
Lightweight UI Toolkit

Developer's Guide

Release 1.5

E23376-03

April 2012

Describes how to use the Lightweight UI Toolkit (LWUIT)
library to create appealing graphical user interface
applications for mobile phones and other devices that
support MIDP 2.0.

Lightweight UI Toolkit, Release 1.5

E23376-03

Copyright © 2008, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

1 Introducing the Lightweight UI Toolkit Library

API Overview.. 1-1

Scope and Portability... 1-1

Events and Threading.. 1-3

2 Using Lightweight UI Toolkit Widgets

Component .. 2-1

Container.. 2-1

Form .. 2-1

Create and Set Up a Form Label .. 2-2

Button ... 2-4

RadioButton... 2-4

ButtonGroup ... 2-5

CheckBox ... 2-6

ComboBox.. 2-7

Tabs ... 2-9

TextArea.. 2-9

TextField .. 2-10

Calendar .. 2-11

Tickering ... 2-12

Bidi ... 2-12

Virtual Keyboard ... 2-13

Customizing the Virtual Keyboard.. 2-14

Changing the Virtual Keyboard Look and Feel.. 2-14

Adding a Language .. 2-14

Adding an Input Mode for Hebrew ... 2-14

Binding a Virtual Keyboard to a TextField ... 2-15

Adding Your Own Button to a TextField .. 2-15

3 Using Lists

Initializing a List .. 3-1

Creating a Model .. 3-1

ListModel... 3-1

DefaultListModel ... 3-1

List Cell Renderer... 3-2

ListCellRenderer... 3-2

DefaultListCellRenderer ... 3-2

Adding Items to and Removing Items From a List.. 3-3

List Events .. 3-3

Fixed Selection Feature.. 3-3

iv

Tickers in List .. 3-4

Generic List Cell Renderer ... 3-5

Mapping Components to Hashtable Entries.. 3-5

Focus for Tickering and Fisheye .. 3-5

Hashtable Sample... 3-6

4 Table and Tree

Table .. 4-1

Tree .. 4-2

Customizing the Tree ... 4-4

5 Using Dialogs

Dialog Types.. 5-1

Creating a Dialog.. 5-1

Return Types of Show Methods... 5-3

Non-Static Show Methods .. 5-3

Using the dispose() Method .. 5-3

Getting the User's Input from a Dialog... 5-3

6 Using Layout Managers

BorderLayout... 6-1

BoxLayout .. 6-2

X_AXIS... 6-2

Y_AXIS... 6-3

FlowLayout .. 6-4

GridLayout... 6-5

GroupLayout ... 6-6

Coordinate Layout .. 6-6

Table Layout .. 6-8

7 Using the Style Object

Color.. 7-1

Font.. 7-1

Transparency ... 7-1

Margin and Padding .. 7-1

Images ... 7-2

Borders.. 7-2

Bevel ... 7-2

Etched .. 7-3

Line... 7-3

Round... 7-3

Image.. 7-3

9 Part ... 7-4

3 Part ... 7-4

Horizontal/Vertical .. 7-4

Style Listener... 7-4

v

Painters ... 7-5

8 Theming

Basic Theming... 8-1

Look and Feel .. 8-3

9 Resources

Resource Elements ... 9-1

Building a Bundle... 9-1

Creating a Resource .. 9-1

Loading a Resource... 9-1

Image Resources... 9-2

Fonts ... 9-2

System Font.. 9-2

Dynamic Fonts... 9-3

Localization (L10N).. 9-3

Themes... 9-4

The LWUIT Resource Editor .. 9-4

Images and Animations .. 9-5

Fonts ... 9-6

Localization ... 9-7

Themes... 9-7

Example: Adding a New Theme... 9-8

Modifying Theme Entries ... 9-12

Data .. 9-13

Customizing the Preview ... 9-13

Known Issues.. 9-14

10 Painters

Using Painter .. 10-1

Painter Chain.. 10-2

Glass Pane... 10-2

11 LWUIT Implementation

LWUIT Class... 11-1

12 HTMLComponent

HTMLComponent Use Cases .. 12-1

Rendering Rich Text ... 12-1

Reading HTML and Enabling External Resources... 12-2

HTMLCallback .. 12-3

parsingError ... 12-3

pageStatusChanged ... 12-3

titleUpdated ... 12-4

