

Oracle® Java ME Embedded
Getting Started Guide for the Reference Platform (Raspberry
Pi)

Release 3.3

E38384-01

June 2013

This book describes how to install and run the Oracle Java
ME Embedded software on the Raspberry Pi reference
platform.

Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi), Release 3.3

E38384-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Operating System Commands .. ix
Shell Prompts ... x
Conventions ... x

1 Running on the Raspberry Pi Board

Downloading and Installing the PuTTY Terminal Emulator Program ... 1-1
Preparing the Raspberry Pi Board... 1-1
Installing the Java ME Embedded Software ... 1-2

Adding a Proxy for Network Connections ..1-3
Running IMlets on the Raspberry Pi Using the Command Shell .. 1-3
Running IMlets on the Raspberry Pi Using the AMS CLI .. 1-6

2 Using NetBeans or Eclipse with the Raspberry Pi Board

Using NetBeans with the Raspberry Pi Board.. 2-1
Installing the Oracle Java ME SDK 3.3 Plugin for NetBeans ...2-1
Adding the Raspberry Pi Board to the Device Selector ..2-2
Assigning the Raspberry Pi Board to Your Project ...2-3
Sample Source Code ..2-3

Accessing the Peripherals on the Raspberry Pi .. 2-4
Method #1: Modifying the Security Policy File ...2-4
Method #2: Signing the Application with API Permissions ..2-5

Debugging an IMlet on the Raspberry Pi Board.. 2-6
Using Eclipse with the Raspberry Pi Board .. 2-7

Installing the Oracle Java ME SDK 3.3 Plugin for Eclipse ..2-7
Adding the Raspberry Pi Board to the Device Selector ..2-8
Assigning the Raspberry Pi Board to Your Project .. 2-10
Sample Source Code ... 2-10

Accessing the Peripherals on the Raspberry Pi ... 2-11
Method #1: Modifying the Security Policy File .. 2-11
Method #2: Signing the Application with API Permissions ... 2-11

Debugging an IMlet on the Raspberry Pi Board... 2-12

iv

3 Troubleshooting

Installing Linux on the Raspberry Pi Board ... 3-1
Starting Oracle Java ME Embedded on the Board ... 3-1
Using the Board with the Oracle Java ME SDK and the NetBeans IDE ... 3-2

A Raspberry Pi Board Peripheral List

GPIO Pins ... A-1
I2C .. A-5
MMIO .. A-6
SPI .. A-7
UART ... A-7
Watchdog... A-8

B AMS Installer Error Codes

Glossary ..

Index

v

vi

List of Examples

2–1 Sample Code to Access a GPIO Port with NetBeans ... 2-3
2–2 Sample Code to Access a GPIO Port with Eclipse .. 2-10

vii

List of Figures

1–1 Raspberry Pi Directory Display .. 1-3
1–2 Using PuTTY to Connect to the Command-Line Interface... 1-6
1–3 Command-Line Interface to the Raspberry Pi .. 1-7
2–1 Adding API Permissions with NetBeans .. 2-5
2–2 The Signing Pane in the NetBeans Project Properties ... 2-6
2–3 Debugging an IMlet on the Board Using NetBeans... 2-7
2–4 Debugging an IMlet on the Board Using the Eclipse IDE ... 2-13

viii

List of Tables

1–1 Raspberry Pi Shell Commands .. 1-4
1–2 AMS CLI Commands .. 1-7
1–3 Additional System Commands Available in the AMS CLI ... 1-8
3–1 Problems and Solutions - Installing Linux on the Board ... 3-1
3–2 Problems and Solutions - Starting Oracle Java ME Embedded on the Board................... 3-2
3–3 Problems and Solutions - Oracle Java ME SDK and the NetBeans IDE 3-2
B–1 Installer Error Codes... B-1

ix

Preface

This book describes how to install Oracle Java ME Embedded software onto a
Raspberry Pi embedded device. Readers using this guide should be familiar with the
Information Module Profile - Next Generation (IMP-NG) 1.0 Specification.

Audience
This document is intended for developers who want to run Oracle Java ME Embedded
software on embedded devices.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands
This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

x

Shell Prompts

Conventions
The following text conventions are used in this document:

Shell Prompt

Bourne shell and Korn shell $

Windows directory>

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Running on the Raspberry Pi Board 1-1

1Running on the Raspberry Pi Board

This chapter describes installing the Oracle Java ME Embedded software on the
Raspberry Pi board, configuring the Java ME Embedded system, connecting to the
Raspberry Pi using a secure shell, and installing and running an Oracle Java ME
Embedded application.

The following items are required for developing on the Raspberry Pi board:

■ The Raspberry Pi Rev. B 512 MB Board

■ A micro-USB power supply of .7 or greater amps, and 5 volts. Note that the power
supply must have a micro-USB connector, not a regular USB or mini-USB
connector.

■ A USB keyboard and mouse, as well as a monitor. If necessary for your monitor,
an HDMI to DVI video cable or adapter.

■ An SD card of 2 GB or greater. An SD-HC class 10 card is recommended. Do not
use a high speed SD card, as it may be too fast for the Raspberry Pi board.

■ An ethernet cable with an RJ-45 connection, and a connection to a network with a
DHCP server.

■ A terminal emulation program, such as PuTTY, if you wish to connect to the board
using the Application Management System (AMS) interface.

Downloading and Installing the PuTTY Terminal Emulator Program
Download the PuTTY Terminal Emulator Program (putty.exe) from the following
site:

http://www.putty.org/

The terminal emulator executable is directly downloadable as putty.exe. The terminal
emulator is used to connect to the AMS command-line interface (CLI) that issues
commands to the board.

Preparing the Raspberry Pi Board
To develop on the Raspberry Pi board, you must first download and install the
Wheezy variant of Raspbian Debian Linux on the Pi board. If you have not already
done this, use the following steps:

1. Download the Raspbian "Wheezy" hard-float (Debian Linux) ZIP file to your
desktop from the following site:

http://www.raspberrypi.org/downloads

Installing the Java ME Embedded Software

1-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

2. Unzip the distribution file, which creates a single disk image (.img) file.

3. Mount the SD card to the desktop, and use a utility to write the disk image file to
the SD card. Note that this is not the same as copying the file to the base-level
directory on the SD card. Instead, it is akin to "burning" a disk image onto a
CD-ROM or DVD-ROM. There are a number of utilities that will perform this
action. With Windows, for example, you can use the Disk Image Writer utility
located at https://launchpad.net/win32-image-writer to perform this
task. For Mac, use the RPi-sd Card Builder located at
http://alltheware.wordpress.com/2012/12/11/easiest-way-sd-car
d-setup. For Linux, use the dd command; for more information, see
http://en.wikipedia.org/wiki/Dd_(Unix).

4. Eject or unmount the SD card from the desktop computer.

5. Connect the RJ-45 network cable, monitor, keyboard, and mouse.

6. Install the SD card in the Raspberry Pi.

7. Connect power to the Pi. The red light on the Raspberry Pi should glow, then in a
few seconds, the green light should blink. The blinking green light indicates that
the Raspberry Pi is booting Linux.

8. If the Linux installation was successful, the Raspberry Pi will boot and obtain a
DHCP address.

9. Next, a configuration program (raspi-config) runs, which helps you expand the
filesystem partition on the SD card, configure the keyboard, timezone, reset the
default password, and several other useful system items. Use the up-down arrow
keys to make a menu choice. Use the left-right arrow keys to select OK or Cancel.
Press Return to execute your choice. Note that the default user name is "pi", and
the default password is "raspberry".

10. If you wish, perform an update, start the ssh server, and set the graphical desktop
to automatically start, then press Finish. At this point, the board should reboot.
Login if necessary, and if you’re using the desktop, start a LXTerminal. Then, run
the ifconfig command to display the Pi's IP address. This is necessary so you can
access and control the board remotely. Remember this IP address; it will be used in
the next set of steps.

