Oracle® Java Micro Edition Software
Development Kit

Developer's Guide
Release 3.2 for Windows
E24265-04

September 2012

This document describes how to use the Java ME SDK plugin
for NetBeans.

ORACLE

Oracle Java Micro Edition Software Development Kit, Release 3.2 for Windows
E24265-04
Copyright © 2009, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen Xi
AN S Lo 1= T < T SSRRTT Xi
Documentation AccesSIDILItY ..o Xi
(@) 8723 41 [0 1< ISR xi
REIAtEA DOCUIMEIES ...ttt et e s ettt e e st e eeaae e e seaeeessbaeessneeessnsseesnseeesnsssesssseesaneeeeas Xi

1 Getting Started

QUICK SEATE ...ttt ettt et et e bt e bt s ae s be st e sbe st et et et entesteseeseebeebesbestenean 1-1
Tips for Legacy ToolKit USETS...........ccccovuiiiiiiiiiiiiiiiiiiiiiic e 1-2
Java ME SDK Update Centerc.cccooevueuiieinieinieineincinieeeneeeieeeeseese e sne e eeneseeseeenesene 1-3

2 Platforms

Emulation PIatforms............cccoooiiiiii s 2-1
CLDC With MIDPc.ciiiiiiiiiiiiiiniiininiiiis s 2-1
IMP-ING o s 2-2
CDIC bbb 2-3

Managing Java Platforms.............cccccooviiiiiiiii s 2-3
JaVa ME PLALOTIIS ..veuieeieiieiieiieiieeee sttt ettt ettt ettt ettt et et e e st e st esessessessessassensenseneansens 2-4
Create a Platform for Legacy CDC Projectsccoouiruiieiiiciciicec s 2-4

3 Using Sample Projects

Creating a Sample Project............coooooiiiiii s 3-1
RUnning a Project ... 3-2
TEOUDIESNOOLING.......oviiiiiiiiiiic ettt 3-4
Sample Project OVEIVIEW ...t 3-4
Configuring the Web Browser and Proxy Settings..............c.cccoooooiiiiie 3-6
Resolving Reference Problems.............cccccoooiiiiiiiiiiiiiiiii s 3-7
Running MIDP and CLDC Sample Projects...........ccccoooiiiiiiiiiiiiiic e 3-8
Running the AdvancedMultimediaSupplements Sample Projectccocovvvinnnnninnncnn 3-8
IMage ELfECtS ..o s 3-8

MUSIC EffeCtS ..o 3-9
CAIMETA .ttt 3-9
MOVING HEIICOPLET ..o s 3-9
Running the Demos Sample Project ... 3-9
COLOTS e 3-10

HEED s 3-10
FONUTESEIEE ... 3-11
STOCK it 3-11
THCKEES et 3-12
MANYBALLS ... 3-13
MINICOIOTL .ot 3-13
CROOSET ..ot 3-13
HEPEXAIMIPLE .ot 3-13
HEPVIEW et 3-14
PUShEXAMPIE ...ttt 3-14
RUNNING FPDEIMOoviiiiiiiiiiiicicc e 3-14
RUNNING GAMES ..ottt 3-14
Running Network DemOcccueuiiiiiiici 3-14
SOCKEt DIINO ...t 3-14
Datagram DemOcccoviiiiiiiiiiiiiiii s 3-15
Running PhotOAIDUIM ... 3-15
RUNNING UIDEMOoviviiiiiiiiiiiiicc s 3-15
Running IMP-NG Sample Projects ... 3-16
GPIODEINO ..ottt bbb 3-16
I2CDIOIMO .ottt 3-17
NetworkDemoIMPNGccccccoiiiiiiiiiiiiiiicc s 3-17
PDAPDEMOIMPNG ..ottt 3-18

4 Creating and Editing Projects

PrOJect TYPESooviieiiiic e 4-1
CLDC PIOJECLS .ttt s 4-2
CDC PIOJECES vttt 4-2

The Project WIzZard ..o 4-2
Create @ CLDC PIrOJECEcovuiviiiiiiiiiiiiiicci s 4-2
Create an IMP-ING Project ... s 4-3
Create @ CDC PIOJECt ..ot 4-3
Import a Legacy MIDP PIroject ... 4-4
Import a Legacy CDC ProjJectcooiioiiiiiiieiiici it 4-4

WOrking With Projects............cccooiiiiiiiiiiiiiiiin e 4-5

VieW Project FAles ... s 4-6

Create a NeW MIDIetoooiiiiiiiiii s 4-6

Add Files t0 @ PrOJECtc.ccoiiiiiiiiiiiiiiii 4-7

Search Project FAles ... 4-7

Debugging CLDC and IMP-NG Projectscccccoceviiiiiiniiiniiiniiiiiicn, 4-7

5 Viewing and Editing Project Properties

General Project Properties............oooiiiiiiiiii s 5-1
Platform SLECHONccoeviiiiiiiiiiieiec ettt ettt sttt b bbbttt st 5-1
Editing Application Descriptor Properties.............ccccocoooiiniiiiiiniiiiiiis 5-2
CDC AHIIDULES ...t 5-2
IMIDP ATETIDULES .ttt ettt ettt sttt et b ettt et bbbt b e b e st benenen 5-2

Ao Lo NP 1 A WX o 1 o1 D1 (<P 5-2

Edit an Atribute ... 5-3
Remove an Atribute ... 5-3
MIDIELS ..ot 5-3
Add @ MIDIEL ..o 5-3
Edit @ MIDIEt ...cooiiiiiiiiiiiiicc s 5-3
Remove @ MIDIEt ... 5-3
Change MIDlet Display Orderccocoviiiiiinininiiiii s 5-4
PUSH REGISLIY .t 5-4
Add a Push Registry ENtIYcccccovviiiiiiiiiiiiiiiiii s 5-4
Enabling a Push Registry ENtry ... 5-4
Remove a Push Registry ENEIYccooiviiiiiniiiire s 5-4
Change Push Registry Display Orderccccovviviiininnniniiiis 5-4
APT PEITISSIONS ...ceiiiuiiiiiiiiiiiiieiitiie ettt a bbb bbb 5-4
Adding Permission REQUESEScccouviiiriiiririiirrc s 5-4
BUilding @ ProOject ..o s 5-5
ConfigUring ANtcoviiiiiiiiiiiiii s 5-5
COMPILING .t 5-6
Adding Libraries and RESOUICEScccccouviviiiiininiiiiiiiiiii s 5-6
Creating JAR and JAD Files (Packaging)cccooeurioiririeiiiccieeece s 5-7
ODFUSCALINE ..ottt 5-7
SIGIUIE ovtieitete ettt 5-7
Signing CDC PIOJECS ...oovvviiiiiii s 5-7
EXPOTting @ KeYccooviiiiiiiiiiiiiiii s 5-8
Running Settings............cooviiiiiiiii s 5-8
MIDP Project RUN OPtiONSccooiiuiiiiiiiieiiiieieccnc e 5-8
CDC Project RUN OPtiONSc.coiviiiiiiiiiiiiiiiiiic s 5-9

6 Working With Devices

Emulating Devices ... 6-1
The Device Manager on WINAOWSc.cccciviiiiiiiiiiiiniiiiii s 6-1
Starting an EMUIAtOrccccoiiiiiiiiiiiiiiiii s 6-2
CLDC Application Management Software HOMEccccovurivnnininnnnninnncececcceeenes 6-2

Adding a Real DeVicCecoocuiiiiiii e 6-3

Viewing Device PIOPerties. ..ot 6-3
Platform PrOPETIESccovuiiiiiiiiicir s 6-4
Device INFOTMALIONoiiieiiiiceieie ettt ettt et s et e et e steesb e aeesbesteessassaessesseensesssensesseassenssesses 6-4
Device Properties ... 6-4

Setting Device Properties ... 6-4
LS <) =Y TP 6-4
LY o) 111 o) O USRS 6-5
SATSA ottt r et ettt e he et e b e b et e st es b e st e Rt et e eRe et e et e eb e b e b erbenbestensensententas 6-5
Location Provider #1 and #2ccceovieieiieierieeieieetese ettt saeete st steste s sesssessessaessesreessessaennas 6-5
Bluetooth and OBEXccoooiiiiiieieceececeee ettt ettt ettt e sae et e aesbeets e beeabeeaeereeereenneenas 6-5

Changing the Maximum Number of Concurrent Applications..............ccovviiiiiiiiiniiiinns 6-5

Opening a Serial Port ... s 6-5

Running a Project from the Device Selectorccccociniiiiiiiiniiiiiiccceeee e 6-5

10

11

12

vi

Running Projects Simultaneously on a Single Devicecccooiiiiiiii e 6-6

EMUIAtOr FEAtUTIES.........ccoiiviiiiiieiiieeeeet ettt ettt e et et e e as e be e e e beessesteesaesteessessaessesseessenseens 6-6
EMUIATOT IMLEIIUSooeeieiieiieieciceteetee ettt te et e s te st e e s seessesste e esse s e ensesseensesseensensesnsessesnsesseensesseensensenns 6-7
APPLCALION ..o 6-8
DIEVICE ettt et ettt e et e et e s e et e e e beeab e e rt e e bt e bt e e be e bt eanbe e taeeateenbaensteenbaeesaaenraans 6-8
IMIESSAEES ...t 6-8
Landmark SEOTES ...cc.vecvieieiieiecie ettt sttt st et e e et e e e e stessaesbeessesseessassaessenseessanseensenne 6-8

(@5 131 7: L s o) o NP OO U USSR SRRPRRN 6-9
External EVENtS GENETATOTcccvieiirierieieieieeteeieeeeteeseesestessessessessessessesseseesessessessessessessessessessans 6-9

s TP RRPRUPRR 6-9
VW ettt ettt et ettt e bt e st e et e e bt et te e b e e e be et e et e e e bt e ate e be e bt eante e atennteenbae et eenbeeesseensaens 6-9
HEIP s 6-9
Using the Custom Device SKin Creatorccocooooiiiiiiiiiiiiii s 6-9
Creating a New Custom Device SKINccccoviviiiiiiiiiiiiniiiii s 6-10
Managing Custom SKINSccoviiiiiiiiiiiiiiic e 6-10

Searching the WURFL Device Database

WURFL S@ArCh O ID@VICES ..ot ete e et eaee e et e e e aee e eennneeenteesensresenseeeennneeean 7-1
WURFL Search FIltering ... 7-2

Finding Files in the Multiple User Environment

SWILCHING USIS ..ottt 8-1
INStallation DITECEOTIES........c.ccviiiciieiieecieeete ettt ettt et e be e e et e esaesbeesaesteessesseessesseessenseens 8-1
NetBeans USer DIreCtOri@s.cccovieriirieiiieieieeieeeteste ettt et et et e aesteetesseessesseensesseessesssessesssessennes 8-2
Oracle Java ME SDK Dir@CtOries.c.cccvuevirieirieirieirieninieinieteieteteseeeseeeseeseseesessesesaeseseesessesessenessenens 8-2

Profiling Applications

Collecting and Saving Profiler Datain the IDE.................cccccccoooiiiiiic 9-1
Loading a .nps File ... 9-3
Importing a .prof File..........ccococooiiiiiiiii 9-4
Network Monitoring

Monitor Network Traffic.........ccocoooiiiiiiiiii s 10-1
Filter or SOIt MESSAZEScocvoviiiiiiiiic s 10-2
Save and Load Network Monitor Information...............ccccccoiiiiiiiiiiiiicecceenas 10-3
Clear the Message TIee...........ccccoiiiiiiiiiiiiiii s 10-3
Monitoring Memory

ENabling Tracing..........ccooooiiiiiiiiiiiiiiic s 11-1
Using the Memory MONIOL............ccocoiiiiiiiiiiii s 11-2
Viewing a Session SNapshot ... 11-4
Lightweight Ul Toolkit

LWUIT and the Java ME SDKccccoiiiiiiiiiiiiceete ettt ettt sttt 12-1
LWUIT Resource Editor ... s 12-1

13

14

15

16

Add a Different LIWUIT Library ..o 12-2

LWUIT D@MOS.......oooiiiiiiiict ettt ettt ettt b et as 12-2
Security and MiDlet Signing
Security DOmMAaINSc.coiiiiii s 13-1
Setting Security DOmMaINS............cccoiiiiiiiii s 13-2
Specify the Security Domain for an Emulator ..., 13-2
Specify the Security Domain for a Project ..., 13-2
SigNING @ PrOJECt ..o s 13-2
Sign a CLDC Project With a Key Pairccooiiiiii 13-3
Sign @ CDC PrOJECE ..voviiiiiiiic s 13-3
Managing Keystores and Key Pairs...........cccccooviiiiiiiiiiiiies 13-3
Working With Keystores and Key Pairs ..o 13-4
Create a Keystore ... 13-4
Add an EXisting KeYStOTeccouviviririiiiiiiirrrr e 13-4
Create a New Key Paircccoooiiiiiiiic e 13-4
Remove @ Key Pair ..o 13-5
Import an Existing Key Pair ... 13-5
Managing Root Certificates..............ccccooiiiiiiiiiiiiiiiiiii s 13-5
Command Line Reference
Run the Device Manager ... s 14-1
Manage Device Addresses (device-address) ..o 14-1
Emulator Command Line OPtions.........ccc.ccoiveiiriinirinieinieiciiceretereeeneeeeeeeeeeneeenes e 14-2
MIDIet OPtIONScooviviiiiiiiiciiiicicc s 14-2
CDC OPHONS .ottt 14-3
Debugging and Tracing OPtiONScccevveeiririreriririrircrrrrree e 14-4
Command Line Profiling ..o 14-4
Build a Project from the Command Line...........ccccocoiiiiiiiiiies 14-5
Check PIEreqUISIEESccoviiiiiieiicire e 14-5
Compile Class Files ... 14-5
Preverify Class Files ... 14-6
Packaging a MIDlet Suite (JAR and JAD) ... 14-6
Command Line Security Featuresccccooiiiiiiiiiiiiiiics 14-7
Change the Default Protection Domainccccovviviiiiiiniiiiiiiince 14-7
Sign MIDlet Suites (JAAOOL)ccouvvvueiriririririeiir e 14-7
Manage Certificates (MEKeYTOOL)ccooruriiiiiiriiiiic 14-8
Generate Stubs (WSCOMPIIE)cccoiiiiiiiiiiiiiic e 14-9
Logs
Device Manager LOS ... 15-1
Device INStance LOES ... s 15-1
API Support
JOP APIS .. 16-1

vii

17

18

19

20

21

viii

(0T L. N i TR 16-2

JSR 75: PDA Optional Packages

FileConnection APL............ccccooiiiiiiiiiii s 17-1
PIM AP ..ottt 17-2
Running PDAPDEMOcccooiiiiiiiiiiic s 17-2
BrowSsing FALEScuouiiiiiiic e 17-2
The PIM AP ..o 17-2

JSR 82: Bluetooth and OBEX Support

Setting OBEX and Bluetooth Properties.............cccoooiiiiiiiiiiiiices 18-1
Running the Bluetooth Demo.............ccccoviiiiiiiiiii s 18-2
Running the OBEX Demo...........ccoooiiiiiiiiiiii et 18-3

JSR 135: Mobile Media API Support

Media TYPEScooviiiiiiiiceec s 19-1
Media CaPtULEououiiiiiecee e 19-2
MMAPI MIDlet BEhavior...........ccoooviiiiiiiiice s 19-2
RINE TOMESoniiiiiitiie sttt ettt ettt teae 19-2
Download Ring TONEScooriiiiiiiiic e 19-2
Ring Tone FOIMAtS ... 19-3
Running AudioDemo ... 19-4
Running MMAPIDEIOS...........cccoviiiiiiiiiiciceeee st 19-4
SIMPIE TONES ..o 19-4
SIMPLE PIAYET ..ottt 19-5
VAAEO bbb 19-6
Pausing AUdio Test ... 19-6

JSR 172: Web Services Support

Generating Stub Files from WSDL Descriptors.............cccoviiiiiininiiiiiniiiiccccenes 20-1
Creating a New Mobile Web Service Client ... 20-2
RUD JSRITZ2IIEIMNO ...ttt sttt ettt ettt et ettt b s bttt be et et eateae s st saeeaesaesaeneen 20-5

JSR 177: Smart Card Security (SATSA)

Card Slots in the EMUlator ..ottt 21-1
Java Card Platform Simulator (Cref) ..ottt 21-2
Adjusting Access CONIOLcociiiiiiiiiiiiiiiic s 21-2
Specifying PIN PrOPerties ... 21-2
Specifying Application PErmiSSiONSc.cccovvererieiiirirnininirrrrrecrr et 21-3
Access Control File EXample ... 21-4
Running SATSADEIMOSccccouiiiiiiiiiiiiiiic s 21-6
APDUMIDIEL ..ottt et 21-7
SATMIDIEE ..ot 21-7
CIYPLOMIDIEL ... 21-8
MORQITMIDIELoiiiiiicceee e 21-8

22

23

24

25

Running SATSAJCRMIDEINOc.covviiiiiiiiiiiiiiiiiiniiinisiiisi s 21-8

JSR 179: Location API Support
Setting the Emulator's Location at Runtime ... 22-1
Running the CityGuide Sample Project............ccccccooiiiiiiiiiiiiiiiiices 22-3
JSR 205: Wireless Messaging
Using the WMA Console to Send and Receive Messages..............cccoovvivnninnnninninnnnnns 23-1
Launching the WIMA CONSOLEccuouriririririririririrree et 23-1
WMA Console INTEIfaceccoiiiiiiiiiiiiii s 23-1
Emulator Phone NUMDETS ..o 23-2
Sending a Text or Binary SMS MESSAZEcccvuvererurirerereriririririreiess et 23-2
Sending Text or Binary CBS MeSSagescccoeueueiiiicieiiiicicicc 23-3
Sending MMS MESSAZESccovueiriiirieiiicieie ettt 23-3
Receiving Messages in the WMA CONSO0lecovuvivviriiiiriniiiireeeer e 23-4
Running WIMADEINO ...ttt 23-4
WMADemo Push Registry Values ..., 23-4
Running WMADEMO OTA ..o 23-4
Sending SMS Messages From WMA Console to an Emulator and Back ..., 23-4
Sending CBS Messages from WMA Console to an Emulator ..., 23-5
Sending MMS Messages from WMA Console to an Emulator ..., 23-5
Running WIMA TOOL...........coooiiiiiiic sttt 23-6
smsreceive, cbsreceive, and MIMSTECEIVEiieveevieirieeiecireeeee et eeteeeeteeeteeeeteeeseeeereesteeerseenseeens 23-6
SIMSSEILA. o.viieiiiicii e 23-7
CDSSEN ..o 23-7
TINSSEI .o 23-8
JSR 184: Mobile 3D Graphics
Choosing a Graphics Mode..............ccoiiiiiiiiii e 24-1
Immediate MOAEccooiuiiiiiiiiiiii s 24-1
Retained MOdE ..o 24-1
Quality Versus Speed ... 24-2
Content for Mobile 3D Graphics........coccoviiriiiiniiniiiecieeeeee e 24-2
Running Demo3D Samples..........cccooiiiiiiiiiiiiiiii s 24-2
LEE3DD it 24-2
RetainedMOdecoviiiiiiiiiiiii s 24-3
POZOROO ..ottt 24-3
JSR 211: Content Handler API (CHAPI)
Using Content Handlers ..o 25-1
Defining Content Handler Properties.............ccocovvviiiiiiiiiiiiiinincccnnncnssss 25-2
Defining Content Handler Actionsccooiiiiiiiiiiiiiiis 25-3
Running the CHAPIDemo Content Browser...............c.cocooiiiiiiiiiiiiiiieeenes 25-3

26 JSR 226: Scalable 2D Vector Graphics

27

28

29

RUnning SVGDEMO............ccooiiiiiiiiccctn st 26-1
SVG BIOWSET ..ottt 26-1
Render SVG IMAGEoouiviiiicicict e 26-2
Play SVG ANIMationcoiiiiiieiiie e 26-2
Create SVG Image from SCratChcccovvviiiiriiiiiiiirerrr e 26-2
Bouncing Ballsc.ooiii 26-2
Optmized MENUc.ooiieiiii e 26-3
Picture DeCOTAtOrccoveieieiiiieccc e 26-3
Location Based Service ... 26-4

Running SVGContactList.............cccooiiiii s 26-5

JSR 239: Java Bindings for Open GL ES
OPen GL OVEIVIEWoiiiiiiiiiiiiiic bbb 27-1

JSR 256: Mobile Sensor API Support

Creating a Mobile Sensor Project..............ccooiiiiiiiiiiiiie e 28-1
Using a Mobile Sensor Project.............cccovviiiiiiiiiiiiiiicc s 28-2
Creating a Sensor Script File............cccoooiiiiii e 28-2
SeNSOIBIOWSEY ..ot 28-3
IMATDIES ..o s 28-4

Communication API

Using ContactleSSDemOcccovviviiiiiiiiiiiiii s 29-1
Tag File FOIMatsccccooviiiiiiiiiiiiiiccc s 29-2
SCHPE FOIMAL ...ttt 29-3

Preface

The Oracle® Java ME SDK is mobile application development tool available as a
plugin to the NetBeans IDE and the Eclipse IDE.

Audience

This document is intended for Java ME application developers.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Related Documents

For more information, see the following documents:

s The supported API documentation links can be found in Table 16-1, " Supported
JCP APIs".

xi

= To see documentation for the Oracle Java Wireless Client and CLDC Hotspot go to
http://download.oracle.com/javame/mobile.html and look under
Documentation for Device Makers.

s For SDK, LWUIT, and legacy Sun Java Wireless Toolkit documentation see
http://download.oracle.com/javame/developer.html.

Xii

1

Getting Started

The Oracle® Java Micro Edition (Java ME) Software Development Kit (SDK) is a
natural starting point for learning and using Java ME technology. The focus of the SDK
is to provide emulation and deployment assistance during the development process.
This chapter introduces the SDK and provides a quick introduction to using the SDK.

Using this simple yet powerful tool you can create, edit, compile, package, and sign an
application. After testing your application in the Oracle Java ME SDK emulation
environment, you can move to deploying and debugging on a real device.

This SDK provides supporting tools and sample implementations for the latest in Java
ME technology. The SDK provides support for recent versions of the Connected
Limited Device Configuration (CLDC), Information Module Profile - Next Generation
(IMP-NG), and Connected Device Configuration (CDC) platforms.

s Section 1.1, "Quick Start"
= Section 1.2, "Tips for Legacy Toolkit Users"
= Section 1.3, "Java ME SDK Update Center"

As of version 3.2, the Java ME SDK is a plugin to the NetBeans IDE. In NetBeans the
Mobility Pack is a prerequisite for installing the Java ME SDK.

The Java ME SDK is also a plugin to the Eclipse IDE. This documentation does not
discuss the Eclipse IDE. A separate online help system supports the Oracle Java ME
SDK for Eclipse.

1.1 Quick Start

The Oracle Java ME SDK plugin uses NetBeans technology, as described in the
NetBeans online help. These tips offer some hints for getting started as quickly as
possible.

m Access the documentation. The online help is the primary documentation for the
SDK. Many windows and dialogs feature a help button that opens
context-sensitive help in the help viewer. You can also type F1.

Select Help > Help Contents to open the JavaHelp Online Help viewer. Remember
to use the search capability and the index to help you find topics.

Note: If you require a larger font size, the help topics are also
available as a printable PDF and a set of HTML files.

= Run sample projects. Running sample projects is a good way to become familiar
with the SDK.

Getting Started 1-1

Tips for Legacy Toolkit Users

See Section 3.2, "Running a Project" for a general overview of how to run a project.

See the Projects window and the Files window for a visual overview of the logical
and physical layout of a project. When viewing items in the tree, use the context
menu (right-click) to see the available actions. See Section 4.3, "Working With
Projects".

A project has a default device that is used when you run it from the toolbar (the
green arrow), Run > Run Project, or Run on the project's context menu. To see a
project’s default device, right-click the project and select Properties. Choose the
Platform category and you see the default device displayed in the Device field. To
reset the Device make another choice from the dropdown menu.

To run an application on different devices without changing the default device,
right-click on the project and select Run With from the context menu. Choose a
different device and click OK.

The emulator is an independent process, and when it has started it is a separate
process from the build process running in NetBeans. Stopping the build process or
closing a project does not always affect the application running in the emulator.
You must be sure to terminate the application (the emulator can remain open). See
Section 3.2, "Running a Project”.

The SDK provides two unique instances for most devices. For example,
JavaMEPhonel and JavaMEPhone? are the same except for the device number and
the phone number, so you can perform tests that require two devices (messaging,
for example) without customization. If you want to create your own device, see
Section 6.11, "Using the Custom Device Skin Creator".

1.2 Tips for Legacy Toolkit Users

If you previously used the Sun Java Wireless Toolkit for CLDC or the CDC Toolkit, the
advice in Section 1.1, "Quick Start" still applies. Although the user interface is quite
different, the project concept is similar. The following tips apply legacy terms and
ideas to the SDK.

Runtime focus is less on the project and more on device capabilities and the
emulation process.

In legacy toolkits you had to be careful to match the platforms, the APIs, and the
capability of the output device. The SDK handles this problem differently, but as
described in Section 2.2.1, "Java ME Platforms", you should be sure that the
emulator platform is correct and a device profile is selected.

As mentioned in the Section 1.1, "Quick Start", clicking the green arrow runs the
main project (to set the main project select Run > Set Main Project and select a
project from the dropdown menu). Alternatively, you can right-click any open
project and select run.

In the device selector (Tools > Java ME > Device Selector) you can test many
devices without changing the project properties. Right-click any device and choose
Run. Only projects that are compatible with the device are shown in the context
menu.

Import applications from legacy toolkits to SDK projects. The installation of the
legacy toolkit must exist on the host machine. See Section 4.2.4, "Import a Legacy
MIDP Project”, Section 2.2.2, "Create a Platform for Legacy CDC Projects”, and
Section 4.2.5, "Import a Legacy CDC Project”.

1-2 Oracle Java ME SDK Developer's Guide

Java ME SDK Update Center

= Legacy toolkit settings are Application Descriptors in the SDK. Right-click on a
project and select Properties. Choose the Application Descriptor category.

= Legacy toolkit utilities are generally accessible from Tools > Java ME submenu in
the NetBeans IDE. For example, the WMA console, the Java ME SDK Update
Center and more can be started from the Tools > Java ME submenu.

For example, select Tools > Java ME > WMA Console in the NetBeans IDE to see
the WMA Console output.

= Profiling output and Network monitoring utilities are accessed from the Profile >
Java ME submenu in the NetBeans IDE.

s The emulator is familiar, but there are some fundamental differences.

It is important to realize that the emulator is a remote process, and when it starts it
is independent of the build process running in NetBeans. Stopping the build
process or closing a project does not always affect the application running in the
emulator. You must be sure to terminate the application from the emulator. For
more on this topic, see Section 3.2, "Running a Project” and Section 4.3, "Working
With Projects".

In the Wireless Toolkit you could simultaneously run multiple versions of a device
because the toolkit would increment the phone number automatically each time
you launched a project. Because the emulator is now a remote process, the phone
number is a unique property that must be set explicitly for the device instance.

The SDK provides two unique instances for most devices. For example,
JavaMEPhonel and JavaMEPhone?2 are the same except for the phone number, so
you can perform tests that require two devices (messaging, for example) without
customization.

The emulator has additional display functionality. See Section 6.9, "Emulator
Features".

1.3 Java ME SDK Update Center

The Java ME SDK Update Center supports automatic updating of the entire Java ME
SDK plugin, and individual modules within the Java ME SDK. To access the update
center, select Tools > Java ME > Java ME SDK Update Center. The update center uses
the same technology as the NetBeans Plugins Manager. The update manager works
separately from NetBeans so that the Java ME SDK plugin can be updated
independently.

Java ME SDK is delivered as three NetBeans plugins in their own category named Java
ME SDK Tools. The plugins are:

s Java ME SDK Tools
s LWUIT Resource Editor
s Java ME SDK Demos

To detect updates, select Tools > Java ME > Java ME SDK Update Center and choose
the Available tab. Any available updates are listed. Choose an update and click Install
to update the plugin. The plugins then appear as activated on the Installed tab.

Getting Started 1-3

Java ME SDK Update Center

Java ME SDK Update Center

Available | Installed | Updates | Settings

[Reload Catalog |

Install ~ Mame Version Category = Icon
Java ME SDK Tools NetBeans Update Site

Version: 1.0

Package Description

Provides ability to update Java ME SDK Tools MetBeans [
MetBeans IDE must be restarted.

Demos are delivered separately for two reasons:

= Some demos use network access for test purposes, however, the sample code does
not include protection against malicious intrusion. Before using the demos, please
see the "Installation and Runtime Security Guidelines" in the Oracle Java Micro
Edition Software Development Kit Release Notes.

s Sample code has a different copyright that allows you to redistribute provided the
Oracle copyright is kept.

1-4 Oracle Java ME SDK Developer's Guide

2

Platforms

This chapter describes the Oracle Java ME SDK technology platforms, also called
stacks. They are: CLDC with MIDP, IMP-NG and CDC, as discussed in Section 2.1,
"Emulation Platforms".

A project runs on a particular emulation platform. The device manager determines
whether a device is appropriate for your project based on the platform, the APIs your
application uses, and a set of device properties. If you run an application and an
appropriate emulator or device is currently running, the SDK automatically installs
and runs your application in the current device so that you do not have to launch the
emulator repeatedly.

2.1 Emulation Platforms

An emulator simulates the execution of an application on one or more target devices.
An emulation platform enables you to understand the user experience for an
application and test basic portability. For example, a platform enables you to run
applications on several sample devices with different features, such as screen size,
keyboard, runtime profile and other characteristics.

Oracle Java ME SDK provides the following emulation platforms:

s CLDC with Mobile Information Device Profile (MIDP)

s CLDC with MIDP, Information Module Profile - Next Generation (IMP-NG) subset
s CDC with Advanced Graphics and User Interface (AGUI)

s CDC with Personal Basis Profile (PBP)

All platforms include predefined devices with different screen sizes, runtime profiles,
and input methods.

See Section 2.1.1, "CLDC with MIDP", Section 2.1.2, "IMP-NG" and Section 2.1.3,
HCDCH‘

2.1.1 CLDC with MIDP

CLDC/MIDP applications conform to both the Connected Limited Device
Configuration and the Mobile Information Device Profile
(http://jcp.org/en/jsr/detail?id=139). The CLDC/MIDP stack supports the
following technology.

= CLDC 1.1 and MIDP 2.1
m All the JSRs listed in Table 16.1, "JCP APIs".

Platforms 2-1

Emulation Platforms

2.1.2 IMP-NG

CLDC/MIDP applications are targeted for devices that typically have the following
capabilities:

= A 16-bit or 32-bit processor with a clock speed of 16MHz or higher

= Atleast 160 KB of non-volatile memory allocated for the CLDC libraries and
virtual machine

s Atleast 192 KB of total memory available for the Java platform
= Low power consumption, often operating on battery power

s Connectivity to some kind of network, often with a wireless, intermittent
connection and limited bandwidth

Typical devices might be cellular phones, pagers, low-end personal organizers, and
machine-to-machine equipment. In addition, CLDC can also be deployed in home
appliances, TV set-top boxes, and point-of-sale terminals.

The SDK provides two default emulators to support CLDC:
s ClamshellJavaMEPhonel

A flip phone with a primary display and a secondary display.
» JavaMEPhonel and JavaMEPhone2

A flat touch screen device.

These devices support CLDC 1.1, MIDP 2.1, and optional packages for JSRs 75, 82, 135,
172,177,179, 184, 205, 211, 226, 234, 239, 256, 257, and 280.

See Section 3.7, "Running MIDP and CLDC Sample Projects", Section 4.2.1, "Create a
CLDC Project", Chapter 6, "Working With Devices".

JSR 228 describes the Information Module Profile - Next Generation, referred to as
IMP-NG. This JSR extends and enhances JSR 195: Information Module Profile.

The IMP-NG implementation depends upon CLDC 1.0. It is a strict subset of MIDP 2.0
that excludes MIDP 2.0 graphical display capabilities, resulting in a smaller footprint
appropriate for Information Modules (IMs). Potential devices for CLDC with IMP-NG
might be modems, home electronics devices, or industrial metering devices.

An IMP-NG application is an IMlet, and multiple IMlets in a single JAR file form an
IMlet suite. When creating an IMlet project you follow the same process as that you
use to create a Java ME Mobile Application project and select an IMP-NG device. The
device selection determines the supported JSRs.

The IMP-NG stack supports the following JCP APIs: JSRs 75, 120, 172, 177,179, 257,
and 280. In addition, Oracle provides APIs to support IMP-NG development, as
described in Section 16.2, "Oracle APIs".

The Java ME SDK implementation provides IMP-NG emulation, on-device tooling
connectivity to real devices, and Attention (AT) Command support. The SDK emulator
supports IMP-NG with IMPNGPhonel and IMPNGPhone?2 skins and provides simple
interfaces for Inter-Integrated Circuit (I?C), Serial Peripheral Interface (SPI), General
Purpose Input/Output (GPIO), and Memory-mapped I/O (MMIO) buses. The
emulator’s external event generator provides a way for you to inject calls to emulate
AT Commands, alter basic pin and port information for GPIO, and memory block
values.

See Section 3.8, "Running IMP-NG Sample Projects".

2-2 Oracle Java ME SDK Developer's Guide

Managing Java Platforms

2.1.3 CDC

A Java ME Platform, Connected Device Configuration (CDC)
(http://jcp.org/en/jsr/detail?id=218) application is an application targeted for
network-connected consumer and embedded devices, including high-end mobile
phones, smart communicators, high-end PDAs, and set-top boxes.

Devices that support CDC typically include a 32-bit microprocessor or controller and
make about 2 MB of RAM and 2.5 MB of ROM available to the Java application
environment.

CDC is based upon the open source project phoneME Advanced, found at
http://java.net/projects/phoneme. A CDC application conforms to the Connected
Device Configuration with a set of profiles that include Personal Basis Profile,
Foundation Profile, and AGUTI:

s CDC1.1withPBP 1.1 (http://jcp.org/en/jsr/detail?id=217)

s Foundation Profile 1.1
(http://jcp.org/aboutJava/communityprocess/final/jsr219/index.html)

s AGUI1.0 (http://www.jcp.org/en/jsr/detail?id=209)
The SDK provides three default emulators to support CDC:
s Default CdcPbpPhonel
CDC 1.1, PBP 1.1, Foundation Profile (FP) 1.1
= VgaAGUIPhonel
CDC1.1,PBP1.1,FP 1.1 and AGUI 1.0
s VgaCdcPhonel
CDC1.1,PBP1.1,FP1.1

See Table 3-2, " CDC Sample Projects”, Section 4.1, "Project Types" and Section 6.3,
"Viewing Device Properties".

2.2 Managing Java Platforms

To view the Java Platform Manager, select Tools > Java Platforms. Alternatively,
right-click on a project, choose Properties from the context menu, select the Platform
category, and select the Manage Emulators button to open the Java Platform Manager.

The Java Platform Manager is a tool for managing different versions of the Java
Development Kit (JDK) and customizing Java platforms that your applications depend
on. You can add source files and Javadoc documents to the existing platforms.

The Oracle Java ME SDK pre-registers CDC, CLDC/MIDP and Java SE (the JDK serves
as the default platform) for version 3.2. These platforms have similar options:

Devices. (CLDC) View all the CLDC and IMP-NG devices that the Device Manager
has discovered. Click Refresh to reconfigure the platform and refresh the list.

Classes. (CDC, Java SE) View the platform's classpaths. Add a JAR or folder
containing additional classes. A class’s location in the list determines its place in the
classpath. Use the Move Up and Move Down buttons to change the class position.

Sources. Add JAR files or source files to the Sources tab to register source code.

Javadoc. Add Javadoc documentation to support any new classes or source files you
have added.

Platforms 2-3

Managing Java Platforms

See Section 2.2.1, "Java ME Platforms".

2.2.1 Java ME Platforms

In the Oracle Java ME SDK the platforms are embedded Java runtimes specifically for
resource-constrained devices. Because the Netbeans Mobility pack is installed for Java
ME you see the legacy 3.0.5 platforms coexisting with version 3.2 platforms and
devices. Each platform has its own set of devices and optional packages.

Note: If you cannot see the 3.2 devices in the Device Selector, choose
Tools > Java ME > Active Device Manager and select Java(TM) ME
Platform SDK 3.2.

Applications that worked in previous platform versions might not run on the current
version, and vice versa. Follow these steps to set a project’s platform options.

1. Right-click on a project and choose Properties from the context menu.

2. Select the Platform category. Be sure that the Emulator Platform is set to version
3.2.

3. The device configuration should be automatically selected, but the Device Profile
might not be explicitly selected. Be sure to choose a profile.

4. Optional. Check any optional packages that are required to support the current
project. (If this is an IMP-NG project you also see the Oracle APIs listed as optional
packages. See Section 16.2, "Oracle APIs").

