Oracle® Java Micro Edition Software Development
Kit

Developer's Guide

Release 3.3 for NetBeans on Windows

E24265-05

July 2013

This document describes how to use the Java ME SDK plugin
for NetBeans.

ORACLE

Oracle Java Micro Edition Software Development Kit Developer's Guide, Release 3.3 for NetBeans on
Windows

E24265-05
Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XV
AN S Lo = V< TS PRRRTRT XV
Documentation AcCesSSIDILityccciiiiiiiiiiiiiii e XV
(@) 43723 415 [0 1< TR XV
ReElAted DOCUIMEIES ..ottt ettt e et e et e e e sate e e saaaeesateesneeesssseessaseeesseeeesnseeesnreeean XVi

1 Before You Begin

Installing the Java SE Platform.............cccocoooiiiiiii s 1-1

Setting and Verifying Your Java SE PATHcccccocoiiiiiicccs 1-1
Installing the Java ME SDK Platform ... 1-2
Installing and the Starting the NetBeans IDEcc.ccccccoiniii 1-2

2 Installing Plugins

Downloading Oracle Java ME SDK Pluginscccccooininiiiininicccces 2-1
Installing Oracle Java ME SDK PIugins............cccccccoiiiiiiiiiiiiiiiiicccceeeeeeees 2-1
Installing Plugins Using the Update Center ... 2-1
Installing NetBeans Plugins Manually ... 2-4
Verifying Your Installation ..o 2-8
QUECK SEATT....vioiieeee ettt b e et et e st e et e e st et e essessaessesseessessaessesseessasseessesseessansanssensenns 2-9

3 Platforms

Emulation PIatforms.............cocoooiiiiiiii s 3-1
CLDC With MIDPcoiiiiiiiiiiiiiiiiiiiiins s 3-1
IMP-ING i s 3-2
CDC s 3-3

Managing Java Platforms...............ccoooiiiii s 3-3
JavVa ME PIAIOTINSoeuiiviiiiiiieieietetee ettt ettt et st et s st et e e e ste s e sse st eneesessessessensensensansens 3-4
Create a Platform for Legacy CDC Projects ... 3-4

4 Using Sample Projects

Creating a Sample Project............ccooiiiiiiiiiiiiiii 4-1
RUNNIng @ Project ... 4-2
TroubleSROOING..........ccooiiiiii e 4-4
Sample Project OVEIVIEW ..o 4-4

Configuring the Web Browser and Proxy Settings............cccccocevviiiiiiiininiiiiiiccccces 4-7

Resolving Reference Problems................cccoooiiiiiiiiiiiii s 4-7
Running MIDP and CLDC Sample Projects...............ccccceviniiiiiininiiiiiiiniiicneseines 4-8
Running the AdvancedMultimediaSupplements Sample Projectcccccovveiiiiiiiinnnnnnnn 4-9
Image EFfects ... 4-9
MUSIC EEfECS oo 4-9
CAITNIETA ..vvviiiieiee s 4-9
MoOVINgG HEliCOPLOT ...vviieieiiee e 4-10
Running the Demos Sample PTOJECtcccccccociiiiiiiiiiiiiiiiiccecree e 4-10
COLOTS ittt 4-11
PIrOPertiescouoioiiiciiiete s 4-11
HED o 4-11
FONETESEIEL ... 4-12
STOCK ottt 4-12
THCKEES eeevii s 4-13
MaNYBALLS ...t e 4-14
MINICOIOT .ot 4-14
CROOSET ...ttt 4-14
HEPEXAMPLE .ot 4-14
HEPVIEW oo 4-14
PUShEXAMPIE ..o 4-14
RUNNING FPDEINO ..o.vviviiiiietiie ettt sttt 4-15
RUNNING GAIMES ...ttt 4-15
Running Network DEIMOc.ccoviiiiiiiiiiiiiiiiirr e 4-15
SOCKEE DOIMO ..ottt 4-15
Datagram DemOcooeuiiiiiiiiiiiiii s 4-16
Running PROtOALIDUINc.cceuiiiiiiiiiiiiiiiiieeccr et 4-16
RUnning UIDEIMOc.coiiiiiiiiiiiiietetc ettt ettt 4-16
Running IMP-NG Sample Projects ..o 4-17
Running the GPIODEIMOc.cceuiiiiiiiiiiiiiciicrccceee e 4-17
Running the GPIODemo on the EMulator ..., 4-18
Running the GPIODemo on the Reference Boardcccccoeviiiviniiiiinniiiciciiiiicins 4-18
Running the I2CDEIMOc.cceuiiiiiiiiiiiiiciciceeecee e 4-18
Running the NetworkDemoIMPINGcccccoviiiiiiiiiiiiiiiic s 4-19
Running NetworkDemoIMPNG on the Emulator ..o 4-19
Running NetworkDemoIMPNG on the Reference Board ..., 4-19
Running the PDAPDemMOIMPNGcccooiiiiiiiiiii s 4-20
Running the PDAPDemoIMPNG on the Emulator ..., 4-20
Running PDAPDemoIMPNG on the Reference Boardcccccovvviivnvninnnncnnnene. 4-21
Running the Pulse Counter (Data Collection) Democcccccviiiiniiniiiiiiiiiiiiceeeens 4-21
Configuring a Pulse COUNETcccccciiiiiiiiiiiiiiiiiiicc e 4-22
Running the Light Tracker DEMOcccccociiiiiiiiiiiiiiiiccecceeeeeeeeeeeeee e 4-23
Running the System Controller Democ.cooiiioiiiii e, 4-23

5 Creating and Editing Projects

PrOJECt TYPES ..o 5-1
MIDP PIOJECES .oviiiiiiiiiiiciceie s 5-1

CDC PIOJECS oottt 5-2

The Project WIzard ..o 5-2
Create @ MIDP ProJECt ..o s 5-2
Create an IMP-ING PIoOject ... 5-3
Create @ CDC PrOJect ...oooucieieiiiiicieiei s 5-3
Import a Legacy MIDDP Project ..o 5-4
Import a Legacy CDC PrOJECtccuoviuiiiiiiieic s 5-4

Working With Projects...........cccocoiiiiiiiiiiiii e 5-5

VieW Project FAles ... 5-6

Create a NeW MIDIetcooiiiiiiiiiiii s 5-6

Add Files t0 @ PrOJectcccoviiiiiiiiiiiiiiiiii s 5-7

Search Project FAles ... 5-7

Debugging MIDP and IMP-NG Projects............cccccocovivininininininiiniiiii e 5-7

6 Viewing and Editing Project Properties

General Project Properties. ... 6-1
Platform Selection ... 6-1
Editing Application Descriptor Properties.............cccoccoooiiniiiiiiiiiicccs 6-2
CDC AHIIDULES ..o 6-2
MIDP ATIDULES ...vvevvreieieneieieieieieieieteieeietetetetetetet ettt ettt eaees 6-2
Add an ATIDULEc.coiuiiiiiiiiiiccccee s 6-2

Edit an AHIIDULE ..o 6-3
Remove an AtrDULEcociiiiii e 6-3
MIDIEES ..t 6-3
Add @ MIDIEE ...ttt 6-3

Edit @ MIDIEL ...oovoieiiiieiieirierereeesrrsses sttt ettt 6-3
ReMOVE @ MIDIEEoviiiiiiicicccee ettt 6-3
Change MIDlet Display Order ..o 6-4

PUSH REZISLIY ..voviiiieee et 6-4
Add a Push Registry ENEIYc.cccociiiiiiiiiiiicceceeeee e 6-4
Enabling a Push Registry ENtry ..o 6-4
Remove a Push Registry ENtryccccccoiiiiiiiiiiiiiiiiiccciccccrs 6-4
Change Push Registry Display Order ..o 6-4

API POITNUSSIONS ...oviviiiiiiiiiiiiiiiiniitii ettt bbb e s bbb bbb 6-4
Adding Permission REQUESLScccccceuiuiiiiiiiiiiiiiiiiiiciciicc s 6-4
Building @ Project ... 6-5
Configuring ANtouoiiicci s 6-5
COMPILNG ..o s 6-6
Adding Libraries and RESOUICESc.ccccceuiuiiiiiuiiiiiiiiiiiiciceceieeee e 6-6
Creating JAR and JAD Files (Packaging)ccccocoviviinininininininiiiiiiis 6-7
ODFUSCALINE ... 6-7
SIGNING ovviviiiiic s 6-7
Signing CDC PIOJECES ..vvuiuiiiiiiiiiiiete ettt 6-7
EXPOrting @ KeYcoovoviiiiiii s 6-7
RUnning Settings ... 6-8
MIDP Project RUN OPtiONSccccvueviviiiiiiiiiiiiiiiiiieccc s 6-8
CDC Project RUN OPIONS ...ccooviiiiiiiiiiiiiiiccccc s 6-9

7 Working With Devices

EMUIAEOTS ..o s 7-1
The Device Manager 0n WINAOWSc.cccoeviiiiririiiiiiiieirccirereee s 7-1
Starting an EMUIator ... s 7-2
CLDC Application Management SYStemcccoccueieiiiieieiiiiciecce s 7-2

Adding an External Device.............cccoiiiiiiiiiiiiiiiic s 7-3

Viewing Device Properties ... s 7-4
Platform Properties ... s 7-4
Device INfOrmMationcocociieiiiiiiiiiiiii s 7-4
Device Properti€s ... e 7-4

Setting Device Properties ..o 7-5
GENETAL ..o 7-5
IMIOTUEOT .ttt 7-5
SATSA o s 7-5
Location Provider #1 and #2 ... s 7-5
Bluetooth and OBEXccccccoiiiiiiiiiicc s 7-5

Connecting t0 @ UART DeViCeccoiiiiiiiiiicc s 7-6

Opening a Serial POrt ... 7-6

Running a Project from the Device Selector ..o 7-6

Running Projects Simultaneously on a Single Deviceccccccoviiiniiiiiii, 7-6

Emulator Features.............ooooiiicc s 7-7

EMUIator MIEIUSooiiiiiiiiiiiiic sttt 7-10
APPLICATION .o 7-10
DIEVICE ...ttt 7-11

IMESSAZESvvvviiiiieiett s 7-11
OrIentationcoveieiiiciec s 7-11
Bt oo 7-11
TOOLS ot 7-12
External Events Generator ... 7-12
VIBW e R r et aeana e es 7-13
HELP o 7-14

Using the Custom Device EdItor.............cccccoiiiiiiiiiiiiiiiicas 7-14
Creating a Custom DEVICE ... 7-14
Managing Custom DevViICeSsc.ouiuriiiiiiiiiiiicct 7-15
IMP-NG Device OPHIONS ...c.covoiiiiiiiiiiiiiiciiieicce s 7-15

General Purpose Input Output (GPIO)ccccoeiiiiiiiiiiiiiiiccccrececrreeee e 7-15
Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI)ccccocoviiinnnnns 7-15
Memory-Mapped I/O (MMIO)cccccoviiiiiiiiiiiiiiccs s 7-16

8 Finding Files in the Multiple User Environment

vi

SWILCHING USEIS ...t 8-1
INStAllation DIT@CEOTIES.ccueeveiieiieiieeereeee ettt ettt e et e st e et e s e et e st e essesseeseessesnsessesnsessasnsenseens 8-1
NetBeans USer DIreCtOris.cccoooveviiiieiiieieiicieieeteste ettt reeae st e sae s e essessaessesseessesssessesssessesssessensees 8-2
Oracle Java ME SDK DIr@CtOTIes.c.coucerieirieirieirieiniertnietetetetetete sttt saes st ese et sttt seesesaenen 8-2

9 Profiling Applications

10

11

12

13

Collecting and Saving Profiler Datain the IDE.................cccccccoiiiin 9-1
Loading a .nps File ... 9-4
Importing a .prof File..........ccocoooiiiii 9-4
Network Monitoring
Monitor Network Traffic.........cccoooiiiiiiiiii s 10-1
Filter or SOIt MIESSAGESooviiiiiiiii s 10-3
Save and Load Network Monitor Information...............ccocooeriiiiiiiiiccces 10-3
Clear the Message TIee.............oooiiiiiiiiiiiiiict et 10-3
Monitoring Memory
ENnabling Tracing..........ccoccoiiiiiiiiiiiiiic s 11-1
Using the Memory MONItOT............ccccoiiiiiiiiiiiiiiiiii s 11-2
Viewing a Session SNapshot ... 11-4
Security and MiIDlet Signing
Security DOmMAINScooiiiiiiiiii s 12-1
Setting Security DOmMaINS ... s 12-2
Specify the Security Domain for an EMulator ..., 12-2
Specify the Security Domain for a ProOJECtcccocociiiiiiiiiiiiccccecccceeceeeeneeenennes 12-2
SIGNING @ PrOJECt......cociiiiiiiiiiiii s 12-2
Sign a CLDC Project With a Key Paircccoooioiiiiii e 12-3
Sign @ CDC PIOJECLcviiiiiiiiiiicciic e 12-3
Managing Keystores and Key Pairs............ccccocoviiiiiiiiiiiis 12-3
Working With Keystores and Key Pairsccccoouoiiiioiiiiciicc e, 12-3
Create a Keystore ... s 12-4
Add an Existing Keystore ... 12-4
Create a New Key Pair ... 12-4
Remove a Key Pair ... 12-5
Import an Existing Key Pair ... 12-5
Managing Root Certificates..............ccocooiiiiiiiiiiiiiiiiiiiii s 12-5
Command Line Reference
Run the Device Manager ...t 13-1
Manage Device Addresses (device-address).............ccoooviiiiiiieiiiiniiii 13-1
Emulator Command Line OPtions...........ccccccoiiiiiiiiiiiiiiiciiii s 13-2
MIDIet OPLIONSvviiiiiiiciiciiccr s 13-2
CDC OPHONS oottt 13-3
Debugging and Tracing OPHioNSc.cccueiiiieiiiiiicieccte e 13-4
Command Line Profiling ..o 13-4
Build a Project from the Command Line.............cccoviiiiiiiiis 13-5
Check Prerequisites ..ot 13-5
Compile Class FIles ... 13-5
Preverify Class FILEs ... 13-6

vii

14

15

16

17

18

19

viii

Packaging a MIDlet Suite (JAR and JAD).......c.cccoooiiiiic s 13-6

Command Line Security Features ..o 13-7
Change the Default Protection Domaincccccceeviiniiinniirnrereree e 13-7
Sign MIDlet Suites (JAAtOOL)ccooviiiiiiiiiii e 138-7
Manage Certificates (MEKEYTOOL)cccocoiiiiiiiiiiiiiiiicii s 13-8

Generate Stubs (WSCOMPILE)c.ooviiriiriiiiciieeee et 13-9

Logs

Device Manager LOZS ..o s 14-1

Device INStance LOGSccccoiviiiiiiiiiiiicc s 14-1

API Support

JSR 75: PDA Optional Packages

FileConnection AP ..ottt ettt ettt st e e teeba e b e eas e beeseesseesaesseessasseesseseas 16-1
PIM AP ...ttt ettt et te st et et e st e s b esbe st estes s ese e st es et e s e esessessessessessessaseasaaseasenseasessessensas 16-2
Running PDAPDEMO ...ttt 16-2
Browsing FIles ... 16-2
TRE PIM AP ...ttt ettt sttt et s b e st e st e st et e st et e s sessessessessessessessessassasansessensens 16-2

JSR 82: Bluetooth and OBEX Support

Setting OBEX and Bluetooth Properties ... 17-1
Running the Bluetooth Demo..............ccoiiiiiiiiiiii s 17-2
Running the OBEX Demo............ccocoiiiiiiiiiiiiii s 17-3

JSR 135: Mobile Media API Support

Media TYPESocvoniiiiiiic s 18-1
Media CAPLUTE ..o 18-2
MMAPI MIDlet BEehavior...........ccccooiiiiiiiiiiiiiiiiccc s 18-2
RING TOMES ...ttt st 18-2
Download RinNG TONEScceueuiiiiiiiiiiiiiieieieeice et 18-2
Ring Tone FOImMAtSccocooiiiiiiiiiiiiiiit s 18-2
Running AudioDemoccoiiiiiiiiii e 18-4
Running MMAPIDEIMOS............cccoviiiiiiiiiiiin s 18-4
SIMPLE TONES ..ottt 18-4
SIMPLE PIAYET ..ottt 18-4
VAAEO oo 18-6
Pausing AUdio TeSto.cuoiiiiii 18-6

JSR 172: Web Services Support

Generating Stub Files from WSDL Descriptors..............cocoiuiiiiiiiiiiiiiiiiiiecceeeeenes 19-1
Creating a New Mobile Web Service Client ..., 19-2
RUN JSRITZ2DI@IMOc.eeeniiiieieetetieeieieete st ete st etesseeaesseessessesssasseessessesssesseessesssessesssessesssensenssensesssensenns 194

20 JSR 177: Smart Card Security (SATSA)

21

22

23

Card Slots in the EMUlator ... 20-1
Adjusting Access CONIOLcccooviiiiiiiiiiiiii s 20-2
Specifying PIN Properties ...t 20-2
Specifying Application PermiSSionscccoceueioicicioiiicicieiiicceecce e 20-2
Access Control File EXamPleccccccoiiiiiiiiiiiicceeeeeee e 20-4
Running the SATSA DemMOccuoiiiiiiii e 20-6
JSR 179: Location API Support
Setting the Emulator's Location at Runtime ... 21-1
Running the CityGuide Sample Project............ccccccooiiiiiiiiiiiiicces 21-3
JSR 205: Wireless Messaging
Using the WMA Console to Send and Receive Messages.............c.cccoovviviniinnnniininnnnnns 22-1
Launching the WMA CONSOLEccccceuiiiiiiiiiiiiiieccceeeeeeeeee e 22-1
WMA Console INteIface ... 22-1
Emulator Phone NUMDETScccccoiiiiiiiiiiiiiiii s 22-2
Sending a Text or Binary SMS MeSSage ... 22-2
Sending Text or Binary CBS MeSSagesccccoururieiiiiiiiciiiiciciece e 22-3
Sending MIMS MESSAZESc.ouerurueiiiiirieieiiicscie ettt bbb 22-3
Receiving Messages in the WMA COnsoleccccccccuiiiiiiiiiiiiiicreccceeeeeeeeeeeeeeeeeeenas 22-4
Running WIMADEINOccoiiiiiiiiiiii s s 22-4
WMADemo Push Registry Values ..o, 22-4
Running WMADEMO OTA ..o 22-4
Sending SMS Messages From WMA Console to an Emulator and Backc.cccccoooenninnn. 22-4
Sending CBS Messages from WMA Console to an Emulator ..., 22-5
Sending MMS Messages from WMA Console to an Emulatorccccocovvvvinnnnnnnnenee. 22-5
Running WIMA TOOL...........coooiiiiiic ettt 22-6
smsreceive, cbsreceive, and MIMSIECEIVEc...ccviierieeeeeirieeeeeereeeteeeeteeetee e eeteeeeveeeaeeesaeenseeesseeseens 22-6
SIMSSEILA. o.viieiiiicti s 22-7
CDSSENA ..o 22-7
INIMISSEILA. .ttt sttt sttt 22-8
JSR 184: Mobile 3D Graphics
Choosing a Graphics Mode.............cccoiiiiiiiiiiie e 23-1
Immediate MOdecooiiiiiiiiiiiiii s 23-1
Retained MOdEcooiiiiiiiiiiiiiiccc s 23-1
Quality Versus Speed ..o 23-2
Content for Mobile 3D Graphics.........cccviimiiiiniiiiniiicceeeee et 23-2
Running Demo3D Samples............ccooiiiiiiiiiii e 23-2
LEE3D it 23-2
RetainedMOode ..o 23-3
POZOROO ..ottt 23-3

24

25

26

27

28

A

JSR 211: Content Handler API (CHAPI)
Using Content Handlerscccocoviiiiiiiiiiiiin s 24-1
Defining Content Handler Properties..............cccocoivniiiniiiiiiins 24-2
Defining Content Handler Actionscccocooiiiiiiiiiiiiics 24-3
Running the CHAPIDemo Content Browser................cccccoiiiiiiiiiiiiiiieeees 24-3
JSR 226: Scalable 2D Vector Graphics
RUnning SVGDEMO...........ccooiiiiiiiictc sttt 25-1
SVG BIOWSET ..ottt 25-1
Render SVG IMAGEcoviuiiiiiiiiie et 25-2
Play SVG ANIMAtioNooiiiiiiiiici e 25-2
Create SVG Image from SCratCh ... 25-2
Bouncing Ballsoouoiiii 25-2
OptmMizZed MENUcuviiiiiice e 25-3
Picture DeCOTATOrceviiiiiieieiieteeee e 25-3
Location Based Service ... 25-4
Running SVGContactList.............cccooiiiiii s 25-5
JSR 239: Java Bindings for Open GL ES
OPpen GL OVeIVIOW ..ottt et 26-1
JSR 256: Mobile Sensor API Support
Creating a Mobile Sensor Project..............ccooiiiiiiiiiiiiiiicc e 27-1
Using a Mobile Sensor Project.............cccoovviiiiiiiiiiiiiiiiinc s 27-2
Creating a Sensor Script File ... 27-2
SeNSOIBIOWSEY ...ttt 27-3
IMATDIES ..o s 27-4
JSR 257: Contactless Communication API
Using ContactleSSDemOccccoeiiiiiiiiiiic s 28-1
Tag File FOrmMatsccccoooviiiiiiiiiiiiicc s 28-2
Script FOIMat ..o s 28-3

Installation and Runtime Security Guidelines
Maintaining Optimum Network Security.............ccooiiiiiiiiie A-1

B Tips for Legacy Toolkit Users

xi

List of Examples

Xii

141
20-1
20-2
20-3
21-1
25-1
271
281
28-2
28-3

Setting a Category Value ... 14-1
PIN Properties Example..........ooiiiiiiic s 20-2
Access Control File Record FOrmato.oooiiiiiiiiiiicc 20-3
Access Control File Example ..o 20-4
Location Script EXamplecooooiiiiiiiiiic s 21-1
SVG File EXAMPIE ..ot 25-2
Sensor Script File Format Example...........ocooooiiiiiiiiiiiiiiccc 27-2
Tag File Format EXamplec.oooiiii s 28-2
Tag Script File Format Example..........coooiiiii s 28-3
Tag Script SAMPIE ..o 28-3

List of Figures

l\)l\)l\)l\)l\)l\)ll\)l\)l\)l\)l\)l\)—k

|
N2 =2 a2 200N RWON ==
N = O

R

3

10-1
10-2
10-3
11-1
19-1
19-2
19-3
21-1
21-2
21-3
221
241
24-2
24-3
251
25-2
25-3
271

The NetBeans Start SCreen ... e 1-3
The NetBeans Plugins Manager..........ccceueuirueiiiiiicieeieccie et 2-2
Adding a Plugin Portal ... 2-3
Creating a New Update Center ... 2-3
The Oracle Java ME SDK PIUZINS........cccoouiiiiiiiiiicicc e 2-4
The Plugins Manager Installed Tab............cccooiiiiiii e 2-4
The NetBeans Plugins Manager Window ... 2-5
The Downloaded Tab and Add Plugins Button...........ccooi 2-5
AdAINg PIUGINS ...ttt e 2-6
Selecting Downloaded PIUGINS ..ot 2-6
The NetBeans IDE INstallerccooiiiiiiiiiicc e 2-7
The Device SEleCtOr...........oiiiiiiiieieice e 2-8
The Java Platform Managercc.oireieiiicieieecc e 2-9
The Project Property SCreemcociiiiiiieiicce e 4-2
Running a Project from the Device Selector Menuc.ccoooeeieiiiiiiciiicceccce 4-3
Cancelling the NetBeans Build Script ..o 4-3
Project Warning Sighi.........cccooiiiiiiiiii s 4-7
Resolve Reference Problems SCreen ..o 4-8
The Home BUttOn.......ccoviiiiiiiiiiiiiiiicc s 4-17
Output Console Window Showing Pulse Counter Qutput........cccooeeriiiiiiiiiiiiiica 4-22
Emulator Command Line SwWitches...........oooiiiiiiiiiii e 6-9
The Device Manager ICOMN ... e 7-1
The Device Manager MENUc.cocurueiiiiieiiiicicie et 7-2
Opening an EMULator ..o e 7-2
The Output Console WindOw ..ot 7-3
Emulator FEatUres..........c.ooiiiii e 7-7
IMPING EMUIALOT ..o 7-8
Profiling of AUAIODEMOcuviiiiiic e 9-2
Attaching the Profiler ... 9-2
The Profiling Tab with Combined View Selected...........cccooiiiiiiiii 9-3
Exporting Profile Data..........cc.ooiiii e 9-3
Saving the Current VIEW ... e 9-3
Activating Network ACtiVIty.....ooooouiiiiii 10-1
The Network Monitor Tab ... 10-2
The Network Monitor TOOIDaT...........cccciiiiiiiiiiiiics 10-3
The Memory Monitor Tab ... 11-3
Creating a New Project and Adding a Mobile Application............ccccceveveiirniiicncnninnes 19-2
Creating the Main Executable Class..............coooeiiiiiiiiiiiiciiccccce s 19-2
The Java ME Web Servce Client Information Dialog BoX.........ccccceuvivivivniiinnniininnes 19-3
External Events Generator Location Tab ..o 21-2
The Location Settings Dialog BOX........ccccccoiiiiiiiiiiiiiiiiccccccceeeeeeees 21-3
The Landmark Detail SCreen.........cccccciiiiiiiiiiiiiiiiiiiiiiicccccccees 21-4
WMA Console and Output WIndowscccoeeiiiiiiniiiiiccccs 22-2
The Content Handlers Tabccccccciiiiiiiiiiiiiiiiiiiicccceees 24-1
The Content Handlers Properties Window ..o 24-2
The Content Handlers Properties Window ... 24-3
AddIng a GIraphiCccoceiiiiiiiiiiii s 25-4
Highlighting @ GraphiC ... 25-4
A Location-Based Service SCreen............cocecciiiiiiiiiiiiiiiiiiiicicccceees 25-5
Acceleration SENSOT SCIEEM........c.ccouiiiiiiiiiiiiiiii s 27-3

xiii

Xiv

Audience

Preface

The Oracle® Java ME SDK is a mobile and embedded application development tool
available as a plugin to the NetBeans IDE.

The Oracle Java ME SDK provides supporting tools and sample implementations for
the latest in Java ME technology. It provides support for recent versions of the
Connected Limited Device Configuration (CLDC), Information Module Profile - Next
Generation (IMP-NG), and Connected Device Configuration (CDC) platforms.

This document is intended for Java ME application developers.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

Related Documents

For more information, see the following documents:

XVi

See Table 15-1 for supported API documentation links.

To see documentation for the Oracle Java Wireless Client and CLDC Hotspot go to
http://docs.oracle.com/javame/mobile.html and look under
Documentation for Device Makers

For legacy SDK, documentation, see:
http://docs.oracle.com/javame/developer.html

Legacy Sun Java Wireless Toolkit documentation is also available from this site.

1

Before You Begin

The Oracle® Java Micro Edition (Java ME) Software Development Kit (SDK) is a
natural starting point for learning and using Java ME technology. The focus of the SDK
is to provide emulation and deployment assistance during the development process.
This chapter introduces the SDK and provides a quick introduction to using the SDK

Using this simple yet powerful tool you can create, edit, compile, package, and sign an
application. After testing your application in the Oracle Java ME SDK emulation
environment, you can move to deploying and debugging on an external device.

This chapter provides information you need to ensure that your Microsoft Windows
XP (32-bit) or Windows 7 (32-bit or 64-bit) platform is correctly set up for working
with Oracle Java ME SDK. Both Windows XP and Windows 7 must include the most
recent Microsoft service packs.

Installing the Java SE Platform

To properly run the Java ME SDK software and its associated Tools, you must have
Java Platform, Standard Edition (Java SE), Version 7, Update 11 (or later) installed on
your computer.

This guide assumes you have already installed the Java SE platform. If you have not
installed Java SE, you can download it from the following location:

http://www.oracle.com/technetwork/java/javase/downloads

The Java SE platform must also be in your PATH.

Setting and Verifying Your Java SE PATH
To verify if Java SE platform is set in your PATH:

1. In the Windows command line, type:
C:\>echo %PATH%

2. If Java SE is properly installed, you see a path to the default installation directory:
C:\>Program Files\]Java\jdk1.7.0_x

3. Ifnot, you need to add Java SE to your PATH.

Note: Setting the PATH may require using a Windows short name.
To see top-level Windows short names, type C:\>dir /x

4. Set the Java SE variable, JDK_DIR:

Before You Begin 1-1

Installing the Java ME SDK Platform

C:\>set JDK_DIR=C:\Program Files\Java\jdk1.7.0_13
5. AddJDK_DIR to your PATH:
C:\>set PATH=%PATH%;%]JDK_DIR % \bin
6. To verify the version of your Java SE platform, type:
C\:>java -version

The version number shown in the output should be version 1.7.0_11 or higher.

Installing the Java ME SDK Platform
Follow these steps to install the Java ME SDK 3.3.

1. If you have previously installed an earlier version of Java ME SDK, uninstall the
previous version as shown below.

Note: If you are installing Java ME SDK for the first time, skip to
Step 2.

= If you have Java ME SDK data to save, please copy it to a safe location before
continuing.

= In the Windows system tray, right click on the emulator icon and choose Exit.

s From the Windows Programs menu, select the previous version and choose
Uninstall from the submenu. The Installer opens.

= On the first page check the option to remove the user data directory.
= Follow the prompts.
2. Download the SDK from:

http://www.oracle.com/technetwork/java/javame/javamobile/down
load

3. Double-click the executable. When the installer starts, follow the prompts.

Installing and the Starting the NetBeans IDE

If you do not already have the NetBeans 7.3 IDE installed on your system, you can
download it here:

http://dlc.sun.com.edgesuite.net/netbeans/7.3/final/

Next, optionally select your Language and Platform, and then download the version
that contains all supported technologies. The approximate size of executable
distributive is 198 MB. Once you have downloaded the NetBeans installation module,
do the following;:

1. Unzip the NetBeans distribution zip file into the C: \Program Files directory.

2. IntheC:\Program Files\NetBeans 7.3\bin directory, click on netbeans.exe to
launch NetBeans, as shown in Figure 1-1.

1-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Installing and the Starting the NetBeans IDE

Figure 1-1 The NetBeans Start Screen

W NetBeans IDE 7.3 _ s] (| 3

File Edit ‘iew Mavigate Source Refactor Run Debug Profle Team Tools Wwindow Help |Qv Search (Ctr+T3 |

127 ol % [@ P o G B D B G- |

IMIetDemo java - Mavigator X {

IﬂServi(es ﬁFiles ﬁ'ije(ts o

Recent PI'OjECtS Install Pluging Activate Features
Add support: for other MetBeans burns on
languages and technologies functionality as vou use it,
by installing plugins Fram the Skart creating and opening
NetBeans Update Center. projects and the IDE will
. just ackivate the Features
<no recent project =

wou need, making your
expetience quicker and
cleaner, Alkernatively, you
can ackivabe features
manually,

<Moo Ve Available >

Output X | =

The Oracle Java ME SDK is also a plugin to the Eclipse IDE. For more information on
using Java ME SDK with the Eclipse IDE, see Oracle Java Micro Edition Software
Development Kit Developer’s Guide for Eclipse.

Before You Begin 1-3

Installing and the Starting the NetBeans IDE

1-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

2

Installing Plugins

This chapter describes the NetBeans integrated development environment. NetBeans
provides a rich, visual environment for developing embedded applications and
numerous tools to improve the programming process.

Oracle Java ME SDK provides two plugins for working with NetBeans:
= Java ME SDK Tools plugin

= Java ME SDK Demos plugin

The Java ME SDK Demos plugin is optional, but recommended.

Downloading Oracle Java ME SDK Plugins

To download the Oracle Java ME SDK Plugins file for NetBeans
(oracle-jmesdk-3-3-rr-nb-plugins.zip) go to the following location:

http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

Installing Oracle Java ME SDK Plugins

There are two ways to install the Oracle Java ME SDK Plugins:
» 'Installing Plugins Using the Update Center"
» 'Installing NetBeans Plugins Manually"

Note: Using the NetBeans Update Center to install the plugins is
recommended. However, installing the plugins manually also works.

To get the plugins ready for installation, start NetBeans as described in "Installing and
the Starting the NetBeans IDE."

Installing Plugins Using the Update Center

To install the NetBeans Plugins using the NetBeans Update Center:

1. Select Tools > Plugins to open the NetBeans Plugins manager, as shown in
Figure 2-1.

Installing Plugins 2-1

Installing Oracle Java ME SDK Plugins

Figure 2—-1 The NetBeans Plugins Manager

Updates I &vailable Plugins (QD}Il Downloadedl Installed (11)' Settingsl

Check for Updates |

Update I hame I Category = | :

[Jpdate |

2. Click the Settings tab. This displays the available update centers, as shown in
Figure 2-2.

2-2 Oracle Java ME Embedded Getting Started Guide for the Windows Platform

Installing Oracle Java ME SDK Plugins

Figure 2-2 Adding a Plugin Portal

Updatesl &y ailable Plugins (89)' Downloadedl Installed (12} SEttiHQSI

Configuration of Update Centers:

Ackive I Tame

O [Certified Flugins INetBeans Distribution Edit | Remave |

WP NetBeans Distribution
v i Plugin Portal Il:lisl_t Check: never

http: ffupdates . netbeans. orgfnetbeans/updatesi7, 3fucifinal/distribution/cat alog . xml.gz

Kl | ¥

Add

Automatically Check for Updates

Check Interval: IEvery eek j Proxy Settings |

Advanced

Plugin Install Location: IDeFauIt LI

Close | Help |

3. Click the Add button. In the new window;, type a provider name and a URL for the
location that contains the plugin center files, as shown in Figure 2-3.

Figure 2-3 Creating a New Update Center

" Update Center Customizer p il

Mame: |ME SDE Plugin Updates

v Check for updates automatically

LIRL: Ihttp:ll',l'plugins.netbeans ; l:nrgIl'nbpluginpartal,l'updates,l’?.3||'cata||:|g.xml.g2|

(a4 I Cancel

4. When plugins are detected, they are displayed on the Available Plugins tab. If you
do not see them, click the Check for Updates button.

s Locate the Oracle Java ME SDK plugins.

s In the Install column check the desired plugins, then click the Install button.

Installing Plugins 2-3

Installing Oracle Java ME SDK Plugins

Figure 2-4 The Oracle Java ME SDK Plugins

[C] Java ME SDK Demos Java ME SDK Tools gfip

Install

5. Restart NetBeans.
6. In the Plugins Manager Settings tab, enable all available update centers.

7. In the Installed tab, check Show details (above the plugin list) and sort by category
to easily find the Java ME SDK Tools plugins.

= Make sure the plugins you installed are active (with a green check mark), as
shown in Figure 2-5.

s If the Oracle Java ME SDK plugins are not Active, check the Select boxes for
the plugins and click Activate.

Figure 2-5 The Plugins Manager Installed Tab

Updatesl Available PIughsl Downloaded Installed (54) I Settingsl

[+ Show details

Select | e | category T | Active |

[T JavaME SDK Tools Java ME SDK Tools & ;I
[T Java ME SDK Demos Java ME 50K Tools (]

The Oracle Java ME SDK is ready to use. For more information on how to verify your
plugin installation, see "Verifying Your Installation."

Installing NetBeans Plugins Manually

To install the NetBeans Plugins manually.

1. Extract the contents of the NetBeans Plugins file to a directory on your local
machine. Make note of the location.

2. Open the NetBeans Plugins Manager. Select:
Tools > Plugins

3. Uninstall previous plugins.
= Go to the Installed tab and click Show details, as shown in Figure 2-6.
s Check Java ME SDK Tools and Java ME SDK Demos.

Note: If the previous plugins have already been uninstalled, go to
Step 6.

2-4 Oracle Java ME Embedded Getting Started Guide for the Windows Platform

Installing Oracle Java ME SDK Plugins

Figure 2-6 The NetBeans Plugins Manager Window

Updatesl &vailable Plugins {28}' Downloaded Installed (58} | Settingsl

Select I Mame I Category I active I
[T JavaME SDK Tools Java ME SOK Tools & ;l
[T JavaME SDK Demos Java ME SOK Tools &

s Click Uninstall.
= Restart when requested.

4. Re-open the Plugins Manager and click the Downloaded tab, as shown in
Figure 2-7.

5. Click the Add Plugins button.

Figure 2-7 The Downloaded Tab and Add Plugins Button
Updatesl Available Plugins fo0) Downloaded I Installed (560 I Settings I

Add Plugins. .. |

Install I Mame I

6. In the file browser, go to the directory in which you have extracted the contents of
the NetBeans Plugins.

7. Select all the .nbm files and click Open, as shown in Figure 2-8.

Installing Plugins 2-5

Installing Oracle Java ME SDK Plugins

Figure 2-8 Adding Plugins

dd Plugins

Lookin: |5 NE_7.3_Piugin

() licenses

B o
e or
kel or
& or
=
=
=

arg- ru:'tl:E
org-netheans -r|'|l‘ldu|
org-netbeans-modul

El org-netbeans-modules-;

El org-netbeans-modules-java

El org-netheans-modules-i
org-netheans-modules-i

ame-kit.nbm
vame-lib-bootstrap.nbm

vame-lib-devicereqi

ranager.nbm

+ahelp.nbm

11.nbm
e-jsr211-ant.nbm

2ans-module

G

2ans-module
ans-module

ans-module

ans-module

*.nbm

im| org-netbean

DD@E.EE!IEIE.IE!

s I'||:|r|'|

L4

arg-n E-H: \EANs -rnru:IuIE:'-] 3

ns-modules-ja:
[e| org-netbeans-modules-ja:
[org-netbeans-modules-ja:
E] org-netheans-modules-ja:

|

File name: |3nter.nbm

'org-netheans-modules-javame-welcome, nbm"

Files of bype:

IPIugin distribution files (*.nbm)

=

open I
Cancel |

8. Go to the Downloaded tab and select all downloaded plugins, as shown in
Figure 2-9, and click Install.

Figure 2-9 Selecting Downloaded Plugins

Updates | Available Plugins (28) Dawnloaded (31) | Installed {58} | Settings |

Add Flugins. .. |

Search: I

Install | Mame

> o
Ltilities
Java ME SDK Remoting Library

Java ME CLDC Platform Support

Wireless Messaging APL 2.0 {J5R. 205)
Custom Device Editor Core

Update Center Core

Profiler {1ava ME Projects Support)

Profiler Ant Suppart

Metwork Monitor Ant Support

Java ME SDK CPU Prafiler Snapshot Viewsr
Wireless Messaging &PI 2.0 {J5R 205) Library
Metwork Monitor Library

Memory Monitor

Common Help

Java ME DC Platform Support

Toolbar Core

Content Handler APT (ISR 211} Ant Suppark
Content Handler API (ISR 211}

Metwork Monitor

Device Selector

Memary Monitor Library

Install 31 plugins selected

_ R IAIIRAIIAIRIIDIIRRIRACR]

:Ib

KNl

4

Java ME SDK Bootstrap Library

Remove |

i} Community Contributed Plugin

Yersion: 3.3
Date: 2/20/13
Source: org-netbeans-modules-javame-lib-bootstrap.nbm

Close | Help |

2-6 Oracle Java ME Embedded Getting Started Guide for the Windows Platform

Installing Oracle Java ME SDK Plugins

9. When the NetBeans IDE Installer screen is displayed, as shown in Figure 2-10,
click Next.

Accept the license terms and click Install.

