
parameters, may be set to PeripheralConfig.DEFAULT. Whether default settings are
supported are both platform-dependent as well as peripheral driver-dependent.

An instance of PeripheralConfig can be passed to the
PeripheralManager.open(PeripheralConfig) or PeripheralManager.open(Class,
PeripheralConfig) method to open the designated peripheral device with the
specified configuration. A PeripheralConfigInvalidException is thrown if the user
attempts to open a peripheral device with an invalid or unsupported configuration.

The PeripheralConfig interface contains one constant.

■ static final int DEFAULT

This constant indicates that the default value of a configuration parameter should
be used.

The PeripheralEventListener Interface
The PeripheralEventListener interface is a tagging interface that all event listeners
must implement. It contains no constants or methods. Event listeners provide methods
for notifying applications of the occurrence of events, such as hardware interrupts or
software signals, on peripheral devices.

The Transactional Interface
The Transactional interface contains methods for providing a communication
transaction. If a Peripheral instance implements this interface, then a transaction will
be demarcated by a call to begin() and a call to end(). The read and write operations
between these two calls will be part of a single transaction. A peripheral device driver
may then use this transaction demarcation to qualify the sequence of read and write
operations accordingly. For example, an I2C driver will treat the sequence of read and
write operations to the same I2C slave device as a combined message. An SPI driver
will treat the sequence of read and write operations to the same SPI slave device as a
single transaction and will assert the Slave Select line during the entire transaction.

Note that in order to ensure that the end() method is always invoked, these methods
should be used within a try ... finally block:

 try {
 peripheral.begin();
 // read and write operations
 } finally {
 peripheral.end();
 }

There are two methods in the Transactional interface:

■ void begin() throws java.io.IOException,
PeripheralNotAvailableException

Demarcates the beginning of a transaction. This method may throw an
InvalidStateException if a transaction is already in progress.

■ void end() throws java.io.IOException, PeripheralNotAvailableException

Demarcates the end of a transaction. This method may throw an
InvalidStateException if a transaction is not already in progress.

The PeripheralEvent Class

Introduction 1-5

The PeripheralEvent Class
The PeripheralEvent class encapsulates events fired by or on behalf of a peripheral
device. Such an event may correspond to a hardware interrupt or a software signal.

An event burst occurs when more events are fired than can be handled. When this
happens, events may be coalesced. Coalescing of events is platform and
peripheral-dependent.

The PeripheralEvent class consists of the following fields:

■ protected long timeStamp

The time (in milliseconds) when this event occurred. If events were coalesced then
the time is that of the first event.

■ protected long lastTimeStamp

The time (in milliseconds) when the last coalesced event occurred. If events were
not coalesced then the time is the same as that of the first event.

■ protected int timeStampMicros

The additional microseconds to the timestamp for when this event first occurred.
If events were coalesced then this is that of the first event. The actual timestamp in
microseconds is equal to: (timeStamp * 1000) + timeStampMicros.

■ protected int lastTimeStampMicros

The additional microseconds to the timestamp for when the last coalesced event
occurred. If events were not coalesced then this is the same as that of the first
event. The actual last timestamp in microseconds is equal to: (lastTimeStamp *
1000) + lastTimeStampMicros

■ protected int count

The number of underlying coalesced hardware interrupts or software signals this
event may represent.

■ protected Peripheral peripheral

The Peripheral instance that fired this event or for which this event was fired.

There are several methods in this class, which acts as accessors for the protected fields.

■ public final long getTimeStamp()

Returns the time (in milliseconds) when this event first occurred. If events were
coalesced then the time is that of the first event.

■ public final int getTimeStampMicros()

Returns the additional microseconds to the timestamp for when this event first
occurred. If events were coalesced then the time is that of the first event.

■ public final long getLastTimeStamp()

Returns the time (in milliseconds) when the last coalesced event occurred. If
events were not coalesced then the time is the same as that of the first event.

■ public final int getLastTimeStampMicros()

Returns the additional microseconds to the timestamp for when the last coalesced
event occurred. If events were not coalesced then this is the same as that of the first
event.

■ public final int getCount()

The PeripheralManager Class

1-6 Oracle Java ME Embedded Device Access API Guide

Returns the number of underlying coalesced hardware interrupts or software
signals this event may represent.

■ public final Peripheral getPeripheral()

Returns the Peripheral instance that fired this event or for which this event was
fired.

The PeripheralManager Class
The PeripheralManager class provides static methods for opening and registering
peripheral devices. These devices can then be handled as Peripheral instances. A
Peripheral instance of a particular type can be opened using its platform-specific
numerical ID or name as well as its properties.

Peripheral instances are uniquely identified by a numerical ID. This ID is unrelated to
the hardware number (hardware addressing information) that may be used to identify
a device such as a GPIO pin number or an I2C slave device address. The numerical ID
of a peripheral device must be an integer greater than or equal to 0 and must be
unique. Yet the same peripheral device may be directly and indirectly mapped
through several IDs; each ID may correspond to a different configuration,
representation or abstraction for the same underlying peripheral device hardware
resource.

The PeripheralManager class consists of the following methods:

■ public static int register(int id, java.lang.Class intf,
PeripheralConfig config, java.lang.String name, java.lang.String[]
properties) throws java.io.IOException,
PeripheralConfigInvalidException, PeripheralTypeNotSupportedException,
PeripheralNotFoundException, PeripheralNotAvailableException,
PeripheralExistsException

This method registers a new peripheral device under the specified ID (and
optionally name and properties) supporting the provided configuration. The
designated peripheral may be probed to check if the provided configuration is
valid.

■ public static void unregister(int id)

This method unregisters the peripheral device associated with the specified ID.
Some peripheral devices are registered by the underlying platform and cannot be
unregistered.

■ public static Peripheral open(int id) throws java.io.IOException,
PeripheralNotFoundException, PeripheralNotAvailableException

This method looks up and opens a Peripheral instance for the provided
numerical ID. A new Peripheral instance is returned upon each call.

■ public static Peripheral open(int id, java.lang.Class intf) throws
java.io.IOException, PeripheralTypeNotSupportedException,
PeripheralNotFoundException, PeripheralNotAvailableException

This method looks up and opens a Peripheral instance for the provided
numerical ID and type. A new Peripheral instance is returned upon each call.

■ public static Peripheral open(java.lang.String name, java.lang.Class
intf, java.lang.String[] properties) throws java.io.IOException,
PeripheralTypeNotSupportedException, PeripheralNotFoundException,
PeripheralNotAvailableException

Exceptions

Introduction 1-7

This method looks up and opens a Peripheral instance for the specified name,
type and/or properties. A new Peripheral instance is returned upon each call.
Property-based lookup only uses exact (case-insensitive) matching and does not
perform any semantic interpretation.

■ public static Peripheral open(PeripheralConfig config) throws
java.io.IOException, PeripheralConfigInvalidException,
PeripheralTypeNotSupportedException, PeripheralNotFoundException,
PeripheralNotAvailableException, PeripheralExistsException

This method opens a Peripheral instance with the specified hardware addressing
information and configuration. Note that the returned Peripheral instance's ID
and name are undefined. A new instance is returned upon each call.

■ public static Peripheral open(java.lang.Class intf, PeripheralConfig
config) throws java.io.IOException, PeripheralConfigInvalidException,
PeripheralTypeNotSupportedException, PeripheralNotFoundException,
PeripheralNotAvailableException, PeripheralExistsException

This method opens a Peripheral instance of the specified type with the specified
hardware addressing information and configuration. Note that the returned
Peripheral instance's ID and name are undefined. A new instance is returned
upon each call.

■ public static Peripheral[] list()

This method lists all platform- and user-registered peripheral devices. The
Peripheral instances returned are in a closed state and a call to
Peripheral.isOpen() will return false.

■ public static Peripheral[] list(java.lang.Class inf) throws
PeripheralTypeNotSupportedException

This method lists all platform- and user-registered peripheral devices of the
designated type. The Peripheral instances returned are in a closed state; a call to
Peripheral.isOpen() will return false.

Exceptions
The com.oracle.deviceaccess package consists of eight exceptions, which are shown
in Table 1–2:

Table 1–2 Exceptions of the com.oracle.deviceaccess Package

Suite Type Description

InvalidOperationException Thrown by an instance of Peripheral to
indicate that an attempted operation is not
allowed for the peripheral.

InvalidStateException Thrown by an instance of Peripheral to
indicate that an operation as been attempted at
an inappropriate time. In other words, the
peripheral device is not in an appropriate state
for the requested operation.

PeripheralConfigInvalidException Thrown to indicate that the provided peripheral
configuration is invalid/is not supported.

PeripheralException Thrown to indicate that a general exception
occurred on a peripheral operation.

Exceptions

1-8 Oracle Java ME Embedded Device Access API Guide

PeripheralExistsException Thrown by the PeripheralManager to indicate
that a peripheral device is already registered for
the specified ID.

PeripheralNotAvailableException Thrown by an instance of Peripheral to
indicate that an operation is attempted on a
peripheral which is not yet available.

PeripheralNotFoundException Thrown to indicate that there is no peripheral
matching the provided peripheral numerical ID
or name.

PeripheralTypeNotSupportedException Thrown to indicate permanent unavailability of
the looked up peripheral.

Table 1–2 (Cont.) Exceptions of the com.oracle.deviceaccess Package

Suite Type Description

2

Analog-to-Digital Converter 2-1

2Analog-to-Digital Converter

The com.oracle.deviceaccess.adc package contains interfaces and classes for
reading analog inputs using an Analog-to-Digital Converter (ADC). An ADC converts
a continuous physical input quantity, such as a voltage, to a digital number. The
conversion involves quantization of the input, so it typically introduces a small
amount of error.

One ADC converter can have several channels. Each channel can sample a continuous
input voltage and convert it to a numerical value. In order to access and control a
specific ADC channel, an application should first open and obtain an ADCChannel
instance for the ADC channel using its numerical ID, name, type (interface) and/or
properties.

ADC channels are opened by invoking one of the PeripheralManager.open()
methods. This is an example of using its ID.

 ADCChannel channel = (ADCChannel) PeripheralManager.open(8);

This is an example of using its name and interface.

 ADCChannel channel = (ADCChannel) PeripheralManager.open("TEMPERATURE",
 ADCChannel.class, null);

Once the peripheral is opened, the application can read or monitor sampled input
values using methods of the ADCChannel interface, such as the getValue() method:

 int temp = channel.getValue();

When done, the application should call the ADCChannel.close() method to release
ADC channel.

 channel.close();

Example 2–1 demonstrates two ways of using the ADC APIs.

Example 2–1 Using the ADC APIs

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.adc.ADCChannel;
import com.oracle.deviceaccess.adc.AcquisitionEvent;
import com.oracle.deviceaccess.adc.AcquisitionListener;
import java.io.IOException;

class ADCAcquisition implements AcquisitionListener {

2-2 Oracle Java ME Embedded Device Access API Guide

 private ADCChannel channel = null;

 public void start(int channelID) throws IOException,
 PeripheralNotAvailableException, PeripheralNotFoundException
 {
 channel = (ADCChannel) PeripheralManager.open(channelID);
 channel.setSamplingInterval(100); // every 100 milliseconds
 int[] values = new int[10];
 channel.startAcquisition(values, 0, values.length, false, this);
 }

 public void inputAcquired(AcquisitionEvent event) {
 for (int i = 0; i < event.getCount(); i++) {
 int value = event.getValues()[event.getOffset() + i];
 // Handle value...
 }
 }

 public void stop() throws IOException, PeripheralNotAvailableException {
 if (channel != null) {
 channel.stopAcquisition();
 channel.close();
 }
 }
 }

class ADCThreshold implements MonitoringListener {

 private ADCChannel channel = null;

 public void start(int channelID, int low, int high)
 throws IOException, PeripheralNotAvailableException,
 PeripheralNotFoundException {
 channel = (ADCChannel) PeripheralManager.open(channelID);
 channel.setSamplingInterval(100); // every 100 milliseconds
 channel.startMonitoring(low, high, this);
 }

 public void thresholdReached(MonitoringEvent event) {
 if (event.getType() == MonitoringEvent.OUT_OF_RANGE) {
 int value = event.getValue();
 // Handle condition...
 }
 }

 public void stop() throws IOException, PeripheralNotAvailableException {
 if (channel != null) {
 channel.stopMonitoring();
 channel.close();
 }
 }
 }

Note that the com.oracle.deviceaccess.adc permission allows access to be granted
to ADC channels as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the ADC APIs. Alternatively,

The ADCChannel Interface

Analog-to-Digital Converter 2-3

the permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

Because of performance issue, any procedures that handle analog inputs, and
especially event listeners, should be optimized to be as fast as possible.

The AcquisitionListener Interface
The AcquisitionListener interface contains methods for being notified of the
availability of sampled values. An AcquisitionListener can be registered using the
ADCChannel.startAcquisition(int[], int, int, boolean,
com.oracle.deviceaccess.adc.AcquisitionListener) method.

The AcquisitionListener interface contains only one method.

■ void inputAcquired(AcquisitionEvent event)

This method is invoked when a buffer of ADC sampled values has been filled and
is available for processing.

The ADCChannel Interface
The ADCChannel interface provides methods for controlling an ADC (Analog to Digital
Converter) channel.

One ADC device can have several channels. Analog input are sampled and converted
according to the ADC device resolution to raw digital values between getMinValue()
and getMaxValue(). Actual input voltage values can be calculated from raw digital
values and the reference voltage value as returned by getVRefValue(). Each ADC
channel is identified by a numerical ID and by a name.

An ADCChannel instance can be opened by a call to one of the
PeripheralManager.open() methods. Once opened, an application can read the
current sampled input value of an ADC channel by calling the getValue() method or
can acquire the input values sampled over a period of time by calling the
getValues(int[], int, int) method.

An application can also asynchronously acquire the input values sampled over a
period of time by calling the startAcquisition() methods with an
AcquisitionListener instance which will get cyclicly and asynchronously notified
when the desired number of samples have been acquired. The input acquisition can be
stopped by calling the stopAcquisition() method.

An application can monitor the input value by calling the startMonitoring() method
with a low and a high threshold value and MonitoringListener instance which will
get asynchronously notified when the input value gets out of or back in the defined
range. The monitoring can be stopped by calling the stopMonitoring() method.

Only one acquisition (synchronous or asynchronous) and one monitoring can occur at
any time. One acquisition and one monitoring can be performed concurrently at the
same sampling rate (see getSamplingInterval()). They therefore respectively acquire
and monitor the same sampled input values.

When an application is no longer using an ADC channel, it should call the
ADCChannel.close() method to release the ADC channel. Any further attempt to set
or get the value of a ADC channel which has been closed will throw a
PeripheralNotAvailableException.

The ADCChannel Interface

2-4 Oracle Java ME Embedded Device Access API Guide

Note that asynchronous notification of range conditions or input acquisition is only
loosely tied to hardware-level interrupt requests. The platform does not guarantee
notification in a deterministic or timely manner.

The ADCChannel interface consists of several methods:

■ int getMinValue() throws java.io.IOException, PeripheralNotAvailableException

This method returns the minimum raw value this channel can sample. If the ADC
device resolution is n then the minimum value returned by getMinValue() and the
maximum value returned by getMaxValue() are such that (max - min) == (2^n
- 1).

■ int getMaxValue() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the maximum raw value this channel can sample. If the ADC
device resolution is n then the minimum value returned by getMinValue() and the
maximum value returned by getMaxValue() are such that (max - min) == (2^n
- 1).

■ double getVRefValue() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the reference voltage value of this ADC channel. If the
reference voltage is vRef and the ADC device resolution is n then the actual input
voltage value corresponding to a raw sampled value value read on this channel
can be calculated as follows: vInput = (value * vRef) / (2^n)

■ int getValue() throws java.io.IOException,
PeripheralNotAvailableException

This method reads the current raw sampled input value of this channel. This
method may be invoked at any time. If another thread has already initiated an I/O
operation upon this channel, however, then an invocation of this method will
block until the first operation is complete. Only one acquisition (synchronous or
asynchronous) can be going on at any time.

■ void getValues(int[] buffer, int offset, int count) throws
java.io.IOException, PeripheralNotAvailableException

This method reads count raw sampled input values from this channel and copies
them into the designated array. The input will be sampled according to the current
sampling interval as returned by getSamplingInterval(). This method may be
invoked at any time. If another thread has already initiated an I/O operation upon
this channel, however, then an invocation of this method will block until the first
operation is complete. Only one acquisition (synchronous or asynchronous) can be
going on at any time.

■ void startAcquisition(int[] buffer, int offset, int count, boolean
doubleBuffering, AcquisitionListener listener) throws
java.io.IOException, PeripheralNotAvailableException

This method starts sampling this channel input and asynchronously notifies the
provided AcquisitionListener instance when count raw sampled input values
have been read from this channel. The read values are copied into the designated
section of the provided buffer. Once count raw sampled input values have been
read, reading will be suspended and in the event of continuous sampling,
subsequent sampled input values may be lost. Reading into the buffer and
notification will only resume once the event has been handled. Reading and
notification will immediately start and will repeat until it is stopped by a call to
stopAcquisition().

The ADCChannel Interface

Analog-to-Digital Converter 2-5

If double buffering is enabled, notification will happen when (count / 2) raw
sampled input values have been read and reading will proceed with the other half
of the designated section of the provided buffer. Reading will only be suspended if
the previous event has not yet been handled (this may result in the case of
continuous sampling in subsequent sampled input values to be lost). If count is
not even then one part of the designated buffer section may be longer (by 1) than
the other one.

The input will be sampled according to the current sampling interval as returned
by getSamplingInterval(). Note that only one acquisition (synchronous or
asynchronous) can be going on at any time.

■ void stopAcquisition() throws java.io.IOException,
PeripheralNotAvailableException

This method stops the asynchronous sampling of this channel input as started by a
call to one of the startAcquisition() methods.

■ void startMonitoring(int low, int high, MonitoringListener listener)
throws java.io.IOException, PeripheralNotAvailableException

This method starts monitoring this channel input and asynchronously notifies the
provided MonitoringListener instance when this channel's raw sampled input
value gets out of or back in the specified range (as defined by a low and a high
threshold value). Monitoring and notification will immediately start and will
repeat until it is stopped by a call to stopMonitoring(). Range notification
operates in toggle mode: once notified of an out-of-range condition the application
will next only get notified of a back-in-range condition and so on.

The sampled input value will be monitored according to the current sampling
interval as returned by getSamplingInterval(). To only be notified when the
input value gets over some threshold, call this method with the low parameter set
to the value of getMinValue(). Conversely, to only be notified when the input
value gets under some threshold, call this method with the high parameter set to
the value of getMaxValue(). If low is lower than the minimum value returned by
getMinValue(), then the minimum value is assumed. If high is higher the
maximum value returned by getMaxValue(), then the maximum value is
assumed. Only one monitoring can occur at any time.

■ void stopMonitoring()

This method stops the range monitoring of this channel input as started by a call
to the startMonitoring() method.

■ void setSamplingInterval(int interval) throws java.io.IOException,
PeripheralNotAvailableException

This method sets the sampling interval, in microseconds.

■ int getSamplingInterval() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the sampling interval, in microseconds. If the sampling
interval was not set previously using setSamplingInterval(int), the peripheral
configuration-specific default value is returned.

■ int getMinSamplingInterval() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the minimum sampling interval, in microseconds, that can be
set using setSamplingInterval(int).

The MonitoringListener Interface

2-6 Oracle Java ME Embedded Device Access API Guide

The MonitoringListener Interface
The MonitoringListener interface defines a method for being notified of ADC
channel under- and over-threshold input value conditions. A MonitoringListener can
be registered using the ADCChannel.startMonitoring(int, int,
MonitoringListener) method.

The MonitoringListener interface consists of only one method:

■ void thresholdReached(MonitoringEvent event)

This method is invoked when the input value has reached the low or high
threshold.

The AcquisitionEvent Class
The AcquisitionEvent class encapsulates ADC channel input acquisition conditions.
Note that this kind of event is never coalesced.

There are two constructors in the AcquisitionEvent class:

■ public AcquisitionEvent(ADCChannel channel, int[] values, int offset,
int number)

This method creates a new AcquisitionEvent with the specified raw sampled
values and time-stamped with the current time.

■ public AcquisitionEvent(ADCChannel channel, int[] values, int offset,
int number, long timeStamp, int timeStampMicros)

This method creates a new AcquisitionEvent with the specified raw sampled
values and timestamp.

There are three methods in this class as well.

■ public int[] getValues()

This method returns the buffer containing the sampled values.

■ public int getOffset()

This method returns the offset in the values buffer where the sampled values start.

■ public int getNumber()

This method returns the number of sampled values.

The ADCChannelConfig Class
The ADCChannelConfig class encapsulates the hardware addressing information, and
static and dynamic configuration parameters, of an ADC channel. Some hardware
addressing parameter, and static and dynamic configuration parameters, may be set to
PeripheralConfig.DEFAULT. Whether such default settings are supported is both
platform-dependent and peripheral driver-dependent.

An instance of ADCChannelConfig can be passed to the
PeripheralManager.open(PeripheralConfig) or PeripheralManager.open(Class,
PeripheralConfig) method to open the designated ADC channel with the specified
configuration. A PeripheralConfigInvalidException is thrown when attempting to
open a peripheral device with an invalid or unsupported configuration.

The ADCChannelConfig class consists of one constructor and several methods.

The MonitoringEvent Class

Analog-to-Digital Converter 2-7

■ public ADCChannelConfig(int converterNumber, int channelNumber, int
resolution, int samplingInterval, int samplingTime)

This constructor creates a new ADCChannelConfig with the specified hardware
addressing information and configuration parameters.

■ public int getChannelNumber()

This method returns the configured channel number.

■ public int getResolution()

This method returns the configured resolution.

■ public int getConverterNumber()

This method returns the configured converter number.

■ public int getSamplingInterval()

This method returns the configured default/initial sampling interval (the amount
of time between two samples) in microseconds.

■ public int getSamplingTime()

This method returns the configured sampling time (the amount of time to take a
sample) in microseconds.

The MonitoringEvent Class
The MonitoringEvent class encapsulates ADC channel under- and over-threshold
value conditions. If range events for the same ADC channel are coalesced, the value
and the type (either in or out of range) are that of the last occurrence.