Installing the Java ME Embedded Software
Use an sftp client or scp command to transfer the Oracle Java ME Embedded ZIP file
to the Raspberry Pi. For example, on a Unix or Mac system, you can transfer the ZIP
file using a command similar to the following:

 $sftp pi@[IP address of board]

Windows users can download the psftp.exe to obtain a free SFTP client; it is available
from the same address as the PuTTY executable:

 http://www.putty.org/

Once the file is transferred, either go directly to the keyboard and the mouse connected
to the Raspberry Pi, or start a secure shell script on your desktop to connect to the
board using the following command:

 $ssh -l pi [IP address of board]

Change directory to the location that you uploaded the Oracle Java ME Embedded
distribution, create a new folder, and unzip the distribution to a folder.

Running IMlets on the Raspberry Pi Using the Command Shell

Running on the Raspberry Pi Board 1-3

At this point, you see three subdirectories: appdb, bin, and lib. The contents of the bin
directory are the most important, and from the desktop on the Raspberry Pi, are
shown in Figure 1–1.

Figure 1–1 Raspberry Pi Directory Display

There are two ways to interact with the Oracle Java ME Embedded. The first is to
directly execute commands using the LXTerminal command-line shell interface or
logging in via ssh. The second is to connect to the board using port 65002 and run
commands using the Application Management System (AMS).

Adding a Proxy for Network Connections
If a proxy server is required for network connections (such as HTTP or apt-get), the
server can be configured for IMlets by adding the following lines to the end of the
bin/jwc_properties.ini file.

com.sun.midp.io.http.proxy.host = proxy.mycompany.com
com.sun.midp.io.http.proxy.port = 80

Running IMlets on the Raspberry Pi Using the Command Shell
You can use a command-line shell interface to run the commands shown in Table 1–1.

Running IMlets on the Raspberry Pi Using the Command Shell

1-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

The following is a typical example of using the commands to install, list, run, and
remove a Java ME Embedded application on the Raspberry Pi board. Note that the
runSuite shell command is preceded by the sudo request to ensure that the command
can run with superuser privileges and access all the peripherals on the board. Most
commands can be terminated with the Ctrl-C key combination if they become
unresponsive.

First, install the application using the installMidlet.sh command, specifying its
location on the local filesystem.

pi@raspberrypi ~/pi/bin $./installMidlet.sh EmbeddedTestProject.jar
argv[1] = runMidlet
argv[2] = -1
argv[3] = com.sun.midp.scriptutil.CommandLineInstaller
argv[4] = I
argv[5] = EmbeddedTestProject.jar
Command line parameters are passed.
javacall_event_initialize: events system initialized
Events system initialized.
Time system initialized.
JavaTask thread initialized.
Starting JavaTask
The suite was successfully installed, ID: 2
Exited JavaTask

If the install process shows any error code, see Table B–1 in Appendix B, "AMS
Installer Error Codes" for more information on how to resolve the error.

Once an IMlet is installed, note its ID: in this case, it is 2. Next, verify it using the
listMidlets.sh command.

pi@raspberrypi ~/pi/bin $./listMidlets.sh
argv[1] = runMidlet
argv[2] = -1
argv[3] = com.sun.midp.scriptutil.SuiteLister
Command line parameters are passed.
javacall_event_initialize: events system initialized
Events system initialized.
Time system initialized.
JavaTask thread initialized.
Java is starting. Press Ctrl-C to exit
Starting JavaTask
Suite: 2
 Name: EmbeddedTestProject

Table 1–1 Raspberry Pi Shell Commands

Syntax Description

listMidlets.sh [SUITE_ID or NAME] List all installed IMlet suites and their
statuses or show the detail of a single
suite.

installMidlet.sh <URL> [<URL label>] Install an IMlet using the specified JAR
file.

removeMidlet.sh <SUITE_ID> Remove an installed IMlet.

sudo runSuite.sh <SUITE_ID or NAME> [IMLET_
ID or classname]

Execute the specified IMlet or the default
if none is specified. All logging
information from the IMlet appears in
the stdout of this command.

Running IMlets on the Raspberry Pi Using the Command Shell

Running on the Raspberry Pi Board 1-5

 Version: 1.0
 Vendor: Vendor
 MIDlets:
 IMlet: GPIODemo
Exited JavaTask

The sudo runMidlet command can be used to execute any installed IMlet. This
command will execute the IMlet that was just installed, passing any logging
information to the stdout of this command. Note that you can press the Ctrl-C key to
exit from this command, which will terminate the app.

pi@raspberrypi ~/pi/bin $ sudo ./runSuite.sh GPIODemo
argv[1] = GPIODemo
Command line parameters are passed.
javacall_event_initialize: events system initialized
Events system initialized.
Time system initialized.
JavaTask thread initialized.
Java is starting. Press Ctrl-C to exit
Starting JavaTask
Watchdog is starting
Network: Init
App started

The removeMidlet.sh command can be used to remove any installed IMlet.

pi@raspberrypi ~/pi/bin $./removeMidlet.sh 2
argv[1] = runMidlet
argv[2] = -1
argv[3] = com.sun.midp.scriptutil.SuiteRemover
argv[4] = 2
Command line parameters are passed.
javacall_event_initialize: events system initialized
Events system initialized.
Time system initialized.
JavaTask thread initialized.
Java is starting. Press Ctrl-C to exit
Starting JavaTask
Suite removed
Exited JavaTask
pi@raspberrypi ~/pi/bin $

The results can again be verified with the listMidlets.sh command.

pi@raspberrypi ~/pi/bin $./listMidlets.sh
argv[1] = runMidlet
argv[2] = -1
argv[3] = com.sun.midp.scriptutil.SuiteLister
Command line parameters are passed.
javacall_event_initialize: events system initialized
Events system initialized.
Time system initialized.
JavaTask thread initialized.

Java is starting. Press Ctrl-C to exit
Starting JavaTask
No suites installed
Network: Init
Exited JavaTask

Running IMlets on the Raspberry Pi Using the AMS CLI

1-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Running IMlets on the Raspberry Pi Using the AMS CLI
The second method of connecting to the Raspberry Pi board is to make a raw
connection to the AMS CLI on port 65002 of the board. However, in order for this to
work, you must first start the Application Management System (AMS) on the board
with the usertest.sh command in the command-line shell interface. Note that the
command must be run using sudo to obtain superuser privileges to access all the
peripherals on the board.

pi@raspberrypi ~/pi/bin $ sudo ./usertest.sh

Next, start a PuTTY executable on your desktop computer. Use this to create raw
socket connections to the IP address of the Raspberry Pi board, and port 65002. For
example, a connection to the IP address of 192.168.1.102 and the port 65002 is shown in
Figure 1–2. Note that the IP address of your Raspberry Pi board may be different.

Figure 1–2 Using PuTTY to Connect to the Command-Line Interface

The window from port 65002 provides a command-line interface (CLI), and is shown
in Figure 1–3:

Note: All logging information from IMlets appears in the stdout of
this command.

Running IMlets on the Raspberry Pi Using the AMS CLI

Running on the Raspberry Pi Board 1-7

Figure 1–3 Command-Line Interface to the Raspberry Pi

You can use the command-line interface to run the AMS commands shown in
Table 1–2.

WARNING: The command-line interface (CLI) feature in this
Oracle Java ME Embedded software release is provided only as a
concept for your reference. It uses insecure connections with no
encryption, authentication, or authorization.