If additional Validation screens appear, click Continue.

Figure 2-10 The NetBeans IDE Installer

¥ NetBeans IDE Installer

Welcome to the NetBeans IDE Plugin Installer
The installer will download, werify and then install the selected plugins.

Sd¥d ITIC LLLUL FIAUUuring JUppure | 2..0]

Java ME SDK Bootstrap Library [3.3]

Java ME SDK CPU Profiler Snapshot Yiewer [3.3]
Java ME SDK Demos [3.3]

Javra ME SDK Device Registry Library [3.3]
Java ME SDK Remoting Library [3.3]

Java ME SDK Tools [3.3]

Java ME SDK Update Center [3.3]

Java ME SDK Welcome Screen [3.3]

Log4j Library [3.3]

Memory Monitor [3.3]

Memory Monitor Library [3.3]

Metwork Monitor [3.3]

Metwork Monitor Ant Support [3.35]
Metwork Monitor Library [3.3]

Profiler (Java ME Projects Support) [3.3]
Profiler Ant Support [3.3]

Profiler API Library [3.3]

Toolbar Core [3.3]

Update Center Core [3.3]

Utilities [3.3]

Wireless Messaging API 2.0 (1SR 205) [3.3]
Wireless Messaging API 2.0 (JSR 205) Library [3.3]

= Batk | Mext = I Cancel Helm |

10.
11.
12.

13.

Click Finish to restart NetBeans.

Select Tools > Plugins to display the Plugins screen.

In the Installed tab, check Show details and click Category to sort the plugins.
Find the Java ME SDK Tools and Java ME SDK Demos plugins in the list.

Make sure the plugins you installed are Active (you should see a green check

mark), as shown in Figure 2-6.

If the Oracle Java ME SDK plugins are not Active, check the Select boxes for

the plugins and click Activate.

When your Oracle Java ME SDK plugins are Active, click Close.

The Oracle Java ME SDK is ready to use. For more information on how to verify
your plugin installation, see "Verifying Your Installation.”

Installing Plugins 2-7

Verifying Your Installation

Verifying Your Installation

Once you have installed the Oracle Java ME SDK Plugins into NetBeans (using the
Update Center or by manual installation), the Oracle Java ME SDK platform is
installed into the NetBeans IDE. To verify a successful installation, do the following:

1. To verify the Active Device Manager, select Tools > Java ME > Active Device
Manager, and select the latest version (Oracle Java ME SDK 3.3).

2. To view available Oracle Java ME SDK 3.3 devices, select Tools > Java ME > Device
Selector. The ME SDK devices are listed, as shown in Figure 2-11.

Figure 2-11 The Device Selector

Device Selectar = | =)
B &
L_—_|--- ZDC, Oracle Java(TH) ME SDK 3.3
DefaultCdcPbpPhione1
! YgahisUIPhonel
YgaCdcPhonel
I:—] LD, Qracle JawvalTM) ME SDE 3.3
ClamshelJayaMEPhone1
: JawaMEPhonel
JavaMEPhonez2
I'_—'I--- IMPNG, Oracle Java{TM) ME SDK 3.3
B mMPHGDevicel
[MPMGDevicez

iy | Services Eﬂ Files ﬁ.i Projects Ch

3. To display the new Oracle Java ME SDK platform, choose Tools > Java Platforms.
This displays the Java Platform Manager with the new platform, as shown in
Figure 2-12.

2-8 Oracle Java ME Embedded Getting Started Guide for the Windows Platform

Quick Start

Figure 2-12 The Java Platform Manager

@ 3ava Platform Manager . X

Use the Javadoc tab to register the APT documentation for your JOE in the IDE.
Click Add Platform to register other Java platform versions,

Platfarms:
=y e Flatfarm Mame: IJDK 1.7 (Defaulty

IE;'I CDC Oracle JavalTM) PlatForm k
= J2ME

Eﬂ Oracle JavalTr) Platform Micro
i3 JavaSE

-] 30K 1.7 (Default)

Platform Folder: IC:'l,Program Files\Jawaljdkl.7.0_21

Classes | Sourcesl Javadoc!

Platform Classpath:

C:\Program Files\Javaljdkl.7.0_z21jrelliblresources. jar
C:\Program Files)Javaljdkl . 7.0_213jrellibirt. jar

C:\Program Files\Javaljdkl 7.0_21\jrelliblsunrsasign. jar
:\Program Files\Javaljdkl.7.0_21\jre\libljsse. jar

C:\Program Files)Javaljdkl.7.0_21\jrellibhjce. jar

C:\Program Files\Javaljdkl.7.0_21\jre\liblcharsets jar
C:\Program Files)Javaljdkl.7.0_21\jrellibtjfr. jar

C:\Program Files\Javaljdkl . 7.0_21\jrelclasses

:\Program Files\Javaljdk1.7.0_21\jre\liblext\access-bridge. jar
C:\Program Files)Javaljdkl.7.0_21\jrelliblext\dnsns. jar
C:\Program Files\Javaljdkl.7.0_21\jrelliblextijaccess, jar b
C:\Program Files)Javaljdkl.7.0_21\jrelliblextocaledata. jar

C:\Program Files\Javaljdkl. 7.0_21jrelliblext\sunec. jar

il I _.I Y Proaram Files) 1avalidkl. 7.0 21 birellibexHsunice orovider . iar Ll

| »

Add Platform... | Hemove |

Close I Help |

The Oracle ME SDK Platform is now ready for you to work with, to create a new
project and develop code.

Quick Start

The following tips offer some hints for getting started as quickly as possible.

= Access the documentation. The online help is the primary documentation for the
SDK. Many windows and dialogs feature a help button that opens
context-sensitive help in the help viewer. You can also type F1.

Select Help > Help Contents to open the JavaHelp Online Help viewer.
Remember to use the search capability and the index to help you find topics.

Note: If you require a larger font size, the help topics are also
available as a printable PDF and a set of HTML files.

= Run sample projects. Running sample projects is a good way to become familiar
with the SDK. See "Running a Project" for a general overview of how to run a
project.

= See the Projects window and the Files window for a visual overview of the logical
and physical layout of a project. When viewing items in the tree, use the context
menu (right-click) to see the available actions. See "Working With Projects."

= A project has a default device that is used when you run it from the toolbar (the
green arrow), Run > Run Project, or Run on the project's context menu. To see a
project’s default device, right-click the project and select Properties. Select the

Installing Plugins 2-9

Quick Start

Platform category to see the default device displayed in the Device field. To reset
the Device make another choice from the drop down menu.

s Torun an application on different devices without changing the default device,
right-click on the project and select Run With from the context menu. Select a
different device and click OK.

s The emulator is an independent process, and when it has started it is a separate
process from the build process running in NetBeans. Stopping the build process or
closing a project does not always affect the application running in the emulator.
You must be sure to terminate the application (the emulator can remain open). See
"Running a Project."

s The SDK provides two unique emulator instances for most devices. For example,
IMPNGDevicel and IMPNGDevice?2 are the same except for the device number
and the phone number, so you can perform tests that require two devices
(messaging, for example) without customization. If you want to create your own
device, see "Using the Custom Device Editor."

2-10 Oracle Java ME Embedded Getting Started Guide for the Windows Platform

3

Platforms

This chapter describes the Oracle Java ME SDK technology platforms, also called
stacks. They are: "CLDC with MIDP," "IMP-NG," and "CDC," as discussed in
"Emulation Platforms."

A project runs on a particular emulation platform. The Device Manager determines
whether a device is appropriate for your project based on the platform, the APIs your
application uses, and a set of device properties. If you run an application and an
appropriate emulator or device is currently running, the SDK automatically installs
and runs your application in the current device so that you do not have to launch the
emulator repeatedly.

Emulation Platforms

An emulator simulates the execution of an application on one or more target devices.
An emulation platform enables you to understand the user experience for an
application and test basic portability. For example, a platform enables you to run
applications on several sample devices with different features, such as screen size,
keyboard, runtime profile and other characteristics.

Oracle Java ME SDK provides the following emulation platforms:

s CLDC with Mobile Information Device Profile (MIDP)

s CLDC with MIDP, Information Module Profile - Next Generation (IMP-NG) subset
s CDC with Advanced Graphics and User Interface (AGUI)

s CDC with Personal Basis Profile (PBP)

All platforms include predefined devices with different screen sizes, runtime profiles,
and input methods.

See "CLDC with MIDP," "IMP-NG," and "CDC."

CLDC with MIDP

CLDC/MIDP applications conform to the following specifications:

s Connected Limited Device Configuration 1.1
http://jcp.org/en/jsr/detail?id=139

= Mobile Information Device Profile 2.1

http://download.oracle.com/otndocs/jcp/midp-2.1l-mrel-oth-JSpec
n All the JSRs listed in "JCP APIs"

Platforms 3-1

Emulation Platforms

CLDC/MIDP applications are targeted for devices that typically have the following
capabilities:

= A 16-bit or 32-bit processor with a clock speed of 16MHz or higher

= Atleast 160 KB of non-volatile memory allocated for the CLDC libraries and
virtual machine

s Atleast 192 KB of total memory available for the Java platform
= Low power consumption, often operating on battery power

s Connectivity to some kind of network, often with a wireless, intermittent
connection and limited bandwidth

Typical devices might be cellular phones, pagers, low-end personal organizers, and
machine-to-machine equipment. In addition, CLDC can also be deployed in home
appliances, TV set-top boxes, and point-of-sale terminals.

The SDK provides two default emulators to support CLDC:
s ClamshellJavaMEPhonel

A flip phone with a primary display and a secondary display.
» JavaMEPhonel and JavaMEPhone2

A flat touch screen device.

These devices support CLDC 1.1, MIDP 2.1, and optional packages for JSRs 75, 82, 135,
172,177,179, 184, 205, 211, 226, 234, 239, 256, 257, and 280.

See "Running MIDP and CLDC Sample Projects,” "Create a MIDP Project," and
Chapter 7, "Working With Devices."

IMP-NG

JSR 228 describes the Information Module Profile - Next Generation, referred to as
IMP-NG. This JSR extends and enhances JSR 195: Information Module Profile.

The IMP-NG implementation depends upon CLDC 1.0. It is a strict subset of MIDP 2.0
that excludes MIDP 2.0 graphical display capabilities, resulting in a smaller footprint
appropriate for Information Modules (IMs). Potential devices for CLDC with IMP-NG
might be modems, home electronics devices, or industrial metering devices.

An IMP-NG application is an IMlet, and multiple IMlets in a single JAR file form an
IMlet suite. When creating an IMlet project you follow the same process as that you
use to create a Java ME Mobile Application project and select an IMP-NG device. The
device selection determines the supported JSRs.

The IMP-NG stack supports the following JCP APIs: JSRs 75, 120, 172, 177, 179, 257,
and 280. In addition, Oracle provides APIs to support IMP-NG development, as
described in "Oracle APIs."

The Java ME SDK implementation provides IMP-NG emulation, on-device tooling
connectivity to external devices, and Attention (AT) Command support. The SDK
emulator supports IMP-NG with IMPNGDevicel and IMPNGDevice2 skins and
provides simple interfaces for Inter-Integrated Circuit (I*C), Serial Peripheral Interface
(SPI), General Purpose Input/Output (GPIO), and Memory-mapped 1/O (MMIO)
buses. The emulator’s external event generator provides a way for you to inject calls to
emulate AT Commands, alter basic pin and port information for GPIO, and memory
block values.

See "Running IMP-NG Sample Projects."

3-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Managing Java Platforms

CDC

A Java ME Platform, Connected Device Configuration (CDC)
(http://jcp.org/en/jsr/detail?id=218) application is an application targeted
for network-connected consumer and embedded devices, including high-end mobile
phones, smart communicators, high-end PDAs, and set-top boxes.

Devices that support CDC typically include a 32-bit microprocessor or controller and
make about 2 MB of RAM and 2.5 MB of ROM available to the Java application
environment.

CDC is based upon the open source project phoneME Advanced, found at
http://java.net/projects/phoneme. A CDC application conforms to the
Connected Device Configuration with a set of profiles that include Personal Basis
Profile, Foundation Profile, and AGUTI:

s CDC1.1withPBP 1.1 (http://jcp.org/en/jsr/detail?id=217)

s Foundation Profile 1.1
(http://jcp.org/aboutJava/communityprocess/final/jsr219/index
.html)

m AGUI10 (http://www.Jjcp.org/en/jsr/detail?id=209)
The SDK provides three default emulators to support CDC:
s Default CdcPbpPhonel
CDC 1.1, PBP 1.1, Foundation Profile (FP) 1.1
= VgaAGUIPhonel
CDC1.1,PBP1.1,FP 1.1 and AGUI 1.0
= VgaCdcPhonel
CDC1.1,PBP1.1,FP1.1

See "Project Types" and "Viewing Device Properties” for more information on project
types and device properties.

Managing Java Platforms

To view the Java Platform Manager, click the Tools menu and select Java Platforms.
Alternatively, right-click a project, choose Properties from the context menu, select the
Platform category, and select the Manage Emulators button to open the Java Platform
Manager.

The Java Platform Manager is a tool for managing different versions of the Java
Development Kit (JDK) and customizing Java platforms that your applications depend
on. You can add source files and Javadoc documents to the existing platforms.

The Oracle Java ME SDK pre-registers CDC, J2ME, and Java SE (the JDK serves as the
default platform) for version 3.3. These platforms have similar options:

s Devices. (J2ME) View all the CLDC and IMP-NG devices that the Device Manager
has discovered. Click Refresh to reconfigure the platform and refresh the list.

s Classes. (CDC) View the platform's classpaths. A class’s location in the list
determines its place in the classpath. For the CDC platform, you can add a JAR or
folder containing additional classes. You can also use the Move Up and Move
Down buttons to change the class position.

Platforms 3-3

Managing Java Platforms

s Sources. (CDC, J2ME, and Java SE) Add JAR files or source files to the Sources tab
to register source code.

= Javadoc. (CDC, J2ME, and Java SE) Add Javadoc documentation to support any
new classes or source files you have added.

= Tools and Extensions. (For J2ME, only as Devices) See "Java ME Platforms" for
more information.

Java ME Platforms

In the Oracle Java ME SDK the platforms are embedded Java runtimes specifically for
resource-constrained devices. Because the NetBeans Mobility pack is installed for Java
ME, you see the legacy 3.2 platforms coexisting with version 3.3 platforms and
devices. Each platform has its own set of devices and optional packages.

Note: If you cannot see the 3.3 devices in the Device Selector, select
Tools > Java ME > Active Device Manager and select Java(TM) ME
Platform SDK 3.3.

Applications that worked in previous platform versions might not run on the current
version, and vice versa. Follow these steps to set a project’s platform options.

1. Right-click on a project and choose Properties from the context menu.

2. Select the Platform category. Be sure that the Emulator Platform is set to version
3.3.

3. The device configuration should be automatically selected, but the Device Profile
might not be explicitly selected. Be sure to choose a profile.

4. Optional. Check any optional packages that are required to support the current
project. (If this is an IMP-NG project you also see the Oracle APIs listed as optional
packages. See "Oracle APIs").

Click OK.
5. Rebuild the project and run.

Create a Platform for Legacy CDC Projects

The Oracle Java ME SDK version 3.3 platform name for CDC does not match the name
in the legacy CDC toolkit and the CDC Mobility Pack. The legacy name is "Sun Java
Toolkit 1.0 for Connected Device Configuration" while the SDK name is "CDC Oracle
Java(TM) Platform Micro Edition SDK 3.3." To ensure a successful import, you can
create a new platform and give it the legacy name.

The following procedure enables you to import legacy CDC projects without Reference
errors (see "Resolving Reference Problems").

1. Click the Tools menu and select Java Platforms. Select "CDC Oracle Java(TM)
Platform Micro Edition SDK 3.3." and in the Classes tab, note the libraries required
for the platform.

2. Click Add Platform....
3. Select Java ME CDC Platform Emulator and click Next.
4. On the Choose Platform page, select the SDK installation directory. Click Next.

3-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Managing Java Platforms

5. On the Platform Name page, type "Sun Java Toolkit 1.0 for Connected Device
Configuration” in the Name field. In the Sources tab, click Add and select the
following libraries from the SDK installation directory: agui_1.0.jar, cdc_
1.1.jar, fp_1.1.jar,pbp_1.1.jar,and secop_1.0.Jjar.

Click Finish and Close.
See "Import a Legacy CDC Project” and "Resolving Reference Problems."

Platforms 3-5

Managing Java Platforms

3-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

4

Using Sample Projects

The Oracle Java ME SDK sample projects introduce you to the emulator's API features
and the SDK features, tools, and utilities that support the various APIs. These features
can help you customize the sample projects or create applications of your own.

Note: Before using the Oracle Java ME SDK demo applications, see
"Installation and Runtime Security Guidelines" in Appendix A. Some
demos use network access and open ports, and do not include
protections against malicious intrusion. If you choose to run the
sample projects, you should ensure your environment is secure.

For instructions on running projects, see the following topics:

"Creating a Sample Project”

"Running a Project"

"Troubleshooting"

"Sample Project Overview"

"Configuring the Web Browser and Proxy Settings"
"Resolving Reference Problems"

"Running MIDP and CLDC Sample Projects"
"Running IMP-NG Sample Projects"

Creating a Sample Project

Sample applications are installed in a separate NetBeans plugin. Do not run or edit
these projects directly. You create a new project that is an instance of the sample
project.

The default location for Oracle Java ME SDK projects is the default NetBeans project
directory. Each project has a src directory that contains Java programming language
source code. For example, the default location of the source code for the SMS sender
MIDlet (example.sms.SMSSend) in WMADemo resides in the following location:

username\My Documents\NetBeansProjects\WMADemo\src\example\sms\SMSSend. jav

a

1.

Click the File menu and select New Project. In the Categories window, click
Samples and select Java ME SDK 3.3. Single-click a sample project name and click
Next.

Using Sample Projects 4-1

Running a Project

2. Accept Name and Location page default values or provide your own. Click Next.

3. Choose an emulator platform and a device. Depending on the project you choose
to run, you might need to select a different profile (for example, you might need to
run the MIDP 2.1 device profile rather than MIDP 2.0). Note, changing the device
affects the possible device profiles. Click Finish.

The project is added to the Project window.

Note: If you cannot see the Project window, click the Window
menu and select Projects. To see console output, select Window >
Output > Output.

4. Set the project’s default execution mode. Right-click on a project and select
Properties from the context menu, then choose the Running category.

Figure 4-1 The Project Property Screen

x

Project Configuration: IDeFauItCunFiguratiun LI Manage Configurations. .. |
Cakegory:

..... E General [~ Wse values From "DefaultConfiguration”

----- 21 Platform

_____ i abilities Emulator Command Line Cptions: I

.. -mverb
----- E\ Application Descripkor (g iz o)

EII—DH Build {* Reqular Execution
B[Sources Filkering

[Campiling [Specify the Security Domain: Iminimum vl

‘E Libraries & Resources
E‘ Obfuscating {~ Execute through ©TA (Owver The Air Provisioning)

Creating JAR

: _ ? Debugger ktimeout {in miliseconds): I

+ @ Signing

&iﬂ Generating Javadoo

----- > M

----- &9 Deploving

(4 I Cancel Help

If you want to install the application in the emulator each time it is run, select
Execute through OTA (Over the Air Provisioning).

If the application does not need to be installed in the emulator, click Regular
Execution (see "Security Domains").

Running a Project

Create your own project, or instantiate one of the sample projects provided with the
SDK as described in "Creating a Sample Project."

1. Use one of the following methods to run a project:

= Right-click the project and select Run from the context menu.

4-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running a Project

s To run the main project (which is shown in bold text in the Projects window),
click the green Run button in the toolbar or press F6. To set the main project,
click the Run menu and select Set Main Project. Select a project from the
dropdown menu.

= To run an open project on a different device or to change the execution mode,
choose the device in the Device Selector window (select Tools >Java ME >
Device Selector). Right-click on a device and select Run Project or Run
Project via OTA from the context menu. Pull right to see a listing of open
projects. Only open projects that can run on the selected device are listed. (Not
all open projects are shown in the list.)

Figure 4-2 Running a Project from the Device Selector Menu

L

IMlet.java - Navigator | Device Selector X [=]
B &
@ CDC, Java(TM) ME Platform SDK 3.3

-] cLoc, JavaTM) ME Platform SDK 3.3
El@ IMPMG, Java(TM) ME Platform SDE 3.3 D

Out

B n Run Project Main Project:WMADemo |5
Run Project via OTA] GPICDemo
Fun JAR or JAD... MobileApplication3
Clean RMS storage files MetworkDemoIMPNG
) MetwarkDemoIMPNG
Properties
PDAPDemoIMPMNG

= To run a project on an emulator, click the Windows Start button, open All
Programs. Click Java(TM) ME Platform SDK 3.3 and select Java ME SDK
CLDC Emulator or Java ME SDK IMP-NG Emulator, then drag and drop the
project’s JAD or JAR file onto the emulator. Click OK in the Run MIDlet (or
IMlet) Suite dialog box.

The device emulator window opens with the demo application running. If the
demo is a MIDlet suite you might have to choose a MIDlet to launch.

2. As the sample project runs, soft keys might be enabled below the screen on the left
or right side.

You use soft keys to install or launch an application, open a menu, exit, or perform
some other action. Some demos include these instructions in the application.

See Table 4-1 or Table 4-3 for instructions on running samples.

3. When you are finished viewing the application, go to the emulator's Application
menu and select Exit to close the emulator and stop the execution of the project's
build script.

When the emulator is launched, it runs as an independent process. Pressing the
red stop button in the NetBeans Output window terminates the build script, but it
does not close the emulator instance. You can also terminate the build script by
clicking the X next to the progress meter at the bottom of the IDE.

Figure 4-3 Cancelling the NetBeans Build Script

WMADema (run) | [=l

Using Sample Projects 4-3

Troubleshooting

Likewise, closing the NetBeans IDE does not affect the emulator instance. In the
emulator, click the Application menu and select Exit or press the emulator’s exit
button (the X) on the upper right to ensure that both the emulator process and the
project build process close.

Periodically, you might want to clear a device’s database especially after you have run
several projects. Right-click the device and select Clean RMS storage files. When you
run the command, a completion notice is displayed in the IDE’s status bar.

Troubleshooting

Sometimes even a "known good" application, such as a sample project, does not run
successfully. The problem is usually your environment.

Some demonstrations require specific setup and instructions. For example, if a
sample uses web services and you are behind a firewall, you must configure the
emulator's proxy server settings or web access fails. See "Configuring the Web
Browser and Proxy Settings."

If an application must run over the air (OTA), the SDK automatically installs it in
the device instance. See "Emulator Command Line Options."

MIDIet Suites use runMIDlet to perform the installation:
installdir\runtimes\cldc-hi\bin\runMidlet.exe

IMlet Suites also use runMIDlet to perform the installation, but from the impng
directory:

installdir\runtimes\impng\bin\runMidlet.exe
CDC platforms install applications as follows:
installdir\runtimes\cdc-hi\bin\cvm.exe

Because these programs are launched remotely, virus checking software can
prevent them from running. If this happens, the project compiles, but the emulator
never opens. In the console you see warnings that the emulator cannot connect.

Consider configuring your antivirus software to exclude runMidlet and cvm from
checking.

Sample Project Overview

The Oracle Java ME SDK includes demonstration applications that highlight some
technologies and APIs that are supported by the emulator.

Most demonstration applications are simple to run. "Running a Project”" contains
instructions for running most demonstrations. Sample projects usually have some
additional operation instructions.

Table 4-1 lists the MIDP/CLDC demonstration applications available in this release.

Table 4-2 lists the MIDP/IMP-NG demonstration applications available in this release.

Table 4-3 lists the CDC sample projects available in this release.

4-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Sample Project Overview

Table 4-1

MIDP/CLDC Sample Projects

Sample

Optional
Package

Description

Instructions

Advanced
Multimedia
Supplements

JSR 234

Demonstrates 3D audio,
reverberation, image
processing, and camera
control.

"Running the AdvancedMultimediaSupplements

Sample Project”

AudioDemo

MMAPI 1.1

Demonstrates audio
capabilities, including mixing
and playing audio with an
animation.

"Running AudioDemo"

BluetoothDemo

JSR 82

Demonstrates device
discovery and data exchange
using Bluetooth.

"Running the Bluetooth Demo"

CHAPIDemo

JSR 211

A content viewer that also
uses MediaHandler.

"Running the CHAPIDemo Content Browser"

CityGuide

JSR 179

A city map that displays
landmarks based on the
current location.

"Running the CityGuide Sample Project”

ContactlessDemo

JSR 257

Emulates detection of RFID
tags.

"Using ContactlessDemo"

Demos

MIDP 2.0

Includes various examples:
animation, color, networking,
finance, and others.

"Running the Demos Sample Project”

FPDemo

CLDC1.1

Simple floating point
calculator.

"Running FPDemo"

Games

MIDP 2.0

Includes TilePuzzle,
WormGame, and
PushPuzzle.

"Running Games"

JSR172Demo

JSR 172

Demonstrates how to use the
JSR 172 API to connect to a
web service from a MIDlet.

"Run JSR172Demo"

MMAPIDemos

MMAPI

Demonstrates MMAPI
features, including tone
sequences, MIDI playback,
sampled audio playback, and
video.

"Running MMAPIDemos"

Multimedia

MMAPI

Demonstrates different video
playback formats.

"Video"

NetworkDemo

MIDP 2.0

Demonstrates how to use
datagrams and serial
connections.

"Socket Demo" and "Datagram Demo"

ObexDemo

JSR 82

Demonstrates device
discovery and data exchange
using Bluetooth.

"Running the OBEX Demo"

PDAPDemo

JSR 75

Demonstrates how to
manipulate contacts,
calendar items, and to-do
items. Demonstrates
accessing local files.

"Running PDAPDemo"

PhotoAlbum

MIDP 2.0

Demonstrates a variety of
image formats.

"Running PhotoAlbum"

Using Sample Projects 4-5

Sample Project Overview

Table 4-1 (Cont.) MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
SATSADemo JSR 177 Demonstrates Chapter 20, "JSR 177: Smart Card Security
communication with a smart (SATSA)"
card and other features of
SATSA.
SATSAJCRMIDe JSR 177 Shows how to use the Chapter 20, "JSR 177: Smart Card Security
mo SATSA-Java Card Remote (SATSA)"
Invocation method.
Sensors JSR 256 The SensorBrowser and "SensorBrowser" and "Marbles"
Marbles game demonstrate
sensor input.
SVGContactList ~ JSR 226 Uses SVG to create a contact "Running SVGContactList"
list displayed with different
skins.
SVGDemo JSR 226 Uses different SVG rendering "Running SVGDemo"
techniques.
UIDemo MIDP 2.0 Showcases the breadth of "Running UIDemo"
MIDP 2.0's user interface
capabilities.
WMADemo WMA 2.0 Shows how to send and "Running WMADemo"
receive SMS, CBS, and MMS
messages.
XMLAPIDemo JSR 280 Uses DOM and STAX APIs to Follow the instructions the application provides.
create an XML sample and
SAX, DOM and StAX APIs to
parse the sample.
Table 4-2 IMP-NG Sample Projects
Sample Description Instructions
GPIODemo Changes the state of LEDs in an emulator or ~ "Running the GPIODemo"
reference platform.
I2CDemo Writes data to a slave and then retrieves it. "Running the I2CDemo"
NetworkDemoIMPNG Allows connection and communication "Running the
between a server and a client instance. NetworkDemoIMPNG"
PDAPDemoIMPNG Demonstrates management of a file system in "Running the PDAPDemoIMPNG"

the emulator.

Pulse Counter (Data
Collection) Demo

Sends pulses to a counter and tracks them
when they arrive using a timestamp.

"Running the Pulse Counter (Data
Collection) Demo"

LightTrackerDemo

Controls LEDs on a reference platform.

"Running the Light Tracker Demo"

SystemControllerDemo

Demonstrates IMlet lifecycle on a reference
platform.

"Running the System Controller
Demo"

4-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Resolving Reference Problems

Table 4-3 CDC Sample Projects

Optional

Sample Package Description Instructions

AGUIJava2DDemo JSR 209 This standalone application is a Java Click the blue arrows to page
SE application adapted for the CDC through the various images and
environment. It demonstrates the animations. The applications focus
graphical and animation capabilities of on curves. Click the AA icon to see
the Java 2D™ APL how antialiasing affects

appearance.

AGUISwingSet2 JSR 209 Functional tools such as buttons, Click through the tabs to view the
sliders, and menus implemented with controls and animations.
Swing.

Configuring the Web Browser and Proxy Settings

If you are behind a firewall you must configure the proxy server so that MIDP
applications using web services can succeed.

Note: CDC emulators do not work through a proxy.
Communications such as downloading images from the Internet
fail on CDC emulators.

The settings are typically the same as those you are using in your web browser.
1. Select Tools > Options > General.
2. Choose a Proxy Setting:

= No Proxy

s Use System Proxy Settings

= Manual Proxy Settings

To set the HTTP Proxy, fill in the proxy server address field and the port
number. The HTTP Proxy Host is the host name or numeric IP address of the
proxy server used to connect to HTTP and FTP sites. The Proxy Port is the port
number of the proxy server.

To set the HTTPS or Socks proxy, click More and fill out the Advanced Proxy
Options form.

Resolving Reference Problems

Sometimes when you open a project you can see it has a reference warning. In the
Projects tab the project name is red, and the icon shows a warning symbol, as seen
below:

Figure 4-4 Project Warning Sign

- B CHAPIDemo

Usually this warning means the project refers to a platform, file, or library that cannot
be found.

Using Sample Projects 4-7

Running MIDP and CLDC Sample Projects

If you are using an old project it might be referring to a platform or device that is not
installed. In this case, edit the project properties and select an available platform and
device as described in "Java ME Platforms," then rebuild the project.

If the problem is not the platform, right-click the project and choose Resolve Reference
Problems.

Figure 4-5 Resolve Reference Problems Screen

B Resolve Reference Problems - "CHAPIDemo” Project ['5__<|

. | Resolve...

Reference Problems:

Description:

Problem: The project uses the file/folder called
"kewskare. ks", but this File/folder was nak Found,
Solution: Click Resolve and locate the missing
File/Folder,

Close

The window displays the missing file, the problem, and a possible solution. In this
case the project probably used a literal path to the file keystore.ks. Clicking the
Resolve... button opens a file browser so you can find the missing keystore file. The
default location is as follows:

installdir\runtimes\cldc-hi\1lib (for CLDC)
installdir\runtimes\impng\1lib (for IMP-NG)
installdir\runtimes\cdc-hi\1ib (for CDC)

Locate and select the file. You receive confirmation that the problem is resolved, and
you can now click Close.

Running MIDP and CLDC Sample Projects

This topic gathers MIDP and CLDC samples that are not discussed in separate
chapters. This is the case when a sample uses many JSRs, or when a supported JSR
does not have any special implementation details.

= "Running the AdvancedMultimediaSupplements Sample Project"
= "Running the Demos Sample Project"

= "Running FPDemo"

= "Running Games"

= "Running Network Demo"

= "Running PhotoAlbum"

4-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running MIDP and CLDC Sample Projects

= "Running UIDemo"

For other CLDC demos, see Table 4-1.

Running the AdvancedMultimediaSupplements Sample Project

This MIDlet suite demonstrates the power of JSR 234 Advanced Multimedia
Supplements (AMMS). It consists of the following MIDlets:

s "Image Effects"
s "Music Effects"
s "Camera"

= "Moving Helicopter"

Image Effects
This MIDlet demonstrates standard image processing operations.

= Launch the Image Effects MIDlet.

s Choose input and output image formats, and press Done. The input image and
output images are displayed simultaneously.

s Choose an effect from the Menu and click the Done button to apply a
transformation, effect or overlay. The source image is shown above and the
processed image is shown below. Some items, Set Transforms, for example, can
perform several operations in a single transaction.

The menu options are as follows:

= Reset - Set transforms, effects, and overlays to the initial state.

= Monochrome Effects - Activate grayscale rendering.

= Negative Effect -Reverse dark and light areas.

= Set Formats - Select an input object type and an output image format.

= Set Effect Order - Specify the order in which transforms, effects and overlays
are applied.

= Set Transforms - Change width and height scale, border, and rotation options.

= Set Overlays - Specify the color and orientation of a color block overlay.

Music Effects

Demonstrates the advanced audio capabilities of the Advanced Multimedia
Supplements. As an audio file loops continuously, you can adjust the volume, and
reverberation settings.

Camera

This MIDlet demonstrates how the Advanced Multimedia Supplements provide
control of a device’s camera. The screen shows the viewfinder of the camera
(simulated with a movie). You can use commands in the menu to change the camera
settings and take and manage snapshots.

= Zoom settings - digital and optical zoom settings 100-300 in increments of 20.
Make a selection and press Back.

Using Sample Projects 4-9

Running MIDP and CLDC Sample Projects

View gallery - View a list of the snapshots stored in:
username\javame-sdk\3.3\work\devicename\appdb \filesystem\rootl. Choose
Display to see the snapshot. You have the option to delete the file from disk.

Set flash mode - Off, AUTO, AUTO_WITH_REDEYEREDUCE, FORCE, FORCE_
WITH_REDEYEREDUCE, FILLIN.

Change F_Stop number - 0, 400, 560, 800, 1600.

Choose exposure modes - Preset modes are auto, landscape, snow, beach, sunset,
night, fireworks, portrait, backlight, spotlight, sports, text.

Disable/Enable shutter feedback.
Exit - Close this MIDlet and return to the initial window.

Snapshot setting - Set whether to display the snapshot on the screen or print it to a
file. Snapshots are stored in:

username\ javame-sdk\3 .3 \work\devicename\appdb\filesystem\rootl

Moving Helicopter

Simulates a helicopter (red dot) flying around a stationary observer (blue dot). Use
headphones for best results. You can control the parameters of the simulation with the
soft menu options: Volume, Location settings, Spectator orientation, and Distance
Attenuation settings. After viewing menu options, press the close button (the X on the
right) to return to the helicopter scenario.

With the Location settings be aware that supplying large values for the screen width or
flight altitude means the helicopter might be out of range - that is, it flies off the screen
and you might not be able to hear it.

For spectator orientation stereo headphones or speakers help detect the difference in
position, assuming your volume and location settings put the helicopter in audible
range. The same is true for the Distance Attenuation settings, which enable you to
control the doppler effect.

Running the Demos Sample Project

This demo contains several MIDlets that highlight different MIDP features. Click or
use the navigation keys to highlight a MIDlet, then choose the Launch soft key.

"Colors"
"Properties"
"Http"
"FontTestlet"
"Stock"
"Tickets"
"ManyBalls"
"MiniColor"
"Chooser"
"HttpExample"
"HttpView"
"PushExample"

4-10 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running MIDP and CLDC Sample Projects

Colors

This application displays a large horizontal rectangle that runs the width of the screen.
Below, ten small vertical rectangles span the screen. Finally, three horizontal color bars
indicate values for blue, green, and red (RGB). Values are expressed as decimal (0-255)
or hexadecimal (00-ff) based on the first menu selection.

= To select a vertical bar to change, use the up navigation arrow to move to the color
bars. Use the right navigation arrow to highlight a color bar. The large rectangle
becomes the color of the selected bar.

= Use the up or down selection arrows to choose the value to change (red, green, or
blue). Use the left or right arrow keys to increase or decrease the selected value.
The second menu item enables you to jump in increments of 4 (Fine) or 32 (coarse).

= You can change the color on any or all of the vertical bars.

Properties

This MIDlet displays your system property values. The output is similar to the
following values:

Free Memory = 2333444
Total Memory = 4194304

microedition.configuration = "CLDC-1.1"
microedition.profiles = "MIDP-2.1"
microedition.platform = "j2me"
microedition.locale = "en-US"
microedition.encoding = "IS08859_1"
Http

This test application uses an HTTP connection to request a web page. The request is
issued with HTTP protocol GET or POST methods. If the HEAD method is used, the head
properties are read from the request.

Preparing to Run the Demo
Before beginning, examine your settings as follows.
= Right-click on Demos and select Properties.
= Select the Running category.
» Select Regular Execution.
» Check Specify the Security Domain and select Maximum.
= Click OK.

= If you are using a proxy server, you must configure the emulator's proxy server
settings as described in "Configuring the Web Browser and Proxy Settings.” The
HTTP version must be 1.1.

= If you run antivirus software, it might be necessary to create a rule that allows
your MIDlet to permit connections to and from a specific website. See
"Troubleshooting."

Running the Demo

Launch the Http MIDlet. To test, choose the Menu soft key and choose Get, Post, or
Head to test the selected URL.

Using Sample Projects 4-11

Running MIDP and CLDC Sample Projects

Http Test returns the information it obtains. If the information fills the screen use the
down arrow to scroll to the end. The amount of information depends on the type of
request and on the amount of META information the page provides. To provide body
information or content, the page must declare CONTENT-LENGTH as described in RFC
2616.

Using Menu Options

Use the Menu soft key to choose an action. The Menu items vary depending on the
screen you are viewing.

s Choose Qwerty to set the input type. This activates a submenu with the options
Qwerty, 123, Abc, Virtual, and Symbols. This choice is present if you have the
option to edit a URL (select Choose, then click the Add soft button).

s Choose GET or press the Get soft key to retrieve data from the selected URI.
s Choose POST to retrieve the post information from the server handling the selected
page.

s Choose HEAD to retrieve only the META information from the headers for the
selected URL

» Select Choose to display the current list of web pages. You can chose a different
page or add your own page to the list. To specify a new URL, click the Add soft
button. The screen displays http://. Type in the rest of the URL. If necessary
select Qwerty on the menu and choose a different input method. Be sure to end
with a slash (/). For example http: //www. internetnews.com/. Press the OK
soft button. The Http Test screen shows your new URL and prompts for an action.

FontTestlet

This MIDlet shows the various fonts available: Proportional, Regular, Regular Italic,
Bold Plain, and Bold Italic. Choose 1 or 2 from the menu to toggle between the system
font (sans serif) and the monospace font.

Stock

Like the Http demonstration, this sample uses an HTTP connection to obtain
information. Use the same preparation steps as "Http."

Run the Demos project and launch the Stock MIDlet.

By default, the screen displays an empty ticker bar at the top. Below the ticker, the
menu list shows four applications: Stock Tracker, What If? Alerts, and Settings. You
must add stock symbols before you can use the first three applications.

