Oracle® Java ME Embedded

Reference Platform Release Notes (Qualcomm IoE)

Release 3.4

E47940-01
September 2013

Table of Contents

Introduction

What's Supported in this Release

Usage Notes

Installation and Runtime Security Guidelines
Known Bugs

Product Documentation

Documentation Accessibility

Access to Oracle Support

Introduction

The Oracle Java ME Embedded software for the Qualcomm IoE platform is a
ready-to-run software image for use with a Qualcomm IoE embedded board. The
Oracle Java ME Embedded software is an optimized platform stack for small
embedded devices, which includes the Connected Limited Device Configuration
(CLDC) HotSpot Implementation (Java Virtual Machine), Information Module Profile -
Next Generation (IMP-NG) application environment, and enhanced support for Java
Specification Requests (JSRs).

What’s Supported in this Release

The following features are supported in the Oracle Java ME Embedded 3.4 software:

ORACLE

Support for the Qualcomm IoE embedded platform using a multitasking virtual
machine (MVM). The Qualcomm IoE hardware platform is also available in
emulation on the Windows desktop. See the Oracle Java ME SDK 3.4
documentation at the following address for more information:

http://docs.oracle.com/javame/developer/developer.html

Tooling over USB that employs a serial connection to the Qualcomm IoE
embedded platform for logging, command-line inteface, and debugging.

Support for the Application Management System (AMS) AP], the Logging AP]I,
and the AccessPoint APL

http://docs.oracle.com/javame/developer/developer.html

Support for Device Access APIs, Version B, which provide enhanced device
controls and improved input/output (IO) for small embedded devices, including
the following new features:

- Peripheral Manager

- GPIO pins and ports

- 12C

- SPI

- Pulse Counter

- Watchdog Timer

- Analog-to-Digital Converter (DAC)

- Digital-to-Analog Converter (ADC)

- Universal Asynchronous Receiver/Transmitter (UART)
- Modem Control (AT) command set

Ongoing support for the following optional packages:

- JSR139-CLDC 1.1

- JSR 228 - IMP-NG

- JSR 75 - (FileConnection API only)

- JSR 172 - Web Services

- JSR 177 - Security and Trust Services API (SATSA-CRYPTO package only)
- JSR 280 - XML API for Java ME

- JSR120- WMA

- JSR 179 - Location

Usage Notes

The Oracle Java ME Embedded software for the Qualcomm IoE embedded platform
consists of a binary files and a directory structure that needs to be downloaded to a
Qualcomm IoE board running the Brew MP operating system.

The Getting Started Guide for the Reference Platform (Qualcomm IoE) describes how to
download the binary file to the board, how to connect to the board from the
development host computer and how to install, run, and debug IMlets on the board.

Observe the following important notes before running the Oracle Java ME Embedded
software on the board:

During any modification of the MAX_ISOLATES property in the jwc_
properties.ini file, keep in mind that up to 3 isolates can be reserved by the Java
runtime.

The CPU and Memory Profiler are not supported in this release.

Memory Monitoring is not supported on the board in this release. However, the
Memory Status feature is supported and can be used to get basic memory status
information.

Only the default Access Point is supported in this release.

= Oracle recommends using the serial mode for tooling, especially for debugging, as
it is faster and more reliable than the network mode, which works over WiFi or
3G.

= Be aware that a network can be lost and appear again at any time (such as WiFi
and 3G specific networks), IP address can be changed during time due to routers,
DHCP, and networks specifics. IMlets should be written correspondingly to react
to these situations.

= Some mobile-network related functionality (for example, WMA or AT-commands)
depend on a particular network carrier and may not work in certain
environments. For example, depending on the carrier, it may be not possible to
send large SMS (about 400 characters) messages every 100 milliseconds.

Installation and Runtime Security Guidelines

The Oracle Java ME Embedded Release 3.4 software installation requires an execution
model that makes certain networked resources available for device emulator
execution. These required resources might include, but are not limited to, a variety of
communication capabilities between the product's installed components.

It is extremely important to note that the product's installation and runtime system is
fundamentally a developer system not specifically designed to guard against any
malicious attacks from outside intruders. Given this, the product's architecture can
present an insecure operating environment to the installation file system itself, as well
as its runtime environment, during execution. For this reason, it is critically important
to observe the precautions outlined in the following security guidelines when
installing and running the software.