Click OK.
5. Rebuild the project and run.

2.2.2 Create a Platform for Legacy CDC Projects

The Oracle Java ME SDK version 3.2 platform name for CDC does not match the name
in the legacy CDC toolkit and the CDC Mobility Pack. The legacy name is "Sun Java
Toolkit 1.0 for Connected Device Configuration" while the SDK name is "CDC Oracle
Java(TM) Platform Micro Edition SDK 3.2". To ensure a successful import, you can
create a new platform and give it the legacy name.

The following procedure enables you to import legacy CDC projects without Reference
errors (see Section 3.6, "Resolving Reference Problems").

1. Select Tools > Java Platforms. Select "CDC Oracle Java(TM) Platform Micro Edition
SDK 3.2", and in the Classes tab, note the libraries required for the platform.

Click Add Platform... and click Next.
Select Java ME CDC Platform Emulator and click Next.
On the Choose Platform page, select the SDK installation directory. Click Next.

LIS

On the Platform Name page, type "Sun Java Toolkit 1.0 for Connected Device
Configuration” in the Name field. In the Sources tab, add the following libraries:
agui.jar,cdc_1.1.jar, fp_1.1.jar,pbp_1.1.jar, and secop_1.0.jar.

Click Finish, and Close.

See Section 4.2.5, "Import a Legacy CDC Project" and Section 3.6, "Resolving Reference
Problems".

2-4 Oracle Java ME SDK Developer's Guide

3

Using Sample Projects

The Oracle Java ME SDK sample projects introduce you to the emulator's API features
and the SDK features, tools, and utilities that support the various APIs. These features
can help you customize the sample projects or create applications of your own.

Note: As mentioned in Section 1.3, "Java ME SDK Update Center"
the demos are delivered and installed separately. Before using the
demos, please see the "Installation and Runtime Security Guidelines"
in the Oracle Java Micro Edition Software Development Kit Release Notes.
Some demos use network access and open ports. Because the sample
code does not include protection against malicious intrusion, you
must ensure your environment is secure should you choose to run the
sample projects.

For instructions on running projects, see the following topics:

Section 3.1, "Creating a Sample Project"

Section 3.2, "Running a Project"

Section 3.3, "Troubleshooting"

Section 3.4, "Sample Project Overview"

Section 3.5, "Configuring the Web Browser and Proxy Settings"
Section 3.6, "Resolving Reference Problems"

Section 3.7, "Running MIDP and CLDC Sample Projects"
Section 3.8, "Running IMP-NG Sample Projects"

3.1 Creating a Sample Project

Sample applications are installed in a separate NetBeans plugin. Do not run or edit
these projects directly. You create a new project that is an instance of the sample
project.

The default location for Oracle Java ME SDK projects is the default NetBeans project
directory. Each project has a src directory that contains Java programming language
source code. For example, the default location of the source code for the SMS sender
MIDlet (example.sms.SMSSend) in WMADemo resides in the following location:

userhome\My Documents\NetBeansProjects\WMADemo\src\example\sms\SMSSend. java

Using Sample Projects 3-1

Running a Project

1. Go to File > New Project and in the Categories window select Samples > Java ME
SDK 3.2 and single-click a sample project name. Click Next.

2. Accept Name and Location page default values or provide your own. Click Next.

3. Choose an emulator platform and a device. Note, changing the device affects the
possible device profiles. Click Finish.

The project is added to the Project window.

Note: If you can't see the Project window choose Window >
Projects. To see console output, select Window > Output > Output.

4. Set the project’s default execution mode. Right-click on a project and select
Properties from the context menu, then choose the Running category.

x

Project Configuration: IDEFauItCDnFiguratiun LI Manage Configurations. .. |
Cakteqgory:
..... @ General [Use Yalues From "DefaultCanfiguration!
----- =l Platform
_____ Fl abiities Emulator Command Line Options: I
.g. -¥verh
----- E‘I Application Descriptor (2.9, -#verbose)
E"—Dﬂ' Bivild {* Regular Execution
H-[yf Sources Filkering
L?EI' Campiling [~ Specify the Security Dornain: Iminimum ;I
ﬁ Libraries & Resources
E‘ Obfuscating { Execute through OTa (Cwer The Air Provisioning)
- 2| Creating JAR
! o ebugger timeout {in miliseconds):
5 ? Debugger timeout (in milisscands)
+-|o Signing

&L—Q Generating Javadoc

----- > QO

----- @ Deploving

(8]4 I Cancel Help

If you want to install the application in the emulator each time it is run, select
Execute through OTA (Over the Air Provisioning). This mode is required if your
application uses the push registry or the external events generator, and optional
for other cases.

If the application does not need to be installed in the emulator, choose Regular
execution (see Section 13.1, "Security Domains").

3.2 Running a Project

Create your own project, or instantiate one of the sample projects provided with the
SDK as described in Section 3.1, "Creating a Sample Project".

1. Use one of these methods to run a project.

3-2 Oracle Java ME SDK Developer's Guide

Running a Project

= Right-click the project and select Run from the context menu.

s To run the main project (which is shown in bold text in the Projects window),
click the green Run button in the toolbar or press F6. To set the main project,
select Run > Set Main Project and select a project from the dropdown menu.

= To run the project on a different device, or to change the execution mode,
choose the device in the Device Selector window (Tools >Java ME > Device
Selector). Right-click on a device and select Run Project or Run Project via
OTA from the context menu. Pull right to see a listing of open projects. Projects
that cannot run on the current device are grayed out.

Mavigator | Device Seleu:tu:urx| SWGEiContactLisk

H @ SYGDemo

®-[E] CoC, JavalTH) ME Platform SDK

Sensors

: @ﬂ i UIDermo
CLDiC,] TM) ME Plat| SDk
E| H o JavalTr) atform WMADema
H r Fun Project “MLAPIDemD
[30 RunProjsctviaOTA) Output - UIDema (run) X |
Iﬂﬂ TMPIC Run JAR. ar JaD. .. 3. u>
lean database
47
Propetties

s Choose Start > Programs > Java(ITM) ME Platform SDK 3.2 > Java ME SDK
CLDC Emulator.

The device emulator window opens with the demo application running. If the
demo is a MIDlet suite you might have to choose a MIDlet to launch.

2. Asthe sample project runs, soft keys might be enabled below the screen on the left
or right side.

You use soft keys to install or launch an application, open a menu, exit, or perform
some other action. Some demos include these instructions in the application.

For instructions on running samples, see Table 3-1 or Table 3-2.

3. When you are finished viewing the application, go to the emulator's Application
menu and select Exit to close the emulator and stop the execution of the project's
build script.

When the emulator is launched, it runs as an independent process. Pressing the
red stop button in the NetBeans Output window terminates the build script, but it
does not close the emulator instance. You can also terminate the build script by
clicking the X next to the progress meter at the bottom of the IDE.

WHMADEmD (run) | [] x|

Likewise, closing the NetBeans IDE does not affect the emulator instance. In the
emulator, select Application > Exit or press the emulator’s exit button (the X) on
the upper right.

This ensures that both the emulator process and the project build process close.

Using Sample Projects 3-3

Troubleshooting

3.3 Troubleshooting

Sometimes even a "known good" application, such as a sample project, does not run
successfully. The problem is usually your environment.

Some demonstrations require specific setup and instructions. For example, if a
sample uses web services and you are behind a firewall, you must configure the
emulator's proxy server settings or web access fails. See Section 3.5, "Configuring
the Web Browser and Proxy Settings".

If an application must run over the air (OTA), the SDK automatically installs it in
the device instance. See Section 14.3, "Emulator Command Line Options".

MIDIet Suites use runMIDlet to perform the installation.
installdir\runtimes\cldc-hi\bin\runMidlet.exe

CDC platforms install applications as follows:
installdir\runtimes\cdc-hi\bin\cvm.exe

Because these programs are launched remotely, virus checking software can
prevent them from running. If this happens, the project compiles, but the emulator
never opens. In the console you see warnings that the emulator cannot connect.

Consider configuring your antivirus software to exclude runiidlet and cvm from
checking.

3.4 Sample Project Overview

The Oracle Java ME SDK includes demonstration applications that highlight some
technologies and APIs that are supported by the emulator.

Most demonstration applications are simple to run. Section 3.2, "Running a Project"
contains instructions for running most demonstrations. Sample projects usually have
some additional operation instructions.

Table 3-1 lists all the MIDP/CLDC demonstration applications that are included in
this release.

Table 3-1 MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
Advanced JSR 234 Demonstrates 3D audio, reverberation, image Section 3.7.1, "Running the
Multimedia processing, and camera control. AdvancedMultimediaSupplem
Supplements ents Sample Project”
AudioDemo MMAPI1.1 Demonstrates audio capabilities, including Section 19.4, "Running
mixing and playing audio with an animation. AudioDemo"
BluetoothDemo JSR 82 Demonstrates device discovery and data Section 18.2, "Running the
exchange using Bluetooth. Bluetooth Demo"
CHAPIDemo JSR 211 A content viewer that also uses Section 25.4, "Running the
MediaHandler. CHAPIDemo Content
Browser"
CityGuide JSR 179 A city map that displays landmarks based on Section 22.2, "Running the
the current location. CityGuide Sample Project"
ContactlessDemo ~ JSR 257 Emulates detection of RFID tags. Section 29.1, "Using
ContactlessDemo"

3-4 Oracle Java ME SDK Developer's Guide

Sample Project Overview

Table 3-1 (Cont.)

MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
Demo3D JSR 184 Contains MIDlets that demonstrate how to Section 24.4, "Running
use 3D graphics, both immediate mode and ~ Demo3D Samples"
retained mode.
Demos MIDP 2.0 Includes various examples: animation, color, Section 3.7.2, "Running the
networking, finance, and others. Demos Sample Project”
FPDemo CLDC1.1 Simple floating point calculator. Section 3.7.3, "Running
FPDemo"
Games MIDP 2.0 Includes TilePuzzle, WormGame, and Section 3.7.4, "Running
PushPuzzle. Games'".
JSR172Demo JSR 172 Demonstrates how to use the JSR 172 APIto Section 20.3, "Run
connect to a web service from a MIDlet. JSR172Demo"
LWUITBrowser N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITDemo N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITIODemo N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITMakeover N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITSpeed N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITTimeZone N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
LWUITTipster N/A Demonstrates LWUIT features. Chapter 12, "Lightweight Ul
Toolkit"
MMAPIDemos MMAPI Demonstrates MMAPI features, including Section 19.5, "Running
tone sequences, MIDI playback, sampled MMAPIDemos"
audio playback, and video.
Multimedia MMAPI Demonstrates different video playback Section 19.5.3, "Video"
formats.
NetworkDemo MIDP 2.0 Demonstrates how to use datagrams and Section 3.7.5.1, "Socket Demo"
serial connections. and Section 3.7.5.2, "Datagram
Demo"
ObexDemo JSR 82 Demonstrates device discovery and data Section 18.3, "Running the
exchange using Bluetooth. OBEX Demo"
PDAPDemo JSR 75 Demonstrates how to manipulate contacts, Section 17.3, "Running
calendar items, and to-do items. PDAPDemo"
Demonstrates accessing local files.
PhotoAlbum MIDP 2.0 Demonstrates a variety of image formats. Section 3.7.6, "Running
PhotoAlbum”"
SATSADemos JSR 177 Demonstrates communication with a smart Section 21.4, "Running
card and other features of SATSA. SATSADemos"
SATSAJCRMIDemo JSR 177 Shows how to use the SATSA-Java Card Section 21.4.5, "Running
Remote Invocation method. SATSAJCRMIDemo"
Sensors JSR 256 The SensorBrowser and Marbles game Section 28.4, "SensorBrowser"

demonstrate sensor input.

and Section 28.5, "Marbles"

Using Sample Projects 3-5

Configuring the Web Browser and Proxy Settings

Table 3-1 (Cont.) MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
SVGContactList JSR 226 Uses SVG to create a contact list displayed Section 26.2, "Running
with different skins. SVGContactList"
SVGDemo JSR 226 Uses different SVG rendering techniques. Section 26.1, "Running
SVGDemo"
UIDemo MIDP 2.0 Showcases the breadth of MIDP 2.0's user Section 3.7.7, "Running
interface capabilities. UIDemo"
WMADemo WMA 2.0 Shows how to send and receive SMS, CBS, Section 23.2, "Running
and MMS messages. WMADemo"
XMLAPIDemo JSR 280 Uses DOM and STAX APIs to create an XML Follow the instructions the

sample and SAX, DOM and StAX APIs to
parse the sample.

application provides.

Table 3-2 lists the CDC sample projects available in this release.

Table 3-2 CDC Sample Projects

Optional

Sample Package

Description

Instructions

AGUIJava2DDemo]JSR 209

This stand-alone application is a Java
SE application adapted for the CDC
environment. It demonstrates the
graphical and animation capabilities of
the Java 2D™ APL

Click the blue arrows to page
through the various images and
animations. The applications focus
on curves. Click the AA icon to see
how antialiasing affects

appearance.

AGUISwingSet2 JSR 209

Functional tools such as buttons,
sliders, and menus implemented with
Swing.

Click through the tabs to view the
controls and animations.

3.5 Configuring the Web Browser and Proxy Settings

If you are behind a firewall you must configure the proxy server so that MIDP
applications using web services can succeed.

Note:

CDC emulators do not work through a proxy.
Communications such as downloading images from the Internet
fail on CDC emulators.

The settings are typically the same as those you are using in your web browser.

1. Select Tools > Options > General.

2. Choose a Proxy Setting:

= No Proxy

s Use System Proxy Settings

= Manual Proxy Settings

To set the HTTP Proxy, fill in the proxy server address field and the port
number. The HTTP Proxy Host is the host name or numeric IP address of the
proxy server used to connect to HTTP and FTP sites. The Proxy Port is the port
number of the proxy server.

3-6 Oracle Java ME SDK Developer's Guide

Resolving Reference Problems

To set the HTTPS or Socks proxy, click More and fill out the Advanced Proxy
Options form.

3.6 Resolving Reference Problems

Sometimes when you open a project you can see it has a reference warning. In the
Projects tab the project name is red, and the icon shows a warning symbol, as seen
below:

&- B CHAPIDemo
Usually this warning means the project refers to a platform, file, or library that cannot

be found.

If you are using an old project it might be referring to a platform or device that is not
installed. In this case edit the project properties and select an available platform and
device as described in Section 2.2.1, "Java ME Platforms", then rebuild the project.

If the problem is not the platform, right-click on the project and choose Resolve
Reference Problems.

B Resolve Reference Problems - "CHAPIDemo™ Project E|

Feference Problems:

store, ks" File/Folder could not be Found

Description:

Problen: The project uses the file/folder called
"keystare.ks", but this fileffolder was naok Found.
Solution: Click Resolve and locate the missing
Filz/Folder.

Close

The window displays the missing file, the problem, and a possible solution. In this
case the project probably used a literal path to the file keystore.ks. Clicking the
Resolve... button opens a file browser so you can find the missing keystore file. The
default location is as follows:

installdir\runtimes\cldc-hi\lib

Locate and select the file. You receive confirmation that the problem is resolved, and
you can now click Close.

Using Sample Projects 3-7

Running MIDP and CLDC Sample Projects

3.7 Running MIDP and CLDC Sample Projects

This topic gathers MIDP and CLDC samples that are not discussed in separate
chapters. This is the case when a sample uses many JSRs, or when a supported JSR
does not have any special implementation details.

Section 3.7.1, "Running the AdvancedMultimediaSupplements Sample Project”
Section 3.7.2, "Running the Demos Sample Project”

Section 3.7.3, "Running FPDemo"

Section 3.7.4, "Running Games"

Section 3.7.5, "Running Network Demo"

Section 3.7.6, "Running PhotoAlbum"

Section 3.7.7, "Running UIDemo"

For other CLDC demos, see Table 3-1.

3.7.1 Running the AdvancedMultimediaSupplements Sample Project

This MIDlet suite demonstrates the power of JSR 234 Advanced Multimedia
Supplements (AMMS). It consists of the following MIDlets:

Section 3.7.1.1, "Image Effects"
Section 3.7.1.3, "Camera"

Section 3.7.1.4, "Moving Helicopter"
Section 3.7.1.2, "Music Effects"

3.7.1.1 Image Effects

This MIDlet demonstrates standard image processing operations.

Launch the Image Effects MIDlet.

Choose input and output image formats, and press Done. The input image and
output images are displayed simultaneously.

Choose an effect from the Menu and click the Done button to apply a
transformation, effect or overlay. The source image is shown above and the
processed image is shown below. Some items, Set Transforms, for example, can
perform several operations in a single transaction.

The menu options are as follows:

= Reset - Set transforms, effects, and overlays to the initial state.

= Monochrome Effects - Activate grayscale rendering.

= Negative Effect -Reverse dark and light areas.

= Set Formats - Select an input object type and an output image format.

= Set Effect Order - Specify the order in which transforms, effects and overlays
are applied.

= Set Transforms - Change width and height scale, border, and rotation options.

= Set Overlays - Specify the color and orientation of a color block overlay.

3-8 Oracle Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

3.7.1.2 Music Effects

Demonstrates the advanced audio capabilities of the Advanced Multimedia
Supplements. As an audio file loops continuously, you can adjust the volume, and
reverberation settings.

3.7.1.3 Camera

This MIDlet demonstrates how the Advanced Multimedia Supplements provide
control of a device’s camera. The screen shows the viewfinder of the camera
(simulated with a movie). You can use commands in the menu to change the camera
settings and take and manage snapshots.

= Zoom settings - digital and optical zoom settings 100-300 in increments of 20.
Make a selection and press Back.

= View gallery - View a list of the snapshots stored in:
userhome\ javame-sdk\3. 2 \work\device\appdb\filesystem\rootl. Choose Display
to see the snapshot. You have the option to delete the file from disk.

= Set flash mode - Off, AUTO, AUTO_WITH_REDEYEREDUCE, FORCE, FORCE _
WITH_REDEYEREDUCE, FILLIN.

s Change F_Stop number - 0, 400, 560, 800, 1600.

» Choose exposure modes - Preset modes are auto, landscape, snow, beach, sunset,
night, fireworks, portrait, backlight, spotlight, sports, text.

s Disable/Enable shutter feedback.
s Exit - Close this MIDlet and return to the initial window.

= Snapshot setting - Set whether to display the snapshot on the screen or print it to a
file. Snapshots are stored in:

userhome\ javame-sdk\3 .2 \work\emulator_name\appdb\filesystem\rootl

3.7.1.4 Moving Helicopter

Simulates a helicopter (red dot) flying around a stationary observer (blue dot). Use
headphones for best results. You can control the parameters of the simulation with the
soft menu options: Volume, Location settings, Spectator orientation, and Distance
Attenuation settings. After viewing menu options, press the close button (the X on the
right) to return to the helicopter scenario.

With the Location settings be aware that supplying large values for the screen width or
flight altitude means the helicopter might be out of range - that is, it flies off the screen
and you might not be able to hear it.

For spectator orientation stereo headphones or speakers help detect the difference in
position, assuming your volume and location settings put the helicopter in audible
range. The same is true for the Distance Attenuation settings, which enable you to
control the doppler effect.

3.7.2 Running the Demos Sample Project

This demo contains several MIDlets that highlight different MIDP features. Click or
use the navigation keys to highlight a MIDlet, then choose the Launch soft key.

s Section 3.7.2.1, "Colors"
m Section 3.7.2.2, "Properties"
= Section 3.7.2.3, "Http"

Using Sample Projects 3-9

Running MIDP and CLDC Sample Projects

s Section 3.7.2.4, "FontTestlet"

s Section 3.7.2.5, "Stock"

s Section 3.7.2.6, "Tickets"

s Section 3.7.2.7, "ManyBalls"

s Section 3.7.2.8, "MiniColor"

s Section 3.7.2.9, "Chooser"

s Section 3.7.2.10, "HttpExample"
= Section 3.7.2.11, "Http View"

s Section 3.7.2.12, "PushExample"

3.7.2.1 Colors

This application displays a large horizontal rectangle that runs the width of the screen.
Below, ten small vertical rectangles span the screen. Finally, three horizontal color bars
indicate values for blue, green, and red (RGB). Values are expressed as decimal (0-255)
or hexadecimal (00-ff) based on the first menu selection.

s To select a vertical bar to change, use the up navigation arrow to move to the color
bars. Use the right navigation arrow to highlight a color bar. The large rectangle
becomes the color of the selected bar.

= Use the up or down selection arrows to choose the value to change (red, green, or
blue). Use the left or right arrow keys to increase or decrease the selected value.
The second menu item enables you to jump in increments of 4 (Fine) or 32 (coarse).

= You can change the color on any or all of the vertical bars.

3.7.2.2 Properties

This MIDlet displays your system property values. The output is similar to the
following values:

Free Memory = 2333444
Total Memory = 4194304

microedition.configuration = "CLDC-1.1"
microedition.profiles = "MIDP-2.1"
microedition.platform = "j2me"
microedition.platform = "en-US"

microedition.platform = "IS08859_1"

3.7.2.3 Http

This test application uses an HTTP connection to request a web page. The request is
issued with HTTP protocol GET or POST methods. If the HEAD method is used, the head
properties are read from the request.

Preparing to Run the Demo
Before beginning, examine your settings as follows.
= Right-click on Demos and select Properties.

= Select the Running category.

= Select Regular Execution.

3-10 Oracle Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

s Check Specify the Security Domain and select Maximum.
s Click OK.

= If you are using a proxy server, you must configure the emulator's proxy server
settings as described in Section 3.5, "Configuring the Web Browser and Proxy
Settings". The HTTP version must be 1.1.

= If you are running antivirus software it might be necessary to create a rule that
allows your MIDlet to permit connections to and from a specific web site. See
Section 3.3, "Troubleshooting".

Running the Demo

Launch the Http MIDlet. To test, choose the Menu soft key and choose Get, Post, or
Head to test the selected URL.

Http Test returns the information it obtains. If the information fills the screen use the
down arrow to scroll to the end. The amount of information depends on the type of
request and on the amount of META information the page provides. To provide body
information or content, the page must declare CONTENT-LENGTH as described in RFC
2616.

Using Menu Options

Use the Menu soft key to choose an action. The Menu items vary depending on the
screen you are viewing.

s Choose Qwerty to set the input type. This activates a submenu with the options
Qwerty, 123, Abc, Predict, and Symbols. This choice is present if you have the
option to edit a URL (select Choose, then click the Add soft button).

s Choose GET or press the Get soft key to retrieve data from the selected URI.

= Choose POST to retrieve the post information from the server handling the selected
page.

s Choose HEAD to retrieve only the META information from the headers for the
selected URI.

= Select Choose to bring up the current list of web pages. You can chose a different
page or add your own page to the list. To specify a new URL, choose the Add soft
button. The screen displays http://. Type in the rest of the URL. If necessary
select Qwerty on the menu and choose a different input method. Be sure to end
with a slash (/). For example http://www. internetnews.com/. Press the OK soft
button. The Http Test screen shows your new URL and prompts for an action.

3.7.2.4 FontTestlet

This MIDlet shows the various fonts available: Proportional, Regular, Regular Italic,
Bold Plain, and Bold Italic. Choose 1 or 2 from the menu to toggle between the system
font (sans serif) and the monospace font.

3.7.2.5 Stock

Like the Http demonstration, this sample uses an HTTP connection to obtain
information. Use the same preparation steps as Section 3.7.2.3, "Http".

Run the Demos project and launch the Stock MIDlet.

By default, the screen displays an empty ticker bar at the top. Below the ticker, the
menu list shows four applications: Stock Tracker, What If? Alerts, and Settings. You
must add stock symbols before you can use the first three applications.

Using Sample Projects 3-11

Running MIDP and CLDC Sample Projects

Add Stock Symbols to the Ticker
To add a stock symbol to the ticker, use the navigation arrows to select Settings.
Select Add Stock.

The display prompts you to enter a stock symbol. Type ORCL and select the Done soft
key. The stock you added and its current value is now displayed in the ticker. Add a
few more stock symbols, such as IBM and HPQ.

Change the Update Interval

By default the update interval is 15 minutes. Select Updates to change the interval. Use
the navigation arrows to select one of Continuous, 15 minutes, 30 minutes, one hour,
or three hours. Select the Done soft key.

Remove a Stock

Select Remove a Stock. You see a list of the stocks you have added. Use the navigation
keys to select one or more stocks to remove. Choose the Done soft key.

Stock Tracker

Stock Tracker displays a list of the stocks you added and their current values. Stock
tracker displays additional information about the selected stock, for example, the last
trade and the high and low values.

Choose a stock and press Select.
What If?

What If? is an application that asks for the original purchase price and the number of
shares you own. It calculates your profit or loss based on the current price.

Select a stock symbol.
Enter the purchase price and the number of shares, then press Calc.
Alerts

This application sends you a notification when the price changes to a value you
specify.

From the main menu, select Alerts.
Select Add.

Choose a Stock. The screen prompts, "Alert me when a stock reaches". Enter an
integer.

The alert is placed on the Current Alerts list. To remove an alert, press Remove and
select the alert. Choose the Done soft key.

When the value is reached you hear a ring and receive a message. For example, Symbol
has reached your price point of $value and is currently trading at $current_value. When
the alert is triggered it disappears from the Current Alerts list.

3.7.2.6 Tickets

This demonstrates how an online ticket auction application might behave. The home
screen displays a ticket ticker across the top. Click Done to continue to the Welcome To
Tickets page. The Choose a Band field displays BootWare & Friends by default.

Choose a band from the dropdown menu. The available auction appears.

Select Make a Bid from the menu. Use the arrow keys to move from field to field. Fill
out each field, then select the Next soft key. The application asks you to confirm your

3-12 Oracle Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

bid. Press the Submit soft key or use the arrow keys to highlight Submit then press
Select. You receive a Confirmation number. Click Bands to return to the Bands page.

Select set an alert, select Set an Alert from the soft Menu. In the bid field type in a
value higher than the current bid and click the Save soft key. You are returned to the
Choose a Band page. You can trigger the alert by making a bid that exceeds your alert
value. Your settings determine how often the application checks for changes, so the
alert may not sound for a few minutes.

To add a band to the Choose a Band dropdown list, select the Menu soft key and
choose Add Bands. Type in a band name or a comma-delimited list of names. Choose
the Save soft key. After confirmation you are returned to the Welcome To Tickets page.
The added band(s) are displayed at the end of the Choose a Band drop-down menu.

Note, this is only a demonstration. To fully describe the band you must edit the
following file:

userhome\My Documents\NetBeansProjects\Demos\src\example\auction\NewTicketA
uction.java.

To remove a band, select the Menu soft key and Remove Bands. Check a box for one or
more bands. Choose the Save soft key.

To display the current settings for ticker display, updates, alert volume, and date,
select the Menu soft key and choose 6. If desired, use the arrow keys and the select key
to change these values. Choose the Save soft key.

3.7.2.7 ManyBalls

This MIDlet starts with one ball traveling the screen. Use the up and down arrows to
accelerate or decelerate the ball speed (fps). Use the right or left arrows to increase or
decrease the number of balls.

3.7.2.8 MiniColor

This MIDlet sets an RGB value. Use navigation keys to change color values.

Keyboard controls work as you would expect. First cursor up or down to highlight a
color, and then use left and right keys to lower and raise the value of the selected color.

3.7.2.9 Chooser

The Chooser application uses a variety of controls to change text color, background
color, and fonts.

s Choose Menu > Text Color. Change the color as described for MiniColor and select
the OK soft button.

s Choose Menu > Background Color. Change the color as described for MiniColor
and select the OK soft button.

s Choose Menu > Fonts. You can change the font Face, Style, and Size.

Cursor up and down to highlight a property, then select. The left and right keys
jump between lists. Up and down keys move item by item.

Click OK to continue.
3.7.2.10 HttpExample

This sample makes an HTTP communication. A popup confirms the transaction was
successful.

Using Sample Projects 3-13

Running MIDP and CLDC Sample Projects

3.7.2.11 HttpView
This application displays three predefined URLs.

Choose a URL, and press the soft buttons to cycle through Head, Headers, Requests,
and Errors.

Alternatively, Use the menu options.

3.7.2.12 PushExample

This application simulates a feed. As soon as you connect, you receive and display a
graphic. Select Done to continue.

3.7.3 Running FPDemo

FPDemo is a simple floating point calculator.
1. Enter a number in the first field.

2. To choose an operator, highlight the drop-down list and click to select. Cursor
down to highlight an operator, then click to make a selection.

3. Enter a second value.

4. From the Menu, select Calc or choose 2 to calculate the result.

3.7.4 Running Games

This application features three games: TilePuzzle, WormGame, and PushPuzzle.

TilePuzzle. The desired result, "Rate your mind pal" is shown first. From the soft
Menu, select 1, Start. The scrambled puzzle is displayed. The arrow keys move the
empty space, displacing tiles accordingly (the arrow key indicates which tile to swap
with the space). From the menu you can Reset, or change options.

WormGame. From the soft Menu, select 1, Launch. Use the arrow keys to move the
worm to the green box without touching the edge of the window. When the game is
launched, use the soft menu to change game options.

PushPuzzle. Use the blue ball to push the orange boxes into the red squares in the
fewest number of moves.

3.7.5 Running Network Demo

This demo has two MIDlets: Socket Demo and Datagram Demo. Each demo requires
you to run two emulator instances so that you can emulate the server and client
relationship. For example, run the demo on JavaMEPhonel and JavaMEPhone?2.

3.7.5.1 Socket Demo

In this application one emulator acts as the socket server, and the other as the socket
client.

1. In the first emulator, launch the application, then select the Server peer. Choose
Start. The Socket Server displays a status message that it is waiting on port 5000.

2. In the second emulator, launch the application, select the Client peer, then choose
Start. Choose Start to launch the client. The Socket Client displays a status
message that indicates it is connected to the server on port 5000. Use the down
navigation arrow to highlight the Send box. Type a message in the Send box, then
choose the Send soft key.

3-14 Oracle Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

For example, in the client, type Hello Server in the Send box. Choose Send from
the menu. The server emulator activates a blue light when the message is received.

3. On the emulator running the Socket Server, the status reads: Message received -
Hello Server. You can use the down arrow to move to the Send box and type a
reply. For example, Hello Client, I heard you.From the menu, select Send.

4. Back in the Socket Client, the status is: Message received - Hello Client, I
heard you. Until you send a new message, the Send box contains the previous
message you sent.

3.7.5.2 Datagram Demo

This demo is similar to Socket Demo. Run two instances of the emulator. One acts as
the datagram server, and the other as the datagram client.

1. In the first emulator, launch Datagram Demo, then select the Server peer. Choose
Start. Initially, the Datagram Server status is Waiting for connection on port
5555, and the Send box is empty.

2. In the second emulator, launch Datagram Demo, select the Client peer, ensure the
port number is 5555 and choose Start. The Datagram Client status is: Connected
to server on port 5555. Use the down navigation arrow to highlight the Send
box. Type a message in the Send box, then choose the Send from the menu. For
example, type Hello datagram server. From the menu, select Send.

3. On the emulator running the Datagram Server, the status displays: Message
received - Hello datagram server. You can use the down arrow to move to the
Send box and type a reply to the client.

4. In the Datagram Client, the status field displays the message received from the
server. The Send box contains the last message you sent. Overwrite it to send
another message.

3.7.6 Running PhotoAlbum

The PhotoAlbum demo displays both static and animated images. When you are
displaying an image, you can use the Options soft menu to change the borders. If the
image is animated, you can change the speed of the playback.

3.7.7 Running UIDemo

UIDemo showcases a variety of MIDP user interface element implementations. Most
elements have some interactive capability (navigate and select) and some allow
keypad or keyboard input.

Input interaction is similar across demos. You can choose items from lists or type in
data.

This demo implements three list selection methods:
s Exclusive (radio buttons)

= Multiple (check boxes)

s Pop-Up (a drop list).

When entering data, you can use the soft menu to apply one of the following input
types to text boxes and fields (note, some elements do not use all input types). When a
field is selected, the soft Menu label displays Qwerty. Open the menu and you see the
input types numbered 1 through 5.

Using Sample Projects 3-15

Running IMP-NG Sample Projects

1. Qwerty. Any character on the keyboard

2. 123. Any numeral

3. ABC. Any letter

4, Predict. Predicts next character based on prior input

5. Symbols. Opens a list of symbols; click to make a selection.
6. Virtual. Click keys on a virtual keyboard to enter data.

The Qwerty, 123, and ABC categories act as filters. For example, if you assign 123 to a
field and you type "abc", nothing is entered in the field.

When you finish a demo, select the home button to return to the UIDemo launch page:

CustomlItem. This demo features text fields, and text fields in table form. To type in
the table, select a cell, then click to open a text entry panel and type your input. From
the menu, select OK.

Stringltem. Displays labels, a hyperlink, and a button. The soft menu action varies
depending on the selected element.

Gauge. Interactive, non-interactive, indefinite and incremental gauges.

Alert. Uses pop-ups to display alerts. Set the alarm type and the length of the timeout
from drop lists. Select the alert type and select the Show soft button.

ChoiceGroup. Radio buttons, check boxes, and pop-ups on one screen.

List. Select exclusive, implicit, or multiple to display the list type on a subsequent
screen.

TextBox. Use text fields, radio buttons, check boxes, and pop-ups. Select a text box
type and press the Show button.

TextField. Text fields with the six input types.
DateField. Set date and time using drop lists.
Ticker. A scrolling ticker.

3.8 Running IMP-NG Sample Projects

This section describes how to use demos created specifically for the IMP-NG platform
(see Section 2.1.2, "IMP-NG"). Because IMP-NG is headless the only user interface is to
observe application status in the emulator’s external events generator, or in the Output
window (or the console if you execute the demo from the command line).

With the exception of I2CDemo, the sample projects in this section can be run on the
emulator or on a real device.

3.8.1 GPIODemo

This demo can be run on an emulator or a real device. The implementations are
different, as the emulator uses the external events generator, and the real device
supports direct interaction.

GPIODemo on the Emulator
s Run GPIO demo on an IMP-NG emulator.

3-16 Oracle Java ME SDK Developer's Guide

Running IMP-NG Sample Projects

3.8.2 12CDemo

Click the GPIO tab. This view approximates the device actions.

Choose Device > GPIO to open the external events generator, and click the GPIO
tab. A single click on a button turns on LEDs indicating the button pushed and the
pin affected. This information is also written to the Output window.

Beneath each pin you can click the blue wave button to open the wave generator.
The wave generator simulates the frequency and duration of the signal to the LED.

Press Pin 5 (button 1) to turn on LED 1, press again to turn off LED 1.
Press Pin 6 (button 2) to turn on LED 2, press again to turn off LED 2.

Press Pin 7 (button 3) and check whether PORT 1's output value is 3. Press PIN 7
and check whether PORT 1's output value is 0.

This demo is designed to work with the IMP-NG runtime for Windows 32 . It has no
user interaction.

Launch the I12C demo.
In the emulator, click the I12C tab.

The demo acquires a slave named I2C_Echo, writes data to the slave, and retrieves
it. The demo is successful if the Sent Data and Received Data matches.

3.8.3 NetworkDemolMPNG

This demo is a headless version of Section 3.7.5.1, "Socket Demo".

This demo can be configured as a server or as a client by editing the application
descriptor. You launch two instances of this demo, the first one acts as a server and the
second one acts as a client. The client instance attempts to connect to the server
instance and if the connection is successful they exchange a message.

NetworkDemoIMPNG on the Emulator

Create two instance projects of the NetworkDemoIMPNG sample project.

Right click on the first project and select Properties. In the Platform category
choose the device IMPNGPhonel. In the Application Description category set the
value of the property Oracle-Demo-Network-Mode to Server and click OK.

Launch the first project. It opens on the emulator IMPNGPhonel and waits for a
connection.

Right click on the second project and select Properties. In the Platform category
choose the device IMPNGPhone2. In the Application Description category set the
value of the property Oracle-Demo-Network-Mode to Client and click OK.

Launch the second project. It opens on the emulator IMPNGPhone?2.

The client attempts to connect to the server. If successful, you see the following in
the output tab of the first project (the server):

Connection accepted
Message received - Client messages

The output of the second project (the client) shows the following:

Connected to server localhost on port 5000
Message received - Server String

Using Sample Projects 3-17

Running IMP-NG Sample Projects

3.8.4 PDAPDemolMPNG

This demo is a headless version of the PDAPDemo file browser in Section 17.3.1,
"Browsing Files".

PDAPDemoIMPNG on the Emulator

Follow these steps to run the demo on the emulator:

Create test files and directories inside the emulator’s file system:

Documents and Settings\user\javame-sdk\version\work\IMPNGPhonel\appdb\fi
lesystem\rootl

Right click on the project and select Properties. In the Platform category choose the
device IMPNGPhonel and click OK.

Launch the project. It runs on IMPNGPhonel.

On the emulator menu, select Device > File Connection to see a list of mounted file
systems.