linkClicked ... 12-4

vi

getLinkProperties ... 12-4

Auto Complete .. 12-4

Fonts ... 12-5

Default Font ... 12-5

System Fonts in HTMLComponent.. 12-5

Bitmap Fonts .. 12-5

Font Tags .. 12-6

Styles in HTMLComponent .. 12-7

Character Entities .. 12-8

HTMLComponent Settings ... 12-8

CSS Support ... 12-8

Implementing a DocumentRequestHandler.. 12-10

DocumentInfo .. 12-10

getUrl ... 12-11

getEncoding and setEncoding .. 12-11

getParams .. 12-11

getExpectedContentType and setExpectedContentType 12-11

getFullUrl or getBaseUrl .. 12-11

13 Using Transitions and Animations

Animation ... 13-1

Motion ... 13-1

Transition .. 13-1

Slide Transition.. 13-1

Fade Transition.. 13-3

14 Authoring Components

Painting ... 14-1

Sizing In Layout .. 14-2

Event Handling .. 14-3

Focus .. 14-3

The Painting Pipeline ... 14-4

Styling.. 14-4

Background... 14-6

Animating The Component .. 14-6

The Custom Component .. 14-7

15 Portability and Performance

Introduction .. 15-1

Performance .. 15-1

Memory .. 15-2

Encoded Images ... 15-2

Speed .. 15-3

Event Dispatch Thread (EDT) .. 15-3

LWUIT Performance.. 15-3

Device Bugs And Limitations ... 15-4

vii

Bugs... 15-4

Limitations ... 15-4

Resolution Independence .. 15-5

Input... 15-5

Soft Buttons .. 15-5

Back Button .. 15-6

Touch Screen Devices ... 15-6

Specific Device Issues .. 15-6

Motorola ... 15-6

Create a .cod File ... 15-6

Nokia S40.. 15-7

Sony Ericsson ... 15-7

General Portability Tip ... 15-7

A LWUIT Mini FAQ

Index

viii

ix

Preface

This document describes how to work with the Lightweight User Interface toolkit.

Before You Read This Document
This guide is intended for developers creating Mobile Information Device Profile
(MIDP) applications. This book is a tutorial in Lightweight UI Toolkit programming
over MIDP. You should already have basic knowledge about Java™ UI libraries (for
example, AWT and SWING) and understand how to use the Mobile Information
Device Profile (MIDP) and the Connected Limited Device Configuration (CLDC).

For current discussion of LWUIT issues, see these online resources:

n LWUIT home page: http://lwuit.java.net/

n LWUIT community discussion
forum: http://www.java.net/forums/mobile-embedded/lwuit

n LWUIT Blog: http://codename-1.blogspot.com/

If you need help getting started with the Java programming language, try the New to
Java Center:

http://www.oracle.com/technetwork/topics/newtojava/overview/index.html

For a quick start with MIDP programming, read Learning Path: Getting Started with
MIDP 2.0:

http://developers.sun.com/mobility/learn/midp/midp20/

The following sites provide technical documentation related to Java ME technology:

http://download.oracle.com/javame/

How This Document Is Organized
This guide contains the following chapters and appendices:

Chapter 1 introduces the Lightweight UI Toolkit library.

Chapter 2 describes how to use Lightweight UI Toolkit widgets.

Chapter 3 explains how to use Lists.

Chapter 4 descries the Table and Tree components.

Chapter 5 describes how to use Dialogs.

Chapter 6 shows how you can use Layouts.

Chapter 7 explains how to use the Style object.

Chapter 8 describes theme elements.

Chapter 9 describes the Resource Editor utility.

Chapter 10 explains how to use Painters.