Add Stock Symbols to the Ticker
To add a stock symbol to the ticker, use the navigation arrows to select Settings.
Select Add Stock.

The display prompts you to enter a stock symbol. Type ORCL and select the Done soft
key. The stock you added and its current value is now displayed in the ticker. Add a
few more stock symbols, such as IBM and HPQ.

Change the Update Interval

By default the update interval is 15 minutes. Select Updates to change the interval. Use
the navigation arrows to select one of Continuous, 15 minutes, 30 minutes, one hour,
or three hours. Select the Done soft key.

Remove a Stock

4-12 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running MIDP and CLDC Sample Projects

Select Remove a Stock. You see a list of the stocks you have added. Use the navigation
keys to select one or more stocks to remove. Select the Done soft key.

Stock Tracker

Stock Tracker displays a list of the stocks you added and their current values. Stock
tracker displays additional information about the selected stock, for example, the last
trade and the high and low values.

Choose a stock and press Select.
What If?

What If? is an application that asks for the original purchase price and the number of
shares you own. It calculates your profit or loss based on the current price.

Select a stock symbol.
Enter the purchase price and the number of shares, then press Calc.
Alerts

This application sends you a notification when the price changes to a value you
specify.

From the main menu, select Alerts.
Select Add.

Choose a Stock. The screen prompts, "Alert me when a stock reaches". Enter an
integer.

The alert is placed on the Current Alerts list. To remove an alert, press Remove and
select the alert. Select the Done soft key.

When the value is reached you hear a ring and receive a message. For example, Symbol
has reached your price point of $value and is currently trading at $current_value. When
the alert is triggered it disappears from the Current Alerts list.

Tickets

This demonstrates how an online ticket auction application might behave. The home
screen displays a ticket ticker across the top. Click Done to continue to the Welcome To
Tickets page. The Choose a Band field displays BootWare & Friends by default.

Choose a band from the dropdown menu. The available auction appears.

Select Make a Bid from the menu. Use the arrow keys to move from field to field. Fill
out each field, then select the Next soft key. The application asks you to confirm your
bid. Press the Submit soft key or use the arrow keys to highlight Submit then press
Select. You receive a Confirmation number. Click Bands to return to the Bands page.

Select set an alert, select Set an Alert from the soft Menu. In the bid field type in a
value higher than the current bid and click the Save soft key. You are returned to the
Choose a Band page. You can trigger the alert by making a bid that exceeds your alert
value. Your settings determine how often the application checks for changes, so the
alert may not sound for a few minutes.

To add a band to the Choose a Band dropdown list, select the Menu soft key and
choose Add Bands. Type in a band name or a comma-delimited list of names. Choose
the Save soft key. After confirmation you are returned to the Welcome To Tickets page.
The added band(s) are displayed after the Choose a Band drop-down menu.

Note, this is only a demonstration. To fully describe the band you must edit the
following file:

Using Sample Projects 4-13

Running MIDP and CLDC Sample Projects

username\My Documents\NetBeansProjects\Demos\src\example\auction\NewTicket
Auction.java

To remove a band, click the Menu soft key and select Remove Bands. Check a box for
one or more bands. Select the Save soft key.

To display the current settings for ticker display, updates, alert volume, and date,
select the Menu soft key and choose 6. If desired, use the arrow keys and the select key
to change these values. Select the Save soft key.

ManyBalls

This MIDlet starts with one ball traveling the screen. Use the up and down arrows to
accelerate or decelerate the ball speed (fps). Use the right or left arrows to increase or
decrease the number of balls.

MiniColor
This MIDlet sets an RGB value. Use navigation keys to change color values.

Keyboard controls work as you would expect. First cursor up or down to highlight a
color, and then use left and right keys to lower and raise the value of the selected color.

Chooser

The Chooser application uses a variety of controls to change text color, background
color, and fonts.

» Select Menu > Text Color. Change the color as described in the "MiniColor" and
select the OK soft button.

= Select Menu Menu > Background Color. Change the color as described in the
"MiniColor" and select the OK soft button.

= Select Menu > Fonts. Change the font face, style, and size using the navigation
and selection buttons to move through the font options.

Cursor up and down to highlight a property, then select. The left and right keys
jump between lists. Up and down keys move item by item.

Click OK to continue.

HttpExample

This sample makes an HTTP communication. A popup confirms the transaction was
successful.

HttpView
This application displays three predefined URLs.

Choose a URL, and press the soft buttons to cycle through Head, Headers, Requests,
and Errors.

Alternatively, Use the menu options.
PushExample

This application simulates a feed. As soon as you connect, you receive and display a
graphic. Select Done to continue.

4-14 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running MIDP and CLDC Sample Projects

Running FPDemo

FPDemo is a simple floating point calculator.
1. Enter a number in the first field.

2. To choose an operator, highlight the drop-down list and click to select. Cursor
down to highlight an operator, then click to make a selection.

3. Enter a second value.

4. From the Menu, select Calc or choose 2 to calculate the result.

Running Games

This application features three games: TilePuzzle, WormGame, and PushPuzzle.

TilePuzzle. The desired result, "Rate your mind pal" is shown first. From the soft
Menu, select 1, Start. The scrambled puzzle is displayed. The arrow keys move the
empty space, displacing tiles accordingly (the arrow key indicates which tile to swap
with the space). From the menu you can Reset, or change options.

WormGame. From the soft Menu, select 1, Launch. Use the arrow keys to move the
worm to the green box without touching the edge of the window. When the game is
launched, use the soft menu to change game options.

PushPuzzle. Use the blue ball to push the orange boxes into the red squares in the
fewest number of moves.

Running Network Demo

This demo has two MIDlets: Socket Demo and Datagram Demo. Each demo requires
you to run two emulator instances so that you can emulate the server and client
relationship. For example, run the demo on JavaMEPhonel and JavaMEPhone?2.

Socket Demo

In this application one emulator acts as the socket server, and the other as the socket
client.

1. In the first emulator, launch the application, then select the Server peer. Choose
Start. The Socket Server displays a status message that it is waiting on port 5000.

2. In the second emulator, launch the application, select the Client peer, then choose
Start. Choose Start to launch the client. The Socket Client displays a status
message that indicates it is connected to the server on port 5000. Use the down
navigation arrow to highlight the Send box. Type a message in the Send box, then
choose the Send soft key.

For example, in the client, type Hello Server in the Send box. Choose Send from
the menu. The server emulator activates a blue light when the message is received.

3. On the emulator running the Socket Server, the status reads: Message received -
Hello Server. You can use the down arrow to move to the Send box and type a
reply. For example, Hello Client, I heard you.From the menu, select Send.

4. Back in the Socket Client, the status is: Message received - Hello Client, I
heard you. Until you send a new message, the Send box contains the previous
message you sent.

Using Sample Projects 4-15

Running MIDP and CLDC Sample Projects

Datagram Demo

This demo is similar to Socket Demo. Run two instances of the emulator. One acts as
the datagram server, and the other as the datagram client.

1. In the first emulator, launch Datagram Demo, then select the Server peer. Choose
Start. Initially, the Datagram Server status is Waiting for connection on port
5555, and the Send box is empty.

2. In the second emulator, launch Datagram Demo, select the Client peer, ensure the
port number is 5555 and choose Start. The Datagram Client status is: Connected
to server on port 5555. Use the down navigation arrow to highlight the Send
box. Type a message in the Send box, then choose the Send from the menu. For
example, type Hello datagram server. From the menu, select Send.

3. On the emulator running the Datagram Server, the status displays: Message
received - Hello datagram server. You can use the down arrow to move to the
Send box and type a reply to the client.

4. In the Datagram Client, the status field displays the message received from the
server. The Send box contains the last message you sent. Overwrite it to send
another message.

Running PhotoAlbum

The PhotoAlbum demo displays both static and animated images. When you are
displaying an image, you can use the Options soft menu to change the borders. If the
image is animated, you can change the speed of the playback.

Running UIDemo

UIDemo showcases a variety of MIDP user interface element implementations. Most
elements have some interactive capability (navigate and select) and some allow
keypad or keyboard input.

Input interaction is similar across demos. You can choose items from lists or type in
data.

This demo implements three list selection methods:
s Exclusive (radio buttons)

= Multiple (check boxes)

= Pop-Up (a drop list).

When entering data, you can use the soft menu to apply one of the following input
types to text boxes and fields (note, some elements do not use all input types). When a
field is selected, the soft Menu label displays Qwerty. Open the menu and you see the
input types numbered 1 through 5.

1. Qwerty. Any character on the keyboard

123. Any numeral

ABC. Any letter

Predict. Predicts next character based on prior input

Symbols. Opens a list of symbols; click to make a selection.

o o ~ w N

Virtual. Click keys on a virtual keyboard to enter data.

4-16 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running IMP-NG Sample Projects

The Qwerty, 123, and ABC categories act as filters. For example, if you assign 123 to a
field and you type "abc", nothing is entered in the field.

When you finish a demo, select the home button to return to the UIDemo launch page:

Figure 4-6 The Home Button

CustomItem. This demo features text fields, and text fields in table form. To type in
the table, select a cell, then click to open a text entry panel and type your input. From
the menu, select OK.

Stringltem. Displays labels, a hyperlink, and a button. The soft menu action varies
depending on the selected element.

Gauge. Interactive, non-interactive, indefinite and incremental gauges.

Alert. Uses pop-ups to display alerts. Set the alarm type and the length of the timeout
from drop lists. Select the alert type and select the Show soft button.

ChoiceGroup. Radio buttons, check boxes, and pop-ups on one screen.

List. Select exclusive, implicit, or multiple to display the list type on a subsequent
screen.

TextBox. Use text fields, radio buttons, check boxes, and pop-ups. Select a text box
type and press the Show button.

TextField. Text fields with the six input types.
DateField. Set date and time using drop lists.
Ticker. A scrolling ticker.

Running IMP-NG Sample Projects

This section describes how to use demos created specifically for the IMP-NG platform
(see "IMP-NG"). Because IMP-NG is headless the only user interface is to observe
application status in the emulator’s external events generator, or in the Output
window (or the console if you execute the demo from the command line).

With the exception of I2CDemo, the sample projects in this section can be run on the
emulator or on an external device.

See the Oracle® Java ME Embedded Getting Started Guide for the Windows Platform These
documents are available on the Java ME documentation site at:

http://docs.oracle.com/javame/embedded/embedded.html

Expand the Oracle Java ME Embedded Version node and then the Getting Started and
Release Notes node.

Running the GPIODemo

This demo can be run on an emulator or an external device. The implementations are
different, as the emulator uses the external events generator, and the external device
supports direct interaction.

Using Sample Projects 4-17

Running IMP-NG Sample Projects

Running the GPIODemo on the Emulator

1.
2.
3.

Run GPIO demo on an IMP-NG emulator.
Click the GPIO Pins tab. This view approximates the device actions.

Click the Tools menu and select External Events Generator to open the external
events generator, and click the GPIO tab. A single click on a button turns on LEDs
indicating the button pushed and the pin affected. This information is also written
to the Output window.

Beneath each pin you can click the blue wave button to open the wave generator.
The wave generator simulates the frequency and duration of the signal to the LED.

Pressing pin BUTTON 2 in the external events generator changes the state of the
pin named LED 5. The button value "Low" corresponds to the LED value "High"
and vice versa.

Pressing pin BUTTON 3 changes the state of the port named "LEDS."
Consequently pins bound to this port (LED 1, LED 2, LED 3, LED 4) in the
following way:

» If the BUTTON 3 state is "High" the port value is set to 0 and all bound pins
are set to "Low."

» If the BUTTON 3 state "is Low” and the BUTTON 2 state is "Low," the port
value is set to 2 and the pins are set to the following state:

LED 1 - Low, LED 2 - High, LED 3 - Low, LED 4 - Low

» If the BUTTON 3 state "Low" and the "BUTTON 2" state is "High," the port
value is set to 3 and the pins are set to the following states:

LED 1 - High, LED 2 - High, LED 3 - Low, LED 4 - Low

Running the GPIODemo on the Reference Board

The buttons are wired by GPIO. Assuming that you are looking at the board and the
Reset button is on the bottom left:

Reading from left to right, the LEDS are labeled: PH.3, PH.6, PH.7, P1.10, PG.6,
PG.6, PG.8, and PH.2

The buttons, from left to right, are Reset, Wakeup, Tamper, and User.

The Wakeup button corresponds to PH.3 (Listener 1 Pin 5)

The Tamper button corresponds to PG.6 (Listener 2 Pin 6).

The User button corresponds to PH.3 and P1.10 (Listener 3 Pin 7)

Pressing Tamper turns on the light (PG.6), and releasing turns off the light

Pressing the User button when the Tamper button is released turns on lights on for
LEDs PH.3 and PH.6.

Pressing the User button when the Tamper button is pressed (and as a result the
light on LED PG.6 is on) turns on light on LED PH.3 only.

Releasing the User button turns the lights off on LEDs PH.3 and PH.6.

Running the 12CDemo

This demo is designed to work with the IMP-NG runtime for Windows. It has no user
interaction.

4-18 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running IMP-NG Sample Projects

Launch the I12C demo.
In the emulator, click the I12C tab.

The demo acquires a slave named I2C_Echo, writes data to the slave, and retrieves
it. The demo is successful if the Sent Data and Received Data matches.

Running the NetworkDemoIMPNG

This demo is a headless version of "Socket Demo."

You can configure this demo as a server or as a client by editing the application
descriptor. You launch two instances of this demo, the first one acts as a server and the
second one acts as a client. The client instance attempts to connect to the server
instance and if the connection is successful they exchange a message.

Running NetworkDemoIMPNG on the Emulator

1.
2.
3.

10.

Create two instance projects of the NetworkDemoIMPNG sample project.
Right click the first project and select Properties.

In the Platform category choose the device IMPNGDevicel. In the Application
Description category set the value of the following property:

Oracle-Demo-Network-Mode: Server
Click OK.

Launch the first project. It opens on the emulator IMPNGDevicel and waits for a
connection. You should see messages like the following:

Right click the second project and select Properties.

In the Platform category choose the device IMPNGDevice2. In the Application
Description category set the value of the following property:

Oracle-Demo-Network-Mode:Client
Click OK.
Launch the second project. It opens on the emulator IMPNGDevice2.

The client attempts to connect to the server. If successful, you see the following in
the output tab of the first project (the server):

Waiting for connection on port 500
[AMS-TRACE] MIDlet:NetworkDemoIMPNG status=2
[AMS-TRACE] MIDlet:NetworkDemoIMPNG status=1
Connection accepted

Message received - Client messages

The output of the second project (the client) shows the following:

[AMS-TRACE] MIDlet:NetworkDemoIMPNG status=2
[AMS-TRACE] MIDlet:NetworkDemoIMPNG status=1
Connected to server localhost on port 500
Message received - Server string

Running NetworkDemolIMPNG on the Reference Board

You can run one of the instance projects on the board and the other in one of the
emulators. Follow these steps to run the client on the board and the server in one of
the emulators:

Using Sample Projects 4-19

Running IMP-NG Sample Projects

Right click on the first project (the server) and select Properties. In the Platform
category choose the device IMPNGDevicel (the emulator) and click OK. In the
Application Description category set the value of the property
Oracle-Demo-Network-Mode to Server and click OK.

Launch the first project (the server). It runs on the emulator and waits for a
connection.

Right click on the second project (the client) and select Properties. In the Platform
category choose the device IMPNGExternalDevicel (the board). In the Application
Description category set the value of the property Oracle-Demo-Network-Mode to
Client and click OK.

In the Application Descriptor category set the value of the property
Oracle-Demo-Network-Address to the IP address of the computer where Eclipse is
running and click OK.

Launch the second project (the client). It runs on the board and attempts to connect
to the server. If successful, you see the following in the output tab of the first
project (the server):

Connection accepted
Message received - Client messages

The TCP log of the board (the client) shows the following:

Connected to server 10.0.0.10 on port 5000
Message received - Server String

Running the PDAPDemolMPNG

This demo is a headless version of the PDAPDemo file browser.

Running the PDAPDemolMPNG on the Emulator

Follow these steps to run the demo on the emulator:

1.

N o a M Db

Create test files and directories inside the emulator’s file system:
\username\ javame-sdk\3.3\work\IMPNGDevicel\appdb\filesystem\rootl
Load the project in the Package window.

In the Platform category, select the device IMPNGDevicel and click OK.
In the Device Selector window, right-click an IMPNGDevicel emulator.
Select Run Project > PDAPDemoIMPNG from the context menu.

Launch the project.

On the emulator, click the Tools menu and select Manage File System to see a list
of mounted file systems.

Open a terminal emulator and create a Telnet connection to localhost on port 5001.

Note: The Telnet negotiation mode must be set to Passive. The
negotiation mode can be set inside a Telnet client application (for
example, PuTTY), by choosing Category --> Connection --> Telnet -->
Passive.

4-20 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running IMP-NG Sample Projects

9.

A command line opens where you can browse the emulator’s file system. You can
use the following commands:

- cd- change directory

- 1s-list information about the FILEs for the current directory
- new - create new file or directory

- prop - show properties of a file

- rm-remove the file

— view-View a file's content

Running PDAPDemolMPNG on the Reference Board

Follow these steps to run the demo on the reference board:

1.

Right-click the project and select Properties. In the Platform category, select the
device IMPNGExternalDevicel and click OK.

Launch the project. It runs on the reference board.

Open a terminal emulator and create a raw connection to the IP address of the
board on port 5001.

The command line that opens is the same as the one you use when you run the
demo on the emulator.

The file system of the demo is stored in the directory java/IMletID inside the SD card,
where IMletID is a number that the AMS assigns to an IMlet during its installation.

Running the Pulse Counter (Data Collection) Demo

Pulse counting is the process of sending an electronic pulse to a counter, and then
tracking them (via a timestamp) when they arrive. To observe this process, run the
following demo on your IMPNG device, using the External Events Generator and the
Pulse Counters tab:

1.
2.

Launch the Data Collection Demo.

In the Device Selector, right-click the IMPNGDevicel emulator and select Run JAR
or JAD.

In the file browser, navigate to and select the Data Collection demo JAD file. For
example:

installdir/apps/DataCollectionDemo/dist/DataCollectionDemo. jad

When the emulator opens with DataCollectionDemo installed, select
DataProcessorIMlet and PulseCounterImlet and click Run.

Click OK twice (once for each IMlet) in the Run IMlet dialog box.

You do not have to select the debugger, profiler, or memory monitor tool.

Open the External Events Generator by clicking the Tools menu and selecting
External Events Generator or clicking the External Events Generator icon.

Click the Pulse Counters tab.

Observe Output Console in the IDE as you click Send Pulse for the first counter,
COUNTER_PAO.

Using Sample Projects 4-21

Running IMP-NG Sample Projects

Alternatively, you can select View > Output Console in the emulator menu to
open the Output Console window.

Figure 4-7 Output Console Window Showing Puise Counter Output

DataCollectionDemo.jad (IMPNGDevicel) x |Datatullecﬁnnﬂerm (run) =x |

ProtocolClient is OE.

Starting PulseCounterListener. ..

PulseCounterListener start is COE.

[AMS5-TRACE] MIDlet:DatalollectionDemo status=2

Feb Z5 11:4%5%:20 glokzal com.ocracle mee._datacollectionsample dataprocessor.DataH:
INFD Data: Pulses timestamp = Mon Fek 25 11:45:20 GMT-08:00 2013 walue = 0
[AMS5-TRACE] MIDlet:DatalollectionDemo status=l

Feb Z5 11:45%:51 glokal com.ocracle mee._datacollectionsample dataprocessor.DataH:
INFD Data: Pulses timestamp = Mon Fek 25 11:45:51 GMT-08:00 2013 walue = 1

Feb Z5 11:50:0& globkal com.ocracle mee._datacollectionsample dataprocessor.DataH:
INFD Data: Pulses timestamp = Mon Fek 25 11:50:0& GMT-08:00 2013 walue = Z

A pulse timestamp is output for each click of Send Pulse.

Configuring a Pulse Counter

You can configure a pulse counter for an IMPNG device. You can also create a custom
IMPNG device with pulse counter capabilities. To do this, follow these steps:

1.

8.

Go to Tools > Java ME > Custom Device Editor.
For Eclipse users, go to Run > Custom Device Editor.
Select IMP-NG in the Custom Device Editor window and click New... .

In the New IMP-NG Device dialog box, specify a name for the custom device, for
example, IMPNGCustomDevicel.

(Optional) you can provide a brief description such as emulator with pulse
counter.

Click the Pulse Counters tab.

Click Add for the number of pulse counters you want. For example, click Add four
times to create pulse counters with IDs of 0, 1, 2, and 3.

IDs are automatically assigned to each pulse counter. To unassign an ID, select the
row of the desired pulse counter and uncheck the Assign ID option. The
unassigned pulse counter is moved to the top of the list.

For each pulse counter, click in the Type column and select the signal trigger type:
Falling Pulse Edge, Negative Edge Pulse, Rising Pulse Edge, or Positive Edge
Pulse.

Click OK.

You also have the option to bind a pulse counter to an existing GPIO input pin by
selecting the specific pin from the dropdown list in the Input Pin column.

The pulse counter type should conform to the trigger value of the binding input GPIO
pin. This means that:

Pulse counters of the type Falling Pulse Edge can only be bound to input pins with
the Falling Edge trigger.

4-22 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running IMP-NG Sample Projects

= Pulse counters of the type Rising Pulse Edge can only be bound to input pins with
the Rising Edge trigger.

= Pulse counters of the type Negative Pulse Edge or Positive Pulse Edge can only be
bound to input pins with the Both Edges trigger.

Running the Light Tracker Demo

The Light Tracker demo is specifically aimed ast showing off funtionality on a
embedded device, such as the Keil MCBSTM32F200 reference platform.

In this demo, a certain number of LEDs are turned on and turned off on the board, in a
sequence that you can control. It makes use of the Device Access API and the GPIO
Port to demonstrate its functionality. It requires connection of an ADC channel to an
on-board potentiometer.

For more information on the setup of the Light Tracker demo, see the LightTrackDemo
readme. txt file, in the location where you have installed the Oracle Java ME SDK
sample applications. For example:

C:\Documents and Settings\username\Java_ME_SDK\samples\LightTrackDemo

For more information on the Keil MCBSTM32F200 platform, see the Oracle Java ME
Embedded Getting Started Guide for the Reference Platform (Keil).

Running the System Controller Demo

The System Controller demo is specifically aimed ast showing off funtionality on a
embedded device, such as the Keil MCBSTM32F200 reference platform.

The purpose of this demo is to control the lifecycle of IMlets on the reference platform.
It makes use of the following functionalities:

= Multitasking Virtual Machine (MVM)

» IMlet auto-start

= Application Management System (AMS) API
s Logging API

= Device Access API

s General Purpose Input/Output (GPIO)

= Watchdog timer

For more information on the setup of the System Controller demo, see the
SystemControllerDemo readme. txt file, in the location where you have installed the
Oracle Java ME SDK sample applications. For example:

C:\Documents and Settings\username\Java_ME_
SDK\samples\SystemControllerDemo

For more information on the Keil MCBSTM32F200 platform, see the Oracle Java ME
Embedded Getting Started Guide for the Reference Platform (Keil).

Using Sample Projects 4-23

Running IMP-NG Sample Projects

4-24 Oracle Java Micro Edition Software Development Kit Developer's Guide

O

Creating and Editing Projects

A project is a group of files comprising a single application. Files include source files,
resource files, XML configuration files, automatically generated Apache Ant build
files, and a properties file.

When a project is created, the SDK performs these tasks:

= Creates a source tree you can examine in the "Working With Projects" or "View
Project Files."

= Sets the emulator platform for the project.
= Sets the project run and compile-time classpaths.

s Creates a build script that contains actions for running, compiling, debugging, and
building Javadoc. Project properties influence the build process, as described in
"Building a Project.” See also "Build a Project from the Command Line."

Java ME SDK and NetBeans create their project infrastructure directly on top of
Apache Ant. Java ME SDK projects can be opened and edited in NetBeans, and
vice-versa. With the Ant infrastructure in place, you can build and run your projects
within the SDK or from the command line.

The SDK provides two views of the project:
» The Projects window provides a logical view of the project.
» The Files window displays a physical view of the project.

Project settings are controlled in the project Properties window. Typically, you
right-click on an item or subitem in a tree (a project, a file, or a device) and select
Properties.

Project Types

The MIDP/CLDC platform implements the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139). As described in
"IMP-NG," the IMP-NG platform is a type of CLDC platform.

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

MIDP Projects

A MIDP application (a MIDlet), is deployed as a MIDlet suite. A MIDlet suite is
distributed as a Java archive (JAR) file and a Java Application Descriptor (JAD) file.

Creating and Editing Projects 5-1

The Project Wizard

The IMP-NG version of a MIDlet is an IMlet. However, because IMP-NG is a subset of
CLDC you can write IMP-NG applications as MIDlets.

The JAR file includes the Java classes for each MIDlet in the suite, Java classes shared
between MIDlets, resource files, and other supporting files. The JAR file also includes
a manifest describing the JAR contents and specifying attributes the Application
Management Software (AMS) uses to identify and install the MIDlet suite.

The JAD file contains attributes that allow the AMS to identify, retrieve, and install the
MIDlets in a project. The SDK automatically creates JAD and JAR files when you build
the project.

CDC Projects

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

Oracle Java ME SDK version 3.3 supports CDC projects running as standalone
applications. The CDC project structure and behavior are much the same as that of
CLDC projects.

Note: An Xlet cannot be run standalone. It depends upon an
application manager to manage its life cycle (its state) and system
services. Xlets are not supported in this release.

A standalone CDC project requires a main application class that includes a method
named main () that handles class loading, object creation, and method execution. The
application interacts directly with the Java Runtime Environment to manage its own
life cycle and system resource needs. When the main () method exits, the standalone
application terminates.

The Project Wizard

This section describes how to use the Project Wizard to create Java ME projects. The
project provides a basic infrastructure for development. You provide source files,
resource files, and project settings as needed. Most project properties can be edited
later. For more on project properties, see Chapter 6, "Viewing and Editing Project
Properties."

Create a MIDP Project

Follow these steps to create a MIDP project.
1. Click the File menu and select New Project.
The New Project wizard opens.

2. In the New Project window, select the Java ME category, and the Mobile
Application project type. Click Next.

3. On the Name and Location page, specify a project name.
Most of the form is auto-filled, but you can alter any of the editable fields.

Checking Create Default Package and Main executable Class creates a sample
package and main class for your application. Click Next.

5-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

The Project Wizard

4. On the Default Platform Selection page, select the Oracle Java(TM) Platform Micro

Edition SDK 3.3 platform.
The platform determines which devices you see in the Device dropdown menu.
Make a device selection.

The selected device typically determines the Device Configuration. If more than
one Device Profile is available, make a selection. Click Finish.

The new project is listed in the Projects pane.

Note: You can make additional project configurations using project
configuration templates from previously saved templates or from
templates installed on the platform by clicking Next on the Default
Platform Selection page.

Create an IMP-NG Project

The process for creating an IMP-NG project is almost the same as a CLDC project.
There are just a few things to watch for.

1.

Click the File menu and select New Project.
The New Project wizard opens.

In the Choose Project window, select the Java ME category, and the Mobile
Application project type. Click Next.

On the Name and Location page, specify a project name. Most of the form is
auto-filled, but you can alter any of the editable fields.

Checking Create Default Package and Main executable Class creates a sample
package and main class for your application. Click Next.

On the Select Platform page, change the platform selection to Oracle Java(TM)
Platform Micro Edition SDK 3.3. The platform determines which devices you see
in the Device dropdown menu.

Choose an IMPNG device, and choose a Device Profile.
Click Finish.

To run the new project follow the steps in "Running a Project.”

Create a CDC Project

NetBeans provides a wizard for creating new projects quickly and easily. Most project
properties can be edited later on.

1.

Click the File menu and select New Project.
The New Project wizard opens.

In the Categories window choose Java ME and in the Projects window choose
CDC Application.

On the Name and Location page, specify a project name. Most of the form is
auto-filled, but you can alter any of the editable fields.

Check the Create Main class option to insert a template of the class Main in your
project. You can rename the class or accept the default name. Click Next.

Creating and Editing Projects 5-3

The Project Wizard

4. On the Select Platform page, change the platform selection to CDC Oracle
Java(TM) Platform Micro Edition SDK 3.3. The platform determines which devices
you see in the Device dropdown menu.

Choose a CDC device and a Device Profile, then click Finish.

5. To run the new project follow the steps in "Running a Project," except you can
select your new project instead of a sample project.

Import a Legacy MIDP Project

If you created a project using the Sun Java Wireless Toolkit for CLDC on Windows or
Linux you can import your MIDlets into Java ME SDK projects. You can also use this
procedure to create a project based upon a legacy sample project.

1. In the File menu, select New Project.

2. Inthe New Project dialog box, be sure Java ME is selected and select Import
Wireless Toolkit Project. Click Next.

3. Specify the WIK project location.
Use browse to open the directory containing the legacy project.
4. Select a project and click Next.
5. Provide the project name, location, and folder for the new project.

The default name, project name and folder name are based on the name of the
project you are importing. Click Next.

6. Select the platform type, the default device, and the configuration and profile, if
applicable. Click Finish.

Your new project opens in the Projects window.

7. If the legacy project used signing, you must configure the signing properties as
described in "Managing Keystores and Key Pairs."

Import a Legacy CDC Project

If you created a project using the CDC Toolkit, you can import your applications into
Java ME SDK projects. You can also use import to create a project based upon a sample
project.

Note: Standalone projects created in the CDC Toolkit can be
imported. Xlets cannot be imported.

The CDC platform name for the Oracle Java ME SDK version 3.3 does not match the
legacy platform name in the CDC Toolkit 1.0 and the CDC Mobility Pack.
Consequently, you get a reference error when you import a legacy CDC project.

Note: To avoid the reference error, create a platform with the
legacy name, as described in "Create a Platform for Legacy CDC
Projects." You only need to create the platform once.

1. In the File menu, select New Project.

5-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Working With Projects

2. Inthe New Project dialog box, be sure Java ME is selected and select Import CDC
Toolkit Project. Click Next.

3. Browse to select the project location.

The wizard detects any applications in the legacy installation and displays their
locations on disk. Select a project and click Next.

4. Provide the Project Name, Location, and Folder for the new project. Note that the
default name project name and folder name are based on the name of the project
you are importing. Click Finish.

The imported project opens in the Projects window.

See "Create a Platform for Legacy CDC Projects" and "View Project Files."

Working With Projects

The logical view of the project, shown in the Projects window, provides a hierarchy of
sources and resources. Right-click on the project node to see actions related to the
project.

New. Opens a form to build a new object for the current project. The new object is
placed in the project's file structure by default, but you can control the file name and
location. The Other option in the New menu permits adding different types of files to
the project. For a sample procedure, see "Generating Stub Files from WSDL
Descriptors."

Build. Builds a distribution Java archive (JAR) file. Project properties control the build
process as described in "Building a Project.”

Clean & Build. Cleans, then builds a distribution JAR file.

Clean. Cleans the build files.

Generate Javadoc. See the online help topic Generating Javadoc Documentation.
Deploy. See the online help topic "Deploying Java ME Applications."

Batch Build..., Batch Clean & Build..., Batch Clean..., Batch Deploy... See the online
help topic "About Java ME MIDP Projects."

Run. Runs the project with the default device, as specified on the Platform property
page. See "Platform Selection."

Run With... Run the selected project with a device you choose. This option can
override the default device specified in the project properties.

Debug. See the online help topic "Debugging Tasks: Quick Reference."

Profile. Attach the profiler to the selected project. See Chapter 9, "Profiling
Applications."

Set as Main Project. Make the current project the new main project. Toolbar actions,
such as clicking the green Run button, act upon the main project by default.

Unset as Main Project. This option is visible if the selected project is the main project.
Open Required Projects. Open any projects that the current project requires.

Close. Close the current project. Be sure that any processes are stopped, as closing a
project might not stop the emulator.

Creating and Editing Projects 5-5

View Project Files

View Project Files

The Files window displays a physical view of all project files. Right-click to view
project properties or choose an action related to the project.

build. The output directory for the compiled classes listed below. This directory also
contains manifest .mf, the manifest file that is added to the JAR file.

= compiled. Contains all compiled classes.
m obfuscated. Holds the obfuscated versions of the class files.

= preprocessed. Holds the source files after they are preprocessed. The files differ
from the original source files if you are using project configurations.

s preverified. Holds the preverified versions of the class files. These files are
packaged into your project's distribution JAR.

» preverifysrc. Versions of the source files before they are preverified.

dist. The output directory of packaged build outputs (JAR files and JAD files). The
dist directory also contains generated Javadoc documentation.

lib. Contains libraries you have added to the project. See "Adding Libraries and
Resources."

nbproject. The directory that contains the project Ant script and other metadata. This
directory contains the following files:

= build-impl.xml. The SDK-generated Ant script. Do not edit build-impl.xml
directly. Always override its targets in build.xml.

» private/private.properties. Properties that are defined for you alone. If you are
sharing the project, any properties you define in this file are not checked in with
other project metadata and are only applied to your SDK installation.

= project.properties. Ant properties used to configure the Ant script. This file is
automatically updated when you configure the project's properties. Manual
editing is possible, but it is not recommended.

s project.xml and genfiles.properties. Generated metadata files. It is possible to
edit project.xml manually, but it is not recommended. Do not edit
genfiles.properties.

res. Resource files you have added to the project. See "Adding Libraries and
Resources."

src. Project source files.

build.xml. The build script. This build script only contains an import statement that
imports targets from nbproject/build-impl.xml. Use the build.xml to override
targets from build-impl.xml or to create new targets.

See "Create a MIDP Project” and "Create a CDC Project."

Create a New MIDlet

To create a new MIDlet from the Files view, right-click a project and select New >
MIDlet. With this form you can specify the name of the MIDlet and its location within
the selected project.

MIDlet Name. The name that users see when the application runs on a device.

MIDlet Class Name. The name of the new MIDP class.

5-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Debugging MIDP and IMP-NG Projects

MIDlet Icon. The path to an icon associated with the MIDlet. Users see the icon when
the application runs on a device.

Project. Displays the name of the project.

Package. Specifies the location of the MIDlet class in the package hierarchy. You can
select an existing package from the drop down menu, or type in the name of a new
package. The new package is created along with the class.

Created File. Displays the name and the location of the MIDlet in the system’s
hierarchy.

When the new MIDlet is created the SDK automatically adds it to the project's
Application Descriptor File.

Add Files to a Project

For all projects, right-click to use the context menu to add files to a project. Using this
method places files in the proper location in project source or resources.

To add a MIDlet, Java class, Java package, Java interface or Other files, right-click the
project name or the Source Packages node, choose New, and select the file type.

To add files by format (Project, JAR, Folder, Library) right-click the Resources node
and select a format. See "Adding Libraries and Resources."

It is possible to add files by copying them directly to the project directory but it is not
recommended.

Search Project Files

To search a project's files, right-click on the project and select Find... . The Find in Files
utility supports searching a project's file contents or file names. The search input fields
supports simple text matching and regular expressions.

Containing Text. The string you are looking for. If File Name Patterns is empty, all files
are searched.

File Name Patterns. The files you are searching in. If the Containing Text field is
empty you get a listing of files that match the pattern.

The options Whole Words, Match Case, and Regular Expression further restrict the
search. Regular Expression Constructs are fully explained in:

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pat
tern.html#sum

Debugging MIDP and IMP-NG Projects

Java ME Projects use standard NetBeans debugging utilities. Refer to the NetBeans
help topic, Debugging Tasks: Quick Reference. This topic includes links to a variety of
debugging procedures.

If you have an external device that runs a supported runtime you can perform
on-device debugging. The device must be detected by the Device Selector, as described
in "Adding an External Device."

For a sample scenario, see the Oracle® Java ME Embedded Getting Started Guide for the
Windows Platform at:

http://docs.oracle.com/javame/embedded/embedded.html

Creating and Editing Projects 5-7

Debugging MIDP and IMP-NG Projects

5-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

6

Viewing and Editing Project Properties

All projects have properties. Some properties, such as the project's name and location
cannot be changed, but other properties can be freely edited as work on your project
progresses.

To view or edit a project's properties, right-click the project node and select Properties.
In the resulting window, you can view and customize the project properties. See the
following topics:

= "General Project Properties"

= "Platform Selection"

» "Editing Application Descriptor Properties"
= "Building a Project"

= "Running Settings"

General Project Properties

To view the General property page, right-click a project, click Properties, and select the
General category. The general properties page displays basic project properties. You
can set application versioning here, but all other values cannot be edited.

The project name, folder, and source location are set when the project is created. The
Application Version Number field displays the version number of the current build.

Application Versioning

The Application Version Counter field displays the next version number to be used.
The default advance is 0.0.1. To advance the number beyond this, use the dropdown
menu to select a new digit, or enter the value into the field. For example, changing the
value to 3 results in a build number of 0.0.3. Changing the value to 100 results in the
version number 0.1.0.

Required Projects

This area displays projects you have added to this project. It might be a dependent
project or an external library. See "Adding Libraries and Resources."

Platform Selection

An emulator platform simulates the execution of an application on one or more target
devices. To view this property page, right-click a project and click Properties and
select the Platform category.

Select a platform type from the dropdown menu.

Viewing and Editing Project Properties 6-1

Editing Application Descriptor Properties

For the emulator platform, be sure to select the 3.3 platform. You might have to use the
dropdown menu to ensure the right version is selected.

By default, the devices in the device menu are also suitable for the platform type and
emulator platform. The device you select is the default device for this project. It is used
whenever you use the Run command. Your device selection influences the Device
Configuration and Device Profile options, and the available optional packages.

Be sure that a Device Profile is selected, and select the optional packages you want to
include in this project. The selected APIs are automatically added to the project's
classpath. See "Create a MIDP Project.”

Editing Application Descriptor Properties

To view this property page, right-click on a project, choose Properties, and select the
Application Descriptor category. The Application Descriptor properties page enables
adding, editing, or deleting project attributes.

CDC Attributes

To view this property page, right-click on a CDC project and choose Properties. Select
the Application Descriptor category.

Application Name. The display name of the application on the target device.
ApplicationVendor. The company name or author name for the application.
Description. A concise description of the application.

Detail Description. A detailed description of the application.

MIDP Attributes

To view this property page, right-click on a MIDP project and choose Properties. Select
the Application Descriptor category, and select the Attributes tab.

The General Attributes table lists the attributes currently contained in the JAD and
JAR manifest files:

Type. Lists whether the attribute is required or optional. Custom attributes for passing
parameters to the MIDlet using the JAD are also available.

Name. The name of the attribute.
Value. The values for each attribute.
To avoid errors in verification:

s Define all required attributes.

= Do not begin user-defined attribute keys with MIDlet- or MicroEdition-.

Add an Attribute

Follow these steps to add an attribute.
1. Click Add... to open the Add Attribute window.