Open a terminal emulator and create a raw connection to localhost on port 5001.

A command line opens where you can browse the emulator’s file system. You can
use the following commands:

- cd- change directory

- 1s-list information about the FILEs for the current directory
- new - create new file or directory

— prop - show properties of a file

- rm-remove the file

— view-View a file's content

3-18 Oracle Java ME SDK Developer's Guide

4

Creating and Editing Projects

A project is a group of files comprising a single application. Files include source files,
resource files, XML configuration files, automatically generated Apache Ant build
files, and a properties file.

When a project is created, the SDK performs these tasks:

» Creates a source tree you can examine in the Section 4.3, "Working With Projects"
or Section 4.4, "View Project Files".

= Sets the emulator platform for the project.
= Sets the project run and compile-time classpaths.

s Creates a build script that contains actions for running, compiling, debugging, and
building Javadoc. Project properties influence the build process, as described in
Section 5.4, "Building a Project". See also Section 14.4, "Build a Project from the
Command Line".

Java ME SDK and NetBeans create their project infrastructure directly on top of
Apache Ant. Java ME SDK projects can be opened and edited in NetBeans, and
vice-versa. With the Ant infrastructure in place, you can build and run your projects
within the SDK or from the command line.

The SDK provides two views of the project:
» The Projects window provides a logical view of the project.
» The Files window displays a physical view of the project.

Project settings are controlled in the project Properties window. Typically, you
right-click on an item or subitem in a tree (a project, a file, or a device) and select
Properties.

4.1 Project Types

The CLDC/MIDP platform implements the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139). As described in
Section 2.1.2, "IMP-NG", the IMP-NG platform is a type of CLDC platform.

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

Creating and Editing Projects 4-1

The Project Wizard

4.1.1 CLDC Projects

A MIDP application (a MIDlet), is deployed as a MIDlet suite. A MIDlet suite is
distributed as a Java archive (JAR) file and a Java Application Descriptor (JAD) file.

The IMP-NG version of a MIDlet is an IMlet. However, because IMP-NG is a subset of
CLDC you can write IMP-NG applications as MIDlets.

The JAR file includes the Java classes for each MIDlet in the suite, Java classes shared
between MIDlets, resource files, and other supporting files. The JAR file also includes
a manifest describing the JAR contents and specifying attributes the Application
Management Software (AMS) uses to identify and install the MIDlet suite.

The JAD file contains attributes that allow the AMS to identify, retrieve, and install the
MIDlets in a project. The SDK automatically creates JAD and JAR files when you build
the project.

4.1.2 CDC Projects

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

Oracle Java ME SDK version 3.2 supports CDC projects running as standalone
applications. The CDC project structure and behavior are much the same as that of
CLDC projects.

Note: An Xlet cannot be run standalone. It depends upon an
application manager to manage its life cycle (its state) and system
services. Xlets are not supported in this release.

A standalone CDC project requires a main application class that includes a method
named main () that handles class loading, object creation, and method execution. The
application interacts directly with the Java runtime environment to manage its own
life cycle and system resource needs. When the main () method exits, the standalone
application terminates.

4.2 The Project Wizard

This section describes how to use the Project Wizard to create Java ME projects. The
project provides a basic infrastructure for development. You provide source files,
resource files, and project settings as needed. Most project properties can be edited
later. For more on project properties, see Chapter 5, "Viewing and Editing Project
Properties".

4.2.1 Create a CLDC Project

Follow these steps to create a MIDP project.
1. Select File > New Project.
The New Project wizard opens.

2. In the Choose Project window, select the Java ME category, and the Mobile
Application project type. Click Next.

4-2 Oracle Java ME SDK Developer's Guide

The Project Wizard

On the Name and Location page, specify a project name. Most of the form is
auto-filled, but you can alter any of the editable fields.

Checking Create Hello MIDlet inserts sample MIDlet code as a template for your
application. Click Next.

On the Select Platform page, be sure to change the platform selection to CLDC
Oracle Java(TM) Platform Micro Edition SDK 3.2. The platform determines which
devices you see in the Device dropdown menu.

Make a device selection. The selected device typically determines the Device
Configuration. If more than one Device Profile is available, be sure to make a
selection.

Click Finish.

4.2.2 Create an IMP-NG Project

The process for creating an IMP-NG project is almost the same as a CLDC project.
There are just a few things to watch for.

1.

Select File > New Project.
The New Project wizard opens.

In the Choose Project window, select the Java ME category, and the Mobile
Application project type. Click Next.

On the Name and Location page, specify a project name. Most of the form is
auto-filled, but you can alter any of the editable fields.

Do not check Create Hello MIDlet. The Hello MIDlet sample code does not work
for headless devices because it assumes a display is available.

Click Next.

On the Select Platform page, be sure to change the platform selection to CLDC
Oracle Java(TM) Platform Micro Edition SDK 3.2. The platform determines which
devices you see in the Device dropdown menu.

Choose an IMPNG device, and choose a Device Profile.
Click Finish.

To run the new project follow the steps in Section 3.2, "Running a Project".

4.2.3 Create a CDC Project

NetBeans provides a wizard for creating new projects quickly and easily. Most project
properties can be edited later on.

1.

Select File > New Project.
The New Project wizard opens.

In the Categories window choose Java ME and in the Projects window choose
CDC Application.

On the Name and Location page, specify a project name. Most of the form is
auto-filled, but you can alter any of the editable fields. Click Next.

On the Select Platform page, be sure to change the platform selection to CDC
Oracle Java(TM) Platform Micro Edition SDK 3.2. The platform determines which
devices you see in the Device dropdown menu.

Creating and Editing Projects 4-3

The Project Wizard

Choose a CDC device, and choose a Device Profile.
Click Finish.

5. To run the new project follow the steps in Section 3.2, "Running a Project", except
you can select your new project instead of a sample project.

4.2.4 Import a Legacy MIDP Project

If you created a project using the Sun Java Wireless Toolkit for CLDC on Windows or
Linux you can import your MIDlets into Java ME SDK projects. You can also use this
procedure to create a project based upon a legacy sample project.

1. Select File > New Project.
2. In the Projects area, select Import Wireless Toolkit project. Click Next.
3. Specify the WIK project location.
Use browse to open the directory containing the legacy project.
4. Select a project and click Next.
5. Supply the Project Name, Location, and Folder for the new project.

The default name, project name and folder name are based on the name of the
project you are importing. Click Next.

6. Select the Platform type, the default device, and the configuration and profile, if
applicable. Click Finish.

Your new project opens in the Projects window.

7. If the legacy project used signing, you must configure the signing properties as
described in Section 13.4, "Managing Keystores and Key Pairs".

4.2.5 Import a Legacy CDC Project

If you created a project using the CDC Toolkit, you can import your applications into
Java ME SDK projects. You can also use import to create a project based upon a sample
project.

Note: Standalone projects created in the CDC Toolkit can be
imported. Xlets cannot be imported.

The CDC platform name for the Oracle Java ME SDK version 3.2 does not match the
legacy platform name in the CDC Toolkit 1.0 and the CDC Mobility Pack.
Consequently, you get a reference error when you import a legacy CDC project.

Note: To avoid the reference error, create a platform with the
legacy name, as described in Section 2.2.2, "Create a Platform for
Legacy CDC Projects". You only need to create the platform once.

1. Select File > New Project.
2. In the Projects area select Import CDC Toolkit Project. Click Next.

3. Browse to select the project location.

4-4 Oracle Java ME SDK Developer's Guide

Working With Projects

The wizard detects any applications in the legacy installation and displays their
locations on disk. Select a project and click Next.

4. Supply the Project Name, Location, and Folder for the new project. Note, the
default name project name and folder name are based on the name of the project
you are importing. Click Finish.

The imported project opens in the Projects window.

See also: Section 2.2.2, "Create a Platform for Legacy CDC Projects"”, Section 4.4,
"View Project Files".

4.3 Working With Projects

The logical view of the project, shown in the Projects window, provides a hierarchy of
sources and resources. Right-click on the project node to see actions related to the
project.

New. Opens a form to build a new object for the current project. The new object is
placed in the project's file structure by default, but you can control the file name and
location. The possible objects are dependent on the currently selected project. For
example, if the project is CLDC, the options are MIDlet, Java class, Java package, or
Java interface. The New > Other option permits adding different types of files to the
project. For a sample procedure, see Section 20.1, "Generating Stub Files from WSDL
Descriptors".

Build. Builds a distribution Java archive (JAR) file. Project properties control the build
process as described in Section 5.4, "Building a Project".

Clean & Build. Cleans, then builds a distribution JAR file.

Clean. Cleans the build files.

Generate Javadoc. See the online help topic Generating Javadoc Documentation.
Deploy. See the online help topic "Deploying Java ME Applications".

Batch Build..., Batch Clean & Build..., Batch Clean..., Batch Deploy... See the online
help topic "About Java ME MIDP Projects".

Run. Runs the project with the default device, as specified on the Platform property
page. See Section 5.2, "Platform Selection".

Run With... Run the selected project with a device you choose. This option can
override the default device specified in the project properties.

Debug. See the online help topic "Debugging Tasks: Quick Reference".

Profile. Attach the profiler to the selected project. See Chapter 9, "Profiling
Applications".

Set as Main Project. Make the current project the new main project. Toolbar actions,
such as clicking the green Run button, act upon the main project by default.

Unset as Main Project. This option is visible if the selected project is already the main
project.

Open Required Projects. Open any projects that the current project requires.

Close. Close the current project. Be sure that any processes are stopped, as closing a
project might not stop the emulator.

Creating and Editing Projects 4-5

View Project Files

4.4 View Project Files

The Files window displays a physical view of all project files. Right-click to view
project properties or choose an action related to the project.

build. The output directory for the compiled classes listed below. This directory also
contains manifest.mf, the manifest file that is added to the JAR file.

= compiled. Contains all compiled classes.
m obfuscated. Holds the obfuscated versions of the class files.

= preprocessed. Holds the source files after they are preprocessed. The files differ
from the original source files if you are using project configurations.

s preverified. Holds the preverified versions of the class files. These files are
packaged into your project's distribution JAR.

» preverifysrc. Versions of the source files before they are preverified.

dist. The output directory of packaged build outputs (JAR files and JAD files). The
dist directory also contains generated Javadoc documentation.

lib. Contains libraries you have added to the project. See Section 5.4.3, "Adding
Libraries and Resources".

nbproject. The directory that contains the project Ant script and other metadata. This
directory contains the following files:

= build-impl.xml. The SDK-generated Ant script. Do not edit build-impl.xml
directly. Always override its targets in build.xml.

» private/private.properties. Properties that are defined for you alone. If you are
sharing the project, any properties you define in this file are not checked in with
other project metadata and are only applied to your SDK installation.

= project.properties. Ant properties used to configure the Ant script. This file is
automatically updated when you configure the project's properties. Manual
editing is possible, but it is not recommended.

s project.xml and genfiles.properties. Generated metadata files. It is possible to
edit project.xml manually, but it is not recommended. Do not edit
genfiles.properties.

res. Resource files you have added to the project. See Section 5.4.3, "Adding Libraries
and Resources".

src. The project source files.

build.xml. The build script. This build script only contains an import statement that
imports targets from nbproject/build-impl.xml. Use the build.xml to override
targets from build-impl.xml or to create new targets.

See also: Section 4.2.1, "Create a CLDC Project”, and Section 4.2.3, "Create a CDC
Project".

4.5 Create a New MIDlet

To create a new MIDlet from the Files view, right-click a project and select New >
MIDlet. With this form you can specify the name of the MIDlet and its location within
the selected project.

MIDlet Name. The name that users see when the application runs on a device.

MIDlet Class Name. The name of the new MIDP class.

4-6 Oracle Java ME SDK Developer's Guide

Debugging CLDC and IMP-NG Projects

MIDlet Icon. The path to an icon associated with the MIDlet. Users see the icon when
the application runs on a device.

Project. Displays the name of the project.

Package. Specifies the location of the MIDlet class in the package hierarchy. You can
select an existing package from the drop down menu, or type in the name of a new
package. The new package is created along with the class.

Created File. Displays the name and the location of the MIDlet in the system’s
hierarchy.

When the new MIDlet is created the SDK automatically adds it to the project's
Application Descriptor File.

4.6 Add Files to a Project

For all projects, right-click to use the context menu to add files to a project. Using this
method places files in the proper location in project source or resources.

To add a MIDlet, Java class, Java package, Java interface or Other files, right-click the
project name or the Source Packages node, choose New, and select the file type.

To add files by format (Project, JAR, Folder, Library) right-click the Resources node
and select a format. See Section 5.4.3, "Adding Libraries and Resources".

It is possible to add files by copying them directly to the project directory but it is not
recommended.

4.7 Search Project Files
To search a project's files, right-click on the project and select Find...

The Find in Files utility supports searching a project's file contents or file names. The
search input fields supports simple text matching and regular expressions.

Containing Text. The string you are looking for. If File Name Patterns is empty, all files
are searched.

File Name Patterns. The files you are searching in. If the Containing Text field is
empty you get a listing of files that match the pattern.

The options Whole Words, Match Case, and Regular Expression further restrict the
search. Regular Expression Constructs are fully explained in:

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#
sum

4.8 Debugging CLDC and IMP-NG Projects

Java ME Projects use standard NetBeans debugging utilities. Please refer to the
NetBeans help topic Debugging Tasks: Quick Reference.This topic includes links to a
variety of debugging procedures.

If you have an external device that runs a supported runtime you can perform
on-device debugging. The device must be detected by the Device Selector, as described
in Section 6.2, "Adding a Real Device".

Creating and Editing Projects 4-7

Debugging CLDC and IMP-NG Projects

4-8 Oracle Java ME SDK Developer's Guide

O

Viewing and Editing Project Properties

All projects have properties. Some properties, such as the project's name and location
cannot be changed, but other properties can be freely edited as work on your project
progresses. To view or edit a project's properties, right-click the project node and select
Properties. In the resulting window, you can view and customize the project
properties. See the following topics:

= Section 5.1, "General Project Properties"

m Section 5.2, "Platform Selection"

= Section 5.3, "Editing Application Descriptor Properties"
= Section 5.4, "Building a Project"

s Section 5.5, "Running Settings"

5.1 General Project Properties

To view the General property page, right-click on a project, choose Properties, and
select the General category. The general properties page displays basic project
properties. You can set application versioning here, but all other values cannot be
edited.

The project name, folder, and source location are set when the project is created. The
Application Version Number field displays the version number of the current build.

Application Versioning

The Application Version Counter field displays the next version number to be used.
The default advance is 0.0.1. To advance the number beyond this, use the dropdown
menu to select a new digit, or enter the value into the field. For example, changing the
value to 3 results in a build number of 0.0.3. Changing the value to 100 results in the
version number 0.1.0.

Required Projects

This area displays projects you have added to this project. It might be a dependent
project or an external library. See Section 5.4.3, "Adding Libraries and Resources".

5.2 Platform Selection

An emulator platform simulates the execution of an application on one or more target
devices. To view this property page, right-click on a project and choose Properties and
select the Platform category.

Select a platform type from the dropdown menu.

Viewing and Editing Project Properties 5-1

Editing Application Descriptor Properties

For the emulator platform, be sure to select the 3.2 platform. You might have to use the
dropdown menu to ensure the right version is selected.

By default, the devices in the device menu are also suitable for the platform type and
emulator platform. The device you select is the default device for this project. It is used
whenever you use the Run command. Your device selection influences the Device
Configuration and Device Profile options, and the available optional packages.

Be sure that a Device Profile is selected, and select the optional packages you want to
include in this project. The selected APIs are automatically added to the project's
classpath. See Section 4.2.1, "Create a CLDC Project".

5.3 Editing Application Descriptor Properties

To view this property page, right-click on a project, choose Properties, and select the
Application Descriptor category. The Application Descriptor properties page enables
adding, editing, or deleting project attributes.

5.3.1 CDC Attributes

To view this property page, right-click on a CDC project and choose Properties. Select
the Application Descriptor category.

Application Name. The display name of the application on the target device.
ApplicationVendor. The company name or author name for the application.
Description. A concise description of the application.

Detail Description. A detailed description of the application.

5.3.2 MIDP Attributes

To view this property page, right-click on a MIDP project and choose Properties. Select
the Application Descriptor category, and select the Attributes tab.

The General Attributes table lists the attributes currently contained in the JAD and
JAR manifest files:

Type. Lists whether the attribute is required or optional. Custom attributes for passing
parameters to the MIDlet using the JAD are also available.

Name. The name of the attribute.
Value. The values for each attribute.
To avoid errors in verification:

s Define all required attributes.

= Do not begin user-defined attribute keys with MIDlet- or MicroEdition-.

5.3.2.1 Add an Attribute

Follow these steps to add an attribute.
1. Click Add... to open the Add Attribute window.

2. Choose an attribute from the Name combo box, or delete the current entry and
add your own custom entry.

5-2 Oracle Java ME SDK Developer's Guide

Editing Application Descriptor Properties

5.3.3 MiDlets

Note: Do not begin a user-defined attribute name with MIDlet- or
MicroEdition-.

3. Enter a value for the attribute.

4. Click OK.

5.3.2.2 Edit an Attribute

1. Select an attribute.

2. (Click Edit... to open the Edit Attribute window.
3. Enter a value for the attribute.

4. Click OK.

API permissions, Push Registry Entries, and API Permissions have their own property
pages.

5.3.2.3 Remove an Attribute
Select an Attribute and click Remove to delete it from the list.

To view this page, right-click on a project and choose Properties. Select the Application
Descriptor category, and select the MIDlets tab.

The MIDlets table lists the MIDlets contained in the suite and the following properties:

Name. The displayable name of the MIDlet that the user sees when the MIDlet is run
on a mobile device.

Class. The Java class for the MIDlet.

Icon. Anicon (a .png file), representing the MIDlet that the user sees when the MIDlet
is run on a mobile device.

5.3.3.1 Add a MIDlet
1. Click Add... to open the Add MIDlet window.

The window lists the MIDLets available in the project.
2. Enter a name, then select a MIDlet class from the dropdown menu.

You can also choose an icon for the MIDlet from the MIDlet icon dropdown menu.

3. Click OK.

5.3.3.2 Edit a MIDlet
1. Select a MIDlet.

2. Click Edit... to open the Edit MIDlet window.
3. Enter a value for the attribute.

4. Click OK. The revised values are listed in the table.

5.3.3.3 Remove a MIDlet
Select a MIDlet and click Remove to delete it from the list.

Viewing and Editing Project Properties 5-3

Editing Application Descriptor Properties

5.3.3.4 Change MiDlet Display Order
The list order determines the order in which the MIDlets are displayed.

Select a MIDLet and select Move Up or Move Down to change its position.

5.3.4 Push Registry

To view this page, right-click on a project and choose Properties. Select the Application
Descriptor category, and select the Push Registry tab.

See also Section 5.3.4.1, "Add a Push Registry Entry", Section 5.3.4.2, "Enabling a Push
Registry Entry", Section 5.3.4.3, "Remove a Push Registry Entry", and Section 5.3.4.4,
"Change Push Registry Display Order".

5.3.4.1 Add a Push Registry Entry
1. Click Add... to open the Add Push Registry window.

2. Enter Class Name, Sender IP, and Connection String values.
s Class Name. The MIDlet's class name.

s Sender IP. A valid sender that can launch the associated MIDlet. If the value is
the wildcard (*), connections from any source are accepted. If datagram or
socket connections are used, the value of Allowed Sender can be a numeric IP
address.

= Connection String. A connection string that identifies the connection protocol
and port number.

3. Click OK.

The new values are listed in the table. A push registration key is automatically
generated and shown as an attribute in the MIDlet suite's Java Application
Descriptor (JAD) file.

5.3.4.2 Enabling a Push Registry Entry

To make use of the Push Registry, you must also have permission to access the Push
Registry API, javax.microedition.io.PushRegistry. API permission, are handled in
the API Permissions property page (Section 5.3.5, "API Permissions").

5.3.4.3 Remove a Push Registry Entry

Select an entry and click Remove to delete it from the list.

5.3.4.4 Change Push Registry Display Order

The list order determines the order in which the MIDlets are displayed. Select an entry
and select Move Up or Move Down to change its position.

5.3.5 API Permissions

These properties set permission attributes for protected APIs called by the MIDlet
suite. To view this property page, right-click on a project and choose API Permissions.
Select the Application Descriptor category, and select the Attributes tab.

See Section 5.3.5.1, "Adding Permission Requests".

5.3.5.1 Adding Permission Requests
1. Click the Add Button.

5-4 Oracle Java ME SDK Developer's Guide

Building a Project

The API Permission for API dialog opens.

2, Choose an API from the dropdown list or enter an API into the combo box and
click OK.

3. (Optional) In the Requested Permissions table, check the Required box if you want
installation to fail when that permission cannot be granted.

For more information, see Security for MIDP Applications in the MIDP 2.0 (JSR 118)
specification, available at:
http://developers.sun.com/techtopics/mobility/midp/articles/pushreg/.

5.4 Building a Project

When you build a project, the SDK compiles the source files and generates the
packaged build output (a JAR file) for your project. You can build the main project and
all of its required projects, or build any project individually.

In general you do not need to build the project or compile individual classes to run the
project. By default, the SDK automatically compiles classes when you save them. You
can use properties to modify the following build tasks:

= Section 5.4.2, "Compiling"

= Section 5.4.3, "Adding Libraries and Resources"

= Section 5.4.5, "Obfuscating”

= Section 5.4.4, "Creating JAR and JAD Files (Packaging)"
m Section 5.4.6, "Signing"

5.4.1 Configuring Ant

To view this form, select Tools > Options, select Miscellaneous, and click the Ant tab.

Ant Home. The installation directory of the Ant executable the SDK uses. To change
Ant versions, type the full path to a new Ant installation directory in this field or click
Browse to find the location. You can only switch between versions 1.5.3 and higher of
Ant. The Ant installation directory must contain a 1ib subdirectory which contains the
ant.jar binary. If you enter a directory that does not match the expected structure,
the SDK gives you an error. See the NetBeans help topic for more options.

Save All Modified Files Before Running Ant. If selected, saves all unsaved files in the
SDK before running Ant. It is recommended to leave this property selected because
modifications to files in the SDK are not recognized by Ant unless they are first saved
to disk.

Reuse Output Tabs from Finished Processes. If selected, writes Ant output to a single
Output window tab, deleting the output from the previous process. If not selected,
opens a new tab for each Ant process.

Always Show Output. If selected, the SDK displays the Output window for all Ant
processes. If not selected, raises the Output window tab only if the Ant output requires
user input or contains a hyperlink. Output that contains hyperlinks usually denotes an
error or warning.

Verbosity Level. Sets the amount of compilation output. Set the verbosity lower to
suppress informational messages or higher to get more detailed information.

Classpath. Contains binaries and libraries that are added to Ant's classpath. Click Add
Directory or Add JAR/ZIP to open the Classpath Editor.

Viewing and Editing Project Properties 5-5

Building a Project

Properties. Configures custom properties to pass to an Ant script each time you call
Ant. Click Manage Properties to edit the properties in the property editor. This
property is similar to the Ant command-line option, -Dkey=value. The following
default properties are available:

${build.compiler.emacs}. Setting this property to true enables Emacs-compatible error
messages.

5.4.2 Compiling

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Compiling.

This page enables you to set the following options:

Generate Debugging Info. If checked, the compiler generates line numbers and
source files information. This is the -g option in javac. If unchecked, no debugging
information is generated (the -g:none option in javac).

Debug Block Level. The block level can be set to: debug, info, warn, error, and fail.

Compile with Optimization. If checked, the compiled application is optimized for
execution. This is the -0 option in javac. Optimizing can slow down compilation,
produce larger class files, and make the program difficult to debug.

Report Uses of Deprecated APIs. If checked, the compiler lists each use or override of
a deprecated member or class. This is the -deprecated option in javac. If unchecked,
the compiler shows only the names of source files that use or override deprecated
members or classes.

Encoding. Overrides default encoding used by preprocessor and compiler. The default
value is the default encoding used by your VM.

5.4.3 Adding Libraries and Resources

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Libraries and Resources to add a dependent
project, libraries, and other supporting files to the current project.

Add Project. A JAR file produced by another project and the associated source files
and Javadoc documentation. Adding this item to a classpath sets up a dependency
between the current project and the selected JAR file.

Add Library. A Library is a collection of JAR files or folders with compiled classes,
which can optionally have associated source files and Javadoc documentation. If the
Package checkbox is checked the library is included in the application's JAR file. If it is
not checked, the library is copied into the 1ib directory.

Add JAR file. A JAR file created by another project.
Add Folder. The root of a package or directory containing files.

When a library or resource is added, it is visible in the Libraries and Resources table,
which reflects the order of the libraries and resources in the classpath. To change the
order in the classpath, select the listing and click Move Up or Move Down. You can
also remove libraries and resources from this page.

Each row in the table has a Package check box. If Package is checked, the library or
resource is bundled and added to the project JAR file. If Package is not checked, the
library or resource is copied to the 1ib subdirectory at build time.

5-6 Oracle Java ME SDK Developer's Guide

Building a Project

5.4.4 Creating JAR and JAD Files (Packaging)

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Creating JAR.

You can set the following options:

JAD File Name. Name of the JAD file created by the project sources. The file name
must have a . jad extension.

JAR File Name. Name of the JAR file created by the project sources. The file name
must have a . jar extension.

Compress JAR. If checked, the JAR file is compressed.

5.45 Obfuscating

5.4.6 Signing

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Obfuscating.

Use the Obfuscation properties page to set the level of obfuscation for project files.

Move the Obfuscation slider to set the level. The Level Description window describes
the impact each level has.

You can add more obfuscation parameters in the Additional Obfuscation Settings
window.

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Signing. These properties allow you to
enable signing and assign key pairs to a CLDC project. See Section 13.1, "Security
Domains".

Sign Distribution. Check this box to enable signing for the MIDlet suite. If it is
unchecked, this page is disabled.

Keystore. A file that stores one or more key pairs as a keystore (.ks) file. The
dropdown menu lists all available keystores. Click the Unlock button to unlock a
keystore with the keystore password.

Alias. A name assigned to a key pair within a keystore. The dropdown menu lists the
aliases available for the selected keystore. Click the Unlock button to unlock a key pair
for use.

The Certificate Details window provides information about the certificate assigned to
the key pair.

Click Open Keystores Manager to manage keystores and key pairs. See Section 13.4,
"Managing Keystores and Key Pairs" and Section 5.4.8, "Exporting a Key".

Note: CDC projects cannot be signed with the Signing tool. See
Section 5.4.7, "Signing CDC Projects".

5.4.7 Signing CDC Projects

To sign a CDC project use the JDK jarsigner command from the command line. For
example:j arsigner.exe -keystore keystore.ks -storepass keystorepwd
MyCdcApp.jar dummyCA

Viewing and Editing Project Properties 5-7

Running Settings

5.4.8 Exporting a Key

Follow these steps to export a key into an emulator:
= Select Tools > Keystores. This opens the Keystores Manager.

You can use the Keystores Manager to add a keystore to the Keystores list. Click
the Add Keystore button. After you create the keystore, click New to create a key
pair.

= In the Keys area, select a key, and click Export. This opens the dialog Export Key
into Java ME SDK/Platform/Emulator.

= Select the target emulator from the Emulator list.
= Select the Security Domain.
s Click Export to export your key pair to the selected emulator.
Your key is added to the bottom of the list in Keys Registered in the Emulator.
The Export window has the following components:

Keystore File. Displays the name of the keystore file to which the key pair belongs.
This field cannot be edited.

Key Pair Alias. The name given to the key pair within the keystore. This field cannot
be edited.

Certificate Details. Displays the details of the certificate of the key to be exported.

Emulator. The drop-down menu lists all the device emulators available. See
Section 13.1, "Security Domains".

Security Domain. Enables you to select a security domain for the key pair. The menu
lists all domains supported by the selected emulator platform.

Keys Registered in the Platform. Lists all keys that have been registered in the
selected platform. Click to select the key you want to export.

Delete Key. Deletes a selected key from the Keys Registered in the Emulator window.

Export. Exports the selected key to the selected emulator. The export button is enabled
if it is possible to export the key. If a specific key is installed it cannot be installed
again.

5.5 Running Settings

To view this property page, right-click on a project and choose Properties. In the
Properties window, choose Running. The options shown depend on the platform. See
Section 5.5.1, "MIDP Project Run Options".

5.5.1 MIDP Project Run Options

To set emulator command line options for a MIDP project, type in the command line
switches. See Section 14.3, "Emulator Command Line Options".

5-8 Oracle Java ME SDK Developer's Guide

Running Settings

Category:

----- El General

----- =] Platform
..... | Abiities
----- | & Application Descriptor

+-[95 Build

----- [Running
..... &% Deploying Spedfy the Security Domain: | maximum w

Emulator Command Line Options: | -Xwerbose
(e.g. -Xverbose)

(") Execute through OTA (Over The Air Provisioning)

Debugger timeout (in miliseconds):

For CLDC projects, the Regular execution button is enabled by default. The setting for
"Specify the Security Domain" applies when the project is run on an emulator. It does
not apply for OTA provisioning or an external emulator platform.

If you do not check Specify the Security Domain the project runs with the default that
was assigned when the project was created. If you check the box, you can select a
domain from the dropdown list. See Section 13.1, "Security Domains" and

Section 13.2.2, "Specify the Security Domain for a Project".

5.5.2 CDC Project Run Options

For CDC projects you must enter the name of the entry point Java file in the Main
Class field. The Main Class Browse button only shows executable classes in the
project's source folders. For a CDC project you see all classes with a static main
method, or classes extending the Applet or Xlet classes.

Arguments are passed only to the main class, not to individual files. If an Xlet is
executed, all arguments are passed to all the Xlets you specify.

For VM options, see Section 14.3.2, "CDC Options".

Viewing and Editing Project Properties 5-9

Running Settings

5-10 Oracle Java ME SDK Developer's Guide

6

Working With Devices

The Oracle Java ME SDK emulator simulates a CLDC or CDC device on your desktop
computer. The emulator does not represent a specific device, but it provides correct
implementations of its supported APlIs.

The Oracle Java ME SDK provides default device skins. A skin is a thin layer on top of
the emulator implementation that defines the appearance, screen characteristics, and
input controls. To make your own skin, see Section 6.11, "Using the Custom Device
Skin Creator".

6.1 Emulating Devices

The SDK runs applications on an emulated device or a real device. Before you can run
an application from the SDK, the Device Manager, which manages both emulated and
real devices, must be running. When the Oracle Java ME SDK runs, the Device
Manager automatically launches and starts detecting devices. The default devices
shipped with the SDK are automatically found and displayed in the Device Selector
window (Tools > Java ME > Device Selector).

6.1.1 The Device Manager on Windows

The SDK uses the device manager to detect devices and displays the available devices
in the Device Selector window (Tools > Java ME > Device Selector). The Device
Manager is a service and you can see it running in your Windows system tray. In the
task manager, the process is labeled device-manager. exe.

=

You can right-click on the icon and select Exit to stop the service.

[Manage Device Addresses

Exit

To restart the device manager, double-click installdir\bin\device-manager.exe. You
can also start it from the command line as described in Section 14.1, "Run the Device
Manager".

Choosing Manage Device Addresses opens the Device Address Manager. Enter an IP
address and select Add to add a device. Select an address and click Remove if you
have an address you no longer want to detect. The device will no longer be displayed
in the Device Selector.

Working With Devices 6-1

Emulating Devices

6.1.2 Starting an Emulator

Typically an emulator is launched when a Java ME SDK project is run from the
NetBeans IDE or the command line. The default emulator is determined by the Java
ME platform selected for the project, as described in Section 2.2.1, "Java ME Platforms".

You can open an emulator without running an application from the IDE. From the
Windows Start menu, select Programs > Java(TM) ME Platform SDK 3.2 and choose
the desired emulator. You can also click the emulator shortcuts installed on your
Windows desktop.

JawalTh) ME Platform SO

Docurnenkation

ninstall

(]
N
Q Update Center
Java ME S0K CLOC Emulakaor

Q Java ME sDK IMPMNG Emulakor

To run an application from the emulator, select Application > Run MIDlet Suite (or
IMlet Suite). Provide the path to the application and any other information, and click
OK.

6.1.3 CLDC Application Management Software Home
The CLDC AMS home screen features three utilities:

= Install Application. This utility opens a form in which you can specify a URL (or a
file path) for a JAD file to install.

= Manage Certificate Authorities. This feature displays the certificates authorities for
the device. In this interface the white box indicates the certificate is checked
(active). You can uncheck certificates that are not needed.

= Output Console. The output console displays system output statements from a
running application. The application must write to the Java standard output
console using, for example: System.out.println("text");

Start the Output Console, then start your application. Use F7, Switch running
MIDIet, to switch between the application and the Output Console.

The Output Console is an application that consumes resources. See Section 6.5,
"Changing the Maximum Number of Concurrent Applications"

6-2 Oracle Java ME SDK Developer's Guide

Viewing Device Properties

Qutput Console

startMIDlet pre-action code
print Hello

greetings printed

getForm initialized

start MIDlet post-action code
hello paused

resumeMIDlet pre-action code
resumeMIDlet post-action code

See Section 6.9, "Emulator Features" and Section 6.10, "Emulator Menus".

6.2 Adding a Real Device

The device selector can detect a device that has a compatible runtime. Typically this
device has network capabilities and is connected to the computer running Java ME
SDK.

1. To detect a physical device, click CTRL-D, or click the device icon at the top of the
Device Selector window.

2. Type an IP address and click Next. Click Finish.

You can also enter an IP address in the Device Manager, as described in
Section 6.1.1, "The Device Manager on Windows".

3. The physical device is listed in the appropriate platform tree. By default the device
has "ExternalPhone" appended to the name.

For example, if an IMP-NG device is detected it is placed in the IMP-NG node and
given the name IMPNGExternalPhonel.

6.3 Viewing Device Properties

The Device Selector window lists all available devices grouped by platform. If this
window is not visible, select Tools > Java ME > Device Selector.

If no Java ME platform is registered in NetBeans, the Device Selector displays a node
labeled No Device Found. If you see this message at startup, it typically means device
discovery is incomplete and you must wait a few seconds.

Each sub node represents a device skin. Two instances are provided for some CLDC
devices, for example, JavaMEPhonel and JavaMEPhone2. Instances of the same device
have the same capabilities but unique names and phone numbers, making it easy for
you to test communication between devices of the same type. To make your own
device, see Section 6.11, "Using the Custom Device Skin Creator".

Working With Devices 6-3

Setting Device Properties

For Device names, see Section 8.4, "Oracle Java ME SDK Directories". The properties
for each device skin are stored in XML files in your user work directory. See Table 8-1.

See also: Section 6.3.1, "Platform Properties", Section 6.3.2, "Device Information", and
Section 6.3.3, "Device Properties"

6.3.1 Platform Properties

To view platform properties from the device selector, click on the platform node (for
example, CLDC or CDC). The Properties window is, by default, docked in the upper
right portion of the user interface. If the Properties window is not visible, select
Windows > Properties.

To view the platform properties in a separate window, right-click on the platform node
and select Properties. The information in the docked properties window and the
separate window is the same.

6.3.2 Device Information

In the Device Selector window, double-click a device node. The Device Information tab
opens in the central Main window. It displays a picture of the device and displays
details, supported hardware capabilities, keyboard support, supported media formats,
and the supported runtimes.

6.3.3 Device Properties

In the Device Selector window;, click a device node (such as JavaMEPhonel) to display
the device properties. The Properties window is, by default, docked in the upper right
portion of the user interface. If the Properties window is not visible, select Windows >
Properties.

6.4 Setting Device Properties

In the Device Selector Window, right-click on a device and select Properties. Any
properties shown in gray font cannot be changed. You can adjust the device properties
shown in black. Only CLDC options can be adjusted. The CDC options cannot be
changed.

6.4.1 General

This section lists general properties that can be changed.

Phone Number 1. You can set the phone number to any appropriate sequence,
considering country codes, area codes, and so forth. If you reset this value, the setting
applies to future instances. The number is a base value for the selected device.

Heapsize. The heap is the memory allocated on a device to store your applications's
objects. The Heapsize property is the maximum heap size for the emulator. You can
choose a new maximum size from the dropdown menu.

Security Domain. Select a security setting from the dropdown menu. See
Section 13.2.1, "Specify the Security Domain for an Emulator". Applies to CLDC
platforms.

JAM storage size in KB. The amount of space available for applications installed over
the air.

Locale. Type in the locale as defined in the MIDP 2.0 specification:
http://jcp.org/en/jsr/detail?id=118

6-4 Oracle Java ME SDK Developer's Guide

Running a Project from the Device Selector

6.4.2 Monitor

6.4.3 SATSA

Remove MIDlet Suite in execution mode. If this option is enabled, record stores and
other resources created by the MIDlet are removed when you exit the MIDlet
(assuming the MIDlet was started in execution mode).