Table 1–2 AMS CLI Commands

Syntax Description

ams-list [INDEX or NAME|VENDOR] List all installed IMlet suites and their
statuses or show the detail of a single
suite

ams-install <URL> [username:password] Install an IMlet using the specified
JAR or JAD file, specified as a URL.
An optional username and password
can be supplied for login information
as well.

ams-update <INDEX or NAME|VENDOR> Update the installed IMlet

ams-remove <INDEX or NAME|VENDOR> Remove an installed IMlet

ams-run <INDEX or NAME|VENDOR> [IMLET_ID]
[-debug]

Execute the specified IMlet or the
default if none is specified. An
optional debug parameter can be
specified to run the IMlet in debug
mode.

ams-stop <INDEX or NAME|VENDOR> [IMLET_ID] Stop the specified IMlet or the default
if none is specified

ams-suspend <INDEX or NAME|VENDOR> [IMLET_
ID]

Suspend (pause) the specified IMlet
or the default if none is specified

ams-resume <INDEX or NAME|VENDOR> [IMLET_ID] Resume the specified IMlet or the
default if none is specified

Running IMlets on the Raspberry Pi Using the AMS CLI

1-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

When the sysmenu command is entered with the on option, additional system menu
commands are available with the AMS CLI, as shown in Table 1–3.

Here is a typical example of using the Application Management System (AMS) to
install, list, run, and remove a Java ME Embedded application on the board.

oracle>> ams-install file:///some/directory/hello.jar
<<ams-install,start install,file:///some/directory/hello.jar
<<ams-install,install status: stage 0, 5%
<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

oracle>> ams-install http://www.example.com/netdemo.jar
<<ams-install,start install,http://www.example.com/netdemo.jar
<<ams-install,install status: stage 0, 5%
<<ams-install,install status: stage 3, 100%
<<ams-install,install status: stage 4, 100%
<<ams-install,OK,Install success

ams-setup <INDEX or NAME|VENDOR> Display the setup menu of the IMlet

ams-info <INDEX or NAME|VENDOR> Show information about the installed
IMlet

ams-log <command> [param1, param2, ...,
paramN]

ams-log wdog

Display the IMlet log or watchdog log
if recorded by the watchdog handler
in the platform

ams-logger-list [INDEX or NAME|VENDOR] Retrieve the logger list for the IMlet or
all the tasks if one is not specified

ams-logger-info <INDEX or NAME|VENDOR>
[LOGGER_NAME]

Retrieve logger info for the specified
IMlet and logger or all the loggers if is
one is not specified

ams-logger-level-set <INDEX or NAME|VENDOR>
[LOGGER_NAME] <LOGGER_LEVEL>

Set the logger level for specified IMlet
or all loggers if one is not specified

help [command name] List the available commands or
detailed usages for a single command

sysmenu <on PASSWORD|off> Enable hidden system menu
commands. Currently, the password
is 12345.

exit Terminates the current session.

Table 1–3 Additional System Commands Available in the AMS CLI

Syntax Description

setprop <KEY> <VALUE> Sets a property identified by <KEY> with the value <VALUE>

getprop <KEY> Returns a property identified by <KEY>

odd [on|off] Explicitly sets the on-device debugging (ODD) property to on or
off. If no parameters are passed, returns the current ODD value.

shutdown [-r] Perform either a shutdown of the board, or a reboot if the -r
parameter has been passed.

Table 1–2 (Cont.) AMS CLI Commands

Syntax Description

Running IMlets on the Raspberry Pi Using the AMS CLI

Running on the Raspberry Pi Board 1-9

oracle>> ams-install http://www.example.com/notthere.jar
<<ams-install,start install,http://www.example.com/notthere.jar
<<ams-install,FAIL,errorCode=103 (OTHER_ERROR)

Note that the final installation example failed with an error code and matching
description. If the install process shows any error code, see Table B–1 in Appendix B,
"AMS Installer Error Codes" for more information on how to resolve the error.

Once an IMlet is installed, verify it using the ams-list command. Here, we have
added an additional IMlet: rs232dem. Each IMlet has been assigned a number by the
AMS for convenience.

oracle>> ams-list
<<ams-list,0.hello|Oracle,STOPPED
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,3 suites are installed

The ams-remove command can be used to remove any installed IMlet.

oracle>> ams-remove 0
<<ams-remove,OK,hello removed

The results can again be verified with the ams-list command.

oracle>> ams-list
<<ams-list,1.netdemo|Oracle,STOPPED
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

Finally, start up the IMlet using the ams-run command. The application can be
terminated with the ams-stop command.

oracle>> ams-run 1
<<ams-run,OK,started

oracle>> ams-list
<<ams-list,1.netdemo|Oracle,RUNNING
<<ams-list,2.rs232dem|Oracle,RUNNING
<<ams-list,OK,2 suites are installed

Running IMlets on the Raspberry Pi Using the AMS CLI

1-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

2

Using NetBeans or Eclipse with the Raspberry Pi Board 2-1

2Using NetBeans or Eclipse with the
Raspberry Pi Board

Developers can run and debug IMlets on the Raspberry Pi board directly from the
NetBeans IDE or Eclipse IDE using the Oracle Java ME SDK. This chapter describes
how to add the board to the Device Selector in the Oracle Java ME SDK and how to
debug an IMlet on the board from both the NetBeans IDE and the Eclipse IDE.

Using NetBeans with the Raspberry Pi Board
Running and debugging IMlet projects on the Raspberry Pi board using the NetBeans
IDE requires the following software:

■ NetBeans IDE 7.3 with Java ME enabled

■ Oracle Java ME SDK 3.3

■ Oracle Java ME SDK 3.3 NetBeans Plugin

Installing the Oracle Java ME SDK 3.3 Plugin for NetBeans
After installing NetBeans, use these steps to install the remaining software.

1. Ensure that Java ME is enabled in NetBeans. This can be done by selection Tools
-> Plugins and selecting the Installed pane. Activate the Java ME plugin if it is not
already activated.

2. Install the Java ME SDK 3.3 distribution. See the Java ME SDK 3.3 documentation
for details.

3. Install the Oracle Java ME SDK 3.3 NetBeans plugin. This is a downloadable ZIP
file that consists of a number of NetBeans modules (.nbm files) that can be added
using the Tools -> Plugins dialog and selecting the Downloaded pane. The Oracle
Java ME SDK 3.3 NetBeans plugin is required to use the Device Selector to connect
to the board. See the Oracle Java ME SDK 3.3 Release Notes for installation
instructions:

http://docs.oracle.com/javame/dev-tools/jme-sdk-3.3/release-n
otes/toc.htm

4. Ensure that the Oracle Java ME Embedded 3.3 appears in the list of Java ME
platforms. In the NetBeans IDE, go to Tools -> Java Platforms. If the Oracle Java
ME Embedded 3.3 does not appear in the list of J2ME platforms, follow these
steps:

■ Click on Add Platform.

http://docs.oracle.com/javame/dev-tools/jme-sdk-3.2/release-notes/toc.htm
http://docs.oracle.com/javame/dev-tools/jme-sdk-3.2/release-notes/toc.htm

Using NetBeans with the Raspberry Pi Board

2-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

■ Select Java ME CLDC Platform Emulator and click Next.

■ Select the folder where the Oracle Java ME SDK 3.3 runtime for Raspberry Pi
resides and follow the instructions to install it. Then, click Finish to close the
dialog.

5. Ensure that the Raspberry Pi board has the Oracle Java ME Embedded
distribution. See Chapter 1 for more information on how to install the runtime
distribution on the Raspberry Pi board.

Adding the Raspberry Pi Board to the Device Selector
Follow these steps to add the board to the Device Selector in the Oracle Java ME SDK:

1. Ensure that the property odt_run_on_start is set to true in the file bin/jwc_
properties.ini on the Raspberry Pi.

2. Ensure that the sudo usertest.sh script in the /bin directory on the Raspberry Pi
is running. This allows the IDE to connect to the board. If an error occurs at any
point during the debug process, you will need to restart this script.

3. If necessary, open TCP port 55123 in the firewall settings of your computer. The
exact procedure to open a port differs depending on your version of Windows or
the firewall software that is installed on your computer.