The PeripheralManager class contains two constants:

■ public static final int OUT_OF_RANGE

Indicates that the ADC channel value exceeded the defined range.

■ public static final int BACK_TO_RANGE

Indicates that the ADC channel value returned to the defined range.

The PeripheralManager class consists of the following constructors and methods:

■ public MonitoringEvent(ADCChannel channel, int type, int value)

This constructor creates a new MonitoringEvent with the specified raw sampled
value. It will automatically be time-stamped with the current time.

■ public MonitoringEvent(ADCChannel channel, int type, int value, long
timeStamp, int timeStampMicros)

This constructor creates a new MonitoringEvent with the specified raw sampled
value and the specified timestamp.

■ public int getType()

This method returns the type of range condition being notified.

■ public int getValue()

This method returns the new ADC channel's value.

Exceptions

2-8 Oracle Java ME Embedded Device Access API Guide

Exceptions
The com.oracle.deviceaccess.adc package consists of one exception, which is shown
in Table 2–1:

Table 2–1 Exceptions of the com.oracle.deviceaccess.adc Package

Suite Type Description

InvalidSamplingRateException Thrown by an instance of ADCChannel when the
requested sampling rate is higher than the maximum
sampling rate the ADC device can support.

3

AT Commands 3-1

3AT Commands

The com.oracle.deviceaccess.atcmd package contains interfaces and classes for
controlling data communication equipment such as a modem or a cellular module
using AT commands. AT commands for GSM phone or modem are standardized
through ETSI GSM 07.07 and ETSI GSM 07.05 specifications. A typical modem or an
cellular module supports most of its features through AT commands and many
manufactures provide additional features by adding proprietary extensions to the AT
commands set.

In this specification, a device that can be controlled using AT commands is generically
referred to as an AT device. To control a specific AT device, an application should first
open and obtain an ATDevice or ATModem instance for the device using its numerical
ID, name, type (interface) and properties:

This example obtains an ATDevice using its ID:

 ATDevice device = (ATDevice) PeripheralManager.open(15);

This is an example of using the name and interface, returns as either an ATDevice or an
ATModem object.

 ATDevice device = (ATDevice) PeripheralManager.open("MODEM", ATDevice.class,
 new String[] { "javax.deviceaccess.atcmd.psd=true",
 "javax.deviceaccess.atcmd.sms=true" });

 ATModem device = (ATModem) PeripheralManager.open("MODEM", ATModem.class,
 new String[] { "javax.deviceaccess.atcmd.psd=true",
 "javax.deviceaccess.atcmd.sms=true" });

Once the peripheral opened, the application can issue AT commands to the peripheral
using methods of the ATDevice interface such as the sendCommand() methods.

 device.sendCommand("AT\n");

When done, the application should call the Peripheral.close() method to release AT
device.

 device.close();

Example 3–1 shows how to use the AT Commands API to send an SMS message:

Example 3–1 Using the AT Commands API

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.PeripheralTypeNotSupportedException;
import com.oracle.deviceaccess.atcmd.ATDevice;

3-2 Oracle Java ME Embedded Device Access API Guide

import com.oracle.deviceaccess.atcmd.CommandResponseHandler;
import java.io.IOException;

public class SMSExample {

 public static final int SUBMITTED = 1;
 public static final int SENT = 2;
 public static final int ERROR = 3;
 private ATDevice modem = null;
 private int status = 0;

 private class SMSHandler implements CommandResponseHandler {

 String text;

 public SMSHandler(String text) {
 this.text = text;
 }

 public String processResponse(ATDevice modem, String response) {
 // Assume that command echo has been previously disabled
 // (such as with an ATE0 command).

 if (response.equals("> \n")) { // Prompt for text
 return text;
 } else if (response.equals("OK\n")) {
 status = SENT; // Sent succesfully
 } else if (response.indexOf("ERROR") >= 0) {
 status = ERROR; // Failed to send
 }
 return null;
 }
 }

 public boolean sendSMS(final String number, final String text) {
 // Acquire a modem with "sms" properties
 try {
 if (modem == null) {
 modem = (ATDevice) PeripheralManager.open(null, ATDevice.class,
 new String[] { "javax.deviceaccess.atcmd.sms=true" });
 }
 // Send SMS command
 SMSHandler sh = new SMSHandler(text);
 modem.sendCommand("AT+CMGS=\"" + number + "\"\n", sh);
 status = SUBMITTED;
 return true; // Submitted succesfully
 } catch (IOException ex) {
 } catch (PeripheralNotFoundException ex) {
 } catch (PeripheralTypeNotSupportedException ex) {
 } catch (PeripheralNotAvailableException ex) {
 }
 return false;
 }

 public int getStatus() {
 return status;
 }

 public void close() {
 if (modem != null) {

The ATDevice Interface

AT Commands 3-3

 try {
 modem.close();
 } catch (IOException ex) {
 // Ignored
 }
 }
 }
}

AT devices are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The permissions
shown in Table 3–1 allow access to be granted to AT devices as a whole or to only
some of their protected functions. These permissions must be requested in the JAD file
under MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permissions may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The ATDevice Interface
The ATDevice interface provides methods for controlling data communication
equipment. Each AT device is identified by a numerical ID and optionally by a name
and by a set of capabilities (properties), as shown in Table 3–2.

This list may be extended to designate other, possibly proprietary, capabilities
(properties). As per convention, when one of this capabilities is supported by an AT
device it must be assigned as a positively-asserted boolean capability:
<keyword>=true. For example:

Table 3–1 Permissions for Using the AT Command APIs

Permissions Description

com.oracle.deviceaccess.atcmd Access to AT devices and modems (as a whole)

com.oracle.deviceaccess.atcmd.
ATDevice.openDataConnection

Opening data connections

Table 3–2 Properties of the ATDevice Interface

Permissions Description

javax.deviceaccess.atcmd.config Supports access to configuration, control, and
identification commands.

javax.deviceaccess.atcmd.csd Supports access to circuit switched data
(CSD) related AT commands.

javax.deviceaccess.atcmd.psd Supports access to packet switched data,
such as GPRS or EDGE, related AT
commands.

javax.deviceaccess.atcmd.voice Supports access to voice call related AT
commands.

javax.deviceaccess.atcmd.sms Supports access to SMS related AT
commands.

javax.deviceaccess.atcmd.sim Supports access to SIM related AT
commands.

javax.deviceaccess.atcmd.phonebook Supports access to phonebook related AT
commands.

The ATDevice Interface

3-4 Oracle Java ME Embedded Device Access API Guide

 javax.deviceaccess.atcmd.phonebook=true

When a capability is not supported by an AT device, negatively asserting the boolean
capability is optional.

An ATDevice instance can be opened by a call to one of the
PeripheralManager.open() methods. Commands can be issued to an ATdevice either
synchronously or asynchronously. When submitted synchronously using the
sendCommand(String), the response string will be available as the return value to the
call. When submitted asynchronously using the sendCommand(String,
CommandResponseHandler) a CommandResponseHandler instance must be provided to
handle the response when it becomes available.

Note that the command strings passed as parameter to the sendCommand() methods
are the complete AT command lines, including the AT prefix and a termination
character.

An ATDevice can only handle one command at a time. Commands cannot be sent or
queued while a command is already being handled. Nevertheless, if supported by the
underlying AT device, several commands may be concatenated in a single command
line.

An ATDevice may report responses that are either information text or result codes. A
result code can be one of three types: final, intermediate, and unsolicited. A final result
code, such as OK or ERROR, indicates the completion of command and the readiness for
accepting new commands. An intermediate result code (such as CONNECT) is a report of
the progress of a command. An unsolicited result code (such as RING) indicates the
occurrence of an event not directly associated with the issuance of a command.

Information text, final result code and intermediate result code responses are reported
as return values of calls to the sendCommand(String) method or as the parameter to
the processResponse() method of a CommandResponseHandler instance provided as
parameter to a call to sendCommand(String, CommandResponseHandler).

Note that such response strings may include command echoes, unless command echo
has been disabled, such as with an ATE0 command.

Unsolicited result code responses are reported and passed as parameter to the
processResponse() method of a UnsolicitedResponseHandler instance.

A data connection can be established by calling the
openDataConnection(java.lang.String,
com.oracle.deviceaccess.atcmd.CommandResponseHandler,
com.oracle.deviceaccess.atcmd.DataConnectionHandler) with a dedicated AT
command such as ATD. The state of the connection can be monitored by additionally
providing an DataConnectionHandler instance..

When done, an application should call the ATDevice.close() method to release the AT
device. Any further attempt to use an ATDevice instance which has been closed will
result in a PeripheralNotAvailableException been thrown.

Note that the sendCommand() methods of ATDevice do not parse the provided AT
commands. The AT command line should include the AT prefix and the proper
termination character when it is needed.

The ATDevice interface contains several command-related methods.

■ void sendCommand(java.lang.String cmd, CommandResponseHandler handler)
throws java.io.IOException, PeripheralNotAvailableException

This method sends an AT command and handle the response asynchronously. The
call will return immediately and the provided CommandResponseHandler instance

The ATDevice Interface

AT Commands 3-5

will be invoked to handle the response when available. The command line may or
may not include payload text (such as SMS body text), in which case the the
provided CommandResponseHandler instance will be invoked to provide the
additional input text (text prompt mode). If the command line includes payload
text, it must be properly terminated.

■ java.lang.String sendCommand(java.lang.String cmd) throws
java.io.IOException,PeripheralNotAvailableException

This method sends an AT command and waits for the response. If the command
line includes payload text, it must be properly terminated, otherwise the operation
may block. A blocked call may be canceled by a call to
abortCommand(java.lang.String). Note that the return response string may
include the command echo unless command echo has been disabled, such as with
an ATE0 command.

■ void abortCommand(java.lang.String abortSequence) throws
java.io.IOException,PeripheralNotAvailableException

This method aborts the currently executing command by sending the provided
abortSequence string. Abortion depends on the command's definition, or more
accurately, if it supports cancellation. Note that calling this method does not
guarantee abortion of the currently executing command. It only aborts if the
command supports cancellation and it is currently in a proper state for it.

■ void escapeToCommandMode() throws java.io.IOException,
PeripheralNotAvailableException

When in data mode, calling this method will try to switch to command mode such
as sending "+++" escape sequence.

■ boolean isInCommandMode() throws java.io.IOException,
PeripheralNotAvailableException

This method queries if this AT device is in command mode. When the device is in
command mode, a new command can be sent, provided no command is currently
being processed.

■ boolean isConnected() throws java.io.IOException,
PeripheralNotAvailableException

This method queries if this AT device has an opened data connection.

■ void setUnsolicitedResponseHandler(UnsolicitedResponseHandler handler)
throws java.io.IOException, PeripheralNotAvailableException

This method registers a handler for handling unsolicited result code responses. If
handler is null, then the previously registered handler will be removed. Only one
handler can be registered at a particular time.

■ DataConnection openDataConnection(java.lang.String cmd,
CommandResponseHandler crHandler, DataConnectionHandler dcHandler)
throws java.io.IOException, PeripheralNotAvailableException

This method opens a data connection by issuing the specified AT command, and
optionally handles the response and the opened connection asynchronously. The
call will return immediately and the provided CommandResponseHandler and
DataConnectionHandler instances will be invoked to handle the error or
intermediate and final result response, respectively, when available. Finally, the
connection will be subsequently closed.

■ int getMaxCommandLength() throws java.io.IOException,
PeripheralNotAvailableException

The ATModem Interface

3-6 Oracle Java ME Embedded Device Access API Guide

This method returns the maximum length of the command string that can be
processed by the underlying AT parser. Command string exceeding this value may
be cut off without warning as this is a default behavior of modems.

■ void close()

This method closes and releases the underlying peripheral device, making it
available to other applications. Once released, subsequent operations on the same
Peripheral instance will throw a PeripheralNotAvailableException.This
method has no effects if the peripheral device has already been closed. Note that
closing an ATDevice will also close the device's DataConnection as well as its
InputStream and OutputStream.

The ATModem Interface
The ATModem provides methods for controlling data communication equipment such as
a modem or a cellular module using AT commands and modem control signals. It
extends the ATDevice and ModemSignalsControl interfaces, but otherwise does not
define any methods of its own.

The CommandResponseHandler Interface
The CommandResponseHandler interface defines methods for handling responses to AT
commands. When commands are submitted asynchronously using the
sendCommand(String, CommandResponseHandler) method, a
CommandResponseHandler instance must be provided to handle the response when it
becomes available.

Only information text, final result code, and intermediate result code responses can be
handled by a CommandResponseHandler instance. Unsolicited result code responses can
be handled by a UnsolicitedResponseHandler instance.

The CommandResponseHandler interface consists of only one method:

■ java.lang.String processResponse(ATDevice atDevice, java.lang.String
response)

This method is invoked to process an information text, final result code or
intermediate result code response.

The DataConnection Interface
The DataConnection interface provides methods for retrieving the underlying input
and output streams of a data connection opened by issuing an AT command (such as
ATD).

There are three methods in this interface.

■ java.io.InputStream getInputStream() throws java.io.IOException

This method returns this data connection's input stream. The same InputStream
instance is returned upon subsequent calls. Note that if this data connection's
input stream has been previously closed, the method returns the same closed
input stream without attempting to re-open it.

■ java.io.OutputStream getOutputStream() throws java.io.IOException

This method returns this data connection's output stream. The same OutputStream
instance is returned upon subsequent calls. Note that if this data connection's

The UnsolicitedResponseHandler Class

AT Commands 3-7

output stream has been previously closed, the method returns the same closed
output stream without attempting to re-open it.

■ void close() throws java.io.IOException

This method closes this data connection. When a connection has been closed,
accessing any of its methods that involve an I/O operation will throw an
IOException. Closing an already closed connection has no effect. Closing a
connection will also close the connection's InputStream and OutputStream.

The DataConnectionHandler Interface
The DataConnectionHandler interface defines methods for handling connection state
changes.

There are two methods in this interface.

■ void handleOpenedDataConnection(ATDevice atDevice, DataConnection
connection)

This method is invoked to handle a data connection when first opened.

■ void handleClosedDataConnection(ATDevice atDevice, DataConnection
connection)

This method is invoked to handle a data connection when it has been closed.

The UnsolicitedResponseHandler Class
The UnsolicitedResponseHandler interface defines methods for handling unsolicited
result code responses from an AT device. Unsolicited result codes (such as RING)
indicate the occurrence of an event not directly associated with the issuance of an AT
command. To receive unsolicited result codes an UnsolicitedResponseHandler
instance must be registered with the AT device using the
ATDevice.setUnsolicitedResponseHandler(UnsolicitedResponseHandler) method.

The UnsolicitedResponseHandler class consists of one method.

■ void processResponse(ATDevice atDevice,java.lang.String code)

This method is invoked to process an unsolicited result code response.

The UnsolicitedResponseHandler Class

3-8 Oracle Java ME Embedded Device Access API Guide

4

Pulse Counters 4-1

4Pulse Counters

The com.oracle.deviceaccess.counter package contains interfaces and classes for
counting pulses on a digital input line. In order to access and control a specific pulse
counter, an application should first obtain an PulseCounter instance for the pulse
counter the application wants to access and control, using its numerical ID, name, type
(interface) and properties.

The following code is an example of using its ID.

 PulseCounter counter = (PulseCounter) PeripheralManager.open(8);

This is an example of using its name and interface, returned as a PulseCounter object:

 PulseCounter counter = (PulseCounter) PeripheralManager.open("ENCODER",
 PulseCounter.class, null);

Once opened, an application can start a pulse counting session by one of two ways.
First, an application can use the startCounting() method and retrieve the current
pulse count on-the-fly by calling the PulseCounter.getCount() method. Alternatively,
the application can start a pulse counting session with a terminal count value and a
counting time interval using the PulseCounter.startCounting(int, long,
com.oracle.deviceaccess.counter.CountingListener). The application can then be
asynchronously notified once the terminal count value has been reached or the
counting time interval has expired. In both cases, the application can retrieve the
current pulse count value at any time by calling the PulseCounter.getCount(), as
shown in the following example:

 counter.startCounting(); // Start counting pulses
 // Perform some task...
 int count = counter.getCount();
 // Retrieve the number of pulses that occurred while performing the task
 counter.stopCounting(); // Stop counting pulses

When done, the application should call the PulseCounter.close() method to release
PulseCounter.

 counter.close();

Example 4–1 shows how to use the pulse counter API.

Example 4–1 Using the Pulse Counter API

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.counter.CountingEvent;
import com.oracle.deviceaccess.counter.CountingListener;

The PulseCounter Interface

4-2 Oracle Java ME Embedded Device Access API Guide

import com.oracle.deviceaccess.counter.PulseCounter;
import java.io.IOException;

 class PulseCounting implements CountingListener {

 private PulseCounter counter = null;

 public void start(int counterID) throws IOException,
 PeripheralNotAvailableException, PeripheralNotFoundException
 {
 counter = (PulseCounter) PeripheralManager.open(counterID);
 counter.startCounting(-1, 1000, this);
 // Count events occuring during 1 second (without terminal count value)
 }

 public void countValueAvailable(CountingEvent event) {
 int count = event.getValue();
 // Handle pulse count...
 }

 public void stop() throws IOException, PeripheralNotAvailableException {
 if (counter != null) {
 counter.stopCounting();
 counter.close();
 }
 }
 }

Because of performance issue, procedures handling pulse counting events should be
optimized to be as fast as possible.

Pulse counters are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.counter permission allows access to be granted to pulse
counter devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The PulseCounter Interface
The PulseCounter interface provides methods for controlling a pulse counter. A pulse
counter can count pulses on a digital input line, possibly a GPIO pin.

A PulseCounter instance can be opened by a call to one of the
PeripheralManager.open() methods. Once opened, an application can either start a
pulse counting session using the startCounting() method and retrieve the current
pulse count on-the-fly by calling the getCount() method; alternatively, it can start a
pulse counting session with a terminal count value and a counting time interval using
the startCounting(int, long,
com.oracle.deviceaccess.counter.CountingListener) and get asynchronously
notified once the terminal count value has been reached or the counting time interval
has expired. In both cases, the application can retrieve the current pulse count at any
time (on-the-fly) by calling the getCount() method.

The pulse counting session can be suspended by calling suspendCounting() and later
on resumed from its previous count value by calling resumeCounting(). Suspending
the pulse counting also suspends the session counting time interval timer if active. The

The PulseCounter Interface

Pulse Counters 4-3

pulse count value can be reset at anytime during counting by calling
resetCounting(). This also resets the session counting time interval timer if active.
Finally, the pulse counting can be stopped by calling stopCounting().

When an application is no longer using a pulse counter it should call the
PulseCounter.close() method to release the pulse counter. Any further attempt to
use a pulse counter which has been closed will result in a
PeripheralNotAvailableException been thrown. Note that asynchronous notification
of pulse counting conditions is only loosely tied to hardware-level interrupt requests.
The platform does not guarantee notification in a deterministic or timely manner.

The PulseCounter interface contains seven methods.

■ int getCount() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the pulse count measured so far during the current or
previous counting session.

■ void startCounting() throws java.io.IOException,
PeripheralNotAvailableException

This method starts a pulse counting session. The pulse count value is reset to zero
(0).

■ void startCounting(int limit, long interval, CountingListener listener)
throws java.io.IOException, PeripheralNotAvailableException

This method starts an asynchronous pulse counting session. The provided
CountingListener instance will be asynchronously invoked when the pulse count
reaches the provided terminal count value or the specified counting time interval
expires, whichever happens first. The pulse count value is first reset to zero (0),
and will be reset every time the terminal count value is reached or the counting
time interval expires.

If limit is equal or less than 0 then the counting time interval will end only after
the time specified by interval has passed. If interval is equal to or less than 0,
then the counting time interval will end only after the pulse count has reached the
terminal count value specified by limit.

Pulse counting and notification will immediately start and will repeat until it is
stopped by a call to stopCounting(). Only one pulse counting session can be
going on at any time.

■ void resetCounting() throws java.io.IOException,
PeripheralNotAvailableException

This method resets the current count value.

■ void stopCounting() throws java.io.IOException,
PeripheralNotAvailableException

This method stops the pulse counting and freezes the current count value. The
count value will be reset upon the next start.

■ void suspendCounting() throws java.io.IOException,
PeripheralNotAvailableException

This method suspends the pulse counting and freezes the current count value.

■ void resumeCounting() throws java.io.IOException,
PeripheralNotAvailableException

This method resumes the counting starting from the frozen count value.

The CountingEvent Class

4-4 Oracle Java ME Embedded Device Access API Guide

The CountingEvent Class
The CountingEvent class encapsulates pulse counting conditions such as counter
terminal value reached or counting session time interval expired. If counting events
for the same pulse counter are coalesced the count value and the type (either the
terminal value is reached or the time interval has expired) retained are that of the last
occurrence.

The CountingEvent class consists of two constants, which describes the type:

■ public static final int TERMINAL_VALUE_REACHED

This constant indicates that the pulse count value has reached the defined terminal
value.

■ public static final int INTERVAL_EXPIRED

This constant indicates that the pulse counting time interval has expired.

The CountingEvent class also consists of two constructors and three methods:

■ public CountingEvent(PulseCounter counter, int type, int value, long
interval)

This constructor creates a new CountingEvent with the specified type, pulse count
value and actual counting time interval. The event is then time-stamped with the
current time.

■ public CountingEvent(PulseCounter counter, int type, int value, long
interval, long timeStamp, int timeStampMicros)

This constructor creates a new CountingEvent with the specified type, pulse count
value, actual counting time interval and timestamp.

■ public int getType()

This method returns the type of counting condition being notified.

■ public int getValue()

This method returns the pulse count value.

■ public long getInterval()

This method returns the actual counting time interval, in milliseconds. The actual
counting time interval may be smaller than the defined counting time interval if
the count terminal value has been reached.

The PulseCounterConfig Class
The PulseCounterConfig class encapsulates the hardware addressing information, as
well as the static and dynamic configuration parameters of a pulse counter.

Some hardware addressing parameter, and static and dynamic configuration
parameters may be set to PeripheralConfig.DEFAULT. Whether such default settings
are supported is both platform-dependent and peripheral driver-dependent.