If enabled (checked), the Check boxes for Trace GC (garbage collection), Trace Class
Loading, Trace Exceptions, and Trace Method Calls activate tracing for the device the
next time the emulator is launched. The trace output is displayed at runtime in the
user interface Output window. Trace Method Calls returns many messages, and
emulator performance can be affected. See Chapter 11, "Monitoring Memory".

See Section 21.1, "Card Slots in the Emulator".

6.4.4 Location Provider #1 and #2

These properties determine the selection of a location provider. Two providers are
offered so that your application can test matching the location provider criteria.

If you select a property a short explanation is shown in the description area just below
the Properties table. For more information on these values, see the Location API at
http://jcp.org/en/jsr/detail?id=179.

6.4.5 Bluetooth and OBEX

Bluetooth. See Section 18.1, "Setting OBEX and Bluetooth Properties".

6.5 Changing the Maximum Number of Concurrent Applications

By default the CLDC runtime allows a maximum of five applications to run
simultaneously. If you exceed the limit, you see the message, "No more concurrent
applications allowed."

This number includes active applications, the Application Management Software
(AMS), and any active on-device tooling agent (such as the profiler). You can close
some applications, or increase the limit as follows:

1. In the Oracle Java ME SDK installation, locate the following file:
installdir\runtimes\cldc-hi\bin\jwc_properties.ini

2. Locate the property MAX_ISOLATES. The value can be increased up to 15.
However, you should be conservative as many applications running concurrently
can affect performance.

6.6 Opening a Serial Port

In application code, you can use Connector.open ("comm:COM1") to open a port on the
device. On Windows, you can open a serial port such as COM1 or COM2.

6.7 Running a Project from the Device Selector

The SDK determines which open projects are suitable for a device. Right-click on the
device and select a project from the context menu.

Working With Devices 6-5

Running Projects Simultaneously on a Single Device

You can also launch the emulator to run a project from the command line, as explained
in Section 14.3, "Emulator Command Line Options".

6.8 Running Projects Simultaneously on a Single Device

CLDC-based devices are capable of running multiple virtual machines. You can test
this behavior in the emulator. Be sure the output window is visible in the SDK (select
Window > Output > Output). To test this feature, follow these steps:

1. Open the sample projects Games and AudioDemo.

2. In the device selector, choose a CLDC device and run Games. When the emulator
launches run AudioDemo on the same device.

As each MIDlet loads, the AMS automatically installs it.
3. In AudioDemo, launch the Audio Player, and play the JavaOne theme.

Select AudioPlayer, then from the soft menu, select 1, Launch. Select JavaOne
Theme and press the Play soft button.

4. In the emulator, choose Application > AMS Home, or press F4.

Select Games. From the soft menu, select 1, Open. The music continues to play
while you are able to simultaneously launch and play games.

5. Select Application > AMS Home, or press F4. Highlight AudioSamples, and from
the soft menu, select 2, Bring to foreground. Press the Pause soft key. The music

stops playing.
6. Select Application > AMS Home, or press F4. Highlight AudioSamples and from

the soft menu, select 1, Open. Select Bouncing Ball from the list and press the
Launch soft button. Select MIDI background and press the Play soft button.

7. Select Application > AMS Home, or press F4. Select Application > Switch Running
MIDIet. Select Audio Player and press the Switch to soft button. You can press the
Play soft button to resume the Audio Player.

6.9 Emulator Features

Figure 6-1, "Emulator Features" shows common emulator features available on
emulators for the CLDC platform.

Device Name. Shown in the upper window frame. See Table 8-1, " Device Names".

Transmission Indicator. On the upper left of the emulator image, this blue light turns
on when a transmission is occurring. Typically you see it when an application is
installed over-the-air, or when a message is being sent or received. For example, when
you receive a message from the WMA console.

Menus. See Section 6.10, "Emulator Menus".
Device ID. See Table 8-1, " Device Names".

Exit Button. Pushing the button on the upper right of the emulator image has the same
effect as selecting Application > Exit.

Emulator Status Bar. Information about the current system state is shown in the status
bar at the bottom of the emulator window.

6-6 Oracle Java ME SDK Developer's Guide

Emulator Menus

Figure 6—1 Emulator Features

B 1avaMEPhonez

Application Dewice Edit Wiew Help

=101 %]

Device IT: 5

Phone number; 123456790

Transmission
Indicatar

ORACLE

Java MIDlets

Application
Exit

2 ABC

3 oEF

5w

b mno

‘ibration is off

6.10 Emulator Menus

] pors 1wy Q wxvz
% . 0 =er

e A
SHIFT SPACE

Ernulator
Status Bar

The emulator for the CLDC platform has Application, Device, Edit, View, and Help

menus.

The emulator for the CDC platform has Application, View, and Help menus. The View
and Help menus are the same on CDC and CLDC platforms. For CDC, the Device
menu is not populated, and Application menu contains only the Exit option.

Working With Devices 6-7

Emulator Menus

6.10.1 Application

The Application menu is fully populated for the CLDC platform. The Application
options are as follows:

Option Accelerator Description

Run MIDlet suite Emulator interface for launching MIDlets.

AMS Home F4 Exit the current application and return to the Application
Management Software home.

Stop F10 Stops the currently running MIDlet.

Change Locale This option only works with localized MIDlets.

Enter a locale identifier. The format is similar to Java SE 6, as
follows:

2-letter-lang-code separator 2-letter-country-code

For example, en-US, c¢s-CZ, zh-CN, ja-JP. The separator can
be a dash or an underscore.

Resume F6 Resume a suspended application.
Suspend F5 Pause a running application.
Do not use this option if you are runing the memory
monitor.
Switch Running ~ F7 When you have multiple MIDlets running, toggle between
MIDlet them. You see a list of running MIDlets and you can chose

the one you want to switch to. See Section 6.8, "Running
Projects Simultaneously on a Single Device".

Exit Exit button Close the emulator process and stop the build process (or
on emulator processes).
upper right

6.10.2 Device

This menu is available on CLDC platforms only.

6.10.2.1 Messages

Choose Device > Messages to see what is written in the message area. This is the
emulator's Inbox. The Inbox displays WMA messages that are addressed to the device,
not an application on the device. Messages are sent to this interface in the following
cases:

= an MMS message is sent without an AppID in the address
= an SMS message is sent without a port in the address (or the port number is 0)

= an SMS text message is sent with a port in the address, but there is not a Java ME
application listening on the specified port

To test sending messages to the inbox use the WMA Console in Netbeans, or from the
command line, use wma-tool.exe tosend SMS messages. Note, wma-tool . exe requires
an AppID for MMS, so wma-tool can not be used to send an MMS.

6.10.2.2 Landmark Stores

Choose Device > Landmark Stores to open the Landmark Store utility. In this interface
you can view and edit a landmark store installed as part of an application. You can

6-8 Oracle Java ME SDK Developer's Guide

Using the Custom Device Skin Creator

6.10.3 Edit

6.10.4 View

6.10.5 Help

also create a new landmark store, define landmarks, define landmark categories, and
assign landmarks to categories.

6.10.2.3 Orientation

Use this feature to test your application's ability to display in portrait and landscape
formats. The default is 0 degrees. Change the orientation to 90, 180, or 270 degrees.
You can also rotate 90 degrees clockwise (F8) or counterclockwise (F9) from the current
position.

6.10.2.4 External Events Generator

The External Events Generator provides a way to interact with an application by
injecting events. The interaction may be through a user interface, or through a script
file. The following menu options each have a tab on the External Events Generator.
The use of the External Events Generator is addressed in the discussion for each JSR.

= Contactless Communication. See Section 29.1, "Using ContactlessDemo".
s File Connection. Section 17.1, "FileConnection API".
= Location. Section 22.1, "Setting the Emulator's Location at Runtime".

= Sensors. Section 28.2, "Using a Mobile Sensor Project”, Section 28.3, "Creating a
Sensor Script File".

The Edit menu provides basic editing utilities for the CLDC platform.

Option Accelerator Description

Copy CTRL-C Copy selected material to the paste buffer.
Cut CTRL-X Move selected material to the paste buffer.
Paste CTRL-V Insert the contents of the paste buffer.

The View menu is available for both CLDC and CDC platforms. The only View option
available is Always On Top.

Option Description

Always OnTop Keeps the emulator in the foreground. This is especially useful when you
are running multiple emulator instances and you want to see them all and
send messages between devices.

The Help menu displays an abbreviated helpset specifically for the emulator window.

6.11 Using the Custom Device Skin Creator

With the Custom Device Skin Creator you can create your own skins. The appearance
of the custom skins is generic, but the functionality can be tailored to your own
specifications.

Working With Devices 6-9

Using the Custom Device Skin Creator

6.11.1 Creating a New Custom Device Skin

Follow these steps to create a new custom device skin.

1.

2.
3.

Select Tools > Java ME > Custom Device Skin Creator.
The custom device tree displays Java ME platforms and custom devices, if any.
Select a platform and click the New... button.

Change the default configuration to match your specifications, and click OK.

Your skin is added to the custom device tree and eventually appears in the Device
Selector. Your custom skin can be used to run projects from the IDE or from the
command line.

The custom device tree affects what appears in the Device Selector. For example, if you
don’t want a custom skin to appear in the device selector, you must remove it from the
custom device tree.

The skin definition is saved in installdir\toolkit-1lib\devices.

6.11.2 Managing Custom Skins

Custom skins should always be managed using the Custom Device Skin Creator.
Using the tool ensures that your skin will be properly detected and integrated with the
Oracle Java ME SDK.

Edit. Select a device to change, and click Edit.

Clone. Select a device to copy, and click Clone. To prevent confusion, be sure to
provide a unique name.

Export. Select a device to save, and click Export.

When a custom device is created it is saved in installdir\toolkit-1lib\devices,
therefore you could lose your device if you reinstall.

An exported device is stored in a .zip file and saved in the user’s My Documents
directory (typically userhome\My Documents).

Import. Select a node in the custom device tree and click Import. Choose a .zip file
created with the Export command.

Remove. Select a device to delete and click Remove. This action completely deletes
the skin.

6-10 Oracle Java ME SDK Developer's Guide

7

Searching the WURFL Device Database

The Wireless Universal Resource File (WURFL) is an XML file that acts as a global
database of mobile device capabilities. WURFL is an open source project at
http://wurfl.sourceforge.net/. The WURFL DB (http://www.wurflpro.com/) is a
web-based interface that allows WURFL contributors to add or change device
information in the WURFL.

The SDK uses a WURFL module to discover devices based on API support or on
physical characteristics such as physical memory size or display size.

7.1 WURFL Search for Devices

Follow these instructions to search for devices.

1.

Select Tools > Java ME > Device Database Search.
The WURFL Device Search tab opens in the main window.
Check Use Filter to see search options.

If you do not check Use Filter, all devices in the database are listed. See Section 7.2,
"WURFL Search Filtering".

Make a selection from the dropdown menu on the left.

If applicable, the center dropdown displays a list of conditions. The menu on the
right displays a value.

To add another search criteria, click the + button.
Click the - button to remove a search setting.
Click the Search button.

The search returns devices that match all the chosen criteria. The results are not
case sensitive.

Click on a device to view its properties on the right, as shown below.

Searching the WURFL Device Database 7-1

WURFL Search Filtering

Worfl Device Search x] Start Page = [4] »] E] @
Use Filter
Filter ~
|Suppu:urteu:| &PIs w MIDP 2.0 L =
[]cpcia =
|Hea|:| Size V| |is greaker than v| |g|:||:||:||:||:| | [-] [+]
16 devices found Pa00
Device Yendar Property Yalue
ZF75 Siemens ma_image_width 136
SKES Siemens maz_image_height 227
72 Siemens colars BE536
SGH-DE00 Samsung jeme_midp_2_0 true
A1000 Maotorola j2rme_jtwi true
4750 Maotorola j2rme_rmapi_1_0 true
i730 Maotorola j2re_wmapi_1_0 true
i&30 Maotorola jeme_btapi krue
E6&S0 jeme_heap_size 16777216
E1000 jeme_canvas_height 253
IS0 jerme_bits_per_pixel 16
5700 jerme_bits_per_pixel 16
Z1010 jeme_https krue
Z500 jerme_socket krue
P30 Eend)

See Section 7.2, "WURFL Search Filtering".

7.2 WURFL Search Filtering

As discussed in Section 7.1, "WURFL Search for Devices", you can use the filter to set
search constraints. If Use Filter is not checked all devices are listed. If Use Filter is
checked, you must set at least one constraint.

Supported Properties

This utility searches on a predefined list of constraints that have corresponding
properties in the Oracle Java ME SDK.

Supported APIs

You can check the APIs you want. Note, checking an API does not exclude APIs

that are not checked.
= MIDP 1.0, MIDP 2.0

= CLDC1.0,CLDC 1.1, MMAPI 1.0, MMAPI 1.1
= WMAPI1.0, WMAPI 1.1, WMAPI 2.0

7-2 Oracle Java ME SDK Developer's Guide

WURFL Search Filtering

= Bluetooth API
= 3D API
s Location API
= Vendor
s Device
= Resolution Width/Height
The device resolution.
= Maximum Image Width /Height
The maximum image size that the device can display.
s Physical Memory Size
The built-in memory size.
= Heap Size
Memory limit in bytes at runtime.
= Number of Colors
The number or colors the device's display supports.
= Supports Wi-Fi
= Supported Image Formats

Check the image type. Unchecked types might still be supported.

= bmp
= jpeg
] gif

To see the full list of WURFL constraints, go to:
http://wurfl.sourceforge.net/help_doc.php.

See also Section 7.1, "WURFL Search for Devices".

Searching the WURFL Device Database 7-3

WURFL Search Filtering

7-4 Oracle Java ME SDK Developer's Guide

8

Finding Files in the Multiple User
Environment

The Oracle Java ME SDK can be installed on a system running a supported operating
system version. All users with an account on the host machine can access the SDK.
This feature is called the Multiple User Environment.

Note: The Multiple User Environment supports access from
several accounts. It does not support multiple users accessing the
SDK simultaneously. See Section 8.1, "Switching Users".

To support multiple users the SDK creates an installation directory that is used as a
source for copying. This document uses the variable work to represent the SDK
working directory and installdir to represent the Oracle Java ME SDK installation
directory. Each user's personal files are maintained in a separate working directory
named javame-sdk that has a subdirectory for each version installed.

s Section 8.2, "Installation Directories"
s Section 8.3, "NetBeans User Directories"

To locate logs, see Section 15.1, "Device Manager Logs", and Section 15.2, "Device
Instance Logs".

8.1 Switching Users

Multiple users cannot run the SDK simultaneously, but, you can run the SDK from
different user accounts on the SDK host machine. When you switch users, you must
close the SDK and exit the Device Manager, as described in Section 6.1.1, "The Device
Manager on Windows". A different user can then launch the SDK and own all
processes.

8.2 Installation Directories

The SDK directory structure conforms to the Unified Emulator Interface Specification
(http://java.sun.com/j2me/docs/uei_specs.pdf), version 1.0.2. This structure is
recognized by all IDEs and other tools that work with the UEL

The installation directory has the following structure:

= bin. The bin directory contains the following command line tools. The default
location of the bin directory is:

installdir\bin

Finding Files in the Multiple User Environment 8-1

NetBeans User Directories

cref.Java Card simulator for working with SATSA JSR 177. See Section 21.2,
"Tava Card Platform Simulator (cref)".

device-address is a tool for viewing, adding, and removing devices that the
SDK is not able to discover automatically. See Section 14.2, "Manage Device
Addresses (device-address)".

device-manager. The device manager is a component that must be running
when you work with Oracle Java ME SDK. After installation it starts as a
service, and it automatically restarts every time your computer restarts. See
Section 6.1, "Emulating Devices".

emulator. UEI compliant emulator. See Section 14.3, "Emulator Command
Line Options".

jadtool. Tool for signing MIDlets. See Section 14.6.2, "Sign MIDlet Suites
(jadtool)".

mekeytool. Management of ME keystores. See Section 14.6.3, "Manage
Certificates (MEKeyTool)".

preverify. The Java ME preverifier.

skin-creator.exe. Tool for creating new skins. See Section 6.11.1, "Creating a
New Custom Device Skin".

wma-tool. A command line tool for sending and receiving SMS, CBS, and
MMS messages. See Section 23.3, "Running WMA Tool".

wscompile. Compiles of stubs and skeletons for JSR 172. See Section 14.7,
"Generate Stubs (wscompile)".

s docs. Release documentation.

= legal. License and copyright files.

= 1lib. JSRJAR files for compilation.
s runtimes. CDC, CLDC, and IMP-NG runtime files.

= toolkit-1ib. Java ME SDK files for configuration and definition of devices and Ul
elements. Executables and configuration files for the device manager and other
SDK services and utilities.

8.3 NetBeans User Directories

These are the default NetBeans user directories.

= NetBeans default project location:

userhome\My Documents\NetBeansProjects

= To see the NetBeans user directory, select Help > About in the main window. The
default location is:

userhome\ .netbeans\version

8.4 Oracle Java ME SDK Directories

This documentation sometimes uses userhome to represent the root location of user

files.

8-2 Oracle Java ME SDK Developer's Guide

Oracle Java ME SDK Directories

The javame-sdk directory contains device instances and session information. If
you delete this directory, it is re-created automatically when the device manager is
restarted.

userhome\ javame-sdk \version
Device working directories
userhome\ javame-sdk\version\work \devicename

The named subdirectories each correspond to an emulation device, as described in
Table 8-1. Any detected real devices are also added to this directory space. Device
detection is described in Section 6.2, "Adding a Real Device."

Table 8-1 Device Names

Device Platform Emulator #

ClamshellJavaMEPhonel CLDC 0

DefaultCdcPbpPhonel CDC 1
IMPNGPhonel CLDC 2
IMPNGPhone2 CLDC 3
JavaMEPhonel CLDC 4
JavaMEPhone2 CLDC 5
VgaAGUIPhonel CDC 6
VgaCdcPhonel CDC 7

Device instances (device definitions).
installdir\toolkit-1lib\process\device-manager\device-adapter

This directory contains the bean files for the adapter categories. The beans in this
directory and subdirectories determine whether a skin is visible in the Device
Selector, among other things. You should not manipulate these files directly.

See Section 6.11, "Using the Custom Device Skin Creator" for instructions on
creating your own custom skin.

Both default skins and custom skins created with the Custom Device Skin Creator
are represented in the device-adapter directory.

Note: Do not manipulate custom skin files from the operating
system. All custom skin activity should take place in the Custom
Device Skin Creator.

Finding Files in the Multiple User Environment 8-3

Oracle Java ME SDK Directories

8-4 Oracle Java ME SDK Developer's Guide

9

Profiling Applications

The Oracle Java ME SDK supports performance profiling for Java ME applications.
The profiler keeps track of every method in your application. For a particular
emulation session, it figures out how much time was spent in each method and how
many times each method was called.

The SDK supports offline profiling. Data is collected during the emulation session.
After you close the emulator you can export the data to a .nps file you can load and
view later. As you view the snapshot you can investigate particular methods or classes
and save a customized snapshot (a .png file) for future reference.

You can start a profiling session from the NetBeans IDE, as described in Section 9.1,
"Collecting and Saving Profiler Data in the IDE", or from the command line, as
discussed in Section 14.3.4, "Command Line Profiling". It is important to understand
that profiling data produced from the command line has a different format (*.prof)
than data produced from the NetBeans profiler (a.nps file).

Note: This feature might slow the execution of your application.

Profiling data from Oracle Java ME SDK projects is displayed in a tab in the IDE. The
NetBeans IDE has a Profiling window (Window > Profiling > Profiler) but it is not
discussed here. Because only performance profiling is supported, the Profiler window
has limited usefulness for Java ME applications.

9.1 Collecting and Saving Profiler Data in the IDE

This procedure describes interactive profiling. (To run profile an application from the
command line, see Section 14.3.4, "Command Line Profiling".)

Note: The profiler maintains a large amount of data, so profiled
MIDlets place greater demands on the heap. To increase the Heapsize
property, see Section 6.4, "Setting Device Properties".

1. In the Projects widow, right-click on the project you want to profile and select
Profile.

If this is the first time profiling this project you are prompted to integrate the
profiler. Click Yes to perform the integration.

Profiling Applications 9-1

Collecting and Saving Profiler Data in the IDE

® Enable Profiling of AudioDemo

i Profiler is not integrated with project AudioDemo.
\\‘) Click OK to perform the integration.

As part of the integration, the project build script will be modified.
The original file wil be backed up as build-before-profiler. xmil.

Mote: You can undo the profiler integration at any time by invoking
Profile | Advanced Commands | Unintegrate Profiler from the main menu.

ok | cancel

The profiler attaches. You are prompted for the running options.
profie Audobemo | x
SE,
@ (= CPU Profiler

[+ Profile System Classes

; = Memary Manitar

G " Mebwork Monitar

—

[+ Run Cancel Help

Choose the CPU Profiler, and optionally check Profile System Classes. Press Run.

The emulator opens with your application running.
2. Interact with the application MIDlet(s) as you normally would.
3. Exit the MIDlet. You are prompted to display the saved data in a profiler:

JavaMEPhonel x|
» Thereis u:uFiIing data collected.

\t/ Would yiou like to kransfer it o a profiler?

Yes Mo |

If you choose Yes the profile data is automatically displayed in a tab labeled
cpu:time, where time is the time the data was displayed.

9-2 Oracle Java ME SDK Developer's Guide

Loading a .nps File

Stark Page x] Cevice Information x] Jawva ME SDK Start Page x] @ cpu: 12:51:29 &AM x] ﬂﬂ ;I EI
B E | e[~]|EE QDS E
Zall Tree - Method I Time [... vI Tirne I Time [P I]
[RS 1,328 ms -
[WA 1,029 ms —
DUeUe, Fun | I B3 ms (62,99 G438 ms
i | 148 ms (11,138 148 ms
[anvas.inik (ink, int) I 145 ms (10,99 145 ms
BallCarvas, initPlayer (ink) I 145 ms [(10,9%) 145 ms
BasicPlayer stark () I 89.0 ... (k7% 9.0 ms
tdia,BasicPlayer, prefetch () I 88.0 ... (EE%) 8.0 ms
rmedia. BasicPlaver . realize () I 83.0... (EE3) 3.0 ms
tun, rmedia, HighLewvelPlayver . doRealize () I 85,0 .., (EE%) 5.0 ms
b, sun, mmedia, DirectPlayer. doRealize () I 85.0 ... (EE%) 5.0 ms
B com.sun.mmedia.DirectPlaver . openMativestreamPlayer (ink, Skring, u:l 860 ... (BB 36.0 ms
{I—} com, sun.mmedia.DirectPlaver . nOpenPullstreamPlayer (06, it |:|:|| 86,0 ... (55w 6.0 ms ;I
= | _PI
ﬁ Method Mame Filker {Zonkains) j
Hat Spots - Method | Self time [9%0] v | sSefftime |Self time (cPUy| &
janvax, microedition, lodui, Font . charWidth (char) - 356 ., .[26.8%) 356 ms |
cor.sun. midp. lcdui, DisplayDevice, refresh (nt, int, ink, int, ink, ink) - 250,018,890 280 ms T
com.sun.mmedia. DirectPlaver nOpenPullstreamPlayer (0t ink, .. I g6.0... (559 36.0 ms
javax microedition, lodui, Graphics, deawChars (char[], ink, ik, 0k, L I 50,0, (3.8%) 50,0 ms
com.sun.mmedia, MM IavacalConfiggEnumerator, hasMoreElements | 23.0... (1.79%) 23.0ms
javax, microedition, lodui, ImageDataFackory loadPNG (iawvax, micko, . | 13.0... (1% 13.0ms ;I
?‘, Method Mame Filker {Conkains) j
o Call Treel E= Hat Spots Fz Combined | 1) InFu:uI

4. To export the profile data, press the Export icon and supply a .nps file name and
location. This data can be reloaded at a later time. See Section 9.2, "Loading a .nps
File".

el

5. To the save the current view to a .png file, press the "Save current view to image"
icon and supply a file name and location.

e

9.2 Loading a .nps File

A previously exported .nps file (Section 9.1, "Collecting and Saving Profiler Data in
the IDE") can be loaded at a later time.

Follow these steps to retrieve profile data:
1. Select Profile > Load Snapshot...
2. Choose the .nps file.

Profiling Applications 9-3

Importing a .prof File

The Profiler opens in its own tab labeled cpu:filename. Click the Info tab at the bottom
of the Method table to view the snapshot.

Note: The profiling values obtained from the emulator do not
reflect actual values on a real device.

9.3 Importing a .prof File

A .prof file created from the command line (Section 14.3.4, "Command Line
Profiling") can be loaded from the NetBeans IDE. A command line profiling session
command might look like:

emulator.exe -Xdevice:JavaMEPhonel
-Xdescriptor:"C:\Documents and Settings\user\My Documents\NetBeansProjects\UIDemo\
dist\Games.jad" -Xprofile:file=C:\temp\UIDemo.prof

Files created from the command line are formatted differently from the .nps files
created as described in Section 9.1, "Collecting and Saving Profiler Data in the IDE".

Follow these steps to retrieve command line profile data from the IDE:
1. Select Profile > Java ME > Import CPU Profiler Snapshot...
2. Choose the .prof file.

The Profiler displays the data in its own tab labeled cpu:filename.

When the file has been loaded it can be saved in the .nps format. Click the Export to...
icon and supply a file name and location.

9-4 Oracle Java ME SDK Developer's Guide

10

Network Monitoring

MIDP applications, at a minimum, are capable of HTTP network connections, but
many other types of network connections are also possible. The network monitor
provides a convenient way to see the information your application is sending and
receiving on the network. This is helpful if you are debugging network interactions or
looking for ways to optimize network traffic.

Networking monitoring works for emulators only (it is not supported for real devices).
s Section 10.1, "Monitor Network Traffic"

= Section 10.2, "Filter or Sort Messages"

s Section 10.3, "Save and Load Network Monitor Information"

s Section 10.4, "Clear the Message Tree"

10.1 Monitor Network Traffic
Follow these steps to activate the network activity for an application.
1. In the Projects window right-click on a project and select Profile.

2. If this is the first time profiling this application you are prompted to integrate the
profile with the project. Click Yes to perform the integration.

In the Profile window, select Network Monitor, and click Run.

8 x

e,

U £~ CPU Profiler

¥ Frofile System Classes

E £ Memory Monitor

N % Mebwork Monitar
—

[+ Run Cancel Help

3. Start your application.

When the application makes any type of network connection, information about
the connection is captured and displayed in the Network Monitor tab.

Network Monitoring 10-1

Filter or Sort Messages

e _E';Miu Memory Monitar: 4:16 PM x ﬁmetwurk Manibor netron9-12 x] 4| b 1r| |:||

=]

|| s8]

Mo, | Pratacal I Phone | JRL | Tirne I Size |
0 [» ClamshelJavaMEPhonel socket:/y:S000 02 m 355819 ms 29
1 1 ClamshellJavaMEPhonel socket:)[:s000 02 m 355819 ms 29
2 [ClamshellavamEPhonel datagram:)[:5555 0 ms 23
3 | ClamshellavamEPhonel datagram:)[:5555 0ms 30
O: 64 61 74 61 67 T2 6l &l 20 66 TZ 6F 6D 20 64 datagram from d
£: 65 76 20 30 20 74 6F 20 64 65 76 20 34 ey 0 to dev 4

[Gelect Devices]

b | I [Select Protocaols] | IJRL Filter: I - |

The top frame displays a list of messages. Click a message to display its details in
the bottom frame.

In the Hex View, message bodies are shown as raw hexadecimal values with the
equivalent text. To avoid memory issues, the Hex view is currently limited to 16kB
of data.

Note: You can examine messages that are still in the process of
being sent. Incomplete messages are indicated by bold highlighting
in the message tree.

10.2 Filter or Sort Messages

Filters are useful for examining some subset of the total network traffic.

In the [Select Devices] list check only the devices you want to view.

In the [Select Protocols] list check only the protocols you want to view. The
protocols listed reflect what is currently installed on the device.

Click the magnifying glass in the Network Monitor toolbar to search for a specific
string in the data in the Phone or URL columns.

Time. Messages are sorted in chronological order of time sent or received.

URL. Messages are sorted by URL address. Multiple messages with the same address
are sorted by time.

To arrange the message tree in a particular order, click on the Sort By combo box and
choose a criteria.

10-2 Oracle Java ME SDK Developer's Guide

Clear the Message Tree

Note: Sorting parameters are dependent on the message protocol
you choose. For example, sorting by time is not relevant for socket
messages.

10.3 Save and Load Network Monitor Information

To save your network monitor session, click the blue disk icon at the left of the
Network Monitor toolbar.

B AT 8

Choose a file name. The default file extension is .nmd (network monitor data).

To load a network monitor session, choose Profile > Java ME > Load Network Monitor
Snapshot... and browse to the .nnd file you saved.

Note: To avoid memory issues, the Hex view display is currently
limited to 16kB of data.

10.4 Clear the Message Tree

To remove all inactive protocol records from the network monitor choose the clear icon
(the broom icon on the right of the Network Monitor tool bar).

Network Monitoring 10-3

Clear the Message Tree

10-4 Oracle Java ME SDK Developer's Guide

11

Monitoring Memory

This chapter describes how to use tracing and the memory monitor to examine an
application’s memory use on a particular device.

Activating tracing for a particular device enables you to see low-level information as
an application runs.

The Memory Monitor shows memory use as an application runs. It displays a dynamic
detailed listing of the memory usage per object in table form, and a graphical
representation of the memory use over time. You can take a snapshot of the memory
monitor data. Snapshots can be loaded and examined later.

Note: The memory use you observe with the emulator is not exactly
the same as the memory use on a real device. Remember, the emulator
does not represent a real device. It is one possible implementation of
its supported APIs.

11.1 Enabling Tracing

Follow these steps to enable tracing.

1. In the Device Selector window, right-click on a device and choose Properties.

2. In the Properties window, go to the Monitor node and check the desired trace
options.

Trace GC (garbage collection). Monitoring GC can help you determine object
health. The garbage collector can’t delete objects that don’t have a null
reference. Dead objects will be garbage collected and not reported as live.

Trace Class Loading. Observing class initialization and loading is useful for
determining dependencies among classes.

Trace Exceptions. Display exceptions caught.

Trace Method Calls. Reports methods called and returned. The output for this
option is very verbose and it can affect performance.

3. (Optional) Verbose tracing output might cause you to run out of memory on the
device before the application is fully tested. You can increase the device memory
as follows:

Right-click on a device and choose Properties. From the General node, choose
Heapsize, and choose a size.

Monitoring Memory 11-1

Using the Memory Monitor

Tracing data is displayed in the output window (Window > Output > Output) when
an application is run on this device. It is also written to the device log, which is stored
in the working directory for the device. For example:

userhome\ javame-sdk\3. 2\work\JavaMEPhonel\device.log

11.2 Using the Memory Monitor

Follow these steps to examine an application’s memory use.

WARNING: Do not suspend the emulator while using the memory
monitor.

1. In the Projects view, right-click on the project and select Profile.

» If the profiler is not yet integrated you are prompted to enable profiling for the
project. Click Yes to continue.

The Profile window opens.
= Select Memory Monitor, and click Run.

The output window tab is labeled "memory-monitor" indicating that the memory
monitor is active for this session. The output window displays both application
status and tracing outputs for this device.

The memory monitor opens.
2. Interact with the application as usual.

In the Memory Monitor tab you see data displayed on the graph above and in the
object table below.

To the left of the graph you see the Current memory use in bytes. The green line
plots these values. The red line is the maximum amount of memory used since
program execution, corresponding to the Maximum size in bytes on the left.

The object table columns are as follows:

= Name. Object class name.

= Total. Total number of objects allocated since the application began.
= Total Size. Total amount of memory the object uses in bytes.

» Average Size. Average object size in bytes, calculated by dividing the number
of live instances by the total size.

Beneath the table you see counters displaying the total number of objects, the
amount of memory used, the amount of free memory, and the total amount of
memory on the device.

11-2 Oracle Java ME SDK Developer's Guide

Skart Page =

=

Device Information

® | Jawa ME SDk Stark Page =

_urrent: 5562301 bytes
Maximun: 6127640 bytes

ai ik Memary Monitor

Using the Memory Monitor

I

bjecks: 45999

Used: 5562301 bytes

Marne Total Tokal Size (bytes) | Average Size (...
jawa.util.HashtableEntry 1587 31760 20.0 ﬂ
java.lang. StringBuffer 655 10544 16.0 —
Ohject[] G05 F90e0 &40
ink[] S07 16192 31.0
short[] S60 137085 5.0
java.lang. Inteqer 326 2616 3.0
btel] 337 1259432 3726.0 4|

Free: 7020611 bytes

Marne: java.util.HashtahleEntry

) Isolate 3 | threadId 21
+-) (11.42%) javaflangiC
=) (86,5%) comysun)midy

H-1)
Isolate 3 f threadld 23
4 |
Find. .. | Refresh |

Total: 12582912 bytes

3. Interact with the object table while the memory monitor is running.

» Click a column header to sort the data. The sorting is case sensitive.

» Click a row and the call stack tree is displayed in the window to the right of

the table.

— Double-click a folder to browse the call stacks tree to see the methods that
create the object.

— To find a particular method in the call stacks tree, click the Find button
and enter a search string.

— Click Refresh to update the call stacks tree as data is gathered. It is not

refreshed automatically.

4, Take a snapshot of the memory monitor. Because the data changes rapidly it is
convenient to take several snapshots and review them later.

Click the "Save session to file" icon above the graph and specify a file name and
location for the monitor data. The automatically supplied extension is .mms.

5. Exit the application.

Some applications contain multiple MIDlets.

s When you exit a MIDlet the table data is cleared.

s The graph data is not cleared when you exit a MIDlet. The graph data you see
is cumulative for this emulator session. The memory monitor plots session

Monitoring Memory 11-3

Viewing a Session Snapshot

data for any MIDlet run on the current emulator until you exit the application
and close the emulator.

11.3 Viewing a Session Snapshot
Follow these steps to reload a memory monitor snapshot.
1. In NetBeans, select Profile >Java ME > Import Memory Monitor Snapshot...
2. Choose an .mms file you saved.

The memory monitor opens in its own tab in the main window. Note the tab
displays the time the snapshot was taken.

11-4 Oracle Java ME SDK Developer's Guide

12

Lightweight Ul Toolkit

The Lightweight UI Toolkit (LWUIT) is a lightweight widget library inspired by Swing
but designed for constrained devices such as mobile phones and set-top boxes.
Lightweight Ul Toolkit supports pluggable theme-ability, a component and container
hierarchy, and abstraction of the underlying GUI toolkit. The term lightweight
indicates that the widgets in the library draw their state in Java source without native
peer rendering.

12.1 LWUIT and the Java ME SDK

LWUIT is an open source project whose source is available at http://lwuit.java.net.

Java ME SDK 3.2 ships with the LWUIT 1.5 library, which is installed as a NetBeans
package. For information on this release, see the product page at:

http://www.oracle.com/technetwork/java/javame/javamobile/download/lwuit/in
dex.html

The Lightweight UI Toolkit Developer’s Guide is available in PDF and HTML formats:

PDF: http://download.oracle.com/javame/dev-tools/lwuit-1.5/LWUIT_
Developer_Guide.pdf

HTML:
http://download.oracle.com/javame/dev-tools/lwuit-1.5/devguide/toc.htm

As an open source project, LWUIT has an independent release schedule. The Java ME
SDK Update Center updates LWUIT when an official binary is released.

It is possible that you might want to use a development version of the LWUIT library.
You can add a newer version as described in Section 12.3, "Add a Different LWUIT
Library".

12.2 LWUIT Resource Editor

The Resource Editor is an independent GUI tool for opening, creating, and editing
resource packages for LWUIT.

To start the resource editor, go to the project view and select a project that uses the
LWUIT library, then select Tools>Java ME > LWUIT Resource Editor.

The Resource Editor has its own help, and tutorials that are accessed from the
Resource Editor’s Help menu. These articles link back to the LWUIT blog. For
traditional documentation, see the "Resources” chapter in the Developer’s Guide
mentioned in Section 12.1, "LWUIT and the Java ME SDK".

Lightweight Ul Toolkit 12-1

Add a Different LWUIT Library

12.3 Add a Different LWUIT Library

The LWUIT library can be added to any CLDC/MIDP or CDC/PBP Project. A library
has typically been installed as a NetBeans module.

1.
2.

Right-click on a project and select Properties.

In the Build category, select Libraries & Resources, and click the Add Library...
button.

In the Add Libraries window, scroll down and select LWUIT and click Add
Library.

You can see the package under Libraries and Resources.

If you have a created a Zip or JAR from the unreleased LWUIT source you can add it
in a similar fashion by pressing the Add Jar/Zip button.

12.4 LWUIT Demos

This release provides new and updated demos and sample code. Most of these demos
are self-evident user interface samples.

Note: Many LWUIT demos access common internet sites and
services through publicly available APIs. To see the demos working as
intended you might have to change your proxy settings or create an
exception in your antivirus software.