Chapter 11 describes the LWUIT implementation,

Chapter 12 describes the HTMLComponent class.

x

Chapter 13 describes how to use Transitions and Animations.

Chapter 14 describes how to author a new component from scratch.

Chapter 15 discusses general and device-specific portability issues.

Appendix A summarizes frequently asked questions about LWUIT.

Shell Prompts

Typographic Conventions

Related Documentation
The following table lists documentation related to this product.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized. Replace
command-line variables with real
names or values.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

Note: Characters display differently depending on browser
settings. If characters do not display correctly, change the character
encoding in your browser to Unicode UTF-8.

Topic Title and URL

JSR 118,
MIDP 2.0

Mobile Information Device Profile

http://jcp.org/en/jsr/detail?id=118

JSR 139,
CLDC 1.1

Connected Limited Device Configuration

http://jcp.org/en/jsr/detail?id=139

JSR 184, 3D
Graphics

Mobile 3D Graphics API for J2ME

http://jcp.org/en/jsr/detail?id=184

AWT docs http://download.oracle.com/javase/6/docs/technotes/guides/awt/

xi

We Welcome Your Comments
We are interested in improving our documentation and welcomes your comments and
suggestions. Email your feedback to:

LWUIT_COMMUNITY_WW@ORACLE.COM

Swing docs http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html

Topic Title and URL

xii

API Overview

Introducing the Lightweight UI Toolkit Library 1-1

1Introducing the Lightweight UI Toolkit
Library

This book describes how to use the Lightweight UI Toolkit (LWUIT) library. The
Lightweight UI Toolkit library helps you create appealing graphical user interface
(GUI) applications for mobile phones and other devices that support MIDP 2.0.
Lightweight UI Toolkit supports visual components and other user interface (UI)
ingredients such as theming, transitions, animation and more.

After covering the basics of the Lightweight UI Toolkit, this book provides a walk
through of the various widgets and uses of the LWUIT packages.

1.1 API Overview
The Lightweight UI Toolkit is a lightweight widget library inspired by Swing but
designed for constrained devices such as mobile phones and set-top boxes.
Lightweight UI Toolkit supports pluggable theme-ability, a component and container
hierarchy, and abstraction of the underlying GUI toolkit. The term lightweight
indicates that the widgets in the library draw their state in Java source without native
peer rendering.

Internal interfaces and abstract classes provide abstraction of interfaces and APIs in
the underlying profile. This allows portability and a migration path for both current
and future devices and profiles. For example, Graphics would be an abstraction of the
graphics object in the underlying profile.

The Lightweight UI Toolkit library tries to avoid the "lowest common denominator"
mentality by implementing some features missing in the low-end platforms and taking
better advantage of high-end platforms. Figure 1–1 shows the widget class hierarchy.

Figure 1–1 Simplified Widget Class Hierarchy

1.1.1 Scope and Portability

The Lightweight UI Toolkit library is strictly a widget UI library and does not try to
abstract the underlying system services such as networking or storage. It also doesn't
try to solve other UI issues related to native graphics, etcetera.

API Overview

1-2 Lightweight UI Toolkit

To enable portability, the Lightweight UI Toolkit library implements its own thin layer
on top of the native system canvas and provides a widget abstraction. This abstraction
is achieved using several key classes that hide the system specific equivalents to said
classes, such as Graphics, Image and Font.

When working with the Lightweight UI Toolkit library it is critical to use the abstract
classes for everything. To avoid corruption, there is no way to access the "real"
underlying instances of these classes (for example,
javax.microedition.lwuit.Graphics).

LWUIT strives to enable great functionality on small devices that might be incapable of
anti-aliasing at runtime, or might choke under the weight of many images. To solve
these problems the LWUIT library ships with an optional resource file format that
improves resource utilization. For more details, see Chapter 9.