4. Start the NetBeans IDE. In the NetBeans IDE, go to Tools -> Java ME -> Device
Selector

5. On the Device Selector, click on the Add a Device button at the top of the Device
Selector window.

6. Write the IP address of the Raspberry Pi board in the IP Address field and click
Next. You can find the IP address of the Raspberry Pi board by starting an

Using NetBeans with the Raspberry Pi Board

Using NetBeans or Eclipse with the Raspberry Pi Board 2-3

LXTerminal program and entering the ifconfig command. The address should be
listed in the inet addr field in the eth0 entry.

7. Once the device is detected, click Finish on the Device Detection screen.

The list of devices in the Device Selector should now include IMPNGExternalDevice1.

Assigning the Raspberry Pi Board to Your Project
If you already have an existing NetBeans project with an IMlet that you want to run or
debug on the board, follow these steps:

1. Right-click on your project and choose Properties.

2. Select the Platform category on the properties window.

3. Select IMPNGExternalDevice1 from the device list.

If you are creating a new NetBeans project from scratch, follow these steps:

1. Select File -> New Project.

2. Select the Java ME category and Embedded Application in Projects. Click Next.

3. Provide a project name and click Next. Be sure that the Create Default Package
and IMlet Class option is checked.

4. Ensure the Emulator Platform is Oracle Java ME Embedded 3.3. Then, select
IMPNGExternalDevice1 from the device list and click Finish.

After you assign the board to your project, the IMlets run on the board instead of on
the emulator when you click on Run Project on the NetBeans IDE.

Sample Source Code
Once the project is created, use the source code in Example 2–1 for the default
IMlet.java source file.

Example 2–1 Sample Code to Access a GPIO Port with NetBeans

package embeddedapplication1;

Accessing the Peripherals on the Raspberry Pi

2-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.gpio.GPIOPin;
import java.io.IOException;
import javax.microedition.midlet.*;

public class IMlet extends MIDlet {

 public void startApp() {

 try {
 GPIOPin pin = (GPIOPin)PeripheralManager.open(2);
 boolean b = pin.getValue();
 } catch (PeripheralNotAvailableException ex) {
 ex.printStackTrace();
 } catch (PeripheralNotFoundException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

This sample application will obtain an object representing GPIO pin 1 from the
PeripheralManager, and attempt to obtain its high/low value.

Accessing the Peripherals on the Raspberry Pi
There are two ways to allow access to the peripherals on the Raspberry Pi. The first is
to use unsigned applications and modify the security policy file, and the second is to
digitally sign the application with the appropriate API permissions requested in the
JAD file.

Method #1: Modifying the Security Policy File
Modifying the security policy file is only necessary in the event that a user must
manually install the application on the board, at which point the unsigned application
will be installed in the untrusted security domain.

With this method, simply add the line "allow: device_access" to the "untrusted"
domain of the security policy file. By default, this is located on the SD card in the
appdb/_policy.txt file, but be sure to check the security.policy file entry in the
bin/jwc_properties.ini file to verify the current file name.

Note that if an application is installed on the board using NetBeans or Eclipse during
development, the application will automatically be installed in the maximum security
domain as a convenience. Manual installation, however, will install the unsigned
application into the untrusted security domain. Note that after development is
finished, you should publish your applications with signed API permissions.

Accessing the Peripherals on the Raspberry Pi

Using NetBeans or Eclipse with the Raspberry Pi Board 2-5

Method #2: Signing the Application with API Permissions
The second method is more complex, but is the preferred route for applications that
are widely distributed. First, the JAD file must have the proper API permissions.
Right-click the project name (EmbeddedApplication1 in this example) and choose
Properties. Select Application Descriptor, then in the resulting pane, select API
Permissions. Click the Add... button, and add the com.oracle.deviceaccess.gpio
API, as shown in Figure 2–1. Click OK to close the project properties dialog.

Figure 2–1 Adding API Permissions with NetBeans

Applications that access the Device Access APIs must also be signed. Here are the
instructions on how to setup a keystore with a local certificate that can be used to sign
the applications.

1. Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command will generate a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of "spass" and a key
password of "kpass" that is valid for 360 days.

2. Copy the appdb/_main.ks keystore file from the Raspberry Pi over to the desktop
and perform the following command using the mekeytool.exe command (or
alternatively java -jar MEKeyTool.jar... if your distribution contains only that)
that ships with the Oracle Java ME SDK 3.3 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

Debugging an IMlet on the Raspberry Pi Board

2-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

This will import the information in mykeystore.ks you just created to the _
main.ks keystore. Once this is completed, copy the _main.ks file back to its
original location on the Raspberry Pi.

Use the following steps to sign your application before deploying to the Raspberry Pi
board.

1. Right click your project and select Properties.

2. Choose the Signing option under the Build category.

3. Open the Keystores Manager and import the mykeystore.ks file that you created.

4. Check the Sign Distribution box. If you wish, unlock the keystore and the key
with the passwords that you specified earlier. This is shown in Figure 2–2.

5. When the project is built and run, it will be digitally signed and deployed to the
Raspberry Pi.

Figure 2–2 The Signing Pane in the NetBeans Project Properties

Debugging an IMlet on the Raspberry Pi Board
Follow these steps to debug an IMlet using NetBeans:

1. Open your IMlet class on the NetBeans editor.

2. Click once directly on the line number where you want to set a breakpoint. The
line number is replaced by a red square and the line is highlighted in red.

3. Select Debug -> Debug Project or use the Debug button on the toolbar.

The debugger connects to the debug agent on the board and the program execution
stops at your breakpoint, as shown in Figure 2–3.

Using Eclipse with the Raspberry Pi Board

Using NetBeans or Eclipse with the Raspberry Pi Board 2-7

Figure 2–3 Debugging an IMlet on the Board Using NetBeans

Figure 2–3 shown an entire NetBeans debugging environment that allows the
programmer to execute a program step by step as well as add and remove variables
from a watch list on the bottom of the screen.

For more information on using the device access APIs, please see the Device Access
API Guide and the associated javadocs.

Using Eclipse with the Raspberry Pi Board
Running and debugging IMlet projects on the Raspberry Pi board using the Eclipse
IDE requires the following software:

■ Eclipse 3.7 Indigo or Eclipse 4.2 Juno

■ Oracle Java ME SDK 3.3

■ Oracle Java ME SDK 3.3 Eclipse Plugin

Installing the Oracle Java ME SDK 3.3 Plugin for Eclipse
After installing Eclipse, use these steps to install the remaining software.

1. Install the Java ME SDK 3.3 distribution. See the Java ME SDK 3.3 documentation
for details.

2. Install the Oracle Java ME SDK 3.3 Eclipse plugin. This is required to use the
Device Selector to connect to the board. See the Oracle Java ME SDK 3.3 Release
Notes for installation instructions:

http://docs.oracle.com/javame/dev-tools/jme-sdk-3.3/release-n
otes/toc.htm

3. Ensure that the Raspberry Pi board has the Oracle Java ME Embedded 3.3
runtime. See Chapter 1 for more information on how to install the runtime
distribution on the Raspberry Pi board.

http://docs.oracle.com/javame/dev-tools/jme-sdk-3.2/release-notes/toc.htm
http://docs.oracle.com/javame/dev-tools/jme-sdk-3.2/release-notes/toc.htm

Using Eclipse with the Raspberry Pi Board

2-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

4. Ensure that the Oracle Java ME Embedded 3.3 appears in the list of Java ME
platforms. If it doesn’t appear, follow these steps for your project properties.

■ Under the Java ME category, select Device Management. In the Device
Management window, press the Manual Install... button.

■ The Manual Device Installation window appears, without the Oracle Java ME
Embedded devices. Press the Browse button. A browser window appears.

■ Browse to the base directory of the Java ME SDK environment and press the
OK button. After the platform is scanned and the devices are installed, close
each of the respective dialogs.