LWUITBrowser
From the menu, select Help for an explanation of this demo.
LWUITDemo

This application has demos for many features. From the Menu choose About for a
description of the demo. Choose a subdemo and press the Help soft button for an
explanation.

LWUITIODemo

This application implements 1O features. For example, type LWUIT in the Search
box, choose blog from the Type menu, and press Go. Click the search results to
load the page into your system’s default browser.

LWUITMakeover

This demo features a search performed by distance, title, rating, or relevance.
Search results can be mapped. To "makeover" the demo by choose a different
theme from the Menu.

LWUITSpeed

This demo tests drawing speed for different components. Press the Start button to
cycle through a series of animations. To change the performance you can edit the
frame rate in SpeedMIDlet.java. You can also affect the performance by changing
the emulator’s heap size. In the Device Selector, right-click on the device, select
Properties from the context menu, and change the Heapsize value.

LWUITTimeZone

This application shows a contacts list and provides date and time information for
contacts displayed on the home page. Use + to add contacts and - to remove them.

12-2 Oracle Java ME SDK Developer's Guide

LWUIT Demos

Press the sun symbol to toggle the time format between 24 hour time and civilian
time.

LWUITTipster

The demo is a simple tip calculator. The default service is restaurant staff. To
change the service type, click the up arrow to highlight the service types. Use the
right or left arrows to highlight a service type, then click the select button.

Lightweight Ul Toolkit 12-3

LWUIT Demos

12-4 Oracle Java ME SDK Developer's Guide

13

Security and MiDlet Signing

The SDK provides tools to sign MIDlet suites, manage keys, and manage root
certificates.

MIDP 2.0 (JSR 118) includes a comprehensive security model based on protection
domains. MIDlet suites are installed into a protection domain that determines access to
protected functions. The MIDP 2.0 specification also includes a recommended practice
for using public key cryptography to verify and authenticate MIDlet suites.

The general process to create a cryptographically signed MIDlet suite is as follows:

1. The MIDlet author, probably a software company, buys a signing key pair from a
certificate authority (the CA).

2. The author signs the MIDlet suite with the signing key pair and distributes their
certificate with the MIDlet suite.

3. When the MIDlet suite is installed on the emulator or on a device, the
implementation verifies the author's certificate using its own copy of the CA's root
certificate. Then it uses the author's certificate to verify the signature on the MIDlet
suite.

4. After verification, the device or emulator installs the MIDlet suite into the security
domain that is associated with the CA's root certificate.

For definitive information, consult the MIDP 2.0 specification. For an overview of
MIDIet signing using the Oracle Java ME SDK, read the article Understanding MIDP
2.0’s Security Architecture, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/permissions/.

If you need more background on public key cryptography, try the article MIDP
Application Security 1: Design Concerns and Cryptography, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/securityl/. See
the following topics:

= Section 13.1, "Security Domains"

= Section 13.2, "Setting Security Domains"

= Section 13.3, "Signing a Project"

= Section 13.4, "Managing Keystores and Key Pairs"
= Section 13.5, "Managing Root Certificates"

13.1 Security Domains
The SDK supports the following security domains:

Security and MIDlet Signing 13-1

Setting Security Domains

minimum. All permissions are denied to MIDlets in this domain.

maximum. All permissions are granted to MIDlets in this domain. Maximum is the
default setting.

unidentified_third party. Provides a high level of security for applications whose
origins and authenticity cannot be determined. The user is prompted frequently when
the application attempts a sensitive operation.

identified_third party. Intended for MIDlets whose origins were determined using
cryptographic certificates. Permissions are not granted automatically, but the user is
prompted less often than for the unidentified_third_party domain.

operator. All permissions are denied to MIDlets in this domain.

manufacturer. Intended for MIDlet suites whose credentials originate from the
manufacturer's root certificate.

13.2 Setting Security Domains

In the SDK, when you use Run Project via OTA your packaged MIDlet suite is
installed directly into the emulator where it is placed in a security domain. The
emulator uses public key cryptography to determine the appropriate security domain.

» If the MIDlet or MIDlet suite is not signed, it is placed in the default security
domain.

» If the MIDlet or MIDlet suite is signed, it is placed in the protection domain that is
associated with the root certificate of the signing key's certificate chain. See
Section 13.3, "Signing a Project".

If your project is a MIDlet suite, the entire suite is signed (the individual MIDlets
contained within are not).

13.2.1 Specify the Security Domain for an Emulator

1. In the Device Selection window, right-click on the device and select Properties.
2. Find the Security Domain setting and make a selection from the context menu.

The SDK knows the runtimes the device can support and supplies only possible
domains. The default setting for the sample projects is Maximum. See Section 6.4,
"Setting Device Properties".

13.2.2 Specify the Security Domain for a Project

1. Right-click on a project and select Properties.
2. In the Category area, select Running (the green triangle).
3. Select Regular Execution and check the Security domain box.

In this context regular execution means you are running in the emulator, as
opposed to running OTA.

4. Select the domain from the drop-down menu.

13.3 Signing a Project

Devices use signing information to check an application's source and validity before
allowing it to access protected APIs. For test purposes, you can create a signing key
pair to sign an application. The keys are as follows:

13-2 Oracle Java ME SDK Developer's Guide

Managing Keystores and Key Pairs

= A private key that is used to create a digital signature, or certificate.
= A public key that anyone can use to verify the authenticity of the digital signature.

You can create a key pair with the Keystores Manager as described in Section 13.4,
"Managing Keystores and Key Pairs".

13.3.1 Sign a CLDC Project With a Key Pair

1. Right-click on a project and select Properties.
2. From the Build hierarchy, select Signing.

3. Check the Sign Distribution checkbox.
4

Choose a keystore from the Keystores drop-down menu, or click Open Keystores
Manager to create a new keystore.

The Certificate Details area displays the Alias, Subject, Issuer, and validity dates
for the selected keystore.

5. Choose a key pair alias from the drop-down menu.

A keystore might be accessed by several key pairs, each with a different alias. If
you prefer to use a unique key pair, select Open Keystores Manager and create a
new key pair. See Section 13.4.1.1, "Create a Keystore".

6. Click OK.
See Section 5.4.5, "Obfuscating".

13.3.2 Sign a CDC Project

To sign a CDC project use the JDK jarsigner command from the command line. For
example:

jarsigner.exe -keystore keystore.ks -storepass keystorepwd MyCdcApp.jar dummyCA

13.4 Managing Keystores and Key Pairs

For test purposes, you can create a signing key pair to sign a MIDlet. The Keystores
Manager administers this task, as described in the remainder of this topic, the key pair
consists of two keys:

= A private key that is used to create a digital signature, or certificate.
= A public key anyone can use to verify the authenticity of the signature.

To deploy on a device, you must obtain a signing key pair from a certificate authority
recognized by the device. You can also import keys from an existing Java SE platform
keystore.

The following topics describe the user interface:

= Section 13.1, "Security Domains"

s Section 13.4.1.3, "Create a New Key Pair"

= Section 13.4.1.4, "Remove a Key Pair"

= Section 13.4.1.5, "Import an Existing Key Pair"

You can also use the command line tools described in Section 14.6, "Command Line
Security Features".

Security and MIDlet Signing 13-3

Managing Keystores and Key Pairs

13.4.1 Working With Keystores and Key Pairs

The Keystores Manager handles creating and using keystores. The keystores known to
the Keystores Manager are listed when you sign a project, as described in Section 5.4.6,
"Signing".

Keystores contain key pairs, which you can also manage from this dialog. You must
select a keystore to access the key pair tools.

13.4.1.1 Create a Keystore

1. Select Tools > Keystores.
The Keystores Manager opens.

2. Click Add Keystore...
The Add Keystores window opens.

3. Choose Create a New Keystore.

4. Supply a name, location, and password.
userhome\My Documents

5. Click OK.

The new keystore appears in the Keystores list.

13.4.1.2 Add an Existing Keystore

1. Select Tools > Keystores.

The Keystores Manager opens.
2. Click Add Keystore.

The Add Keystores window opens.
3. Choose Add Existing Keystore.

4. Browse to the location of the keystore and select the keystore file. The default
location for user-defined keystores is:

userhome\My Documents
5. Select a keystore and Click Open, then click OK.

The existing keystore appears in the Keystores list. You might have to unlock this
keystore, and each key pair within it.

13.4.1.3 Create a New Key Pair

1. Select Tools > Keystores.
The Keystores Manager opens.

2. Select a Keystore in the Keystores area on the left. If you prefer a different
keystore, you can create one as described in Section 13.4.1.1, "Create a Keystore".

Note, you cannot Add a key to the Built-in Keystore, but you can export a key
from it.

3. Click the New... button.
4. Fill in the Create Key Pair dialog:

You must provide an alias to refer to this key pair.

13-4 Oracle Java ME SDK Developer's Guide

Managing Root Certificates

The six Certificate Details fields are provisionally optional. You must complete at
least one field.

Key Pair Alias. The name used to refer to this key pair.
Common Name. Common name of a person, such as "Jane Smith"
Organization Unit. Department or division name, such as "Development”
Organization Name. Large organization name, such as "Sun Microsystems Inc."
Locality Name. Locality (city) name, such as "Santa Clara"
State Name. State or province name, such as "California"
Country. Two-letter country code, such as "US"
You must provide a password at least six characters long.

5. Click OK.

The new key is displayed in the Keys area under its alias. You can now select this
keypair when you sign a project. See Section 13.3, "Signing a Project".

13.4.1.4 Remove a Key Pair
1. Select Tools > Keystores.

2. Inthe Keys area, click a Key Pair.

3. Select Delete. You are asked if you are sure. Click Yes if you are and the delete
proceeds.

13.4.1.5 Import an Existing Key Pair

If you have keys in a Java SE platform keystore that you would like to use for MIDlet
signing, you can import the signing keys to the Java ME SDK.

1. Select Tools > Keystores.
2. Click Add Keystore...
The Add Keystore window opens.
3. Click Add Existing Keystore.
4. Browse to the keystore location.

5. Click OK.

13.5 Managing Root Certificates

The Oracle Java ME SDK command line tools described in Section 14.6.3, "Manage
Certificates (MEKeyTool)" manage the emulator's list of root certificates.

Real devices have similar lists of root certificates, although you typically cannot
modify them. When you deploy your application on a real device, you must use
signing keys issued by a certificate authority whose root certificate is present on the
device. This makes it possible for the device to verify your application.

Each emulator instance has its own _main.ks file located in its appdb directory. For
example: userhome\javame-sdk\3 . 2\work\devicename\appdb.

You can use the -import option to import certificates from these keystores as described
in Section 14.6.3, "Manage Certificates (MEKeyTool)".

Security and MIDlet Signing 13-5

Managing Root Certificates

13-6 Oracle Java ME SDK Developer's Guide

14

Command Line Reference

This topic describes how to operate the Oracle Java ME SDK from the command line
and details the command line tools required to build and run an application.

= Section 14.1, "Run the Device Manager"

= Section 14.2, "Manage Device Addresses (device-address)"
» Section 14.3, "Emulator Command Line Options"

= Section 14.4, "Build a Project from the Command Line"

» Section 14.5, "Packaging a MIDlet Suite (JAR and JAD)"

» Section 14.6, "Command Line Security Features"

"

= Section 14.7, "Generate Stubs (wscompile)

14.1 Run the Device Manager

The device manager is a component that runs as a service. It detects devices (real or
emulated) that conform to the Unified Emulator Interface Specification
(http://java.sun.com/j2me/docs/uei_specs.pdf), version 1.0.2. The Device
Manager automatically restarts every time you use the SDK. You can manually launch
the device manager from a script or a command line.

installdir\bin\device-manager.exe

To see a log of activities, launch the device manager with the -XenableOutput option.

14.2 Manage Device Addresses (device-address)

installdir\bin\device-address is a tool for viewing, adding, and removing devices
that the SDK is not able to discover automatically. The Microsoft device emulator is an
example of such a device. The syntax is:

Table 14-1 Device Address Commands

Command Action

add address_type address Add the specified address.

del address_type address Delete the specified address.
list List all addresses.

list address_type List the specified address type.

Command Line Reference 14-1

Emulator Command Line Options

For example, the following command adds a device:

installdir\bin\device-address.exe add ip 192.168.1.2

14.3 Emulator Command Line Options

You can launch the emulator independent of the GUI using bin\emulator. The syntax
is as follows:

emulator options

The general options are as follows:

Table 14-2 Emulator Commands

Command Action

-classpath path Specifies a search path for application classes. The path consists
—cp path of directories, ZIP files, and JAR files separated by semicolons.
-Dproperty=value Sets a system property value.

-help Display a list of valid options.

-version Display version information about the emulator.
-Xdevice:devicename Run an application on the emulator using the given device

instance name.

-Xquery Print emulator skin information on the standard output stream

and exit immediately. The information includes the skin name,
screen size, and other capabilities.

This is a simple example of running the emulator from the command line:

emulator.exe -Xdescriptor:"C:\Program Files\Java_ME_platform_SDK_3.2\apps\Games\dist\Games.jad"
-Xdevice:JavaMEPhone?2

emulator.exe also supports Section 14.3.1, "MIDlet Options", Section 14.3.2, "CDC
Options", and Section 14.3.3, "Debugging and Tracing Options".

14.3.1 MIDlet Options

Options for running MIDlets in the emulator are as follows:

-Xautotest:JAD-file-URL

Run in autotest mode. This option installs a MIDlet suite from a URL, runs it,
removes it, and repeats the process. The purpose is to run test compatibility kits
(TCKs) with the emulator, using a test harness such as JT Harness
(http://jtharness.java.net), or Java Device Test Suite (JDTS
http://java.sun.com/products/javadevice/overview.html. For example:

emulator -Xautotest:http://localhost:8080/test/getNextApp.jad

Given the above command, -Xautotest causes the emulator to repeatedly install,
run, and remove the first MIDlet from the MIDlet suite provided through the
HTTP URL. When the emulator starts, it queries the test harness, which then
downloads and installs the TCK MIDletAgent.

-Xdescriptor:jad-file

Install a MIDlet, run it, and uninstall it after it finishes.

14-2 Oracle Java ME SDK Developer's Guide

Emulator Command Line Options

-Xdomain:domain-name

Set the MIDlet suite's security domain.

The Xjam argument runs an application remotely using the Application Management
Software (AMS) to runover-the-air (OTA) provisioning. If no application is specified
with the argument, the graphical AMS is run.

-Xjam[:=<JAD-file-url> |force|list|storageNames]|
run=[<storageNames> | <StorageNumber>] | remove=[<storage name> | <storage
number> | all]]

Installs the application with the specified JAD file onto a device.

s force.If an existing application has the same storage name as the application
to be installed, force removes the existing application before installing the
new application.

= list. List all the applications installed on the device and exit. The list is
written to standard output before the emulator exits.

m storageNames. List all applications installed on the device. The list is written
to standard output before the emulator exits. Each line contains one storage
name in numerical order. The list contains only the name so the order is
important. For example the first storage name must be storage number 1.

-Xjam:run= [<sforage-name> | <storage-number>]

Run a previously installed application. The application is specified by its valid
storage name or storage number.

-Xjam: remove= [<storage-name> | <storage-number> | all]

Remove a previously installed application. The application is identified by its
valid storage name or storage number. If all is supplied, all previously installed
applications are removed.

transient=jad-file-url

If specified, transient is an alias for installing, running, and removing the
application with the specified JAD file.

This example illustrates OTA installation:

emulator -Xjam:install=http://www.myserver.com/apps/MyApp.jad

-Xdevice:JavaMEPhone2

The above command returns the ID of the installed application. When you obtain the
ID you can run it with: emulator=Xjam: run=ID

See also Section 14.3, "Emulator Command Line Options" and Section 14.3.3,
"Debugging and Tracing Options".

14.3.2 CDC Options
The following options apply to CDC projects.

-Xmain:main-class-name
Run the main method of a Java class, as in Java SE.
-Xxlet:classpath=class-path, class=fully-qualified-name, [arg=argument] *

Run an Xlet application.

Command Line Reference 14-3

Emulator Command Line Options

See also Section 14.3, "Emulator Command Line Options" and Section 14.3.3,
"Debugging and Tracing Options".

14.3.3 Debugging and Tracing Options

You can use the following options with the emulator for debugging and tracing CLDC
projects.

-Xdebug

Enable runtime debugging. The -Xrunjdwp option must be called to support
-Xdebug.

-Xrunjdwp:debug-settings

Start a Java debug wire protocol session, as specified by a list of comma-separated
debug settings. Both -Xrunjdwp and -Xdebug must be called.

Valid debug settings include the following:

» transport=transport-mechanism - Transport mechanism used to communicate
with the debugger. The only transport mechanism supported is dt_socket.

» address=host:port - Transport address for the debugger connection. If host is
omitted, localhost is assumed to be the host machine.

» server={yln}- Starts the debug agent as a server. The debugger must connect
to the port specified. The possible values are y and n. Currently, only y is
supported (the emulator must act as a server).

= suspend={y|n} - The possible values are y and n.

When suspend is set to 7, the application starts immediately and the debugger
can be attached at any time during its run.

When suspend is set to y, the application does not start until a debugger
attaches to the debugging port and sends a resume command, so an
application can be debugged from the very beginning.

This example shows debugging:

emulator.exe -Xdevice:JavaMEPhonel -Xdebug -Xrunjdwp:transport=dt_socket, suspend=n,
server=y,address=51307 -Xdescriptor:..\apps\Games\dist\Games.jad -Xdomain:maximum

With the emulator running you can attach a debugger.

To attach a graphical debugger from NetBeans, select Debug > Attach Debugger.

To attach a command line debugger, see:
http://download.oracle.com/javase/6/docs/technotes/tools/windows/jdb.ht
ml

A sample command would be:

jdk/bin/jdb -connect
com.sun.jdi.SocketAttach:hostname=1localhost,port=51307

14.3.4 Command Line Profiling

To add profiling to an emulator session, use:

-Xprofile: [system=<y|n>], file=filename.prof

For example:

emulator.exe -Xdevice:JavaMEPhonel

14-4 Oracle Java ME SDK Developer's Guide

Build a Project from the Command Line

-Xdescriptor:"C:\Documents and Settings\user\My Documents\NetBeansProjects\Games\d
ist\Games.jad" -Xprofile:file=C:\temp\Games.prof

When you launch the emulator and profile an application from the command line the
data profile you save has a different format than .nps files created with the Profile
option in the NetBeans IDE.

Files created from the command line should be given the extension .prof to
distinguish them from IDE profiler files.

To view .prof files in the IDE, select Profile > Java ME > Import CPU Profiler
Snapshot... Your file is displayed in a tab labeled with the name of the fiile containing
the snapshot.

When the file is loaded in the IDE you can export the data in .nps form, using the
Export to... feature as described in Section 9.1, "Collecting and Saving Profiler Data in
the IDE", step 5. These files can be loaded using Profile > Java ME > Import CPU
Profiler Snapshot...

14.4 Build a Project from the Command Line

In the user interface, building a project is a single step. Behind the scenes, however,
there are two steps. First, Java source files are compiled into Java class files. Next, the
class files are preverified, which means they are prepared for the CLDC VM. See the
following topics:

= Section 14.4.1, "Check Prerequisites"
= Section 14.4.2, "Compile Class Files"
= Section 14.4.3, "Preverify Class Files"

14.4.1 Check Prerequisites

Before building and running an application from the command line, verify that the jar
command is in your path. To find the version of the development kit, run java
-version at the command line.

14.4.2 Compile Class Files

Use the javac compiler from the Java SE development kit to compile Java source files.
You can use the existing Oracle Java ME SDK project directory structure. Use the
-bootclasspath option to tell the compiler to use the MIDP APIs, and use the -d
option to tell the compiler where to put the compiled class files.

The following example demonstrates how you might compile a MIDP 2.0 application,
taking source files from the src directory and placing the class files in the tmpclasses
directory. Newlines have been added for clarity.

javac -target 1.3 -source 1.3
-bootclasspath ..\..\lib\cldc_10.jar;..\..\1lib\midp2.0.jar
-d tmpclasses
src*.java

For more information on javac, consult the Java SE documentation.

Command Line Reference 14-5

Packaging a MIDlet Suite (JAR and JAD)

14.4.3 Preverify Class Files

The next step is to preverify the class files. The bin directory of the Oracle Java ME
SDK includes the preverify utility. The syntax for the preverify command is as
follows:

preverify files | directories
Some of the options are as follows:

-classpath classpath Specify the directories or JAR files (given as a semicolon-delimited
list) from which classes are loaded.

-d output-directory Specify the target directory for the output classes. This directory
must exist before preverifying. If this option is not used, the
preverifier places the classes in a directory called output.

Following the example for compiling, use the following command to verify the
compiled class files. As before, newlines are added for clarity.

preverify.exe
-classpath ..\..\lib\cldcapilO.jar;..\..\lib\midpapi20.jar
-d classes
tmpclasses

As a result of this command, preverified class files are placed in the classes directory.
If your application uses WMA, MMAP], or other versions of CLDC or MIDP, be sure
to include the relevant . jar files in the classpath.

14.5 Packaging a MIDlet Suite (JAR and JAD)

To package a MIDlet suite manually you must create a manifest file, an application
JAR file, and finally, a MIDlet descriptor (also known as a Java Application Descriptor
or JAD).

Create a manifest file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the manifest file. For example, a
manifest might have the following contents:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet

MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.1

Create a JAR file containing the manifest as well as the suite's classes and resource
files. To create the JAR file, use the jar tool that comes with the Java SE software
development kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .
The arguments are as follows:

» file - JAR file to create.
= manifest - Manifest file for the MIDlets.
s class-directory - Directory containing the application's classes.

» resource-directory - Directory containing the application's resources.

14-6 Oracle Java ME SDK Developer's Guide

Command Line Security Features

For example, to create a JAR file named MyApp. jar whose classes are in the classes
directory and resources are in the res directory, use the following command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the JAD file. This file must have the
extension .jad.

Note: You must set the MIDlet-Jar-Size entry to the size of the
JAR file created in the previous step.

For example, a JAD file might have the following contents:

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

14.6 Command Line Security Features

The full spectrum of the Oracle Java ME SDK's security features are also available from
the command line. You can adjust the emulator's default protection domain, sign
MIDlet suites, and manage certificates.

= Section 14.6.1, "Change the Default Protection Domain"
= Section 14.6.2, "Sign MIDlet Suites (jadtool)"
= Section 14.6.3, "Manage Certificates (MEKeyTool)"

14.6.1 Change the Default Protection Domain

To adjust the emulator's default protection domain, use the following option with the
emulator command:

-Xdomain:domain-type

Assigns a security domain to the MIDlet suite. Enter an appropriate security domain
as described in Section 13.1, "Security Domains". For example, -Xdomain:maximum.

14.6.2 Sign MIDlet Suites (jadtool)

jadtool is a command-line interface for signing MIDlet suites using public key
cryptography according to the MIDP 2.0 specification. Signing a MIDlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. jadtool is also capable of signing payment update (JPP) files.

jadtool only uses certificates and keys from Java SE platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool is packaged in a JAR file. To run it, open a command prompt, change the
current directory to installdir\bin, and enter the following command:

jadtool command
The commands are as follows:

Command Line Reference 14-7

Command Line Security Features

s -help
Prints the usage instructions for jadtool.

» -addcert -aliasalias [-keystore keystore] [-storepass password] [-storetype
PKCS11] [-certnum number] [-chainnum number] [-encoding encoding]
-inputjad | inputjpp input-file -outputjad | outputjpp output-file

Adds the certificate of the key pair from the given keystore to the JAD file or JPP

file.
s [-jarfile <filename>] -keypass <password> -alias <key alias> -storepass
<password> [-keystore <none|keystore>] [-storetype <PKCS11>] [-encoding

<encoding>] -inputjad <filename> -outputjad <filename>

Adds the digital signature of the given JAR file to the specified JAD file. The
default value for -jarfile is the MIDlet-Jar-URL property in the JAD file.

» -showcert [([-certnum <number>] [-chainnum <number>]) | [-alll]
[-encoding <encoding>]-inputjad filename | -inputjpp <filename>

Displays information about certificates in JAD and JPP files.

» -addjppsig -keypass <password> -alias <key alias> [-storepass <password>]
[-keystore <none|keystore>] [-storetype <PKCS11>] [-encoding
<encoding>] -inputjpp <filename> -outputjpp <filename>

Adds a digital signature of the input JPP file to the specified output JPP file.
The default values are as follows:
m -encoding - UTF-8
s -jarfile-MIDlet-Jar-URL property in the JAD file
s -keystore - SHOME\ .keystore
m -certnum-1

s -chainnum-1

14.6.3 Manage Certificates (MEKeyTool)

MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keytool utility that comes with the Java SE SDK. The
purpose of the keys is to facilitate secure HTTP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography Extension
keystore. You can create one using the Java SE keytool utility (found in the \bin
directory for your JDK). See:

http://java.sun.com/javase/7/docs/technotes/tools/windows/keytool.html

To run MEKeyTool, open a command prompt, change the current directory to
installdir\bin, and enter the following command:

installdir\bin\mekeytool.exe -command
The command keywords follow.

The Oracle Java ME SDK contains a default ME keystore named _main.ks, which is
located in:

installdir\runtimes\cldc-hi\appdb

This keystore includes all the certificates that exist in the default Java SE platform
keystore that comes with the Java SE installation.

14-8 Oracle Java ME SDK Developer's Guide

Generate Stubs (wscompile)

Also, each emulator instance has its own _main.ks file located in
userhome\ javame-sdk\3. 2\work\devicename\appdb. If you do not specify a value for
MEkeystore, a new key is added to the default ME key for this emulator instance.

If you do not specify a value for -keystore, the default keystore is used:
userhome\keystore.ks
s -help

Prints the usage instructions for MEKeyTool.

» -import -alias aliazs [-keystore JCEkeystore] [-MEkeystore filename] [-storepass
storepass] [-domain domain-name]

Imports a public key into the ME keystore from the given JCE keystore using the
given Java Cryptography Extension keystore password. and the default Java
Cryptography Extension keystore is userhome\ . keystore.

» -list [-MEkeystore filename]

Lists the keys in the ME keystore, including the owner and validity period for
each.

s -delete (-owner owner | -number key-number) [-MEkeystore filename]

Deletes a key from the given ME keystore with the given owner.

14.7 Generate Stubs (wscompile)

Mobile clients can use the Stub Generator to access web services. The wscompile tool
generates stubs, ties, serializers, and WSDL files used in Java API for XML (JAX) RPC
clients and services. The tool reads a configuration file, that specifies either a WSDL
file, a model file, or a compiled service endpoint interface. The syntax for the stub
generator command is as follows:

wscompile [options] configuration-files

Table 14-3 lists the wscompile options:

Table 14-3 wscompile Options

Option

Description

-gen

Same as -gen:client

-gen:client

Generates client artifacts (stubs, etc.)

-import Generates interfaces and value types only

-d output directory Specifies where to place generated output files
- £ :features Enables the given features

-g Generates debugging info

-features:features

Same as -f:features

-httpproxy: host:port

Specifies a HTTP proxy server (port defaults to 8080)

-model file

Writes the internal model to the given file

-0

Optimizes generated code

-s directory

Specifies where to place generated source files

-verbose

Outputs messages about what the compiler is doing

-version

Prints version information

Command Line Reference 14-9

Generate Stubs (wscompile)

Table 14-3 (Cont.) wscompile Options

Option Description

-cldcl.0 Sets the CLDC version to 1.0 (default). Float and double
become String.

-cldel.1 Sets the CLDC version to 1.1 (float and double are OK)

-cldcl.0info

Shows all CLDC 1.0 information and warning messages.

Note:

requires a comma-separated list of features.

Exactly one -gen option must be specified. The -f option

Table 144 lists the features (delimited by commas) that can follow the -f option. The
wscompile tool reads a WSDL file, compiled service endpoint interface (SEI), or model
file as input. The Type of File column indicates which of these files is used with a

particular feature.

Table 14-4 Command Supported Features (-f) for wscompile

Option Description Type of File
explicitcontext Turns on explicit service context mapping ~ WSDL
nodatabinding Turns off data binding for literal encoding ~ WSDL
noencodedtypes Turns off encoding type information WSDL, SEI, model
nomultirefs Turns off support for multiple references WSDL, SEI, model
novalidation Turns off full validation of imported WSDL = WSDL
documents
searchschema Searches schema aggressively for subtypes = WSDL
serializeinterfaces Turns on direct serialization of interface WSDL, SEI, model
types
wsi Enables WSI-Basic Profile features (default) WSDL
resolveidref Resolves xsd: IDREF WSDL
donotunwrap No unwrap. WSDL
Examples

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -O -cldcl.l -d generated config.xml

14-10 Oracle Java ME SDK Developer's Guide

15

15.1

Logs

Oracle Java ME SDK uses the log4j logging facility to manage Device Manager and
Device Instance logs.

Device Manager Logs

The device manager log is placed into:

userhome\ javame-sdk\version\log\device-manager.log

Logging levels can be configured in the following XML file:
installdir\toolkit-1lib\process\device-manager\conf\log4j.xml

A priority value for the categories com. sun or VM can be set to the following levels:
ERROR, WARN, INFO, DEBUG, TRACE (ordered from least to most verbose).

<category name="com.sun">
<priority value="DEBUG"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

<category name="VM">
<priority value="INFO"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

15.2 Device Instance Logs

Each device (or emulator) instance writes its own log into its directory. See Table 8-1 to
correlate the emulator number and the device name.

userhome\ javame-sdk\version\work\device-name\device. log

log4j.xml controls the verbosity of the device instance logs, as described in
Section 15.1, "Device Manager Logs".

Logs 15-1

Device Instance Logs

15-2 Oracle Java ME SDK Developer's Guide

16

API Support

The Oracle Java ME SDK supports many standard Application Programming
Interfaces (APIs) defined through the Java Community Process (JCP) program. JCP
APIs are often referred to as JSRs, named after the Java Specification Request process.
JSRs that are not part of the platform are referred to as "optional packages."

The CLDC/MIDP platform is based on the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139).

The IMP-NG platform is base on Information Module Profile - Next Generation (IMP-NG)
(TSR 228).

See Table 16-1 for a full list of supported JCP APIs. The Oracle Java ME SDK provides
documentation describing how certain APIs are implemented in the SDK. Many
supported APIs do not require special implementation considerations, so they are not
discussed in this help set. Section 16.2, "Oracle APIs" describes Oracle APIs provided
to support the IMP-NG platform.

For convenience the Javadocs that are the intellectual property of Oracle are in your
installation’s \docs directory. The remainder can be downloaded from
http://jcp.org.

16.1 JCP APIs

Table 16-1 Supported JCP APIs

JSR, API Name, URL

JSR75,PIM and File =~ PDA Optional Packages for the J2ME Platform
http://jcp.org/en/jsr/detail?id=75

JSR 82, Bluetooth and Java APIs for Bluetooth
OBEX

http://jcp.org/en/jsr/detail?id=82

JSR 118, MIDP 2.0 Mobile Information Device Profile
http://jcp.org/en/jsr/detail?id=118
JSR 135, MMAPI 1.1 Mobile Media API
http://jcp.org/en/jsr/detail?id=135
JSR 139, CLDC 1.1 Connected Limited Device Configuration
http://jcp.org/en/jsr/detail?id=139
JSR 172, Web Services J2ME Web Services Specification
http://jcp.org/en/jsr/detail?1d=172

API| Support 16-1

Oracle APIs

Table 16-1 (Cont.) Supported JCP APIs

JSR, API Name, URL

JSR 177, SATSA Security and Trust Services API for Java ME
http://jcp.org/en/jsr/detail?i1d=177

JSR 179, Location Location API for Java ME
http://jcp.org/en/jsr/detail?id=179

JSR 184, 3D Graphics ~ Mobile 3D Graphics API for [2ME
http://jcp.org/en/jsr/detail?id=184

JSR 205, WMA 2.0 Wireless Messaging API
http://jcp.org/en/jsr/detail?id=205

JSR 209, AGUI 1.0 Advanced Graphics and User Interface Optional Package for the [2ME

Platform

http://www.jcp.org/en/jsr/detail?id=209

JSR 211, CHAPI Content Handler API

http://jcp.org/en/jsr/detail?id=211

JSR 217, PBP 1.1

Personal Basis Profile 1.1

http://www.jcp.org/en/jsr/detail?id=217

JSR 218, CDC 1.1

Connected Device Configuration 1.1

http://jcp.org/en/jsr/detail?id=218

JSR 226, SVG

Scalable 2D Vector Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=226

JSR 228, IMP-NG

Information Module Profile - Next Generation (IMP-NG)
http://jcp.org/en/jsr/detail?id=228

JSR 234, AMMS Advanced Multimedia Supplements
http://jcp.org/en/jsr/detail?id=234
JSR 239 Java Binding for OpenGL ES API
http://jcp.org/en/jsr/detail?id=239
JSR 256 Mobile Sensor API
http://jcp.org/en/jsr/detail?id=256
JSR 257 Contactless Communication API
http://jcp.org/en/jsr/detail?id=257
JSR 280, XML API XML API for Java ME

http://jcp.org/en/jsr/detail?id=280

16.2 Oracle APIs

The IMP-NG project type supports developing applications for the Oracle Java ME
Embedded 3.2 runtime. The Java ME Embedded 3.2 runtime includes a number of
standard JSR APIs as well as additional Oracle APIs for embedded use cases. These
new APIs are:

s Device Access API

The Device Access API provides interfaces and classes for communicating with
and controlling peripheral devices.

16-2 Oracle Java ME SDK Developer's Guide

Oracle APIs

s Logging API

The Logging API provides a lightweight and extensible framework based on the
concepts of the java.util.logging package, enabling applications to log messages in
a variety of formats and using custom handlers.

= AMS API

The AMS API provides an interface to the application management capabilities of
the runtime to allow authorized applications to interact with and extend the
application management system.

s AccessPoint API

The AccessPoint API is an extension to the Generic Connection Framework and
enables applications to select among multiple access points if the underlying
platform provides more than one data access point.

The Javadocs for these APIs are in your installation’s \docs directory.

API| Support 16-3

Oracle APIs

16-4 Oracle Java ME SDK Developer's Guide

17

JSR 75: PDA Optional Packages

The Oracle Java ME SDK supports JSR 75, the PDA Optional Packages (PDAP) for the
J2ME Platform. JSR 75 includes two independent APIs:

» The FileConnection optional package allows MIDlets access to a local device file
system.

s The Personal Information Management (PIM) optional package includes APIs for
manipulating contact lists (address book), calendars, and to-do lists.

This chapter describes how the Oracle Java ME SDK implements the FileConnection
and PIM APIs.

17.1 FileConnection API

On a real device, the FileConnection API typically provides access to files stored in the
device's memory or on a memory card.

In the Oracle Java ME SDK emulator, the FileConnection API enables MIDlets to access
files stored on your computer's hard disk.

The files that can be accessed using the FileConnection optional package are stored in
the following subdirectory:

Documents and Settings\user\javame-sdk\3.2\work\devicename\appdb\filesystem

For example, the JavaMEPhonel emulator instance comes with a root directory installed
named root1l. Each subdirectory of filesystemis called a root. The Oracle Java ME
SDK provides a mechanism for managing roots.

While the emulator is running, choose Device > File Connection. The External Events
Generator opens with the File Connection tab selected.

In the File Connection panel you can mount, unmount, or delete filesystem roots.
Mounted roots are displayed in the top list, and unmounted roots are moved to the
bottom list. Mounted root directories and their subdirectories are available to
applications using the FileConnection API. Unmounted roots can be remounted in the
future.

s To add a new empty filesystem root directory, click Mount Empty and fill in a
name for the directory.

= To mount a copy of an existing directory, click Mount Copy, and browse to choose
a directory you want to copy. When the File System Root Entry dialog opens, enter
the name for this root. A deep copy of the selected directory is placed into the
emulator's filesystem with the specified root name.

JSR 75: PDA Optional Packages 17-1

PIM API

= Tomake a directory inaccessible to the FileConnection API, select it in the list and
click Unmount. The selected root is unmounted and moved to the Unmounted
roots list.

s To completely remove a mounted directory, select it and click Unmount & Delete.

s To remount an unmounted directory, select it and click Remount. The root is
moved to the mounted roots list.

s To delete an unmounted directory, select it and click Delete. The selected root is
removed from the list.

17.2 PIM API

The Oracle Java ME SDK emulator stores contact, calendar, and to-do information in
standard files on your desktop computer's hard disk. All information is stored in:

Documents and Settings\user\javame-sdk\3.2\work\devicename\appdb\PIM

Each device instance has its own data. Lists are stored in subdirectories of the
contacts, events, and todo directories. For example, a contact list called Contacts is
contained in installdir\appdb\PIM\contacts\Contacts.

Inside the list directory, items are stored in vCard (.vcf) or vCalendar (.vcs) format
(see http://www.imc.org/pdi/). Contacts are stored in vCard format, while calendar
and to-do items are both stored in vCalendar format.