An instance of PulseCounterConfig can be passed to the
PeripheralManager.open(PeripheralConfig) or PeripheralManager.open(Class,
PeripheralConfig) method to open the designated counter with the specified
configuration. A PeripheralConfigInvalidException is thrown when attempting to
open a peripheral device with an invalid or unsupported configuration

There are four constants in this class.

The PulseCounterConfig Class

Pulse Counters 4-5

■ public static final int TYPE_FALLING_EDGE_ONLY

This constants represents a falling pulse edge (counting only falling pulse edges).

■ public static final int TYPE_RISING_EDGE_ONLY

This constants represents a rising pulse edge (counting only rising pulse edges).

■ public static final int TYPE_POSITIVE_PULSE

This constants represents a positive edge pulse: measured from rising edge to
falling edge (counting well-formed positive edge pulses).

■ public static final int TYPE_NEGATIVE_PULSE

This constants represents a negative edge pulse: measured from falling edge to
rising edge (counting well-formed negative edge pulses).

There are two constructors and three methods in this class.

■ public PulseCounterConfig(int counterNumber, int type)

This constructor creates a new PulseCounterConfig with the specified hardware
addressing information and type. The source of the pulse counter is implicit, such
as a dedicated input pin.

■ public PulseCounterConfig(int counterNumber, int type, GPIOPinConfig
source)

This constructor creates a new PulseCounterConfig with the specified hardware
addressing information, type and GPIO pin source.

■ public int getCounterNumber()

This method returns the configured counter number.

■ public GPIOPinConfig getSource()

This method returns the configured input source on which the pulses are to be
counted or measured.

■ public int getType()

This method returns the configured pulse or pulse edge type.

The PulseCounterConfig Class

4-6 Oracle Java ME Embedded Device Access API Guide

5

Digital-to-Analog Converter 5-1

5Digital-to-Analog Converter

The com.oracle.deviceaccess.dac package contains interfaces and classes for writing
analog outputs using a Digital to Analog Converter (DAC). A DAC is a device that
converts a digital, typically binary, code to an analog signal, such as a current, voltage,
or electric charge.

One DAC converter can have several channels. Each channel can sample an analog
output from numerical values that are converted to output voltages. In order to access
and control a specific DAC channel, an application should first open and obtain an
DACChannel instance for the DAC channel the application wants to access and control,
using its numerical ID, name, type (interface) and properties.

This is an example of using its ID.

 DACChannel channel = (DACChannel) PeripheralManager.open(5);

This is an example of using its name and interface.

 DACChannel channel = (DACChannel) PeripheralManager.open("LED", DACChannel.class,
null);

Once the peripheral is opened, an application can write output values to a DAC
channel using methods of the DACChannel interface, such as the setValue() method.

 channel.setValue(brightness);

When completed, the application should call the DACChannel.close() method to
release the DAC channel.

channel.close();

Example 5–1 shows how to use the DAC API.

Example 5–1 Using the DAC API

import com.oracle.deviceaccess.InvalidStateException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.dac.DACChannel;
import com.oracle.deviceaccess.dac.GenerationEvent;
import com.oracle.deviceaccess.dac.GenerationListener;
import java.io.IOException;

class VaryingDimmer implements GenerationListener {

 private DACChannel channel = null;

The DACChannel Interface

5-2 Oracle Java ME Embedded Device Access API Guide

 public void start(int channelID) throws IOException,
 PeripheralNotAvailableException, PeripheralNotFoundException
 {
 if (channel != null) {
 throw new InvalidStateException();
 }
 channel = (DACChannel) PeripheralManager.open(channelID);
 channel.setSamplingInterval(1000); // every 1000 milliseconds
 // Creates a series of samples varying from min value to max value
 int[] values = new int[10];
 int min = channel.getMinValue();
 int max = channel.getMaxValue();
 for (int i = 0; i < values.length; i++) {
 values[i] = min + (((max - min) / (values.length - 1)) * i);
 }
 channel.startGeneration(values, 0, values.length, false, this);
 }

 public void outputGenerated(GenerationEvent event) {
 event.setActualNumber(event.getNumber());
 // Replay the same sample series
 }

 public void stop() throws IOException, PeripheralNotAvailableException {
 if (channel != null) {
 channel.stopGeneration();
 channel.close();
 }
 }
 }

Because of performance issue, procedures handling analog outputs should be
optimized to be as fast as possible.

DAC channels are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. Note that the
com.oracle.deviceaccess.dac permission allows access to be granted to DAC
channels as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The DACChannel Interface
The DACChannel interface provides methods for controlling a DAC (Digital to Analog
Converter) channel.

One DAC device can have several channels. Raw digital output values are converted
to analog output values according to the DAC channel resolution. According to the
DAC channel resolution, the raw digital output values may range from getMinValue()
to getMaxValue(). Actual output voltage values can be calculated from raw digital
values and the Reference Voltage value as returned by getVRefValue().

Each DAC channel is identified by a numerical ID and by a name. A DACChannel
instance can be opened by a call to one of the PeripheralManager.open() methods.
Once opened, an application can write an output value to a DAC channel by calling
the setValue(int) method or can write a series of output values to be sampled over a
period of time by calling the setValues(int[], int, int) method. An application

The DACChannel Interface

Digital-to-Analog Converter 5-3

can also asynchronously write a series of output values to be sampled over a period of
time by calling by calling the startSampling() methods with a SamplingListener
instance which will get cyclicly and asynchronously notified when the requested
number of samples have been written.

The output sampling can be stopped by calling the stopSampling() method. Only one
output operation (synchronous or asynchronous) can occur at any time. When an
application is no longer using an DAC channel, it should call the DACChannel.close()
method to release the DAC channel. Any further attempt to set or get the value of a
DAC channel which has been closed will result in a
PeripheralNotAvailableException been thrown.

Note that asynchronous notification of output sampling completion is only loosely tied
to hardware-level interrupt requests. The platform does not guarantee notification in a
deterministic or timely manner.

The DACChannel interface contains ten methods.

■ int getMinValue() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the minimum raw value this channel can sample. If the DAC
device resolution is n then the minimum value returned by getMinValue() and the
maximum value returned by getMaxValue() are such that: (max - min) == (2^n
- 1).

■ int getMaxValue() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the maximum raw value this channel can sample. If the DAC
device resolution is n then the minimum value returned by getMinValue() and the
maximum value returned by getMaxValue() are such that: (max - min) == (2^n
- 1).

■ double getVRefValue() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the reference voltage value of this DAC channel. If the
reference voltage is vRef and the DAC device resolution is n, then the actual
output voltage value corresponding to a raw value value written to this channel
can be calculated as follows: vOutput = (value * vRef) / (2^n)

■ void setValue(int value) throws java.io.IOException,
PeripheralNotAvailableException

This method writes the provided raw output value to this channel. The
corresponding converted analog output value will be held until it is overwritten
by another output operation. This method may be invoked at any time. If another
thread has already initiated a synchronous output operation upon this channel
then an invocation of this method will block until the first operation is complete.
Only one conversion,. synchronous or asynchronous, can occur at any time.

■ void setValues(int[] buffer, int offset, int count) throws
java.io.IOException, PeripheralNotAvailableException

This method writes count raw output values from the designated array to this
channel for sampling. The analog output will be sampled according to the current
sampling interval as returned by getSamplingInterval(). This method may be
invoked at any time. If another thread has already initiated an I/O operation upon
this channel, however, then an invocation of this method will block until the first
operation is complete. Only one conversion, synchronous or asynchronous, can
occur at any time.

The GenerationListener Interface

5-4 Oracle Java ME Embedded Device Access API Guide

■ void startGeneration(int[] buffer, int offset, int count, boolean
doubleBuffering, GenerationListener listener) throws
java.io.IOException, PeripheralNotAvailableException

This method starts asynchronous analog output generation on this channel from a
series of raw output values (samples). More values to be converted are
asynchronously fetched by notifying the provided GenerationListener instance
once the initial count raw output values have been converted. The initial raw
output values to be converted are read from the designated section of the provided
buffer. Values subsequently fetched using the provided GenerationListener
instance are read from the same buffer section. Analog output generation can be
stopped by a call to stopGeneration().

If double buffering is enabled, notification will happen when (count / 2) raw
output values have been written and writing will proceed with the other half of
the designated section of the provided buffer. Writing will only be suspended if
the previous event has not yet been handled. if count is not even then one part of
the designated buffer section may be longer (by 1) than the other one. The analog
output will be sampled according to the current sampling interval as returned by
getSamplingInterval(). Only one conversion, synchronous or asynchronous, can
occur at any time.

■ void stopGeneration() throws java.io.IOException,
PeripheralNotAvailableException

This method stops the asynchronous sampling of this channel output as started by
a call to the startGeneration() method.

■ void setSamplingInterval(int interval) throws java.io.IOException,
PeripheralNotAvailableException

This method returns the sampling interval, in microseconds. Whether changing
the sampling interval has an immediate effect on an active (synchronous or
asynchronous) generation is peripheral device-dependent as well as
platform-dependent.

■ int getSamplingInterval() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the sampling interval, in microseconds. If the sampling
interval was not set previously using setSamplingInterval(int), the peripheral
configuration-specific default value is returned.

■ int getMinSamplingInterval() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the minimum sampling interval, in microseconds, that can be
set using setSamplingInterval(int).

The GenerationListener Interface
The GenerationListener interface defines methods for being notified of the
completion of the conversion of a set of raw output values and that more output
values to be converted may be provided. A GenerationListener can be registered
using the DACChannel.startGeneration(int[], int, int, boolean,
com.oracle.deviceaccess.dac.GenerationListener) method.

The GenerationListener interface consists of only one method:

■ void outputGenerated(GenerationEvent event)

The GenerationEvent Class

Digital-to-Analog Converter 5-5

This method is invoked when a buffer of DAC output values has been converted,
and the buffer is available for copying more output values for convertion.

The DACChannelConfig Class
The DACChannelConfig class encapsulates the hardware addressing information, and
static and dynamic configuration parameters of an DAC channel. Some hardware
addressing parameters, as well as static and dynamic configuration parameters, may
be set to PeripheralConfig.DEFAULT. Whether such default settings are supported is
both platform-dependent and peripheral driver-dependent.

An instance of DACChannelConfig can be passed to the
PeripheralManager.open(PeripheralConfig) or PeripheralManager.open(Class,
PeripheralConfig) method to open the designated DAC channel with the specified
configuration. A PeripheralConfigInvalidException is thrown when attempting to
open a peripheral device with an invalid or unsupported configuration

The DACChannelConfig interface consists of one constructor and four methods:

■ public DACChannelConfig(int converterNumber, int channelNumber, int
resolution, int samplingInterval)

This constructor creates a new DACChannelConfig with the specified hardware
addressing information and configuration parameters.

■ public int getChannelNumber()

This method returns the configured channel number.

■ public int getResolution()

This method returns the configured resolution.

■ public int getConverterNumber()

This method returns the configured converter number.

■ public int getSamplingInterval()

This method returns the default/initial configured sampling interval, in
microseconds.

The GenerationEvent Class
The GenerationEvent class encapsulates DAC channel output sampling completion
conditions. A GenerationEvent may indicate that: either all the values to output have
been written and the designated buffer section is available for more values to output,
or, in case of double buffering, half of the values to output have been written and the
designated buffer section is available for more values to output.

When handling a GenerationEvent, the application may copy more output values to
be converted in the buffer section designated by the getValues(), getOffset() and
getNumber() methods. The application must set the actual number of output values
copied by calling setActualNumber(int). If the actual number is set to a value smaller
than the length of the designated buffer section, as given by the getNumber() method,
the current asynchronous analog output generation will stop after the last provided
output values have been converted, as if from a call to DACChannel.stopGeneration().

Note that this kind of event is never coalesced.

The GenerationEvent interface consists of two constructors and five methods:

Exceptions

5-6 Oracle Java ME Embedded Device Access API Guide

■ public GenerationEvent(DACChannel channel, int[] values, int offset,
int number)

This constructor creates a new GenerationEvent with the specified raw output
value buffer and time-stamped with the current time..

■ public GenerationEvent(DACChannel channel, int[] values, int offset,
int number, long timeStamp, int timeStampMicros)

This constructor creates a new GenerationEvent with the specified raw output
value buffer and timestamp.

■ public int[] getValues()

This method returns the buffer where the values to output must be copied. This
buffer is the same buffer that was passed as parameter to
DACChannel.startGeneration(int[], int, int, boolean,
com.oracle.deviceaccess.dac.GenerationListener).

■ public int getOffset()

This method returns the offset in the values buffer where to start copying the
values to output. This offset is within the range defined by the parameters passed
to DACChannel.startGeneration(int[], int, int, boolean,
com.oracle.deviceaccess.dac.GenerationListener).

■ public int getNumber()

This method returns the maximum number of values to output that can be copied
to the values buffer.

■ public void setActualNumber(int actualNumber)

This method sets the actual number of values to output that were copied to the
values buffer. If the provided value is smaller than the length of the designated
buffer section, as given by the getNumber() method, then the current
asynchronous analog output generation will be stopped, as if from a call to
DACChannel.stopGeneration().

■ public int getActualNumber()

This method returns the actual number of values to output that were copied to the
values buffer.

Exceptions
The com.oracle.deviceaccess.dac package consists of one exception, which is shown
in Table 5–1:

Table 5–1 Exceptions of the com.oracle.deviceaccess.dac Package

Suite Type Description

InvalidSamplingRateException Thrown by an instance of DACChannel in case the
requested sampling rate is higher than the maximum
sampling rate the DAC device can support.

6

Generic Input/Output Classes 6-1

6Generic Input/Output Classes

The com.oracle.deviceaccess.generic package contains interfaces and classes for
controlling devices using generic I/O operations.

The generic device API allows for accessing peripheral devices when there are no
more specific standard Java APIs, such as I2CDevice, SPIDevice, GPIOPin or GPIOPort.
This API offers three primary interfaces to encapsulate these devices:

■ GenericDevice

This interface encapsulates device control operations and event listener
registration. A device may implement this sole interface if it does not support any
read and write operations.

■ GenericBufferIODevice

This interface encapsulates device control operations and event listener
registration as inherited from GenericBufferIODevice as well as byte buffer read
and write operations.

■ GenericStreamIODevice

This interface encapsulates device control operations and event listener
registration as inherited from GenericBufferIODevice as well as stream-based
read and write operations.

In order to access a device using its generic interface, an application should first open
and obtain a GenericDevice instance for the device using its numerical ID, name, type
(interface) and properties.

This is an example of using its ID.

GenericDevice device = (GenericDevice) PeripheralManager.open(17);

This is an example of using its name and interface.

GenericStreamIODevice device = (GenericDevice) PeripheralManager.open("STORAGE",
GenericStreamIODevice.class, null);

Once the peripheral is opened, the application can set and get its controls, as well as
read and write data using methods of the GenericDevice, GenericBufferIODevice or
GenericStreamIODevice interfaces.

 device.read(buffer, 0, buffer.length);

When completed, the application should call the GenericDevice.close() method to
release the device.

device.close();

6-2 Oracle Java ME Embedded Device Access API Guide

Example 6–1 and Example 6–2 show how to use the generic API to communicate with
Real Time Clock device and an audio capture microphone, which may be accessible
over USB.

Example 6–1 Creating an Alarm using the Generic APIs

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.generic.GenericDevice;
import com.oracle.deviceaccess.generic.GenericEvent;
import com.oracle.deviceaccess.generic.GenericEventListener;
import java.io.IOException;

public class GenericAlarm {

 public static final int EVT_ALARM = 0;
 public static final int SECONDS = 0;
 public static final int SEC_ALARM = 1;
 public static final int MINUTES = 2;
 public static final int MIN_ALARM = 3;
 public static final int HR_ALARM = 4;
 public static final int HOURS = 5;
 public static final int ALARM_ENABLED = 6;
 private GenericDevice rtc = null;

 // Sets the daily alarm for after some delay
 public void setAlarm(byte delaySeconds, byte delayMinutes, byte delayHours)
 throws IOException, PeripheralException
 {
 rtc = (GenericDevice) PeripheralManager.open("RTC",
 GenericDevice.class, (String[]) null);
 byte currentSeconds = ((Byte) rtc.getControl(SECONDS)).byteValue();
 byte currentMinutes = ((Byte) rtc.getControl(MINUTES)).byteValue();
 byte currentHours = ((Byte) rtc.getControl(HOURS)).byteValue();
 byte i = (byte) ((currentSeconds + delaySeconds) % 60);
 byte j = (byte) ((currentSeconds + delaySeconds) / 60);
 rtc.setControl(SEC_ALARM, new Byte(i));
 i = (byte) ((currentMinutes + delayMinutes + j) % 60);
 j = (byte) ((currentMinutes + delayMinutes + j) / 60);
 rtc.setControl(MIN_ALARM, new Byte(i));
 i = (byte) ((currentHours + delayHours + j) % 24);
 rtc.setControl(HR_ALARM, new Byte(i));

 rtc.setEventListener(EVT_ALARM, new GenericEventListener() {
 public void eventDispatched(GenericEvent event) {
 GenericDevice rtc = (GenericDevice) event.getPeripheral();
 // Notify application of alarm
 }
 });
 // Enable alarm.
 rtc.setControl(ALARM_ENABLED, Boolean.TRUE);
 }

 public void close() {
 try {
 rtc.close();
 } catch (IOException ex) {
 }
 }
}

Generic Input/Output Classes 6-3

Example 6–2 An Audio Capture Using the Generic APIs

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.generic.GenericBufferIODevice;
import com.oracle.deviceaccess.generic.GenericDevice;
import com.oracle.deviceaccess.generic.GenericEvent;
import com.oracle.deviceaccess.generic.GenericEventListener;
import java.io.IOException;

public class GenericAudioCapture {

 public static final int EVT_VOLUME_CHANGED = 0;
 public static final int MIC_VOLUME = 0;
 public static final int MIC_SAMPLE_RATE = 1;
 public static final int MIC_AUTOMATIC_GAIN = 2;
 public static final int MIC_MUTE = 3;

 public void audioCapture(byte[] buffer, float sampleRate, boolean agc) throws
IOException, PeripheralException {
 GenericBufferIODevice mic = null;
 try {
 mic = (GenericBufferIODevice) PeripheralManager
 .open("MICROPHONE", GenericBufferIODevice.class,
 (String[]) null);
 mic.setControl(MIC_SAMPLE_RATE, new Float(sampleRate));
 mic.setControl(MIC_AUTOMATIC_GAIN, agc ?
 Boolean.TRUE : Boolean.FALSE);
 mic.setControl(MIC_MUTE, Boolean.FALSE);

 mic.setEventListener(EVT_VOLUME_CHANGED, new GenericEventListener() {
 public void eventDispatched(GenericEvent event) {
 GenericDevice mic = (GenericDevice) event.getPeripheral();
 try {
 float currentVolume = ((Float)
 mic.getControl(MIC_VOLUME)).floatValue();
 // ...
 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (PeripheralNotAvailableException ex) {
 ex.printStackTrace();
 }
 }
 });
 mic.read(buffer, 0, buffer.length);
 } finally {
 if (mic != null) {
 mic.close();
 }
 }
 }
}

Generic devices are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.generic permission allows access to be granted to generic

The GenericBufferIODevice Interface

6-4 Oracle Java ME Embedded Device Access API Guide

devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The GenericBufferIODevice Interface
The GenericBufferIODevice interface defines generic methods for accessing and
controlling peripheral devices using read and write operations.

A platform implementer may allow access and control of peripheral devices for which
there exist no other more specific APIs through this interface.

The GenericBufferIODevice interface contains three methods.

■ int read(byte[] rxBuf, int rxOff, int rxLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads up to rxLen bytes of data from this device into an array of
bytes. Note that the availability of new input data may be notified through an
GenericEvent with ID GenericEvent.INPUT_DATA_AVAILABLE.

■ int read(int skip, byte[] rxBuf, int rxOff, int rxLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads up to rxLen bytes of data from this device into an array of bytes
skipping the first skip bytes read. Note that the availability of new input data may
be notified through an GenericEvent with ID GenericEvent.INPUT_DATA_
AVAILABLE.

■ void write(byte[] txBuf, int txOff, int txLen) throws
java.io.IOException, PeripheralNotAvailableException

This method writes to this device txLen bytes from buffer txBuf. Note that an
empty output buffer condition may be notified through an GenericEvent with ID
GenericEvent.OUTPUT_BUFFER_EMPTY.

The GenericDevice Interface
The GenericDevice interface defines methods for setting and getting peripheral
device-specific configuration and access (I/O) controls as well as registering event
listeners.

An application can use this interface to set and get configuration and access (I/O)
controls. A control is identified by a numerical ID and can be set or gotten using the
setControl(int, java.lang.Object) and getControl(int) methods. Controls can be
used to configured a peripheral device a well as performing basic input/output
operations. The list of controls supported by a peripheral device is
peripheral-device-specific.

An application can also register an GenericEventListener instance to monitor native
events of the designated type fired by the peripheral device. To register a
GenericEventListener instance, the application must call the setEventListener(int,
GenericEventListener) method. The registered listener can later on be removed by
calling the same method with a null listener parameter. Asynchronous notification
may not be supported by all devices. An attempt to set a listener on a device which
does not supports it will result in an InvalidOperationException being thrown.

The GenericStreamIODevice Class

Generic Input/Output Classes 6-5

A platform implementer may allow through this interface access and control of
peripheral devices which do not require byte stream or buffer I/O (read, write) and for
which there exist no other more specific API.

The GenericDevice interface consists of three methods:

■ void setControl(int id, java.lang.Object value) throws
java.io.IOException, PeripheralNotAvailableException

This method sets the value of the specified control.

■ java.lang.Object getControl(int id) throws java.io.IOException,
PeripheralNotAvailableException

This method returns the value of the specified control.

■ void setEventListener(int eventId, GenericEventListener listener)
throws java.io.IOException, PeripheralNotAvailableException

This method registers a GenericEventListener instance to monitor native events
of the designated type fired by the peripheral device associated to this
GenericDevice object. While the listener can be triggered by hardware interrupts,
there are no real-time guarantees of when the listener will be called. A list of event
type IDs is defined in GenericEvent. This list can be extended with
peripheral-specific IDs. If listener is null then listener previously registered for the
specified event type will be removed. Only one listener can be registered at a
particular time for a particular event type.