2. Choose an attribute from the Name combo box, or delete the current entry and
add your own custom entry.

6-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Editing Application Descriptor Properties

MiDlets

Note: Remember that user-defined attribute names must not
begin with MIDlet- or MicroEdition-.

3. Enter a value for the attribute.

4. Click OK.

Edit an Attribute

1. Select an attribute.

2. Click Edit... to open the Edit Attribute window.

3. Enter a value for the attribute.

4. Click OK.

API permissions, Push Registry Entries, and API Permissions have their own property

pages.

Remove an Attribute
Select an Attribute and click Remove to delete it from the list.

To view this page, right-click a project and choose Properties. Select the Application
Descriptor category, and select the MIDlets tab.

The MIDlets table lists the MIDlets contained in the suite and the following properties:

Name. The displayable name of the MIDlet that the user sees when the MIDlet is run
on a mobile device.

Class. The Java class for the MIDlet.

Icon. Anicon (a .png file), representing the MIDlet that the user sees when the MIDlet
is run on a mobile device.

Add a MIDlet
1. Click Add... to open the Add MIDlet window.

The window lists the MIDlets available in the project.
2. Enter a name, then select a MIDlet class from the dropdown menu.

You can also choose an icon for the MIDlet from the MIDlet icon dropdown menu.

3. C(lick OK.

Edit a MIDlet
1. Select a MIDlet.

2. Click Edit... to open the Edit MIDlet window.
3. Enter a value for the attribute.

4. Click OK. The revised values are listed in the table.

Remove a MIDlet
Select a MIDlet and click Remove to delete it from the list.

Viewing and Editing Project Properties 6-3

Editing Application Descriptor Properties

Change MiDlet Display Order
The list order determines the order in which the MIDlets are displayed.

Select a MIDlet and select Move Up or Move Down to change its position.

Push Registry

To view this page, right-click on a project and choose Properties. Select the Application
Descriptor category, and select the Push Registry tab.

Add a Push Registry Entry
1. Click Add... to open the Add Push Registry window.

2. Enter Class Name, Sender IP, and Connection String values.
s Class Name. The MIDlet's class name.

s Sender IP. A valid sender that can launch the associated MIDlet. If the value is
the wildcard (*), connections from any source are accepted. If datagram or
socket connections are used, the value of Allowed Sender can be a numeric IP
address.

= Connection String. A connection string that identifies the connection protocol
and port number.

3. C(lick OK.

The new values are listed in the table. A push registration key is automatically
generated and shown as an attribute in the MIDlet suite's Java Application
Descriptor (JAD) file.

Enabling a Push Registry Entry

To make use of the Push Registry, you must also have permission to access the Push
Registry API, javax.microedition.io.PushRegistry. API permission, are handled in
the API Permissions property page ("API Permissions").

Remove a Push Registry Entry
Select an entry and click Remove to delete it from the list.

Change Push Registry Display Order

The list order determines the order in which the MIDlets are displayed. Select an entry
and select Move Up or Move Down to change its position.

API Permissions

These properties set permission attributes for protected APIs called by the MIDlet
suite. To view this property page, right-click on a project and click Properties. Select
the Application Descriptor category, and select the API Permissions tab.

Adding Permission Requests
1. Click the Add.

The Add Permission for API dialog opens.

2. Choose an API package from the dropdown list or enter an API package name into
the combo box and click OK.

6-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Building a Project

3. (Optional) In the Requested Permissions table, check the Required box if you want
installation to fail when that permission cannot be granted.

For more information, see Security for MIDP Applications in the MIDP 2.1 (JSR 118)
specification, available at:
http://jcp.org/aboutdJava/communityprocess/mrel/jsrll18/index.html

Building a Project

When you build a project, the SDK compiles the source files and generates the
packaged build output (a JAR file) for your project. You can build the main project and
all of its required projects, or build any project individually.

In general you do not need to build the project or compile individual classes to run the
project. By default, the SDK automatically compiles classes when you save them. You
can use properties to modify the following build tasks:

s "Compiling"

» "Adding Libraries and Resources"

= "Obfuscating"

s 'Creating JAR and JAD Files (Packaging)"

= "Signing"

Configuring Ant

To view this form, follow these steps:
1. Click the Tools menu and select Options.
2. Select Java and click the Ant tab.

Ant Home. The installation directory of the Ant executable the SDK uses. To change
Ant versions, type the full path to a new Ant installation directory in this field or click
Browse to find the location. You can only switch between versions 1.5.3 and higher of
Ant. The Ant installation directory must contain a 1ib subdirectory which contains the
ant . jar binary. If you enter a directory that does not match the expected structure, the
SDK gives you an error. See the NetBeans help topic for more options.

Save All Modified Files Before Running Ant. If selected, saves all unsaved files in the
SDK before running Ant. It is recommended to leave this property selected because
modifications to files in the SDK are not recognized by Ant unless they are first saved
to disk.

Reuse Output Tabs from Finished Processes. If selected, writes Ant output to a single
Output window tab, deleting the output from the previous process. If not selected,
opens a new tab for each Ant process.

Always Show Output. If selected, the SDK displays the Output window for all Ant
processes. If not selected, raises the Output window tab only if the Ant output requires
user input or contains a hyperlink. Output that contains hyperlinks usually denotes an
error or warning.

Verbosity Level. Sets the amount of compilation output. Set the verbosity lower to
suppress informational messages or higher to get more detailed information.

Classpath. Contains binaries and libraries that are added to Ant's classpath. Click Add
Directory or Add JAR/ZIP to open the Classpath Editor.

Viewing and Editing Project Properties 6-5

Building a Project

Compiling

Properties. Configures custom properties to pass to an Ant script each time you call
Ant. Click Manage Properties to edit the properties in the property editor. This
property is similar to the Ant command-line option, -Dkey=value. The following
default properties are available:

${build.compiler.emacs}. Setting this property to true enables Emacs-compatible error
messages.

To view this property page, right-click a project and choose Properties. In the
Properties window Build category, choose Compiling.

This page enables you to set the following options:

Generate Debugging Info. If checked, the compiler generates line numbers and
source files information. This is the -g option in javac. If unchecked, no debugging
information is generated (the -g:none option in javac).

Debug Block Level. The block level can be set to: debug, info, warn, error, and fatal.

Compile with Optimization. If checked, the compiled application is optimized for
execution. This is the -0 option in javac. Optimizing can slow down compilation,
produce larger class files, and make the program difficult to debug.

Report Uses of Deprecated APIs. If checked, the compiler lists each use or override of
a deprecated member or class. This is the -deprecated option in javac. If unchecked,
the compiler shows only the names of source files that use or override deprecated
members or classes.

Encoding. Overrides default encoding used by preprocessor and compiler. The default
value is the default encoding used by your VM.

Adding Libraries and Resources

To view this property page, right-click on a project and select Properties. In the
Properties window Build category, choose Libraries and Resources to add a dependent
project, libraries, and other supporting files to the current project.

Add Project. A JAR file produced by another project and the associated source files
and Javadoc documentation. Adding this item to a classpath sets up a dependency
between the current project and the selected JAR file.

Add Library. A Library is a collection of JAR files or folders with compiled classes,
which can optionally have associated source files and Javadoc documentation.

Add Jar/Zip. A JAR file created by another project.
Add Folder. The root of a package or directory containing files.

When a library or resource is added, it is visible in the Libraries & Resources table,
which reflects the order of the libraries and resources in the classpath. To change the
order in the classpath, select the listing and click Move Up or Move Down. You can
also remove libraries and resources from this page.

Each row in the table has a Package check box. If Package is checked, the library or
resource is bundled and added to the project JAR file. If Package is not checked, the
library or resource is copied to the 1ib subdirectory at build time.

6-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Building a Project

Creating JAR and JAD Files (Packaging)

Obfuscating

Signing

To view this property page, right-click on a project and select Properties. In the
Properties window Build category, choose Creating JAR.

You can set the following options:

JAD File Name. Name of the JAD file created by the project sources. The file name
must have a . jad extension.

JAR File Name. Name of the JAR file created by the project sources. The file name
must have a . jar extension.

Compress JAR. If checked, the JAR file is compressed.

To view this property page, right-click on a project and select Properties. In the
Properties window Build category, choose Obfuscating.

Use the Obfuscation properties page to set the level of obfuscation for project files.

Move the Obfuscation slider to set the level. The Level Description window describes
the impact each level has.

You can add more obfuscation parameters in the Additional Obfuscation Settings
window.

To view this property page, right-click on a project and select Properties. In the
Properties window Build category, choose Signing. These properties enable you to
enable signing and assign key pairs to a CLDC project. See "Security Domains."

Sign Distribution. Check this box to enable signing for the MIDlet suite. If it is
unchecked, this page is disabled.

Keystore. A file that stores one or more key pairs as a keystore (.ks) file. The
dropdown menu lists all available keystores. Click the Unlock button to unlock a
keystore with the keystore password.

Alias. A name assigned to a key pair within a keystore. The dropdown menu lists the
aliases available for the selected keystore. Click the Unlock button to unlock a key pair
for use.

The Certificate Details window provides information about the certificate assigned to
the key pair.

Click Open Keystores Manager to manage keystores and key pairs. See "Managing
Keystores and Key Pairs" and "Exporting a Key."

Signing CDC Projects

To sign a CDC project use the JDK jarsigner command from the command line. For
example: jarsigner.exe -keystore keystore.ks -storepass keystorepwd
MyCdcApp.jar dummyCA

Exporting a Key

Follow these steps to export a key into an emulator:

» Click the Tools menu and select Keystores. This opens the Keystores Manager.

Viewing and Editing Project Properties 6-7

Running Settings

You can use the Keystores Manager to add a keystore to the Keystores list. Click
Add Keystore. After you create the keystore, click New to create a key pair.

= In the Keys area, select a key, and click Export. This opens the dialog Export Key
into Java ME SDK/Platform/Emulator.

= Select the target emulator from the Emulator list.
= Select the Security Domain.
s Click Export to export your key pair to the selected emulator.
Your key is added to the bottom of the list in Keys Registered in the Emulator.
The Export window has the following components:

Keystore File. Displays the name of the keystore file to which the key pair belongs.
This field cannot be edited.

Key Pair Alias. The name given to the key pair within the keystore. This field cannot
be edited.

Certificate Details. Displays the details of the certificate of the key to be exported.

Emulator. The drop-down menu lists all the device emulators available. See "Security
Domains."

Security Domain. Enables you to select a security domain for the key pair. The menu
lists all domains supported by the selected emulator platform.

Keys Registered in the Emulator. Lists all keys that have been registered in the
selected platform. Click to select the key you want to export.

Delete Key. Deletes a selected key from the Keys Registered in the Emulator window.

Export. Exports the selected key to the selected emulator. The export button is enabled
if it is possible to export the key. If a specific key is installed it cannot be installed
again.

Running Settings

To view this property page, right-click a project and choose Properties. In the
Properties window, choose Running. The options shown depend on the platform. See
"MIDP Project Run Options" and "CDC Project Run Options."

MIDP Project Run Options

To set emulator command line options for a MIDP project, type in the command line
switches. See "Emulator Command Line Options."

6-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running Settings

Figure 6—-1 Emulator Command Line Switches

Category:

E General

= Platform
=] Abilities

| & Application Descriptor

-G Buid

[Running
&9 Deploying

Emulator Command Line Options: -¥verbosze
(e.q. Nverbose)

Spedfy the Security Domain: |maximum w
() Execute through OTA (Over The Air Provisioning)

Debugger timeout (in miliseconds):

For CLDC projects, the Regular execution button is enabled by default. The setting for
"Specify the Security Domain" applies when the project is run on an emulator. It does
not apply for OTA provisioning or an external emulator platform.

If you do not check Specify the Security Domain the project runs with the default that
was assigned when the project was created. If you check the box, you can select a
domain from the dropdown list. See "Security Domains" and "Specify the Security
Domain for a Project.”

CDC Project Run Options

For CDC projects you must enter the name of the entry point Java file in the Main
Class field. The Main Class Browse button only shows executable classes in the
project's source folders. For a CDC project you see all classes with a static main
method, or classes extending the Applet or Xlet classes.

Arguments are passed only to the main class, not to individual files. If an Xlet is
executed, all arguments are passed to all the Xlets you specify.

For VM options, see "CDC Options."

Viewing and Editing Project Properties 6-9

Running Settings

6-10 Oracle Java Micro Edition Software Development Kit Developer's Guide

7

Working With Devices

The Oracle Java ME SDK provides default device skins. A skin is a thin layer on top of
the emulator implementation that defines the appearance, screen characteristics, and
input controls. This chapter discusses the default emulators provided by Oracle Java
ME SDK and describes how you can create and modify a custom device. To make your
own device, see "Using the Custom Device Editor."

The Oracle Java ME SDK emulator simulates a CLDC, CDC, or IMP-NG device on
your desktop computer. The emulator does not represent a specific device, but it
provides correct implementations of its supported APIs.

Note: The configuration of all peripherals, except UART, can be
inspected in the emulator main window. The configuration of UART
is defined by the hardware configuration of the COM ports on your
Windows XP or Windows 7 PC.

Emulators

The SDK runs applications on an emulator or an external device. Before you can run
an application from the SDK, the Device Manager, which manages both emulators and
external devices, must be running. When the Oracle Java ME SDK runs, the Device
Manager automatically launches and starts detecting devices. The default emulators
shipped with the SDK are automatically found and displayed in the Device Selector
window (Tools > Java ME > Device Selector).

The Device Manager on Windows

The SDK uses the device manager to detect devices and displays the available devices
in the Device Selector window (Tools > Java ME > Device Selector). The Device
Manager is a service and you can see it running in your Windows system tray. In the
task manager, the process is labeled device-manager. exe.

Figure 7-1 The Device Manager Icon

£

You can right-click the icon and select Exit to stop the service.

Working With Devices 7-1

Emulators

Figure 7-2 The Device Manager Menu

Manage Device Addresses
Registered Devices

Exit

To restart the device manager, double-click device-manager. exe in your installdir\bin
directory. You can also start it from the command line as described in "Run the Device
Manager."

In the Windows system tray, click the icon or right-click the icon and select Manage
Device Addresses from the menu to open the Device Address Manager. Enter an IP
address and select Add to add a device. Select an address and click Remove if you
have an address you no longer want to detect. The device is no longer displayed in the
Device Selector.

Right-click the icon in the system tray and select Registered Devices to see a list of
registered devices and their configuration information such as, screen dimensions,
screen depth, security domains, supported APIs, and more.

Starting an Emulator

Typically an emulator is launched when a Java ME SDK project is run from the
NetBeans IDE or the command line. The default emulator is determined by the Java
ME platform selected for the project, as described in "Managing Java Platforms."

You can open an emulator without running an application from the IDE. From the
Windows Start menu, click Programs and select Java(TM) ME Platform SDK 3.3 and
select the desired emulator. You can also click the emulator shortcuts installed on your
Windows desktop.

Figure 7-3 Opening an Emulator

| Java(TM) ME Platform SOK 3.3
B Custom Device Editor
L Docurmentation

Bh Java ME SDK IMP-NG Emulator
¥, Java ME SDK MIDP Emulator

To run an application from the emulator, click the Application menu and select Run
MIDlet Suite (or Run IMlet Suite). Provide the path to the application and any other
information, and click OK.

CLDC Application Management System

The CLDC AMS home screen features three utilities:

= Install Application. This utility opens a form in which you can specify a URL (or a
file path) for a JAD file to install.

= Manage Certificate Authorities. This feature displays the certificates authorities for
the device. In this interface the white box indicates the certificate is checked
(active). You can uncheck certificates that are not needed.

7-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Adding an External Device

Output Console. The output console displays system output statements from a
running application. The application must write to the Java standard output
console using, for example:

System.out.println("text");
Start the emulator’s Output Console, then start your application. Use F7, Switch
running MIDlet, to switch between the application and the Output Console.

Note that the emulator’s Output Console is an application that consumes
resources. If you get the message "No more concurrent applications allowed," you
must close some applications before continuing.

Figure 7-4 The Output Console Window

Output Console

startMIDlet pre-action code
print Hello

greetings printed

getForm initialized

start MiDlet post-action code
hello paused

resumeMIDlet pre-action code
resumeMIDlet post-action code

See "Emulator Features" and "Emulator Menus."

You can also access system output information from the emulator by clicking the View
menu and selecting Output Console..., which opens an Output Console dialog box.
Select a filter from the dropdown list to display specific system output. Click Save to
save the output as a . log file.

Adding an External Device

The device selector can detect a device that has a compatible runtime. Typically this
device has network capabilities and is connected to the computer running Java ME
SDK.

1.

To detect a physical device, click CTRL-D, or click the device icon at the top of the
Device Selector window.

Type an IP address and click Next. Click Finish.

You can also enter an IP address in the Device Manager, as described in "The
Device Manager on Windows."

The physical device is listed in the appropriate platform tree. By default, the
device has "ExternalDevice" appended to the name.

Working With Devices 7-3

Viewing Device Properties

For example, if an IMP-NG device is detected it is placed in the IMP-NG node and
given the name IMPNGExternalDevicel.

For an example of how to configure and work with an external device, see the Oracle
Java ME Embedded Getting Started Guide for the Windows Platform. This document is
available on the Java ME documentation site under the Oracle Java ME:

http://docs.oracle.com/javame/embedded/embedded.html

Expand the Oracle Java ME Embedded Version node and then the Getting Started and
Release Notes node.

Viewing Device Properties

The Device Selector window lists all available devices grouped by platform. If this
window is not visible, select Tools > Java ME > Device Selector.

If no Java ME platform is registered in NetBeans, the Device Selector displays a node
labeled No Device Found. If you see this message at startup, it typically means device
discovery is incomplete and you must wait a few seconds.

Each sub node represents a device. Two instances are provided for some CLDC
devices, for example, JavaMEPhonel and JavaMEPhone?2. Instances of the same device
have the same capabilities but unique names and phone numbers, making it easy for
you to test communication between devices of the same type. To make your own
device, see "Using the Custom Device Editor."

For Device names, see "Oracle Java ME SDK Directories.” The properties for each
device are stored in XML files in your user work directory. See Table 8-1.

Platform Properties

To view platform properties from the device selector, click on the platform node (for
example, CLDC or IMP-NG). The Properties window is, by default, docked in the
upper right portion of the user interface. If the Properties window is not visible, click
the Windows menu and select Properties.

To view the platform properties in a separate window, right-click the platform node
and select Properties. The information in the docked properties window and the
separate window is the same.

Device Information

In the Device Selector window, double-click a device node. The Device Information tab
opens in the central Main window. It displays a picture of the device and displays
details, supported hardware capabilities, keyboard support, supported media formats,
and the supported runtimes.

Device Properties

In the Device Selector window, click a device node (such as JavaMEPhonel) to display
the device properties. The Properties window is, by default, docked in the upper right
portion of the user interface. If the Properties window is not visible, click the Windows
menu and select Properties.

7-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Setting Device Properties

Setting Device Properties

General

Monitor

SATSA

In the Device Selector window, right-click a device and select Properties. Any
properties shown in gray font cannot be changed. You can adjust the device properties
shown in black. Only CLDC and IMP-NG options can be adjusted. The CDC options
cannot be changed.

This section lists general properties that can be changed.

Phone Number. You can set the phone number to any appropriate sequence,
considering country codes, area codes, and so forth. If you reset this value, the setting
applies to future instances. The number is a base value for the selected device.

Heapsize. The heap is the memory allocated on a device to store your applications's
objects. The Heapsize property is the maximum heap size for the emulator. You can
choose a new maximum size from the dropdown menu.

Security Domain. Select a security setting from the dropdown menu. See "Specify the
Security Domain for an Emulator.” Applies to CLDC platforms.

JAM storage size in KB. The amount of space available for applications installed over
the air.

Locale. Type in the locale as defined in the MIDP 2.1 specification at:
http://download.oracle.com/otndocs/jcp/midp-2.1l-mrel-oth-JSpec

Remove MIDlet Suite in execution mode. If this option is enabled, record stores and
other resources created by the MIDlet are removed when you exit the MIDlet
(assuming the MIDlet was started in execution mode).

If enabled (checked), the Check boxes for Trace GC (garbage collection), Trace Class
Loading, Trace Exceptions, and Trace Method Calls activate tracing for the device the
next time the emulator is launched. The trace output is displayed at runtime in the
user interface Output window. Trace Method Calls returns many messages, and
emulator performance can be affected. See Chapter 11, "Monitoring Memory."

See "Card Slots in the Emulator.”

Location Provider #1 and #2

These properties determine the selection of a location provider. Two providers are
offered so that your application can test matching the location provider criteria.

If you select a property a short explanation is shown in the description area just below
the Properties table. For more information on these values, see the Location API at:

http://jcp.org/en/jsr/detail?id=179.

Bluetooth and OBEX

See "Setting OBEX and Bluetooth Properties."

Working With Devices 7-5

Connecting to a UART Device

Connecting to a UART Device

To utilize the Universal Asynchronous Receiver/Transmitter (UART) functionality,
you need to create a configuration file (for example UARTConfig.xml). The
configuration file defines the device ID and Name, and the Name must point to a real
serial port name defined by the operating system. For example,

deviceaccess.uart.devl4.name = COM1

For an already opened UART, you can add it to the peripheral manager by calling
PeripheralManager.open with the configuration object.

Opening a Serial Port

In application code, you can use Connector.open ("comm:COM1") to open a port on the
device. On Windows, you can open a serial port such as COM1 or COM2.

Running a Project from the Device Selector

The SDK determines which open projects are suitable for a device. Right-click the
device and select a project from the context menu.

You can also launch the emulator to ru.n a project from the command line, as
explained in "Emulator Command Line Options."

Running Projects Simultaneously on a Single Device

CLDC-based devices are capable of running multiple virtual machines. You can test
this behavior in the emulator. Be sure the output window is visible in the SDK (select
Window > Output > Output). To test this feature, follow these steps:

1. Open the sample projects Games and AudioDemo.

2. In the device selector, choose a CLDC device and run Games. When the emulator
launches, run AudioDemo on the same device.

As each MIDlet loads, the AMS automatically installs it.
3. In AudioDemo, launch the Audio Player, and play the JavaOne theme.

Select AudioPlayer, then from the soft menu, select 1, Launch. Select JavaOne
Theme and press the Play soft button.

4. In the emulator, click the Application menu and select AMS Home, or press F4.

Select Games. From the soft menu, select 1, Open. The music continues to play
while you are able to simultaneously launch and play games.

5. Click the Application menu and select AMS Home, or press F4. Highlight
AudioSamples, and from the soft menu, select 2, Bring to foreground. Press the
Pause soft key. The music stops playing.

6. Click the Application menu and select AMS Home, or press F4. Highlight
AudioSamples and from the soft menu, select 1, Open. Select Bouncing Ball from
the list and press the Launch soft button. Select MIDI background and press the
Play soft button.

7. Click the Application menu and select AMS Home, or press F4. Then click the
Application menu and select Switch Running MID]et. Select Audio Player and
press the Switch to soft button. You can press the Play soft button to resume the
Audio Player.

7-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Emulator Features

Emulator Features

Figure 7-5 shows common emulator features available on emulators for the CLDC

platform.

Figure 7-5 Emulator Features

S
Application Device Edit Tools View Help
= ® o =5

Device ID: 4

Phaone Mumber: 123456789

Transmission
Indicator

5
&
&
r

OoRrACLE

Java MIDlets

.

Application
Exit

Menu

[. - o |
-) 4 -~
/ﬁ\ . » ‘I
1 2 ABC 3 oEF
Qe 5 x f mno
7 rors S Q wxvz
k- 0 - +

Vibration is off

Emulatar
Status Bar

SPACE

Device Name. Shown in the upper window frame. See Table 8-1for a list of default
emulator names.

Transmission Indicator. On the upper left of the emulator image, this blue light turns
on when a transmission is occurring. Typically you see it when an application is
installed over-the-air, or when a message is being sent or received. For example, when

you receive a message from the WMA console.

Working With Devices 7-7

Emulator Features

Menus. See "Emulator Menus."

Tool Bar. For the CLDC emulator, the Tool Bar provides shortcuts for the following
operations:

Run MIDlet Suite

Install MIDlet Suite
Resume

Suspend

Rotate Clockwise

Rotate Counter Clockwise
External Events Generator

Emulator window always on top

Device ID. Numerical identifier that is unique for each device.

Exit Button. On the upper right of the emulator image, is the termination button.
Pushing this button the same effect as clicking Application and selecting Exit.

Emulator Status Bar. Information about the current system state is shown in the status
bar at the bottom of the emulator window.

Figure 7-6 shows common emulator features available on emulators for the IMPNG
platform.

Figure 7-6 IMPNG Emulator

[1MPNGDevicel M=
Application Device Tools View Help
a] &=
Device ID: 2 Phone Mumber: 123456791
ORACLE'
AMS | GP10 Pins | GPIO Ports | 12 | sPT| MMIO | DAC |
Suite Mame IMlet Mame Status Install
Update
MetworkDemaIMPNG Socket Demo Running
Info
Suspend
Stop
Remaove
M of 8M

7-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

Emulator Features

Device Name. Shown in the upper window frame. See Table 8-1 for a list default
emulator names.

Menus. See "Emulator Menus."

Tool Bar. For the IMP-NG Emulator, the Tool Bar provides shortcuts for the following
operations:

Run IMlet Suite
Install IMlet Suite
External Events Generator

Emulator window always on top

Note: When the Device Manager detects an external IMP-NG device,
only the Application, View, and Help menus and the Run IMlet Suite,
Install IMlet Suite, and Emulator window always on top icons in the
Toolbar are available in the device display.

Device ID. Numerical identifier that is unique for each device.

Display Panel and Tabs. The display panel displays fields and information dependent
on the selected tab:

AMS. The AMS (Application Management System) tab displays the name of the
IMlet suite, the IMlet, and the status of the IMlet suite. You can select a suite and
perform one of the following operations by clicking the corresponding button to
the right of the display:

= Install - Specify the location of the IMlet suite path or URL and the security
domain and click OK to load the IMlet suite.

= Update - Check for any updates to the application and performs the update.

= Info - Open a dialog box displaying the application name, vendor name,
version, description of the application, class name, and the URL.

= Run - Run the selected application. This button is only visible for an installed
application that is not running.

= Suspend (Resume) - Pause the running IMlet. This button toggles to Resume
when execution is paused.

= Stop - Stop execution of the application. This button is only visible for a
running application.

= Remove - Remove the application.

GPIO Pins. The General Purpose Input Ouput (GPIO) Pins tab displays which
pins are selected to output and their high or low values.

GPIO Ports. The GPIO Ports tab displays a list of ports, which ports are selected to
output, and their maximum and current values.

I2C. The Inter-Integrated Circuit (I12C) tab displays information for the selected
slave device and data sent to a master device and data received from a master
device.

SPI. In the default SPI implementation, buffered written data can be read from the
Slave named SPI. If you have created a custom implementation with the Custom
Device Editor, the Slave dropdown list might have additional slaves.

Working With Devices 7-9

Emulator Menus

s MMIO. The memory-mapped I/O tab displays information for the current device.

= DAC. The Digital-to-Analog Converter tab displays the current channel
information, converter characteristics, and a graphic display of signal
characteristics with the x-axis showing the digital input and the y-axis showing
the analog output.

Emulator Status Bar. Information about the current system state is shown in the status
bar at the bottom of the emulator window. Also shown is the memory indicator
showing used and total memory.

Emulator Menus

Application

The emulator for the CLDC platform has Application, Device, Edit, Tools, View, and
Help menus.

The emulator for the CDC platform has Application, View, and Help menus. The View
and Help menus are the same on CDC and CLDC platforms. For CDC, the Device
menu is not populated, and Application menu contains only the Exit option.

The Emulator for the IMP-NG platform has Application, Device, Tools, View, and Help
menus.

The Application menu is fully populated for the CLDC platform. Table 7-1 describes
the Application options:

Table 7-1 Emulator Application Menu

Option Accelerator Description
Install MIDlet Permanently add a MIDlet suite to the emulator.
Suite

Enter the path or URL of the MIDlet suite to install on the
emulator. Select the desired level of the permissions in the
Security Domain field.

Install IMlet Suite Permanently add a IMlet suite to the emulator. (IMP-NG
emulator)

Enter the path or URL of the IMlet suite to install on the
emulator. Select the desired level of the permissions in the
Security Domain field.

Run MIDlet Suite Emulator interface for launching MIDlets.

Run IMlet suite Emulator interface for launching IMlets. (IMP-NG
platform)

AMS Home F4 Exit the current application and return to the Application
Management Software home. (CLDC emulator)

Stop F10 Stops the currently running MIDlet. (CLDC emulator)

Change Locale This option only works with localized MIDlets. (CLDC
emulator)

Enter a locale identifier. The format is similar to Java SE 6,
as follows:

2-letter-lang-code separator 2-letter-country-code

For example, en-US, ¢s-CZ, zh-CN, ja-JP. The separator can
be a dash or an underscore.

Resume Fé6 Resume a suspended application. (CLDC emulator)

7-10 Oracle Java Micro Edition Software Development Kit Developer's Guide

Emulator Menus

Device

Edit

Table 7-1 (Cont.) Emulator Application Menu

Option Accelerator Description
Suspend F5 Pause a running application. (CLDC emulator)
Do not use this option if you are running the memory
monitor.
Switch Running ~ F7 When you have multiple MIDlets running, toggle between
MIDlet them. You see a list of running MIDlets and you can chose

the one you want to switch to. See "Running Projects
Simultaneously on a Single Device" (CLDC emulator).

Exit Exitbutton Close the emulator process and stop the build process (or
on emulator processes).
upper right

This menu is available on CLDC and IMP-NG platforms.

Messages

Click the Device menu and select Messages to see what is written in the message area.
This is the emulator's Inbox. The Inbox displays WMA messages that are addressed to
the device, not an application on the device. Messages are sent to this interface in the
following cases:

= An MMS message is sent without an AppID in the address
= An SMS message is sent without a port in the address (or the port number is 0)

= An SMS text message is sent with a port in the address, but there is not a Java ME
application listening on the specified port

To test sending messages to the inbox use the WMA Console in NetBeans, or from the
command line, use wma-tool.exe tosend SMS messages. Note, wma-tool . exe requires
an AppID for MMS, so wma-tool cannot be used to send an MMS.

Orientation

This option is only visible for the CLDC emulator.

Use this feature to test your application's ability to display in portrait and landscape
formats. The default is 0 degrees. Change the orientation to 90, 180, or 270 degrees.

You can also rotate 90 degrees clockwise (F8) or counterclockwise (F9) from the current
position.

Table 7-2 describes the Edit menu, which provides basic editing operations for the
CLDC platform.

Table 7-2 Emulator Edit Menu

Option Accelerator Description

Copy CTRL-C Copy selected material to the paste buffer.
Cut CTRL-X Move selected material to the paste buffer.
Paste CTRL-V Insert the contents of the paste buffer.

Working With Devices 7-11

Emulator Menus

Tools

Table 7-3 describes the utilities accessible from the Tools menu.

Table 7-3 Emulator Tools Menu

Option Description

Manage Landmarks Opens the Landmark Store utility.

In this interface, you can view and edit a landmark store
installed as part of an application. You can also create a new
landmark store, define landmarks, define landmark categories,
and assign landmarks to categories.

Manage File System Opens the File System manager and displays the mounted file
system root directories.

You can mount or unmount a file system directory, copy a
mounted file system directory, remount or remove directories.
For a description of managing a file system, click the Tools
menu and select Manage File System. Click Help in the dialog
box.

External Events Generator ~ Opens the External Events Generator.

The External Events Generator provides a way to interact with
an application by injecting events. The interaction may be
through a user interface, or through a script file.

For a description of the External Events Generator, see "External
Events Generator."

Take Screenshot Takes a screenshot of the emulator display screen and saves it to
the clipboard. (CLDC emulator)

External Events Generator
The following menu options each have a tab on the External Events Generator. The use
of the External Events Generator is addressed in the discussion for each JSR:

= ADC. The Analog-to-Digital Conversion tab is only visible for the IMP-NG
emulator.

= Access Points. This tab displays connection information for the selected access
point. This tab is visible only for the IMP-NG emulator.

s Contactless Communication. See "Using ContactlessDemo." This feature is
available only for CLDC devices.

s GPIO. This General Purpose Input Output (GPIO) option is visible only for the
IMP-NG emulator.

By default, this tab displays ports and pins for a specific device described in
"Running the GPIODemo." You can create a custom device to represent a different
device. "General Purpose Input Output (GPIO)."

See the Device Access API (installdir\docs\api\deviceaccess) for a description of
the GPIO interface.

= Location. "Setting the Emulator's Location at Runtime."

s MMIO. The memory-mapped I/O (MMIO) option is visible only for the IMP-NG
emulator. From the Device dropdown list, choose one of the default devices:

= TEST_DEVICE. A Little Endian device that contains all block types: byte,
short, int, long, and block. Writes to this device also affect BIG_ENDIAN_
DEVICE which shares the address space.

7-12 Oracle Java Micro Edition Software Development Kit Developer's Guide

Emulator Menus

View

= WDOGLOG. A Little Endian device that supports only the block type.

s RTC. STM32F2xx RTC device. A Little Endian device that supports only the
int type.

= BIG_ENDIAN_DEVICE. A Big Endian device that shares the address space
with the TEST_DEVICE, therefore it contains the same memory blocks. Writes
to this device also affect TEST_DEVICE which shares the address space.

If you are using a custom device created with the Custom Device Editor (see
"Using the Custom Device Editor"). The device list might include additional
devices.

See the Device Access API (installdir\docs\api\deviceaccess) and the Embedded
Support API (installdir\docs\api \embedded-support-api) for descriptions of the
MMIO interface.

= Mobile. The unique International Mobile Subscriber Identity (IMSI) and the
International Mobile Station Equipment identity (IMEI) identifiers of the device.
This tab is visible only for the IMP-NG emulator.

s Pulse Counter. This tab displays the current pulse counters on the device. The
default configurations are:

- COUNTER_PAO
- COUNTER_PB3
- COUNTER_PB10
- COUNTER_PA3

You can configure the pulse counters you want and send a signal to the configured
pulse counter by clicking Send Pulse.

This tab is visible only for the IMP-NG emulator.

= Sensors. "Using a Mobile Sensor Project" and "Creating a Sensor Script File." This
tab is only visible for the CLDC emulator.

Table 7-4 describes the View menu, which is available for the CLDC, CDC, and
IMP-NG platforms.

Table 7-4 Emulator View Menu

Option Description

Always On Top Keeps the emulator in the foreground.

This option is especially useful when you are running multiple
emulator instances and you want to see them all and send
messages between devices.

Output Console Displays system output statements from a running application
in the Output Console window.

You can filter the output statements for IMP-NG emulators by
selecting All, Standard, or Error from the Show dropdown list.
Error messages are highlighted.

Filtering of output statements and highlighting of error
messages are not available for CLDC emulators or external
devices.

You can save system output information to a . 1og file by
clicking Save in the window.

Working With Devices 7-13

Using the Custom Device Editor

Table 7-4 (Cont.) Emulator View Menu

Option Description

Device Log Displays emulator log messages in the Device Log window.
The following filters are available from the Level dropdown list:

s Trace - Tracing information, such as garbage collection,
exceptions, and method calls.

= Debug - General debugging information.
= Info - Information messages.

s Warn - Alerts that issues were encountered during runtime.
Warnings are highlighted.

s Error - Errors encountered during runtime but do not
prevent the application from running. Error messages are
highlighted.

= Fatal - Non-recoverable errors that can potentially prevent
the application from running and might cause the
application to quit.

You can save system output information to a . log file by
clicking Save in the window.

Help

The Help menu displays an abbreviated helpset specifically for the emulator window.

Using the Custom Device Editor

With the Custom Device Editor you can create your own devices. The appearance of
the custom devices is generic, but the functionality can be tailored to your own
specifications.

Creating a Custom Device

Follow these steps to create a custom device.
1. Select Tools > Java ME > Custom Device Editor.
The custom device tree displays Java ME platforms and custom devices, if any.

Alternatively, you can launch the Custom Device Editor from the your
installation’s bin directory. For example:

C:\Java_ME_platform_SDK_3.3\bin\device-editor.exe

The custom device tree displays Java ME platforms and custom devices, if any.
2. Select a platform and click the New... button.
3. Change the default configuration to match your specifications, and click OK.

Your device is added to the custom device tree and eventually appears in the Device
Selector. You can run projects from the IDE or from the command line from the custom
device.

The custom device tree affects what appears in the Device Selector. For example, if you
do not want a custom device to appear in the device selector, you must remove it from
the custom device tree.

The device definition is saved in installdir\toolkit-1lib\devices.

7-14 Oracle Java Micro Edition Software Development Kit Developer's Guide

Using the Custom Device Editor

Managing Custom Devices

Custom devices should always be managed using the Custom Device Editor. Using
the tool ensures that your device can be detected and integrated with the Oracle Java
ME SDK.

= New. Select a platform and click New to add a new device.
= Edit. Select a device to change, and click Edit.

= Clone. Select a device to copy, and click Clone. To prevent confusion, be sure to
provide a unique name.

= Remove. Select a device to delete and click Remove. This action completely
deletes the device.

= Import. Select a node in the custom device tree and click Import. Choose a . zip
file created with the Export command.

= Export. Select a device to save, and click Export.

When a custom device is created it is saved in installdir\toolkit-lib\devices,
therefore you could lose your device if you reinstall.

An exported device is stored in a . zip file and saved in the user’s My Documents
directory (typically username\My Documents).

IMP-NG Device Options

When you create a new IMP-NG device you can use the default implementation or
create your own custom implementation for the interfaces discussed in this section.

See the following resources for in-depth descriptions of the IMP-NG interfaces or
devices:

m Device Access API (installdir\docs\api\deviceaccess)
» Embedded Support API (installdir\docs\api\embedded-support-api)
= For more information about default devices look at an IMP-NG property file:

username\javame-sdk\3.3\work\IMPNGDevicel\device.properties

General Purpose Input Output (GPIO)

A GPIO port is a platform-defined grouping of GPIO pins that may be configured for
output or input. Output ports are both writable and readable while input ports are
only readable. Note that GPIO pins that are part of a GPIO port cannot be retrieved
nor controlled individually as GPIO Pin instances.

Click Add Port to add entries to the Ports table. Each item in a Ports table row is
editable. Check Output to set the port direction to output.

A GPIO pin may be configured for output or input. Output pins are both writable and
readable while input pins are only readable. Note, an input listener can only be
assigned to a pin set for input.

Click Add Pin to add a row to the Pins table. The ID and name are editable. Click
Output to make a pin both readable and writable. Click in the Initial Value column to
toggle the Initial Value from Low to High.

Inter-Integrated Circuit (12C) and Serial Peripheral Interface (SPI)

The process for configuring 12C and SPI interfaces is very similar.