Note: The security-related functionality of a final developed
application for release into the field is supported by the available
components of the Oracle Java ME Embedded software stack
incorporated by the developer into the application. The security
precautions required by applications in the field are beyond the scope
of these recommendations, but must nonetheless be observed by the
application developer.

To maintain optimum network security, the software package can be installed and run
in a “closed” network operating environment, meaning the software system is not
connected directly to the Internet, or to a company Intranet environment that could
introduce unwanted exposure to malicious intrusion. This is the ideal secure operating
environment whenever the application under development does not require it.

An example of a requirement for an Internet connection is when the system must
communicate with a wireless network over the Internet to fully execute the application
under development. Whether or not an Internet connection is required depends on the
particular Java ME application running in the development environment. For example,
some Java ME applications can use an HTTP connection. If the environment is open to
any network access you must always observe the following precautions to protect
valuable resources from malicious intrusion:

s Locate the development environment behind a secure firewall that strictly limits
unauthorized network access to its file system and services. Limit access privileges
to those that are required for development while allowing all the bi-directional
local network communications that are necessary for the application's

functionality. The firewall configuration must support these requirements to run
the software while also addressing them from a security standpoint.

= Follow the principle of “least privilege” by assigning the minimum set of system
access permissions required for installation and execution of the software.

= Do not store any data sensitive information on the same file system that is hosting
the installation.

» To maintain the maximum level of security, make sure the operating system
patches are up-to-date on any host machines in the development environment.

Security Certificate Precautions

The Oracle Java ME Embedded software distribution bundle contains security
certificates that are needed for testing purposes during development of products for
final release to customers. Some of these certificates are self-signed security certificates
generated by Oracle that are mapped to privileged security domains. IMlets signed by
these certificates get high privileges to access restricted APIs, and so these certificates
present a security vulnerability if they are released to end users on a customer's device.
Care should be taken to remove these certificates after final testing of the product is
completed when the product is being prepared for release to end users. This does not
apply to certificates issued by universally recognized certificate authorities (CAs),
because these are used only for signature verification and do not present a
vulnerability.

Command-Line Interface Precautions

The command-line interface (CLI) feature in this Oracle Java ME Embedded software
release is provided only as a concept for your reference. It uses insecure connections
with no encryption, authentication, or authorization. If you decide to implement this
feature in any product deployment, it is your responsibility to incorporate adequate
security measures around the CLIL.

Known Bugs

Table 1, " Known Bugs", shows the known bugs in the 3.4 release of the Oracle Java ME
Embedded software.

Table 1 Known Bugs

Bug Number Bug Description

MERT-2257 FileConnection.lastModified returns a value that depends on
TimeZone setting

FileConnection.lastModified provides a long value representing the
time the file was last modified, measured in milliseconds since the
epoch (00:00:00 GMT, January 1, 1970), or OL if an I/O error occurs.
However, the value returned depends on TimeZone setting.

Table 1 (Cont.) Known Bugs

Bug Number

Bug Description

MERT-2425

MERT-2935

MERT-3041

MERT-3291

MERT-3437

MERT-3577

MERT-3638

MERT-3651

Public AMS API: running a task with the wrong suite name doesn't
cause an error.

Running a task using the AMS API with the wrong suite name doesn't
throw an exception, nor does it return null for the TaskInfo instance if
the task can’t start.

Recommendation: Don’t rely on an exception or the returned value
from actually running the task; instead, use the infomation from the
TaskInfo instance received from TaskListener.notifyStatusUpdate()
and TaskListener.notifyStatusStopped().

Debugging: Expressions tab does not show fields.

In Eclipse, using static variables in the Expressions tab in the Debug
perspective might cause the debug session to freeze with the following
symptoms: Only "pending" values instead of expression results;
multiple errors in the device console.

Solution: Avoid the use of static variables in expressions; if necessary,
monitor these values in the Variables tab.

The JMEE VM is not fully compatible with JDWP.

Only a JDWP subset is supported. This subset is enough to work with
the current versions of Eclipse/NetBeans.

PeripheralNotFoundException when opening newly registered UART

The return value of the register () function (the new ID) cannot be
used as a parameter to the PeripheralManager.open () function, or a
PeripheralNotFoundException will be thrown.