The GenericEventListener Class
The GenericEventListener interface defines methods for being notified of events fired
by peripheral devices that implement the GenericDevice interface. A
GenericEventListener can be registered using the
GenericDevice.setEventListener(int, GenericEventListener) method.

The GenericEventListener interface consists of one method:

■ void eventDispatched(GenericEvent event)

This method is invoked when an event is fired by peripheral device.

The GenericStreamIODevice Class
The GenericStreamIODevice interface defines generic methods for accessing and
controlling peripheral devices capable of working with input and output streams. A
platform implementer may allow access and control of peripheral devices for which
there exist no other more specific API through this interface.

The GenericStreamIODevice interface consists of two methods:

■ java.io.InputStream getInputStream() throws java.io.IOException,
PeripheralNotAvailableException

This method returns an input stream to this device. The same InputStream
instance is returned upon subsequent calls. Note that if this device's input stream
has been previously closed, this method returns that same closed input stream
without attempting to re-open it. The availability of new input data may be
notified through an GenericEvent using the ID GenericEvent.INPUT_DATA_
AVAILABLE.

■ java.io.OutputStream getOutputStream() throws java.io.IOException,
PeripheralNotAvailableException

The GenericEvent Class

6-6 Oracle Java ME Embedded Device Access API Guide

This method returns an output stream to this device. The same OutputStream
instance is returned upon subsequent calls. Note that if this device's output stream
has been previously closed, this method returns that same closed output stream
without attempting to re-open it. An empty output buffer condition may be
notified through an GenericEvent with the ID GenericEvent.OUTPUT_BUFFER_
EMPTY.

■ void close() throws java.io.IOException

This method closes and releases the underlying peripheral device, making it
available to other applications. Once released, subsequent operations on that very
same Peripheral instance will throw a PeripheralNotAvailableException. This
method has no effects if the peripheral device has already been closed. Note that
closing a GenericStreamIODevice will also close the device's InputStream and
OutputStream.

The GenericEvent Class
The GenericEvent class encapsulates events fired by peripherals that implement the
GenericDevice interface.

The GenericEvent interface consists of three constants:

■ public static final int INPUT_DATA_AVAILABLE

This constant is an event ID indicating that input data is available for reading.

■ public static final int INPUT_BUFFER_OVERRUN

This constant is an event ID indicating an input buffer overrun.

■ public static final int OUTPUT_BUFFER_EMPTY

This constant is an event ID indicating that the output buffer is empty and that
additional data may be written.

The GenericEvent interface consists of two constructors and one method:

■ public GenericEvent(GenericDevice device, int id)

This constructor creates a new GenericEvent with the specified value. The event is
then time-stamped with the current time.

■ public GenericEvent(GenericDevice device, int id, long timeStamp, int
timeStampMicros)

This constructor creates a new GenericEvent with the specified value and
timestamp.

■ public int getID()

This method returns this event ID.

7

General Purpose Input/Output (GPIO) 7-1

7General Purpose Input/Output (GPIO)

This chapter discusses the interfaces and classes for reading from and writing to the
General Purpose Input/Output (GPIO) pins and ports of the embedded device board.

A GPIO pin is a generic pin whose value consists of one of two voltage settings (high
or low) and whose behavior can be programmed through software. A GPIO port is a
platform-defined grouping of GPIO pins (often 4 or more pins). However, GPIO pins
that are part of a GPIO port cannot be retrieved or controlled individually as GPIO
pins.

In order to use a specific pin or port, an application should first open and obtain a
GPIOPin or GPIOPort instance for the pin or port it wants to use, using its numerical
ID, name, type (interface), or properties.

Here is an example of obtaining a GPIOPin and a GPIOPort using its ID:

 GPIOPin pin = (GPIOPin) PeripheralManager.open(1);
 GPIOPort port = (GPIOPort) PeripheralManager.open(0);

Here is an example of using its name and interface:

 GPIOPin pin = (GPIOPin) PeripheralManager.open("LED_PIN", GPIOPin.class, null);
 GPIOPort port = (GPIOPort) PeripheralManager.open("LCD_DATA_PORT",
 GPIOPort.class, null);

Once a pin is opened, an application can obtain the current value of a GPIO pin by
calling the GPIOPin.getValue() method and set its value by calling the
GPIOPin.setValue(boolean) method. Likewise, once a port opened, an application
can obtain the current value of a GPIO port by calling the GPIOPort.getValue()
method and set its value by calling the GPIOPort.setValue(int) method.

 pin.setValue(true);
 port.setValue(0xFF);

When done, the application should call the GPIOPin.close() or GPIOPort.close()
method to release the pin or port, respectively.

 pin.close();
 port.close();

Example 7–1 gives an demonstration of using the GPIO API. First, it registers a pin
listener for the GPIO input pin that a switch button is attached to. When the button is
pressed, the listener is notified. The listener then turns the LED on or off by setting the
GPIO output pin that the LED is attached to accordingly.

Example 7–1 Using the GPIO APIs

7-2 Oracle Java ME Embedded Device Access API Guide

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.gpio.GPIOPin;
import com.oracle.deviceaccess.gpio.PinEvent;
import com.oracle.deviceaccess.gpio.PinListener;
import java.io.IOException;

public class GPIODemo {

 GPIOPin switchPin = null;
 GPIOPin ledPin = null;

 public GPIODemo() {
 try {
 switchPin = (GPIOPin) PeripheralManager.open(1);
 ledPin = (GPIOPin) PeripheralManager.open(3);
 switchPin.setInputListener(new PinListener() {
 public void valueChanged(PinEvent event) {
 try {
 ((GPIOPin) event.getPeripheral()).
 setValue(event.getValue()); // turn LED on or off
 } catch (IOException ex) {
 // Ignored
 } catch (PeripheralNotAvailableException ex) {
 // Ignored
 }
 }
 });
 } catch (IOException ex) {
 // Handle exception
 } catch (PeripheralNotFoundException ex) {
 // Handle exception
 } catch (PeripheralNotAvailableException ex) {
 // Handle exception
 } finally {
 if (switchPin != null) {
 try {
 switchPin.close();
 } catch (IOException ex) {
 }
 }
 if (ledPin != null) {
 try {
 ledPin.close();
 } catch (IOException ex) {
 }
 }
 }
 }
}

Note that the underlying platform configuration may allow for some GPIO pins or
ports to be set by an application for either output or input, while others may be used
for input only or output only and their direction cannot be changed by an application.
Note also that asynchronous notification of pin or port value changes is only loosely
tied to hardware-level interrupt requests. The platform does not guarantee notification
in a deterministic or timely manner.

The GPIOPin Interface

General Purpose Input/Output (GPIO) 7-3

Because of performance issue, procedures handling GPIO pins, and especially event
listeners, should be implemented to be as fast as possible.

GPIO pins and ports are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The permissions in
Table 7–1 allow access to be granted to GPIO pins and ports. as a whole as well as to
some of their protected functions. These permissions must be requested in the JAD file
under MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permissions may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The GPIOPin Interface
The GPIOPin interface provides methods for controlling a GPIO pin. A GPIO pin can
be configured for output or input. Output pins are both writable and readable while
input pins are only readable. The interface contains two constants, as shown in
Table 7–2:

Each GPIO pin is identified by a numerical ID and by a name. A GPIOPin instance can
be opened by a call to one of the PeripheralManager.open() methods. Once opened,
an application can obtain the current value of a GPIO pin by calling the getValue()
method and set its value by calling the setValue(boolean) method.

An application can either monitor a GPIO pin value changes using polling or can
register a PinListener instance, which will be asynchronously notified of any pin
value changes. To register a PinListener instance, the application must call the
setInputListener(PinListener) method. The registered listener can later on be
removed by calling the same method with a null listener parameter. Asynchronous
notification is only supported for GPIO pins configured for input. An attempt to set a
listener on a GPIO pin configured for output will throw an
InvalidOperationException.

When an application is no longer using a GPIO pin, it should call the GPIOPin.close()
method to release the GPIO pin. Any further attempt to set or get the value of a GPIO
pin which has been closed will throw a PeripheralNotAvailableException.

The initial direction of a GPIO pin which may be used for output or input. The initial
value of a GPIO pin set for output is configuration-specific. An application should

Table 7–1 GPIO API Permissions

Permission Description

com.oracle.deviceaccess.gpio Access to GPIO pins and ports (as a whole)

com.oracle.deviceaccess.gpio.GPIOP
in.setDirection

Changing the direction of a GPIO pin

com.oracle.deviceaccess.gpio.GPIOP
ort.setDirection

Changing the direction of a GPIO port

Table 7–2 GPIOPin Direction Constants

Constant Description

GPIOPin.INPUT The GPIO pin is configured for input and is only
readable.

GPIOPin.OUTPUT The GPIO pin is configured for output and is
both readable and writable.

The GPIOPort Interface

7-4 Oracle Java ME Embedded Device Access API Guide

always initially set the GPIO pin's direction; or first query the GPIO pin's direction
then set it if necessary.

Note that the configuration may allow for some GPIO pins to be set by the application
for either output or input, while others may be used for input only or output only and
their direction cannot be changed by the application. Note also that asynchronous
notification of pin value changes is only loosely tied to hardware-level interrupt
requests. The platform does not guarantee notification in a deterministic or timely
manner.

The GPIOPin interface consists of the following methods:

■ int getDirection() throws IOException, PeripheralNotAvailableException

This method returns the current pin direction: GPIOPin.OUTPUT if this GPIO pin is
currently set as output, or GPIOPin.INPUT if it is set as input.

■ boolean getValue() throws SecurityException, IOException,
PeripheralNotAvailableException

This method returns the current value of the GPIO pin. This method can be called
on both output and input pins. This method returns true if this pin is currently
high, or false if it is low.

■ void setDirection(int direction) throws IOException,
PeripheralNotAvailableException

This methods sets the GPIO pin direction, either for output or input. Any attempt
to set a GPIO pin to a direction not supported by the platform configuration
throws an InvalidOperationException.

■ void setValue(boolean value) throws IOException,
PeripheralNotAvailableException

This method sets the value of this GPIO pin. The boolean parameter represents the
new pin value: true for high, false for low. Any attempt to set the value on a
GPIO pin currently not configured for output throws an
InvalidOperationException.

■ void setInputListener(PinListener listener) throws java.io.IOException,
PeripheralNotAvailableException

This method registers a PinListener instance which will get asynchronously
notified when this GPIO pin's value changes and according to the current trigger
mode (see GPIOPinConfig.getTrigger()). Notification will automatically begin
after registration completes. A listener can only be registered for a GPIO pin
currently configured for input, and only one listener can be registered at a time. If
the parameter passed in is null, the current listener is removed.

The GPIOPort Interface
The GPIOPort interface provides methods for controlling a GPIO port. A GPIO port is
a platform-defined grouping of GPIO pins that can be configured for output or input.
Like GPIO pins, each GPIO port is identified by a numerical ID and by a name. Output
ports are both writable and readable while input ports are only readable. GPIO pins
that are part of a GPIO port cannot be retrieved or controlled as individual GPIOPin
instances.

 The GPIOPort interface contains two constants, as shown in Table 7–3:

The GPIOPort Interface

General Purpose Input/Output (GPIO) 7-5

A GPIOPort instance can be opened by a call to one of the PeripheralManager.open()
methods. Once opened, an application can obtain the current value of a GPIO port by
calling the getValue() method and set its value by calling the setValue(int) method.
A GPIO port has a minimum and maximum value range. The minimum value is zero.
An application can check the maximum value by calling getMaxValue() method. An
attempt to set a GPIO port with a value that exceeds its maximum range value will
throw an IllegalArgumentException.

An application can either monitor a GPIO port value changes using polling or can
register a PortListener instance, which will be asynchronously notified of any value
changes. To register a PortListener instance, the application must call the
setInputListener(PortListener) method. The registered listener can later on be
removed by calling the same method with a null listener parameter. Asynchronous
notification is only supported for GPIO port configured for input. An attempt to set a
listener on a GPIO port configured for output will throw an
InvalidOperationException.

When an application is no longer using a GPIO port, it should call the
GPIOPort.close() method to release the GPIO port. Any further attempt to set or get
the value of a GPIO port which has been closed will throw a
PeripheralNotAvailableException.

The initial direction of a GPIO port which may be used for output or input. The initial
value of a GPIO port set for output is configuration-specific. An application should
always initially set the GPIO port's direction; or first query the GPIO port's direction
then set it if necessary.

Note that the configuration may allow for some GPIO ports to be set by an application
for either output or input, while others may be used for input only or output only and
their direction cannot be changed by an application. Note also that asynchronous
notification of port value changes is only loosely tied to hardware-level interrupt
requests. The platform does not guarantee notification in a deterministic or timely
manner.

The GPIOPort interface consists of the following methods:

■ int getDirection() throws IOException, PeripheralNotAvailableException

This method returns the current port direction: GPIOPort.OUTPUT if this GPIO port
is currently set as output, or GPIOPort.INPUT if the port is set as input.

■ int getMaxValue() throws IOException, PeripheralNotAvailableException

This method returns the maximum value of this GPIO port. The value returned
should be interpreted as an unsigned 32-bit integer.

■ int getValue() throws SecurityException, IOException,
PeripheralNotAvailableException

This method returns the current value of this GPIO port. The value returned is
interpreted as an unsigned 32-bit integer, and depending on the platform

Table 7–3 GPIOPort Direction Constants

Constant Description

GPIOPort.INPUT The GPIO port is configured for input, and is
only readable.

GPIOPort.OUTPUT The GPIO port is configured for output, and is
both readable and writable.

The PinListener Interface

7-6 Oracle Java ME Embedded Device Access API Guide

configuration, the value of each pin can be tested against a bit in the resulting
value. This method can be called on both output and input pins.

■ void setDirection(int direction) throws IOException,
PeripheralNotAvailableException

This method sets the GPIO port for output or input. Any attempt to set the
direction of a GPIO port to a value that is not supported by the platform
configuration throws an InvalidOperationException.

■ void setValue(int value) throws IOException,
PeripheralNotAvailableException

This method sets the value of this GPIO port. Any attempt to set the value on a
GPIO port currently not configured for output throws an
InvalidOperationException. The value passed is interpreted as an unsigned
32-bit integer.

■ void setInputListener(PortListener listener) throws
java.io.IOException, PeripheralNotAvailableException

This method registers a PortListener instance that is asynchronously notified
when this GPIO port's value changes. Notification automatically begins after
registration completes. A listener can only be registered for a GPIO port currently
configured for input, and only one listener can be registered at a time. If the
parameter is null, the current listener is removed.

The PinListener Interface
The PinListener interface provides a means of notification if a GPIO pin value
changes. A PinListener can be registered using the
GPIOPin.setInputListener(com.oracle.deviceaccess.gpio.PinListener) method.

 The interface consists of only one method, void valueChanged(PinEvent event),
which is invoked when a GPIO pin's value has changed.

The PortListener Interface
The PortListener interface provides a means of notification if a GPIO port value
changes. A PortListener can be registered using the
GPIOPort.setInputListener(com.oracle.deviceaccess.gpio.PortListener)
method.

The interface consists of only one method, void valueChanged(PortEvent event),
which is invoked when a GPIO port's value has changed.

The GPIOPinConfig Class
The GPIOPinConfig class encapsulates the configuration parameters of a GPIO pin. An
instance of GPIOPinConfig can be passed to the
PeripheralManager.open(PeripheralConfig) method to open the designated GPIO
pin with the specified configuration.

The GPIOPinConfig class consists of several constants. The first four represent possible
directions for the GPIO pin, and are shown inTable 7–4.

The GPIOPinConfig Class

General Purpose Input/Output (GPIO) 7-7

The next four are possible values for the mode, and are shown in Table 7–5. Note that
the mode can also be PeripheralConfig.DEFAULT.

Finally, the last seven are possible values for the trigger, and are shown in Table 7–6.

The GPIOPinConfig class consists of one constructor and six methods:

■ public GPIOPinConfig(int portNumber, int pinNumber, int direction, int
mode, int trigger, boolean initValue)

This constructor creates a new GPIOPinConfig with the provided parameters. See
the earlier discussion for possible constant values for direction, mode, and
trigger.

■ public int getDirection()

This method returns the configured pin direction. The pin direction can be one of:
DIR_INPUT_ONLY, DIR_OUTPUT_ONLY, DIR_BOTH_INIT_INPUT, or DIR_BOTH_INIT_
OUTPUT.

■ public boolean getInitValue()

This method returns the configured initial boolean value of the pin, if configured
for output.

■ public int getPortNumber()

Table 7–4 Direction Constants in the GPIOPinConfig Class

Constant Description

DIR_INPUT_ONLY Input direction

DIR_OUTPUT_ONLY Output direction

DIR_BOTH_INIT_INPUT Bidirectional with initial input direction.

DIR_BOTH_INIT_OUTPUT Bidirectional with initial output direction.

Table 7–5 Mode Constants in the GPIOPinConfig Class

Constant Description

MODE_INPUT_PULL_UP Input pull-up drive mode.

MODE_INPUT_PULL_DOWN Input pull-down drive mode.

MODE_OUTPUT_PUSH_PULL Output push-pull drive mode.

MODE_OUTPUT_OPEN_DRAIN Output open-drain drive mode.

Table 7–6 Trigger Constants in the GPIOPinConfig Class

Constant Description

TRIGGER_NONE No interrupt trigger.

TRIGGER_FALLING_EDGE Falling edge trigger.

TRIGGER_RISING_EDGE Rising edge trigger.

TRIGGER_BOTH_EDGES Both edges trigger.

TRIGGER_HIGH_LEVEL High level trigger.

TRIGGER_LOW_LEVEL Low level trigger.

TRIGGER_BOTH_LEVELS Both levels trigger.

The GPIOPortConfig Class

7-8 Oracle Java ME Embedded Device Access API Guide

This method returns the configured port number for the pin.

■ public int getPinNumber()

This method returns the configured pin number.

■ public int getDriveMode()

This method returns the configured pin drive mode. The possible values can be:
either PeripheralConfig.DEFAULT or a bitwise OR of at least one of : MODE_INPUT_
PULL_UP, MODE_INPUT_PULL_DOWN, MODE_OUTPUT_PUSH_PULL, and MODE_OUTPUT_
OPEN_DRAIN.

■ public int getTrigger()

This method returns the configured pin interrupt trigger. The pin interrupt trigger
can be one of: TRIGGER_NONE, TRIGGER_FALLING_EDGE, TRIGGER_RISING_EDGE,
TRIGGER_BOTH_EDGES, TRIGGER_HIGH_LEVEL, TRIGGER_LOW_LEVEL, TRIGGER_BOTH_
LEVELS.

The GPIOPortConfig Class
The GPIOPortConfig class encapsulates the configuration parameters of a GPIO port.
An instance of GPIOPortConfig can be passed to the
PeripheralManager.open(PeripheralConfig) method to open the designated GPIO
port with the specified configuration. Note that the interrupt trigger of a GPIO port is
defined by the interrupt triggers configured for its pins. For more information, see
GPIOPinConfig.getTrigger().

The GPIOPortConfig class contains four constants, representative of the direction of
the port. The constants are shown in Table 7–7.

The GPIOPortConfig class consists of one constructor and three methods:

■ GPIOPortConfig(int direction, int initValue, GPIOPinConfig[] pins)

This constructor creates a new GPIOPortConfig with the provided parameters. See
the earlier discussion for possible constant values for direction.

■ public int getDirection()

This method returns the configured pin direction.

■ public boolean getInitValue()

This method returns the configured initial boolean value of the pin, if configured
for output.

■ public GPIOPinConfig[] getPins()

This method returns the configured pins composing the port, in the exact same
order that they compose the port.

Table 7–7 Direction Constants in the GPIOPortConfig Class

Constant Description

DIR_INPUT_ONLY Input port direction.

DIR_OUTPUT_ONLY Output port direction.

DIR_BOTH_INIT_INPUT Bidirectional port direction with initial input direction.

DIR_BOTH_INIT_OUTPUT Bidirectional port direction with initial output direction.

The PortEvent Class

General Purpose Input/Output (GPIO) 7-9

The PinEvent Class
The PinEvent class encapsulates GPIO pin value changes. If value change events for
the same GPIO pin are coalesced, the value returned is that of the last occurrence. The
class consists of two constructors and one accessor.

■ PinEvent(GPIOPin pin, boolean value)

This constructor creates a new PinEvent with the specified value. The event is then
time-stamped with the current time.

■ PinEvent(GPIOPin pin, boolean value, long timeStamp, int
timeStampMicros)

This constructor creates a new PinEvent with the specified value and timestamp.
Additional microseconds can also be added using the fourth parameter, if
necessary.

■ boolean getValue()

This method returns a boolean indicating the GPIO pin's new value, true for high
or false for low.

The PortEvent Class
The PortEvent class encapsulates GPIO port value changes. If value change events for
the same GPIO port are coalesced, the value returned is that of the last occurrence.

■ PortEvent(GPIOPort port, boolean value)

This constructor creates a new PortEvent with the specified value. The event is
then time-stamped with the current time.

■ PortEvent(GPIOPort port, boolean value, long timeStamp, int
timeStampMicros)

This constructor creates a new PortEvent with the specified value and timestamp.
Additional microseconds can also be added using the fourth parameter, if
necessary.

■ int getValue()

This method returned is interpreted as an unsigned 32-bit integer representing the
GPIO port's new value.

The PortEvent Class

7-10 Oracle Java ME Embedded Device Access API Guide

8

Inter-Integrated Circuit Bus 8-1

8Inter-Integrated Circuit Bus

This chapter describes the interfaces and classes for Inter-Integrated Circuit Bus
control. I²C (often pronounced "i-squared C") is a multi-master serial single-ended
computer bus that is used to attach low-speed peripherals to an embedded system or
other electronic device.

The functionalities supported by this API are those of an I²C master. In order to
communicate with a specific slave device, an application should first open and obtain
an I2CDevice instance for the I²C slave device the application wants to exchange data
with, using its numerical ID, name, type (interface) or properties. This is an example of
using its ID:

 I2CDevice slave = (I2CDevice) PeripheralManager.open(3);

This is an example of using its name and interface:

 I2CDevice slave = (I2CDevice) PeripheralManager.open("ADC1",
 I2CDevice.class, null);

Once the peripheral opened, the application can exchange data with the I²C slave
device using methods of the I2CDevice interface such as the write() method.

 slave.write(sndBuf, 0, 1);

When the data exchange is over, the application should call the Peripheral.close()
method to release I²C slave device.

 slave.close();

Example 8–1 and Example 8–2 demonstrate two ways of using the I²C API to
communicate with an I²C slave device.