17.3 Running PDAPDemo

PDAPDemo shows how to use the PIM and FileConnection APIs that are part of the JSR
75 specification.

17.3.1 Browsing Files

The default emulators have one directory, root1. This directory is located at:
userhome\ javame-sdk\version \work\devicename\appdb\ filesystem\rootl

For test purposes, copy files or even directories into rootl. You can also add other
directories at the same level as rootl.

Now open and run the PDAPDemo project.

s Launch the FileBrowser MIDlet. You see a directory listing, and you can browse
through the directories and files you have placed there.

» Select a directory and press the View soft button to enter it.

= Using the Menu commands you can view a file or see its properties. Try selecting
the file and choosing Properties or View from the menu.

You can view the content of text files in the browser.

s Try using the External Events Generator to unmount and mount directories.
Unmounted directories are not visible in the application running on the emulator.

17.3.2 The PIM API

The JSR75 PIM APIs example demonstrates how to access personal information, such
as contact lists, calendars, and to-do lists.

= After you launch the example, choose a type of list from the main menu.

17-2 Oracle Java ME SDK Developer's Guide

Running PDAPDemo

In this example each type of list works the same way and each list type contains a
single list. For example, if you choose Contact Lists, there is a single contact list
called Contacts. Event Lists contains a single list called Events, and To-Do Lists
contains a single list named To Do.

= After you have selected a list type and chosen the specific list, you can view all the
items in the list. If this is the first time you have run the example, the list might be
empty.

s Toadd an item, choose New from the menu. The application prompts you for a
Formatted Name for the item.

To add more data fields to this item choose the menu item Add Field. You see a list
of field names. Pick as many as you like. You can fill in the fields at any time.

s To save the new item, choose Commit from the menu.

To return to the list, choose the Back command. You'll see the item you just created
in the list.

The items that you create are stored in standard vCard or vCalendar format in this
directory:

userhome\ javame-sdk\3.2\work\device-name\appdb\PIM
The PIM API allows for exporting contact, calender, and to-do items in a standard

format. The exact format depends on the list type. When you are viewing an item in
any list, the menu contains a command for viewing the exported item.

For example, when you are viewing a contact list item, the menu contains Show
vCard. When you choose this command, the exported item is shown on the screen.
Calendar items and to-do items both get exported as vCalendar.

JSR 75: PDA Optional Packages 17-3

Running PDAPDemo

17-4 Oracle Java ME SDK Developer's Guide

18

JSR 82: Bluetooth and OBEX Support

This chapter describes how the Oracle Java ME SDK implements the Bluetooth and
OBEX APIs.

The Oracle Java ME SDK emulator supports JSR 82, the Java APIs for Bluetooth. The
emulator is fully compliant with version 1.1 of the specification, which describes
integration with the push registry. JSR 82 includes two independent APIs:

» The Bluetooth API provides an interface to Bluetooth wireless networking,
including device discovery and data exchange.

The Oracle Java ME SDK emulator enables you to develop and test applications
that use Bluetooth without having actual Bluetooth hardware. The SDK simulates
a Bluetooth environment for running emulators. Multiple emulator instances can
discover each other and exchange data using the Bluetooth API.

For an example, see Section 18.2, "Running the Bluetooth Demo".

= The OBEX API allows applications to use the Object Exchange (OBEX) protocol
over Bluetooth or other communication channels.

The Oracle Java ME SDK implements OBEX transfer over simulated Bluetooth and
TCP connections.

For an example, see Section 18.3, "Running the OBEX Demo".

18.1 Setting OBEX and Bluetooth Properties

The Oracle Java ME SDK enables you to configure the Bluetooth and OBEX simulation
environment. Because the simulation requires a sender and receiver, Bluetooth settings
are configured separately for each device. Follow these steps to set device properties.

1. In the device selector right-click on a CLDC device and select Properties.

The device properties are displayed in the Properties window. If you do not see
this window, select Window > Properties from the NetBeans toolbar.

2. Scroll down to see the Bluetooth and OBEX properties. When you click a property
a description is shown in the description area. If you can not see this area, right
click a property and select Show Description Area.

The System Properties can be retrieved in an application using the getProperty ()
method in javax.bluetooth.LocalDevice. The Bluetooth properties are fully
described in the JSR 82 specification.

s bluetooth.sd.trans.max

The maximum number of concurrent service discovery transactions. The default is
8.

JSR 82: Bluetooth and OBEX Support 18-1

Running the Bluetooth Demo

bluetooth.sd.attr.retrievable.max

The maximum number of service attributes to be retrieved per service record.The
default is 16.

bluetooth.master.switch
Enable/disable a master/slave switch. Enabled by default.
bluetooth.12cap.receiveMTU.max

The maximum ReceiveMTU size in bytes supported in L2ZCAP. This is the
maximum payload size this connection can accept.

The default value is 672.
OBEX Maximum Packet Length
The default is 4096 bytes.

The maximum packet length affects how much data is sent in each packet between
emulators. Shorter packet values result in more packets and more packet
overhead.

Device is discoverable
Enabled by default.
Authentication is enabled
Enabled by default.
Encryption is enabled
Enabled by default.
Authorization is enabled

Enabled by default.

18.2 Running the Bluetooth Demo

This application contains MIDlets that demonstrate the use of JSR 82's Bluetooth APL
It shows how images can be transferred between devices using Bluetooth.

You must run two emulator instances to see this process, and each device must have a
different phone number.

1.

Use JavaMEPhonel to launch Bluetooth Demo, then launch Bluetooth Demo on
JavaMEPhone2.

The demo gives you a choice of Server or Client.
On the first emulator, highlight Server and use the right softbutton to choose OK.

The server starts and displays a list of images. At the beginning, none of the
images are available on the Bluetooth network.

Select the image you want to make available.
Press Publish image (the right soft button). The icon color changes from purple to
green, indicating it is published.

On the second emulator running the Bluetooth Demo, highlight Client and choose
OK. The MIDlet displays "Ready for images search". Click the Find soft button.
The MIDlet finds the other emulator and gets a list of published images. Select one
from the list and choose Load.

18-2 Oracle Java ME SDK Developer's Guide

Running the OBEX Demo

s If you are running the demonstration in a trusted protection domain, the
image is transferred using simulated Bluetooth and is shown on the client
emulator.

s If you are not running in a trusted protection domain, the first emulator (the
server) displays a prompt asking if you want to authorize the connection from
the client. Choose Yes. The image is displayed in the client emulator.

18.3 Running the OBEX Demo

This application shows how to transfer image files between emulator instances using
the OBEX API. This demonstration shows the use of OBEX over a simulated infrared
connection.

1.

Launch two instances of the emulator. One listens for incoming connections, while
the other attempts to send an image.

For example, right-click ObexDemo, select Run With... and choose the device
JavaMEPhonel. Repeat and choose JavaMEPhone?2.

In the first emulator, choose Receive Image. (Depending on your security level,
the application warns that an OBEX connection allows other devices to talk to
yours and asks, "Is it OK to make the connection?" Choose Yes.) Choose Start to
run the application. The listener emulator displays a screen reading "Waiting for
connection".

In the second emulator (the sender), choose Send Image and press the Start soft
key. Select an image from the list and choose Send. (Depending on your security
level, the application warns that the demo wants to make an outgoing client
connection, and asks if it is OK. Choose Yes.) The Send Image utility uploads the
image.

In the listening emulator, the utility displays information about the incoming
image and asks "Would you like to receive it?" Choose yes.

The image you selected is transferred over the simulated infrared link and
displayed on the first emulator.

JSR 82: Bluetooth and OBEX Support 18-3

Running the OBEX Demo

18-4 Oracle Java ME SDK Developer's Guide

19

JSR 135: Mobile Media APl Support

JSR 135, the Mobile Media API (MMAPI), provides a standard API for rendering and
capturing time-based media, like audio or video. The API is designed to be flexible
given the media formats, protocols, and features supported by various devices. See the
following topics:

= Section 19.1, "Media Types"
= Section 19.1.1, "Media Capture"
= Section 19.2, "MMAPI MIDlet Behavior"
= Section 19.3, "Ring Tones"
= Section 19.3.1, "Download Ring Tones"
s Section 19.3.2, "Ring Tone Formats"
= Section 19.4, "Running AudioDemo"
= Section 19.5, "Running MMAPIDemos"
For information on programming with MMAPI, see the following articles:

Mobile Media API Overview:
http://developers.sun.com/techtopics/mobility/apis/articles/mmapi_
overview/

The J2ME Mobile Media API: http: //www.jcp.org/en/jsr/detail?id=135

19.1 Media Types

The emulator's MMAPI implementation supports the following media types.

MIME Type Description

audio/amr* Adaptive Multi-Rate Narrow Band
audio/midi MIDI files

audio/mpeg* MP3 files

audio/mp4* MP4 Audio files

audio/sp-midi Scalable Polyphony MIDI
audio/x-tone-seq MIDP 2.0 tone sequence
audio/x-wav* WAV PCM sampled audio
image/gif GIF 89a (animated GIF)

JSR 135: Mobile Media API Support 19-1

MMAPI MIDlet Behavior

MIME Type Description

video/3gpp* Third generation mobile broadband with video
video/mpeg?* MPEG video

video/mp4* MP4 video files

video/avi* Video capture emulation and Audio-Video Interleaved files

In the previous table, an asterisk (*) indicates a media type that requires corresponding
DirectShow filters to be installed on your system. For example, MP3 support might
require an MP3 Splitter and an MP3 Decoder (these might be two separate DirectShow
filters, or they might be combined in one filter). You can use any appropriate filter, but
Java ME SDK 3.2 has only been tested with filters from the K-Lite Mega Codec Pack
4.8.0. If no appropriate DirectShow filters are found on your system, JSR 135 Player
creation for the media type might fail.

19.1.1 Media Capture

The Oracle Java ME SDK emulator supports audio and video capture. Audio capture
is supported using the capture capabilities of the system upon which the emulator
runs.

Video capture is supported by simulating a camera input.

Consult the MobileMediaAPI example application for details and source code that
demonstrates how to capture audio and video.

19.2 MMAPI MIDlet Behavior

MIDlets have a lifecycle that is defined in the MIDP specification. MIDlets can be
paused by events such as incoming phone calls. A well-behaved MIDlet releases
important device resources when it is paused and reallocates or restarts those
resources when the MIDlet is resumed. In the MMAPI arena, stop any Players that are
rendering content when a MIDlet is paused.

The Oracle Java ME SDK prints a message to the console if you pause a MIDlet and it
does not stop its running Players. You can test this feature using the Pausing Audio
Test MIDlet.

The warning message is printed only once for each running emulator.

19.3 Ring Tones

MMAPI plays ring tones, as demonstrated in Section 19.5.1, "Simple Tones" and
Section 19.5.2, "Simple Player". The ring tone formats mentioned here are in common
use. You can download ring tones or create your own.

19.3.1 Download Ring Tones

Ring tone files can be downloaded from many internet sites, including the following:
s http://www.convertyourtone.com/

s http://www.phonezoo.com

19-2 Oracle Java ME SDK Developer's Guide

Ring Tones

19.3.2 Ring Tone Formats

This section provides samples of several formats
= RTTTL, the Ringing Tones text transfer language format, is explained at
http://en.wikipedia.org/wiki/Ring Tone_Transfer_Language

= Nokia Composer
This is a rendition of Beethoven's 9th symphony in Nokia Composer format:
l6gl,16gl,16gl1,4#dl,16£1,16£1,16£1,4d1,16g1,16g9l,16gl,16#dl,
lée#gl,16#gl,16#gl,16gl,16#d2,16#d2,164#d2,4c2,16gl,16gl,16gl,
l6dl,1l6#qgl,l6#gl,16%#gl, 16gl,16£f2,16£2,16£2,4d2

» Ericsson Composer
Beethoven's Minuet in G:
ab+cb+cb+cb+Cp+daBp+cgA
pfogagagagApbfGpacetF
Beethoven's 9th symphony theme:

fftft#CctdtdtdCcpftfftctf#f #f£f+#c+#c+#c#A
fffc#f L +#d+4#d+4#4d

= Siemens Composer Format
Inspector Gadget theme:
C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8)
P(1/16) Dis2(1/8) P(1l/16) Fis2(1/8) P(1/16)
D2(1/8) P(1/16) F2(1/8) P(1/16) Dis2(1/8)
P(1/16) C2(1/8) D2(1/16) Dis2(1/8) F2(1/16)
G2(1/8) P(1/16) C3(1/8) P(1/16) B2(1/2) P(1/4)
C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8) P(1l/16)
Dis2(1/8) P(1/16) Fis2(1/8) P(1/16) D2(1/8) P(1/16)
F2(1/8) P(1/16) Dis2(1/8) P(1/16) C3(1/8) B2(1l/16)
Ais2(1/8) A2(1/16) Gis2(1l/2) G2(1/8) P(l/16) C3(1/2)
= Motorola Composer
Beethoven's 9th symphony:
4 F2 F2 F2 C#4 D#2 D#2 D#2 C4 R2 F2 F2 F2 C#2 F#2 F#2
F#2 F2 C#+2 C#+2 CH#+2 A#4 F2 F2 F2 C2 F#2 F#2 F#2 F2
D#+2 D#+2 D#+2
= Panasonic Composer
Beethoven's 9th symphony:
444** 444*%* 444xx 1111* 4444** 4444** 4444** 111+
0% 444** 444xx 444*x 1111** 4444** 4444** 4444**
444%* 11x* 11** 11** 6666* 444** 444** 444*x 1]1**

JSR 135: Mobile Media API Support 19-3

Running AudioDemo

4444%* A444%*% A444%*% A44%* 2%k Q%% QQ**

Sony Composer

Beethoven's 9th symphony:
444****444****444*~k~k*111#*****444#****444#****444#****
T11%%%%% (JD) 00004445 ¥ % ¥ 444X ¥ % ¥ 444A% ¥ x ¥ 11T ** k%444 4% %% %
444#****444#****444*~k~k*11#****11#****11#****666#*****
444****444****444****111****444#****444#****
444#****444****22#****22#****22#****

19.4 Running AudioDemo

Demonstrates audio capabilities, including mixing and playing audio with an
animation. Select a MIDlet from the list, and from the menu, select 1, Launch.

Audio Player.

Select a sound clip and press the Play soft button. Click Back to return to the list of
clips.

Bouncing Ball. Select No Background and press the Play soft button. Two balls
randomly bounce in the screen, emitting a tone whenever they contact a wall.

Wave background, tone seq background, and MIDI background play the same
two-ball audio visual sequence with the additional audio background.

Mix Demo shows that different audio formats can play simultaneously. Select a
MIDlet and press the Play soft button.

Tone+Wav - The audio clip starts playing and the Tone soft button is displayed.
Press the Tone button to hear a tone playing over the original audio clip.

Tone+ToneSeq - The audio clip starts playing and the Tone soft button is
displayed. Press the Tone button to hear a tone playing over the original audio
clip.

ToneSeq+Wav - The tone sequence and the wav sequence play simultaneously.
Press the Pause soft button to interrupt, and press Play to resume.

19.5 Running MMAPIDemos

The MMAPIDemos application contains four MIDlets that showcase the SDK's
multimedia capabilities:

19.5.1 Simple Tones

Simple Tones demonstrates how to use interactive synthetic tones. Select a sample,
then click Play on the lower right.

Short Single Tone and Long Single Tone use Manager.playTone () to play tones
with different pitch.

Short MIDI event plays a chord on the interactive MIDI device (locator
"device://midi"). The shortMidiEvent () method of MIDIControl is used to
trigger the notes of the chord.

To run the MMAPI Drummer demo, click or type number keys (0-9). Each number
plays a different sound.

19-4 Oracle Java ME SDK Developer's Guide

Running MMAPIDemos

19.5.2 Simple Player

The Simple Player application demonstrates the range of audio and video capabilities
of the emulator. It includes sample files in a variety of formats and can play files from
the emulator's persistent storage or from HTTP URLs.

The player portion uses a generic javax.microedition.media.Player interface. The
player displays duration, media time, and controls for running the media file. If
metadata is available in a file, the player enables you to view the information, such as
author and title. In the case of MIDI files, if karaoke text is present in the file, it
displays on the screen during play. Graphical user interface controls can be viewed on
the display screen if applicable. You can access these controls by selecting one of the
media samples in Simple Player, then pressing the Menu button to view and select the
desired command.

Select Simple Player then click Launch. The demo includes the following media
samples:

= Bong plays a short WAV file. You can adjust certain playback features, as described
later in this document. The display shows the duration of the sound in
minutes:seconds.tenths of a second, for example 00:01.04. This audio sample is a
resource file in the MIDlet suite JAR file.

= MIDI Scale plays a sample musical scale. The display shows the title of the
selected music file, the duration of the song, the elapsed time during playback,
and the current tempo in beats per minute (bpm). This MIDI file is stored in the
MIDlet suite JAR file.

= Simple Ring Tone plays a short sequence of Beethoven's Fifth Symphony. The
display shows the title of the selected music file, the duration of the song, the
elapsed time in seconds and tenths of a second during playback, and the current
tempo in beats per minute (bpm). This ringtone file (.jts format) is stored in the
MIDlet suite JAR file.

= WAV Music plays a brief audio file. The display shows the title of the audio file,
the duration of the audio the elapsed time during playback, and the playback rate
in percent. This WAV file is retrieved from an HTTP server.

= MIDI Scale plays a MIDI file that is retrieved from an HTTP server.

s The Animated GIF example shows an animated GIF that counts from 1 to 5. The
file is stored in the MIDlet suite JAR file.

= AMR Narrow band. Plays an Adaptive Multi-rate narrow band file. This sample
requires an AMR codec. This sample was tested with the K-Lite Mega Codec Pack
4.8.0. This codec is freely downloadable.

= Audio Capture from a default device lets you capture audio from a microphone or
connected device. The sound is captured and played back on the speaker. To avoid
feedback, use a headset.

= Video Capture Simulation simulates viewing input video. For example, on a
device equipped with a camera.

= [enter URL] Plays back media files from arbitrary HTTP servers. Type a valid
URL at the insertion point and click OK to play a file. If you want to open an
HTTP directory from which to select media, be sure to add a slash to the end of the
URL.

In addition, Simple Player parses ring tones in Ringing Tones text transfer language
(RTTTL). See http: //www.convertyourtone.com/rtttl.html for information on
RTTTL.

JSR 135: Mobile Media API Support 19-5

Running MMAPIDemos

19.5.3 Video

The Simple Player menu lists commands that control media playback.

The first menu item, Quick Help, displays a list of commands and actions mapped to
keypad buttons. Some actions are not applicable for every media type.

The remaining menu items vary depending on the media type. Some actions, such as
Rate, open a control with which you can arbitrarily change the playback. Click Back to
return to the player screen and see or hear your changes.

The Video application illustrates how the emulator is capable of playing animated GIF
files and capturing video. On a real device with a camera, video capture shows the
user what the camera sees.

Animated GIFs and video capture can be implemented using either a Form Itemor a
Canvas. The Video demonstration includes all the possibilities. Animated GIF - Form
[jar] shows an animated GIF as a Form Item. The form also includes some information
about the playback, including the current time. Choose the Snapshot command to take
a snapshot of the running animation. The snapshot is placed in the form following the
animated GIF.

= Video Capture - Form simulates capturing video from a camera or other source
and showing it as an Item in a Form. Choose the Snapshot command to take a
snapshot of the captured video. The snapshot is placed beneath the video capture
for comparison.

= Video Capture - Canvas simulates capturing video from a camera or other source
and showing it in a Canvas. Choose Snapshot to get a still image of the current
appearance. The snapshot is shown briefly, then the display goes back to the video
capture.

19.5.4 Pausing Audio Test

This test MIDlet demonstrates the proper use of pauseApp () and the alternative.

WARNING: Do not run the memory monitor while using this demo.

In the Well-Behaved case suspending uses pause2pp () to close the player and
remembers the length of time the audio file played. When the player resumes, it starts
playing the audio file at the point that it was suspended.

In the Not Well-Behaved case the player is stopped instead of suspended. When the
player is restarted the audio file plays from the beginning.

Test the two cases as follows:
= Run MMAPIDemos, and launch Pausing Audio Test.

The music starts playing. The initial value of Current State is Well-Behaved.
= Select Application > Suspend (or F5), to pause the music.

= Select Application > Resume (or F6) to resume playing the audio clip from the
stopping point.

» Click the Misbehave soft key.
= Select Application > Suspend (or F5), to stop the music.

19-6 Oracle Java ME SDK Developer's Guide

Running MMAPIDemos

» Select Application > Resume (or F6). The player restarts but the clip plays from the
beginning.

JSR 135: Mobile Media API Support 19-7

Running MMAPIDemos

19-8 Oracle Java ME SDK Developer's Guide

20

JSR 172: Web Services Support

The Oracle Java ME SDK emulator supports JSR 172, the J2ME Web Services
Specification. JSR 172 provides APIs for accessing web services from mobile
applications. It also includes an API for parsing XML documents.

20.1 Generating Stub Files from WSDL Descriptors

The NetBeans IDE provides a stub generator that automates creating source code for
accessing web services that conform to the J2ME Web Services Specification. You can
add stubs to any MIDP application.

Note: If you are using NetBeans 7.1.2, or 7.2.1 or higher the "SOAP
Web Services" plugin must be installed and activated.

The following is a general procedure for adding stubs:

1.
2.

In the Projects window, expand the tree for a project.
Launch the Java ME Web Service Client wizard:

Right-click on the Source Packages node and select New > Java ME Web Service
Client...

In the New Java ME Webservice Client page, you can either:

» Click "Running Web Service and enter the URL for the WSDL", then click
Retrieve WSDL.

Or,

s Click "Specify the Local filename for the retrieved WSDL" and browse to a file
on your system.

In either case, you must enter a Package name (if it is not supplied), then click
Finish. The new package appears in the project and includes an interface file and a
stub file.

You can now edit your source files to call the content the stub provides, then build
and run.

See Section 20.2, "Creating a New Mobile Web Service Client" for a step by step
process, or see Section 20.3, "Run JSR172Demo" and view the demo source files.

JSR 172: Web Services Support 20-1

Creating a New Mobile Web Service Client

20.2 Creating a New Mobile Web Service Client

This sample procedure creates a new project and adds a web service client. However,
you can add a web service client to any MIDP project, it does not have to be new.

If you are using a proxy server, you must configure the emulator's proxy server
settings as described in Section 3.5, "Configuring the Web Browser and Proxy Settings".

1. Select File > New Project, choose the Java ME category, and the Mobile
Application project type, and click Next.

Choose Project

Impart CDC Pack 5.5 Prajeck
""" 1 Maven Impaort COC Toolkit Project
----- 1 PHP p Mobile Designer Components
..... D Sroovy

..... D I+

----- 1 MetBeans Modules
F-1 Samples

Cakegories: Projecks:
%] Java —E] Mobile Application
..... 1 davars E] Mobile Class Library
_____ (] Java Weh = Mabile Project wikh Existing MIDP Sources
_____] Java ke E] Impart \Wireless Toolkit Project
—| CDiC Application
""" (3 Java Card E| cDC Class Library

2. Name your project and ensure Create Hello MIDlet is checked. Click Next.

Nan‘l’g and Location

Project Mame; |M|:|I:|ile.ﬁ.p|:|licatiu:un3

Project Location: |C:'I,Java_MEJ:uIatFDrm_SDK_S.2'|,a|:||:|s Browse, ., |

Project Folder: |C:'|,Ja~.fa_ME _platform_SDE_3. 2\ appsiMobiledpplications

[v Set as Main Project

[v Create Hello MIDlet

3. Ensure that SDK 3.2 is the platform and choose a device. Click Next.

20-2 Oracle Java ME SDK Developer's Guide

Creating a New Mobile Web Service Client

Select Plakform Type: ICLDC,I'MIDF‘ j

Ermulator PlatForm: IOracIe JzvalTM) Plakform Micro Edition SDK 3.2 LI Manage Emulatars, ., |

Device: IJavaMEF‘thel j

Device Configuration: € CLDC-1.0 % CLDC-1,1 £ ClmE-1,1,1

Device Profile:) IMp-1.0) IMP-NG C MIDRE-1.00 € WIDE-2,0,) MIDP-2.1

4. Right-click on the Source Packages node and select New > Java ME Web Service
Client...

Files | Frojects = | Services | Bl |..on | JavaME SDK StartPage x| [Hell

Q L/UITErawiser Source Screen Fla Analyz
- E MMAPIDemas

EIE MobileApplication3

B? ‘Source Fackages P ¥
= EHE%ff?ﬂ —r ED Java ME Web Service Client...
e Find. .. Chrl+F : A
-[@ Resourc in i B2 visual MIDe. .
Cut Chrls & MIDlet...
Copy Chrl+C [2?‘3,] Game Builder. ..
Paste Chrl+y || aGUr et Form...
Delete Delete |:| Fersonal Profile xlet Form. ..
Refactar 9] Xet...

|:| JPanel Farrm, ..

Compile Package F9 @I _'| a
ava Class...

Local Hiskory:] —
|- Java Package. ..
hello - Mavigator | Tools : ; @ Java Interface..,
& Java ME Client ko \Wweb application. ..

#-(] CDC, Jawa(TH) ME Platform SDK 3.2 [) Other. ..

5. In the New Java ME Webservice Client page:
s Click Running Web Service and in the WSDL URL field, enter:
http://www.xmlme.com/WSShakespeare.asmx?WSDL
Click Retrieve WSDL.
s The Package name is wsshakespeare.

Click Finish.

JSR 172: Web Services Support 20-3

Creating a New Mobile Web Service Client

Java ME Web Service Client Information

Select the source of the WSDL description For the web service to be added to this project.
{* Running Web Service

WSDL LRL: Imlme.cum}'WSShakﬁspeare.asmx?'-.-'-.-'SDL i Retrieve WwsDL |

Specify the local filename For the retrigved WSDL, Praosey Setkings. .. |

Local Filename: IWSShakﬂspeare.asmx.wsdl

™ Existing WSOL File

Wbl Filename: I Browse,

Client Mame: I'-.-'-.-'SShakespeare

Frojeck: IMl:uI:uiIe.ﬁ.ppIicatiDHS

Package: I wsshakespeare LI

Created File: I:.2'|,a|:|ps'l,MnbiIe.ﬁ.ppIiu:atiu:un3'|,5rc,l'wsshakespeare,l‘WSShakEspeare.wsclient

[~ Generate DataBinding struckures

http://www.xmlme.com/WSShakespeare.asmx?WSDL

S 3438 36 38 36 36 36 36 36 3 3 3 3 o o o e e 6386 36 36 36 36 363 3 3 3 3 3 e e e 88 6 36 36 36 3 3 3 3 3 3 3 o o o 6 e 4 6 6 36 36 36 36 3 3 3 3 3 3 o o e e 438 6 3 3 36 3 3 3 3 3 3 o oo 3% 4 KKK

The new package appears in the Source Packages tree and includes
Shakespeare.java and Shakespeare_Stub.java.

6. EditHelloMIDlet.java as follows:
= At the beginning, replace the default import declarations with:

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import wsshakespeare.*;

» Locate the startApp () method and replace its contents with the following
code:

String text;
Shakespeare s = new Shakespeare_Stub();
try {
text = s.getSpeech("Romeo") ;
} catch (java.rmi.RemoteException rex) {
text = "error";
System.out.println(rex.getMessage());
}
TextBox t = new TextBox("Hello", text, 2048, 0);

final Command exitCommand = new Command("Exit", Command.EXIT, 1);

t.addCommand (exitCommand) ;
t.setCommandListener (new CommandListener () {

20-4 Oracle Java ME SDK Developer's Guide

Run JSR172Demo

public void commandAction (Command ¢, Displayable d) {
if (¢ == exitCommand) ({
notifyDestroyed() ;
}
}
1)

Display.getDisplay (this) .setCurrent (t);
7. Build and run the project. You see a quote from Shakespeare's Romeo and Juliet on
the device screen.

You can vary the above procedure to use a local WSDL file. Open the following
web page in a browser:

http://www.xmlme.com/WSShakespeare.asmx?WSDL

Save it to a local file. For example, C: \ws\WSShakespeare.wsdl. Follow the
procedure above, except at Step 4, specify the local file name.

20.3 Run JSR172Demo

JSR172Demo shows how to access a web service from a MIDlet. The web service in this
demo is running on an Internet server, and it conforms to the J2ME Web Services
Specification. The client is the MIDlet running in the emulator

If you are using a proxy server, you must configure the emulator's proxy server
settings as described in Section 3.5, "Configuring the Web Browser and Proxy Settings".

Set Up the GlassFish Server
This demo requires the Oracle GlassFish server.

s If you installed a full version of NetBeans you probably have a GlassFish
installation. Choose Tools > Servers and choose Glassfish to view the defaults.

= If you do not have Glassfish, it can be downloaded from:

http:/ /www.oracle.com/technetwork/java/javaee/downloads
Set Up Environment Variables
Set the following environment variables:
JAVA_HOME=]ava-installation-path
GLASSFISH_HOME=GlassFish-installation-path
Run the Demo Scripts

The scripts in the \server subdirectory assume that your server has a domain named
"domainl" in which the service is automatically deployed. If you do not have a
domain named domainl, set up this domain or edit run.bat and specify a domain you
already have. Run the scripts:

demo_directory\JSR172Demo\server\build.bat
demo_directory\JSR172Demo\server\run.bat
Verify the Web Service

= Start the Glassfish service.

= Inabrowser, open the following URL:

http://localhost:8080/serverscript/serverscript

JSR 172: Web Services Support 20-5

Run JSR172Demo

You see a page titled Web Services that displays information about the service
including links to the WSDL file corresponding to the localhost url.

Run the MIDlet in the Emulator

JSR172Demo contains a single MIDlet named Server Script. Launch it and follow the
prompts. You can browse through fictitious news headlines, all of which are retrieved
from the web service.

20-6 Oracle Java ME SDK Developer's Guide

21

JSR 177: Smart Card Security (SATSA)

The Security and Trust Services APIs (SATSA) provide smart card access and
cryptographic capabilities to applications running on small devices. JSR 177 (the
SATSA specification) defines four distinct APIs as optional packages:

= SATSA-APDU - Enables applications to communicate with smart card
applications using a low-level protocol.

s SATSA-JCRMI - Provides an alternate method for communicating with smart
card applications using a remote object protocol.

s SATSA-PKI -Enables applications to use a smart card to digitally sign data and
manage user certificates.

s SATSA-CRYPTO - A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

The Oracle Java ME SDK emulator fully supports SATSA. This topic describes how
you can use the Oracle Java ME SDK to work with SATSA in your own applications.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer’s Guide, which is available at
http://download.oracle.com/javame/config/cldc/opt-pkgs/api/security/satsa-
dg.

If you must develop your own Java Card applications, download the Java Card
Development Kit, available at
http://www.oracle.com/technetwork/java/javacard/overview/index.html. This kit
is for Windows.

21.1 Card Slots in the Emulator

Real SATSA devices are likely to have one or more slots that house smart cards.
Applications that use SATSA to communicate with smart cards must specify a slot and
a card application.

The Oracle Java ME SDK emulator is not a real device and, therefore, does not have
physical slots for smart cards. Instead, it communicates with a smart card application
using a socket protocol. The other end of the socket might be a smart card simulator or
it might be a proxy that talks with real smart card hardware.

The Oracle Java ME SDK emulator includes two simulated smart card slots. Each slot
has an associated socket that represents one end of the protocol that is used to
communicate with smart card applications.

The default card emulator host name is localhost, and the default ports are 9025 for
slot 0 and 9026 for slot 1. These port defaults are a property of the device. To change

JSR 177: Smart Card Security (SATSA) 21-1

Java Card Platform Simulator (cref)

the defaults in the user interface, right click on the device in the Device Selector, and
select Properties. By default the Properties window is docked on the upper right of the
Java ME SDK interface.

You can also change the port values in the device’s property file found at:
userhome\javame-sdk\3.2\work\devicename
Edit the device.properties file and modify this line:

runtime.internal.com.sun.io.j2me.apdu.hostsandports =
localhost:9025,1localhost:9026

21.2 Java Card Platform Simulator (cref)

The Oracle Java ME SDK includes the Java Card Platform Simulator, which you can
use to simulate smart cards in the Oracle Java ME SDK emulator's slots. The Java Card
Platform Simulator is found in the following location:

installdir\bin\cref .exe

Going forward, this document refers to the executable as cref. The basic procedure for
testing SATSA applications with the Oracle Java ME SDK is as follows:

1. Start cref with a Java Card platform application.
2. Start the emulator.

When a SATSA application attempts to communicate with a smart card, it uses a
socket connection to communicate with cref.

It is important to start cref with the same port number as one of the slot port
numbers you specified in the Oracle Java ME SDK preferences.

For example, to run cref on port 9025 with a prebuilt memory image, use a command
line similar to this:

start cref -p 9025 -i memory_image.eeprom

The Oracle Java ME SDK includes a demonstration application, Mohair, which
illustrates how to use SATSA. For detailed instructions on running Mohair, see
Section 21.4.4, "MohairMIDlet".

21.3 Adjusting Access Control

Access control permissions and PIN properties can be specified in text files. When the
first APDU or Java Card RMI connection is established, the implementation reads the
ACL and PIN data from the acl_slot-number in the workdir\devicename\appdb
directory. For example, an access control file for slot 0 might be:

Documents and Settings\user\javame-sdk\3.2\work\devicename\appdb\acl_0

If the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

21.3.1 Specifying PIN Properties

PIN properties are represented by a pin_data record in the access control file.

pin_data {

21-2 Oracle Java ME SDK Developer's Guide

Adjusting Access Control

id number

label string

type bed | ascii | utf | half-nibble | iso

min minLength

max maxLength

stored storedLength

reference byte

pad byte - optional

flag case-sensitive | change-disabled | unblock-disabled

needs-padding | disable-allowed | unblockingPIN

21.3.2 Specifying Application Permissions

Application permissions are defined in access control file (acf) records. The record
format is as follows:

acf AID fnumbers separated by blanks {
ace {
root CA name
apdu {
eight numbers separated by blanks

jermi {
classes {
classname

}

hashModifier string
methods {

method name and signature

}

pin_apdu {
id number
verify | change | disable | enable | unblock
four hexadecimal numbers

pin_jcrmi {
id number
verify | change | disable | enable | unblock
method name and signature

}

The acf record is an Access Control File. The AID after acf identifies the application.
A missing AID indicates that the entry applies to all applications. The acf record can

JSR 177: Smart Card Security (SATSA) 21-3

Adjusting Access Control

contain ace records. If there are no ace records, access to an application is restricted by
this acf.

The ace record is an Access Control Entry. It can contain root, apdu, jcrmi, pin_apdu,
and pin_jcrmi records.

The root record contains one CA name. If the MIDlet suite was authorized using a
certificate issued by this CA, this ace grants access to this MIDlet. A missing root field
indicates that the ace applies to all identified parties. One principal is described by one
line. This line must contain only the word root and the principal name, for example:

root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
The apdu or jcrmi record describes an APDU or Java Card RMI permission. A missing
permission record indicates that all operations are allowed.

An APDU permission contains one or more sequences of eight hexadecimal values,
separated by blanks. The first four bytes describe the APDU command and the other
four bytes are the mask, for example:

apdu {
020 082 020 0 82
8020 0 0 ff ff 0 O

}

The Java Card RMI permission contains information about the hash modifier
(optional), class list, and method list (optional). If the list of methods is empty, an
application is allowed to invoke all the remote methods of interfaces in the list of
classes, for example:

jermi {
classes {
com.sun. javacard.samples.RMIDemo.Purse

}
hashModifier zzz
methods {

debit (S)V

setAccountNumber ([B)V

getAccountNumber () [B

}

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as
separators. Separators can be omitted before and after symbols { and }.

The pin_apdu and pin_jcrmi records contain information necessary for PIN entry
methods, which is the PIN identifier and APDU command headers, or remote method
names.