Working With Devices 7-15

Using the Custom Device Editor

On an I2C bus, data is transferred between the I12C master device and an I12C slave
device through single or combined messages. On an SPI bus, data is transferred
between the SPI master device and an SPI slave device in full duplex. That is, data is
transmitted by the SPI master to the SPI slave at the same time data is received from
the SPI slave by the SPI master. See the Embedded Support API for more details.

= Select Sample Echo to choose the default bus implementation. This default
implementation simply reads buffered written data from the slave.

= Select Custom to specify your own bus implementation.

1. Supply your bus implementation JAR file and the name of the Java class that
implements the bus.

For 12C, the bus is:
com.oracle.jme.toolkit.deviceaccess.i2c.I2CSlaveBus
For SPI, the bus is:
com.oracle.jme.toolkit.deviceaccess.spi.SPISlaveBus

2. To add Slaves, click Add and specify an ID and Name. For SPI, specify the
Word Length as well.

Note: On an SPI bus, data is transferred between the SPI master device and
an SPI slave device in full duplex. So every
com.oracle.deviceaccess.spibus.SPIDevice.read(...) method also writes
an array of zeros to the slave device. The length of this array equals a length of
read data. In the default implementation this array of zeros is appended to the
loopback's buffer.

Memory-Mapped 1/0 (MMIO)

The default devices are described in "External Events Generator."

If you want to provide your own MMIO emulation, you must specify a custom
handler.

Supply your implementation JAR file and the name of the Java class that implements
com.oracle.jme.toolkit.deviceaccess.mmio.MMIOHandler. For comparison, the
default JAR file is:

installdir\toolkit-1lib\devices\IMPNGDevice\code\emulator_deviceaccess_
mmio-sample-handler. jar

To add devices to the custom MMIO implementation, use the Devices and Device
Memory tables as follows:

1. Click Add Device to add a row to the Devices table.

= A default ID is assigned but you can double-click in the ID column to edit the
value.

= A default Name is supplied, but it can also be edited.

= In the Byte Ordering column, make a selection from the dropdown list.
2. Click a row in the Device table to select a Device.
3. Click Add Memory.

= In the Type column, make a selection from the dropdown list. Double-click to
edit the Address column entries.

7-16 Oracle Java Micro Edition Software Development Kit Developer's Guide

Using the Custom Device Editor

If the type is Block, you can double-click to edit the Size column entries as well
as the Address column entries.

4. Click OK.

Working With Devices 7-17

Using the Custom Device Editor

7-18 Oracle Java Micro Edition Software Development Kit Developer's Guide

8

Finding Files in the Multiple User
Environment

The Oracle Java ME SDK can be installed on a system running a supported operating
system version. All users with an account on the host machine can access the SDK.
This feature is called the Multiple User Environment.

Note: The Multiple User Environment supports access from
several accounts. It does not support multiple users accessing the
SDK simultaneously. See "Switching Users."

To support multiple users the SDK creates an installation directory that is used as a
source for copying. This document uses the variable work to represent the SDK
working directory and installdir to represent the Oracle Java ME SDK installation
directory. Each user's personal files are maintained in a separate working directory
named javame-sdk that has a subdirectory for each version installed.

s "Installation Directories"
s "'NetBeans User Directories"

To locate logs, see "Device Manager Logs" and "Device Instance Logs."

Switching Users

Multiple users cannot run the SDK simultaneously, but, you can run the SDK from
different user accounts on the SDK host machine. When you switch users, you must
close the SDK and exit the Device Manager, as described in "The Device Manager on
Windows." A different user can then launch the SDK and own all processes.

Installation Directories

The SDK directory structure conforms to the Unified Emulator Interface Specification
(http://www.oracle.com/technetwork/java/javame/documentation/uei
specs-187994 .pdf), version 1.0.2. This structure is recognized by all IDEs and other
tools that work with the UEIL

The installation directory has the following structure:

= bin. The bin directory contains the following command line tools. The default
location of the bin directory is:

installdir\bin

Finding Files in the Multiple User Environment 8-1

NetBeans User Directories

— cref. The Java Card Platform Simulator tool, which is used to simulate smart
cards in the emulator. It is used for testing SATSA (JSR 177) applications with
the Oracle Java ME SDK. For more information on SATAS, see Chapter 20.

- device-address is a tool for viewing, adding, and removing devices that the
SDK is not able to discover automatically. See "Manage Device Addresses
(device-address)"

- device-manager. The device manager is a component that must be running
when you work with Oracle Java ME SDK. After installation it starts as a
service, and it automatically restarts every time your computer restarts. See
"Emulators."

- emulator. UEI compliant emulator. See "Emulator Command Line Options."
- Jadtool. Tool for signing MIDlets. See "Sign MIDlet Suites (jadtool)."

- mekeytool. Management of ME keystores. See "Manage Certificates
(MEKeyTool)".

— preverify. The Java ME preverifier.

— device-editor. Tool for creating new custom devices. See "Creating a Custom
Device."

- update-center. The Java ME SDK Update Center.

- wma-tool. A command line tool for sending and receiving SMS, CBS, and
MMS messages. See "Running WMA Tool."

- wscompile. Compiles of stubs and skeletons for JSR 172. See "Generate Stubs
(wscompile)".

= docs. Release documentation.

= legal. License and copyright files.

= 1lib. JSRJAR files for compilation.

s runtimes. CDC, CLDC, and IMP-NG runtime files.

= toolkit-1ib. Java ME SDK files for configuration and definition of devices and Ul
elements. Executables and configuration files for the device manager and other
SDK services and utilities.

NetBeans User Directories
These are the default NetBeans user directories.
= NetBeans default project location:
username\My Documents\NetBeansProjects

= To see the NetBeans user directory, click the Help menu and select About in the
main window. The default location is:

username\ .netbeans\3.3

Oracle Java ME SDK Directories

This documentation sometimes uses username to represent the root location of user
files.

8-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Oracle Java ME SDK Directories

The javame-sdk directory contains device instances and session information. If
you delete this directory, it is re-created automatically when the device manager is
restarted.

username\ javame-sdk\3.3
Device working directories
username\ javame-sdk\3 . 3 \work\devicename

The named subdirectories each correspond to an emulation device, as described in
Table 8-1. Any detected external devices are also added to this directory space.
Device detection is described in "Adding an External Device."

Table 8-1 Device Names

Device Platform Emulator #

ClamshellJavaMEPhonel CLDC 0

DefaultCdcPbpPhonel CDC 1
IMPNGDevicel CLDC 2
IMPNGDevice2 CLDC 3
JavaMEPhonel CLDC 4
JavaMEPhone2 CLDC 5
VgaAGUIPhonel CDC 6
VgaCdcPhonel CDC 7

Device instances (device definitions).
installdir\toolkit-1lib\process\device-manager\device-adapter

This directory contains the bean files for the adapter categories. The beans in this
directory and subdirectories determine whether a skin is visible in the Device
Selector, among other things. You should not manipulate these files directly.

See "Using the Custom Device Editor" for instructions on creating your own
custom skin.

Both default skins and custom skins created with the Custom Device Editor are
represented in the device-adapter directory.

Note: Do not manipulate custom skin files from the operating
system. All custom skin activity should take place in the Custom
Device Editor.

Finding Files in the Multiple User Environment 8-3

Oracle Java ME SDK Directories

8-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

9

Profiling Applications

The Oracle Java ME SDK supports performance profiling for Java ME applications.
The profiler keeps track of every method in your application. For a particular
emulation session, it figures out how much time was spent in each method and how
many times each method was called.

The SDK supports offline profiling. Data is collected during the emulation session.
After you close the emulator you can export the data to a .nps file you can load and
view later. As you view the snapshot you can investigate particular methods or classes
and save a customized snapshot (a .png file) for future reference.

You can start a profiling session from the NetBeans IDE, as described in "Collecting
and Saving Profiler Data in the IDE" or from the command line, as discussed in
"Command Line Profiling." It is important to understand that profiling data produced
from the command line has a different format (*.prof) than data produced from the
NetBeans profiler (a.nps file).

Note: This feature might slow the execution of your application.

Profiling data from Oracle Java ME SDK projects is displayed in a tab in the IDE. The
NetBeans IDE has a Profiling window (Window > Profiling > Profiler) but it is not
discussed here. Because only performance profiling is supported, the Profiler window
has limited usefulness for Java ME applications.

Collecting and Saving Profiler Data in the IDE

This procedure describes interactive profiling. To run profile an application from the
command line, see "Command Line Profiling."

Note: The profiler maintains a large amount of data, so profiled
MIDlets place greater demands on the heap. To increase the Heapsize
property, see "Setting Device Properties."

1. In the Projects widow, right-click the project you want to profile and select Profile.

If this is the first time profiling this project you are prompted to integrate the
profiler. Click Yes to perform the integration.

Profiling Applications 9-1

Collecting and Saving Profiler Data in the IDE

Figure 9—1 Profiling of AudioDemo

" Enable Profiling of AudioDemo | x|

Profiler is not integrated with project AudioDemo.
Click OK to perform the integration.

As part of the integration, the project build script will be modified.
The original file will be backed up as build-befare-profiler, xml.

Mote: You can undo the profiler integration at any time by invaking
Profile | Advanced Commands | Unintegrate Profiler from the main menu.

[=]

The profiler attaches. You are prompted for the running options. Click Yes.

Figure 9-2 Attaching the Profiler
S x
=,
U (+ CPU Profiler

[+ Profile System Classes

; £ Memory Monitor

<::| " Mebwork Monitar
—

[+ Run Cancel Help

Check the CPU Profiler, and optionally check Profile System Classes. Press Run.
The emulator opens with your application running.
2. Interact with the application MIDlet(s) as you normally would.

The data is automatically displayed in a tab labeled cpu:time, where time is the
time the data was displayed.

9-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Collecting and Saving Profiler Data in the IDE

Figure 9-3 The Profiling Tab with Combined View Selected

File Edit “iew Mavigate Source Refactor Run Debug Profile Team Tools Window Helpi-_.Q." Search (Ctrb+T)

‘1}:' E E F____j DefaultConfigurabion - EE cgﬁ |> @ = Gﬁ L

N Methad Mame Filker (Conkains)

Haot Spats - Method Self time [%] + Self kime

javax, microedition.lcdui, Font, charWidth (char) |] 446 ms
jawvax, microedition.lcdui, Graphics drawChars (char[], ink, ink, ink, int, ink) .

com.sun,mmedia, DireckPlaver . nDpenPullstreamPlayer (int, int, com.sun, ., .

jawax, microedition.lcdui, Graphics . drawString (Strina, ink, int, ink) . 100 ms
com.sun.midp.lcdui. DisplayDevice refreshi (int, ink, int, ik, ink, ink) [| 99,0 ms
com.sun.mmedia. MMJlavacaliZonfig. getsuspendBehavior () | 29,0 ms
iavax . mirrnedition, lodoi. Tmanenat aF ackory lnadPNG (5w 25 microeditioo o 25,0 ms

2 Method Mame Filker (Contains)

G cpu: 3:59:38PM 31 (a[x)[=]
Q| view: | (] Methods - |Q%$||ﬁ]
Call Tree - Method Time [%] = Time
] 1,061 ms [100%)
d.run () I 938 ms (3545 |
p.events, EventQueue. run] 815 ms [76.5%)
dindermo. PlayerCanvas. run () . 119 ms (11,29
.mmedia,BasicPlayver . realize () . 112 ms (106981
.sun.mmedia, HighLevelFlaver. doRealize) . 112 ms (1069
com.sun.mmedia, DirectTone doRealize () . 111 ms (1055
% com.sun.mmedia,DirectPlaver . doRealize () [| 110 ms (10,43
E‘E com,sun.mmedia. DirectPlaver openMativeStreamPlayer (int, String, . 110 ms (10,435
: - ----- 5 com,sun.mmedia, DirectPlayer, nDpenPullsStreamPlayer (nt, int, -. 110 ms (104587
F [1 | 3

[425%)

112 ms (10631
110 ms (10.4%1

[9.4%6)
(9.3%)
(2,79
125

» @) @]

[RLIN|

[7H Device Selector @Navigatar h | %"F’rafiler &E-I]]Services ﬁFiIes ﬂlprajects h

Ba Call Tree | F5 Hot Spats! 2 Combined (1] Info|

& [output

E] MetBeans IDE 7.3 @‘E‘

saladoig E o

3. To export the profile data, press the Export icon and supply a .nps file name and
location. This data can be reloaded at a later time. See "Loading a .nps File."

Figure 9-4 Exporting Profile Data

&

4. To the save the current view to a .png file, press the "Save current view to image"

icon and supply a file name and location.
Figure 9-5 Saving the Current View

b

Profiling Applications 9-3

Loading a .nps File

Loading a .nps File

A previously exported .nps file ("Collecting and Saving Profiler Data in the IDE") can
be loaded at a later time.

Follow these steps to retrieve profile data:
1. Click the Profile menu and select Load Snapshot... .
2. Choose the .nps file.

The Profiler opens in its own tab labeled cpu:filename. Click the Info tab at the bottom
of the Method table to view the snapshot.

Note: The profiling values obtained from the emulator do not
reflect actual values on an external device.

Importing a .prof File

A .prof file created from the command line ("Command Line Profiling") can be loaded
from the NetBeans IDE. The following example shows what a command line profiling
session command might look like:

emulator.exe -Xdevice:JavaMEPhonel
-Xdescriptor:"C:\Documents and Settings\username\My Documents\NetBeansProjects\UID
emo\dist\Games.jad" -Xprofile:file=C:\temp\UIDemo.prof

Files created from the command line are formatted differently from the .nps files
created as described in "Collecting and Saving Profiler Data in the IDE."

Follow these steps to retrieve command line profile data from the IDE:
1. Click the File menu and select Open File... .
2. Browse to the .prof file you want and click Open.

The Profiler displays the data in its own tab labeled cpu:filename.

When the file has been loaded it can be saved in the .nps format. Click the Export to...
icon and supply a file name and location.

9-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

10

Network Monitoring

MIDP applications, at a minimum, are capable of HTTP network connections, but
many other types of network connections are also possible. The network monitor
provides a convenient way to see the information your application is sending and
receiving on the network. This is helpful if you are debugging network interactions or
looking for ways to optimize network traffic.

Networking monitoring works for emulators only (it is not supported for external
devices).

s "Monitor Network Traffic"
= 'Filter or Sort Messages"
s "Save and Load Network Monitor Information"

» 'Clear the Message Tree"

Monitor Network Traffic

Follow these steps to activate the network activity for an application.
1. In the Projects window, right-click a project and select Profile.

2. If this is the first time profiling this application you are prompted to integrate the
profile with the project. Click Yes to perform the integration.

In the Profile window, select Network Monitor, and click Run.

Figure 10-1 Activating Network Activity

8 x

e,

U £~ CPU Profiler

¥ Frofile System Classes

E £ Memory Monitor

N % Mebwork Monitar
—

[+ Run Cancel Help

3. Start your application.

Network Monitoring 10-1

Monitor Network Traffic

When the application makes any type of network connection, information about
the connection is captured and displayed in the Network Monitor tab.

Figure 10-2 The Network Monitor Tab

() NetBean: IDE 7.3 = |[-E-| [
File Edi Wiew Maviga Sourc Refact Rur Debu Profil Tear Tool Winda HE||| Q~ Search (Ctrl+1) |
B L] - -
1F__| % T] B B P g
& |ZB Metwork Monitor* ss| L =
(]
HEFIEEEE =
& =
= Pr... Device URL Time Size =
i 0 [IMPMGDevi,.. socket:flocalbosk;S000 01, 52 @ &
it 1 < | IMPNGDevi... socket:/localbost:S000 otrm... 50 @
L
£
=
& | = Options
% Delay 1] *
. (Linger time 0
= [keep alive 0
= IReceive buffer 8192 A
(s |5end buffer g9z T
[*] Hex View
m N (1H 53 65 T2 Te 65 T2 20 53 74 T2 69 6E &7 0D Zerver 3tring.
5 fe: i
Jr_up -
=y
=
= [Select Devices] - [Select Protocol: » | LRL Filker; -

The top frame displays a list of messages. Click a message to display its details in
the bottom frame.

In the Hex View, message bodies are shown as raw hexadecimal values with the
equivalent text.

Note: You can examine messages that are still in the process of
being sent. Incomplete messages are indicated by bold highlighting
in the message tree.

You can view information up to a specific delimiter or back to a previous delimiter
by clicking the Find Previous(Shift+F3) Occurrence or Find Next Occurrence(F3)
icons in the toolbar (between the Find Results and Clear Inactive Connection
icons).

10-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Clear the Message Tree

Filter or Sort Messages
Filters are useful for examining some subset of the total network traffic.
» In the [Select Devices] list check only the devices you want to view.

= In the [Select Protocols] list check only the protocols you want to view. The
protocols listed reflect what is currently installed on the device.

s Click the magnifying glass in the Network Monitor toolbar to search for a specific
string in the data in the Phone or URL columns.

Time. Messages are sorted in chronological order of time sent or received.

URL. Messages are sorted by URL address. Multiple messages with the same address
are sorted by time.

Click on a table header to sort the message data.

Save and Load Network Monitor Information

To save your network monitor session, click the Save Snapshot or Save As a Snapshot
icon at the left of the Network Monitor toolbar.

Figure 10-3 The Network Monitor Toolbar
B8 ala|&] s |

Choose a file name. The default file extension is .nmd (network monitor data).

Follow these steps to load a network monitor session:
1. Click the File menu and select Open File... .

2. Browse to the .nmd file you saved.

Note: To avoid memory issues, the Hex view display is currently
limited to 16kB of data.

Clear the Message Tree

To remove all inactive protocol records from the network monitor choose the clear icon
(the broom icon on the right of the Network Monitor tool bar).

Network Monitoring 10-3

Clear the Message Tree

10-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

11

Monitoring Memory

This chapter describes how to use tracing and the memory monitor to examine an
application’s memory use on a particular device.

Activating tracing for a particular device enables you to see low-level information as
an application runs.

The Memory Monitor shows memory use as an application runs. It displays a dynamic
detailed listing of the memory usage per object in table form, and a graphical
representation of the memory use over time. You can take a snapshot of the memory
monitor data. Snapshots can be loaded and examined later.

Note: The memory use you observe with the emulator is not exactly
the same as the memory use on an external device. Remember, the
emulator does not represent an external device. It is one possible
implementation of its supported APlIs.

Enabling Tracing
Follow these steps to enable tracing.
1. In the Device Selector window, right-click a device and select Properties.

2. In the Properties window, go to the Monitor node and check the desired trace
options.

» Trace GC (garbage collection). Monitoring GC can help you determine object
health. The garbage collector cannot delete objects that do not have a null
reference. Dead objects will be garbage collected and not reported as live.

= Trace Class Loading. Observing class initialization and loading is useful for
determining dependencies among classes.

= Trace Exceptions. Display exceptions caught.

= Trace Method Calls. Reports methods called and returned. The output for this
option is very verbose and it can affect performance.

3. (Optional) Verbose tracing output might cause you to run out of memory on the
device before the application is fully tested. You can increase the device memory
as follows:

Right-click a device and select Properties. From the General node, select Heapsize,
and choose a size.

Monitoring Memory 11-1

Using the Memory Monitor

Tracing data is displayed in the output window (Window > Output > Output) when
an application is run on this device. It is also written to the device log, which is stored
in the working directory for the device. For example:

username\javame-sdk\3.3\work\JavaMEPhonel\device.log

Using the Memory Monitor

Follow these steps to examine an application’s memory use.

WARNING: Do not suspend the emulator while using the memory
monitor.

1. In the Projects view, right-click the project and select Profile.

» If the profiler is not yet integrated you are prompted to enable profiling for the
project. Click Yes to continue.

The Profile window opens.
= Select Memory Monitor, and click Run.

The output window tab is labeled "memory-monitor" indicating that the memory
monitor is active for this session. The output window displays both application
status and tracing outputs for this device.

The memory monitor opens.
2. Interact with the application as usual.

In the Memory Monitor tab you see data displayed on the graph above and in the
object table below.

To the left of the graph you see the Current memory use in bytes. The green line
plots these values. The red line is the maximum amount of memory used since
program execution, corresponding to the Maximum size in bytes on the left.

The object table columns are as follows:
= Name. Object class name.

= Total. Total number of objects allocated since the application began. The
percentage given is the number of objects allocated over the total number of
objects.

» Total Size. Total amount of memory the object uses in bytes. The percentage
value is the amount of memory used over the total amount of memory.

= Average Size. Average object size in bytes, calculated by dividing the number
of live instances by the total size.

Beneath the table you see counters displaying the total number of objects, the
amount of memory used, the amount of free memory, and the total amount of
memory on the device.

11-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Using the Memory Monitor

Figure 11-1 The Memory Monitor Tab

{0 NetBeans IDE 7.3 ol e =]

File Edit “iew Mavigate Source Refactor Run Debug Profile Team Taools Window Help| S Search (Chr+D)

7 1 =B - -

g8 Memary Monitor 5

sanadoig E oh

Current: 4,555,368 bytes
aximum: 6,058,127 bytes

Q'Praﬁler H-H-I]]Services EFiIes |J_:| Projects [h

)) ame: chat|]
Marme Total © Total Size (bytes Average Size (bytes
(bytes) 2 (bytes) Isolate 3 [threadId 22

| o = i Isolate 3 | threadId 25

jawa.lang. string 11584 =% 18960 0% 16.0 Isolate 3 | threadld 24
P ljava.util.HashtableEntry (1524 2 30500 o 20.0
£ fcom.sun.midp.lodui LCD. ., [30 0w 992 ms 33.0 | Find... || Refresh
Jg iawea ukl YarkorFonmar 2 PE car 227 car 120 il
@ Dhjects: 39,838 Used: 4,555,368 bytes Free: 8,027,544 bytes Tokal: 12,582,912 bytes
=
(@) P L= Output

Demos {memory-maonitar | NS

3. Interact with the object table while the memory monitor is running.
» Click a column header to sort the data. The sorting is case sensitive.
» Click a row to display the call stack tree in a window to the right of the table.

— Click a folder to browse the call stacks tree to see the methods that create
the object.

- To find a particular method in the call stacks tree, click Find and enter a
search string.

— Click Refresh to update the call stacks tree as data is gathered. It is not
refreshed automatically.

4. Take a snapshot of the memory monitor. Because the data changes rapidly it is
convenient to take several snapshots and review them later.

Click the "Save session to file" icon above the graph and specify a file name and
location for the monitor data. The automatically supplied extension is .mms.

5. Exit the application.
Some applications contain multiple MIDlets.
= When you exit a MIDlet the table data is cleared.

» The graph data is not cleared when you exit a MIDlet. The graph data you see
is cumulative for this emulator session. The memory monitor plots session
data for any MIDlet run on the current emulator until you exit the application
and close the emulator.

Monitoring Memory 11-3

Viewing a Session Snapshot

Viewing a Session Snapshot
Follow these steps to reload a memory monitor snapshot.
1. Click the File menu and select Open File... .
2. Browse to an .mms file you saved.

The memory monitor opens in its own tab in the main window. Note the tab
displays the time the snapshot was taken.

11-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

12

Security and MiDlet Signing

MIDP 2.1 (JSR 118) includes a comprehensive security model based on protection
domains. MIDlet suites are installed into a protection domain that determines access to
protected functions. The MIDP 2.1 specification also includes a recommended practice
for using public key cryptography to verify and authenticate MIDlet suites.

The general process to create a cryptographically signed MIDlet suite is as follows:

1. The MIDlet author, probably a software company, buys a signing key pair from a
certificate authority (the CA).

2. The author signs the MIDlet suite with the signing key pair and distributes their
certificate with the MIDlet suite.

3. When the MIDlet suite is installed on the emulator or on a device, the
implementation verifies the author's certificate using its own copy of the CA's root
certificate. Then it uses the author's certificate to verify the signature on the MIDlet
suite.

4. After verification, the device or emulator installs the MIDlet suite into the security
domain that is associated with the CA's root certificate.

For definitive information, consult the MIDP 2.1 specification at:
http://download.oracle.com/otndocs/jcp/midp-2.1l-mrel-oth-JSpec
See the following topics:

= "Security Domains"

= "Setting Security Domains"

= "Signing a Project”

» "Managing Keystores and Key Pairs"

= "Managing Root Certificates"

Security Domains
The SDK supports the following security domains:
minimum. All permissions are denied to MIDlets in this domain.

maximum. All permissions are granted to MIDlets in this domain. Maximum is the
default setting.

unidentified_third party. Provides a high level of security for applications whose
origins and authenticity cannot be determined. The user is prompted frequently when
the application attempts a sensitive operation.

Security and MIDlet Signing 12-1

Setting Security Domains

identified_third party. Intended for MIDlets whose origins were determined using
cryptographic certificates. Permissions are not granted automatically, but the user is
prompted less often than for the unidentified_third_party domain.

operator. All permissions are denied to MIDlets in this domain.

manufacturer. Intended for MIDlet suites whose credentials originate from the
manufacturer's root certificate.

Setting Security Domains

In the SDK, when you use Run Project via OTA, your packaged MIDlet suite is
installed directly into the emulator where it is placed in a security domain. The
emulator uses public key cryptography to determine the appropriate security domain.

» If the MIDlet or MIDlet suite is not signed, it is placed in the default security
domain.

» If the MIDlet or MIDlet suite is signed, it is placed in the protection domain that is
associated with the root certificate of the signing key's certificate chain. See
"Signing a Project."

If your project is a MIDlet suite, the entire suite is signed (the individual MIDlets
contained within are not).

Specify the Security Domain for an Emulator

1. In the Device Selection window, right-click on the device and select Properties.
2. Find the Security Domain setting and make a selection from the context menu.

The SDK knows the runtimes the device can support and supplies only possible
domains. The default setting for the sample projects is Maximum.

Specify the Security Domain for a Project
1. Right-click a project and select Properties.

2. In the Category area, select Running (the green triangle).
3. Select Regular Execution and check the Security Domain box.

In this context regular execution means you are running in the emulator, as
opposed to running OTA.

4. Select the domain from the drop-down menu.

Signing a Project
Devices use signing information to check an application's source and validity before

allowing it to access protected APIs. For test purposes, you can create a signing key
pair to sign an application. The keys are as follows:

= A private key that is used to create a digital signature, or certificate.
= A public key that anyone can use to verify the authenticity of the digital signature.

You can create a key pair with the Keystores Manager as described in "Managing
Keystores and Key Pairs."

12-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Managing Keystores and Key Pairs

Sign a CLDC Project With a Key Pair

Follow these steps to sign a CLDC project with a key pair:
1. Right-click a project and select Properties.

2. From the Build category, select Signing.

3. Check the Sign Distribution checkbox.
4

Choose a keystore from the Keystores drop-down menu, or click Open Keystores
Manager to create a keystore.

The Certificate Details area displays the Subject, Issuer, and Valid (validity dates
for the selected keystore) information.

5. Choose a key pair alias from the drop-down menu.

A keystore might be accessed by several key pairs, each with a different alias. If
you prefer to use a unique key pair, select Open Keystores Manager and create a
new key pair. See "Create a Keystore."

6. Click OK.
See "Obfuscating."

Sign a CDC Project

To sign a CDC project use the JDK jarsigner command from the command line. For
example:

jarsigner.exe -keystore keystore.ks -storepass keystorepwd MyCdcApp.jar dummyCA

Managing Keystores and Key Pairs

For test purposes, you can create a signing key pair to sign a MIDlet. The Keystores
Manager administers this task, as described in the remainder of this topic, the key pair
consists of two keys:

= A private key that is used to create a digital signature, or certificate.
= A public key anyone can use to verify the authenticity of the signature.

To deploy on a device, you must obtain a signing key pair from a certificate authority
recognized by the device. You can also import keys from an existing Java SE platform
keystore.

The following topics describe the user interface:
= "Security Domains"

s "Create a New Key Pair"

s "Remove a Key Pair"

s "Import an Existing Key Pair"

You can also use the command line tools described in "Command Line Security
Features."

Working With Keystores and Key Pairs

The Keystores Manager handles creating and using keystores. The keystores known to
the Keystores Manager are listed when you sign a project, as described in "Signing.".

Security and MIDlet Signing 12-3

Managing Keystores and Key Pairs

Keystores contain key pairs, which you can also manage from this dialog. You must
select a keystore to access the key pair tools.

Section , "Security Domains"
Section , "Create a New Key Pair"
Section , "Remove a Key Pair"

Section , "Import an Existing Key Pair"

Create a Keystore

1.

Select the Tools menu and select Keystores.
The Keystores Manager opens.

Click Add Keystore....

The Add Keystores window opens.

Select Create a New Keystore.

Supply a name, location, and password.
Click OK.

The new keystore appears in the Keystores list.

Add an Existing Keystore

1.

Select the Tools menu and select Keystores.
The Keystores Manager opens.

Click Add Keystore....

The Add Keystores window opens.

Select Add Existing Keystore.

Browse to the location of the keystore and select the keystore file. The default
location for user-defined keystores is:

username
Select a keystore and Click Open, then click OK.

The existing keystore appears in the Keystores list. You might have to unlock this
keystore, and each key pair within it.

Create a New Key Pair

1.

Select the Tools menu and select Keystores.
The Keystores Manager opens.

Select a Keystore in the Keystores area on the left. If you prefer a different
keystore, you can create one as described in "Create a Keystore."

Note, you cannot add a key to the Built-in Keystore, but you can export a key
from it.

Click the New... button.
Fill in the Create Key Pair dialog;:

You must provide an alias to refer to this key pair.

12-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Managing Root Certificates

The six Certificate Details fields are provisionally optional. You must complete at
least one field.

Key Pair Alias. The name used to refer to this key pair.

Common Name. Common name of a person, such as "Jane Smith"
Organization Unit. Department or division name, such as "Development”
Organization Name. Large organization name, such as "Oracle Corporation”
Locality Name. Locality (city) name, such as "Santa Clara"

State Name. State or province name, such as "California"

Country. Two-letter country code, such as "US"

Although not required, you should provide a password. The password should be
at least six characters long.

5. Click OK.

The new key is displayed in the Keys area under its alias. You can now select this
keypair when you sign a project. See "Signing a Project.”

Remove a Key Pair
1. Select the Tools menu and select Keystores.

2. Inthe Keys area, click a Key Pair.

3. Select Delete. You are asked if you are sure. Click Yes if you are and the delete
proceeds.

Import an Existing Key Pair

If you have keys in a Java SE platform keystore that you would like to use for MIDlet
signing, you can import the signing keys to the Java ME SDK.

1. Select the Tools menu and select Keystores.
2. C(Click Add Keystore....
The Add Keystore window opens.
3. Click Add Existing Keystore.
4. Browse to the keystore location.

5. Click OK.

Managing Root Certificates

The Oracle Java ME SDK command line tools described in "Manage Certificates
(MEKeyTool)" manage the emulator's list of root certificates.

External devices have similar lists of root certificates, although you typically cannot
modify them. When you deploy your application on an external device, you must use
signing keys issued by a certificate authority whose root certificate is present on the
device. This makes it possible for the device to verify your application.

Each emulator instance has its own _main ks file located in its appdb directory. For
example: username\ javame-sdk\3. 3 \work\devicename\appdb.

You can use the -import option to import certificates from these keystores as described
in "Manage Certificates (MEKeyTool)."

Security and MIDlet Signing 12-5

Managing Root Certificates

12-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

13

Command Line Reference

This topic describes how to operate the Oracle Java ME SDK from the command line
and details the command line tools required to build and run an application.

= "Run the Device Manager"

= "Manage Device Addresses (device-address)"
» "Emulator Command Line Options"

s "Build a Project from the Command Line"

= '"Packaging a MIDlet Suite (JAR and JAD)"

s "Command Line Security Features"

= "Generate Stubs (wscompile)"

Run the Device Manager

The device manager is a component that runs as a service. It detects devices (real or
emulated) that conform to the Unified Emulator Interface Specification
(http://www.oracle.com/technetwork/java/javame/documentation/uei
specs-187994.pdf), version 1.0.2. The Device Manager automatically restarts every
time you use the SDK. You can manually launch the device manager from a script or a
command line.

installdir\bin\device-manager.exe

To see a log of activities, launch the device manager with the -XenableOutput option.

Manage Device Addresses (device-address)

installdir\bin\device-address is a tool for viewing, adding, and removing devices
that the SDK is not able to discover automatically. The Microsoft device emulator is an
example of such a device. The syntax is:

Table 13-1 Device Address Commands

Command Action

add address_type address Add the specified address.

del address_type address Delete the specified address.

list List all addresses.

list address_type List the addresses of the specified type.

Command Line Reference 13-1

Emulator Command Line Options

For example, the following command adds a device:

installdir\bin\device-address.exe add ip 192.168.1.2

Emulator Command Line Options

You can launch the emulator independent of the GUI using bin\emulator. The syntax
is as follows:

emulator options
The general options are as follows:

Table 13-2 Emulator Commands

Command Action

-classpath path Specifies a search path for application classes. The path consists
—cp path of directories, ZIP files, and JAR files separated by semicolons.
-D property=value Sets a system property value.

-help Display a list of valid options.

-version Display version information about the emulator.
-Xdevice:devicename Run an application on the emulator using the given device

instance name.

-Xquery Print emulator skin information on the standard output stream
and exit immediately. The information includes the skin name,
screen size, and other capabilities.

This is a simple example of running the emulator from the command line:

emulator.exe -Xdescriptor:C:\Java_ME_platform_SDK_3.3\apps\Games\dist\Games.jad
-Xdevice:JavaMEPhone2

MIDlet Options

Options for running MIDlets in the emulator are as follows:
» -Xautotest:JAD-file-URL

Run in autotest mode. This option installs a MIDlet suite from a URL, runs it,
removes it, and repeats the process. The purpose is to run test compatibility kits
(TCKs) with the emulator, using a test harness such as JT Harness or Java Device
Test Suite (JDTS).

For example:
emulator -Xautotest:http://localhost:8080/test/getNextApp.jad

Given the above command, -Xautotest causes the emulator to repeatedly install,
run, and remove the first MIDlet from the MIDlet suite provided through the
HTTP URL. When the emulator starts, it queries the test harness, which then
downloads and installs the TCK MIDletAgent.

» -Xdescriptor:jad-file
Install a MIDlet, run it, and uninstall it after it finishes.
» -Xdomain:domain-name

Set the MIDlet suite's security domain.

13-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Emulator Command Line Options

The Xjam argument runs an application remotely using the Application Management
Software (AMS) to run over-the-air (OTA) provisioning. If no application is specified
with the argument, the graphical AMS is run.

» -Xjam[:install=<JAD-file-url> |force|list|storageNames |
run=[<storageNames> | <StorageNumber>] | remove=[<storage name> | <storage
number> | all]]

Installs the application with the specified JAD file onto a device.

s force.If an existing application has the same storage name as the application
to be installed, force removes the existing application before installing the
new application.

= list. List all the applications installed on the device and exit. The list is
written to standard output before the emulator exits.

m storageNames. List all applications installed on the device. The list is written
to standard output before the emulator exits. Each line contains one storage
name in numerical order. The list contains only the name so the order is
important. For example the first storage name must be storage number 1.

= -Xjam:run=[<storage-name> | <storage-number>]

Run a previously installed application. The application is specified by its valid
storage name or storage number.

= -Xjam:remove= [<storage-name> | <storage-number> | all]

Remove a previously installed application. The application is identified by its
valid storage name or storage number. If all is supplied, all previously installed
applications are removed.

» -Xjam:transient=jad-file-url

If specified, transient is an alias for installing, running, and removing the
application with the specified JAD file.

» -Xprofile[:system=<y/n>, file=file]
Profile the application’s CPU usage.

= system Whether to profile system classes. Default value is n (only user classes
are profiled).

s file. CPU profiler snapshot is stored to the specified file, %d in file name is
replaced by snapshot number. If not specified, profiler data is not stored to a
file, it is passed to a connected profiler if one is present.

This example illustrates OTA installation:

emulator -Xjam:install=http://www.myserver.com/apps/MyApp.jad
-Xdevice:JavaMEPhone2

The above command returns the ID of the installed application. When you obtain the
ID you can run it with: emulator=Xjam: run=ID

See "Emulator Command Line Options" and "Debugging and Tracing Options."

CDC Options
The following options apply to CDC projects.

» -Xmain:main-class-name

Command Line Reference 13-3

Emulator Command Line Options

Run the main method of a Java class, as in Java SE.
-Xxlet:classpath=class-path, class=fully-qualified-name, [arg=argument] *

Run an Xlet application.

See "Emulator Command Line Options" and "Debugging and Tracing Options."

Debugging and Tracing Options

You can use the following options with the emulator for debugging and tracing CLDC
projects.

-Xdebug

Enable runtime debugging. The -Xrunjdwp option must be called to support
-Xdebug.

-Xrunjdwp:debug-settings

Start a Java debug wire protocol session, as specified by a list of comma-separated
debug settings. Both -Xrunjdwp and -Xdebug must be called.

Valid debug settings include the following:

» transport=transport-mechanism - Transport mechanism used to communicate
with the debugger. The only transport mechanism supported is dt_socket.

» address=host:port - Transport address for the debugger connection. If host is
omitted, localhost is assumed to be the host machine.

» server={yln}- Starts the debug agent as a server. The debugger must connect
to the port specified. The possible values are y and n. Currently, only y is
supported (the emulator must act as a server).

= suspend={y|n} - The possible values are y and n.

When suspend is set to 7, the application starts immediately and the debugger
can be attached at any time during its run.

When suspend is set to y, the application does not start until a debugger
attaches to the debugging port and sends a resume command, so an
application can be debugged from the very beginning.

This example shows debugging:

emulator.exe -Xdevice:JavaMEPhonel -Xdebug -Xrunjdwp:transport=dt_
socket, suspend=n, server=y,address=51307 -Xdescriptor:..\apps\Games\dist\Games.jad

-Xdomain :maximum

With the emulator running you can attach a debugger.

To attach a graphical debugger from NetBeans, select Debug > Attach Debugger.
A sample command would be:

jdk/bin/jdb -connect
com.sun.jdi.SocketAttach:hostname=1ocalhost,port=51307

Command Line Profiling

To add profiling to an emulator session, use:

-Xprofile: [system=<y|n>], file=filename.prof

For example:

13-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Build a Project from the Command Line

emulator.exe -Xdevice:JavaMEPhonel
-Xdescriptor: "C:\username\My Documents\NetBeansProjects\Games\dist\Games.jad"
-Xprofile:file=C:\temp\Games.prof

When you launch the emulator and profile an application from the command line the
data profile you save has a different format than .nps files created with the Profile
option in the NetBeans IDE.

Files created from the command line should be given the extension .prof to
distinguish them from IDE profiler files.

To view .prof files in the IDE, select Profile > Java ME > Import CPU Profiler
Snapshot.... Your file is displayed in a tab labeled with the name of the file containing
the snapshot.

When the file is loaded in the IDE you can export the data in .nps form, using the
Export to... feature as described in "Collecting and Saving Profiler Data in the IDE,"
Step 5. These files can be loaded using Profile > Java ME > Import CPU Profiler
Snapshot....