Example 8–1 Using the I2C APIs to Interact with LEDs

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.i2cbus.I2CDevice;
import java.io.IOException;

public class I2CExample1 {

 public static final String LED_SLAVE_NAME = "LED_CONTROLLER";
 public static final byte[] LED_STOP_COMMAND = null;
 public static final byte[] LED_OFF_COMMAND = null;
 public static final byte[] LED_ON_COMMAND = null;
 public static int LED_LOOP_COUNT = 10;
 public static long LED_BLINK_TIME = 1500;

8-2 Oracle Java ME Embedded Device Access API Guide

 I2CDevice slave = null;

 public I2CExample1() {
 try {
 slave = (I2CDevice) PeripheralManager.open(
 LED_SLAVE_NAME, I2CDevice.class, (String[]) null);
 // Clear all status of the 'LED' slave device
 slave.write(LED_STOP_COMMAND, 0, LED_STOP_COMMAND.length);
 slave.write(LED_OFF_COMMAND, 0, LED_OFF_COMMAND.length);

 for (int i = 0; i < LED_LOOP_COUNT; i++) {
 // turning 'LED' on and keeping it on for 1500ms
 slave.write(LED_ON_COMMAND, 0, LED_ON_COMMAND.length);
 try {
 Thread.sleep(LED_BLINK_TIME);
 } catch (InterruptedException ex) {
 }

 // turning 'LED' off keeping it off for 1500ms
 slave.write(LED_OFF_COMMAND, 0, LED_OFF_COMMAND.length);
 try {
 Thread.sleep(LED_BLINK_TIME);
 } catch (InterruptedException ex) {
 }
 }
 } catch (IOException ex) {
 // Handle exception
 } catch (PeripheralException ex) {
 // Handle exception
 } finally {
 if (slave != null) {
 try {
 slave.close();
 } catch (IOException ex) {
 }
 }
 }
 }
}

Example 8–2 Writing and Reading Data Using the I2C APIs

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.PeripheralTypeNotSupportedException;
import com.oracle.deviceaccess.i2cbus.I2CDevice;
import java.io.IOException;

public class I2CExample2 {

 I2CDevice slave = null;

 public I2CExample2() {
 try {
 slave = (I2CDevice) PeripheralManager.open("EEPROM",
 I2CDevice.class, (String[]) null);

 byte[] addr = new byte[4];

The I2CDevice Interface

Inter-Integrated Circuit Bus 8-3

 byte[] data = new byte[4];

 try {
 slave.begin();
 slave.write(addr, 0, 2); // Writes the address
 int count = slave.read(data, 0, 1);
 // Read the data at that EEPROM address
 } finally {
 slave.end();
 }

 } catch (PeripheralNotAvailableException ex) {
 ex.printStackTrace();
 } catch (PeripheralNotFoundException ex) {
 ex.printStackTrace();
 } catch (PeripheralTypeNotSupportedException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 } finally {
 if (slave != null) {
 try {
 slave.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
 }

}

More information about the I²C-bus specification can be found at
http://www.nxp.com/documents/user_manual/UM10204.pdf

I²C slave devices are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.i2c permission allows access to be granted to I²C slave
devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The I2CDevice Interface
The I2CDevice interface provides methods for sending and receiving data to and from
an I²C slave device. Each I²C slave device is identified by both a numerical ID and a
name. An I2CDevice instance can be acquired by a call to one of the
PeripheralManager.open() methods.

On an I²C bus, data is transferred between the I²C master device and an I²C slave
device through single or combined messages.

With single messages, the approach is simple: the I²C master can read data from an I²C
slave using one of the read() methods and can write data to an I²C slave using one of
the write() methods.

With combined messages, the I²C master issues at least two reads or writes to one or
more slaves. Issuing multiple reads and writes to several slaves is not supported.

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf

The I2CDevice Interface

8-4 Oracle Java ME Embedded Device Access API Guide

However, if the master is communicating with a single slave, it can explicitly start a
combined message by calling the begin() method, issuing several read or write
operations using the read() and write() methods, then end the combined message by
calling the end() method. An application can also use the convenience methods
read(subaddress, subaddressSize,...) and write(subaddress,
subaddressSize,...), which read and write from slave device subaddresses or
register addresses.

The following example illustrates the use of begin() and end() to implement the
read(subaddress, subaddressSize,...) method:

public int read(int subaddress, int subaddressSize, byte[] dstBuf, int dstOff,
 int dstLen) throws IOException, PeripheralNotAvailableException
 {
 if (subaddress < 0 || subaddressSize < 1 || subaddressSize > 4)
 throw IllegalArgumentException();

 byte[] subaddr = new byte[] { (byte) ((subaddress >> 24) & 0xFF),
 (byte) ((subaddress >> 16) & 0xFF),
 (byte) ((subaddress >> 8) & 0xFF),
 (byte) ((subaddress >> 0) & 0xFF)
 };

 try {
 begin();
 write(subaddr, subaddr.length - subaddressSize,
 subaddressSize); // Writes the subaddress
 return read(dstBuf, dstOff, dstLen); // Read the data at that subaddress
 } finally {
 end();
 }
}

When exchanging data, the most significant bytes of data are stored at the lower index
(first) in the sending and receiving byte buffers.

When the data exchange is over, an application should call the I2CDevice.close()
method to release the I²C slave device. Any further attempt to write to or read from an
I²C slave device which has been closed will throw a
PeripheralNotAvailableException. Note that the current API does not allow for
reading and writing subsequently to and from different buffers without sending a
repeated start between subsequent reads or writes.

The I2CDevice interface consists of the following methods:

■ void begin() throws java.io.IOException,
PeripheralNotAvailableException

This method demarcates the beginning of an I²C transaction. Subsequent read and
write operations will be part of the same I²C combined message.

■ void end() throws java.io.IOException, PeripheralNotAvailableException

This method demarcates the end of a transaction, hence ending the I²C combined
message.

■ void int read() throws java.io.IOException,
PeripheralNotAvailableException

This method reads one byte of data from this slave device. The byte is returned as
an int in the range 0 to 255.

The I2CDeviceConfig Class

Inter-Integrated Circuit Bus 8-5

■ int read(byte[] dstBuf, int dstOff, int dstLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads up to dstLen bytes of data from this slave device into an array
of bytes represented by dstBuf, starting at the offset dstOff in the array.

■ int read(int skip, byte[] dstBuf, int dstOff, int dstLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads up to dstLen bytes of data, skipping the first skip bytes, from
this slave device into an array of bytes represented by dstBuf, starting at the offset
dstOff in the array.

■ int read(int subaddress, int subaddressSize, byte[] dstBuf, int dstOff,
int dstLen) throws java.io.IOException, PeripheralNotAvailableException

This method reads from a subaddress or register address of this slave device,
writing dstLen bytes into the buffer dstBuf, starting at the offset dstOff. The most
significant bytes (MSB) of the subaddress or register address are transferred first.
The subaddressSize field represents the size of the subaddress or register address,
from 1 to 4 bytes.

■ int read(int subaddress, int subaddressSize, int skip, byte[] dstBuf,
int dstOff, int dstLen) throws java.io.IOException,
PeripheralNotAvailableException

This method reads from a subaddress or register address of this slave device, after
skipping skip bytes, and writing dstLen bytes into the buffer dstBuf, starting at
the offset dstOff. The most significant bytes (MSB) of the subaddress or register
address are transferred first. The subaddressSize field represents the size of the
subaddress or register address, from 1 to 4 bytes.

■ void write(int srcData) throws java.io.IOException,
PeripheralNotAvailableException

This method writes one byte to this slave device. The eight low-order bits of the
argument data are written; the 24 high-order bits of srcData are ignored.

■ void write(byte[] srcBuf, int srcOff, int srcLen) throws
java.io.IOException, PeripheralNotAvailableException

This method writes to this slave device srcLen bytes from buffer srcBuf, starting
at the offset srcOff.

■ void write(int subaddress, int subaddressSize, byte[] srcBuf, int
srcOff, int srcLen) throws java.io.IOException,
PeripheralNotAvailableException

This method writes to a subaddress or register address of this slave device srcLen
bytes from buffer srcBuf, starting at the offset srcOff. The most significant bytes
(MSB) of the subaddress or register address are transferred first. The
subaddressSize field represents the size of the subaddress or register address,
from 1 to 4 bytes.

The I2CDeviceConfig Class
The I2CDeviceConfig class encapsulates the configuration parameters of an I²C slave
device. An instance of I2CDeviceConfig can be passed to the
PeripheralManager.open(PeripheralConfig) method to open the designated I²C
slave device with the specified configuration.

The I2CDeviceConfig class consists of one constructor and five methods.

The I2CDeviceConfig Class

8-6 Oracle Java ME Embedded Device Access API Guide

■ public I2CDeviceConfig(int busNumber, int address, int addressSize, int
clockFrequency)

This constructor creates a new I2CDeviceConfig with the provided parameters.
Unused or not applicable numerical parameters should be set to
PeripheralConfig.DEFAULT.

■ public int getBusNumber()

This method retrieves the configured I²C bus number the I²C slave device is
connected to.

■ public int getAddress()

This method retrieves the configured address of the I²C slave device.

■ public int getAddressSize()

This method retrieves the configured address size of the I²C slave device: 7 bits or
10 bits or PeripheralConfig.DEFAULT.

■ public int getClockFrequency()

This method retrieves the configured clock frequency (in Hertz) supported by the
I²C slave device.

9

Memory-Mapped Input/Output 9-1

9Memory-Mapped Input/Output

This chapter describes the interfaces and classes for embedded memory-mapped input
and output (MMIO).

Memory mapped I/O is typically used for controlling hardware peripherals by
reading from and writing to registers or memory blocks mapped to the hardware’s
system memory. The MMIO API allows for low-level control over the peripheral.

In order to access a specific memory block that a device has been mapped to, an
application should first open and obtain an MMIODevice instance for the
memory-mapped I/O device, using its numerical ID, name, type (interface) or
properties. This is an example of using the ID.

 MMIODevice device = (MMIODevice) PeripheralManager.open(7);

This is an example of using its name and interface.

 MMIODevice device = (MMIODevice) PeripheralManager.open("RTC", MMIODevice.class,
null);

Once the peripheral is opened, the application can retrieve registers using methods of
the MMIODevice interface such as the MMIODevice.getByteRegister(String) method.

 RawByte seconds = (RawByte) device.getByteRegister("Seconds");

When done, the application should call the Peripheral.close() method to release
MMIO device.

 device.close();

The following code give examples of using the MMIO API to communicate Real Time
Clock device.

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.mmio.MMIODevice;
import com.oracle.deviceaccess.mmio.MMIOEvent;
import com.oracle.deviceaccess.mmio.MMIOEventListener;
import com.oracle.deviceaccess.mmio.RawBlock;
import com.oracle.deviceaccess.mmio.RawByte;
import java.io.IOException;

public class MMIOExample {

 static final int INTERRUPT = 0;
 MMIODevice rtc = null;

9-2 Oracle Java ME Embedded Device Access API Guide

 public MMIOExample() {

 try {
 rtc = (MMIODevice) PeripheralManager.open("RTC",
 MMIODevice.class, (String[]) null);
 //The RTC device has 14 bytes of clock/control registers and 50 bytes
 // of general purpose RAM (see data sheet of the HITACHI HD146818 RTC)
 RawByte seconds = rtc.getByteRegister("Seconds");
 RawByte secAlarm = rtc.getByteRegister("SecAlarm");
 RawByte minutes = rtc.getByteRegister("Minutes");
 RawByte minAlarm = rtc.getByteRegister("MinAlarm");
 RawByte hours = rtc.getByteRegister("Hours");
 RawByte hrAlarm = rtc.getByteRegister("HrAlarm");

 RawByte registerA = rtc.getByteRegister("RegisterA");
 RawByte registerB = rtc.getByteRegister("RegisterB");
 RawByte registerC = rtc.getByteRegister("RegisterC");
 RawByte registerD = rtc.getByteRegister("RegisterD");
 RawBlock userRAM = rtc.getBlock("UserRam");

 } catch (PeripheralException pe) {
 } catch (IOException ioe) {
 } finally {
 if (rtc != null) {
 try {
 rtc.close();
 } catch (IOException ex) {
 }
 }
 }
 }

 // Sets the daily alarm for after some delay

 public void setAlarm(byte delaySeconds, byte delayMinutes, byte delayHours)
 throws IOException, PeripheralException
 {
 MMIODevice rtc = (MMIODevice) PeripheralManager.open("RTC",
 MMIODevice.class, (String[]) null);
 RawByte seconds = rtc.getByteRegister("Seconds");
 RawByte secAlarm = rtc.getByteRegister("SecAlarm");
 RawByte minutes = rtc.getByteRegister("Minutes");
 RawByte minAlarm = rtc.getByteRegister("MinAlarm");
 RawByte hours = rtc.getByteRegister("Hours");
 RawByte hrAlarm = rtc.getByteRegister("HrAlarm");
 RawByte registerB = rtc.getByteRegister("RegisterB");

 // Directly read from/write to the registers using RawByte instances.
 byte currentSeconds = seconds.get();
 byte currentMinutes = minutes.get();
 byte currentHours = hours.get();
 int i = (currentSeconds + delaySeconds) % 60;
 int j = (currentSeconds + delaySeconds) / 60;
 secAlarm.set((byte) i);
 i = (currentMinutes + delayMinutes + j) % 60;
 j = (currentMinutes + delayMinutes + j) / 60;
 minAlarm.set((byte) i);
 i = (currentHours + delayHours + j) % 24;
 hrAlarm.set((byte) i);

The MMIODevice Interface

Memory-Mapped Input/Output 9-3

 rtc.setMMIOEventListener(INTERRUPT, new MMIOEventListener() {
 public void eventDispatched(MMIOEvent event) {
 try {
 MMIODevice rtc = (MMIODevice) event.getPeripheral();
 RawByte registerC = rtc.getByteRegister("RegisterC");
 // Check the Alarm Interrupt Flag (AF)
 if ((registerC.get() & 0X20) != 0) {
 // Notify application of alarm
 }
 } catch (IOException ex) {
 } catch (PeripheralNotAvailableException ex) {
 }
 }
 });
 // Set the Alarm Interrupt Enabled (AIE) flag
 registerB.set((byte) (registerB.get() | 0X20));
 }
}

Alternatively, in this example, the value of RegisterC could be automatically captured
upon occurrence of an interrupt request from the Real Time Clock device as follows:

rtc.setMMIOEventListener(INTERRUPT, "RegisterC", new MMIOEventListener() {

 public void eventDispatched(MMIOEvent event) {
 byte v = (byte) event.getCapturedRegisterValue();
 // Check the Alarm Interrupt Flag (AF)
 if ((v & 0X20) != 0) {
 // Notify application of alarm
 }
 }
 });

MMIO devices are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.mmio permission allows access to be granted to MMIO
devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

Note that version 3.3 of the Oracle Java ME Embedded platform has discarded all
functions from version 3.2 that employed the long datatype.

The MMIODevice Interface
The MMIODevice class provides methods to retrieve memory-mapped registers and
memory blocks of a peripheral device. Each memory-mapped I/O device is identified
by a numerical ID and by a name. An MMIODevice instance can be acquired by a call to
MMIOManager.getDevice(int) or MMIOManager.getDevice(java.lang.String).

With memory-mapped I/O, peripheral devices can be controlled by directly reading or
writing to memory areas representing the registers or memory blocks of the peripheral
device. Each register or memory block is represented by a RawMemory instance. All the
mapped registers, including memory blocks, of an MMIO device can be retrieved by a
call to the appropriate get...Registers() method. The RawMemory instance associated
to a register has a fixed, determined index in the array returned by those methods.

The MMIODevice Interface

9-4 Oracle Java ME Embedded Device Access API Guide

Each register or memory block is also usually assigned a name that can be used for
name-based lookup.

An application can register an MMIOEventListener instance to monitor native events of
the designated type fired by the peripheral device. To register a MMIOEventListener
instance, the application must call the setMMIOEventListener(int,
MMIOEventListener) method. The registered listener can later on be removed by
calling the same method with a null parameter. Asynchronous notification might not
be supported by all memory-mapped devices. An attempt to set a listener on a
memory-mapped device that does not supports it throws an
InvalidOperationException.

The MMIODevice interface consists of the following methods:

■ RawBlock getAsRawBlock() throws java.io.IOException,
PeripheralNotAvailableException

This method retrieves the complete memory area this device is mapped to as a
RawBlock instance.

■ RawBlock getBlock(java.lang.String name) throws java.io.IOException,
PeripheralNotAvailableException

This method retrieves the designated memory block.

■ int getByteOrdering() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the byte ordering of this memory-mapped peripheral device.
The three possible values are MMIODevice.BIG_ENDIAN if big-endian,
MMIODevice.LITTLE_ENDIAN if little-endian, and MMIODevice.MIXED_ENDIAN
otherwise.

■ RawByte getByteRegister(java.lang.String name) throws
java.io.IOException, PeripheralNotAvailableException

This method retrieves the designated register holding a byte value.

■ RawShort getShortRegister(java.lang.String name) throws
java.io.IOException, PeripheralNotAvailableException

This method retrieves the designated register holding a short value.

■ RawInt getIntRegister(java.lang.String name) throws
java.io.IOException, PeripheralNotAvailableException

This method retrieves the designated register holding an int value.

■ void setMMIOEventListener(int eventId, MMIOEventListener listener)
throws java.io.IOException, PeripheralNotAvailableException

This method registers a MMIOEventListener instance to monitor native events of
the designated type fired by the peripheral device mapped to this MMIODevice
object. While the listener can be triggered by hardware interrupts, there are no
real-time guarantees of when the listener is called. If the listener parameter is
null, the listener previously registered for the specified event type is removed.
Only one listener can be registered at a particular time for a particular event type.

■ void setMMIOEventListener(int eventId, String capturedName,
MMIOEventListener listener) throws java.io.IOException,
PeripheralNotAvailableException

This method registers a MMIOEventListener instance to monitor native events of
the designated type fired by the peripheral device mapped to this MMIODevice

The RawBlock Interface

Memory-Mapped Input/Output 9-5

object. The captureName parameter indicates the name of the register or memory
block whose content is to be captured at the time of the underlying event occurs.
While the listener can be triggered by hardware interrupts, there are no real-time
guarantees of when the listener is called. If the listener parameter is null, the
listener previously registered for the specified event type is removed. Only one
listener can be registered at a particular time for a particular event type.

■ void setMMIOEventListener(int eventId, byte[] captureBuffer, int
capturedIndex, int capturedLength, MMIOEventListener listener) throws
java.io.IOException, PeripheralNotAvailableException

This method registers a MMIOEventListener instance to monitor native events of
the designated type fired by the peripheral device mapped to this MMIODevice
object. When the event occurs, the memory is captured in the specified byte buffer,
starting at the designated index and length. While the listener can be triggered by
hardware interrupts, there are no real-time guarantees of when the listener is
called. If the listener parameter is null, the listener previously registered for the
specified event type is removed. Only one listener can be registered at a particular
time for a particular event type.

The MMIOEventListener Interface
The MMIOEventListener interface defines methods for getting notified of events fired
by peripherals mapped to memory. A MMIOEventListener can be registered using the
MMIODevice.setMMIOEventListener(int, MMIOEventListener) method.

The interface consists of only one method, void eventDispatched(MMIOEvent event).
This method is invoked when an event is fired by a memory-mapped peripheral.

The RawMemory Interface
The RawMemory interface provides generic methods for the different types of raw
memory area to which a peripheral device's registers may be mapped.

The interface consists of only one method, java.lang.String getName(). This method
returns the name assigned to this RawMemory instance.

The RawBlock Interface
The RawBlock interface provides methods to access a continuous range of physical
memory (raw memory). A RawBlock instance can be obtained from a MMIODevice
instance. The index values map to physical memory addresses and are measured in
bytes. The index values are relative to the base address of the raw memory area. The
index value 0 corresponds to the base address of raw memory area. The byte ordering
of the underlying raw memory area can be retrieved using the
MMIODevice.getByteOrdering() method.

The RawBlock interface consists of the following methods:

■ int getSize()

This method returns the size in bytes of the raw memory area associated with this
object.

■ byte getByte(int index)

This method reads the byte at the given index in the raw memory area associated
with this object.

The RawByte Interface

9-6 Oracle Java ME Embedded Device Access API Guide

■ void getBytes(int index, byte[] dst, int offset, int length)

This method reads bytes starting at the given index in the raw memory area
associated with this object.

■ int getInt(int index)

This method reads the int at the given index in the raw memory area associated
with this object.

■ void getInts(int index, int[] dst, int offset, int length)

This method reads integers starting at the given index in the raw memory area
associated with this object.

■ short getShort(int index)

This method reads the short at the given index in the raw memory area associated
with this object.

■ void getShorts(int index, short[] dst, int offset, int length)

This method reads short integers starting at the given index in the raw memory
area associated with this object.

■ void setByte(int index, byte value)

This method writes the given byte at the given index in the raw memory area
associated with this object.

■ void setBytes(int index, byte[] src, int offset, int length)

This method writes bytes starting at the given index in the raw memory area
associated with this object.

■ void setInt(int index, int value)

This method writes the given int at the given index in the raw memory area
associated with this object.

■ void setInts(int index, int[] src, int offset, int length)

This method writes integers starting at the given index in the raw memory area
associated with this object.

■ void setShort(int index, short value)

This method writes the given short at the given index in the raw memory area
associated with this object.

■ void setShorts(int index, short[] src, int offset, int length)

This method writes short integers starting at the given index in the raw memory
area associated with this object.

The RawByte Interface
The RawByte interface provides methods for setting and getting the value of a register
or memory area holding a byte value. A RawByte instance can be obtained from a
MMIODevice instance.

■ void set(byte value) throws PeripheralNotAvailableException

This method sets the byte value at the memory area associated with this object.

■ byte get() throws PeripheralNotAvailableException

The MMIOEvent Class

Memory-Mapped Input/Output 9-7

This method retrieves the byte value at the memory area associated with this
object.