21.3.3 Access Control File Example

pin_data {
label
id
type
min
stored
max

reference 33

Unblock pin

21-4 Oracle Java ME SDK Developer's Guide

Adjusting Access Control

pad ff
flag needs-padding
yflag unblockingPIN
}
pin_data {
label Main pin
id 55
type half-nibble
min 4
stored 8
max 8
reference 12
pad ff
flag disable-allowed
flag needs-padding

act a0 0 0 0 62 ff 1 {

ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_jcrmi {
id 55
verify enterPIN([B)S
change changePIN([B[B)S
disable disablePIN([B)S
enable enablePIN([B)
unblock unblockPIN([

S
B[B)S

acf a0 0 0 0 62 ee 1 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_apdu {
id 55
verify 1 2 3
change 4 3 2
disable 1 113
enable 5 55 4
unblock 7 7 7 5

1
2

act a0 0 0 0 62 3 1 c 81 {

ace {
root CN=thehost;O0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

jermi {
classes {
com.sun. javacard.samples.RMIDemo.Purse

hashModifier xxx

methods {
setAccountNumber ([B)V
getBalance()S
credit(S)V

JSR 177: Smart Card Security (SATSA) 21-5

Running SATSADemos

}
}

ace {
jermi {
classes {
com.sun.javacard.samples.RMIDemo.Purse
}
debit (S)V
getAccountNumber () [B
}
}
}
acf a0 00 00 00 62 03 01 Oc 02 01 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
apdu {
020 082 020 0 82
8020 0 0 ff ff 0 0
}
apdu {
8022 0 0 ff ff 0 O
}
}
}
acf a0 00 00 00 62 03 01 Oc 02 01 {
ace {
apdu {
0 20 0 82 ff ff ff ff
}
}
}
acf a0 00 00 00 62 03 01 Oc 06 01 {
ace {
apdu {
0 20 0 82 ff ff ff ff

}

21.4 Running SATSADemos

SATSADemos includes demonstrations of SATSA, the Security and Trust Services APlIs.
Most of the demonstrations show how to communicate with a smart card. The
emulator can communicate with a simulated smart card using a socket protocol. The
smart card simulator, cref, is included with the SDK, as discussed in Section 21.2,
"Tava Card Platform Simulator (cref)".

Note: For the demo to work this project must reside in the Java ME
SDK installation’s \apps subdirectory. You must create the apps
directory yourself.

21-6 Oracle Java ME SDK Developer's Guide

Running SATSADemos

For each SATSA demo, start with this sequence:

1.

Go to File > New Project and in the Categories window select Samples > Java ME
SDK 3.2 and single-click SATSADemos. Click Next. Save the sample project in:

installdir\apps \ SATSADemos
Click Finish.

Right-click on the project, select Properties and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Start the instance(s) of cref from the command line.

Run the project.

21.41 APDUMIDIet

This MIDlet demonstrates communication with a smart card using Application
Protocol Data Units (APDUs), small packets of data. APDUMIDlet expects to find two
simulated smart cards. You can run the smart card simulator using cref, which is part
of the Java Card Development Kit. See Section 21.2, "Java Card Platform Simulator
(cref)".

The Mohair application includes pre-built memory images that you can use with cref.
The memory images contain Java Card applications with which Mohair interacts. The
memory images are in the root directory of the Mohair project.

1.

21.4.2 SATMIDIet

Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Start up two instances of cref, one for each simulated card slot (assuming the
current directory is the SDK installation directory):

start installdir\bin\cref -p 9025 -i installdir\apps\SATSADemos\demo?2 .eeprom
start installdir\bin\cref -p 9026 -i installdir\apps\SATSADemos\demo?2 .eeprom

When you have the two smart card simulators running, run SATSADemos. Select
APDUMIDIet, select the Menu soft key and select Launch (1). Press Go when
prompted.

The emulator screen displays the process of exchanging APDUs between
eeproms.

SATMIDlet demonstrates smart card communication with a slight variation on APDU
communication.

1.

To set up the simulated smart card, use cref, very much like you did for
APDUMIDlet. This time you do not have to specify a port number, and the memory
image is different:

start installdir\bin\cref -i installdir\apps\SATSADemos\sat .eeprom

When you have the smart card simulator running, run SATSADemos. Select
SATMIDlet, select the Menu soft key and select Launch (1). Press Go when
prompted.

The emulator screen displays the process of sending envelopes over a SAT
connection.

JSR 177: Smart Card Security (SATSA) 21-7

Running SATSADemos

21.4.3 CryptoMiDlet

CryptoMIDlet demonstrates the general cryptographic features of SATSA. It does not
interact with a smart card in any way. Choose the MIDLet and launch it to see the
cryptography results. Use the up and down navigation keys to scroll the display.

21.4.4 MohairMIDlet

MohairMIDlet has two functions. The first, "Find slots", displays all the available card
slots. Each slot has a number followed by 'C' or 'H' indicating whether the slot is
cold-swappable or hot-swappable. After viewing the slots select Back to return to the
first screen.

The second part of MohairMIDlet, SATSA-PKI Sign test, uses a smart card to generate a
digital signature. As with the earlier demonstrations, you must start cref with the
right memory image to prepare for the connection from MohairMIDlet.

1.

Start cref from the SDK installation directory:
start installdir\bin\cref -p 9025 -i installdir\apps\SATSADemos\pki .eeprom

In the emulator, select Find Slots. After you see the slots found, select the Back soft
key.

Select SATSA-PKI Sign test. The following confirmation message appears:
This certificate will be used: Certificate two

Select the OK soft key.

For PIN 1, type: 1234

Select the OK from the menu. The following confirmation message appears:
This string will be signed: JSR 177 Approved

Select the OK soft key. The following confirmation message appears:

This certificate will be used: Certificate one

Select the OK soft key.

For non repudiation key 1 PIN, type: 2345

Select the soft menu and choose OK (option 2). The sign test is complete.

21.4.5 Running SATSAJCRMIDemo

This application contains a single MIDlet, JCRMIMID1et, which shows how to
communicate with a card application using Java Card RMI, a card-friendly remote
object protocol. As with some of the MIDlets in SATSADemos, you must start cref with
an appropriate memory image.

1.

Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Start cref from the SDK installation directory as follows:
start installdir\bin\cref -p 9025 -i installdir\apps\SATSADemos\demo?2 . eeprom

Now run JCRMIMIDlet to see how your application can communicate with a
distributed object on the card.

The emulator screen displays the process of exchanging APDUs between eeproms.

21-8 Oracle Java ME SDK Developer's Guide

22

JSR 179: Location API Support

The JSR 179 Location API gives applications the opportunity to use a device's location
capabilities. For example, some devices include Global Positioning System (GPS)
hardware. Other devices might be able to receive location information from the
wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location AP, a location provider encapsulates a positioning method and supplies
information about the device's location. The application requests a provider by
specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, the application can use it to obtain
information about the device's physical location.

The Oracle Java ME SDK includes a simulated location provider. You can use the
emulator's External Events Generator to specify where the emulator should think it is
located. In addition, you can configure the properties of the provider itself, and you
can manage a database of landmarks.

22.1 Setting the Emulator's Location at Runtime

You can specify the simulated location of the emulator while it is running. In the
emulator choose Device > Location. This raises the external events generator with the
Location tab selected.

In the Location area of the tab, you can fill in values for the latitude, longitude,
altitude, speed, and course. Applications that use the Location API can retrieve these
values as the location of the emulator.

For more elaborate testing, you can set up a location script that describes motion over
time. Location scripts are XML files consisting of a list of locations, called waypoints,
and associated times. The Oracle Java ME SDK determines the current location of the
emulator by interpolating between the points in the location script. Here, for example,
is a simple location script that specifies a starting point (time="0") and moves to a new
point in ten seconds:

<waypoints>
<waypoint time="0"
latitude="14" longitude="50" altitude="310" />
<waypoint time="10000"
latitude="14.5" longitude="50.1" altitude="215" />
</waypoints>

JSR 179: Location API Support 22-1

Setting the Emulator's Location at Runtime

E:-:ternal Events Generator

5
Ix

Contactless Cu:ummuniu:atiu:unl File Connection Location |Sensu:urs|

~Location Provider —

Skate I.ﬁ.vailal:ule LI
- Crrientation
State ISuppDrted LI
|
Azirnukh K 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | II:I
0 &0 120 180 240 300 360
|
Pitch | 1 1 | 1 1 | 1 1 K 1 1 | 1 1 | 1 1 | II:I
-a0 -0 -30 0 30 &0 an
|
Roall | 1 1 1 | 1 1 1 | 1 1 1 K 1 1 1 | 1 1 1 | 1 1 1 | II:I
-1580 -120 -0 0 &0 120 180

[~ Magnetic Crientation

~Location
Latitude |14.39I3282999

Longitude ISEI. 10003551

Alitude [310.0

Speed I208.8653?1?D4

Course IIII.III

Send |

Scripk Is and Settingstdawphil . 3T-USERSMy DocumentsiMNetBeansProjects) CityGuide 1y citywalk, xml Browse, .,

J

Tirne: O0:09,012

|
I)I | ! | ! | ! | ! | ! | ! | ! | ! [

- o mil

=

The altitude measurement is in meters, and the time values are in milliseconds.

Use a text editor to create your location script. You can load it into the external event
window by pressing the Browse button next to the Script field. Immediately below are
controls for playing, pausing, stopping, and moving to the beginning and end of the
location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation box
to Supported and fill in values for azimuth, pitch, and roll. The Magnetic Orientation
check box indicates whether the azimuth and pitch measurements are relative to the
Earth's magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider box to Temporarily Unavailable or Out of Service. When
your application attempts to retrieve the emulator's location, an exception is thrown
and you can see how your application responds.

22-2 Oracle Java ME SDK Developer's Guide

Running the CityGuide Sample Project

22.2 Running the CityGuide Sample Project

CityGuide demonstrates how to use the Location API (JSR 179). It shows a walker's
current position superimposed on a city map. The walker moves around the city and
landmarks are highlighted and identified as the walker approaches. This demo gets
the walker's location from an XML script named citywalk.xml (the event file) that
submits the device location information.

Because location prompts occur frequently, it is best to run this demonstration in
manufacturer (trusted) mode, as explained in "Section 13.1, "Security Domains". In the
user interface, right-click on your project and select the Running category. Select
Specify the Security Domain, and select manufacturer or maximum.

1.

3.

Open and run the CityGuide project. In the emulator, launch the CityGuide
MIDlet. The map page opens.

By default the display shows icons for four types of landmarks: restaurants,
museums, shops, and theaters.

To adjust the landmark display (this is optional), open the soft menu and choose
the Settings command. Use the navigation keys to highlight a category, then use
Select to check or uncheck an item. In the default skin the item is selected when

the square is filled with white.

Settings

The City Guide will alert you
whenever you get close to
landmark of selected category.

Watch for categories:

[l B3 restaurant
[l & museum

[EA shop
[]E theatre

In the emulator, choose Device > Location. On the Location tab, click the Browse
button. Select the event file from the directory containing the Citywalk application.

The player buttons at the bottom of the window are now active. Press the green
play button (right-pointing triangle) to run the script.

When you are near a landmark its name appears at the top of the map. Open the
soft menu and choose the Detail command to see more information.

JSR 179: Location API Support 22-3

Running the CityGuide Sample Project

aSport

- 1
L i
- b

- > -
-.\"'.-. " - 1 5
- 1§

22-4 Oracle Java ME SDK Developer's Guide

23

JSR 205: Wireless Messaging

The Oracle Java ME SDK supports the Wireless Messaging API (WMA) with a
sophisticated simulation environment. WMA 1.1 (JSR 120) enables MIDlets to send
and receive Short Message Service (SMS) or Cell Broadcast Service (CBS) messages.
WMA 2.0 (JSR 205) includes all this and support for Multimedia Message Service
(MMS) messages as well.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing how to configure the emulator's support of WMA. Next, it describes the
WMA console, a tool for testing WMA applications.

Many of the tasks in this topic can also be accomplished from the command line. See
Section 23.3, "Running WMA Tool".

23.1 Using the WMA Console to Send and Receive Messages

The WMA console is a tool that enables you to send messages to and receive messages
from applications that use JSR 205. You can, for example, use the WMA console to
send SMS messages to a MIDlet running on the emulator.

See Section 23.1.2, "WMA Console Interface" or Section 23.3, "Running WMA Tool".

23.1.1 Launching the WMA Console

To launch the WMA console, select Tools > Java ME > WMA Console. Messages can be
sent from the WMA Console to an emulator instance.

The console opens as a tab in the NetBeans documents area. The console phone
number is displayed as part of the WMA Console tab label (for example, 987654321).

The WMA console phone number is an editable CLDC property. In the Device Selector,
right-click on the CLDC, Java(TM) ME Platform SDK 3.2 node in the device selector,
and select Properties. Type a new value in the WMA Console Phone Number field. If
the number is available it is assigned to the console immediately. If the number is in
use it is assigned to the console the next time you restart the NetBeans IDE.

23.1.2 WMA Console Interface

To open the WMA Output window, select Window > Output > WMA Console Output.
This window displays messages received from an emulator. By default it is docked at
the bottom of the NetBeans IDE.

JSR 205: Wireless Messaging 23-1

Using the WMA Console to Send and Receive Messages

ge | ! WA Consale - 967654321 x |

JavaMEPhonel o]
Application Device Edit Wiew Help
Device 10 4 Phone number: 123456759
—
Q ORACLE’)

From: sms:/f987654321:0

A message to Java ME
Phone

[- * |
W 4 IP ~
w " 4 |

23.1.3 Emulator Phone Numbers

I Send SMS Send CBS | Send MMS |

Ta Clients

Part: (50000

Text Message | Binary Message

A message bo lava ME Phonel

Remaining: 4,069 Bytes { 4,063 characters)

Send |

Ot - WidaDema (Fun) | Whid, Cutput Window - 957654321 >

&l Messages ‘SMS CBS M3 | |__-J§ -

Texk
a message from JavaMEPhonel

Destination
Part: 50000

Sender
1234567590

Each instance of the emulator has a simulated phone number that is shown in the
emulator window. The phone numbers are important because they are used as
addresses for WMA messages. The phone number is a device property and it can be
changed. In the device selector, right-click a device and view its properties.

23.1.4 Sending a Text or Binary SMS Message

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output.

To send a text SMS message, click Send SMS.

s The To Clients window automatically lists the phone numbers of all running
emulator instances. Select one or more destinations and enter a port number (the
default is 50000, as described in Section 23.2.1, "WMADemo Push Registry

Values").

= Tosend a text message, select the Text Message tab, type your message and click

Send.

= To send the contents of a file as a binary message, click the Binary Message tab.
Type in the path of a file directly, or click Browse to open a file chooser.

23-2 Oracle Java ME SDK Developer's Guide

Using the WMA Console to Send and Receive Messages

Note: The maximum message length for text and binary messages is
4096 bytes.

To try this yourself see Section 23.2.3, "Sending SMS Messages From WMA Console to
an Emulator and Back".

23.1.5 Sending Text or Binary CBS Messages

Sending CBS messages is similar to "Sending a Text or Binary SMS Message" except
that recipients are unnecessary because it is a broadcast.

To send a text or binary CBS message, click Send CBS in the WMA console. Specify a
message identifier (see Section 23.2.1, "WMADemo Push Registry Values") and enter
the text or binary content of your message. The maximum message length for text and
binary messages is 4096 bytes.

Note: The emulator displays only the first 160 symbols of a received
CBS message.

To try this yourself see Section 23.2.4, "Sending CBS Messages from WMA Console to
an Emulator".

23.1.6 Sending MMS Messages

MMS messages consist of one or more files, usually images or sounds. An MMS
message can be sent to multiple recipients.

To send an MMS message from the WMA console, click the Send MMS button. The
window for composing MMS messages has Header and Parts tabs.

» The header tab addresses the message.

The To area automatically lists one of the phone numbers from the running
emulator instances, and you can click the Add button to select other available
phone numbers from the drop-down list.

To remove a recipient, first select its line, then click Remove.

When a recipient is removed it must be added back manually. Click the Add
button and a new line is added to the recipient table.

= To add optional media files (Parts) to the message, click the Parts tab and click
Add. The maximum message length for text and binary messages is 4096 bytes.

Most media files have information to fill the Content Location, Content ID,
Mime-Type (text/plain for simple MMS), and Encoding fields, but you can edit
these fields as well. The default ID for the demo is example.mms . MMSDemo (see
Section 23.2.1, "WMADemo Push Registry Values").

To remove a part, select it and press Remove.

To try this yourself, see Section 23.2.5, "Sending MMS Messages from WMA Console to
an Emulator".

JSR 205: Wireless Messaging 23-3

Running WMADemo

23.1.7 Receiving Messages in the WMA Console

To start the WMA console, select Tools > Java ME > WMA Console. The WMA console
window has its own phone number displayed on the WMA Console tab. You can send
messages from your applications running on the emulator to the WMA console.

Received messages are displayed in the WMA output window.

23.2 Running WMADemo

The WMADemo sample project shows how to send and receive SMS, CBS, and MMS
messages. Messages can be exchanged between emulator instances and can be
generated or received using the WMA console utility.

23.2.1 WMADemo Push Registry Values

The push registry determines how the demo establishes certain types of connections.
This information is set in the Application Descriptor. To view it, right-click on the
WMA Demo project and select Properties. In the Properties window, select the
Application Description category and view the Push Registry tab.

» For SMS messages the port number is 50000.
» For CBS Messages, the Message Identifier is 50001.

s For MMS messages, the application ID is example.mms . MMSDemo.

23.2.2 Running WMADemo OTA

Because this sample uses the push registry, you cannot see all of its features with the
regular execution process. You must install the application into the emulator using the
over the air provisioning capability that mirrors how applications are installed on real
devices.

1. Right-click the WMADemo project and select Properties from the context menu.

2. Select the Running Category and choose the Execute through OTA radio button.
Click OK.

3. Run WMADemo in an emulator.

Wait a few seconds for the application to download to the emulator and register
itself.

The application home screen shows the MIDlets you can launch: SMS Send, SMS
Receive, CBS Receive, MMS Send and MMS Receive.

4. Launch the WMA console (see Section 23.1.1, "Launching the WMA Console").

23.2.3 Sending SMS Messages From WMA Console to an Emulator and Back

In this demo you send messages between the WMA Console and the client demo
application running on the emulator. Using the WMA console to send messages to the
emulator exercises the push registry.

1. To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output. The
WMADemo should be running in the emulator, as described in Section 23.2.2,
"Running WMADemo OTA".

2. Click on the Send SMS button in the WMA console window.

23-4 Oracle Java ME SDK Developer's Guide

Running WMADemo

Choose the number that corresponds to the emulator. Typically you check the box
in front of 123456789. If you are not sure what number the emulator is using, look
for a number above the emulator screen.

Fill in a port number of 50000. This is required because the demo waits for the SMS
on that port.

Type your text message in the Message field and click Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be started. You
might receive several permission requests based on your firewall settings.

Choose Yes. The sMSReceive MIDlet is launched and immediately displays the
incoming SMS message.

To type a return message, press the Reply soft button. Type a message and select
Send from the menu. You might be asked to give permission because there is a cost
to your phone number. In the IDE, look in the WMA Output Window to confirm
that your reply has been received. (The output window is typically displayed
below the WMA Console. Be sure to click the WMA Output Window tab.)

23.2.4 Sending CBS Messages from WMA Console to an Emulator

This process is similar to sending SMS Messages. Instead of specifying a port number
you specify a Message Identifier.

1.

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output.

Click on the Send button in the WMA console window.
Supply a Message Identifier of 50001.
Type your text message or attach a binary message and click Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be launched.
You might receive several permission requests based on your firewall settings.

Choose Yes. The CBSReceive MIDlet is launched and immediately displays the
incoming message. Click Exit to close the MIDlet.

23.2.5 Sending MMS Messages from WMA Console to an Emulator

To send an MMS message from the WMA console to the emulator, ensure that WMADemo
has been installed using Run Project via OTA.

1.

From the WMADemo home screen, choose MMS Receive. The emulator displays:
"MMS Receive" and the message "Waiting for MMS on applicationID
example.mms.MMSDemo..."

In the WMA console, click Send MMS to open the MMS composition window. The
Header tab is open by default. Supply any message subject, the application ID
example.mms .MMSDemo, and the telephone number of the running emulator. That
number is displayed to the right of the To field by default. If you do not see the
number you want, click the Add button to add it. When you have listed multiple
numbers the number field is a dropdown list

The To field on the left is a dropdown list from which you can choose To, Cc or
Bec.

Click the Parts tab. The WMA console enables you to select files to send as parts of
the MMS message. Click Add and use the file browser to find the file you want to
send. Click OK.

JSR 205: Wireless Messaging 23-5

Running WMA Tool

4. Click Send to send the message.

The image and its information are displayed in the emulator.

23.3 Running WMA Tool

WMA Tool is the command line version of the WMA Console. To send and receive
SMS, CBS, and MMS messages from the command line, run:

installdir\bin\wma-tool <command> [options]

The device manager must be running before you launch wma-tool.
When the tool is started, it outputs the phone number it is using.
Command

Each protocol has send and receive commands. The requested command is passed to
the tool as a first argument. Possibilities are:

m receive

= smsreceive - receives SMS messages
= cbsreceive - receives CBS messages
= mmsreceive - receives MMS messages
= smssend - sends SMS message

» cbssend - sends CBS message

» mmssend - sends MMS message

The *send commands send the specified message and exit. The *receive commands
print incoming messages until they are explicitly stopped.

Options

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits the number of timeout seconds for messages.
-f Store text contents as files instead of printing them.

-g Quiet mode.

23.3.1 smsreceive, chsreceive, and mmsreceive

The syntax for receiving a message is basically the same for all three protocols.

smsreceive [-ooutputDir] [-t timeout] [-q]
cbsreceive [-ooutputDir] [-t timeout] [-q]
mmsreceive [-ooutputDir] [-t timeout] [-qg]
Example

This example demonstrates how to receive a message from an emulator.
1. Start the emulator from the Windows Start menu:

Start > Programs > Java(TM) ME Platform SDK 3.2 > Java ME SDK CLDC
Emulator.

You can also start the emulator from the bin directory. This example also runs the
WMADemo project.

23-6 Oracle Java ME SDK Developer's Guide

Running WMA Tool

emulator.exe -Xdevice:JavaMEPhonel
-Xdescriptor:"C:\Documents and Settings\user\My Documents\NetBeansProje
cts\WMADemo\dist \WMADemo. jad"

2. Start wma-tool from the Java ME SDK installdir\bin directory:
C:\Java_ME_platform_SDK_3.2\bin\wma-tool smsreceive

WMA tool started with phone number: 987654321
press <Enter> to exit.

3. In the emulator run the SMS Send MIDlet and send a message to the WMA
console. Enter the console telephone number
The console receives the message as follows:

SMS Received:
From: 123456789
Timestamp: Thu Aug 23 23:31:26 PDT 2012
Port: 50000
Content type: Text
Encoding: GSM7BIT
Content: A message from JavaMEPhonel to wma-tool
Waiting for another message, press <Enter> to exit.

23.3.2 smssend

wma-tool smssend target_phone target_port message_content
= target_phone
Phone number of the target phone. Mandatory first argument.
n target_port
Port of the target phone. Mandatory second argument.
m message_content
Mandatory third argument. Can have one of these two forms:
= text: text of the text message
» -f file: sends content of the specified file as a binary message.
Example:

wma-tool smssend 123456789 50000 "smssend message from wma-tool"

23.3.3 chssend

wma-tool cbssend message_id message_content

» message_id
ID of the message. Mandatory first argument.

m message_content
Mandatory second argument. Can have one of these two forms:
= text: text of the text message

» -f file: sends content of the specified file as a binary message.

JSR 205: Wireless Messaging 23-7

Running WMA Tool

Example:

wma-tool cbssend 50001 "cbssend message from wma-tool"

23.3.4 mmssend

wma-tool mmssend applicationId subject
[-to <targetphone>]* [-cc <target phone>]* [-bcc <target phone>]*
[-part { <part_from file> | <part_from text> } 1*

Each part is defined by name=value pairs delimited by a semicolon ";" separator.

Part Variables

To create part_from_file, define the following variables.

Note: The file and the mimeType must be separated by a semicolon.

m file
File to send as a message part.
s mimeType
Mime type of the file.
To create part_from_text, define the following variables:
s text
Text to send as a message part. mimeType is set to text/plain.
= -to target_phone
"to" target phone number. You can use any number of these options.
= -cc target_phone
"cc" target phone number. You can use any number of these options.
» -bcce target_phone
"bec” target phone number. You can use any number of these options.
Part from Text Options
Separate options with semicolons. For example:
» -part contentId=content ID; encoding=encoding; text=text

Appends text part to the message. You can use any number of these options.
Contains the following options:

» content ID: content ID of this message part

= encoding: Sent text encoding. Only relevant for "text/plain". Mime type
defaults to UTES.

Part from File Options
-part mimeType=mime type; contentId=content ID; file=file name

= Appends binary part to the message with content loaded from the given file. You
can use any number of these options.

Separate the options with a semicolon.

» content id: content ID of this message part

23-8 Oracle Java ME SDK Developer's Guide

Running WMA Tool

= mime type: mime type of this message part
» file name: file with content of this message part

s fileEncoding: Encoding of text in the file, only relevant for "text/plain”, only
applies if the file argument is present. Defaults to the value of the encoding
variable.

Example:

wma-tool mmssend example.mms.MMSDemo MySubject -to 123456789 -part
file=Duke.png;mimeType=image/png

JSR 205: Wireless Messaging 23-9

Running WMA Tool

23-10 Oracle Java ME SDK Developer's Guide

24

JSR 184: Mobile 3D Graphics

The Mobile 3D Graphics API for J2ME, (JSR 184) provides 3D graphics capabilities
with a low-level API and a high-level scene graph API. This chapter provides a brief
overview and general guidelines for working with JSR 184.

JSR 184 is a specification that defines the Mobile 3D Graphics (M3G) API for the J2ME.
This API provides 3D functionality in a compact package that's appropriate for
CLDC/MIDP devices. The API provides two methods for displaying 3D graphics
content:

» The immediate mode API makes it possible for applications to directly create and
manipulate 3D elements.

= Layered on top of this is a scene graph AP]I, also called retained mode, that makes it
possible to load and display entire 3D scenes that are designed ahead of time.

For more information, consult the JSR 184 specification at
http://jcp.org/en/jsr/detail?id=184.

24.1 Choosing a Graphics Mode

Applications are free to use whichever approach is most appropriate or to use a
combination of the retained mode and immediate mode APIs.

JSR 184 provides a standard API for CLDC/MIDP devices, enabling a new generation
of 3D applications. The immediate mode API, in turn, is compatible with OpenGL ES,
a standard lightweight API for 3D graphics. See http: //khronos.org/ for more
information on OpenGL ES.

24.1.1 Immediate Mode

Immediate mode is appropriate for applications that generate 3D graphics content
algorithmically, such as scientific visualizations or statistical graphs. The application
creates 3D objects and manipulates them directly.

For an example of immediate mode, see the Life3D MIDlet in the Demo3D example
application.

24.1.2 Retained Mode

Most applications, particularly games, use the retained mode or scene graph API. In
this approach, a graphic designer or artist uses 3D modeling software to create a scene
graph. The scene graph is saved in the JSR 184 file format. The scene graph file is
bundled with the application. At runtime, the application uses the scene graph API to
load and display the file.

JSR 184: Mobile 3D Graphics 24-1

Quality Versus Speed

Applications can manipulate parts of a loaded scene graph to animate characters or
create other effects. The basic strategy is to do as much work as possible in the
modeling software. At runtime, the application can grab and manipulate parts of the
scene graph, which can also include paths for animation or other effects.

For an example of retained mode, see the retainedmode MIDlet in the Demo3D example
application.

24.2 Quality Versus Speed

One of the challenges of MIDP development is the constrained environment of typical
devices. Compared to desktop computers, MIDP devices have slow processors and
little memory. These challenges extend into the arena of 3D graphics. To accommodate
a wide variety of implementations, the JSR 184 specification provides various
mechanisms to make the display of a 3D scene as efficient as possible.

One approach is scoping, a technique where you tell the 3D graphics implementation
when objects are not going to interact with each other. For example, if you defined a
scene graph for a house, you could use scoping to specify that the light in the
basement doesn't affect the appearance of the bedroom on the second floor. Scoping
simplifies the implementation's task because it reduces the number of calculations
required to show a scene.

In general, the best way to improve the rendering speed of 3D scenes is to make some
compromises in quality. The Mobile 3D Graphics API includes rendering hints so that
applications can suggest how the implementation can compromise quality to improve
rendering speed.

24.3 Content for Mobile 3D Graphics

Most mobile 3D applications use scene graphs in resource files to describe objects,
scenes, and characters. Usually it is not programmers but graphic designers or artists
who create the scene graphs, using standard 3D modeling tools.

Several vendors offer tools for authoring content and converting files to the JSR 184
format.

Because it is relatively difficult to create and manipulate 3D graphics content in an
application using the immediate mode API, most applications rely as much as possible
on a scene graph file. By putting as much as possible into the scene graph file at design
time, the application's job at runtime is considerably simplified.

24.4 Running Demo3D Samples

24.4.1 Life3D

Demo3D contains MIDlets that demonstrate JSR 184 features.

Go to File > New Project and in the Categories window select Samples > Java ME SDK
3.2 and single-click Demo3D and Click Next. Specify a name and location and click
Finish.

Life3D implements the popular Game of Life in three dimensions. Live cells are
represented by cubes. Each cell has 26 possible neighbors (including diagonals). For
each step of the animation, cells with fewer than four neighbors die of loneliness,
while cells with more than five neighbors die of overcrowding. An empty cell with
exactly four neighbors becomes a new live cell.

24-2 Oracle Java ME SDK Developer's Guide

Running Demo3D Samples

The view of the playing board rotates slowly so you can view the board from all
angles.

The keypad buttons in Table 24-1 provide control over the game.

Table 24-1 Controls for Life3D

Button Description

0 Pause the animation.

1 Resume the animation at its default speed.

2 Speed up the animation.

3 Slow down the animation.

4 Choose the previous preset configuration from an arbitrary list. The name of the

configuration is shown at the top of the screen.

5 Choose the next preset configuration from the list.

* Generate a random configuration and animate until it stabilizes or dies. If it dies,
generate a new random configuration.

The source code for this example can be found at:

projects\Demo3D\src\com\superscape\m3g\wtksamples\life3d\Life3D.java

Where projects is the directory you are using to store your NetBeans projects.

24.4.2 RetainedMode

The RetainedMode MIDlet plays a scene file that shows a skateboarder in an endless
loop. The source code is found at:
projects\Demo3D\src\com\superscape\m3g\wtksamp1es\retainedmode

24.4.3 PogoRoo

PogoRoo displays a kangaroo bouncing up and down on a pogo stick. To steer the
kangaroo, use the arrow keys. Press up to go forward, down to go backward, and left
and right to change direction. Try holding down the key to see an effect. The source
code is found at:

projects \Demo3D\src\com\superscape\m3g\wtksamples\pogoroo

JSR 184: Mobile 3D Graphics 24-3

Running Demo3D Samples

24-4 Oracle Java ME SDK Developer's Guide

25

JSR 211: Content Handler APl (CHAPI)

JSR 211 defines the Content Handler API (CHAPI). The basic concept is that MIDlets
can be launched in response to incoming content (files). Modern mobile phones can
receive content using SMS, infrared, Bluetooth, e-mail, and other methods. Most
content has an associated content type. CHAPI specifies a system by which MIDlets
can be launched in response to specific types of content.

See Section 25.1, "Using Content Handlers" and Section 25.4, "Running the
CHAPIDemo Content Browser".

25.1 Using Content Handlers

In the Oracle Java ME SDK Content Handlers are integrated in a project as application
descriptors. Content Handlers you define are packaged with the application.

Follow these steps to work with content handlers in the CHAPIDEMO sample
application (see Section 25.4, "Running the CHAPIDemo Content Browser").

1. In the Projects window, right-click CHAPIDemo and choose Properties from the
context menu.

2. In the Category pane, select Application Descriptor, and click the Content
Handlers tab.

3. In the Content Handlers table, each line in the list represents the settings for a
content handler.

attributes | MIDlets || Push Registry | API Permissions | Content Handlers
Cantent Handlers

ey Class 10 Types Suffixes
1

excample, bexk, Texktiiewer excample.text, Te. .. kext/plain N =
2 example.image. ImageYiewer |example.image.I... image/pna; imagejgif |.png; .qif

= To create a new content handler, press Add, or to edit an existing content
handler, press Edit. Both actions open the Content Handler Properties
window. See Section 25.2, "Defining Content Handler Properties".

JSR 211: Content Handler APl (CHAPI) 25-1

Defining Content Handler Properties

= To adjust the order of the content handlers, select one and using the Move Up
and Move Down buttons. To remove a content handler from the list, select it
and press Remove.

» See Section 25.2, "Defining Content Handler Properties" and Section 25.4,
"Running the CHAPIDemo Content Browser"

25.2 Defining Content Handler Properties

In the Projects window, right-click on a project and choose Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Pressing Add or Edit opens the Content Handler Properties window.

¥ Content Handler Properties x|

Conkent Handler I ackions |

excample, bexk, Texkviswer

ICx: Iexample.text.Text'-.-'iewer

Content bypes:

ket fplain add Type

Remove

Suffies:

Fk Add Suffix
ek
Femove

Access allowed to;

Add Access

1NNl

Remove

Ik I Cancel | Help |

= In the Class field, choose a class name from the dropdown menu.

» IDis arequired identification string when you invoke a content handler and
control access.

= In Content types, list the content types for which this content handler is
responsible. Use Add Type and Remove to manage the list.

= In Suffixes, provide a list of URL suffixes that act as a substitute for an explicit
content type.

» In Access allowed to, list IDs for content handlers that are allowed access to this
content handler. If the list is empty, access to this content handler is granted to
every content handler.

25-2 Oracle Java ME SDK Developer's Guide

Running the CHAPIDemo Content Browser

25.3 Defining Content Handler Actions

Content handler actions give invoking applications a choice about how to handle
content. An Action is associated with an existing content handler. An image viewer
content handler, for example, might include an action for viewing the image at its
original size and another action that makes the image fill the available screen space.

In the Projects window, right-click on a project and choose Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Press Add or Edit to open the Content Handler Properties window and
click the Actions tab, as shown here.

¥ Content Handler Properties x|

Conkent Handler Actions |

Ackions: Locales;
en_LS

Add Action | Remove add Locale R emove

Localized Actions:

OpEn
en_ LS

| (] 4 I Cancel Help

The Actions list contains the internal names of the actions for this content handler.
Locales is a list of all the locales for which human-readable action names are provided.
Localized Actions is a grid which contains the human-readable action names for
various locales. Each locale is represented by a row, while the actions are listed as
columns. You can see all the human-readable action names for a particular locale by
reading across a single row.

25.4 Running the CHAPIDemo Content Browser

This demo is a content browser that takes advantage of the content handler registry. It
enables you to view different types of content from different sources.

Note: For the demo to work this project must reside in the Java ME
SDK installation’s \apps subdirectory. You must create this directory
yourself.

1. Go to File > New Project and in the Categories window select Samples > Java ME
SDK 3.2 and single-click CHAPIDemo. Click Next.

Save the sample project in installdir\apps\CHAPIDemo. Click Finish.

JSR 211: Content Handler API (CHAPI) 25-3

Running the CHAPIDemo Content Browser

Right-click the project and choose Properties. Choose the Running category, and
select Execute through OTA and click OK.

2. Run the project.
You might see security messages as CHAPIDemo registers itself.

You might also see a request for permission to use airtime. To speed up the demo
interaction, select "Ask once per application use" and select the Yes soft key (if you
do not check this option you can still use the demo but you see the airtime
message more frequently).

3. Launch CHAPIDemo.

On the Favorite Links page, choose CHAPI Demo. Press Select or choose the menu
soft button and choose Go.

The Text Viewer displays a Media Player URL and links to various media files.
4. Install the Media Player to view media.

s Click the URL http:handlers/MediaHandler.jad, or, use arrow keys to
highlight the URL and from Menu, select Go.

s The application asks, "Are you sure you want to install Media Handler?" Select
Yes.

An authorization Information screen is displayed.
= Select the Install soft key. The installation is confirmed.

The installation finishes and you return to the Text Viewer. The Media Handler
shows as a separate application in the AMS.

5. Select and view the different image, video, audio and text URLs.

Click on a link to open that media in the viewer, or, use arrows to highlight the
link, then select Go from the soft menu.

Select the Back soft key to return to the Text Viewer.

25-4 Oracle Java ME SDK Developer's Guide

26

JSR 226: Scalable 2D Vector Graphics

JSR 226, Scalable 2D Vector Graphics for J2ME, supports rendering sophisticated and
interactive 2D content.

Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web
Consortium. It is an XML grammar for describing rich, interactive 2D graphics.

The Scalable Vector Graphics (SVG) 1.1 specification (available at
http://www.w3.org/TR/SVG11/) defines a language for describing two-dimensional
graphics in XML.

SVG Tiny (SVGT) is a subset of SVG that is appropriate for small devices such as
mobile phones. See http: //www.w3.0rg/TR/SVGMobile/. SVGT is a compact, yet
powerful, XML format for describing rich, interactive, and animated 2D content.
Graphical elements can be logically grouped and identified by the SVG markup.

Java ME applications using SVG content can create graphical effects that adapt to the
display resolution and form factor of the user's display.

SVG images can be animated in two ways. One is to use declarative animation, as
illustrated in Section 26.1.3, "Play SVG Animation". The other is to repeatedly modify
the SVG image parameters (such as color or position), through API calls.

While it is possible to produce SVG content with a text editor, most people prefer to
use an authoring tool. Here are two possibilities:

s Inkscape: http://inkscape.org

s Adobe Illustrator: http: //www.adobe.com/products/illustrator/main.html

26.1 Running SVGDemo

This project contains MIDlets that demonstrate different ways to load manipulate,
render, and play SVG content.