Build a Project from the Command Line

In the user interface, building a project is a single step. Behind the scenes, however,
there are two steps. First, Java source files are compiled into Java class files. Next, the
class files are preverified, which means they are prepared for the CLDC VM. See the
following topics:

s "Check Prerequisites"
s "Compile Class Files"

s "Preverify Class Files"

Check Prerequisites

Before building and running an application from the command line, verify that the jar
command is in your path. To find the version of the development kit, run java
-version at the command line.

Compile Class Files

Use the javac compiler from the Java SE development kit to compile Java source files.
You can use the existing Oracle Java ME SDK project directory structure. Use the
-bootclasspath option to tell the compiler to use the MIDP APIs, and use the -d
option to tell the compiler where to put the compiled class files.

The following example demonstrates how you might compile a MIDP 2.1 application,
taking source files from the src directory and placing the class files in the tmpclasses
directory. Newlines have been added for clarity.

javac -target 1.3 -source 1.3
-bootclasspath ..\..\lib\cldc_10.jar;..\..\lib\midp2.1.jar
-d tmpclasses
src*.java

For more information on javac, consult the Java SE documentation.

Command Line Reference 13-5

Packaging a MIDlet Suite (JAR and JAD)

Preverify Class Files

The next step is to preverify the class files. The bin directory of the Oracle Java ME
SDK includes the preverify utility. The syntax for the preverify command is as
follows:

preverify files | directories
Some of the options are as follows:

Table 13-3 Options to preverify Command

Name Description

-classpath classpath Specify the directories or JAR files (given as a
semicolon-delimited list) from which classes are loaded.

-d output-directory Specify the target directory for the output classes. This directory
must exist before preverifying. If this option is not used, the
preverifier places the classes in a directory called output.

Following the example for compiling, use the following command to verify the
compiled class files. As before, newlines are added for clarity.

preverify.exe
-classpath ..\..\lib\cldcapilO.jar;..\..\lib\midpapi20.jar
-d classes
tmpclasses

As a result of this command, preverified class files are placed in the classes directory.
If your application uses WMA, MMAP], or other versions of CLDC or MIDP, be sure
to include the relevant . jar files in the classpath.

Packaging a MIDlet Suite (JAR and JAD)

To package a MIDlet suite manually you must create a manifest file, an application
JAR file, and finally, a MIDlet descriptor (also known as a Java Application Descriptor
or JAD).

Create a manifest file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the manifest file. For example, a
manifest might have the following contents:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet

MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.1

Create a JAR file containing the manifest and the suite's classes and resource files. To
create the JAR file, use the jar tool that comes with the Java SE software development
kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .
The arguments are as follows:

» file - JAR file to create.
= manifest - Manifest file for the MIDlets.

s class-directory - Directory containing the application's classes.

13-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Command Line Security Features

» resource-directory - Directory containing the application's resources.

For example, to create a JAR file named MyApp. jar whose classes are in the classes
directory and resources are in the res directory, use the following command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the JAD file. This file must have the
extension .jad.

Note: You must set the MIDlet-Jar-Size entry to the size of the
JAR file created in the previous step.

For example, a JAD file might have the following contents:

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

Command Line Security Features

The full spectrum of the Oracle Java ME SDK's security features are also available from
the command line. You can adjust the emulator's default protection domain, sign
MIDlet suites, and manage certificates.

= "Change the Default Protection Domain"
= "Sign MIDlet Suites (jadtool)"
= "Manage Certificates (MEKeyTool)"

Change the Default Protection Domain

To adjust the emulator's default protection domain, use the following option with the
emulator command:

-Xdomain:domain-type

Assigns a security domain to the MIDlet suite. Enter an appropriate security domain
as described in "Security Domains." For example, -Xdomain :maximum.

Sign MIDlet Suites (jadtool)

jadtool is a command-line interface for signing MIDlet suites using public key
cryptography according to the MIDP 2.1 specification. Signing a MIDlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. jadtool is also capable of signing payment update (JPP) files.

jadtool only uses certificates and keys from Java SE platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool is packaged in a JAR file. To run it, open a command prompt, change the
current directory to installdir\bin, and enter the following command:

jadtool command

Command Line Reference 13-7

Command Line Security Features

The commands are as follows:
s -help
Prints the usage instructions for jadtool.

s -addcert -alias key alias[-storepass password] [-keystore keystore] [-certnum
number] [-chainnum number] [-encoding encoding] -inputjad filename
-outputjad filename

Adds the certificate of the key pair from the given keystore to the JAD file or JPP
file.

» -addjarsig [-jarfile filename] -keypass password -alias key alias -storepass
password] [-keystore keystore] [-chainnumnumber] [-encoding encoding]
-inputjad filename -outputjad filename

Adds a digital signature of the input JPP file to the specified output JPP file.

» -showcert [<[-certnumnumber] [-chainnumnumber]> |[-all]] [-encoding
encoding] -inputjad filename

Displays information about certificates in JAD files.
The default values are as follows:
s -encoding - UTF-8
s -jarfile-MIDlet-Jar-URL property in the JAD file
s -keystore - SHOME\ .keystore
m -certnum-1

s -chainnum-1

Manage Certificates (MEKeyTool)

MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keytool utility that comes with the Java SE SDK. The
purpose of the keys is to facilitate secure HITP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography Extension
keystore. You can create one using the Java SE keytool utility (found in the \bin
directory for your JDK).

To run MEKeyTool, open a command prompt, change the current directory to
installdir\bin, and enter the following command:

installdir\bin\mekeytool.exe -command
The command keywords follow.

The Oracle Java ME SDK contains a default ME keystore named _main.ks, which is
located in:

installdir\runtimes\cldc-hi\appdb

This keystore includes all the certificates that exist in the default Java SE platform
keystore that comes with the Java SE installation.

Also, each emulator instance has its own _main.ks file located in
username\javame-sdk\3. 3 \work\devicename\appdb. If you do not specify a value for
MEkeystore, a new key is added to the default ME key for this emulator instance.

If you do not specify a value for -keystore, the default keystore is used:

13-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

Generate Stubs (wscompile)

username\keystore.ks
s -help
Prints the usage instructions for MEKeyTool.

» -import -alias aliazs [-keystore JCEkeystore] [-MEkeystore filename] [-storepass
storepass] -domain domain-name

Imports a public key into the ME keystore from the given JCE keystore using the
given Java Cryptography Extension keystore password. and the default Java
Cryptography Extension keystore is username\ keystore.

» -list [-MEkeystore filename]

Lists the keys in the ME keystore, including the owner and validity period for
each.

s -delete (-owner owner | -number key-number) [-MEkeystore filename]

Deletes a key from the given ME keystore with the given owner.

Generate Stubs (wscompile)

Mobile clients can use the Stub Generator to access web services. The wscompile tool
generates stubs, ties, serializers, and WSDL files used in Java API for XML (JAX) RPC
clients and services. The tool reads a configuration file, that specifies either a WSDL
file, a model file, or a compiled service endpoint interface. The syntax for the stub
generator command is as follows:

wscompile [options] configuration-files

Table 13-4 lists the wscompile options:

Table 13-4 wscompile Options

Option Description

-gen Same as -gen:client

-gen:client Generates client artifacts (stubs, etc.)

-import Generates interfaces and value types only

-d output directory Specifies where to place generated output files

- £ :features Enables the given features

-g Generates debugging info

-features:features Same as -f:features

-httpproxy: host:port Specifies a HTTP proxy server (port defaults to 8080)

-model file Writes the internal model to the given file

-0 Optimizes generated code

-s directory Specifies where to place generated source files

-verbose Outputs messages about what the compiler is doing

-version Prints version information

-cldcl.0 Sets the CLDC version to 1.0 (default). Float and double
become String.

-cldel.1 Sets the CLDC version to 1.1 (float and double are OK)

-cldcl.0info Shows all CLDC 1.0 information and warning messages.

Command Line Reference 13-9

Generate Stubs (wscompile)

Note: Exactly one -gen option must be specified. The -f option
requires a comma-separated list of features.

Table 13-5 lists the features (delimited by commas) that can follow the -£f option. The
wscompile tool reads a WSDL file, compiled service endpoint interface (SEI), or model
file as input. The Type of File column indicates which of these files is used with a
particular feature.

Table 13-5 Command Supported Features (-£) for wscompile

Option Description Type of File
explicitcontext Turns on explicit service context mapping ~ WSDL
nodatabinding Turns off data binding for literal encoding ~ WSDL
noencodedtypes Turns off encoding type information WSDL, SEI, model
nomultirefs Turns off support for multiple references WSDL, SEI, model
novalidation Turns off full validation of imported WSDL = WSDL
documents
searchschema Searches schema aggressively for subtypes =~ WSDL
serializeinterfaces Turns on direct serialization of interface WSDL, SEI, model
types
wsi Enables WSI-Basic Profile features (default) WSDL
resolveidref Resolves xsd: IDREF WSDL
donotunwrap No unwrap. WSDL
Examples

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -0 -cldcl.l -d generated config.xml

13-10 Oracle Java Micro Edition Software Development Kit Developer's Guide

14

Logs

Oracle Java ME SDK uses the 1og47j logging facility to manage Device Manager and
Device Instance logs.

Logging levels are configurable.

Device Manager Logs
The device manager log is placed into:
username\ javame-sdk\3.3\1log\device-manager.log
You can configure logging levels in the following XML file:
installdir\toolkit-1lib\process\device-manager\conf\log4j.xml

A priority value for the categories com. sun or VM can be set to the following levels:
FATAL, ERROR, WARN, INFO, DEBUG, TRACE (ordered from least to most verbose).

Example 14-1 Setting a Category Value

<category name="com.sun">
<priority value="DEBUG"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

<category name="VM">
<priority value="INFO"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

Device Instance Logs
Each device (or emulator) instance writes its own log in to its directory.
username\ javame-sdk\3. 3 \work\devicename\device. log

log4j.xml controls the verbosity of the device instance logs, as described in "Device
Manager Logs."

Logs 14-1

Device Instance Logs

14-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

15

JCP APIs

API Support

The Oracle Java ME SDK supports many standard Application Programming
Interfaces (APIs) defined through the Java Community Process (JCP) program. JCP
APIs are often referred to as JSRs, named after the Java Specification Request process.
JSRs that are not part of the platform are referred to as "optional packages."

The CLDC/MIDP platform is based on the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139).

The IMP-NG platform is base on Information Module Profile - Next Generation (IMP-NG)
(JSR 228).

See Table 15-1 for a full list of supported JCP APIs. The Oracle Java ME SDK provides
documentation describing how certain APIs are implemented in the SDK. Many
supported APIs do not require special implementation considerations, so they are not
discussed in this help set. "Oracle APIs" describes Oracle APIs provided to support the
IMP-NG platform.

For convenience the Javadocs that are the intellectual property of Oracle are in your
installation’s \docs directory. The remainder can be downloaded from
http://jcp.org.

Table 15-1 Supported JCP APIs
JSR, API Name, URL

JSR75,PIM and File =~ PDA Optional Packages for the J2ME Platform
http://jcp.org/en/jsr/detail?id=75

JSR 82, Bluetooth and Java APIs for Bluetooth
OBEX

http://jcp.org/en/jsr/detail?id=82

JSR 118, MIDP 2.1 Mobile Information Device Profile
http://jcp.org/en/jsr/detail?id=118
JSR 135, MMAPI 1.1 Mobile Media API
http://jcp.org/en/jsr/detail?id=135
JSR 139, CLDC 1.1 Connected Limited Device Configuration
http://jcp.org/en/jsr/detail?id=139
JSR 172, Web Services J2ME Web Services Specification
http://jcp.org/en/jsr/detail?id=172

API Support 15-1

Oracle APIs

Table 15-1 (Cont.) Supported JCP APIs

JSR, API Name, URL

JSR 177, SATSA Security and Trust Services API for Java ME
http://jcp.org/en/jsr/detail?id=177

JSR 179, Location Location API for Java ME
http://jcp.org/en/jsr/detail?id=179

JSR 184, 3D Graphics ~ Mobile 3D Graphics API for [2ME
http://jcp.org/en/jsr/detail?id=184

JSR 205, WMA 2.0 Wireless Messaging API
http://jcp.org/en/jsr/detail?id=205

JSR 209, AGUI 1.0 Advanced Graphics and User Interface Optional Package for the [2ME
Platform
http://www.jcp.org/en/jsr/detail?id=209

JSR 211, CHAPI Content Handler API

http://jcp.org/en/jsr/detail?id=211

JSR 217, PBP 1.1

Personal Basis Profile 1.1

http://www.jcp.org/en/jsr/detail?id=217

JSR 218, CDC 1.1

Connected Device Configuration 1.1

http://jcp.org/en/jsr/detail?id=218

JSR 226, SVG

Scalable 2D Vector Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=226

JSR 228, IMP-NG

Information Module Profile - Next Generation (IMP-NG)
http://jcp.org/en/jsr/detail?id=228

JSR 234, AMMS Advanced Multimedia Supplements
http://jcp.org/en/jsr/detail?id=234
JSR 239 Java Binding for OpenGL ES API
http://jcp.org/en/jsr/detail?id=239
JSR 256 Mobile Sensor API
http://jcp.org/en/jsr/detail?id=256
JSR 257 Contactless Communication API
http://jcp.org/en/jsr/detail?id=257
JSR 280, XML API XML API for Java ME

http://jcp.org/en/jsr/detail?id=280

The IMP-NG project type supports developing applications for the Oracle Java ME
Embedded 3.3 runtime. The Java ME Embedded 3.3 runtime includes several standard
JSR APIs and additional Oracle APIs for embedded use cases. These new APIs are:

s Device Access API

The Device Access API provides interfaces and classes for communicating with
and controlling peripheral devices.

s Logging API

15-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Oracle APIs

The Logging API provides a lightweight and extensible framework based on the
concepts of the java.utillogging package, enabling applications to log messages in
a variety of formats and using custom handlers.

= AMS API

The AMS API provides an interface to the application management capabilities of
the runtime to allow authorized applications to interact with and extend the
application management system.

s AccessPoint API

The AccessPoint API is an extension to the Generic Connection Framework and
enables applications to select among multiple access points if the underlying
platform provides more than one data access point.

The Javadocs for these APIs are in your installation’s \docs directory.

API| Support 15-3

Oracle APIs

15-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

16

JSR 75: PDA Optional Packages

The Oracle Java ME SDK supports JSR 75, the PDA Optional Packages (PDAP) for the
J2ME Platform. JSR 75 includes two independent APIs:

» The FileConnection optional package allows MIDlets access to a local device file
system.

s The Personal Information Management (PIM) optional package includes APIs for
manipulating contact lists (address book), calendars, and to-do lists.

This chapter describes how the Oracle Java ME SDK implements the FileConnection
and PIM APIs.

FileConnection API

On an external device, the FileConnection API typically provides access to files stored
in the device's memory or on a memory card.

In the Oracle Java ME SDK emulator, the FileConnection API enables MIDlets to access
files stored on your computer's hard disk.

The files that can be accessed using the FileConnection optional package are stored in
the following subdirectory:

username\javame-sdk\3. 3 \work\devicename\appdb\filesystem

For example, the JavaMEPhonel emulator instance comes with a root directory installed
named root1l. Each subdirectory of filesystemis called a root. The Oracle Java ME
SDK provides a mechanism for managing roots.

While the emulator is running, click the Tools menu and select Manage File System.
The Manage File System dialog box opens.

In the Mounted File System Root Directories panel you can mount, unmount, or
unmount and delete filesystem roots. Mounted roots are displayed in the top list, and
unmounted roots are listed in the Unmounted File System Root Directories panel. You
can remount or delete a selected directory. Mounted root directories and their
subdirectories are available to applications using the FileConnection API. Unmounted
roots can be remounted in the future.

s Toadd a new empty filesystem root directory, click Mount Empty... and fill in a
name for the directory.

= To mount a copy of an existing directory, click Mount Copy..., and browse to
choose a directory you want to copy. When the File System Root Entry dialog
opens, enter the name for this root. A deep copy of the selected directory is placed
into the emulator's filesystem with the specified root name.

JSR 75: PDA Optional Packages 16-1

PIM API

PIM API

= Tomake a directory inaccessible to the FileConnection API, select it in the list and
click Unmount. The selected root is unmounted and moved to the Unmounted
roots list.

s To completely remove a mounted directory, select it and click Unmount & Delete.

s To remount an unmounted directory, select it and click Remount. The root is
moved to the mounted roots list.

s To delete an unmounted directory, select it and click Delete. The selected root is
removed from the list.

The Oracle Java ME SDK emulator stores contact, calendar, and to-do information in
standard files on your desktop computer's hard disk. All information is stored in:

username\ javame-sdk\3. 3 \work\devicename\ appdb\ PIM

Each device instance has its own data. Lists are stored in subdirectories of the
contacts, events, and todo directories. For example, a contact list called Contacts is
contained in installdir\appdb\PIM\contacts\Contacts.

Inside the list directory, items are stored in vCard (.vcf) or vCalendar (.vcs) format
(see http://www.imc.org/pdi/). Contacts are stored in vCard format, while
calendar and to-do items are both stored in vCalendar format.

Running PDAPDemo

PDAPDemo shows how to use the PIM and FileConnection APIs that are part of the JSR
75 specification.

Browsing Files

The PIM API

The default emulators have one directory, root1. This directory is located at:
username\ javame-sdk\3 .3 \work\devicename\appdb\filesystem\rootl

For test purposes, copy files or even directories into rootl. You can also add other
directories at the same level as rootl.

Now open and run the PDAPDemo project.

s Launch the FileBrowser MIDlet. You see a directory listing, and you can browse
through the directories and files you have placed there.

» Select a directory and press the View soft button to enter it.

= Using the Menu commands you can view a file or see its properties. Try selecting
the file and choosing Properties or View from the menu.

You can view the content of text files in the browser.

s Try using the External Events Generator to unmount and mount directories.
Unmounted directories are not visible in the application running on the emulator.

The JSR75 PIM APIs example demonstrates how to access personal information, such
as contact lists, calendars, and to-do lists.

= After you launch the example, choose a type of list from the main menu.

16-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running PDAPDemo

In this example each type of list works the same way and each list type contains a
single list. For example, if you choose Contact Lists, there is a single contact list
called Contacts. Event Lists contains a single list called Events, and To-Do Lists
contains a single list named To Do.

= After you have selected a list type and chosen the specific list, you can view all the
items in the list. If this is the first time you have run the example, the list might be
empty.

s Toadd an item, select New from the menu. The application prompts you for a
Formatted Name for the item.

To add more data fields to this item select Add Field. You see a list of field names.
Pick as many as you like. You can fill in the fields at any time.

s To save the new item, select Commit from the menu.

To return to the list, choose the Back command. You see the item you just created
in the list.

The items that you create are stored in standard vCard or vCalendar format in this
directory:

username\ javame-sdk\ 3. 3 \work\devicename\ appdb\ PIM

The PIM API allows for exporting contact, calender, and to-do items in a standard
format. The exact format depends on the list type. When you are viewing an item in
any list, the menu contains a command for viewing the exported item.

For example, when you are viewing a contact list item, the menu contains Show
vCard. When you choose this command, the exported item is shown on the screen.
Calendar items and to-do items both get exported as vCalendar.

JSR 75: PDA Optional Packages 16-3

Running PDAPDemo

16-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

17

JSR 82: Bluetooth and OBEX Support

This chapter describes how the Oracle Java ME SDK implements the Bluetooth and
OBEX APIs.

The Oracle Java ME SDK emulator supports JSR 82, the Java APIs for Bluetooth. The
emulator is fully compliant with version 1.1 of the specification, which describes
integration with the push registry. JSR 82 includes two independent APIs:

» The Bluetooth API provides an interface to Bluetooth wireless networking,
including device discovery and data exchange.

The Oracle Java ME SDK emulator enables you to develop and test applications
that use Bluetooth without having actual Bluetooth hardware. The SDK simulates
a Bluetooth environment for running emulators. Multiple emulator instances can
discover each other and exchange data using the Bluetooth AP

For an example, see "Running the Bluetooth Demo."

= The OBEX API allows applications to use the Object Exchange (OBEX) protocol
over Bluetooth or other communication channels.

The Oracle Java ME SDK implements OBEX transfer over simulated Bluetooth and
TCP connections.

For an example, see "Running the OBEX Demo."

Setting OBEX and Bluetooth Properties

The Oracle Java ME SDK enables you to configure the Bluetooth and OBEX simulation
environment. Because the simulation requires a sender and receiver, Bluetooth settings
are configured separately for each device. Follow these steps to set device properties:

1. In the device selector, right-click a CLDC device and select Properties.

The device properties are displayed in the Properties window. If you do not see
this window, click the Window menu and select Properties from the NetBeans
toolbar.

2. Scroll down to see the Bluetooth and OBEX properties. When you click a property
a description is shown in the description area. If you can not see this area, right
click a property and select Show Description Area.

The System Properties can be retrieved in an application using the getProperty ()
method in javax.bluetooth.LocalDevice. The Bluetooth properties are fully
described in the JSR 82 specification.

s Bluetooth Enabled

Enable or disable state of Bluetooth functionality

JSR 82: Bluetooth and OBEX Support 17-1

Running the Bluetooth Demo

» Bluetooth Address

The Bluetooth address of this device
» Friendly Name

Human-readable name of the device
» bluetooth.sd.trans.max

The maximum number of concurrent service discovery transactions. The default is
8.

s bluetooth.sd.attr.retrievable.max

The maximum number of service attributes to be retrieved per service record.The
default is 16.

= bluetooth.master.switch
Enable or disable a master or slave switch. Enabled by default.
» bluetooth.l2cap.receiveMTU.max

The maximum ReceiveMTU size in bytes supported in L2ZCAP. This is the
maximum payload size this connection can accept.

The default value is 672.
s OBEX Maximum Packet Length
The default is 4096 bytes.

The maximum packet length affects how much data is sent in each packet between
emulators. Shorter packet values result in more packets and more packet
overhead.

» Device is discoverable
Enabled by default.

= Authentication is enabled
Enabled by default.

= Encryption is enabled
Enabled by default.

= Authorization is enabled

Enabled by default.

Running the Bluetooth Demo

This application contains MIDlets that demonstrate the use of JSR 82's Bluetooth APL
It shows how images can be transferred between devices using Bluetooth.

You must run two emulator instances to see this process, and each device must have a
different phone number.

1. Use JavaMEPhonel to launch Bluetooth Demo, then launch Bluetooth Demo on
JavaMEPhone2.

2. The demo gives you a choice of Server or Client.

3. On the first emulator, highlight Server and use the right softbutton to select OK.

17-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running the OBEX Demo

The server starts and displays a list of images. At the beginning, none of the
images are available on the Bluetooth network.

Select the image you want to make available.

Press Publish image (the right soft button). The icon color changes from purple to
green, indicating it is published.

On the second emulator running the Bluetooth Demo, highlight Client and click
OK. The MIDlet displays "Ready for images search." Click the Find soft button.
The MIDlet finds the other emulator and gets a list of published images. Select one
from the list and choose Load.

s If you are running the demonstration in a trusted protection domain, the
image is transferred using simulated Bluetooth and is shown on the client
emulator.

= If you are not running in a trusted protection domain, the first emulator (the
server) displays a prompt asking if you want to authorize the connection from
the client. Select Yes. The image is displayed in the client emulator.

Running the OBEX Demo

This application shows how to transfer image files between emulator instances using
the OBEX API. This demonstration shows the use of OBEX over a simulated infrared
connection.

1.

Launch two instances of the emulator. One listens for incoming connections, while
the other attempts to send an image.

For example, right-click ObexDemo, select Run With... and choose the device
JavaMEPhonel. Repeat and choose JavaMEPhone?2.

In the first emulator, choose Receive Image. (Depending on your security level, the
application warns that an OBEX connection allows other devices to talk to yours
and asks, "Is it OK to make the connection?" Select Yes.) Click Start to run the
application. The listener emulator displays a screen reading "Waiting for
connection."

In the second emulator (the sender), choose Send Image and press the Start soft
key. Select an image from the list and choose Send. (Depending on your security
level, the application warns that the demo wants to make an outgoing client
connection, and asks if it is OK. Select Yes.) The Send Image utility uploads the
image.

In the listening emulator, the utility displays information about the incoming
image and asks "Would you like to receive it?" Select Yes.

The image you selected is transferred over the simulated infrared link and
displayed on the first emulator.

JSR 82: Bluetooth and OBEX Support 17-3

Running the OBEX Demo

17-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

18

JSR 135: Mobile Media APl Support

JSR 135, the Mobile Media API (MMAPI), provides a standard API for rendering and
capturing time-based media, like audio or video. The API is designed to be flexible
given the media formats, protocols, and features supported by various devices.

See the following topics:

= "Media Types"

s "MMAPI MIDlet Behavior"

= "Ring Tones"

= "Running AudioDemo"

= "Running MMAPIDemos"

For information on programming with MMAPI, see the following articles:

Mobile Media API Overview:

http://developers.sun.com/techtopics/mobility/apis/articles/mmap

i_overview/

The J2ME Mobile Media API: http://www.jcp.org/en/jsr/detail?id=135

Media Types

The emulator's MMAPI implementation supports the following media types.

Table 18-1 Supported MIME Types

MIME Type Description

audio/amr* Adaptive Multi-Rate Narrow Band
audio/midi MIDI files

audio/mpeg* MP3 files

audio/mp4* MP4 Audio files

audio/sp-midi

Scalable Polyphony MIDI

audio/x-tone-seq MIDP 2.0 tone sequence

audio/x-wav* WAV PCM sampled audio

image/gif GIF 89a (animated GIF)

video/3gpp* Third generation mobile broadband with video
video/mpeg* MPEG video

video/mp4* MP4 video files

JSR 135: Mobile Media API Support 18-1

MMAPI MIDlet Behavior

Table 18-1 (Cont.) Supported MIME Types

MIME Type Description

video/avi* Video capture emulation and Audio-Video Interleaved files

In the previous table, an asterisk (*) indicates a media type that requires corresponding
DirectShow filters to be installed on your system. For example, MP3 support might
require an MP3 Splitter and an MP3 Decoder (these might be two separate DirectShow
filters, or they might be combined in one filter). You can use any appropriate filter, but
Java ME SDK 3.3 has only been tested with filters from the K-Lite Mega Codec Pack
4.8.0. If no appropriate DirectShow filters are found on your system, JSR 135 Player
creation for the media type might fail.

Media Capture

The Oracle Java ME SDK emulator supports audio and video capture. Audio capture
is supported using the capture capabilities of the system upon which the emulator
runs.

Video capture is supported by simulating a camera input.

Consult the MMAPIDemo example application for details and source code that
demonstrates how to capture audio and video.

MMAPI MiIDlet Behavior

MIDlets have a lifecycle that is defined in the MIDP specification. MIDlets can be
paused by events such as incoming phone calls. A well-behaved MIDlet releases
important device resources when it is paused and reallocates or restarts those
resources when the MIDlet is resumed. In the MMAPI arena, stop any Players that are
rendering content when a MIDlet is paused.

The Oracle Java ME SDK prints a message to the console if you pause a MIDlet and it
does not stop its running Players. You can test this feature using the Pausing Audio
Test MIDlet.

The warning message is printed only once for each running emulator.

Ring Tones

MMAPI plays ring tones, as demonstrated in "Simple Tones" and "Simple Player.". The
ring tone formats mentioned here are in common use. You can download ring tones or
create your own.

Download Ring Tones

Ring tone files can be downloaded from many internet sites, including the following:
m http://www.convertyourtone.com/

m http://www.phonezoo.com

Ring Tone Formats

This section provides samples of several formats

= RTTTL, the Ringing Tones text transfer language format, is explained at

18-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Ring Tones

http://en.wikipedia.org/wiki/Ring Tone_Transfer_Language
Nokia Composer
This is a rendition of Beethoven's 9th symphony in Nokia Composer format:
16gl1,16gl,16gl,4#d1,16£1,16£1,16£1,4d1,16gl,16gl,16gl,16#d1,
16#gl,16#gl,16#gl,16gl,16#d2,16#d2,16#d2,4c2,16gl,16gl,16gl,
16d1,16#gl,16#gl,16#gl, 16gl,16£f2,16£2,16£2,4d2
Ericsson Composer
Beethoven's Minuet in G:
ab+cb+cb+cb+Cp+daBp+cgA
pfogagagagApbfGpacetF
Beethoven's 9th symphony theme:

ffft#CctdtdtdCcpftfftctfH#f #f£f+#c+#c+#c#A
fffc# f L +#d+4#d+#4d

Siemens Composer Format

Inspector Gadget theme:

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8)

P(1/16) Dis2(1/8) P(1l/16) Fis2(1/8) P(1/16)

D2(1/8) P(1/16) F2(1/8) P(1/16) Dis2(1/8)

P(1/16) C2(1/8) D2(1/16) Dis2(1/8) F2(1/16)

G2(1/8) P(1/16) C3(1/8) P(1/16) B2(1/2) P(1/4)
C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8) P(1l/16)
Dis2(1/8) P(1/16) Fis2(1/8) P(1/16) D2(1/8) P(1/16)
F2(1/8) P(1/16) Dis2(1/8) P(1/16) C3(1/8) B2(1/16)
Ais2(1/8) A2(1/16) Gis2(1/2) G2(1/8) P(1/16) C3(1/2)
Motorola Composer

Beethoven's 9th symphony:

4 F2 F2 F2 C#4 D#2 D#2 D#2 C4 R2 F2 F2 F2 C#2 F#2 F#2
F#2 F2 C#+2 C#+2 CH#+2 A#4 F2 F2 F2 C2 F#2 F#2 F#2 F2
D#+2 D#+2 D#+2

Panasonic Composer

Beethoven's 9th symphony:

444** 444** 444x* 1111* 4444** 4444** 4444** 111*
0% 444** 444xx 444*x 1111** 4444** 4444** 4444%*
444** 11x* 11** 11** 6666* 444** 444** 444** 111**
4444%* A444** 4444%* A44%* 22%% D2%* Q%%

Sony Composer

Beethoven's 9th symphony:

JSR 135: Mobile Media API Support 18-3

Running AudioDemo

444****444****444*~k~k*111#*****444#****444#****444#****
T11#%%%% (TD) 0000444 % * % ¥ 444X %k % Q44 %% %% 1T T ** %k 44 4H* %%
444#****444#****444*~k~k*11#****11#****11#****666#*****
444****444****444*~k~k*111****444#****444#****
444#****444****22#****22#****22#****

Running AudioDemo

Demonstrates audio capabilities, including mixing and playing audio with an
animation. Select a MIDlet from the list, and from the menu, select 1, Launch.

Audio Player. Select a sound clip and press the Play soft button. Click Back to
return to the list of clips.

Bouncing Ball. Select No Background and press the Play soft button. Two balls
randomly bounce in the screen, emitting a tone whenever they contact a wall.

Wave background, tone seq background, and MIDI background play the same
two-ball audio visual sequence with the additional audio background.

Mix Demo. Select a MIDlet and press the Play soft button. This demo shows that
different audio formats can play simultaneously.

Tone+Wav. The audio clip starts playing and the Tone soft button is displayed.
Press the Tone button to hear a tone playing over the original audio clip.

Tone+ToneSeq - The audio clip starts playing and the Tone soft button is
displayed. Press the Tone button to hear a tone playing over the original audio
clip.

ToneSeq+Wav - The tone sequence and the wav sequence play simultaneously.
Press the Pause soft button to interrupt, and press Play to resume.

Running MMAPIDemos

The MMAPIDemos application contains four MIDlets that showcase the SDK's
multimedia capabilities.

Simple Tones

Simple Player

Simple Tones demonstrates how to use interactive synthetic tones. Select a sample,
then click Play on the lower right.

Short Single Tone and Long Single Tone use Manager.playTone () to play tones
with different pitch.

Short MIDI event plays a chord on the interactive MIDI device (locator
"device://midi"). The shortMidiEvent () method of MIDIControl is used to
trigger the notes of the chord.

To run the MMAPI Drummer demo, click or type number keys (0-9). Each number
plays a different sound.

The Simple Player application demonstrates the range of audio and video capabilities
of the emulator. It includes sample files in a variety of formats and can play files from
the emulator's persistent storage or from HTTP URLs.

18-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running MMAPIDemos

The player portion uses a generic javax.microedition.media.Player interface. The
player displays duration, media time, and controls for running the media file. If
metadata is available in a file, the player enables you to view the information, such as
author and title. In the case of MIDI files, if karaoke text is present in the file, it
displays on the screen during play. Graphical user interface controls can be viewed on
the display screen if applicable. You can access these controls by selecting one of the
media samples in Simple Player, then pressing the Menu button to view and select the
desired command.

Select Simple Player then click Launch. The demo includes the following media
samples:

= Bong plays a short WAV file. You can adjust certain playback features, as described
later in this document. The display shows the duration of the sound in
minutes:seconds.hundredths of a second, for example 00:01.04. This audio sample is a
resource file in the MIDlet suite JAR file.

s MIDI Scale plays a sample musical scale. The display shows the title of the
selected music file, the duration of the song, the elapsed time during playback,
and the current tempo in beats per minute (bpm). This MIDI file is stored in the
MIDlet suite JAR file.

= Simple Ring Tone plays a short sequence of Beethoven's Fifth Symphony. The
display shows the title of the selected music file, the duration of the song, the
elapsed time in seconds and tenths of a second during playback, and the current
tempo in beats per minute (bpm). This ring tone file (. jts format) is stored in the
MIDlet suite JAR file.

= WAV Music plays a brief audio file. The display shows the title of the audio file,
the duration of the audio the elapsed time during playback, and the playback rate
in percent. This WAV file is retrieved from an HTTP server.

= MIDI Scale plays a MIDI file that is retrieved from an HTTP server.

s The Animated GIF example shows an animated GIF that counts from 1 to 5. The
file is stored in the MIDlet suite JAR file.

= AMR Narrow band. Plays an Adaptive Multi-rate narrow band file. This sample
requires an AMR codec. This sample was tested with the K-Lite Mega Codec Pack
4.8.0. This codec is freely downloadable.

= Audio Capture from a default device lets you capture audio from a microphone or
connected device. The sound is captured and played back on the speaker. To avoid
feedback, use a headset.

= Video Capture Simulation simulates viewing input video. For example, on a
device equipped with a camera.

= [enter URL] Plays back media files from arbitrary HTTP servers. Type a valid
URL at the insertion point and click OK to play a file. If you want to open an
HTTP directory from which to select media, be sure to add a slash to the end of the
URL.

In addition, Simple Player parses ring tones in Ringing Tones text transfer language
(RTTTL). See http://www.convertyourtone.com/rtttl.html for information
on RTTTL.

The Simple Player menu lists commands that control media playback.

The first menu item, Quick Help, displays a list of commands and actions mapped to
keypad buttons. Some actions are not applicable for every media type.

JSR 135: Mobile Media API Support 18-5

Running MMAPIDemos

The remaining menu items vary depending on the media type. Some actions, such as
Rate, open a control with which you can arbitrarily change the playback. Click Back to
return to the player screen and see or hear your changes.

Video
The Video application illustrates how the emulator is capable of playing animated GIF
files and capturing video. On an external device with a camera, video capture shows
the user what the camera sees.
Animated GIFs and video capture can be implemented using either a Form Itemor a
Canvas. The Video demonstration includes all the possibilities.
= Animated GIF - Form [jar] shows an animated GIF in a Form. A simple indicator
shows the progress through the animation. The form also includes some
information about the playback, including the current time.
= Animated GIF - Canvas [jar] shows an animated GIF in a Canvas. A simple
indicator shows the progress through the animation.
= Video Capture - Form simulates capturing video from a camera or other source
and showing it as an Item in a Form. Select Snapshot to take a snapshot of the
captured video. The snapshot is placed beneath the video capture for comparison.
= Video Capture - Canvas simulates capturing video from a camera or other source
and showing it in a Canvas. Select Snapshot to get a still image of the current
appearance. The snapshot is shown briefly, then the display goes back to the video
capture.
Pausing Audio Test

This test MIDlet demonstrates the proper use of pauseApp () and the alternative.

WARNING: Do not run the memory monitor while using this demo.

In the Well-Behaved case suspending uses pause2pp () to close the player and
remembers the length of time the audio file played. When the player resumes, it starts
playing the audio file at the point that it was suspended.

In the Not Well-Behaved case the player is stopped instead of suspended. When the
player is restarted the audio file plays from the beginning.

Test the two cases as follows:
= Run MMAPIDemos, and launch Pausing Audio Test.

The music starts playing. The initial value of Current State is Well-Behaved.
= Select Application > Suspend (or F5), to pause the music.

= Select Application > Resume (or F6) to resume playing the audio clip from the
stopping point.

» Click the Misbehave soft key.
= Select Application > Suspend (or F5), to stop the music.

= Select Application > Resume (or F6). The player restarts but the clip plays from
the beginning.

18-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

19

JSR 172: Web Services Support

The Oracle Java ME SDK emulator supports JSR 172, the J2ME Web Services
Specification. JSR 172 provides APIs for accessing web services from mobile
applications. It also includes an API for parsing XML documents.

See the following topics:

= "Generating Stub Files from WSDL Descriptors"
» "Creating a New Mobile Web Service Client"

s "RunJSR172Demo"

Generating Stub Files from WSDL Descriptors

The NetBeans IDE provides a stub generator that automates creating source code for
accessing web services that conform to the J2ME Web Services Specification. You can
add stubs to any MIDP application.

Note: If you are using NetBeans 7.1.2, or 7.2.1 or higher the "SOAP
Web Services" plugin must be installed and activated.

The following is a general procedure for adding stubs:
1. In the Projects window, expand the tree for a project.
2. Launch the Java ME Web Service Client wizard:

Right-click the Source Packages node and select New > Other and select the CLDC
category, then select Java ME Web Service Client....

3. Inthe New Java ME Webservice Client page, you can do one of the following

actions:
s Click Running Web Service and enter the URL for the WSDL and then click
Retrieve WSDL.

» Click Specify the Local filename for the retrieved WSDL and browse to a file
on your system.

In either case, you must enter a package name (if it is not supplied), then click
Finish. The new package appears in the project and includes an interface file and a
stub file.

4. You can now edit your source files to call the content the stub provides, then build
and run.

JSR 172: Web Services Support 19-1

Creating a New Mobile Web Service Client

See "Creating a New Mobile Web Service Client" for a step by step process, or see
"Run JSR172Demo" and view the demo source files.

Creating a New Mobile Web Service Client

This sample procedure creates a new project and adds a web service client. However,
you can add a web service client to any MIDP project, it does not have to be new.

If you are using a proxy server, you must configure the emulator's proxy server
settings as described in "Configuring the Web Browser and Proxy Settings."

1. Click the File menu and select New Project, choose the Java ME category, and the
Mobile Application project type, and click Next.