The RawInt Interface
The RawInt interface provides methods for setting and getting the value of a register or
memory area holding an int value. A RawInt instance can be obtained from a
MMIODevice instance.

■ void set(int value) throws PeripheralNotAvailableException

This method sets the int value at the memory area associated with this object.

■ int get() throws PeripheralNotAvailableException

This method retrieves the int value at the memory area associated with this object.

The RawShort Interface
The RawShort interface provides methods for setting and getting the value of a register
or memory area holding a short value. A RawShort instance can be obtained from a
MMIODevice instance.

■ void set(short value) throws PeripheralNotAvailableException

This method sets the short value at the memory area associated with this object.

■ short get() throws PeripheralNotAvailableException

This method retrieves the short value at the memory area associated with this
object.

The MMIOEvent Class
The MMIOEvent class encapsulates events fired by peripherals mapped to memory. The
MMIOEvent class consists of the following constructors and methods.

■ public MMIOEvent(MMIODevice device, int id)

This constructor creates a new MMIOEvent with the specified device and ID. It is
then time-stamped with the current time.

■ public MMIOEvent(MMIODevice device, int id, long timeStamp, int
timeStampMicros)

This constructor creates a new MMIOEvent with the specified device, ID and
timestamp.

■ public MMIOEvent(MMIODevice device, int id, int capturedRegisterValue,
long timeStamp, int timeStampMicros)

This constructor creates a new MMIOEvent with the specified value and timestamp.
The capturedRegisterValue parameter is the captured value of the register
designated upon registration, specified as a 32-bit integer.

■ public MMIOEvent(MMIODevice device, int id, byte[]
capturedMemoryContent, long timeStamp, int timeStampMicros)

This constructor creates a new MMIOEvent with the specified value and timestamp.
The capturedRegisterContent parameter is the captured content of the memory
area or memory block designated upon registration.

■ public int getID()

The MMIODeviceConfig Class

9-8 Oracle Java ME Embedded Device Access API Guide

This method returns the event ID.

■ public byte[] getCapturedMemoryContent()

This method returns the captured content of the memory area or block; or null if
no memory area or block content was captured.

■ public int getCapturedRegisterValue()

This method returns the captured value of the register designated upon
registration as a 32-bit integer.

The MMIODeviceConfig Class
The MMIODeviceConfig class encapsulates the hardware addressing information, and
static and dynamic configuration parameters of an MMIO device.

Some hardware addressing parameter, and static and dynamic configuration
parameters may be set to PeripheralConfig.DEFAULT. Whether such default settings
are supported is platform- as well as peripheral driver-dependent.

An instance of MMIODeviceConfig can be passed to the
PeripheralManager.open(PeripheralConfig) or PeripheralManager.open(Class,
PeripheralConfig) method to open the designated MMIO device with the specified
configuration. A PeripheralConfigInvalidException is thrown when attempting to
open a peripheral device with an invalid or unsupported configuration.

The MMIODeviceConfig class itself contains three nested classes.

■ static class MMIODeviceConfig.RawBlockConfig

The RawBlockConfig class encapsulates the configuration parameters of a memory
block.

■ static class MMIODeviceConfig.RawMemoryConfig

The RawMemoryConfig class encapsulates the configuration parameters of a generic
raw memory area.

■ static class MMIODeviceConfig.RawRegisterConfig

The RawRegisterConfig class encapsulates the configuration parameters of a
register.

The MMIODeviceConfig class also contains three constants.

■ public static final int REGISTER_TYPE_BYTE

This is the type for a register holding a byte value.

■ public static final int REGISTER_TYPE_INT

This is the type for a register holding an integer value.

■ public static final int REGISTER_TYPE_SHORT

This is the type for a register holding a short integer value.

Finally, the MMIODeviceConfig class consists of one constructor and four accessors.

■ public MMIODeviceConfig(long address, int size, int byteOrdering,
MMIODeviceConfig.RawMemoryConfig[] memConfigs)

This constructor creates a new MMIODeviceConfig with the specified hardware
addressing information and configuration parameters. Note that if no raw block
and raw register configuration is provided, the specified memory area will be

The MMIODeviceConfig.RawRegisterConfig Class

Memory-Mapped Input/Output 9-9

mapped to the RawBlock instance returned by a call to
MMIODevice.getAsRawBlock().

■ public long getAddress()

This method returns the configured memory address of the MMIO device.

■ public int getByteOrdering()

This method returns the configured byte ordering of the MMIO device.

■ public MMIODeviceConfig.RawMemoryConfig[] getRawMemoryConfigs()

This method returns the set of configured registers and memory blocks.

■ public int getSize()

This method returns the configured size of the memory-mapped area of the MMIO
device.

The MMIODeviceConfig.RawMemoryConfig Class
The abstract MMIODeviceConfig.RawMemoryConfig class encapsulates the configuration
parameters of a generic raw memory area. The abstract class consists of two methods.

■ public String getName()

This method returns the configured name for the raw memory area.

■ public int getOffset()

This method returns the configured offset of the raw memory area from the base
address.

The MMIODeviceConfig.RawBlockConfig Class
The MMIODeviceConfig.RawBlockConfig class extends the abstract
MMIODeviceConfig.RawMemoryConfig class and encapsulates the configuration
parameters of a memory block. The class consists of one constructor and one accessor.

■ public MMIODeviceConfig.RawBlockConfig(int offset, java.lang.String
name, int size)

This constructor creates a new RawBlockConfig with the provided parameters.

■ public int getSize()

This method returns the configured size in bytes of the memory block.

The MMIODeviceConfig.RawRegisterConfig Class
The MMIODeviceConfig.RawRegisterConfig class extends the abstract
MMIODeviceConfig.RawMemoryConfig class and encapsulates the configuration
parameters of a register. The class consists of one constructor and one accessor.

■ public MMIODeviceConfig.RawRegisterConfig(int offset, java.lang.String
name, int type)

This constructor creates a new RawRegisterConfig with the provided parameters.

■ public int getType()

This method returns the configured type of the value held by the register. See the
constants in the MMIODeviceConfig for possible values.

The MMIOEvent Class

9-10 Oracle Java ME Embedded Device Access API Guide

The MMIOEvent Class
The MMIOEvent class encapsulates events fired by peripherals mapped to memory..The
class consists of four constructors and three methods.

■ public MMIOEvent(MMIODevice device, int id)

This constructor creates a new MMIOEvent with the specified value and
time-stamped with the current time.

■ public MMIOEvent(MMIODevice device, int id, byte[]
capturedMemoryContent, long timeStamp, int timeStampMicros)

This constructor creates a new MMIOEvent with the specified values and
timestamp.

■ public MMIOEvent(MMIODevice device, int id, int capturedRegisterValue,
long timeStamp, int timeStampMicros)

This constructor creates a new MMIOEvent with the specified values and
timestamp.

■ public MMIOEvent(MMIODevice device, int id, long timeStamp, int
timeStampMicros)

This constructor creates a new MMIOEvent with the specified value and timestamp.

■ public byte[] getCapturedMemoryContent()

This method returns the captured content of the memory area or memory block
designated upon registration.

■ public int getCapturedRegisterValue()

This method returns the captured value of the register designated upon
registration as a 32-bit integer.

■ public int getID()

This method returns the event ID.

AccessOutOfBoundsException
AccessOutOfBoundsException is an exception that is thrown by an instance of
RawBlock if the offset used is out of valid boundary of the specified memory block.

10

Modem Control Signals 10-1

10Modem Control Signals

The com.oracle.deviceaccess.modem package contains interfaces and classes for
controlling modem signals.

The ModemSignalListener Interface
The ModemSignalListener interface defines methods for being notified of modem
signal changes.

The ModemSignalListener interface contains one method.

■ void signalStateChanged(ModemSignalEvent event)

This method is invoked when the state of a modem signal has changed.

The ModemSignalsControl Class
The ModemSignalsControl interface provides methods for controlling and monitoring
modem signals.

The ModemSignalsControl class consists of six constants:

■ static final int DTR_SIGNAL

This constant represents the Data Terminal Ready (DTR) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

■ static final int DCD_SIGNAL

This constant represents the Data Carrier Detect (DCD) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

■ static final int DSR_SIGNAL

This constant represents the Data Set Ready (DSR) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

■ static final int RI_SIGNAL

This constant represents the Ring Indicator (RI) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

■ static final int RTS_SIGNAL

This constant represents the Ready To Send (RTS) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

■ static final int CTS_SIGNAL

The ModemSignalEvent Class

10-2 Oracle Java ME Embedded Device Access API Guide

This constant represents the Clear To Send (CTS) signal. This bit flag can be
bitwise-combined (OR) with other signal bit flags.

The ModemSignalsControl class also consists of three methods:

■ void setSignalState(int signalID, boolean state) throws
java.io.IOException,PeripheralNotAvailableException

This method sets or clears the designated signal.

■ boolean getSignalState(int signalID) throws java.io.IOException,
PeripheralNotAvailableException

This method returns the state of the designated signal.

■ void setSignalChangeListener(ModemSignalListener listener, int signals)
throws java.io.IOException, PeripheralNotAvailableException

This method registers a ModemSignalListener instance which will get
asynchronously notified when one of the designated signals changes. Notification
will automatically begin after registration completes. If listener is null then the
previously registered listener will be removed. Only one listener can be registered
at a particular time.

The ModemSignalEvent Class
The ModemSignalEvent class encapsulates modem signal state changes. If signal state
change events for the same peripheral are coalesced the value retained is that of the
last occurrence.

The ModemSignalEvent class consists of two constants:

■ protected int signalID

This constant represents the signal ID.

■ protected boolean signalState

This constant represents the signal state.

The ModemSignalEvent class also consists of two constructors and several methods:

■ public ModemSignalEvent(Peripheral peripheral, int signalID, boolean
signalState)

This constructor creates a new ModemSignalEvent with the specified value. It is
then time-stamped with the current time.

■ public ModemSignalEvent(Peripheral peripheral, int signalID, boolean
signalState, long timeStamp, int timeStampMicros)

This constructor creates a new ModemSignalEvent with the specified value and
timestamp.

■ public int getSignalID()

This method returns the signal ID.

■ public boolean getSignalState()

This method returns the new signal state.

11

Power Management 11-1

11Power Management

The com.oracle.deviceaccess.power package contains interfaces and classes for
power management of peripheral devices. A Peripheral implementing class may
implement the PowerManaged interface if the underlying peripheral device supports
some form of power management and saving states that can be mapped to the states
defined by this API.

Example 11–1 demonstrates how to use the power management API.

Example 11–1 Using the Power Management APIs

import com.oracle.deviceaccess.Peripheral;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.adc.ADCChannel;
import com.oracle.deviceaccess.adc.MonitoringEvent;
import com.oracle.deviceaccess.adc.MonitoringListener;
import com.oracle.deviceaccess.power.PowerManaged;
import com.oracle.deviceaccess.power.PowerSavingHandler;
import java.io.IOException;

class SignalLevelMonitor implements MonitoringListener, PowerSavingHandler {

 private ADCChannel channel = null;
 private boolean inRange = false;

 public void start(int channelID, int low, int high) throws
 IOException, PeripheralNotAvailableException,
 PeripheralNotFoundException
 {
 channel = (ADCChannel) PeripheralManager.open(channelID);
 channel.setSamplingInterval(1000); // every 1 seconds
 channel.startMonitoring(low, high, this);
 if (channel instanceof PowerManaged) {
 ((PowerManaged) channel).enablePowerSaving(
 PowerManaged.LOW_POWER, this);
 // Only enable LOW_POWER saving mode (POWER_ON is implicit)
 }
 }

 public void thresholdReached(MonitoringEvent event) {
 inRange = (event.getType() == MonitoringEvent.BACK_TO_RANGE);
 }

 public long handlePowerStateChangeRequest(Peripheral peripheral,
 int currentState, int requestedState, long duration)

The PowerManaged Interface

11-2 Oracle Java ME Embedded Device Access API Guide

 {
 if (requestedState == PowerManaged.LOW_POWER) {
 return inRange ? duration : 0;
 // Only accept to change to LOW_POWER if signal is back in range
 }
 return duration; // Accept returning to POWER_ON
 }

 public void stop() throws IOException, PeripheralNotAvailableException {
 if (channel != null) {
 channel.stopMonitoring();
 if (channel instanceof PowerManaged) {
 ((PowerManaged) channel).disablePowerSaving();
 }
 channel.close();
 }
 }
}

As any other peripheral devices, peripheral devices that can be power-managed are
opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.power permission allows access to be granted to peripheral
power management. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The PowerManaged Interface
The PowerManaged interface provides methods that a Peripheral class may implement
to control how the underlying peripheral hardware resource is managed by the power
management facility of the device.

The power management states defined are peripheral device as well as host
device-dependent. For peripherals on a microcontroller unit, there may be no
distinction between POWER_OFF, LOW_POWER and LOWEST_POWER and they may all be
supported by clock-gating the unused peripherals. Conversely, a peripheral device
external to the host device could support the four power management modes and
could be powered off.

A power state change may be ordered by the power management facility of the device,
or it may be requested by the power management facility on behalf of the application
itself or of another application using the method requestPowerStateChange(int,
int). A power state change for a specific peripheral device may be requested by
another application if the peripheral device or some of the underlying peripheral
device hardware resources are shared. This is the case on a GPIOPin instance, for
example: another application may have opened a different GPIO pin controlled by the
same GPIO controller; the application will get notified of any power state changes
requested by the other application.

An application may register to be notified of power state changes. When notified, the
application may take the following actions:

1. The application may save or restore the state or configuration of the peripheral if
needed. Saving the peripheral's state or configuration may be needed when the
application is being notified of a power state change requested by another

The PowerManaged Interface

Power Management 11-3

application on a peripheral device with hardware resources shared with the
current application. The saving and restoration of the peripheral's state or
configuration may be needed when changing to or from POWER_OFF or LOWEST_
POWER to POWER_ON, as the peripheral context may not be preserved.

2. The application may veto a power state change. For example, the application may
veto a power state change from POWER_ON to LOWEST_POWER if the application is
currently using or is about to use the designated peripheral.

3. The application may grant a shorter power state change duration. For example,
the application may grant a duration of a power state change from POWER_ON to
LOWEST_POWER shorter than the specified duration if the application anticipates it
will use the designated peripheral earlier than the specified duration.

If application-dictated power saving for a peripheral device is not explicitly enabled
by a call to one of the enablePowerSaving() method, the default power saving
strategy of the platform applies. This strategy is both platform-dependent and
implementation-dependent. It may define power saving rules, such as changing the
power state of a peripheral device when certain conditions are met, that may or may
not differ from peripheral device to peripheral device. It may, for example, forcefully
change all peripherals' power state to LOWEST_POWER upon some condition; in such a
situation, attempting to access the peripheral without restoring its state or
configuration may result in unexpected behavior. Therefore an application should
always either:

1. Register for power state changes on the peripherals it uses.

2. Register for system-wide power state changes (if supported by the platform) and
close the peripherals when going to power saving modes that may not preserve
the peripheral context and then open again the peripherals when returning from
such power saving modes.

The PowerManaged interface contains five constants.

■ static final int UNLIMITED_DURATION

This constant represents unlimited or unknown power state change requested
duration.

■ static final int POWER_ON

This constant represents the device as fully powered on. This bit flag can be
bitwise-combined (OR) with other power state bit flags.

■ static final int LOW_POWER

This constant represents the device in a low power mode. It may save less power
while preserving more peripheral device context than LOWEST_POWER, hence
allowing for a faster return to full performance. When transitioning from this state
to POWER_ON no state or configuration restoration of the peripheral device must be
needed. This bit flag can be bitwise-combined (OR) with other power state bit
flags.

■ static final int LOWEST_POWER

This constant represents the lowest power mode. In this mode, the device may
save more power while preserving less peripheral device context/state than LOW_
POWER, hence only allowing for a slower return to full performance. When
transitioning from this state to POWER_ON some state or configuration restoration of
the peripheral device may be needed. This state or configuration restoration of the
peripheral device may be handled by a PowerSavingHandler. This bit flag can be
bitwise-combined (OR) with other power state bit flags.

The PowerSavingsHandler Class

11-4 Oracle Java ME Embedded Device Access API Guide

■ static final int POWER_OFF

This constant represents that the power has been fully removed from the device.
When transitioning from this state to POWER_ON a complete state or configuration
restoration of the peripheral device may be needed. This state or configuration
restoration of the peripheral device may be handled by a PowerSavingHandler.
This bit flag can be bitwise-combined (OR) with other power state bit flags.

The PowerManaged interface also contains five methods.

■ void enablePowerSaving(int powerStates) throws java.io.IOException,
PeripheralNotAvailableException

This method enables application-dictated power saving for the Peripheral
instance. Note that the POWER_ON state is always implicitly enabled.

■ void enablePowerSaving(int powerStates, PowerSavingHandler handler)
throws java.io.IOException, PeripheralNotAvailableException

This method enables application-dictated power saving for the Peripheral
instance and registers a PowerSavingHandler instance to get asynchronously
notified when the power management facility is about to change the power state
of the Peripheral instance. This in turn allows the application to veto the power
state change on the peripheral. Note that the POWER_ON state is always implicitly
enabled.

■ void disablePowerSaving() throws java.io.IOException,
PeripheralNotAvailableException

This method disables application-dictated power saving for the Peripheral
instance. The power saving strategy of the platform applies. If a
PowerSavingHandler instance was registered using enablePowerSaving(int,
com.oracle.deviceaccess.power.PowerSavingHandler), it will be unregistered.

■ int getPowerState() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current power state of the Peripheral instance. If
application-dictated power saving is disabled using the disablePowerSaving()
method, the power state depends on the power saving strategy of the platform.

■ int requestPowerStateChange(int powerState, int duration) throws
java.io.IOException, PeripheralNotAvailableException

This method requests the change of the peripheral's current power state to the
specified power state. If a PowerSavingHandler instance is registered, it will be
notified.

The PowerSavingsHandler Class
The PowerSavingHandler interface defines methods for getting notified of power state
change requests on a specific Peripheral instance. A PowerSavingHandler can be
registered using the PowerManaged.enablePowerSaving(int,
com.oracle.deviceaccess.power.PowerSavingHandler) method.

The PowerSavingHandler class consists of one method:

■ long handlePowerStateChangeRequest(Peripheral peripheral, int
currentState, int requestedState, long duration)

This method is invoked to allow the application to handle a power state change
request on the designated Peripheral instance. The application may veto the

The PowerSavingsHandler Class

Power Management 11-5

power state change by returning the number zero (0). Otherwise, it should return a
duration lesser or equals to the proposed state change duration. An application
may veto altogether a power state change from PowerManaged.POWER_ON to
PowerManaged.LOWEST_POWER if, for example, the application is currently using or
is about to use the designated peripheral. An application may grant a power state
change duration lesser than the specified duration if for example the application
anticipates it will use the designated peripheral earlier than the specified duration.

The PowerSavingsHandler Class

11-6 Oracle Java ME Embedded Device Access API Guide

12

Serial Peripheral Interface Bus 12-1

12Serial Peripheral Interface Bus

This package provides interfaces and classes for SPI (Serial Peripheral Interface Bus)
device access.

The Serial Peripheral Interface (SPI) bus is a synchronous serial data link standard that
operates in full duplex mode. Devices communicate in master or slave mode, where
the master device initiates the communication data frame. Multiple slave devices are
allowed with individual slave select lines.

The functionalities supported by this API are those of an SPI master. In order to
communicate with a specific slave, an application should first open and obtain an
SPIDevice instance for the SPI slave device the application wants to exchange data
with, using its numerical ID, name, type (interface), or properties. The following
example demonstrates how to obtain an SPI device using its ID.

 SPIDevice slave = (SPIDevice) PeripheralManager.open(3);

This example demonstrates how to access a device using its name and interface.

 SPIDevice slave = (SPIDevice) PeripheralManager.open("RTC1",
 SPIDevice.class, null);

Once the peripheral opened, the application can exchange data with the SPI slave
device using methods of the SPIDevice interface such as the writeAndRead() method.

 slave.writeAndRead(sndBuf, 0, 1, rcvBuf, 0, 1);

When the data exchange is over, the application should call the Peripheral.close()
method to release the SPI slave device.

 slave.close();

Example 12–1 shows how to use the SPI API to communicate with SPI slaves.

Example 12–1 Using the SPI APIs to Communicate with SPI Slaves

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.spibus.SPIDevice;
import java.io.IOException;

public class SPIExample {

 SPIDevice slave = null;

 public SPIExample() {
 try {
 slave = (SPIDevice) PeripheralManager.open("SPI1",

The SPIDevice Interface

12-2 Oracle Java ME Embedded Device Access API Guide

 SPIDevice.class, (String[]) null);
 byte[] sndBuf1 = {0x01};
 byte[] sndBuf2 = {0x02};
 byte[] rcvBuf = new byte[3];
 slave.writeAndRead(sndBuf1, 0, sndBuf1.length, rcvBuf, 0, 1);
 // received data will be stored in rcvBuf[0]
 slave.writeAndRead(sndBuf2, 0, sndBuf2.length, rcvBuf, 1, 2);
 // received data will be stored in rcvBuf[1] and rcvBuf[2]

 } catch (PeripheralException pe) {
 // Handle exception
 } catch (IOException ioe) {
 // Handle exception
 } finally {
 if (slave != null) {
 try {
 slave.close();
 } catch (IOException ex) {
 }
 }
 }
 }
}

Information about the SPI-bus specification can be found at
http://www.freescale.com/files/microcontrollers/doc/ref_
manual/M68HC11RM.pdf.

SPI slave devices are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.spi permission allows access to be granted to SPI slave
devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The SPIDevice Interface
The SPIDevice interface provides methods for transmitting and receiving data to and
from an SPI slave device. Each SPI slave device is identified by a numerical ID and by
a name.

An SPIDevice instance can be opened by a call to one of the
PeripheralManager.open() methods. On an SPI bus, data is transferred between the
SPI master device and an SPI slave device in full duplex. That is, data is transmitted by
the SPI master to the SPI slave device at the same time data is received from the SPI
slave device by the SPI master.

To perform such a bidirectional exchange of data with an SPI slave device, an
application may use one of the writeAndRead() methods. When an application only
wants to send data to or receive data from an SPI slave device, it may use a write() or
read() method, respectively. When writing only, the data received from the SPI slave
device will be ignored and discarded. When reading only, dummy data will be sent to
the slave.