Adding the Raspberry Pi Board to the Device Selector
Follow these steps to add the board to the Device Selector in the Oracle Java ME SDK:

1. Ensure that the property odt_run_on_start is set to true in the file bin/jwc_
properties.ini on the Raspberry Pi.

2. Ensure that the sudo usertest.sh script in the /bin directory on the Raspberry Pi
is running. This allows the IDE to connect to the board. If an error occurs at any
point during the debug process, you will need to restart this script.

3. If necessary, open TCP port 55123 in the firewall settings of your computer. The
exact procedure to open a port differs depending on your version of Windows or
the firewall software that is installed on your computer.

4. Start the Eclipse IDE. In the Eclipse IDE, go to Window -> Show View -> Other. In
the popup window that appears, expand the Java ME node and select Device
Selector.

5. On the Device Selector, click on the Add a Device button at the top of the Device
Selector window.

Using Eclipse with the Raspberry Pi Board

Using NetBeans or Eclipse with the Raspberry Pi Board 2-9

6. Write the IP address of the Raspberry Pi board in the IP Address field and click
Next. You can find the IP address of the Raspberry Pi board by starting an
LXTerminal program and entering the ifconfig command. The address should be
listed in the inet addr field in the eth0 entry.

7. Once the device is detected, click Finish on the Add Device screen.

The list of devices in the Device Selector should now include IMPNGExternalDevice1.

Using Eclipse with the Raspberry Pi Board

2-10 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Assigning the Raspberry Pi Board to Your Project
If you already have an existing Eclipse project with an IMlet that you want to run or
debug on the board, follow these steps:

1. Right-click on your project and choose Properties.

2. Select the Java ME category on the properties window.

3. Select IMPNGExternalDevice1 from the device list. If the device is not shown,
add it using the Add... button, selecting Oracle Java ME Embedded 3.3 as the SDK
and IMPNGExternalDevice1 as the device.

If you are creating a new Eclipse project from scratch, follow these steps:

1. Select New -> Other. Then expand the Java ME tree node, and create a new
MIDlet Project.

2. Expand the Java ME tree node, and create a new MIDlet Project.

3. In the Configuration pane of the creation dialog, select IMPNGExternalDevice1
from the device list.

4. Select the appropriate Profile and Configuration for your project.

After you assign the board to your project, the IMlets run on the board instead of on
the emulator when you click on Project -> Run on the Eclipse IDE.

Sample Source Code
Once the project is created, use the source code in Example 2–2 for a default source file.

Example 2–2 Sample Code to Access a GPIO Port with Eclipse

package embeddedapplication1;

import com.oracle.deviceaccess.PeripheralManager;
import com.oracle.deviceaccess.PeripheralNotAvailableException;
import com.oracle.deviceaccess.PeripheralNotFoundException;
import com.oracle.deviceaccess.gpio.GPIOPin;
import java.io.IOException;
import javax.microedition.midlet.*;

public class IMlet extends MIDlet {

 public void startApp() {

 try {
 GPIOPin pin = (GPIOPin)PeripheralManager.open(2);
 boolean b = pin.getValue();
 } catch (PeripheralNotAvailableException ex) {
 ex.printStackTrace();
 } catch (PeripheralNotFoundException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 }

 public void pauseApp() {
 }

Accessing the Peripherals on the Raspberry Pi

Using NetBeans or Eclipse with the Raspberry Pi Board 2-11

 public void destroyApp(boolean unconditional) {
 }
}

This sample application will obtain an object representing GPIO pin 1 from the
PeripheralManager, and attempt to obtain its high/low value.

Accessing the Peripherals on the Raspberry Pi
There are two ways to allow access to the peripherals on the Raspberry Pi. The first is
to use unsigned applications and modify the security policy file, and the second is to
digitally sign the application with the appropriate API permissions requested in the
JAD file.

Method #1: Modifying the Security Policy File
Modifying the security policy file is only necessary in the event that a user must
manually install the application on the board, at which point the unsigned application
will be installed in the untrusted security domain.

With this method, simply add the line "allow: device_access" to the "untrusted"
domain of the security policy file. By default, this is located on the SD card in the
appdb/_policy.txt file, but be sure to check the security.policy file entry in the
bin/jwc_properties.ini file to verify the current file name.

Note that if an application is installed on the board using NetBeans or Eclipse during
development, the application will automatically be installed in the maximum security
domain as a convenience. Manual installation, however, will install the unsigned
application into the untrusted security domain. Note that after development is
finished, you should publish your applications with signed API permissions.

Method #2: Signing the Application with API Permissions
The second method is more complex, but is the preferred route for applications that
are widely distributed. Open the Application Descriptor for your project in the
Packages window, and select the Application Descriptor pane. You will need to
manually add or change the following lines in the Application Descriptor.

MIDlet-Permissions: com.oracle.deviceaccess.gpio
Microedition-Profile: IMP-NG

Applications that access the Device Access APIs must also be signed. Here are the
instructions on how to setup a keystore with a local certificate that can be used to sign
the applications.

1. Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command will generate a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of "spass" and a key
password of "kpass" that is valid for 360 days.

2. Copy the appdb/_main.ks keystore file from the Raspberry Pi over to the desktop
and perform the following command using the mekeytool.exe command (or

Debugging an IMlet on the Raspberry Pi Board

2-12 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

alternatively java -jar MEKeyTool.jar... if your distribution contains only that)
that ships with the Oracle Java ME SDK 3.3 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

This will import the information in mykeystore.ks you just created to the _
main.ks keystore. Once this is completed, copy the _main.ks file back to its
original location on the Raspberry Pi.

Use the following steps to sign your application before deploying to the Raspberry Pi
board.

1. Right click your project and select Properties.

2. Choose the Signing option under the Java ME category.

3. Check the Enable Project Specific Settings checkbox. Import the mykeystore.ks
file that you created as an External... keystore file. Provide the keystore and key
passwords that you created earlier. Ensure that the mycert key alias is present.

4. Ensure that the project is being signed in the project’s Application Descriptor.
When the project is built and run, it will be digitally signed when deployed to the
Raspberry Pi.

Debugging an IMlet on the Raspberry Pi Board
After you assign the board to your project, follow these steps to debug an IMlet:

1. Open your IMlet class on the Eclipse editor.

2. Click once directly on the line number where you want to set a breakpoint. The
line number has a small circle next to it to indicate a breakpoint.

3. Select Run -> Debug or use the Debug button on the toolbar.

The debugger connects to the debug agent on the board and the program execution
stops at your breakpoint, as shown in Figure 2–4.

Debugging an IMlet on the Raspberry Pi Board

Using NetBeans or Eclipse with the Raspberry Pi Board 2-13

Figure 2–4 Debugging an IMlet on the Board Using the Eclipse IDE

Figure 2–4 shown an entire Eclipse debugging environment that allows the
programmer to execute a program step by step as well as add and remove variables
from a watch list on the bottom of the screen.

For more information on using the device access APIs, please see the Device Access
API Guide and the associated javadocs.

Debugging an IMlet on the Raspberry Pi Board

2-14 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

3

Troubleshooting 3-1

3Troubleshooting

This chapter contains a list of common problems that you may encounter while
installing and running the Oracle Java ME SDK and embedded software on the
Raspberry Pi board. This chapter provides information on the causes of these problems
and possible solutions for them.

The common problems in this chapter are grouped in four categories:

■ Installing Linux on the Raspberry Pi Board

■ Starting Oracle Java ME Embedded on the Board

■ Using the Board with the Oracle Java ME SDK and the NetBeans IDE

Installing Linux on the Raspberry Pi Board
Table 3–1 contains information about problems and solutions when installing Linux on
the board.

Starting Oracle Java ME Embedded on the Board
Table 3–2 contains information about problems and solutions when starting the
runtime on the board.

Table 3–1 Problems and Solutions - Installing Linux on the Board

Problem Cause Solution

Red power LED is
blinking.

The power supply is
malfunctioning.

Replace the power supply.