Figure 19—1 Creating a New Project and Adding a Mobile Application

Choose Project

ZDC Class Library

Import CDiC Pack 5.5 Project
""" (1 Maven Import CDC Toolkit Project
----- 1 PHP op Mobile Designer Components
..... D Groovy

..... I:I CI|'|:++

----- 1 MetBeans Modules

F-C] Samples

Cateqgaries: Projects:
\}5 ----- 1 Java —E] Mobile Application
..... 1 JavaFy E] Mabile Class Library
_____ (] Javaweb E] Mobile Project with Existing MIDP Sources
_____] lavaEE = Import Wireless Toolkit Project
_____ 0] Java Card Sjgars Application

2. Name your project and check Create Default Package and Main Executable Class.
Click Next. Be sure to create Hello MIDlet for this example.

Figure 19-2 Creating the Main Executable Class

Nan@and Location

Project Marnme: IMDbiIerpIicatiDnS

Project Location: IC:'I,Java_MEJ:uIatFDrm_SDK_S.2'|,a|:||:|s Browse, ., |

Project Folder: IC:'I,Java_MEJ:uIatFDrm_SDK_S.2'l,apps'l,r'-'1|:||:uiIe.ﬁ.pplicatiDHS

[+ Set as Main Projeck

[Create Hella MIDIek

3. Ensure that Java ME SDK is the platform and choose a device. Click Next.

19-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Creating a New Mobile Web Service Client

4. Right-click on the Source Packages node and select New > Java ME Web Service
Client....

5. In the New Java ME Webservice Client page:
s Click Running Web Service and in the WSDL URL field, enter:
http://www.xmlme.com/WSShakespeare.asmx?WSDL
Click Retrieve WSDL.
s The Package name is wsshakespeare.

Click Finish.

Note: Many additional project options can be found under the New
--> Other menu item.

Figure 19-3 The Java ME Web Servce Client Information Dialog Box

Java ME Web Service Client Information

Select the source of the W3DL description For the web service to be added to this project.
{* Running ‘Web Service

WeSOL LIRL: Imlme.u:u:um,l"-.-'-.-'SShakEspeare.asmx?'-.-'-.-'SDL i Retrieve W3aDL |

specify the local filename For the retrieved WaDL, Prosey Settings. .. |

Local Filename: IWSShakﬂspeare.asmx.wsdl

" Existing ‘WSO File

WSDL Filename: I Browse, ., |

Client Mame:; IWSShakﬂspeare

Projeck: |Mu:u|:|ile.ﬁ.ppli|:ati|:un3

Package: I wsshakespeare LI

Created File: I:.2'|,apps'|,Mu:uI:uiIe.ﬁ.|:||:|Iiu:aI:iu:un3'l,sru:,l'wsshakﬂspeareIWSShakﬂspeare.wsclient

[~ Eenerate DataBinding structures

The new package appears in the Source Packages tree and includes
Shakespeare.java and Shakespeare_Stub.java.

6. EditHelloMIDlet.java as follows:
= At the beginning, replace the default import declarations with:

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import wsshakespeare.*;

JSR 172: Web Services Support 19-3

Run JSR172Demo

» Locate the startApp () method and replace its contents with the following
code:

String text;
Shakespeare s = new Shakespeare_Stub();
try {
text = s.getSpeech("Romeo");
} catch (java.rmi.RemoteException rex) {
text = "error";
System.out.println(rex.getMessage());
}
TextBox t = new TextBox("Hello", text, 2048, 0);

final Command exitCommand = new Command("Exit", Command.EXIT, 1);
t.addCommand (exitCommand) ;
t.setCommandListener (new CommandListener () {
public void commandAction (Command c¢, Displayable d) {
if (¢ == exitCommand) {
notifyDestroyed() ;
}
}

1)

Display.getDisplay (this) .setCurrent (t);
Build and run the project. You see a quote from Shakespeare's Romeo and Juliet on
the device screen.

You can vary the above procedure to use a local WSDL file. Open the following
web page in a browser:

http://www.xmlme.com/WSShakespeare.asmx?WSDL

Save it to a local file. For example, C:\ws\WSShakespeare.wsdl. Follow the
procedure above, except at Step 4, specify the local file name.

Run JSR172Demo

JSR172Demo shows how to access a web service from a MIDlet. The web service in this
demo is running on an Internet server, and it conforms to the J2ME Web Services
Specification. The client is the MIDlet running in the emulator

If you are using a proxy server, you must configure the emulator's proxy server
settings as described in "Configuring the Web Browser and Proxy Settings."

Set Up the GlassFish Server

This demo requires the Oracle GlassFish server.

If you installed a full version of NetBeans you probably have a GlassFish
installation. Choose Tools > Servers and choose Glassfish to view the defaults.

If you do not have Glassfish, it can be downloaded from:

http://www.oracle.com/technetwork/java/javaee/downloads

Set Up Environment Variables

Set the following environment variables:

JAVA_HOME=]ava-installation-path

GLASSFISH_HOME=GlassFish-installation-path

19-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Run JSR172Demo

Run the Demo Scripts

The scripts in the \server subdirectory assume that your server has a domain named
"domainl" in which the service is automatically deployed. If you do not have a
domain named domainl, set up this domain or edit run.bat and specify a domain you
already have. Run the scripts:

demo_directory\JSR172Demo\server\build.bat

demo_directory\JSR172Demo\server\run.bat

Verify the Web Service

» Start the Glassfish service.

= Inabrowser, open the following URL:
http://localhost:8080/serverscript/serverscript

You see a page titled Web Services that displays information about the service
including links to the WSDL file corresponding to the localhost url.

Run the MIDlet in the Emulator

JSR172Demo contains a single MIDlet named Server Script. Launch it and follow the
prompts. You can browse through fictitious news headlines, all of which are retrieved
from the web service.

JSR 172: Web Services Support 19-5

Run JSR172Demo

19-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

20

JSR 177: Smart Card Security (SATSA)

The Security and Trust Services APIs (SATSA) provide smart card access and
cryptographic capabilities to applications running on small devices. JSR 177 (the
SATSA specification) defines four distinct APIs as optional packages:

= SATSA-APDU - Enables applications to communicate with smart card
applications using a low-level protocol.

s SATSA-JCRMI - Provides an alternate method for communicating with smart
card applications using a remote object protocol.

s SATSA-PKI -Enables applications to use a smart card to digitally sign data and
manage user certificates.

s SATSA-CRYPTO - A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

The Oracle Java ME SDK emulator fully supports SATSA. This topic describes how
you can use the Oracle Java ME SDK to work with SATSA in your own applications.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer’s Guide, which is available at:

http://download.oracle.com/javame/config/cldc/opt-pkgs/api/secur
ity/satsa-dg.

If you must develop your own Java Card applications, download the Java Card
Development Kit, available at:

http://www.oracle.com/technetwork/java/javacard/overview/index.h
tml.

This kit is for Windows.

Card Slots in the Emulator

Real SATSA devices are likely to have one or more slots that house smart cards.
Applications that use SATSA to communicate with smart cards must specify a slot and
a card application.

The Oracle Java ME SDK emulator is not an external device and, therefore, does not
have physical slots for smart cards. Instead, it communicates with a smart card
application using a socket protocol. The other end of the socket might be a smart card
simulator or it might be a proxy that talks with real smart card hardware.

JSR 177: Smart Card Security (SATSA) 20-1

Adjusting Access Control

The Oracle Java ME SDK emulator includes two simulated smart card slots. Each slot
has an associated socket that represents one end of the protocol that is used to
communicate with smart card applications.

The default card emulator host name is localhost, and the default ports are 9025 for
slot 0 and 9026 for slot 1. These port defaults are a property of the device. To change
the defaults in the user interface, right click on the device in the Device Selector, and
select Properties. By default the Properties window is docked on the upper right of the
Java ME SDK interface.

You can also change the port values in the device’s property file found at:
username\ javame-sdk\3 . 3 \work\devicename
Edit the device.properties file and modify this line:

runtime.internal.com.sun.io.j2me.apdu.hostsandports =
localhost:9025,1localhost:9026

start cref -p 9025 -i memory_image.eeprom

For detailed instructions on running Mohair, see

Adjusting Access Control

Access control permissions and PIN properties can be specified in text files. When the
first APDU or Java Card RMI connection is established, the implementation reads the
ACL and PIN data from the acl_slot-number in the workdir\devicename\appdb directory.
For example, an access control file for slot 0 might be:

username\javame-sdk\3 . 3 \work\devicename\appdb\acl_0

If the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

Specifying PIN Properties

PIN properties are represented by a pin_data record in the access control file.

Example 20-1 PIN Properties Example

pin_data {
id number
label string
type bed | ascii | utf | half-nibble | iso
min minLength
max maxLength
stored storedLength
reference byte
pad byte - optional
flag case-sensitive | change-disabled | unblock-disabled

needs-padding | disable-allowed | unblockingPIN

Specifying Application Permissions
Application permissions are defined in access control file (acf) records. The record
format is as follows:

20-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Adjusting Access Control

Example 20-2 Access Control File Record Format
acf AID fnumbers separated by blanks {
ace {
root CA name
apdu {
eight numbers separated by blanks
}

jermi {

classes {
classname
}
hashModifier string
methods {
method name and signature
}
}
pin_apdu {

id number
verify | change | disable | enable | unblock
four hexadecimal numbers

}

pin_jcrmi {
id number
verify | change | disable | enable | unblock
method name and signature

}

The acf record is an Access Control File. The AID after acf identifies the application.
A missing AID indicates that the entry applies to all applications. The acf record can
contain ace records. If there are no ace records, access to an application is restricted by
this acf.

The ace record is an Access Control Entry. It can contain root, apdu, jcrmi, pin_apdu,
and pin_jcrmi records.

The root record contains one CA name. If the MIDlet suite was authorized using a
certificate issued by this CA, this ace grants access to this MIDlet. A missing root field
indicates that the ace applies to all identified parties. One principal is described by one
line. This line must contain only the word root and the principal name, for example:

root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
The apdu or jcrmi record describes an APDU or Java Card RMI permission. A missing
permission record indicates that all operations are allowed.

An APDU permission contains one or more sequences of eight hexadecimal values,
separated by blanks. The first four bytes describe the APDU command and the other
four bytes are the mask, for example:

JSR 177: Smart Card Security (SATSA) 20-3

Adjusting Access Control

apdu {
020 082 020 0 82
8020 0 0 ff ff 0 O

}

The Java Card RMI permission contains information about the hash modifier
(optional), class list, and method list (optional). If the list of methods is empty, an
application is allowed to invoke all the remote methods of interfaces in the list of
classes, for example:

jermi {
classes {
com.sun. javacard.samples.RMIDemo.Purse

}
hashModifier zzz
methods {

debit (S)V

setAccountNumber ([B)V

getAccountNumber () [B

}

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as

separators. Separators can be omitted before and after symbols { and }.

The pin_apdu and pin_jcrmi records contain information necessary for PIN entry

methods, which is the PIN identifier and APDU command headers, or remote method

names.

Access Control File Example

Example 20-3 Access Control File Example

pin_data {
label
id
type
min
stored
max
reference
pad
flag
yflag

}

pin_data {
label
id
type
min
stored
max
reference
pad
flag
flag

Unblock pin

44

utf

4

8

8

33

ff
needs-padding
unblockingPIN

Main pin

55

half-nibble

4

8

8

12

ff
disable-allowed
needs-padding

20-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Adjusting Access Control

acf a0 0 0 0 62 ff 1 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_jcrmi {
id 55
verify enterPIN([B)S
change changePIN([B[B)S
disable disablePIN([B)S
enable enablePIN([B)S
unblock unblockPIN([B[B)S

acf a0 0 0 0 62 ee 1 {

ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_apdu {
id 55
verify 1 2 3
change 4 3 2
disable 1113
enable 555 4
unblock 7 7 7 5

1
2

act a0 00 0623 1c 81 {

ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
jermi {
classes {
com.sun.javacard.samples.RMIDemo.Purse
}
hashModifier xxx
methods {
setAccountNumber ([B)V
getBalance()S
credit(S)V
}
}
}
ace {
jermi {
classes {

com.sun.javacard.samples.RMIDemo.Purse

debit (S)V
getAccountNumber () [B

acf a0 00 00 00 62 03 01 Oc 02 01 {

JSR 177: Smart Card Security (SATSA) 20-5

Adjusting Access Control

ace {

root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

apdu {
0 20
80 20
}
apdu {
80 22
}
}
}

082 020 0 82
0 0ff ff 0 O

0 0 ff ff 0 O

acf a0 00 00 00 62 03 01 Oc 02 01 {

ace {
apdu {
0 20 0 82 ff
}
}
}

ff ff ff

acf a0 00 00 00 62 03 01 Oc 06 01 {

ace {
apdu {
0 20 0 82 ff
}
}
}

ff ff ff

Running the SATSA Demo

For the demo to work this project must reside in the Java ME SDK installation’s \apps
subdirectory. You must create the apps directory yourself

1.

© N o a

Click the File menu and select New Project and in the Categories window select
Samples > Java ME SDK 3.3 and single-click SATSADemos. Click Next. Save the
sample project in:

installdir\apps\ SATSADemos
Click Finish.

Right-click on the project, click Properties and then click the Running category.
Enable Regular execution and check Specify the Security Domain. Select
maximum from the list.

Start the instance(s) of cref from the command line.

Run the project.

click Properties and then click the Running category

start installdir\bin\cref -i installdir\apps\SATSADemos\sat .eeprom

start installdir\bin\cref -p 9025 -1i installdir\apps\SATSADemos\pki .eeprom

lick Properties and then click the Running category. Enable Regular execution and
check Specify the Security Domain

start installdir\bin\cref -p 9025 -i installdir\apps\SATSADemos\demo2 . eeprom

20-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

21

JSR 179: Location API Support

The JSR 179 Location API gives applications the opportunity to use a device's location
capabilities. For example, some devices include Global Positioning System (GPS)
hardware. Other devices might be able to receive location information from the
wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location AP, a location provider encapsulates a positioning method and supplies
information about the device's location. The application requests a provider by
specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, the application can use it to obtain
information about the device's physical location.

The Oracle Java ME SDK includes a simulated location provider. You can use the
emulator's External Events Generator to specify where the emulator should think it is
located. In addition, you can configure the properties of the provider itself, and you
can manage a database of landmarks.

Setting the Emulator's Location at Runtime

You can specify the simulated location of the emulator while it is running. In the
emulator, click the Tools menu and select External Events Generator. Click the
Location tab.

In the Location area of the tab, you can fill in values for the latitude, longitude,
altitude, speed, and course. Applications that use the Location API can retrieve these
values as the location of the emulator.

For more elaborate testing, you can set up a location script that describes motion over
time. Location scripts are XML files consisting of a list of locations, called waypoints,
and associated times. The Oracle Java ME SDK determines the current location of the
emulator by interpolating between the points in the location script. Here, for example,
is a simple location script that specifies a starting point (time="0") and moves to a new
point in ten seconds:

Example 21-1 Location Script Example

<waypoints>
<waypoint time="0"
latitude="14" longitude="50" altitude="310" />
<waypoint time="10000"
latitude="14.5" longitude="50.1" altitude="215" />
</waypoints>

JSR 179: Location API Support 21-1

Setting the Emulator's Location at Runtime

Figure 21-1 External Events Generator Location Tab

-loix

ADC| Access Points| GPIO Location |MMIO| Mobile| Puise Counter|

- Location Provider

State IAvaiIable

- Orientation
State ISupported

Raoll 1 1 1 1 1 1 1 1 1 1 1 1
-180 -120 60

:
AL
I Bl s

[~ Magnetic Orientation

rLocation
Latitude |14.330489263

Longitude |50. 100287382

Altitude |310.0

Speed IU-U

Course IU-U

Send |
Script IC: \nb_workspace \CityGuide \citywalk_1.xml Browse... |

Time: 00:13,107

« =) »)
Help |

The altitude measurement is in meters, and the time values are in milliseconds.

Use a text editor to create your location script. You can load it into the external event
window by pressing the Browse button next to the Script field. Inmediately below are
controls for playing, pausing, stopping, and moving to the beginning and end of the
location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation box
to Supported and fill in values for azimuth, pitch, and roll. The Magnetic Orientation
check box indicates whether the azimuth and pitch measurements are relative to the
Earth's magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider box to Temporarily Unavailable or Out of Service. When
your application attempts to retrieve the emulator's location, an exception is thrown
and you can see how your application responds.

21-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running the CityGuide Sample Project

Running the CityGuide Sample Project

CityGuide demonstrates how to use the Location API (JSR 179). It shows a walker's
current position superimposed on a city map. The walker moves around the city and
landmarks are highlighted and identified as the walker approaches. This demo gets
the walker's location from an XML script named citywalk.xml (the event file) that
submits the device location information.

Because location prompts occur frequently, it is best to run this demonstration in
manufacturer (trusted) mode, as explained in the topic "Security Domains”"Security
Domains." In the user interface, right-click on your project and select the Running
category. Select Specify the Security Domain, and select manufacturer or maximum.

1. Open and run the CityGuide project. In the emulator, launch the CityGuide
MIDlet. The map page opens.

2. By default the display shows icons for four types of landmarks: restaurants,
museums, shops, and theaters.

To adjust the landmark display (this is optional), open the soft menu and choose
the Settings command. Use the navigation keys to highlight a category, then use
Select to check or uncheck an item. In the default skin, the item is selected when
the square is filled with white.

Figure 21-2 The Location Settings Dialog Box

Settings

The City Guide will alert you
whenever you get close to
landmark of selected category.

Watch for categories:

[l & restaurant
W& museum

& shop
[1El theatre

3. In the emulator, click the Tools menu and select External Events Generator. Click
the Location tab, then click the Browse button. Select the event file from the
directory containing the Citywalk application.

The player buttons at the bottom of the window are now active. Press the green
play button (right-pointing triangle) to run the script.

4. When you are near a landmark its name appears at the top of the map. Open the
soft menu and select the Detail command to see more information.

JSR 179: Location APl Support 21-3

Running the CityGuide Sample Project

Figure 21-3 The Landmark Detail Screen

MegaSport

- . ~ 1
. A

21-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

22

JSR 205: Wireless Messaging

The Oracle Java ME SDK supports the Wireless Messaging API (WMA) with a
sophisticated simulation environment. WMA 1.1 (JSR 120) enables MIDlets to send
and receive Short Message Service (SMS) or Cell Broadcast Service (CBS) messages.
WMA 2.0 (JSR 205) includes all this and support for Multimedia Message Service
(MMS) messages as well.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing how to configure the emulator's support of WMA. Next, it describes the
WMA console, a tool for testing WMA applications.

Many of the tasks in this topic can also be accomplished from the command line. See
"Running WMA Tool."

Using the WMA Console to Send and Receive Messages

The WMA console is a tool that enables you to send messages to and receive messages
from applications that use JSR 205. You can, for example, use the WMA console to
send SMS messages to a MIDlet running on the emulator.

See "WMA Console Interface" or "Running WMA Tool."

Launching the WMA Console

To launch the WMA console, select Tools > Java ME > WMA Console. Messages can
be sent from the WMA Console to an emulator instance.

The console opens as a tab in the NetBeans documents area. The console phone
number is displayed as part of the WMA Console tab label (for example, 987654321).

The WMA console phone number is an editable CLDC property. In the Device Selector,
right-click the CLDC, Java(TM) ME Platform SDK 3.3 node in the device selector, and
select Properties. Type a new value in the WMA Console Phone Number field. If the
number is available it is assigned to the console immediately. If the number is in use it
is assigned to the console the next time you restart the NetBeans IDE.

WMA Console Interface

To open the WMA Output window, select Window > Output > WMA Console
Output. This window displays messages received from an emulator. By default it is
docked at the bottom of the NetBeans IDE.

JSR 205: Wireless Messaging 22-1

Using the WMA Console to Send and Receive Messages

Figure 22-1 WMA Console and Output Windows

[JavaMEPhonel !E[E x]E‘WMA Console - 93755432... |_4| b :IEI
Application Device Edit Tools View Help IW cend CBS | and MMS |
= ® B =
To Clients
Device ID: 4 Phone Mumber: 123456789
Q ORACLE)

Port: 50000

Text Message I Binary Message

Hello

From: sms.f987654321:0
Hello

Remaining: 4,091 Bytes { 4,091 characters)

Send |
Kl | i

WA Output Window - 987554321 X |

All Messages |SI'~"IS CBS MMS | g -
P

Sender Destination

123456739:0 Port: 50,000 Hello

Emulator Phone Numbers

Each instance of the emulator has a simulated phone number that is shown in the
emulator window. The phone numbers are important because they are used as
addresses for WMA messages. The phone number is a device property and it can be
changed. In the device selector, right-click a device and view its properties.

Sending a Text or Binary SMS Message

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output.

To send a text SMS message, click Send SMS.

s The To Clients window automatically lists the phone numbers of all running
emulator instances. Select one or more destinations and enter a port number (the
default is 50000, as described in "WMADemo Push Registry Values").

22-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Using the WMA Console to Send and Receive Messages

s Tosend a text message, select the Text Message tab, type your message and click
Send.

= To send the contents of a file as a binary message, click the Binary Message tab.
Type in the path of a file directly, or click Browse to open a file chooser.

Note: The maximum message length for text and binary messages is
4096 bytes.

To try this yourself see "Sending SMS Messages From WMA Console to an Emulator
and Back."

Sending Text or Binary CBS Messages

Sending CBS messages is similar to Section , "Sending a Text or Binary SMS Message"
except that recipients are unnecessary because it is a broadcast.

To send a text or binary CBS message, click Send CBS in the WMA console. Specify a
message identifier (see "WMADemo Push Registry Values") and enter the text or
binary content of your message. The maximum message length for text and binary
messages is 4096 bytes.

Note: The emulator displays only the first 160 symbols of a received
CBS message.

To try this yourself see "Sending CBS Messages from WMA Console to an Emulator."

Sending MMS Messages

MMS messages consist of one or more files, usually images or sounds. An MMS
message can be sent to multiple recipients.

To send an MMS message from the WMA console, click the Send MMS button. The
window for composing MMS messages has Header and Parts tabs.

s The header tab addresses the message.

The To area automatically lists one of the phone numbers from the running
emulator instances. Click Add to select other available phone numbers from the
drop-down list.

To remove a recipient, first select its line, then click Remove.

When a recipient is removed it must be added back manually. Click Add and a
new line is added to the recipient table.

= To add optional media files (Parts) to the message, click the Parts tab and click
Add. The maximum message length for text and binary messages is 4096 bytes.

Most media files have information to fill the Content Location, Content ID,
Mime-Type (text/plain for simple MMS), and Encoding fields, but you can edit
these fields as well. The default ID for the demo is example.mms . MMSDemo (see
"WMADemo Push Registry Values").

To remove a part, select it and press Remove.

To try this yourself, see "Sending MMS Messages from WMA Console to an Emulator."

JSR 205: Wireless Messaging 22-3

Running WMADemo

Receiving Messages in the WMA Console

To start the WMA console, select Tools > Java ME > WMA Console. The WMA
console window has its own phone number displayed on the WMA Console tab. You
can send messages from your applications running on the emulator to the WMA
console.

Received messages are displayed in the WMA output window.

Running WMADemo

The WMADemo sample project shows how to send and receive SMS, CBS, and MMS
messages. Messages can be exchanged between emulator instances and can be
generated or received using the WMA console utility.

WMADemo Push Registry Values

The push registry determines how the demo establishes certain types of connections.
This information is set in the Application Descriptor. To view it, right-click the WMA
Demo project and select Properties. In the Properties window, select the Application

Description category and view the Push Registry tab.

» For SMS messages the port number is 50000.
» For CBS Messages, the Message Identifier is 50001.

s For MMS messages, the application ID is example.mms . MMSDemo.

Running WMADemo OTA

Because this sample uses the push registry, you cannot see all of its features with the
regular execution process. You must install the application into the emulator using the
over the air provisioning capability that mirrors how applications are installed on
external devices.

1. Right-click the WMADemo project and select Properties from the context menu.

2. Select the Running Category and select the Execute through OTA option. Click
OK.

3. Run WMADemo in an emulator.

Wait a few seconds for the application to download to the emulator and register
itself.

The application home screen shows the MIDlets you can launch: SMS Send, SMS
Receive, CBS Receive, MMS Send and MMS Receive.

4. Launch the WMA console (see "Launching the WMA Console").

Sending SMS Messages From WMA Console to an Emulator and Back

In this demo you send messages between the WMA Console and the client demo
application running on the emulator. Using the WMA console to send messages to the
emulator exercises the push registry.

1. To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output. The
WMADemo should be running in the emulator, as described in "Running
WMADemo OTA."

22-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running WMADemo

Click the Send SMS button in the WMA console window.

Choose the number that corresponds to the emulator. Typically, you check the box
in front of 123456789. If you are not sure what number the emulator is using, look
for a number above the emulator screen.

Fill in a port number of 50000. This is required because the demo waits for the SMS
on that port.

Type your text message in the Message field and click Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be started. You
might receive several permission requests based on your firewall settings.

Select Yes. The sMSReceive MIDlet is launched and immediately displays the
incoming SMS message.

To type a return message, press the Reply soft button. Type a message and select
Send from the menu. You might be asked to give permission because there is a cost
to your phone number. In the IDE, look in the WMA Output Window to confirm
that your reply has been received. (The output window is typically displayed
below the WMA Console. Be sure to click the WMA Output Window tab.)

Sending CBS Messages from WMA Console to an Emulator

This process is similar to sending SMS Messages. Instead of specifying a port number
you specify a Message Identifier.

1.

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output.

Click the Send button in the WMA console window.
Supply a Message Identifier of 50001.
Type your text message or attach a binary message and click Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be launched.
You might receive several permission requests based on your firewall settings.

Select Yes. The CBSReceive MIDlet is launched and immediately displays the
incoming message. Click Exit to close the MIDlet.

Sending MMS Messages from WMA Console to an Emulator

To send an MMS message from the WMA console to the emulator, ensure that WMADemo
has been installed using Run Project via OTA.

1.

From the WMADemo home screen, select MMS Receive. The emulator displays:
"MMS Receive" and the message "Waiting for MMS on applicationID
example.mms.MMSDemo..."

In the WMA console, click Send MMS to open the MMS composition window.
The Header tab is open by default. Supply any message subject, the application ID
example.mms .MMSDemo, and the telephone number of the running emulator. That
number is displayed to the right of the To field by default. If you do not see the
number you want, click the Add button to add it. When you have listed multiple
numbers the number field is a dropdown list

The To field on the left is a dropdown list from which you can choose To, Cc or
Bec.

JSR 205: Wireless Messaging 22-5

Running WMA Tool

3. (Click the Parts tab. The WMA console enables you to select files to send as parts of
the MMS message. Click Add and use the file browser to find the file you want to
send. Click OK.

4. Click Send to send the message.

The image and its information are displayed in the emulator.

Running WMA Tool

WMA Tool is the command line version of the WMA Console. To send and receive
SMS, CBS, and MMS messages from the command line, run:

installdir\bin\wma-tool <command> [options]

The device manager must be running before you launch wma-tool.
When the tool is started, it outputs the phone number it is using.
Command

Each protocol has send and receive commands. The requested command is passed to
the tool as a first argument. Possibilities are:

m receive

= smsreceive - receives SMS messages
= cbsreceive - receives CBS messages
= mmsreceive - receives MMS messages
= smssend - sends SMS message

» cbssend - sends CBS message

» mmssend - sends MMS message

The *send commands send the specified message and exit. The *receive commands
print incoming messages until they are explicitly stopped.

Options

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits the number of timeout seconds for messages.
-f Store text contents as files instead of printing them.

-g Quiet mode.

smsreceive, cbsreceive, and mmsreceive

The syntax for receiving a message is basically the same for all three protocols.

smsreceive [-ooutputDir] [-t timeout] [-q]
cbsreceive [-ooutputDir] [-t timeout] [-q]
mmsreceive [-ooutputDir] [-t timeout] [-qg]
Example

This example demonstrates how to receive a message from an emulator.

1. Start the emulator from the Windows Start menu:

22-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running WMA Tool

Start > Programs > Java(TM) ME Platform SDK 3.3 > Java ME SDK CLDC
Emulator.

You can also start the emulator from the bin directory. This example also runs the
WMADemo project.

emulator.exe -Xdevice:JavaMEPhonel
-Xdescriptor:"C:\Documents and Settings\username\My Documents\NetBeansP
rojects\WMADemo\dist \WMADemo . jad"

2. Start wma-tool from the Java ME SDK installdir\bin directory:
C:\Java_ME_platform SDK_3.3\bin\wma-tool smsreceive

WMA tool started with phone number: 987654321
press <Enter> to exit.

3. In the emulator run the SMS Send MIDlet and send a message to the WMA
console. Enter the console telephone number
The console receives the message as follows:

SMS Received:
From: 123456789
Timestamp: Thu Aug 23 23:31:26 PDT 2012
Port: 50000
Content type: Text
Encoding: GSM7BIT
Content: A message from JavaMEPhonel to wma-tool
Waiting for another message, press <Enter> to exit.

smssend

wma-tool smssend target_phone target_port message_content
= target_phone
Phone number of the target phone. Mandatory first argument.
n target_port
Port of the target phone. Mandatory second argument.
m message_content
Mandatory third argument. Can have one of these two forms:
= text: text of the text message
» -f file: sends content of the specified file as a binary message.
Example:

wma-tool smssend 123456789 50000 "smssend message from wma-tool"

cbssend

wma-tool cbssend message_id message_content
» message_id
ID of the message. Mandatory first argument.

m message_content

JSR 205: Wireless Messaging 22-7

Running WMA Tool

mmssend

Mandatory second argument. Can have one of these two forms:
= text: text of the text message

» -f file: sends content of the specified file as a binary message.
Example:

wma-tool cbssend 50001 "cbssend message from wma-tool"

wma-tool mmssend applicationId subject
[-to <targetphone>]* [-cc <target phone>]* [-bcc <target phone>]*
[-part { <part_from file> | <part_from text> } 1*

Each part is defined by name=value pairs delimited by a semicolon ";" separator.

Part Variables

To create part_from_file, define the following variables.

Note: The file and the mimeType must be separated by a semicolon.

m file
File to send as a message part.
s mimeType
Mime type of the file.
To create part_from_text, define the following variables:
s text
Text to send as a message part. mimeType is set to text/plain.
= -to target_phone
"to" target phone number. You can use any number of these options.
= -cc target_phone
"cc" target phone number. You can use any number of these options.
» -bcce target_phone
"bec” target phone number. You can use any number of these options.
Part from Text Options
Separate options with semicolons. For example:
» -part contentId=content ID; encoding=encoding; text=text

Appends text part to the message. You can use any number of these options.
Contains the following options:

» content ID: content ID of this message part

= encoding: Sent text encoding. Only relevant for "text/plain." Mime type
defaults to UTES.

Part from File Options

mimeType=mime type; contentId=content ID; file=file name

22-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running WMA Tool

= Appends binary part to the message with content loaded from the given file. You
can use any number of these options.

Separate the options with a semicolon.

s content id: content ID of this message part

= mime type: mime type of this message part

» file name: file with content of this message part

s fileEncoding: Encoding of text in the file, only relevant for "text/plain”, only
applies if the file argument is present. Defaults to the value of the encoding
variable.

Example:

wma-tool mmssend example.mms.MMSDemo MySubject -to 123456789 -part
file=Duke.png;mimeType=image/png

JSR 205: Wireless Messaging 22-9

Running WMA Tool

22-10 Oracle Java Micro Edition Software Development Kit Developer's Guide

23

JSR 184: Mobile 3D Graphics

The Mobile 3D Graphics API for J2ME, (JSR 184) provides 3D graphics capabilities
with a low-level API and a high-level scene graph API. This chapter provides a brief
overview and general guidelines for working with JSR 184.

JSR 184 is a specification that defines the Mobile 3D Graphics (M3G) API for the J2ME.
This API provides 3D functionality in a compact package that's appropriate for
CLDC/MIDP devices. The API provides two methods for displaying 3D graphics
content:

» The immediate mode API makes it possible for applications to directly create and
manipulate 3D elements.

= Layered on top of this is a scene graph AP]I, also called retained mode, that makes it
possible to load and display entire 3D scenes that are designed ahead of time.

For more information, consult the JSR 184 specification at
http://jcp.org/en/jsr/detail?id=184.

Choosing a Graphics Mode

Applications are free to use whichever approach is most appropriate or to use a
combination of the retained mode and immediate mode APIs.

JSR 184 provides a standard API for CLDC/MIDP devices, enabling a new generation
of 3D applications. The immediate mode API, in turn, is compatible with OpenGL ES,
a standard lightweight API for 3D graphics. See http: //khronos.org/ for more
information on OpenGL ES.

Immediate Mode

Immediate mode is appropriate for applications that generate 3D graphics content
algorithmically, such as scientific visualizations or statistical graphs. The application
creates 3D objects and manipulates them directly.

For an example of immediate mode, see the Life3D MIDlet in the Demo3D example
application.

Retained Mode

Most applications, particularly games, use the retained mode or scene graph API. In
this approach, a graphic designer or artist uses 3D modeling software to create a scene
graph. The scene graph is saved in the JSR 184 file format. The scene graph file is
bundled with the application. At runtime, the application uses the scene graph API to
load and display the file.

JSR 184: Mobile 3D Graphics 23-1

Quality Versus Speed

Applications can manipulate parts of a loaded scene graph to animate characters or
create other effects. The basic strategy is to do as much work as possible in the
modeling software. At runtime, the application can grab and manipulate parts of the
scene graph, which can also include paths for animation or other effects.

For an example of retained mode, see the retainedmode MIDlet in the Demo3D example
application.

Quality Versus Speed

One of the challenges of MIDP development is the constrained environment of typical
devices. Compared to desktop computers, MIDP devices have slow processors and
little memory. These challenges extend into the arena of 3D graphics. To accommodate
a wide variety of implementations, the JSR 184 specification provides various
mechanisms to make the display of a 3D scene as efficient as possible.

One approach is scoping, a technique where you tell the 3D graphics implementation
when objects are not going to interact with each other. For example, if you defined a
scene graph for a house, you could use scoping to specify that the light in the
basement doesn't affect the appearance of the bedroom on the second floor. Scoping
simplifies the implementation's task because it reduces the number of calculations
required to show a scene.

In general, the best way to improve the rendering speed of 3D scenes is to make some
compromises in quality. The Mobile 3D Graphics API includes rendering hints so that
applications can suggest how the implementation can compromise quality to improve
rendering speed.

Content for Mobile 3D Graphics

Most mobile 3D applications use scene graphs in resource files to describe objects,
scenes, and characters. Usually it is not programmers but graphic designers or artists
who create the scene graphs, using standard 3D modeling tools.

Several vendors offer tools for authoring content and converting files to the JSR 184
format.

Because it is relatively difficult to create and manipulate 3D graphics content in an
application using the immediate mode API, most applications rely as much as possible
on a scene graph file. By putting as much as possible into the scene graph file at design
time, the application's job at runtime is considerably simplified.

Running Demo3D Samples

Life3D

Demo3D contains MIDlets that demonstrate JSR 184 features.

Click the File menu and select New Project. In the Categories window, click Samples
and select Java ME SDK 3.3. Then single-click Demo3D and click Next. Specify a
name and location and click Finish.

Life3D implements the popular Game of Life in three dimensions. Live cells are
represented by cubes. Each cell has 26 possible neighbors (including diagonals). For
each step of the animation, cells with fewer than four neighbors die of loneliness,
while cells with more than five neighbors die of overcrowding. An empty cell with
exactly four neighbors becomes a new live cell.

23-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running Demo3D Samples

RetainedMode

PogoRoo

The view of the playing board rotates slowly so you can view the board from all
angles.

The keypad buttons in Table 23-1 provide control over the game:

Table 23-1 Controls for Life3D

Button Description

0 Pause the animation.

1 Resume the animation at its default speed.

2 Speed up the animation.

3 Slow down the animation.

4 Choose the previous preset configuration from an arbitrary list. The name of the

configuration is shown at the top of the screen.

5 Choose the next preset configuration from the list.

* Generate a random configuration and animate until it stabilizes or dies. If it dies,
generate a new random configuration.

The source code for this example can be found at:
projects\Demo3D\src\com\superscape\m3g\wtksamples\1life3d\Life3D. java

The variable, projects, is the directory you are using to store your NetBeans projects.

The RetainedMode MIDlet plays a scene file that shows a skateboarder in an endless
loop. The source code is found at:

projects\Demo3D\ src\com\superscape\m3g\wtksamples\retainedmode

PogoRoo displays a kangaroo bouncing up and down on a pogo stick. To steer the
kangaroo, use the arrow keys. Press up to go forward, down to go backward, and left
and right to change direction. Try holding down the key to see an effect. The source
code is found at:

projects\Demo3D\ src\com\superscape\m3g\wtksamples\pogoroo

JSR 184: Mobile 3D Graphics 23-3

Running Demo3D Samples

23-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

24

JSR 211: Content Handler APl (CHAPI)

JSR 211 defines the Content Handler API (CHAPI). The basic concept is that MIDlets
can be launched in response to incoming content (files). Modern mobile phones can
receive content using SMS, infrared, Bluetooth, e-mail, and other methods. Most
content has an associated content type. CHAPI specifies a system by which MIDlets
can be launched in response to specific types of content.

See "Using Content Handlers" and "Running the CHAPIDemo Content Browser."

Using Content Handlers

In the Oracle Java ME SDK Content Handlers are integrated in a project as application
descriptors. Content Handlers you define are packaged with the application

Follow these steps to work with content handlers in the CHAPIDEMO sample
application (see "Running the CHAPIDemo Content Browser").

1. In the Projects window, right-click CHAPIDemo and select Properties from the
context menu.

2. In the Category pane, select Application Descriptor, and click the Content
Handlers tab.

3. In the Content Handlers table, each line in the list represents the settings for a
content handler.

Figure 24-1 The Content Handlers Tab

Akkributes || MIDlets | Push Registry || AP Permissions | Conkent Handlers

Conktent Handlers

kKey | Class (1] Types Suffixes

1 example, bext, TextWiewer example.kext. Te. .. |text,l'|:ulain ek ket
z example.image. Imageviewer |example.mage.I... |image,|'pngj imagegif |.prg; .gif

» To create a new content handler, press Add, or to edit an existing content
handler, press Edit. Both actions open the Content Handler Properties
window. See "Defining Content Handler Properties."

JSR 211: Content Handler APl (CHAPI) 24-1

Defining Content Handler Properties

= To adjust the order of the content handlers, select one and click Move Up and
Move Down. To remove a content handler from the list, select it and press
Remove.

= See Defining Content Handler Properties and "Running the CHAPIDemo
Content Browser."

Defining Content Handler Properties

In the Projects window, right-click a project and select Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Pressing Add or Edit opens the Content Handler Properties window.