A data exchange consists of words of a certain length which may vary from one SPI
slave device to another. Words in the sending and receiving byte buffers are not
packed bit-wise and must be byte-aligned. The most significant bits of a word are

http://www.freescale.com/files/microcontrollers/doc/ref_manual/M68HC11RM.pdf

The SPIDevice Interface

Serial Peripheral Interface Bus 12-3

stored at the lower index (first). If a word's bit length is not a multiple of eight, then
the most significant bits will be undefined when receiving or unused when sending. If
the designated portion of a sending or receiving byte buffer cannot contain a positive
integral number of words then an InvalidWordLengthException is thrown. For
example, if the word length is 16 bits and the designated portion of buffer is only
1-byte long or 3-bytes long, an InvalidWordLengthException is thrown.

Assuming a word length w, the length l of the designated portion of the sending or
receiving byte buffer must be such that:

 ((l % (((w - 1) / 8) + 1)) == 0)

When the data exchange is over, an application should call the SPIDevice.close()
method to release the SPI slave device. Any attempt to read or write to an SPI slave
device which has been closed will thow a PeripheralNotAvailableException.

The following methods are contained in the SPIDevice interface.

■ void begin()

This method demarcates the beginning of an SPI transaction so that this slave's
Select line (SS) will be remain asserted during the subsequent read and write
operations and until the transaction ends.

■ void end()

This method demarcates the end of a transaction, hence ending the assertion of
this slave's Select line (SS).

■ int getWordLength() throws java.io.IOException,
PeripheralNotAvailableException

This method retrieves the transfer word length in bits supported by this slave
device. If the length of data to be exchanged is not a multiple of this word length,
an InvalidWordLengthException is thrown.

■ int read() throws java.io.IOException, PeripheralNotAvailableException

This method reads one data word of up to 32 bits from this slave device.

■ int read(byte[] rxBuf, int rxOff, int rxLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads data from this slave device. During the duplex, dummy data is
sent to this slave device by the platform. The length of the designated portion of
the sending byte buffers must correspond to a (positive) integral number of words.
This slave's Select line (SS) is asserted for the duration of the reception.

■ int read(int rxSkip, byte[] rxBuf, int rxOff, int rxLen) throws
java.io.IOException, PeripheralNotAvailableException

This method reads up to rxLen bytes of data from this slave device into an array of
bytes skipping the first rxSkip bytes read.

■ void write(int txData) throws java.io.IOException,
PeripheralNotAvailableException

This method writes one data word of up to 32 bits to this slave device.

■ void write(byte[] txBuf, int txOff, int txLen) throws
java.io.IOException, PeripheralNotAvailableException

This method writes to the slave device txLen bytes from buffer txBuf.

■ int writeAndRead(int txData) throws java.io.IOException,
PeripheralNotAvailableException

The SPIDeviceConfig Class

12-4 Oracle Java ME Embedded Device Access API Guide

This method exchanges (send and receives) one data word of up to 32 bits with
this slave device. This slave's Select line (SS) is asserted for the duration of the
exchange.

■ int writeAndRead(byte[] txBuf, int txOff, int txLen, byte[] rxBuf, int
rxOff, int rxLen) throws java.io.IOException,
PeripheralNotAvailableException

This method exchanges (send and receives) data with this slave device. The
designated portions of the sending and receiving byte buffers might not have the
same length. When sending more than is being received, the extra received bytes
are ignored and discarded. Conversely, when sending less than is being received,
extra dummy data are sent. This slave's Select line (SS) is asserted for the duration
of the exchange

■ int writeAndRead(byte[] txBuf, int txOff, int txLen, int rxSkip, byte[]
rxBuf, int rxOff, int rxLen) throws java.io.IOException,
PeripheralNotAvailableException

This method exchanges (send and receives) data with this slave device skipping
the specified number of bytes received. The designated portions of the sending
and receiving byte buffers might not have the same length. When sending more
than is being received, the extra received bytes are ignored and discarded.
Conversely, when sending less than is being received, extra dummy data are sent.
This slave's Select line (SS) is asserted for the duration of the exchange.

The SPIDeviceConfig Class
The SPIDeviceConfig class encapsulates the configuration parameters of an SPI slave
device.

Each SPI slave device has a clock mode. The clock mode is a number from 0 to 3 which
represents the combination of the CPOL (SPI Clock Polarity Bit) and CPHA (SPI Clock
Phase Bit) signals, where CPOL is the high order bit and CPHA is the low order bit, as
shown in Table 12–1.

An instance of SPIDeviceConfig can be passed to the
PeripheralManager.open(PeripheralConfig) method to open the designated SPI
slave device with the specified configuration.

The SPIDeviceConfig class consists of one constructor and the following methods

■ SPIDeviceConfig(int busNumber, int address, int clockFrequency, int
clockMode, int wordLength, int bitOrdering)

Table 12–1 Clock Modes in the SPIDeviceConfig Class

Mode CPOL CPHA

0 0 = Active-high clocks selected. 0 = Sampling of data occurs at odd
edges of the SCK clock

1 0 = Active-high clocks selected. 1 = Sampling of data occurs at even
edges of the SCK clock

2 1 = Active-low clocks selected. 0 = Sampling of data occurs at odd
edges of the SCK clock

3 1 = Active-low clocks selected. 1 = Sampling of data occurs at even
edges of the SCK clock

InvalidWordLengthException

Serial Peripheral Interface Bus 12-5

This constructor creates a new SPIDeviceConfig with the provided parameters.
Note that unused or not applicable numerical parameters should be set to
PeripheralConfig.DEFAULT.

■ public int getBusNumber()

This method returns the configured SPI bus number the slave is connected to.

■ public int getAddress()

This method returns the configured address of the SPI slave device.

■ public int getClockFrequency()

This method returns the clock frequency (in Hertz) supported by the SPI slave
device.

■ public int getClockMode()

This method returns the configured clock mode (combining clock polarity and
phase) for communicating with the SPI slave device. See Table 12–1 for more
information on possible values for the clock mode.

■ public int getWordLength()

This method returns the configured word length for communicating with the SPI
slave device.

■ public int getBitOrdering()

This method returns the configured bit (shifting) ordering of the SPI slave device,
one of: Peripheral.BIG_ENDIAN, Peripheral.LITTLE_ENDIAN or
PeripheralConfig.DEFAULT.

InvalidWordLengthException
The InvalidWordLengthException is thrown by an instance of SPIDevice in case of
mismatch between the length of data to be exchanged and the slave's word length as
indicated by SPIDevice.getWordLength().

InvalidWordLengthException

12-6 Oracle Java ME Embedded Device Access API Guide

13

UART 13-1

13UART

The com.oracle.deviceaccess.uart package contains interfaces and classes for
controlling and reading and writing from/to Universal Asynchronous
Receiver/Transmitter (UART), with optional Modem signals control. In order to access
and control a specific UART device, an application should first open and obtain an
UART instance for the UART device using its numerical ID, name, type (interface)
and/or properties.

Example 13–1 and Example 13–2 demonstrate how to use the UART APIs to
communicate with a host.

Example 13–1 Communicating using the UART API

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.uart.UART;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class UARTExample1 {

 UART host = null;
 InputStream is = null;
 OutputStream os = null;

 public UARTExample1() {
 try {
 host = (UART) PeripheralManager.open("HOST", UART.class,
 (String[]) null);
 is = host.getInputStream();
 os = host.getOutputStream();
 StringBuffer cmd = new StringBuffer();
 int c = 0;
 while (true) {
 os.write('$');
 os.write(' '); // echo prompt
 while (c != '\n' && c != '\003') { // echo input
 c = is.read();
 os.write(c);
 cmd.append(c);
 }
 if (c == '\003') { // CTL-C
 break;
 }

13-2 Oracle Java ME Embedded Device Access API Guide

 // process(cmd);
 }
 } catch (IOException ioe) {
 // Handle exception
 } catch (PeripheralException pe) {
 // Handle exception
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException ex) {
 }
 }
 if (os != null) {
 try {
 os.close();
 } catch (IOException ex) {
 }
 }
 if (host != null) {
 try {
 host.close();
 } catch (IOException ex) {
 }
 }
 }
 }
}

Example 13–2 Using a ModemUART to Communicate

import com.oracle.deviceaccess.PeripheralException;
import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.modem.ModemSignalEvent;
import com.oracle.deviceaccess.modem.ModemSignalListener;
import com.oracle.deviceaccess.modem.ModemSignalsControl;
import com.oracle.deviceaccess.uart.ModemUART;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class UARTExample2 {

 ModemUART modem = null;
 InputStream is = null;
 OutputStream os = null;

 public UARTExample2() {
 try {
 modem = (ModemUART) PeripheralManager.open("HOST",
 ModemUART.class, (String[]) null);
 is = modem.getInputStream();
 os = modem.getOutputStream();
 modem.setSignalChangeListener(new ModemSignalListener() {
 public void signalStateChanged(ModemSignalEvent event) {
 if (event.getSignalState() == false) {
 ModemUART modem = (ModemUART) event.getPeripheral();
 // Process MODEM hang-up...
 }

The UART Interface

UART 13-3

 }
 }, ModemSignalsControl.DCD_SIGNAL);
 // Process input and output...
 } catch (IOException ioe) {
 // Handle exception
 } catch (PeripheralException pe) {
 // Handle exception
 } finally {
 // Close UART, and input and output streams
 }

 }
}

Note that the preceding example is using a try-with-resources statement and that the
UART.close(), InputStream.close() and OutputStream.close() methods are
automatically invoked by the platform at the end of the statement.

UARTs are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.uart permission allows access to be granted to UART
devices as a whole. This permission must be requested in the JAD file under
MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The ModemUART Interface
The ModemUART interface provides methods for controlling and accessing a UART
(Universal Asynchronous Receiver/Transmitter) with Modem control lines.

Note that even if CTS/RTS hardware flow control is enabled using the
UARTConfig.getFlowControlMode() method, registering for notification of CTS signal
state changes (see
ModemSignalsControl.setSignalChangeListener(com.oracle.deviceaccess.modem.
ModemSignalListener, int) may not always be supported. Additionally, when
supported, CTS signal state change notification may only be indicative because of
latency: CTS flow control may be handled directly by the hardware or by the native
driver.

The UART Interface
The UART interface provides methods for controlling and accessing a UART
(Universal Asynchronous Receiver/Transmitter). Each UART device is identified by a
numerical ID and by a name. A UART instance can be opened by a call to one of the
PeripheralManager.open() methods.

Once opened, an application can obtain an input stream and an output stream using
the getInputStream() and getOutputStream() methods and can then read the
received data bytes and respectively write the data bytes to be transmitted through the
UART.

An application can register a UARTEventListener instance which will get
asynchronously notified of input data availability, input buffer overrun, or empty
output buffer conditions. Note that the input and output buffers for which these
events may be notified may not necessarily correspond to the transmit and receive
FIFO buffers of the UART hardware, but may be buffers allocated by the underlying

The UART Interface

13-4 Oracle Java ME Embedded Device Access API Guide

native driver. To register a UARTEventListener instance, the application must call the
setEventListener(int, UARTEventListener) method. The registered listener can
later on be removed by calling the same method with a null listener parameter.

When done, an application should call the UART.close() method to release the UART.
Any further attempt to access or control a UART which has been closed will result in a
PeripheralNotAvailableException been thrown.

The UART interface consists of several methods:

■ void close() throws java.io.IOException,
PeripheralNotAvailableException

This method closes and releases the underlying peripheral device, making it
available to other applications. Once released, subsequent operations on that very
same Peripheral instance will throw a PeripheralNotAvailableException. This
method has no effects if the peripheral device has already been closed. Note that
closing a UART will also close the device's InputStream and OutputStream..

■ int getBaudRate() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current baud rate. If the baud rate was not set previously
using the setBaudRate(int) method, the peripheral configuration-specific default
value is returned.

■ void setBaudRate(int baudRate) throws java.io.IOException,
PeripheralNotAvailableException

This method sets the baud rate.

■ int getDataBits() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current number of bits per character.

■ void setDataBits(int dataBits) throws java.io.IOException,
PeripheralNotAvailableException

This method sets the number of bits per character.

■ int getParity() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current parity.

■ void setParity(int parity) throws java.io.IOException,
PeripheralNotAvailableException

This method sets the parity.

■ int getStopBits() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current number of stop bits per character.

■ void setStopBits(int stopBits) throws java.io.IOException,
PeripheralNotAvailableException

This method sets the number of stop bits per character.

■ java.io.InputStream getInputStream() throws java.io.IOException,
PeripheralNotAvailableException

This method returns this UART's input stream. The same InputStream instance is
returned upon subsequent calls. Note that if this UART's input stream has been

The UARTConfig Class

UART 13-5

previously closed, this method returns the closed input stream without attempting
to re-open it.

■ java.io.OutputStream getOutputStream() throws java.io.IOException,
PeripheralNotAvailableException

This method returns this UART's output stream. The same OutputStream instance
is returned upon subsequent calls. Note that if this UART's output stream has been
previously closed, this method returns the same closed output stream without
attempting to re-open it.

■ void setEventListener(int eventId, UARTEventListener listener) throws
java.io.IOException, PeripheralNotAvailableException

This method registers a UARTEventListener instance to monitor input data
availability, input buffer overrun and/or empty output buffer conditions. While
the listener can be triggered by hardware interrupts, there are no real-time
guarantees of when the listener will be called. A list of event type IDs is defined in
UARTEvent. If listener is null then listener previously registered for the specified
event type will be removed. Only one listener can be registered at a particular time
for a particular event type.

The UARTEventListener Interface
The UARTEventListener interface defines methods for getting notified of events fired
by peripheral devices that implement the UART interface. A UARTEventListener can
be registered using the UART.setEventListener(int, UARTEventListener) method.

The UARTEventListener interface consists of only one method:

■ void eventDispatched(UARTEvent event)

This method is invoked when an event is fired by peripheral device.

The UARTConfig Class
The UARTConfig class encapsulates the hardware addressing information, as well as
the static and dynamic configuration parameters, of a UART. Some hardware
addressing parameter, and static and dynamic configuration parameters, may be set to
PeripheralConfig.DEFAULT. Whether such default settings are supported is both
platform-dependent and peripheral driver-dependent. An instance of UARTConfig can
be passed to the PeripheralManager.open(PeripheralConfig) or
PeripheralManager.open(Class, PeripheralConfig) method to open the
designated UART with the specified configuration. A
PeripheralConfigInvalidException is thrown when attempting to open a peripheral
device with an invalid or unsupported configuration.

The UARTConfig class consists of a number of static integer constants, as shown in
Table 13–1.

Table 13–1 UARTConfig Constants

Constant Description

DATABITS_5 5 data bit format

DATABITS_6 6 data bit format

DATABITS_7 7 data bit format

DATABITS_8 8 data bit format

The UARTConfig Class

13-6 Oracle Java ME Embedded Device Access API Guide

The UARTConfig class consists of two constructors and several methods:

■ public UARTConfig(int uartNumber, int baudRate, int dataBits, int
parity, int stopBits, int flowcontrol)

This constructor creates a new UARTConfig with the specified hardware addressing
information and configuration parameters.

■ public UARTConfig(int uartNumber, int baudRate, int dataBits, int
parity, int stopBits, int flowcontrol, int inputBufferSize, int
outputBufferSize)

This constructor creates a new UARTConfig with the specified hardware addressing
information and configuration parameters. The platform or underlying driver may
or may not allocate the requested sizes for the input and output buffers.

■ public int getUARTNumber()

This method returns the configured UART number.

■ public int getFlowControlMode()

This method returns the configured flow control mode.

■ public int getBaudRate()

This method returns the configured default/initial speed in Bauds.

■ public int getDataBits()

This method returns the configured default/initial number of bits per character.

■ public int getParity()

This method returns the configured default/initial parity.

■ public int getStopBits()

DATABITS_9 9 data bit format

FLOWCONTROL_NONE Flow control off

FLOWCONTROL_RTSCTS_IN RTS/CTS (hardware) flow control on input

FLOWCONTROL_RTSCTS_OUT RTS/CTS (hardware) flow control on output

FLOWCONTROL_XONXOFF_IN XON/XOFF (software) flow control on input

FLOWCONTROL_XONXOFF_OUT XON/XOFF (software) flow control on output

PARITY_EVEN EVEN parity scheme

PARITY_MARK MARK parity scheme

PARITY_NONE No parity bit

PARITY_ODD ODD parity scheme

PARITY_SPACE SPACE parity scheme

STOPBITS_1 Number of STOP bits is 1

STOPBITS_1_5 Number of STOP bits is 1.5

STOPBITS_2 Number of STOP bits is 2

Table 13–1 (Cont.) UARTConfig Constants

Constant Description

The UARTEvent Class

UART 13-7

This method returns the configured default/initial number of stop bits per
character.

■ public int getInputBufferSize()

This method returns the requested input buffer size. The platform/underlying
driver may or may not allocate the requested size for the input buffer.

■ public int getOutputBufferSize()

This method returns the requested output buffer size. The platform/underlying
driver may or may not allocate the requested size for the output buffer.

The UARTEvent Class
The UARTEvent class encapsulates events fired by peripherals that implement the
UART interface.

The UARTEvent class consists of three constants:

■ public static final int INPUT_DATA_AVAILABLE

Event ID indicating that input data is available for reading.

■ public static final int INPUT_BUFFER_OVERRUN

Event ID indicating that input buffer overrun.

■ public static final int OUTPUT_BUFFER_EMPTY

Event ID indicating that the output buffer is empty and that additional data may
be written.

The UARTEvent class also consists of two constructors and one method:

■ public UARTEvent(UART uart, int id)

This constructor creates a new UARTEvent with the specified value. The event is
then time-stamped with the current time.

■ public UARTEvent(UART uart, int id, long timeStamp, int
timeStampMicros)

This constructor creates a new UARTEvent with the specified value and timestamp.

■ public int getID()

This method returns the event’s ID.

.

The UARTEvent Class

13-8 Oracle Java ME Embedded Device Access API Guide

14

Watchdog Timers 14-1

14Watchdog Timers

The com.oracle.deviceaccess.power package contains interfaces and classes for
using system watchdog timers (WDT).

A watchdog timer is used to reset or reboot the system in case of hang or critical
failure from a unresponsive state to a normal state. A watchdog timer can be set with a
time interval. Continuously refreshing the watchdog timer within the specified time
interval prevents the a reset or reboot. If the watchdog timer has not been refreshed
within the specified time interval, a critical failure is assumed and a system reset or
reboot is carried out. Note that a windowed watchdog timer must be refreshed within an
open time window. If the watchdog is refreshed too soon, during the closed window,
or if it is refreshed too late, after the watchdog timeout has expired, the device will be
rebooted.

A watchdog timer can be created using its ID.

 WatchdogTimer wdt = (WatchdogTimer)PeripheralManager.open(8);

A watchdog timer can also be created using its name and interface.

 WatchdogTimer wdt = (WatchdogTimer) PeripheralManager.open("WDT",
 WatchdogTimer.class, null);

Here is an example of how to create a windowed watchdog timer.

 WindowedWatchdogTimer wdt = (WindowedWatchdogTimer)
 PeripheralManager.open("WWDT", WindowedWatchdogTimer.class, null);

Once the peripheral opened, the application can start using it and can especially start
the timer using the WatchdogTimer.start() method and subsequently refresh the
timer periodically using the WatchdogTimer.refresh() method, as shown here:

 wdt.start(1000);
 ...
 wdt.refresh();

 When done, the application should call the WatchdogTimer.close() method to release
the watchdog timer.

 wdt.close();

Example 14–1 gives a demonstration of using the watchdog timer API.

Example 14–1 Using the Watchdog API

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;

The WatchdogTimer Interface

14-2 Oracle Java ME Embedded Device Access API Guide

import com.oracle.deviceaccess.watchdog.WatchdogTimer;
import java.io.IOException;

public class WatchdogExample {

 public boolean checkSomeStatus() {
 // check some status....
 // if status is ok then return true to kick watch dog timer.
 return true;
 }

 public void test_loop() {
 try {
 WatchdogTimer watchdogTimer = (WatchdogTimer)
 PeripheralManager.open(30);
 watchdogTimer.start(180000);
 // Start watch dog timer with 3 min duration.

 while (true) {
 if (checkSomeStatus() == true) {
 // Everything goes fine, timer will be kick.
 watchdogTimer.refresh();
 // do something more...
 } else {
 // Something goes wrong. Timer will not be kick.
 // If status not recovered within 2-3 turns then
 // system will be reboot.
 }
 try {
 Thread.sleep(60000); // sleep for 1 min.
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 } catch (PeripheralNotAvailableException ex) {
 ex.printStackTrace();
 } catch (PeripheralNotFoundException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

Watchdog timers are opened by invoking one of the
com.oracle.deviceaccess.PeripheralManager.open() methods. The
com.oracle.deviceaccess.watchdog permission allows access to be granted to
watchdog timers devices as a whole. This permission must be requested in the JAD file
under MIDlet-Permissions or MIDlet-Permissions-Opt, and the application must be
digitally signed by a trusted authority to gain access to the APIs. Alternatively, the
permission may be allowed for all applications in the untrusted domain of the
security policy file (policy.txt).

The WatchdogTimer Interface
The WatchdogTimer interface provides methods for controlling a watchdog timer that
can be used to force the device to reboot (or depending on the platform, the Java
Virtual Machine to restart).

The WindowedWatchdogTimer Interface

Watchdog Timers 14-3

A WatchdogTimer instance may represent a virtual watchdog timer. If the device has a
single physical watchdog timer, all of the virtual watchdog timers are mapped onto
this one physical watchdog timer. This timer is set to expire when the virtual
watchdog with the earliest timeout is scheduled to expire. The corresponding
watchdog timer peripheral is therefore shared and several applications can
concurrently acquire the same watchdog timer peripheral.

Each watchdog timer is identified by a numerical ID and by a name. If a watchdog
timer is virtualized, a particular platform implementation may allow for several
WatchdogTimer instances representing each a virtual instance of that same physical
watchdog timer to be opened concurrently. Alternatively, it may assign each virtual
watchdog timer instance a distinct peripheral ID and optionally a common name.