Red power LED is on, but
there is no activity from
the green LED.

The Raspberry Pi
cannot find a valid
disk image on the SD
card.

Be sure to use a special disk image utility to write the
Wheezy disk image onto the SD card. Do not copy the IMG
file onto the SD card and attempt to use that to power up the
board.

Green LED blinks with a
specific pattern

A file needed by the
Raspberry Pi is missing
or corrupted.

Replace the following files:

■ 3 flashes: loader.bin not found

■ 4 flashes: loader.bin not launched

■ 5 flashes: start.elf not found

■ 6 flashes:start.elf not launched

■ 7 flashes: kernel.img not found

Using the Board with the Oracle Java ME SDK and the NetBeans IDE

3-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Using the Board with the Oracle Java ME SDK and the NetBeans IDE
Table 3–3 contains information about problems and solutions when using the board
with the Oracle Java ME SDK and the NetBeans IDE:

Table 3–2 Problems and Solutions - Starting Oracle Java ME Embedded on the Board

Problem Cause Solution

Oracle Java ME Embedded
applications will not start.

The permissions on the
distribution files are
not set correctly.

Reset the permissions on all files in the distribution to 777.

Oracle Java ME Embedded
fails to initialize the
network on the board.

The network
configuration is
incorrect.

Check that the network connection is correct. Ensure that
the board is using DHCP to obtain an IP address.

The Raspberry Pi desktop
does not start after
booting.

The Pi does not have
the startup sequence
activated.

Use the Raspberry Pi setup application to set the desktop to
activate at boot.

Table 3–3 Problems and Solutions - Oracle Java ME SDK and the NetBeans IDE

Problem Cause Solution

The board is not detected
when adding a new device
to the Device Selector.

On-device debugging is
not enabled.

Edit the file jwc_properties.ini and set the property odt_
run_on_start to true.

The debugging session
freezes, disconnects
unexpectedly, or shows
error messages.

The firewall on the
computer is blocking
some debugging traffic.

Thunderbird is using a
port that is needed for
communication with
the board.

Open TCP port 2808 on your firewall configuration settings.
The exact procedure to open a port differs depending on
your version of Windows or your firewall software.

Close thunderbird.exe during the debugging session.

A

Raspberry Pi Board Peripheral List A-1

ARaspberry Pi Board Peripheral List

This appendix describes the proper ID and names for the various peripheral ports and
buses for the Raspberry Pi embedded board, which are accessible using the Device
Access APIs. Note that any IMlet that accesses the Device Access APIs must be
digitally signed using a trusted certificate authority. An IMlet that is not signed will
encounter an authentication error when attempting to access the Device Access APIs.

GPIO Pins
The following GPIO pins are pre-configured.

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

2 GPIO2 GPIO 2 portNumber = 0

pinNumber = 2

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT_
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

3 GPIO3 GPIO 3 portNumber = 0

pinNumber = 3

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = GPIOPinConfig.MODE_INPUT_
PULL_UP

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

GPIO Pins

A-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

4 GPIO4 GPIO 4 portNumber = 0

pinNumber = 4

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

7 GPIO7 GPIO 7 portNumber = 0

pinNumber = 7

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

8 GPIO8 GPIO 8 portNumber = 0

pinNumber = 8

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

9 GPIO9 GPIO 9 portNumber = 0

pinNumber = 9

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

10 GPIO10 GPIO 10 portNumber = 0

pinNumber = 10

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

GPIO Pins

Raspberry Pi Board Peripheral List A-3

11 GPIO11 GPIO 11 portNumber = 0

pinNumber = 11

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

14 GPIO14 GPIO 14 portNumber = 0

pinNumber = 14

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

15 GPIO15 GPIO 15 portNumber = 0

pinNumber = 15

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue = false

17 GPIO17 GPIO 17 portNumber = 0

pinNumber = 17

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

18 GPIO18 GPIO 18 portNumber = 0

pinNumber = 18

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger - ignored

initValue = false

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

GPIO Pins

A-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Please note the following items concering GPIO on the Raspberry Pi.

■ The value of PeripheralConfig.DEFAULT when applied to the portNumber is 0.

22 GPIO22 GPIO 22 portNumber = 0

pinNumber = 22

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

23 GPIO23 GPIO 23 portNumber = 0

pinNumber = 23

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger - ignored

initValue = false

24 GPIO24 GPIO 24 portNumber = 0

pinNumber = 24

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger - ignored

initValue = false

25 GPIO25 GPIO 25 portNumber = 0

pinNumber = 25

direction = GPIOPinConfig.DIR_
OUTPUT_ONLY

mode = GPIOPinConfig.MODE_
OUTPUT_PUSH_PULL

trigger - ignored

initValue = false

27 GPIO27 GPIO 27 portNumber = 0

pinNumber = 27

direction = GPIOPinConfig.DIR_INPUT_
ONLY

mode = PeripheralConfig.DEFAULT

trigger = GPIOPinConfig.TRIGGER_
BOTH_EDGES

initValue - ignored

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

I2C

Raspberry Pi Board Peripheral List A-5

■ The value of PeripheralConfig.DEFAULT when applied to the mode means that the
GPIO pin be configured in the default mode, as per the table above.

■ GPIO modes are not software-configurable. All GPIO pins in the preceding table
are given with the only mode that is supported on the Raspberry Pi. If an
application attempts to configure a GPIO pin to use an unsupportable mode, an
exception will be thrown.

■ To work with GPIO, you must run Java as the root superuser.

■ For GPIO pins that are configured as input pins, the initValue parameter is
ignored.

■ The trigger modes TRIGGER_HIGH_LEVEL, TRIGGER_LOW_LEVEL, and TRIGGER_BOTH_
LEVELS are not supported on the Raspberry Pi.

■ For all GPIO pins, the application should pass in a 0 for the GPIO port when
necessary.

■ The following diagram represents the pin positions of the Raspberry Pi, Revision
2.

I2C
There is no static I2C configuration with the Raspberry Pi because there is no
connected hardware. In comparison with SPI, I2C doesn't allow any communication
with a loopback device. The following configuration, however, can be used to
communicate to I2C slaves.

Please note the following items about I2C on the Raspberry Pi.

■ For revision 1 boards, I2C is provided by default on GPIO 0 and 1 (bus 0), and for
revision 2 boards, I2C is provided on GPIO 2 and 3 (bus 1). For example, Example
to configure a TCS3414-A I2C color sensor on a revision 2 Raspberry Pi board, use
the following constructor: I2CDeviceConfig(1, 57, 7, 100000)

■ The value of PeripheralConfig.DEFAULT when applied to the busNumber is 0.

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

NONE GPIO 2 (SDA)

GPIO 3 (SCL)

MMIO

A-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

■ The value of PeripheralConfig.DEFAULT when applied to the addressSize is 7.

■ The clockFrequency field is ignored.

■ Before using I2C, you will have to load two I2C modules: i2c-bcm2708 (this is
probably commented out in the file /etc/modprobe.d/raspi-blacklist.conf;
simply uncomment it and reboot the device to apply the changes) and i2c-dev
(you can add i2c-dev, without quotes, to the /etc/modules file and reboot to
apply the changes).

■ I2C can be used without administrative rights. To do so, you should have owner
or group rights to files /dev/i2c-*. This can easily done by installing the
i2c-tools package ($ sudo apt-get install i2c-tools) and adding the pi user
to the i2c group ($ sudo adduser pi i2c). Alternatively, you can use udev's
rules.

MMIO
The following MMIO peripherals are available:

The MMIO raw memories are shown here:

There are no devices with event support. Due to nature of memory organization of the
Raspberry Pi, programmers can create a custom MMIODeviceConfig to access the
following memory ranges. Note that all are IO Peripheral register ranges with
exclusion of DMA regsiters. The end addresses are not inclusive.