Figure 24-2 The Content Handlers Properties Window

P Content Handler Properties x|

Content Handler I Actkions |

Class; |EEEua=s

10 Iexample.text.Text‘-.-‘iewer

Conkent bvpes:

kext/plain Add Type

Remove

Suffixes:

JExk add Suffix
fext
Remove

Access allowed ko

add Access

Remove

1NNl

(] 4 I Zancel | Help |

= In the Class field, choose a class name from the dropdown menu.

s IDis arequired identification string when you invoke a content handler and
control access.

= In Content types, list the content types for which this content handler is
responsible. Use Add Type and Remove to manage the list.

= In Suffixes, provide a list of URL suffixes that act as a substitute for an explicit
content type.

24-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running the CHAPIDemo Content Browser

s In Access allowed to, list IDs for content handlers that are allowed access to this
content handler. If the list is empty, access to this content handler is granted to
every content handler.

Defining Content Handler Actions

Content handler actions give invoking applications a choice about how to handle
content. An Action is associated with an existing content handler. An image viewer
content handler, for example, might include an action for viewing the image at its
original size and another action that makes the image fill the available screen space.

In the Projects window, right-click a project and select Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Press Add or Edit to open the Content Handler Properties window and
click the Actions tab, as shown here.

Figure 24-3 The Content Handlers Properties Window

P Content Handler Properties x|

Content Handler Ackions I

Locales:
en_LIS

add Action | Remove add Locale Remove

Localized Actions:

Open
en_ LS

(] 4 I Zancel Help

The Actions list contains the internal names of the actions for this content handler.
Locales is a list of all the locales for which human-readable action names are provided.
Localized Actions is a grid which contains the human-readable action names for
various locales. Each locale is represented by a row, while the actions are listed as
columns. You can see all the human-readable action names for a particular locale by
reading across a single row.

Running the CHAPIDemo Content Browser

This demo is a content browser that takes advantage of the content handler registry. It
enables you to view different types of content from different sources.

Note: For the demo to work this project must reside in the Java ME
SDK installation’s \apps subdirectory. You must create this directory
yourself. For example,

JSR 211: Content Handler APl (CHAPI) 24-3

Running the CHAPIDemo Content Browser

1. Click the File menu and select New Project.

2, In the Categories window select Samples > Java ME SDK 3.3 and single-click
CHAPIDemo. Click Next.

Save the CHAPIDemo sample project in installdir\apps directory; for example,
C:\Java_ME_platform_SDK_3.3\apps\CHAPIDemo. Click Finish.

3. Right-click the project and select Properties. Choose the Running category, and
select Execute through OTA and click OK.

Not all features of the demo are available if you choose the Run command.
Additionally, to see certain features of the demo, an HTTP server is required. The
server is located in the installdir\apps directory. Also the audio and video files are
located in the content directory, which must be located in the CHAPIDemo.
directory (installdir\apps\CHAPIDemo\content).

You might see security messages as CHAPIDemo registers itself.
4. Launch CHAPIDemo.

On the Favorite Links page, choose CHAPI Demo. Press Select or click the Menu
soft button and choose Go.

You might see a request for permission to use airtime. To speed up the demo
interaction, select "Ask once per application use" and select the Yes soft key (if you
do not check this option you can still use the demo but you see the airtime
message more frequently).

The Text Viewer displays a Media Player URL and links to various media files.
5. Install the Media Player to view media.

s Click the URL http:handlers/dist/MediaHandler.jad, or, use arrow keys to
highlight the URL and from Menu, select Go.

s The application asks, "Are you sure you want to install Media Handler?" Click
the Install soft key.

An authorization Information screen is displayed.
s Click the Install soft key.

The installation is confirmed and you are returned to the Text Viewer. The
Media Handler shows as a separate application in the AMS.

6. Select and view the different image, video, audio and text URLs.

Click on a link to open that media in the viewer, or, use arrows to highlight the
link, then select Go from the soft menu.

Select the Back soft key to return to the Text Viewer.

24-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

25

JSR 226: Scalable 2D Vector Graphics

JSR 226, Scalable 2D Vector Graphics for J2ME, supports rendering sophisticated and
interactive 2D content.

Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web
Consortium. It is an XML grammar for describing rich, interactive 2D graphics.

The Scalable Vector Graphics (SVG) 1.1 specification (available at
http://www.w3.org/TR/SVG11/) defines a language for describing
two-dimensional graphics in XML.

SVG Tiny (SVGT) is a subset of SVG that is appropriate for small devices such as
mobile phones. See http: //www.w3 .org/TR/SVGMobile/. SVGT is a compact, yet
powerful, XML format for describing rich, interactive, and animated 2D content.
Graphical elements can be logically grouped and identified by the SVG markup.

Java ME applications using SVG content can create graphical effects that adapt to the
display resolution and form factor of the user's display.

SVG images can be animated in two ways. One is to use declarative animation, as
illustrated in Section , "Play SVG Animation." The other is to repeatedly modify the
SVG image parameters (such as color or position), through API calls.

While it is possible to produce SVG content with a text editor, most people prefer to
use an authoring tool. Here are two possibilities:

s Inkscape: http://inkscape.org

= Adobe Illustrator:
http://www.adobe.com/products/illustrator/main.html

Running SVGDemo

SVG Browser

This project contains MIDlets that demonstrate different ways to load manipulate,
render, and play SVG content.

Click the File menu and select New Project and in the Categories window select
Samples then select Java ME SDK 3.3 and single-click SVGDemo. Click Next.

The SVGBrowser MIDlet displays SVG files residing in the phone file system. Before
running this demo, place an SVG file in your device skin's file structure. The default
location is:

username\ javame-sdk\3 .3 \work\devicename\appdb\filesystem\rootl

JSR 226: Scalable 2D Vector Graphics 25-1

Running SVGDemo

For your device location, see "Oracle Java ME SDK Directories" and Table 8-1. Launch
the demo. The application displays the contents of root1. Select your SVG file and
choose the Open soft key.

Render SVG Image

Render SVG Image loads an SVG image from a file and renders it. Looking at the
demo code you can see that the image is dynamically sized to exactly fit the display
area. The output is clear and sharp.

Play SVG Animation

This application plays an SVG animation depicting a Halloween greeting card. Press 8
to pause, 5 to start or resume, and 0 to stop.

The SVG file contains a description of how the various image elements evolve over
time to provide this short animation.

In the following code sample, the JSR 226 javax.microedition.m2g.SVGImage class is
used to load the SVG resource. Then, the javax.microedition.m2g.SVGAnimator class
can take all the complexity of SVG animations and provides a java.awt .Component or
javax.swing.JComponent which plays the animation. The SVGAnimator class provides
methods to play, pause, and stop the animation.

Example 25-1 SVG File Example

import javax.microedition.m2g.ScalableGraphics;
import javax.microedition.m2g.SVGImage;

String svgURI = ...;
SVGImage svgImage = (SVGImage) SVGImage.createImage (svgURI, null);
SVGAnimator svgAnimator = SVGAnimator.createAnimator (svgImage) ;

// If running a JSE applet, the target component is a JComponent.

JComponent svgAnimationComponent = (JComponent) svgAnimator.getTargetComponent () ;
svgAnimator.play();

svgAnimator.pause() ;

svgAnimator.stop() ;

Create SVG Image from Scratch

This demo builds an image using API calls. It creates an empty SVGImage, populates
it with a graphical content, and then displays that content.

Bouncing Balls

Bouncing Balls plays an SVG animation. Press 8 to play, 5 to start, and 0 to stop. If you
press 8, pressing 5 resumes the animation. If you press 0, pressing 5 starts the
animation from the beginning.

25-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running SVGDemo

Optimized Menu

In this demo, selected icons have a yellow border. As you move to a new icon, it
becomes selected and the previous icon flips to the unselected state. If you navigate off
the icon grid, selection loops around. That is, if the last icon in a row is selected,
moving right selects the first icon in the same row.

This demo illustrates the flexibility that combining Ul markup and Java offers: a rich
set of functionality (graphics, animations, high-end 2D rendering) and flexibility in
graphic manipulation, pre-rendering or playing.

In this example, a graphic artist delivered an SVG animation defining the transition
state for the menu icons, from the unselected state to the selected state. The program
renders each icon's animation sequence separately into off-screen buffers (for faster
rendering later on), using the JSR 226 APL

With buffering, the MIDlet adapts to the device display resolution (because the
graphics are defined in SVG format) and still retain the speed of bitmap rendering. In
addition, the MIDlet is still leveraging the SVG animation capabilities.

The task of defining the look of the menu items and their animation effect (the job of
the graphic artist and designer) is cleanly separated from the task of displaying the
menu and starting actions based on menu selection (the job of the developer). The two
can vary independently provided both the artist and the developer observe the SVG
document structure conventions.

Picture Decorator
In this sample you use the phone keys to add decorations to a photograph. The key

values are:

Key Action

1 key shrink

2 key next picture

3 key grow

4 key help

5 key horizontal flip

6 key vertical flip

7 key rotate counter-clockwise
8 key previous picture

9 key rotate clockwise

display picker options

This demo provides 16 pictures for you to decorate.
Use the 2 and 8 keys to page forward and back through the photos.

To decorate, press # to display the picker. Use the arrow keys to highlight a graphic
object. The highlighted object is enlarged. Press Select to choose the current graphic or
press the arrow keys to highlight a different graphic. Press Select again to add the
graphic to the photo. When the decoration is added you see a red + on the graphic,
indicating it is selected and can be moved, resized, and manipulated.

JSR 226: Scalable 2D Vector Graphics 25-3

Running SVGDemo

Figure 25-1 Adding a Graphic

Use the navigation arrows to move the graphic. Use 1 to shrink the graphic, and 3 to
enlarge the graphic. Use 5 or 6 to flip, and 7 or 9 to rotate. When you are satisfied with
the position, press Select. Look for a green triangle. This is a cursor. Use the navigation
keys to move the green triangle around the picture. When the cursor is over an object
it is highlighted with a red box. Press Select. The red + indicates the object is selected
and it can be manipulated or removed.

Figure 25-2 Highlighting a Graphic

To remove a decoration (a property), select an object, then click the Menu soft key and
choose Remove prop.

Location Based Service

Launch the application. A splash screen (also used as the help) appears. The initial
view is a map of your itinerary - a walk through San Francisco. The bay (in blue) is on
the right of your screen. Press 1 to start following the itinerary. The application zooms
in on your location on the map. Turn-by-turn directions appear in white boxes on the
horizontal axis. While the itinerary is running, Press 7 to rotate the map
counter-clockwise. Note, the map rotates and the text now appears on the vertical axis.
Press 7 again to restore the default orientation. Press 4 to display the help screen.

25-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running SVGContactList

Figure 25-3 A Location-Based Service Screen

Right on Drumm

Running SVGContactList

This application uses different skins to display the same contact list information and a
news banner. The skins feature different colors and fonts.

Select SVGContactlist(skin 1) or SVGContactlist(skin 2), then click Launch.

Use the up and down arrows to navigate the list of contacts. The selected name is
marked with a special character (a > or a dot) and is displayed in a larger font.

Press > or the select button to see more information for the selected name. When you
are in the detailed view you can traverse the detail entries using the up or down
arrows.

Press < or the select button to return to the contact list.

Press the left soft button to go back to the demos MIDlet list and view another skin.

JSR 226: Scalable 2D Vector Graphics 25-5

Running SVGContactList

25-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

26

JSR 239: Java Bindings for Open GL ES

JSR 239 provides a Java language interface to the open standard OpenGL ES graphics
APIL.

OpenGL ES is a standard API for 3D graphics, a subset of OpenGL, which is pervasive
on desktop computers.

Open GL Overview

JSR 239 defines the Java programming language bindings for two APIs, OpenGL for
Embedded Systems (OpenGL ES) and EGL. EGL is a standard platform interface layer.
Both OpenGL ES and EGL are developed by the Khronos Group
http://khronos.org/opengles/.

While JSR 184 (which is object oriented) requires high level functionality, OpenGL is a
low-level graphics library that is suited for accessing hardware accelerated 3D

graphics.

JSR 239: Java Bindings for Open GL ES 26-1

Open GL Overview

26-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

27

JSR 256: Mobile Sensor API Support

The JSR 256 Mobile Sensor API allows Java ME application developers to fetch data
from sensors. A sensor is any measurement data source. JSR 256 supports many
different types of sensor connections (wired, wireless, embedded, and more) but
Oracle Java ME SDK only provides preconfigured support for sensors embedded in a
device.

Sensors can vary from physical sensors such as magnetometers and accelerometers to
virtual sensors that combine and manipulate the data they have received from various
kinds of physical sensors. An example of a virtual sensor might be a level sensor
indicating the remaining charge in a battery or a field intensity sensor that measures
the reception level of the mobile network signal in a mobile phone.

The SDK GUI provides sensor simulation. The emulator's External Events Generator
Sensors tab enables you to run a script that simulates sensor data.

You can use the API available with the SDK to create a custom sensor implementation
with additional capabilities and support for different connection types.

The Sensors demonstration has two MIDlets, SensorBrowser and Marbles that
demonstrate the SDK's implementation of the Mobile Sensor APL

Creating a Mobile Sensor Project

The Mobile Sensor API is automatically included in version 3.3 CLDC projects. In
NetBeans, create a new Java ME Mobile Application, choose the CLDC version 3.3
platform, and specify a device that supports CLDC-1.1 and MIDP-2.1 (JavaMEPhonel
for example).

A sensor project freely detects sensors, but this does not imply you can get data from
the sensors you find. You might need to explicitly set permissions in your project so
you can interact with certain sensors. To see an example, open the Sensors sample
project. Right-click on Sensors and select Properties, choose the Application Descriptor
category, and select the API Permissions tab.

The following permissions work with the preconfigured embedded sensors shipped
with the SDK:

m Jjavax.microedition.io.Connector.sensor

Required to open a sensor connection and start measuring data.
m Javax.microedition.sensor.ProtectedSensor

Required to access a protected sensor.

m Jjavax.microedition.sensor.PrivateSensor

JSR 256: Mobile Sensor API Support 27-1

Using a Mobile Sensor Project

Required to access a private sensor.

A sensor is private or protected if the sensor's security property has the value private
or protected. The security property is an example of a sensor property you might
create for yourself in your own sensor configuration. You can create your own optional

properties using com. sun.javame.sensorN.proplist and

com. sun. javame. sensorN.prop.any_name, where N is the sensor number and any_
name is the name of your property. The security sensor property was created as

follows:

add security into proplist

com. sun.javame.sensor<N>.proplist: security

add security property value

com. sun. javame.sensor<N>.prop.security: private

Using a Mobile Sensor Project

The sample Sensor project can be installed over the air. To install the application into
the emulator right-click the Sensors project and select Properties, select the Running

category, select Execute through OTA, and click OK.

In the emulator window, click the Tools menus and select External Events Generator.
In the External Events Generator, click the Sensors tab. In this tabbed pane, you can
view all sensors currently available in the emulator, with the sensor ID, name, and
availability. If the sensor supports change to availability you can click on the check box
to change it. As mentioned earlier, the provided implementation does not support

availability change, but a custom implementation you create might do so.

When you select a sensor row the bottom of the dialog displays any custom sensor

controls. For example, the acceleration sensor, has three channels: axis_x, axis_y, and
axis_z. Each channel has a slider that changes the current channel value, and an edit
box you can use to input a value. The channel unit label is displayed on the far right.

Under the channels there is a script player control that enables you to play sensor
value events from a script file of the format discussed in "Creating a Sensor Script

File." See "SensorBrowser" for a description of how to use the Sensors demo.

Creating a Sensor Script File

27-2

To simulate sensor inputs, provide a sensor script. The file format is as follows:

Example 27-1 Sensor Script File Format Example

<sensors>
<value time="0">
<channel id="0" value="0" />
<channel id="1" value="0" />
</value>
<value time="100">
<sensor active="false"/>
</value>
<value time="100">
<channel id="0" value="-50" />
<channel id="1" value="10" />
<sensor active="true"/>
</value>
</sensors>

Oracle Java Micro Edition Software Development Kit Developer's Guide

SensorBrowser

marbles.xml in the Sensors project directory is an example of a sensor script file. The
attributes are as follows:

s The attribute time in the value tag is the delay from the previous command in
milliseconds.

s The channel tag sets the value of the channel with the specified id value, to value.
The channel ignores the id if the value of id is not specified or if the value is out of
the channel range.

» The sensor tag is a true or false value that makes the sensor available or
unavailable. The preconfigured sensors provided with this release are embedded,
so they cannot be deactivated. If you configure your own sensor that is not
embedded, it is possible to deactivate it.

SensorBrowser

The SensorBrowser application displays the sensor detail information for reach
channel defined for the demo.

1. In the emulator, select SensorBrowser and use the soft key to select Launch the
application.

Depending on your security settings you might see the warning: "Sensors" wants
to connect to sensor <#>. Is it OK to use sensor? For test purposes, select "Ask once
per application use" and choose the Yes soft button.

The emulator displays a list of sensors.
2. Use the navigation keys to highlight a sensor, then use the soft key to select Detail.

For example, the following screen shows the details for the acceleration sensor.

Figure 27-1 Acceleration Sensor Screen

Sensor detail: Acceleration Sen. .
Quantity: acceleration

Model: acceleration

Context type: user

Connection type: embedded

URL:
sensor.acceleration;contextType
=—user,model=acceleration
Description: Acceleration
Sensor

Channel: axis_xr

Back

Click Back, then click Exit to return to the application menu.

JSR 256: Mobile Sensor API Support 27-3

Marbles

Marbles

This demonstration uses the Marbles game to provide visual feedback for sensor
inputs provided in a script.

1.

From the application menu select Marbles and use the soft key to launch the
application.

In the emulator, click the Tools menu and select External Events Generator. Click
the Sensors tab to display a list of the sensors in this application.

Select the Acceleration Sensor row (ID 3).
Click the Browse button, and in the Sensors project directory select marbles.xml.

Observe the movement of the marbles on the emulator screen. On the external
events screen you can see the sliders move as the script runs. You can use the
familiar controls to play, pause, and stop the script.

27-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

28

JSR 257: Contactless Communication API

The Contactless Communication API (http://jcp.org/en/jsr/detail?id=257)
is a Java ME optional package that allows applications to access information on
contactless targets, such as Radio Frequency Identification (RFID) tags and bar codes.
RFID tags are often used in business for item identification, article surveillance, and
inventory. Each RFID tag contains a unique identification number used to identify a
tagged object.

Using the JSR 257 API, an RFID reader can be built into an Oracle Java Wireless Client
software phone stack, allowing the handset to read data from a tagged target and write
data back to it. RFID readers use the 13.56 MHz radio frequency and the
communication distance is usually less than 10 centimeters.

The Near Field Communication (NFC) Forum defines the NFC Data Exchange Format
(NDEF) data packaging format. NDEEF facilitates communication with an RFID tag, or
between one NFC device and another. The Contactless Communication API provides a
connection to any physical target that supports the NDEF standard, allowing
applications to exchange data with any target tagged with NDEF formatting,
regardless of actual physical type.

Using ContactlessDemo

The Oracle Java ME SDK provides a way to test contactless communication. The
MIDlet running on the emulator waits to detect an RFID tag. You can simulate the tag
communication using the emulator’s external events generator to detect and attach the
tag. You can use one of the tags included in the sample, or create tag files of your own,
as described in "Tag File Formats."

1. Launch the ContactlessDemo. The MIDlet registers the RFID tag listener, the
NDEF tag listener and the NDEF record listener, then notifies you that it is waiting
for a tag.

2. In the emulator, click the Tools menu and select External Events Generator. The
Contactless Communication tab is automatically displayed. In the external events
generator, the tag emulator supplies several tags by default: hello, nested, vcard,
jdts, jdts2, and ndefEmpty.

3. To test the connection, select an available tag and press the Attach tag.

In the emulator, the MIDlet notifies you that the NDEF target is detected, displays
the tag information, and prints the payload if it is a text record.

In the external events generator, press Detach tag to end the session.

Events are recorded in the log area. To clear the log, right-click and select Delete
Text. To clear the emulator screen press Clear.

JSR 257: Contactless Communication APl 28-1

Tag File Formats

4. To create your own tag, create a tag file according to the NDEF standard. For a
sample, see "Tag File Formats."

In the External Events Generator, press Create tag and browse to select your tag
file, and press Open. If the file is properly formed, the new tag is added to the
available tags list. To write protect the tag, select the tag and select the Locked
option. When a tag is locked, no data can be written to the tag.

Click Remove tag to remove any tag from the list. If it is a tag you created, the
original file on disk is not affected. If the default tags are removed, they reappear
when you restart the demo.

5. Optional. Instead of performing interactive actions in the external events
generator, you can use a script to do the same thing.

Create a file as directed in "Script Format." In the external events generator, click
the Browse button to locate your script, then press Play.

Tag File Formats

28-2

Tags are created in XML format in accordance with the NFC and NDEF standards. To
see how the sample files are formed, see:
installdir\toolkit-1lib\modules\emulator-ui-window-external-events\jsr257\conf
\tags.

A sample file with several records might look like this:

Example 28-1 Tag File Format Example

<?xml version="1.0" encoding="UTF-8"?>
<jsr257client>
<UID>12-CD-45-67-89-AB-CD</UID>

<TargetProperties>
<TargetProperty>NDEF</TargetProperty>
</TargetProperties>

<NDEFMessage>

<NDEFRecord>
<Format>MIME</Format>
<Name>text/plain</Name>
<Id>mimeid</Id>
<Payload>Hello, MIME World!</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>MIME</Format>
<Name>text/example</Name>
<Id>urn:company:product:ndef:payload:2</Id>
<Payload>payload2</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>EXTERNAL_RTD</Format>
<Name>urn:nfc:ext:oracle.com: typel</Name>
<Id></Id>
<Payload>payload3</Payload>

</NDEFRecord>

<NDEFRecord>
<Format>URI</Format>
<Name>urn: company :product : test_uri</Name>
<Id>urn:company:product:ndef:payload:4</Id>

Oracle Java Micro Edition Software Development Kit Developer's Guide

Script Format

<Payload>payload4/<Payload>
</NDEFRecord>
<NDEFRecord>
<Format>NFC_FORUM_RTD</Format>
<Name>urn:nfc:wkt : Sp</Name>
<Id></Id>
<Payload>smart-poster</Payload>
</NDEFRecord>
<NDEFRecord>
<Format>MIME</Format>
<Name>text /x-vCard</Name>
<Id>duke</Id>
<Payload>BEGIN:VCARD VERSION:2.1 FN:Oracle TEL:+1-650-506-7000
ADR:500 Oracle Parkway City:Redwood Shores
State:CA;94065 END:VCARD
</Payload>
</NDEFRecord>
</NDEFMessage>
</jsr257client>

Script Format

You can use the external events generator buttons to attach and detach a tag, or you
can write a script to perform these actions. The script syntax is as follows:

Example 28-2 Tag Script File Format Example

Comment:
this is a comment
Tag definition:
tag <tag name> <path to the tag xml file>
Attach tag:
attach <tag name>
Delay. Ensures the tag is attached before other actions.
wait <time in ms>
Print tag information:
print <tag name>
Detach tag:
detach <tag name>

This is a sample script:

Example 28-3 Tag Script Sample

tag C D:\MyTags\ccomtag.xml
attach C

print C

wait 10000

detach C

In the external events generator, click Browse and select the script file, then press Play
to run the script. The results are shown in the Log area. For example, if the sample
script calls the sample tag file in "Tag File Formats," the log output is as follows:

[18:24:10] Run Script: D:\JMESDKLocal\ccomtag.xml
[18:24:10] Define tag 2058 (C)

[18:24:10] Print 2058 (C)

[18:24:10] Attached tag 2058 (C)

[18:24:10] UID: 02-34-56-78-9A-BC-DE

Properties: NDEF

JSR 257: Contactless Communication APl 28-3

Script Format

NDEF message: 8 record(s)

#0: NDEF record: format=MIME, name=text/plain, id.length=2, payload.length=18
payload=Hello, MIME world!

#1: NDEF record: format=MIME, name=text/example, id.length=34, payload.length=8
payload=payload2

#2: NDEF record: format=EXTERNAL_RTD, name=oracle.com:typel, payload.length=8
payload=payload3

#3: NDEF record: format=URI, name=urn:company:product:test_uri, id.length=34,
payload.length=8

payload=payloadd

#4: NDEF record: format=EXTERNAL_RTD, name=company.com:typel, id.length=34,
payload.length=8

payload=payload5

#5: NDEF record: format=NFC_FORUM_RTD, name=Sp, payload.length=12
payload=smart-poster

#6: NDEF record: format=URI, name=message/http, id.length=3, payload.length=56
payload=http://www.oracle.com/technetwork/java/javame/index.html

#7: NDEF record: format=MIME, name=text/x-vCard, id.length=4, payload.length=122
payload=BEGIN:VCARD VERSION:2.1 FN:Oracle TEL:+1-650-506-7000

ADR:500 Oracle Parkway; City:Redwood Shores;State:CA;94065 END:VCARD

[18:24:10] Wait 10000ms

[18:24:20] Detached tag 2058 (C)

[18:24:20] Script finished.

[18:24:25] Received data for unknown tag 2,058

28-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

A

Installation and Runtime Security Guidelines

The Oracle Java ME SDK requires an execution model that makes certain networked
resources available for emulator execution. These required resources might include -
but are not limited to - a variety of communication capabilities between Java ME SDK
components.

Note: the Oracle Java ME SDK installation and runtime system is
fundamentally a developer system. It is not designed to guard against
any malicious attacks from outside intruders.

During execution, the Oracle Java ME SDK architecture can present an insecure
operating environment to the platform’s installation file system, as well as its runtime
environment. For this reason, it is critically important to observe the precautions
outlined in these guidelines when installing and running the Oracle Java ME SDK.

Maintaining Optimum Network Security

To maintain optimum network security, Oracle Java ME SDK can be installed and run
in a “closed” network operating environment, where the Oracle Java ME SDK system
is not connected directly to the Internet. Or, it can be connected to a secure company
Intranet environment that can reduce unwanted exposure to malicious intrusion.

An example of an Oracle Java ME SDK requirement for an Internet connection is when
wireless functionality requires a connection to the Internet to support communications
with the wireless network infrastructure that is part of a Java ME application execution
process. Whether or not an Internet connection is required depends on the particular
Java ME application running on Oracle Java ME SDK. For example, some Java ME
applications can use an HTTP connection.

In any case, if the Oracle Java ME SDK is open to any network access you must
observe the following precautions to protect valuable resources from malicious
intrusion:

= Installing the Java ME SDK Demos plugin is optional. Some sample projects use
network access and open ports. Because the sample code does not include
protection against malicious intrusion, you must ensure your environment is
secure if you choose to install and run the sample projects.

= Install the Oracle Java ME SDK behind a secure firewall that strictly limits
unauthorized network access to the Oracle Java ME SDK file system and services.
Limit access privileges to those that are required for Oracle Java ME SDK usage
while allowing all the bidirectional local network communications that are
necessary for Oracle Java ME SDK functionality. The firewall configuration must

Installation and Runtime Security Guidelines A-1

Maintaining Optimum Network Security

support these requirements to run the Oracle Java ME SDK while also addressing
them from a security standpoint.

= Follow the principle of “least privilege” by assigning the minimum set of system
access permissions required for installation and execution of the Oracle Java ME
SDK.

= Do not store any data sensitive information on the same file system that is hosting
the Oracle Java ME SDK.

s To maintain the maximum level of security, make sure the operating system
patches are up-to-date on the Oracle Java ME SDK host machine.

A-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

B

Tips for Legacy Toolkit Users

If you previously used the Sun Java Wireless Toolkit for CLDC or the CDC Toolkit, the
advice in "Quick Start" still applies. Although the user interface is quite different, the
project concept is similar.

The following tips apply legacy terms and ideas to the SDK.

Runtime focus is less on the project and more on device capabilities and the
emulation process.

In legacy toolkits you had to be careful to match the platforms, the APIs, and the
capability of the output device. The SDK handles this problem differently, but as
described in "Java ME Platforms," you should be sure that the emulator platform is
correct and a device profile is selected.

Clicking the green arrow runs the main project. If no project is set as the main
project, clicking the green arrow runs the current project. To set a main project,
click the Run menu, select Set Main Project, and select a project from the
dropdown menu. Alternatively, you can right-click any open project and select
run.

In the device selector (Tools > Java ME > Device Selector) you can test many
devices without changing the project properties. Right-click any device and choose
Run Project, Run via OTA, or Run JAR or JAD... and select a project, or in the
case of running a JAR or JAD, select the application’s JAR or JAD file. Only
projects that are compatible with the device are shown in the context menu.

Import applications from legacy toolkits to SDK projects. The installation of the
legacy toolkit must exist on the host machine. See "Import a Legacy MIDP Project,"
"Create a Platform for Legacy CDC Projects," and "Import a Legacy CDC Project."

Legacy toolkit settings are Application Descriptors in the SDK. Right-click a
project and select Properties. Choose the Application Descriptor category.

Legacy toolkit utilities are generally accessible from Tools > Java ME submenu in
the NetBeans IDE. For example, the WMA console, the Java ME SDK Update
Center and more can be started from the Tools > Java ME submenu.

For example, select Tools > Java ME > WMA Console in the NetBeans IDE to see
the WMA Console output.

CPU Profiler, Network Monitor, and Memory Monitor utilities can be accessed
from the Profile menu or by right-clicking a project and selecting Profile. See
Chapter 9, "Profiling Applications," Chapter 10, "Network Monitoring," and
Chapter 11, "Monitoring Memory" for information on running these utilities.

The emulator is familiar, but there are some fundamental differences.

Tips for Legacy Toolkit Users B-1

It is important to realize that the emulator is a remote process, and when it starts it
is independent of the build process running in NetBeans. Stopping the build
process or closing a project does not always affect the application running in the
emulator. You must be sure to terminate the application from the emulator. For
more on this topic, see "Running a Project” and "Working With Projects.”

In the Wireless Toolkit, you could simultaneously run multiple versions of a
device because the toolkit would increment the phone number automatically each
time you launched a project. Because the emulator is now a remote process, the
phone number is a unique property that must be set explicitly for the device
instance.

The emulator has additional display functionality. See "Emulator Features."

B-2 Product Title/BookTitle as a Variable

	Contents
	List of Examples
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Documents

	1 Before You Begin
	Installing the Java SE Platform
	Setting and Verifying Your Java SE PATH

	Installing the Java ME SDK Platform
	Installing and the Starting the NetBeans IDE

	2 Installing Plugins
	Downloading Oracle Java ME SDK Plugins
	Installing Oracle Java ME SDK Plugins
	Installing Plugins Using the Update Center
	Installing NetBeans Plugins Manually

	Verifying Your Installation
	Quick Start

	3 Platforms
	Emulation Platforms
	CLDC with MIDP
	IMP-NG
	CDC

	Managing Java Platforms
	Java ME Platforms
	Create a Platform for Legacy CDC Projects

	4 Using Sample Projects
	Creating a Sample Project
	Running a Project
	Troubleshooting
	Sample Project Overview
	Configuring the Web Browser and Proxy Settings
	Resolving Reference Problems
	Running MIDP and CLDC Sample Projects
	Running the AdvancedMultimediaSupplements Sample Project
	Image Effects
	Music Effects
	Camera
	Moving Helicopter

	Running the Demos Sample Project
	Colors
	Properties
	Http
	FontTestlet
	Stock
	Tickets
	ManyBalls
	MiniColor
	Chooser
	HttpExample
	HttpView
	PushExample

	Running FPDemo
	Running Games
	Running Network Demo
	Socket Demo
	Datagram Demo

	Running PhotoAlbum
	Running UIDemo

	Running IMP-NG Sample Projects
	Running the GPIODemo
	Running the GPIODemo on the Emulator
	Running the GPIODemo on the Reference Board

	Running the I2CDemo
	Running the NetworkDemoIMPNG
	Running NetworkDemoIMPNG on the Emulator
	Running NetworkDemoIMPNG on the Reference Board

	Running the PDAPDemoIMPNG
	Running the PDAPDemoIMPNG on the Emulator
	Running PDAPDemoIMPNG on the Reference Board

	Running the Pulse Counter (Data Collection) Demo
	Configuring a Pulse Counter
	Running the Light Tracker Demo
	Running the System Controller Demo

	5 Creating and Editing Projects
	Project Types
	MIDP Projects
	CDC Projects

	The Project Wizard
	Create a MIDP Project
	Create an IMP-NG Project
	Create a CDC Project
	Import a Legacy MIDP Project
	Import a Legacy CDC Project

	Working With Projects
	View Project Files
	Create a New MIDlet
	Add Files to a Project
	Search Project Files
	Debugging MIDP and IMP-NG Projects

	6 Viewing and Editing Project Properties
	General Project Properties
	Platform Selection
	Editing Application Descriptor Properties
	CDC Attributes
	MIDP Attributes
	Add an Attribute
	Edit an Attribute
	Remove an Attribute

	MIDlets
	Add a MIDlet
	Edit a MIDlet
	Remove a MIDlet
	Change MIDlet Display Order

	Push Registry
	Add a Push Registry Entry
	Enabling a Push Registry Entry
	Remove a Push Registry Entry
	Change Push Registry Display Order

	API Permissions
	Adding Permission Requests

	Building a Project
	Configuring Ant
	Compiling
	Adding Libraries and Resources
	Creating JAR and JAD Files (Packaging)
	Obfuscating
	Signing
	Signing CDC Projects
	Exporting a Key

	Running Settings
	MIDP Project Run Options
	CDC Project Run Options

	7 Working With Devices
	Emulators
	The Device Manager on Windows
	Starting an Emulator
	CLDC Application Management System

	Adding an External Device
	Viewing Device Properties
	Platform Properties
	Device Information
	Device Properties

	Setting Device Properties
	General
	Monitor
	SATSA
	Location Provider #1 and #2
	Bluetooth and OBEX

	Connecting to a UART Device
	Opening a Serial Port
	Running a Project from the Device Selector
	Running Projects Simultaneously on a Single Device
	Emulator Features
	Emulator Menus
	Application
	Device
	Messages
	Orientation

	Edit
	Tools
	External Events Generator

	View
	Help

	Using the Custom Device Editor
	Creating a Custom Device
	Managing Custom Devices
	IMP-NG Device Options
	General Purpose Input Output (GPIO)
	Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI)
	Memory-Mapped I/O (MMIO)

	8 Finding Files in the Multiple User Environment
	Switching Users
	Installation Directories
	NetBeans User Directories
	Oracle Java ME SDK Directories

	9 Profiling Applications
	Collecting and Saving Profiler Data in the IDE
	Loading a .nps File
	Importing a .prof File

	10 Network Monitoring
	Monitor Network Traffic
	Filter or Sort Messages
	Save and Load Network Monitor Information
	Clear the Message Tree

	11 Monitoring Memory
	Enabling Tracing
	Using the Memory Monitor
	Viewing a Session Snapshot

	12 Security and MIDlet Signing
	Security Domains
	Setting Security Domains
	Specify the Security Domain for an Emulator
	Specify the Security Domain for a Project

	Signing a Project
	Sign a CLDC Project With a Key Pair
	Sign a CDC Project

	Managing Keystores and Key Pairs
	Working With Keystores and Key Pairs
	Create a Keystore
	Add an Existing Keystore
	Create a New Key Pair
	Remove a Key Pair
	Import an Existing Key Pair

	Managing Root Certificates

	13 Command Line Reference
	Run the Device Manager
	Manage Device Addresses (device-address)
	Emulator Command Line Options
	MIDlet Options
	CDC Options
	Debugging and Tracing Options
	Command Line Profiling

	Build a Project from the Command Line
	Check Prerequisites
	Compile Class Files
	Preverify Class Files

	Packaging a MIDlet Suite (JAR and JAD)
	Command Line Security Features
	Change the Default Protection Domain
	Sign MIDlet Suites (jadtool)
	Manage Certificates (MEKeyTool)

	Generate Stubs (wscompile)

	14 Logs
	Device Manager Logs
	Device Instance Logs

	15 API Support
	JCP APIs
	Oracle APIs

	16 JSR 75: PDA Optional Packages
	FileConnection API
	PIM API
	Running PDAPDemo
	Browsing Files
	The PIM API

	17 JSR 82: Bluetooth and OBEX Support
	Setting OBEX and Bluetooth Properties
	Running the Bluetooth Demo
	Running the OBEX Demo

	18 JSR 135: Mobile Media API Support
	Media Types
	Media Capture

	MMAPI MIDlet Behavior
	Ring Tones
	Download Ring Tones
	Ring Tone Formats

	Running AudioDemo
	Running MMAPIDemos
	Simple Tones
	Simple Player
	Video
	Pausing Audio Test

	19 JSR 172: Web Services Support
	Generating Stub Files from WSDL Descriptors
	Creating a New Mobile Web Service Client
	Run JSR172Demo

	20 JSR 177: Smart Card Security (SATSA)
	Card Slots in the Emulator
	Adjusting Access Control
	Specifying PIN Properties
	Specifying Application Permissions
	Access Control File Example
	Running the SATSA Demo

	21 JSR 179: Location API Support
	Setting the Emulator's Location at Runtime
	Running the CityGuide Sample Project

	22 JSR 205: Wireless Messaging
	Using the WMA Console to Send and Receive Messages
	Launching the WMA Console
	WMA Console Interface
	Emulator Phone Numbers
	Sending a Text or Binary SMS Message
	Sending Text or Binary CBS Messages
	Sending MMS Messages
	Receiving Messages in the WMA Console

	Running WMADemo
	WMADemo Push Registry Values
	Running WMADemo OTA
	Sending SMS Messages From WMA Console to an Emulator and Back
	Sending CBS Messages from WMA Console to an Emulator
	Sending MMS Messages from WMA Console to an Emulator

	Running WMA Tool
	smsreceive, cbsreceive, and mmsreceive
	smssend
	cbssend
	mmssend

	23 JSR 184: Mobile 3D Graphics
	Choosing a Graphics Mode
	Immediate Mode
	Retained Mode

	Quality Versus Speed
	Content for Mobile 3D Graphics
	Running Demo3D Samples
	Life3D
	RetainedMode
	PogoRoo

	24 JSR 211: Content Handler API (CHAPI)
	Using Content Handlers
	Defining Content Handler Properties
	Defining Content Handler Actions
	Running the CHAPIDemo Content Browser

	25 JSR 226: Scalable 2D Vector Graphics
	Running SVGDemo
	SVG Browser
	Render SVG Image
	Play SVG Animation
	Create SVG Image from Scratch
	Bouncing Balls
	Optimized Menu
	Picture Decorator
	Location Based Service

	Running SVGContactList

	26 JSR 239: Java Bindings for Open GL ES
	Open GL Overview

	27 JSR 256: Mobile Sensor API Support
	Creating a Mobile Sensor Project
	Using a Mobile Sensor Project
	Creating a Sensor Script File
	SensorBrowser
	Marbles

	28 JSR 257: Contactless Communication API
	Using ContactlessDemo
	Tag File Formats
	Script Format

	A Installation and Runtime Security Guidelines
	Maintaining Optimum Network Security

	B Tips for Legacy Toolkit Users