Solution: You can create your own UARTConfig object and pass it into
the PeripheralManager.open () function without error.

There are a small number of unsupported JDWP features.
The most noteworthy missing feaures are:

1) Missing method entry/exit breakpoint support, although it is visible
for NetBeans users

2) Missing ClassObject req support; Eclipse breaks on it when showing
static variables.

Peripheral TypeNotSupportedException is thrown during call to
PeripheralManager.open (config)

The Oracle Java ME Embedded platform may throw a unexpected
exception when using the PeripheralManager.open (config) method
with an invalid configuration.

Device Access API: isOpen() returns different values

Please note that Peripheral instances returned by
PeripheralManager.list () are in a closed state, and calling isOpen ()
for them always returns 'false’ even if such Peripheral was already
opened by other means.

SPI: Can open devices using negative addresses

According to the specification, an I1legalArgumentException should be
thrown if address is not in the defined range (i.e. not a positive or null
integer). However, the implementation now contains workarounds to
support additional devices that have negative addresses.

Table 1 (Cont.) Known Bugs

Bug Number

Bug Description

MERT-3676

MERT-3798

MERT-3799

MERT-3800

MERT-3806

MERT-3808

MERT-3887

Infinite log output when JC_SOCKET=0

When the TCP logger is used and the JC_SOCKET parameter is set to 0 in
the jwc_properties.ini file, there can be infinite output from the
logger.

Workaround: Never set JC_SOCKET to 0. The best solution is manually
set JC_SOCKET to 4 in the jwc_properties.ini file.

Device Access API Spec: Description on unregistering an
application-registered peripheral ID while this particular peripheral
is still in an open state

The Device Access API Spec does not outline what behavior should
occur when unregistering an application-registered peripheral ID while
this peripheral is still in the open state. The curent behavior is to close
the peripheral.

ADCChannel.startAcquisition behavior with provided count = 0 is
not specified in DA API specification.

The DA API specification does not outline the behavior when the
ADCChannel .startAcquisition(values, offset, count,
doubleBuffering, listener) method is called and count is zero.
Currently, an Illegal ArgumentException is thrown.

Workaround: Do not set count = 0 while starting acquisition.

DACChannel.startGeneration behavior with provided count = 0 is not
specified in DA API specification.The DA API specification does not
outline the behavior when the DACChannel . startGeneration (values,
offset, count, doubleBuffering, listener) method is called and
count is zero. Currently, an Illegal ArgumentException is thrown.

Workaround: Do not set count = 0 while start generation.

AcquisitionEvent and Monitoring constructors do not throw any
exceptions

The AcquisitionEvent and MonitoringEvent constructors do not throw
any exceptions (except NullPointerException) when invalid
parameters are supplied.

PinEvent and PortEvent constructors do not throw any exceptions

The PinEvent and PortEvent constructors do not throw exceptions
when their parameters are out of the defined range.

An unexpected PeripheralConfigInvalidException is thrown, instead
of PeripheralNotFoundException, when opening a peripheral using
incorrect configuration parameters.

Instead of a PeripheralNotFoundException, an unexpected
PeripheralConfigInvalidException is thrown when calling
PeripheralManager.open (java.lang.Class intf, PeripheralConfig
config) when the config parameter contains incorrect peripheral
hardware addressing.

Workaround: An application should catch both exceptions when
opening a peripheral.

Table 1 (Cont.) Known Bugs

Bug Number

Bug Description

MERT-3932

MERT-4306

MERT-4351

MERT-4357

MERT-4384

MERT-4386

MERT-4569

UART port fails to open with a valid or invalid configuration right
after it was opened with an unsupported dataBits configuration.

Right after a failed attempt to open UART port with an invalid dataBits
value, and a PeripheralConfigInvalidException is thrown, any
further attempt to open the same UART port with a valid or invalid
configuration will throw a PeripheralNotAvailableException.

Workaround: 1. Use only valid configuration, that is supported by
underlying platform (refer to the Getting Started Guide for supported
configuration information); 2. If a PeripheralNotAvailableException is
thrown, wait some time or reboot the board and open UART port with
valid configuration again.

GPIO output voltage problem.