Go to File > New Project and in the Categories window select Samples > Java ME SDK
3.2 and single-click SVGDemo. Click Next.

26.1.1 SVG Browser

The SVGBrowser MIDlet displays SVG files residing in the phone file system. Before
running this demo, place an SVG file in your device skin's file structure. The default
location is:

userhome\javame-sdk\3.2\work\device\appdb\filesystem\root1

JSR 226: Scalable 2D Vector Graphics 26-1

Running SVGDemo

For your device location, see Section 8.4, "Oracle Java ME SDK Directories" and
Table 8-1. Launch the demo. The application displays the contents of root1. Select
your SVG file and choose the Open soft key.

26.1.2 Render SVG Image

Render SVG Image loads an SVG image from a file and renders it. Looking at the
demo code you can see that the image is dynamically sized to exactly fit the display
area. The output is clear and sharp.

26.1.3 Play SVG Animation

This application plays an SVG animation depicting a Halloween greeting card. Press 8
to pause, 5 to start or resume, and 0 to stop.

The SVG file contains a description of how the various image elements evolve over
time to provide this short animation.

In the following code sample, the JSR 226 javax.microedition.m2g.SVGImage class is
used to load the SVG resource. Then, the javax.microedition.m2g.SVGAnimator class
can take all the complexity of SVG animations and provides a java.awt .Component or
javax.swing.JComponent which plays the animation. The SVGAnimator class provides
methods to play, pause and stop the animation.

import javax.microedition.m2g.ScalableGraphics;
import javax.microedition.m2g.SVGImage;

String svgURI = ...;

SVGImage svgImage = (SVGImage) SVGImage.createImage (svgURI, null);

SVGAnimator svgAnimator = SVGAnimator.createAnimator (svgImage);

// If running a JSE applet, the target component is a JComponent.

JComponent svgAnimationComponent = (JComponent) svgAnimator.getTargetComponent () ;
svgAnimator.play() ;

svgAnimator.pause () ;

svgAnimator.stop() ;

26.1.4 Create SVG Image from Scratch

This demo builds an image using API calls. It creates an empty SVGImage, populates
it with a graphical content, and then displays that content.

26.1.5 Bouncing Balls

Bouncing Balls plays an SVG animation. Press 8 to play, 5 to start, and 0 to stop. If you
press 8, pressing 5 resumes the animation. If you press 0, pressing 5 starts the
animation from the beginning.

26-2 Oracle Java ME SDK Developer's Guide

Running SVGDemo

26.1.6 Optimized Menu

In this demo, selected icons have a yellow border. As you move to a new icon, it
becomes selected and the previous icon flips to the unselected state. If you navigate off
the icon grid, selection loops around. That is, if the last icon in a row is selected,
moving right selects the first icon in the same row.

This demo illustrates the flexibility that combining Ul markup and Java offers: a rich
set of functionality (graphics, animations, high-end 2D rendering) and flexibility in
graphic manipulation, pre-rendering or playing.

In this example, a graphic artist delivered an SVG animation defining the transition
state for the menu icons, from the unselected state to the selected state. The program
renders each icon's animation sequence separately into off-screen buffers (for faster
rendering later on), using the JSR 226 APL

With buffering, the MIDlet adapts to the device display resolution (because the
graphics are defined in SVG format) and still retain the speed of bitmap rendering. In
addition, the MIDlet is still leveraging the SVG animation capabilities.

The task of defining the look of the menu items and their animation effect (the job of
the graphic artist and designer) is cleanly separated from the task of displaying the
menu and starting actions based on menu selection (the job of the developer). The two
can vary independently provided both the artist and the developer observe the SVG
document structure conventions.

26.1.7 Picture Decorator
In this sample you use the phone keys to add decorations to a photograph. The key

values are:

Key Action

1 key shrink

2 key next picture

3 key grow

4 key help

5 key horizontal flip

6 key vertical flip

7 key rotate counter-clockwise
8 key previous picture

9 key rotate clockwise

display picker options

This demo provides 16 pictures for you to decorate.
Use the 2 and 8 keys to page forward and back through the photos.

To decorate, press # to display the picker. Use the arrow keys to highlight a graphic
object. The highlighted object is enlarged. Press Select to choose the current graphic or
press the arrow keys to highlight a different graphic. Press Select again to add the
graphic to the photo. When the decoration is added you see a red + on the graphic,
indicating it is selected and can be moved, resized, and manipulated.

JSR 226: Scalable 2D Vector Graphics 26-3

Running SVGDemo

Use the navigation arrows to move the graphic. Use 1 to shrink the graphic, and 3 to
enlarge the graphic. Use 5 or 6 to flip, and 7 or 9 to rotate. When you are satisfied with
the position, press Select. Look for a green triangle. This is a cursor. Use the navigation
keys to move the green triangle around the picture. When the cursor is over an object
it is highlighted with a red box. Press Select. The red + indicates the object is selected
and it can be manipulated or removed.

To remove a decoration (a property), select an object, then click the Menu soft key and
choose Remove prop.

26.1.8 Location Based Service

Launch the application. A splash screen (also used as the help) appears. The initial
view is a map of your itinerary - a walk through San Francisco. The bay (in blue) is on
the right of your screen. Press 1 to start following the itinerary. The application zooms
in on your location on the map. Turn-by-turn directions appear in white boxes on the
horizontal axis. While the itinerary is running, Press 7 to rotate the map
counter-clockwise. Note, the map rotates and the text now appears on the vertical axis.
Press 7 again to restore the default orientation. Press 4 to display the help screen.

26-4 Oracle Java ME SDK Developer's Guide

Running SVGContactList

Right on Drumm

26.2 Running SVGContactList

This application uses different skins to display the same contact list information and a
news banner. The skins feature different colors and fonts.

Select SVGContactlist(skin 1) or SVGContactlist(skin 2), then click Launch.

Use the up and down arrows to navigate the list of contacts. The selected name is
marked with a special character (a > or a dot) and is displayed in a larger font.

Press > or the select button to see more information for the selected name. When you
are in the detailed view you can traverse the detail entries using the up or down
arrows.

Press < or the select button to return to the contact list.

Press the left soft button to go back to the demos MIDlet list and view another skin.

JSR 226: Scalable 2D Vector Graphics 26-5

Running SVGContactList

26-6 Oracle Java ME SDK Developer's Guide

27

JSR 239: Java Bindings for Open GL ES

JSR 239 provides a Java language interface to the open standard OpenGL ES graphics
APIL.

27.1 Open GL Overview

JSR 239 defines the Java programming language bindings for two APIs, OpenGL for
Embedded Systems (OpenGL ES) and EGL. OpenGL ES is a standard API for 3D
graphics, a subset of OpenGL, which is pervasive on desktop computers. EGL is a
standard platform interface layer. Both OpenGL ES and EGL are developed by the
Khronos Group http://khronos.org/opengles/.

While JSR 184 (which is object oriented) requires high level functionality, OpenGL is a
low-level graphics library that is suited for accessing hardware accelerated 3D
graphics.

JSR 239: Java Bindings for Open GL ES 27-1

Open GL Overview

27-2 Oracle Java ME SDK Developer's Guide

28

JSR 256: Mobile Sensor API Support

The JSR 256 Mobile Sensor API allows Java ME application developers to fetch data
from sensors. A sensor is any measurement data source. Sensors can vary from
physical sensors such as magnetometers and accelerometers to virtual sensors that
combine and manipulate the data they have received from various kinds of physical
sensors. An example of a virtual sensor might be a level sensor indicating the
remaining charge in a battery or a field intensity sensor that measures the reception
level of the mobile network signal in a mobile phone.

JSR 256 supports many different types of sensor connection (wired, wireless,
embedded and more) but this SDK release only provides preconfigured support for
sensors embedded in the device.

The SDK GUI provides sensor simulation. The emulator's External Events Generator
Sensors tab enables you to run a script that simulates sensor data.

You can use the API available with the SDK to create a custom sensor implementation
with additional capabilities and support for different connection types.

The Sensors demonstration has two MIDlets, SensorBrowser and Marbles that
demonstrate the SDK's implementation of the Mobile Sensor APL

28.1 Creating a Mobile Sensor Project

The Mobile Sensor API is automatically included in version 3.2 CLDC projects. In
NetBeans, create a new Java ME Mobile Application, choose the CLDC version 3.2
platform, and specify a device that supports CLDC-1.1 and MIDP-2.1 (JavaMEPhonel
for example).

A sensor project freely detects sensors, but this does not imply you can get data from
the sensors you find. You might need to explicitly set permissions in your project so
you can interact with certain sensors. To see an example, open the Sensors sample
project. Right-click on Samples and select Properties, choose the Application
Descriptor category, and select the API Permissions tab.

The following permissions work with the preconfigured embedded sensors shipped
with the SDK:

m Jjavax.microedition.io.Connector.sensor
Required to open a sensor connection and start measuring data.
m Javax.microedition.sensor.ProtectedSensor

Required to access a protected sensor.

JSR 256: Mobile Sensor API Support 28-1

Using a Mobile Sensor Project

m Jjavax.microedition.sensor.PrivateSensor
Required to access a private sensor.

A sensor is private or protected if the sensor's security property has the value private
or protected. The security property is an example of a sensor property you might
create for yourself in your own sensor configuration. You can create your own optional
properties using com. sun.javame.sensorN.proplist and

com. sun. javame. sensorN.prop.any_name, where N is the sensor number and any_
name is the name of your property. The security sensor property was created as
follows:

add security into proplist

com. sun.javame.sensor<N>.proplist: security

add security property value

com. sun. javame.sensor<N>.prop.security: private

28.2 Using a Mobile Sensor Project

The sample Sensor project can be installed over the air. To install the application into
the emulator right-click on Samples and select Properties, choose the Running
category, select Execute through OTA, and click OK.

In the emulator window, select Device > Sensors. In this tab you can view all sensors
currently available in the emulator, with the sensor ID, name, and availability. If the
sensor supports change to availability you can click on the check box to change it. As
mentioned earlier, the provided implementation does not support availability change,
but a custom implementation you create might do so.

When you select a sensor row the bottom of the dialog displays any custom sensor

controls. For example, the acceleration sensor, has three channels: axis_x, axis_y, and
axis_z. Each channel has a slider that changes the current channel value, and an edit
box you can use to input a value. The channel unit label is displayed on the far right.

Under the channels there is a script player control that enables you to play sensor
value events from a script file of the format discussed in Section 28.3, "Creating a
Sensor Script File". See Section 28.4, "SensorBrowser" for a description of how to use
the Sensors demo.

28.3 Creating a Sensor Script File

28-2

To simulate sensor inputs, provide a sensor script. The file format is as follows:

<sensors>
<value time="0">
<channel id="0" value="0" />
<channel id="1" value="0" />
</value>
<value time="100">
<sensor active="false"/>
</value>
<value time="100">
<channel id="0" value="-50" />
<channel id="1" value="10" />
<sensor active="true"/>
</value>
</sensors>

Oracle Java ME SDK Developer's Guide

SensorBrowser

marbles.xml in the Sensors project directory is an example of a sensor script file. The
attributes are as follows:

The attribute time in the value tag is the delay from the previous command in
milliseconds.

The channel tag sets the value of the channel with the specified id value, to value.
The channel ignores the id if the value of id is not specified or if the value is out of

the channel range.

The sensor tag is a true or false value that makes the sensor available or

unavailable. The preconfigured sensors provided with this release are embedded,

so they cannot be deactivated. If you configure your own sensor that is not
embedded, it is possible to deactivate it.

28.4 SensorBrowser

The SensorBrowser application displays the sensor detail information for reach
channel defined for the demo.

1.

In the emulator select SensorBrowser and use the soft key to select Launch the
application.

Depending on your security settings you might see the warning: "Sensors" wants
to connect to sensor <#>. Is it OK to use sensor? For test purposes, select "Ask once

per application use" and choose the Yes soft button.

The emulator displays a list of sensors.

Use the navigation keys to highlight a sensor, then use the soft key to select Detail.

For example, the following screen shows the details for the acceleration sensor.

sensor detail: Acceleration Sen. .
Quantity: acceleration
Model acceleration
Context type: user
tion type: embedded

URL:
sensor.acceleration;contextType
=user,model=acceleration

Description: Acceleration
Sensor

Channel: a}:is_x|_

Back

Click Back, then click Exit to return to the application menu.

JSR 256: Mobile Sensor API Support

28-3

Marbles

28.5 Marbles

This demonstration uses the Marbles game to provide visual feedback for sensor
inputs provided in a script.

1.

From the application menu select Marbles and use the soft key to launch the
application.

In the emulator, select Device > Sensors to open the external events generator.
The emulator displays a list of the sensors in this application.

Select the Acceleration Sensor row (ID 3).

Click the Browse button, and in the Sensors project directory choose marbles.xml.

Observe the movement of the marbles on the emulator screen. On the external
events screen you can see the sliders move as the script runs. You can use the
familiar controls to play, pause, and stop the script.

28-4 Oracle Java ME SDK Developer's Guide

29

JSR 257: Contactless Communication API

The Contactless Communication API (http://jcp.org/en/jsr/detail?id=257)is a
Java ME optional package that allows applications to access information on contactless
targets, such as Radio Frequency Identification (RFID) tags and bar codes. RFID tags
are often used in business for item identification, article surveillance, and inventory.
Each RFID tag contains a unique identification number used to identify a tagged
object.

Using the JSR 257 API, an RFID reader can be built into an Oracle Java Wireless Client
software phone stack, allowing the handset to read data from a tagged target and write
data back to it. RFID readers use the 13.56 MHz radio frequency and the
communication distance is usually less than 10 centimeters.

The Near Field Communication (NFC) Forum defines the NFC Data Exchange Format
(NDEF) data packaging format. NDEF facilitates communication with an RFID tag, or
between one NFC device and another. The Contactless Communication API provides a
connection to any physical target that supports the NDEF standard, allowing
applications to exchange data with any target tagged with NDEF formatting,
regardless of actual physical type.

For an explanation of this implementation, see the Oracle Java Wireless Client Porting
Guide.

29.1 Using ContactlessDemo

The Oracle Java ME SDK provides a way to test contactless communication. The
MIDIlet running on the emulator waits to detect an RFID tag. You can simulate the tag
communication using the emulator’s external events generator to detect and attach the
tag. You can use one of the tags included in the sample, or create tag files of your own,
as described in Section 29.2, "Tag File Formats".

1. Launch the ContactlessDemo. The MIDlet registers the RFID tag listener, the
NDEF tag listener and the NDEF record listener, then notifies you that it is waiting
for a tag.

2. In the emulator, choose Device > Contactless Communication. In the external
events generator the tag emulator supplies several tags by default: hello, nested,
vcard, jdts, jdts2, and ndefEmpty.

3. To test the connection, select an available tag and press the Attach tag button.

In the emulator the MIDlet notifies you that the NDEF target is detected, displays
the tag information, and prints the payload if it is a text record.

JSR 257: Contactless Communication APl 29-1

Tag File Formats

In the external events generator, press the Detach tag button to end the session.

Events are recorded in the log area. To clear the log, right-click and select delete
text. To clear the emulator screen press the Clear soft button.

4. To create your own tag, create a tag file according to the NDEF standard. For a
sample, see Section 29.2, "Tag File Formats".

In the external events generator, press the Create tag button, browse to select your
tag file, and press Open. If the file is properly formed, the new tag is added to the
available tags list.

You can use the Remove tag button to remove any tag from the list. If it’s a tag you
created, the original file on disk is not affected. If the default tags are removed,
they reappear when you restart the demo.

5. Optional. Instead of performing interactive actions in the external events
generator, you can use a script to do the same thing.

Create a file as directed in Section 29.3, "Script Format". In the external events
generator, click the Browse button to locate your script, then press Play.

29.2 Tag File Formats

29-2

Tags are created in XML format in accordance with the NFC and NDEF standards. To
see how the sample files are formed, see:
installdir\toolkit-1lib\modules\emulator-ui-window-external-events\jsr257\conf
\tags.

A sample file with several records might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<jsr257client>
<UID>12-CD-45-67-89-AB-CD</UID>

<TargetProperties>
<TargetProperty>NDEF</TargetProperty>
</TargetProperties>

<NDEFMessage>

<NDEFRecord>
<Format>MIME</Format>
<Name>text/plain</Name>
<Id>mimeid</Id>
<Payload>Hello, MIME World!</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>MIME</Format>
<Name>text/example</Name>
<Id>urn:company:product:ndef:payload:2</Id>
<Payload>payload2</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>EXTERNAL_RTD</Format>
<Name>urn:nfc:ext:oracle.com: typel</Name>
<Id></Id>
<Payload>payload3</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>URI</Format>
<Name>urn: company :product: test_uri</Name>

Oracle Java ME SDK Developer's Guide

Script Format

<Id>urn:company:product:ndef:payload:4</Id>
<Payload>payload4/<Payload>

</NDEFRecord>
<NDEFRecord>

<Format>NFC_FORUM_RTD</Format>
<Name>urn:nfc:wkt: Sp</Name>
<Id></Id>
<Payload>smart-poster</Payload>

</NDEFRecord>
<NDEFRecord>

<Format>MIME</Format>

<Name>text /x-vCard</Name>

<Id>duke</Id>

<Payload>BEGIN:VCARD VERSION:2.1 FN:Oracle TEL:+1-650-506-7000
ADR:500 Oracle Parkway City:Redwood Shores
State:CA; 94065 END:VCARD

</Payload>

</NDEFRecord>
</NDEFMessage>
</jsr257client>

29.3 Script Format

You can use the external events generator buttons to attach and detach a tag, or you
can write a script to perform these actions. The script syntax is as follows:

Comment:

this is a comment
Tag definition:
tag <tag name> <path to the tag xml file>
Attach tag:
attach <tag name>
Delay. Ensures the tag is attached before other actions.
wait <time in ms>
Print tag information:
print <tag name>
Detach tag:
detach <tag name>

This is a sample script:

tag C D:\MyTags\ccomtag.xml

attach C
print C

wait 10000

detach C

In the external events generator click Browse and choose the script file, then press Play
to run the script. The results are shown in the Log area. For example, if the sample
script calls the sample tag file in Section 29.2, the log output is as follows:

[18:24:10]
[18:24:10]
[18:24:10]
[18:24:10]
[18:24:10]

Properties:

Run Script: D:\JMESDKLocal\ccomtag.xml
Define tag 2058 (C)

Print 2058 (C)

Attached tag 2058 (C)

UID: 02-34-56-78-9A-BC-DE

NDEF

NDEF message: 8 record(s)
#0: NDEF record: format=MIME, name=text/plain, id.length=2, payload.length=18

JSR 257: Contactless Communication APl 29-3

Script Format

payload=Hello, MIME world!

#1: NDEF record: format=MIME, name=text/example, id.length=34, payload.length=8
payload=payload?2

#2: NDEF record: format=EXTERNAL_RTD, name=oracle.com:typel, payload.length=8
payload=payload3

#3: NDEF record: format=URI, name=urn:company:product:test_uri, id.length=34,
payload.length=8

payload=payload4d

#4: NDEF record: format=EXTERNAL_RTD, name=company.com:typel, id.length=34,
payload.length=8

payload=payload5

#5: NDEF record: format=NFC_FORUM_RTD, name=Sp, payload.length=12
payload=smart-poster

#6: NDEF record: format=URI, name=message/http, id.length=3, payload.length=56
payload=http://www.oracle.com/technetwork/java/javame/index.html

#7: NDEF record: format=MIME, name=text/x-vCard, id.length=4, payload.length=122
payload=BEGIN:VCARD VERSION:2.1 FN:Oracle TEL:+1-650-506-7000

ADR:500 Oracle Parkway; City:Redwood Shores;State:CA;94065 END:VCARD

[18:24:10] Wait 10000ms

[18:24:20] Detached tag 2058 (C)

[18:24:20] Script finished.

[18:24:25] Received data for unknown tag 2,058

29-4 Oracle Java ME SDK Developer's Guide

A

AccessPoint API, 16-3
AGUI, 2-1

AMS, 4-2

AMS API, 16-3
application versioning, 5-1
AT command, 2-2

Bluetooth, 18-1
building (command line), 14-5

Cc

CBS message, sending, 23-3
CDC stack, 2-3
certificate management, 13-5
-classpathoption, 14-6
CLDC and MIDP stack, 2-1
command line operations, 14-1
command path, 14-5
Common Name, 13-5
Contactless Communication API, 29-1
content handler, 25-1

actions, 25-3

properties, 25-2
cref, 21-2
Custom Device Skin Creator, 6-10

D

data.prof, 8-3
debugging, 4-7
from command line, 14-4
options, 14-4
demonstration applications, 3-4
device
information, 6-4
Device Access API, 16-2
device manager, 2-1,14-1

E

emulation platform, 2-1
emulator, 2-1,6-1

Index

default protection domain, 14-7
skins, 6-3
emulator phone number, 23-2
emulator proxy server, 3-4

F

FileConnection API, 17-1
Files window, 4-6
font size, 1-1

G

garbage collection, 11-1
generating stub from command line, 14-9
GPIO, 2-2

H

heap size, 6-4,7-3
-help option, 14-2
hex view, 10-2

2C, 22

immediate mode, 24-1
IMP-NG, 2-1,2-2
-import command, 14-9

J

J2ME Web Services Specification, 20-1
JAD file, 4-2

creating, 5-7
JadTool, 14-7
JAR file, 4-2

add, 5-6

creating and compressing, 5-7
Java Cryptography Extension (JCE) keystore, 14-8
Java Platform Manager, 2-3
javame-sdk, 8-3
JCP, 16-1
JSR, 16-1
JSR 118, 13-1
JSR 120, 23-1

Index-1

JSR135, 19-1
JSR172, 20-1,20-5
JSR177, 21-1
JSR179, 22-1,22-3
JSR 184, 24-1,24-2
JSR 205, 23-1
JSR211, 253
JSR 239, 27-1
JSR 257, 29-1
JSR75, 17-1,17-2
JSR82, 181,182

K

key

exporting, 5-8
key management, 13-3
key pair

alias, 13-5

creating, 13-4

importing, 13-5
keystore, JCE, 14-8
keystore.ks, 3-7
keytool utility, 14-8

L

locale, 6-4
Location API, 22-1
Logging API, 16-3
logical view, 4-5

LWUIT, 12-1
M
M3G, 24-1

managing certificates from command line,

manifest file, 14-6

MAX_ISOLATES, 6-5

MEKeyTool, 14-8

memory monitor, 11-1,11-2

memory monitor snapshot, 11-4

method profiling, 9-1

MIDP, 2-1

MMAPI, 19-1,19-4

MMIO, 2-2

Mobile 3D Graphics API, 24-1

Mobile Media API, 19-1

Mobile Media API (MMAPI), 19-1
capture, 19-2

multiple user environment, 8-1

N

NDEF, 29-1

network monitor
filtering, 10-2

NFC, 29-1

Index-2

(o)

OBEX, 18-1

obfuscate project, 5-7
OpenGLES, 27-1
Organization Name, 13-5
Organization Unit, 13-5

P

packaging, 5-7
packaging using command line, 14-7
PBP, 2-1
PDA Optional Packages, 17-1
PDAP, 17-1
permissions, 13-2
Personal Information Management (PIM) AP,
phone number, 6-4
physical view, 4-6
PIM API, 17-2
preverifying, 14-5
example from command line, 14-6
profiler, 9-1,14-4
project, 4-1
add, 5-6
build, 4-5
clean, 4-5
close, 4-5
import, 4-4
new, 4-5
run, 4-5
set as main, 4-5
Projects window, 4-5
properties
device, 6-4
enable profiler, 9-2
platform, 6-4
searchable in WURFL, 7-2
protection domains, 13-1
proxy server, 3-4

R

17-1

reference problem, 3-7

resolve reference problems, 3-7
retained mode, 24-1

RFID, 29-1

ring tones, 19-2

roots in the FileConnection API, 17-1
run options, 14-2

Run Project via OTA, 13-2

S

SATSA, 21-1

SATSA demos, 21-6

Scalable 2D Vector Graphics API, 26-1
scene graph, 24-1

SDK, running from command line, 14-1
serial port, 6-5

settings, 1-3,4-1

signed MIDlet suites, 13-1
signing MIDlet suites, 13-2, 14-7
SMS text message, sending, 23-2
SPI, 2-2

stub generator for web services, 20-1

SVG, 26-1
SVGDemo, 26-1
SVGT, 26-1
switch users, 8-1

T

toolbar, running from the command line,

tracing, 11-1

U

UEI, 8-1

update center, 1-3
user, 8-2

user switching, 8-1
utilities, 1-3

\'}

-version option, 14-2
versioning applications, 5-1

w

Web Services specification, 20-1
web services, stub generator, 20-1
Wireless Messaging API, 23-1
WMA, 23-1

WMA console, 23-1

wscompile, 14-9

WURFL, 7-1

WURFL search, 7-1

WURFL search filter, 7-2

X

-Xdebug option, 14-4
-Xrunjdwp option, 14-4

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Documents

	1 Getting Started
	1.1 Quick Start
	1.2 Tips for Legacy Toolkit Users
	1.3 Java ME SDK Update Center

	2 Platforms
	2.1 Emulation Platforms
	2.1.1 CLDC with MIDP
	2.1.2 IMP-NG
	2.1.3 CDC

	2.2 Managing Java Platforms
	2.2.1 Java ME Platforms
	2.2.2 Create a Platform for Legacy CDC Projects

	3 Using Sample Projects
	3.1 Creating a Sample Project
	3.2 Running a Project
	3.3 Troubleshooting
	3.4 Sample Project Overview
	3.5 Configuring the Web Browser and Proxy Settings
	3.6 Resolving Reference Problems
	3.7 Running MIDP and CLDC Sample Projects
	3.7.1 Running the AdvancedMultimediaSupplements Sample Project
	3.7.1.1 Image Effects
	3.7.1.2 Music Effects
	3.7.1.3 Camera
	3.7.1.4 Moving Helicopter

	3.7.2 Running the Demos Sample Project
	3.7.2.1 Colors
	3.7.2.2 Properties
	3.7.2.3 Http
	3.7.2.4 FontTestlet
	3.7.2.5 Stock
	3.7.2.6 Tickets
	3.7.2.7 ManyBalls
	3.7.2.8 MiniColor
	3.7.2.9 Chooser
	3.7.2.10 HttpExample
	3.7.2.11 HttpView
	3.7.2.12 PushExample

	3.7.3 Running FPDemo
	3.7.4 Running Games
	3.7.5 Running Network Demo
	3.7.5.1 Socket Demo
	3.7.5.2 Datagram Demo

	3.7.6 Running PhotoAlbum
	3.7.7 Running UIDemo

	3.8 Running IMP-NG Sample Projects
	3.8.1 GPIODemo
	3.8.2 I2CDemo
	3.8.3 NetworkDemoIMPNG
	3.8.4 PDAPDemoIMPNG

	4 Creating and Editing Projects
	4.1 Project Types
	4.1.1 CLDC Projects
	4.1.2 CDC Projects

	4.2 The Project Wizard
	4.2.1 Create a CLDC Project
	4.2.2 Create an IMP-NG Project
	4.2.3 Create a CDC Project
	4.2.4 Import a Legacy MIDP Project
	4.2.5 Import a Legacy CDC Project

	4.3 Working With Projects
	4.4 View Project Files
	4.5 Create a New MIDlet
	4.6 Add Files to a Project
	4.7 Search Project Files
	4.8 Debugging CLDC and IMP-NG Projects

	5 Viewing and Editing Project Properties
	5.1 General Project Properties
	5.2 Platform Selection
	5.3 Editing Application Descriptor Properties
	5.3.1 CDC Attributes
	5.3.2 MIDP Attributes
	5.3.2.1 Add an Attribute
	5.3.2.2 Edit an Attribute
	5.3.2.3 Remove an Attribute

	5.3.3 MIDlets
	5.3.3.1 Add a MIDlet
	5.3.3.2 Edit a MIDlet
	5.3.3.3 Remove a MIDlet
	5.3.3.4 Change MIDlet Display Order

	5.3.4 Push Registry
	5.3.4.1 Add a Push Registry Entry
	5.3.4.2 Enabling a Push Registry Entry
	5.3.4.3 Remove a Push Registry Entry
	5.3.4.4 Change Push Registry Display Order

	5.3.5 API Permissions
	5.3.5.1 Adding Permission Requests

	5.4 Building a Project
	5.4.1 Configuring Ant
	5.4.2 Compiling
	5.4.3 Adding Libraries and Resources
	5.4.4 Creating JAR and JAD Files (Packaging)
	5.4.5 Obfuscating
	5.4.6 Signing
	5.4.7 Signing CDC Projects
	5.4.8 Exporting a Key

	5.5 Running Settings
	5.5.1 MIDP Project Run Options
	5.5.2 CDC Project Run Options

	6 Working With Devices
	6.1 Emulating Devices
	6.1.1 The Device Manager on Windows
	6.1.2 Starting an Emulator
	6.1.3 CLDC Application Management Software Home

	6.2 Adding a Real Device
	6.3 Viewing Device Properties
	6.3.1 Platform Properties
	6.3.2 Device Information
	6.3.3 Device Properties

	6.4 Setting Device Properties
	6.4.1 General
	6.4.2 Monitor
	6.4.3 SATSA
	6.4.4 Location Provider #1 and #2
	6.4.5 Bluetooth and OBEX

	6.5 Changing the Maximum Number of Concurrent Applications
	6.6 Opening a Serial Port
	6.7 Running a Project from the Device Selector
	6.8 Running Projects Simultaneously on a Single Device
	6.9 Emulator Features
	6.10 Emulator Menus
	6.10.1 Application
	6.10.2 Device
	6.10.2.1 Messages
	6.10.2.2 Landmark Stores
	6.10.2.3 Orientation
	6.10.2.4 External Events Generator

	6.10.3 Edit
	6.10.4 View
	6.10.5 Help

	6.11 Using the Custom Device Skin Creator
	6.11.1 Creating a New Custom Device Skin
	6.11.2 Managing Custom Skins

	7 Searching the WURFL Device Database
	7.1 WURFL Search for Devices
	7.2 WURFL Search Filtering

	8 Finding Files in the Multiple User Environment
	8.1 Switching Users
	8.2 Installation Directories
	8.3 NetBeans User Directories
	8.4 Oracle Java ME SDK Directories

	9 Profiling Applications
	9.1 Collecting and Saving Profiler Data in the IDE
	9.2 Loading a .nps File
	9.3 Importing a .prof File

	10 Network Monitoring
	10.1 Monitor Network Traffic
	10.2 Filter or Sort Messages
	10.3 Save and Load Network Monitor Information
	10.4 Clear the Message Tree

	11 Monitoring Memory
	11.1 Enabling Tracing
	11.2 Using the Memory Monitor
	11.3 Viewing a Session Snapshot

	12 Lightweight UI Toolkit
	12.1 LWUIT and the Java ME SDK
	12.2 LWUIT Resource Editor
	12.3 Add a Different LWUIT Library
	12.4 LWUIT Demos

	13 Security and MIDlet Signing
	13.1 Security Domains
	13.2 Setting Security Domains
	13.2.1 Specify the Security Domain for an Emulator
	13.2.2 Specify the Security Domain for a Project

	13.3 Signing a Project
	13.3.1 Sign a CLDC Project With a Key Pair
	13.3.2 Sign a CDC Project

	13.4 Managing Keystores and Key Pairs
	13.4.1 Working With Keystores and Key Pairs
	13.4.1.1 Create a Keystore
	13.4.1.2 Add an Existing Keystore
	13.4.1.3 Create a New Key Pair
	13.4.1.4 Remove a Key Pair
	13.4.1.5 Import an Existing Key Pair

	13.5 Managing Root Certificates

	14 Command Line Reference
	14.1 Run the Device Manager
	14.2 Manage Device Addresses (device-address)
	14.3 Emulator Command Line Options
	14.3.1 MIDlet Options
	14.3.2 CDC Options
	14.3.3 Debugging and Tracing Options
	14.3.4 Command Line Profiling

	14.4 Build a Project from the Command Line
	14.4.1 Check Prerequisites
	14.4.2 Compile Class Files
	14.4.3 Preverify Class Files

	14.5 Packaging a MIDlet Suite (JAR and JAD)
	14.6 Command Line Security Features
	14.6.1 Change the Default Protection Domain
	14.6.2 Sign MIDlet Suites (jadtool)
	14.6.3 Manage Certificates (MEKeyTool)

	14.7 Generate Stubs (wscompile)

	15 Logs
	15.1 Device Manager Logs
	15.2 Device Instance Logs

	16 API Support
	16.1 JCP APIs
	16.2 Oracle APIs

	17 JSR 75: PDA Optional Packages
	17.1 FileConnection API
	17.2 PIM API
	17.3 Running PDAPDemo
	17.3.1 Browsing Files
	17.3.2 The PIM API

	18 JSR 82: Bluetooth and OBEX Support
	18.1 Setting OBEX and Bluetooth Properties
	18.2 Running the Bluetooth Demo
	18.3 Running the OBEX Demo

	19 JSR 135: Mobile Media API Support
	19.1 Media Types
	19.1.1 Media Capture

	19.2 MMAPI MIDlet Behavior
	19.3 Ring Tones
	19.3.1 Download Ring Tones
	19.3.2 Ring Tone Formats

	19.4 Running AudioDemo
	19.5 Running MMAPIDemos
	19.5.1 Simple Tones
	19.5.2 Simple Player
	19.5.3 Video
	19.5.4 Pausing Audio Test

	20 JSR 172: Web Services Support
	20.1 Generating Stub Files from WSDL Descriptors
	20.2 Creating a New Mobile Web Service Client
	20.3 Run JSR172Demo

	21 JSR 177: Smart Card Security (SATSA)
	21.1 Card Slots in the Emulator
	21.2 Java Card Platform Simulator (cref)
	21.3 Adjusting Access Control
	21.3.1 Specifying PIN Properties
	21.3.2 Specifying Application Permissions
	21.3.3 Access Control File Example

	21.4 Running SATSADemos
	21.4.1 APDUMIDlet
	21.4.2 SATMIDlet
	21.4.3 CryptoMIDlet
	21.4.4 MohairMIDlet
	21.4.5 Running SATSAJCRMIDemo

	22 JSR 179: Location API Support
	22.1 Setting the Emulator's Location at Runtime
	22.2 Running the CityGuide Sample Project

	23 JSR 205: Wireless Messaging
	23.1 Using the WMA Console to Send and Receive Messages
	23.1.1 Launching the WMA Console
	23.1.2 WMA Console Interface
	23.1.3 Emulator Phone Numbers
	23.1.4 Sending a Text or Binary SMS Message
	23.1.5 Sending Text or Binary CBS Messages
	23.1.6 Sending MMS Messages
	23.1.7 Receiving Messages in the WMA Console

	23.2 Running WMADemo
	23.2.1 WMADemo Push Registry Values
	23.2.2 Running WMADemo OTA
	23.2.3 Sending SMS Messages From WMA Console to an Emulator and Back
	23.2.4 Sending CBS Messages from WMA Console to an Emulator
	23.2.5 Sending MMS Messages from WMA Console to an Emulator

	23.3 Running WMA Tool
	23.3.1 smsreceive, cbsreceive, and mmsreceive
	23.3.2 smssend
	23.3.3 cbssend
	23.3.4 mmssend

	24 JSR 184: Mobile 3D Graphics
	24.1 Choosing a Graphics Mode
	24.1.1 Immediate Mode
	24.1.2 Retained Mode

	24.2 Quality Versus Speed
	24.3 Content for Mobile 3D Graphics
	24.4 Running Demo3D Samples
	24.4.1 Life3D
	24.4.2 RetainedMode
	24.4.3 PogoRoo

	25 JSR 211: Content Handler API (CHAPI)
	25.1 Using Content Handlers
	25.2 Defining Content Handler Properties
	25.3 Defining Content Handler Actions
	25.4 Running the CHAPIDemo Content Browser

	26 JSR 226: Scalable 2D Vector Graphics
	26.1 Running SVGDemo
	26.1.1 SVG Browser
	26.1.2 Render SVG Image
	26.1.3 Play SVG Animation
	26.1.4 Create SVG Image from Scratch
	26.1.5 Bouncing Balls
	26.1.6 Optimized Menu
	26.1.7 Picture Decorator
	26.1.8 Location Based Service

	26.2 Running SVGContactList

	27 JSR 239: Java Bindings for Open GL ES
	27.1 Open GL Overview

	28 JSR 256: Mobile Sensor API Support
	28.1 Creating a Mobile Sensor Project
	28.2 Using a Mobile Sensor Project
	28.3 Creating a Sensor Script File
	28.4 SensorBrowser
	28.5 Marbles

	29 JSR 257: Contactless Communication API
	29.1 Using ContactlessDemo
	29.2 Tag File Formats
	29.3 Script Format

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