A WatchdogTimer instance can be opened by a call to one of the
PeripheralManager.open() methods. Once the peripheral opened, the application can
start using it and can especially start the timer using the WatchdogTimer.start()
method and subsequently refresh the timer periodically using the
WatchdogTimer.refresh() method

When done, an application should call the WatchdogTimer.close() method to release
the watchdog timer. Any further attempt to access or control a watchdog timer which
has been closed will result in a PeripheralNotAvailableException been thrown.

The WatchdogTimer interface contains six methods.

■ void start(long timeout) throws java.io.IOException,
PeripheralNotAvailableException

This method starts the watchdog timer with the specified timeout. If the watchdog
timer is not refreshed by a call to refresh() prior to the watchdog timing out, the
device will be rebooted (or the JVM restarted).

■ void refresh() throws java.io.IOException,
PeripheralNotAvailableException

This method refreshes the watchdog timer. This method must be called
periodically to prevent the watchdog from timing out.

■ void stop() throws java.io.IOException, PeripheralNotAvailableException

This method stops this watchdog timer.

■ long getTimeout() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current timeout for the watchdog timer. A value of zero
(0) indicates that the watchdog timer is disabled.

■ long getMaxTimeout() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the maximum timeout that can be set for the watchdog timer.

■ boolean causedLastReboot() throws java.io.IOException,
PeripheralNotAvailableException

This method checks if the last device reboot (or JVM restart) was caused by the
watchdog timing out.

The WindowedWatchdogTimer Interface
The WindowedWatchdogTimer interface provides methods for controlling a watchdog
timer that can be used to force the device to reboot (or depending on the platform, the

The WindowedWatchdogTimer Interface

14-4 Oracle Java ME Embedded Device Access API Guide

Java Virtual Machine to restart). A windowed watchdog timer must be refreshed
within an open time window. If the watchdog is refreshed too soon, during the closed
window, or if it is refreshed too late, after the watchdog timeout has expired, the
device will be rebooted

A WindowedWatchdogTimer instance may represent a virtual windowed watchdog
timer. If the device has a single physical windowed watchdog timer, all of the virtual
watchdog timers are mapped onto this one physical watchdog timer. It gets set with a
refresh window starting when the virtual windowed watchdog with the longest closed
window delay is scheduled to end and ending when the virtual windowed watchdog
with the earliest timeout is scheduled to expire. The corresponding watchdog timer
peripheral is therefore shared and several applications can concurrently acquire the
same watchdog timer peripheral.

The WindowedWatchdogTimer class consists of three methods:

■ void start(long timeout) throws java.io.IOException,
PeripheralNotAvailableException

This method starts the watchdog timer with the specified timeout and with a
closed window delay set to zero (0). If the watchdog timer is not refreshed by a
call to WatchdogTimer.refresh() prior to the watchdog timing out, the device will
be rebooted (or the JVM restarted).

■ void start(long closedWindowDelay, long timeout) throws
java.io.IOException, PeripheralNotAvailableException

This method starts a windowed watchdog timer with the specified closed window
time and timeout. If the WatchdogTimer.refresh() method is called too soon,
within the closed window delay, or is called too late, not prior to the watchdog
timing out, the watchdog timer will not be reset.

■ long getClosedWindowTimeout() throws java.io.IOException,
PeripheralNotAvailableException

This method returns the current closed window delay for the watchdog timer.

A

Migrating from Device Access Version 3.2 A-1

AMigrating from Device Access Version 3.2

The Device Access APIs have changed between Oracle Java ME Embedded version 3.2
and version 3.3 to add more flexibility for new devices. As such, many of the
techniques used to access peripherals have changed as well. This appendix provides a
brief description of the most common changes that programmers are likely to
encounter: the use of the PeripheralManager class. For more information, please see
the Device Access 3.2 and 3.3 specifications.

The PeripheralManager Class
With earlier versions of the Device Access APIs, each bus had its own singleton
"manager" class that programmers would call upon to access the devices connected to
the embedded board. With the 3.3 version of the Oracle Java ME Embedded platform,
each of these managers has been coalesced into the PeripheralManager class.

Here is sample code from the 3.2 version of the Device Access API used to access the
General Purpose I/O (GPIO) pins:

GPIOPin switchPin = null;
GPIOPin ledPin = null;

try {

 switchPin = GPIOManager.getPin("SWITCH_PIN", GPIOPin.class, null);
 ledPin = GPIOManager.getPin("LED_PIN", GPIOPin.class, null);

 if(switchPin != null && ledPin != null){
 switchPin.setInputPinListener(listener);
 }

} catch (Exception e) {
 // Handle exceptions
}

Here is the equivalent version with version 3.3 of the Device Access APIs:

 GPIOPin switchPin = null;
 GPIOPin ledPin = null;

 try {

 switchPin=(GPIOPin)PeripheralManager.open("SWITCH_PIN", GPIOPin.class, null);
 ledPin=(GPIOPin)PeripheralManager.open("LED_PIN", GPIOPin.class, null););

 if(switchPin != null && ledPin != null){

The PeripheralManager Class

A-2 Oracle Java ME Embedded Device Access API Guide

 switchPin.setInputPinListener(listener);
 }

 } catch (Exception ex) {
 // Handle exceptions
 }

Note that the newer version uses the PeripheralManager class to obtain access to the
GPIO pins. The PeripheralManager class returns an object which is then cast to the
appropriate type. In addition, here is a short example of how to access the MMIO bus
using version 3.2 of the Device Access APIs:

 MMIODevice rtc = null;

 try {

 rtc = MMIOManager.getDevice("RTC");

 RawByte seconds = rtc.getByteRegister("Seconds");
 RawByte secAlarm = rtc.getByteRegister("SecAlarm");
 RawByte minutes = rtc.getByteRegister("Minutes");
 RawByte minAlarm = rtc.getByteRegister("MinAlarm");
 ...
 } catch (Exception e) {
 // Handle exceptions
 }

Here is the equivalent code using version 3.3:

 MMIODevice rtc = null;

 try {

 rtc = (MMIODevice) PeripheralManager.open("RTC",
 MMIODevice.class, (String[]) null);

 RawByte seconds = rtc.getByteRegister("Seconds");
 RawByte secAlarm = rtc.getByteRegister("SecAlarm");
 RawByte minutes = rtc.getByteRegister("Minutes");
 RawByte minAlarm = rtc.getByteRegister("MinAlarm");
 ...
 } catch (Exception e) {
 // Handle exceptions
 }

The important thing to remember is to use the correctly overloaded version of the
PeripheralManager.open() method to obtain access to the respective device on the
appropriate bus. See the examples at the beginning of each chapter for information on
how to format each call for the respective API, or the equivalent Javadoc for more
precise usage.

Glossary-1

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time
and amplitude) into a stream of binary numbers that can be processed by a digital
device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

Foreground switching

Changing which application is in the foreground by shifting the focus from one
application to another.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

JAR file

Glossary-3

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

JCP

Glossary-4

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

RL-ARM

Glossary-5

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Glossary-6

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to

UMTS

Glossary-7

the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Glossary-8

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

Index-1

Index

A
AccessOutOfBoundsException, 9-10
AcquisitionEvent, 2-6

getNumber, 2-6
getOffset, 2-6
getValues, 2-6

AcquisitionListener, 2-3
inputAcquired, 2-3

ADC
examples, 2-1

ADC (Analog-to-Digital Converter), 2-1
ADCChannel, 2-3

getMaxValue, 2-4
getMinSamplingInterval, 2-5
getMinValue, 2-4
getSamplingInterval, 2-5
getValue, 2-4
getValues, 2-4
getVRefValue, 2-4
setSamplingInterval, 2-5
startAcquisition, 2-4
startMonitoring, 2-5
stopAcquisition, 2-5
stopMonitoring, 2-5

ADCChannelConfig, 2-6
getChannelNumber, 2-7
getConverterNumber, 2-7
getResolution, 2-7
getSamplingInterval, 2-7
getSamplingTime, 2-7

API Permissions
com.oracle.deviceaccess.adc, 2-2
com.oracle.deviceaccess.atcmd, 3-3
com.oracle.deviceaccess.counter, 4-2
com.oracle.deviceaccess.dac, 5-2
com.oracle.deviceaccess.generic, 6-3
com.oracle.deviceaccess.gpio, 7-3
com.oracle.deviceaccess.gpio.GPIOPin.setDirection

, 7-3
com.oracle.deviceaccess.gpio.GPIOPort.setDirectio

n, 7-3
com.oracle.deviceaccess.i2c, 8-3
com.oracle.deviceaccess.mmio, 9-3
com.oracle.deviceaccess.power, 11-2
com.oracle.deviceaccess.spi, 12-2

com.oracle.deviceaccess.uart, 13-3
com.oracle.deviceaccess.watchdog, 14-2

AT Commands, 3-1
ATDevice, 3-1, 3-3

abortCommand, 3-5
capabilities, 3-3
close, 3-6
escapeToCommandMode, 3-5
getMaxCommandLength, 3-5
isConnected, 3-5
isInCommandMode, 3-5
openDataConnection, 3-5
sendCommand, 3-4
setUnsolicitedResponseHandler, 3-5

ATModem, 3-1, 3-6

C
CommandResponseHandler, 3-6

processResponse, 3-6
CountingEvent, 4-4

getInterval, 4-4
getType, 4-4
getValue, 4-4
INTERVAL_EXPIRED, 4-4
TERMINAL_VALUE_REACHED, 4-4

D
DACChannel, 5-2

getMaxValue, 5-3
getMinSamplingInterval, 5-4
getMinValue, 5-3
getSamplingInterval, 5-4
getVRefValue, 5-3
setSamplingInterval, 5-4
setValue, 5-3
setValues, 5-3
startGeneration, 5-4
stopGeneration, 5-4

DACChannelConfig, 5-5
getChannelNumber, 5-5
getConverterNumber, 5-5
getResolution, 5-5
getSamplingInterval, 5-5

DataConnection, 3-6

Index-2

close, 3-7
getInputStream, 3-6
getOutputStream, 3-6

DataConnectionHandler, 3-7
handleClosedDataConnection, 3-7
handleOpenedDataConnection, 3-7

Device Access
Migrating from 3.2, A-1

PeripheralManager, A-1
Digital Signatures, 1-1

keytool, 1-1
Digital-to-Analog Conversion, 5-1

G
General Purpose Input/Output (GPIO), 7-1
GenerationEvent, 5-5

getActualNumber, 5-6
getNumber, 5-6
getOffset, 5-6
getValues, 5-6
setActualNumber, 5-6

GenerationListener, 5-4
outputGenerated, 5-4

GenericBufferIODevice, 6-1, 6-4
read, 6-4
write, 6-4

GenericDevice, 6-1, 6-4
getControl, 6-5
setControl, 6-5
setEventListener, 6-5

GenericEvent, 6-6
getID, 6-6
INPUT_BUFFER_OVERRUN, 6-6
INPUT_DATA_AVAILABLE, 6-6
OUTPUT_BUFFER_EMPTY, 6-6

GenericEventListener, 6-5
eventDispatched, 6-5

GenericStreamIODevice, 6-1, 6-5
close, 6-6
getInputStream, 6-5
getOutputStream, 6-5

GPIOPin, 7-3
INPUT, 7-3
OUTPUT, 7-3

GPIOPinConfig, 7-6
getDirection, 7-7
getDriveMode, 7-8
getInitValue, 7-7
getPinNumber, 7-8
getPortNumber, 7-7
getTrigger, 7-8

GPIOPin.getDirection, 7-4
GPIOPin.getValue, 7-4
GPIOPin.setDirection, 7-4
GPIOPin.setInputListener, 7-4
GPIOPin.setValue, 7-4
GPIOPort, 7-4

getDirection, 7-5
getMaxValue, 7-5

getValue, 7-5
INPUT, 7-5
OUTPUT, 7-5
setDirection, 7-6
setInputListener, 7-6
setValue, 7-6

GPIOPortConfig, 7-8
getDirection, 7-8
getInitValue, 7-8
getPins, 7-8

I
I2CDevice, 8-3

begin, 8-4
end, 8-4
read, 8-4
write, 8-5

I2CDeviceConfig, 8-5
getAddress, 8-6
getAddressSize, 8-6
getBusNumber, 8-6
getClockFrequency, 8-6

Inter-Integrated Circuit (I2C) Bus, 8-1
InvalidOperationException, 1-7
InvalidSamplingRateException, 2-8, 5-6
InvalidStateException, 1-7
InvalidWordLengthException, 12-5

K
keytool, 1-1

M
Memory-Mapped Input/Output, 9-1
MMIODevice, 9-3

getAsRawBlock, 9-4
getBlock, 9-4
getByteOrdering, 9-4
getByteRegister, 9-4
getIntRegister, 9-4
getShortRegister, 9-4
setMMIOEventListener, 9-4

MMIODeviceConfig, 9-8
getAddress, 9-9
getByteOrdering, 9-9
getRawMemoryConfigs, 9-9
getSize, 9-9
REGISTER_TYPE_BYTE, 9-8
REGISTER_TYPE_INT, 9-8
REGISTER_TYPE_SHORT, 9-8

MMIODeviceConfig.RawBlockConfig, 9-8, 9-9
getSize, 9-9

MMIODeviceConfig.RawMemoryConfig, 9-8, 9-9
getName, 9-9
getOffset, 9-9

MMIODeviceConfig.RawRegisterConfig, 9-8, 9-9
getType, 9-9

MMIOEvent, 9-7, 9-10
getCapturedMemoryContent, 9-8, 9-10

Index-3

getCapturedRegisterValue, 9-8, 9-10
getID, 9-7, 9-10

MMIOEventListener, 9-5
eventDispatched, 9-5

ModemSignalEvent, 10-2
getSignalID, 10-2
getSignalState, 10-2
signalID, 10-2
signalState, 10-2

ModemSignalListener, 10-1
signalStateChanged, 10-1

ModemSignalsControl, 10-1
CTS_SIGNAL, 10-1
DCD_SIGNAL, 10-1
DSR_SIGNAL, 10-1
DTR_SIGNAL, 10-1
getSignalState, 10-2
RI_SIGNAL, 10-1
RTS_SIGNAL, 10-1
setSignalChangeListener, 10-2
setSignalState, 10-2

ModemUART, 13-3
MonitoringEvent, 2-7

BACK_TO_RANGE, 2-7
getType, 2-7
getValue, 2-7
OUT_OF_RANGE, 2-7

MonitoringListener, 2-6
thresholdReached, 2-6

P
Peripheral, 1-2

BIG_ENDIAN, 1-2
close, 1-3
getID, 1-3
getName, 1-3
getProperties, 1-3
isOpen, 1-3
LITTLE_ENDIAN, 1-2
MIXED_ENDIAN, 1-3
UNIDENTIFIED_ID, 1-3

PeripheralConfig, 1-3
DEFAULT, 1-4
Dynamic Configuration Parameters, 1-3
Hardware Addressing Information, 1-3
Static Configuration Parameters, 1-3

PeripheralConfigInvalidException, 1-7
PeripheralEvent, 1-5

count, 1-5
getCount, 1-5
getLastTimeStamp, 1-5
getLastTimeStampMicros, 1-5
getPeripheral, 1-6
getTimeStamp, 1-5
getTimeStampMicros, 1-5
lastTimeStamp, 1-5
lastTimeStampMicros, 1-5
peripheral, 1-5
timeStamp, 1-5

timeStampMicros, 1-5
PeripheralEventListener, 1-4
PeripheralException, 1-7
PeripheralExistsException, 1-8
PeripheralManager

API Permissions, 1-1
PeripheralManagerClass, 1-6

list, 1-7
open, 1-6
register, 1-6
unregister, 1-6

PeripheralNotAvailableException, 1-8
PeripheralNotFoundException, 1-8
PeripheralTypeNotSupportedException, 1-8
Permissions

com.oracle.deviceaccess.atcmd.ATDevice.openDat
aConnection, 3-3

PinEvent, 7-9
getValue, 7-9

PinListener, 7-6
PortEvent, 7-9

getValue, 7-9
PortListener, 7-6
Power Management, 11-1
PowerManaged, 11-2

disablePowerSaving, 11-4
enablePowerSaving, 11-4
getPowerState, 11-4
LOW_POWER, 11-3
LOWEST_POWER, 11-3
POWER_OFF, 11-4
POWER_ON, 11-3
requestPowerStateChange, 11-4
UNLIMITED_DURATION, 11-3

PowerSavingsHandler, 11-4
handlePowerStateChangeRequest, 11-4

Pulse Counters, 4-1
PulseCounter, 4-2

getCount, 4-3
resetCounting, 4-3
resumeCounting, 4-3
startCounting, 4-3
stopCounting, 4-3
suspendCounting, 4-3

PulseCounterConfig, 4-4
getCounterNumber, 4-5
getSource, 4-5
getType, 4-5
TYPE_FALLING_EDGE_ONLY, 4-5
TYPE_NEGATIVE_PULSE, 4-5
TYPE_POSITIVE_PULSE, 4-5
TYPE_RISING_EDGE_ONLY, 4-5

R
RawBlock, 9-5

getByte, 9-5
getBytes, 9-6
getInt, 9-6
getInts, 9-6

Index-4

getShort, 9-6
getShorts, 9-6
getSize, 9-5
setByte, 9-6
setBytes, 9-6
setInt, 9-6
setInts, 9-6
setShort, 9-6
setShorts, 9-6

RawByte, 9-6
get, 9-6
set, 9-6

RawInt, 9-7
get, 9-7
set, 9-7

RawMemory, 9-5
getName, 9-5

RawShort, 9-7
get, 9-7
set, 9-7

S
Serial Peripheral Interface Bus, 12-1
SMS

Sending a message using AT Commands, 3-1
SPIDevice, 12-2

begin, 12-3
end, 12-3
getWordLength, 12-3
read, 12-3
write, 12-3
writeAndRead, 12-3

SPIDeviceConfig, 12-4
getAddress, 12-5
getBitOrdering, 12-5
getBusNumber, 12-5
getClockFrequency, 12-5
getClockMode, 12-5
getWordLength, 12-5

T
Transactional, 1-4

begin, 1-4
end, 1-4

U
UART, 13-3

close, 13-4
getBaudRate, 13-4
getDataBits, 13-4
getInputStream, 13-4
getOutputStream, 13-5
getParity, 13-4
getStopBits, 13-4
setBaudRate, 13-4
setDataBits, 13-4
setEventListener, 13-5
setParity, 13-4

setStopBits, 13-4
UARTConfig, 13-5

getBaudRate, 13-6
getDataBits, 13-6
getFlowControlMode, 13-6
getInputBufferSize, 13-7
getOutputBufferSize, 13-7
getParity, 13-6
getStopBits, 13-6
getUARTNumber, 13-6

UARTEvent, 13-7
getID, 13-7
INPUT_BUFFER_OVERRUN, 13-7
INPUT_DATA_AVAILABLE, 13-7
OUTPUT_BUFFER_EMPTY, 13-7

UARTEventListener, 13-5
eventDispatched, 13-5

Universal Asynchronous Receiver/Transmitter
(UART), 13-1

UnsolicitedResponseHandler, 3-7
processResponse, 3-7

W
Watchdog Timers, 14-1
WatchdogTimer, 14-2

causedLastReboot, 14-3
getMaxTimeout, 14-3
getTimeout, 14-3
refresh, 14-3
start, 14-3
stop, 14-3

WindowedWatchdogTimer, 14-3
getClosedWindowTimeout, 14-4
start, 14-4

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Introduction
	Device Access API Permissions
	The Peripheral Interface
	The PeripheralConfig Interface
	The PeripheralEventListener Interface
	The Transactional Interface
	The PeripheralEvent Class
	The PeripheralManager Class
	Exceptions

	2 Analog-to-Digital Converter
	The AcquisitionListener Interface
	The ADCChannel Interface
	The MonitoringListener Interface
	The AcquisitionEvent Class
	The ADCChannelConfig Class
	The MonitoringEvent Class
	Exceptions

	3 AT Commands
	The ATDevice Interface
	The ATModem Interface
	The CommandResponseHandler Interface
	The DataConnection Interface
	The DataConnectionHandler Interface
	The UnsolicitedResponseHandler Class

	4 Pulse Counters
	The PulseCounter Interface
	The CountingEvent Class
	The PulseCounterConfig Class

	5 Digital-to-Analog Converter
	The DACChannel Interface
	The GenerationListener Interface
	The DACChannelConfig Class
	The GenerationEvent Class
	Exceptions

	6 Generic Input/Output Classes
	The GenericBufferIODevice Interface
	The GenericDevice Interface
	The GenericEventListener Class
	The GenericStreamIODevice Class
	The GenericEvent Class

	7 General Purpose Input/Output (GPIO)
	The GPIOPin Interface
	The GPIOPort Interface
	The PinListener Interface
	The PortListener Interface
	The GPIOPinConfig Class
	The GPIOPortConfig Class
	The PinEvent Class
	The PortEvent Class

	8 Inter-Integrated Circuit Bus
	The I2CDevice Interface
	The I2CDeviceConfig Class

	9 Memory-Mapped Input/Output
	The MMIODevice Interface
	The MMIOEventListener Interface
	The RawMemory Interface
	The RawBlock Interface
	The RawByte Interface
	The RawInt Interface
	The RawShort Interface
	The MMIOEvent Class
	The MMIODeviceConfig Class
	The MMIODeviceConfig.RawMemoryConfig Class
	The MMIODeviceConfig.RawBlockConfig Class
	The MMIODeviceConfig.RawRegisterConfig Class
	The MMIOEvent Class
	AccessOutOfBoundsException

	10 Modem Control Signals
	The ModemSignalListener Interface
	The ModemSignalsControl Class
	The ModemSignalEvent Class

	11 Power Management
	The PowerManaged Interface
	The PowerSavingsHandler Class

	12 Serial Peripheral Interface Bus
	The SPIDevice Interface
	The SPIDeviceConfig Class
	InvalidWordLengthException

	13 UART
	The ModemUART Interface
	The UART Interface
	The UARTEventListener Interface
	The UARTConfig Class
	The UARTEvent Class

	14 Watchdog Timers
	The WatchdogTimer Interface
	The WindowedWatchdogTimer Interface

	A Migrating from Device Access Version 3.2
	The PeripheralManager Class

	Glossary
	Index
	A
	C
	D
	G
	I
	K
	M
	P
	R
	S
	T
	U
	W