■ {0x7E215000, 0x7E2150D8},

■ {0x7E205000, 0x7E20501f},

■ {0x7E804000, 0x7E80401f},

■ {0x7E805000, 0x7E80501f},

■ {0x7E300000, 0x7E3000ff},

■ {0x7E200000, 0x7E2000B4},

■ {0x7E203000, 0x7E203024},

■ {0x7e20C000, 0x7e20C028},

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

31 PWM byteOrdering = Peripheral.LITTLE_
ENDIAN

DAAPI
Peripheral ID Name Address Type and Size

31 CTL 0x7e20C000 int 4

31 STA 0x7e20C004 int 4

31 RNG1 0x7e20C010 int 4

31 DAT1 0x7e20C014 int 4

31 FIF1 0x7e20C018 int 4

UART

Raspberry Pi Board Peripheral List A-7

■ {0x7E204000, 0x7E204018},

■ {0x7E214000, 0x7E21403f},

■ {0x7E003000, 0x7E00301b},

■ {0x7E201000, 0x7E20108f},

■ {0x7E00B400, 0x7E00B424}

Only int types for the memory configuration are allowed. Otherwise, an IOException
will be thrown.

SPI
The SPI has a single static configuration with the following parameters:

Please note the following items about SPI on the Raspberry Pi.

■ The value of PeripheralConfig.DEFAULT when applied to the busNumber is 0.

■ The value of PeripheralConfig.DEFAULT when applied to the clockFrequency is
2000000 Hz.

■ The value of PeripheralConfig.DEFAULT when applied to the wordLength is 8.

■ The value of PeripheralConfig.DEFAULT when applied to the bitOrdering is 1
(big-endian).

■ Before using SPI, you will have to load the SPI modules by running the following
command: $sudo modprobe spi_bcm2708, or by using the same method as I2C:
uncomment the appropriate line in the raspi-blacklist.conf file and reboot the
board.

■ Only 8-bit word lengths are supported on the Raspberry Pi.

UART
The following UART devices are pre-configured:

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

12 SPI_Slave GPIO10
(MOSI)

GPIO9 (MISO)

GPIO11
(SCLK)

GPIO8 (CE0)

SPI bus number: 0 (SPI1)

Chip Enable: 0 (CE0/GPIO8)

The number of bit of slave's word: 8

Clock frequency in Hz: 2000000

Clock polarity and phase: 1 (CPOL_Low,
CPHA_2Edge)

Bit ordering of the slave device: 1 (BIG_
ENDIAN)

Watchdog

A-8 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Please note the following items about UART on the Raspberry Pi.

■ Only the internal UART controller is supported (/dev/ttyAMA0 for revision 2).
Consequently, 0 is the only permissible value for the UARTConfig.uartNumber
parameter.

■ By default, the Raspberry Pi uses the UART as a serial console. Before using
UART, make sure that /dev/ttyAMA0 isn't being used as a console. This can be
done by changing the boot command line by editing the /boot/cmdline.txt file
and removing the line "console=ttyAMA0,115200 kgdboc=ttyAMA0,115200" from
the boot arguments. Also, comment out the following line:
"2:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100" in the file /etc/inittab.

■ By default, the pi user is in the dialout group. That gives pi the ability to access
/dev/ttyAMA0 (and, consequently, UART from Java) without administrator rights.

■ The deviceaccess.uart.prefix property in the jwc_properties.ini file may
contain a prefix for easy conversion of the UARTConfig.portNumber value to a
platform-specific port name. For example, the property may be set to "COM" in a
Windows environement, or "/dev/ttyS" in a Linux environment such that
appending on a port number will correctly map to the port name.

■ The following parameters are supported in an ad-hoc configuration:

– baudRate - 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

– dataBits - 7, 8

– parity - PARITY_ODD, PARITY_EVEN, PARITY_NONE

– stopBits - 1, 2

– flowcontrol - FLOWCONTROL_NONE

Watchdog
The following watchdog devices are pre-configured:

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

40 UART GPIO 14
(TXD)

GPIO 15
(RXD)

uartNumber = 0 (see below)

baudRate = 19200

dataBits = DATABITS_8

parity = PARITY_NONE

stopBits = STOPBITS_1

flowcontrol = FLOWCONTROL_NONE

inputBufferSize - ignored

outputBufferSize - ignored

DAAPI
Peripheral ID

DAAPI
Peripheral
Name Mapped To Configuration

30 WDG Platform
Watchdog

B

AMS Installer Error Codes B-1

BAMS Installer Error Codes

Table B–1 lists the error codes that the AMS command-line interface shows when the
installation of an IMlet fails. The description of each code contains more information
about the problem that caused the error.

Table B–1 Installer Error Codes

Constant Error Code Description

ALAA_ALIAS_NOT_FOUND 78 Application Level Access Authorization:
The alias definition is missing.

ALAA_ALIAS_WRONG 80 Application Level Access Authorization:
The alias definition is wrong.

ALAA_MULTIPLE_ALIAS 79 Application Level Access Authorization:
An alias has multiple entries that match.

ALAA_TYPE_WRONG 77 Application Level Access Authorization:
The MIDlet-Access-Auth-Type has
missing parameters.

ALREADY_INSTALLED 39 The JAD matches a version of a suite
already installed.

APP_INTEGRITY_FAILURE_
DEPENDENCY_CONFLICT

69 Application Integrity Failure: two or
more dependencies exist on the
component with the same name and
vendor, but have different versions or
hashs.

APP_INTEGRITY_FAILURE_
DEPENDENCY_MISMATCH

70 Application Integrity Failure: there is a
component name or vendor mismatch
between the component JAD and IMlet
or component JAD that depends on it.

APP_INTEGRITY_FAILURE_HASH_
MISMATCH

68 Application Integrity Failure: hash
mismatch.

ATTRIBUTE_MISMATCH 50 A attribute in both the JAD and JAR
manifest does not match.

AUTHORIZATION_FAILURE 49 Application authorization failure,
possibly indicating that the application
was not digitally signed.

CA_DISABLED 60 Indicates that the trusted certificate
authority (CA) for this suite has been
disabled for software authorization.

CANCELED 101 Canceled by user.

CANNOT_AUTH 35 The server does not support basic
authentication.

B-2 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

CIRCULAR_COMPONENT_DEPENDENCY 64 Circular dynamic component
dependency.

COMPONENT_DEPS_LIMIT_EXCEEDED 65 Dynamic component dependencies limit
exceeded.

COMPONENT_NAMESPACE_COLLISION 72 The namespace used by a component is
the same as another.

CONTENT_HANDLER_CONFLICT 55 The installation of a content handler
would conflict with an already installed
handler.

CORRUPT_DEPENDENCY_HASH 71 A dependency has a corrupt hash code.

CORRUPT_JAR 36 An entry could not be read from the
JAR.

CORRUPT_PROVIDER_CERT 5 The content provider certificate cannot
be decoded.

CORRUPT_SIGNATURE 8 The JAR signature cannot be decoded.

DEVICE_INCOMPATIBLE 40 The device does not support either the
configuration or profile in the JAD.

DUPLICATED_KEY 88 Duplicated JAD/manifest key attribute

EXPIRED_CA_KEY 12 The certificate authority's public key has
expired.

EXPIRED_PROVIDER_CERT 11 The content provider certificate has
expired.

INCORRECT_FONT_LOADING 82 A font that is contained with the JAR
cannot be loaded.

INSUFFICIENT_STORAGE 30 Not enough storage for this suite to be
installed.

INVALID_CONTENT_HANDLER 54 The MicroEdition-Handler-<n> JAD
attribute has invalid values.

INVALID_JAD_TYPE 37 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_JAD_URL 43 The JAD URL is invalid.

INVALID_JAR_TYPE 38 The server did not have a resource with
the correct type or the JAR downloaded
has the wrong media type.

INVALID_JAR_URL 44 The JAR URL is invalid.

INVALID_KEY 28 A key for an attribute is not formatted
correctly.