As was observed on some instances of IoE boards, an output voltage of
a GPIO pin may be 1.79 V, not 1.8 V.

External I2C slave devices with pull-up resistors do not work.

An external I2C slave device that has its own pull-up resistors on both
the SDA and SCL lines doesn't work with the board. If the external
device does not have pull-up resistors, there are no problems.

Workaround: Remove the R16/R17 (SCL/SDA pulls) resistors from the
main IoE board (Gobi) to disable the pull up, or do the same on I2C
slave's side.

Impossible to open one more SPI slave device with a different
configuration without rebooting the board.

Only one SPI slave device can be opened at a time. When the first SPI
device is closed, any attempt to open the same or another SPI device
with a different configuration will fail. A new SPI configuration is
applied only after a board reboot.

Workaround: Before working with a new SPI slave device, reboot the
board.

Breakpoint condition "Multiple of" does not work with remote JMEE
VM.

Debugging using NetBeans of the code with several threads is
unpredictable. This is an issue with NetBeans, and is documented at
https://netbeans.org/bugzilla/show_bug.cgi?id=227746.

An unnecessary pin (pin 36) is mentioned in the jwc_properties.ini
file for a pre-configured GPIO port (id=200, name="LEDS")

The port "LEDS" is configured to include three pins; this configuration is
described in GSG. However, the list of pins in the jwc_properties.ini
file for this port includes four pins. The last pin in the list
(pinNumber=36) is ignored by the implementation since the pinCount
for the port is 3. The implementation behaves according to the
documentation (only three pins are opened when the port is opened; the
fourth pin is ignored). The confusing fourth pin may be deleted from the
jwc_properties.ini file.

Garbage appears in the serial channel which leads to channel closing

In rare cases a PC can lost a connection with the board when the tooling
over serial is used for running, debugging, or profiling applications.
This is caused by "garbage" that appears in the serial communication
channel.

Workaround: Reboot the board

https://netbeans.org/bugzilla/show_bug.cgi?id=227746
https://netbeans.org/bugzilla/show_bug.cgi?id=227746

Table 1 (Cont.) Known Bugs

Bug Number Bug Description

MERT-4570 ATDevice.sendCommand method sometimes throws an IOException
when a supported command is being sent

In some cases, the ATDevice.sendCommand () function can throw an
IOException at the time that a supported AT command is being sent.

Workaround: Try to send the command again if it is in the list of
supported commands.

MESDK-1939 Occasionally during the debugging or profiling of an IMlet, the
Device Manager looses a connection to the board.

Occasionally during the debugging or profiling of an IMlet, the Device
Manager looses a connection to the board. The situation is reproduced
only if an IMlet tries to open many network related connections to URLs
that are not available/reachable.

Workaround: If tooling's network mode is leveraged then change JC_
SOCKET property's value to 4 (DISABLE), it will decrease the number
of faults significantly. Otherwise, use tooling's serial mode for
debugging/profiling. This mode is more preferable then the network
mode. (Refer to the Getting Started Guide in order to figure out what is
meant under a tooling mode and how to change system properties.)

Product Documentation

The following documentation is included with this release of the Oracle Java ME
Embedded software. See http://docs.oracle.com/javame/embedded/embedded.html.

Application Title Format
All (This document) Release Notes HTML
Introduction to running Oracle Java ME Getting Started Guide for the HTML
Embedded on the Qualcomm IoE reference Reference Platform (Qualcomm

PDF
platform. IoE)
Application Management System classes AMS API Javadocs HTML
(unchanged from version 3.3)
Device Access API classes (unchanged from Device Access API Javadocs HTML
version 3.3)
Access Point API classes (unchanged from Access Point API Javadocs HTML
version 3.3)
Logging API classes (unchanged from version Logging API Javadocs HTML
3.3)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at:
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or

visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Oracle Java ME Embedded Reference Platform Release Notes (Qualcomm IoE), Release 3.4
E47940-01

Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in

dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

10

	Table of Contents
	Introduction
	What’s Supported in this Release
	Usage Notes
	Installation and Runtime Security Guidelines
	Security Certificate Precautions
	Command-Line Interface Precautions

	Known Bugs
	Product Documentation
	Documentation Accessibility
	Access to Oracle Support