INVALID_NATIVE_LIBRARY 85 A native library contained within the
JAR cannot be loaded.

INVALID_PACKAGING 87 A dependency cannot be satisfied.

INVALID_PAYMENT_INFO 58 Indicates that the payment information
provided with the IMlet suite is
incomplete or incorrect.

INVALID_PROVIDER_CERT 7 The signature of the content provider
certificate is invalid.

Table B–1 (Cont.) Installer Error Codes

Constant Error Code Description

AMS Installer Error Codes B-3

INVALID_RMS_DATA_TYPE 76 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_RMS_DATA_URL 73 The RMS data file URL is invalid.

INVALID_SERVICE_EXPORT 86 A LIBlet that exports a service with a
LIBlet Services attribute does not contain
the matching service provider
configuration information.

INVALID_SIGNATURE 9 The signature of the JAR is invalid.

INVALID_VALUE 29 A value for an attribute is not formatted
correctly.

INVALID_VERSION 16 The format of the version is invalid.

IO_ERROR 102 A low-level hardware error has
occurred.

JAD_MOVED 34 The JAD URL for an installed suite is
different than the original JAD URL.

JAD_NOT_FOUND 2 The JAD was not found.

JAD_SERVER_NOT_FOUND 1 The server for the JAD was not found.

JAR_CLASSES_VERIFICATION_FAILED 56 Not all classes within JAR package can
be successfully verified with class
verifier.

JAR_IS_LOCKED 100 Component or MIDlet or IMlet suite is
locked by the system.

JAR_NOT_FOUND 20 The JAR was not found at the URL given
in the JAD.

JAR_SERVER_NOT_FOUND 19 The server for the JAR was not found at
the URL given in the JAD.

JAR_SIZE_MISMATCH 31 The JAR downloaded was not the same
size as given in the JAD.

MISSING_CONFIGURATION 41 The configuration is missing from the
manifest.

MISSING_DEPENDENCY_HASH 67 A dependency hash code is missing.

MISSING_DEPENDENCY_JAD_URL 66 A dependency JAD URL is missing.

MISSING_JAR_SIZE 21 The JAR size is missing.

MISSING_JAR_URL 18 The URL for the JAR is missing.

MISSING_PROFILE 42 The profile is missing from the manifest.

MISSING_PROVIDER_CERT 4 The content provider certificate is
missing.

MISSING_SUITE_NAME 13 The name of MIDlet or IMlet suite is
missing.

MISSING_VENDOR 14 The vendor is missing.

MISSING_VERSION 15 The version is missing.

NEW_VERSION 32 This suite is newer that the one currently
installed.

Table B–1 (Cont.) Installer Error Codes

Constant Error Code Description

B-4 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

NO_ERROR 0 No error.

NOT_YET_VALID_PROVIDER_CERT 89 A certificate is not yet valid.

NOT_YET_VALID_CA_KEY 90 A CA’s public key is not yet valid.

OLD_VERSION 17 This suite is older that the one currently
installed.

OTHER_ERROR 103 Other errors.

PROXY_AUTH 51 Indicates that the user must first
authenticate with the proxy.

PUSH_CLASS_FAILURE 48 The class in a push attribute is not in
MIDlet-<n> attribute.

PUSH_DUP_FAILURE 45 The connection in a push entry is
already taken.

PUSH_FORMAT_FAILURE 46 The format of a push attribute has an
invalid format.

PUSH_PROTO_FAILURE 47 The connection in a push attribute is not
supported.

REVOKED_CERT 62 The certificate has been revoked.

RMS_DATA_DECRYPT_PASSWORD 83 Indicates that a password is required to
decrypt RMS data.

RMS_DATA_ENCRYPT_PASSWORD 84 Indicates that a password is required to
encrypt RMS data.

RMS_DATA_NOT_FOUND 75 The RMS data file was not found at the
specified URL.

RMS_DATA_SERVER_NOT_FOUND 74 The server for the RMS data file was not
found at the specified URL.

RMS_INITIALIZATION_FAILURE 81 Failure to import RMS data.

SUITE_NAME_MISMATCH 25 The MIDlet or IMlet suite name does not
match the one in the JAR manifest.

TOO_MANY_PROPS 53 Indicates that either the JAD or manifest
has too many properties to fit into
memory.

TRUSTED_OVERWRITE_FAILURE 52 Indicates that the user tried to overwrite
a trusted suite with an untrusted suite
during an update.

UNAUTHORIZED 33 Web server authentication failed or is
required.

UNKNOWN_CA 6 The certificate authority (CA) that issued
the content provider certificate is
unknown.

UNKNOWN_CERT_STATUS 63 The certificate is unknown to OCSP
server.

UNSUPPORTED_CERT 10 The content provider certificate has an
unsupported version.

UNSUPPORTED_CHAR_ENCODING 61 Indicates that the character encoding
specified in the MIME type is not
supported.

Table B–1 (Cont.) Installer Error Codes

Constant Error Code Description

AMS Installer Error Codes B-5

UNSUPPORTED_PAYMENT_INFO 57 Indicates that the payment information
provided with the MIDlet or IMlet suite
is incompatible with the current
implementation.

UNTRUSTED_PAYMENT_SUITE 59 Indicates that the MIDlet or IMlet suite
has payment provisioning information
but it is not trusted.

VENDOR_MISMATCH 27 The vendor does not match the one in
the JAR manifest.

VERSION_MISMATCH 26 The version does not match the one in
the JAR manifest.

Table B–1 (Cont.) Installer Error Codes

Constant Error Code Description

B-6 Oracle Java ME Embedded Getting Started Guide for the Reference Platform (Raspberry Pi)

Glossary-1

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time
and amplitude) into a stream of binary numbers that can be processed by a digital
device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

JCP

Glossary-3

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Glossary-4

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

RMI

Glossary-5

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Glossary-6

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

URI

Glossary-7

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Glossary-8

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

Index-1

Index

A
Application Management System (AMS)

Commands, 1-3, 1-7
Examples, 1-4

P
PuTTY

Installation, 1-1

Index-2

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Operating System Commands
	Shell Prompts
	Conventions

	1 Running on the Raspberry Pi Board
	Downloading and Installing the PuTTY Terminal Emulator Program
	Preparing the Raspberry Pi Board
	Installing the Java ME Embedded Software
	Adding a Proxy for Network Connections

	Running IMlets on the Raspberry Pi Using the Command Shell
	Running IMlets on the Raspberry Pi Using the AMS CLI

	2 Using NetBeans or Eclipse with the Raspberry Pi Board
	Using NetBeans with the Raspberry Pi Board
	Installing the Oracle Java ME SDK 3.3 Plugin for NetBeans
	Adding the Raspberry Pi Board to the Device Selector
	Assigning the Raspberry Pi Board to Your Project
	Sample Source Code

	Accessing the Peripherals on the Raspberry Pi
	Method #1: Modifying the Security Policy File
	Method #2: Signing the Application with API Permissions

	Debugging an IMlet on the Raspberry Pi Board
	Using Eclipse with the Raspberry Pi Board
	Installing the Oracle Java ME SDK 3.3 Plugin for Eclipse
	Adding the Raspberry Pi Board to the Device Selector
	Assigning the Raspberry Pi Board to Your Project
	Sample Source Code

	Accessing the Peripherals on the Raspberry Pi
	Method #1: Modifying the Security Policy File
	Method #2: Signing the Application with API Permissions

	Debugging an IMlet on the Raspberry Pi Board

	3 Troubleshooting
	Installing Linux on the Raspberry Pi Board
	Starting Oracle Java ME Embedded on the Board
	Using the Board with the Oracle Java ME SDK and the NetBeans IDE

	A Raspberry Pi Board Peripheral List
	GPIO Pins
	I2C
	MMIO
	SPI
	UART
	Watchdog

	B AMS Installer Error Codes
	Glossary
	Index
	A
	P