Example 1–1 Hello World for MIDP

This is a simple hello world example written on top of MIDP. All UI code making use
of the Lightweight UI Toolkit is compatible to other platforms such as CDC.1

However, this example is specifically for MIDP. For MIDP the application
management system (AMS) requires a MIDlet class to exist, where in a CDC
environment an Xlet would be expected (and in Java SE you would expect a main
class, and so forth).

import com.sun.lwuit.Display;

import com.sun.lwuit.Form;

import com.sun.lwuit.Label;

import com.sun.lwuit.layouts.BorderLayout;

import com.sun.lwuit.plaf.UIManager;

import com.sun.lwuit.util.Resources;

public class HelloMidlet extends javax.microedition.midlet.MIDlet {

 public void startApp() {

 //init the LWUIT Display

 Display.init(this);

 // Setting the application theme is discussed

 // later in the theme chapter and the resources chapter

 try {

 Resources r = Resources.open("/myresources.res");

 UIManager.getInstance().setThemeProps(

 r.getTheme(r.getThemeResourceNames()[0])

);

 } catch (java.io.IOException e) {

 }

 Form f = new Form();

 f.setTitle("Hello World");

 f.setLayout(new BorderLayout());

 f.addComponent(BorderLayout.CENTER, new Label("I am a Label"));

 f.show();

 }

 public void pauseApp() {

 }

1 As of this writing the CDC version of LWUIT required for this compatibility hasn't been
released to the public.

API Overview

Introducing the Lightweight UI Toolkit Library 1-3

 public void destroyApp(boolean unconditional) {

 }

}

Hello world looks like Figure 1–2.

Figure 1–2 Hello World

Notice in Example 1–1 that the very first line of code for any application using the
Lightweight UI Toolkit library must register the main class with the display. This
behavior is tool-specific. In MIDP there is not much you can do without a reference to
the parent MIDlet, so this operation must be performed in the beginning of the
application.

The creation of the UI code is left within the MIDlet for simplicity but it could be
separated to any class to allow full portability in any future platform to which the
Lightweight UI Toolkit library would be ported.

1.1.2 Events and Threading

For increased compatibility, the Lightweight UI Toolkit library completely handles and
encapsulates UI threading. It has a single main thread referred to as the "EDT"
(inspired by the Event Dispatch Thread in Swing and AWT). All events and paint calls
are dispatched using this thread. This guarantees that event and paint calls are
serialized and do not risk causing a threading issue. It also enables portability for
profiles that might have minor threading model inconsistencies. See the Display class
(com.sun.lwuit.Display in the API documentation) for further details about
integrating with the EDT and serializing calls on it.

API Overview

1-4 Lightweight UI Toolkit

Form

Using Lightweight UI Toolkit Widgets 2-1

2Using Lightweight UI Toolkit Widgets

This chapter introduces the LWUIT widgets and provides sample code for several
components.

2.1 Component
A Component is an object having a graphical representation that can be displayed on
the screen and can interact with the user. The buttons, check boxes, and radio buttons
in a typical graphical UI are all examples of a component. Component is the base class.
All the widgets in the Lightweight UI Toolkit library use the composite pattern in a
manner similar to the AWT Container and Component relationship.

2.2 Container
A Container is a composite pattern with a Component object. It enables nesting and
arranging multiple components using a pluggable layout manager architecture.
Containers can be nested one within the other to form elaborate UIs. Components
added to a container are tracked in a list. The order of the list defines the components'
front-to-back stacking order within the container. If you do not specify an index when
you add a component to a container, it is added to the end of the list (and hence to the
bottom of the stacking order).

2.3 Form
Form is a top-level component that serves as the root for the UI library. This Container
handles the title and menus and allows content to be placed between them. By default
the form's central content (the content pane) is scrollable. Form contains Title bar,
MenuBar and a ContentPane. Invocations of Form's addComponent method are
delegated to the content pane’s addComponent. The same applies to most composite
related methods (e.g. setLayout, getComponent and so forth).

The following code demonstrates creation and setup of a form.

Example 2–1 Form Setup and Creation;

// 1. Create a Form

Form mainForm = new Form("Form Title");

// 2. Set LayoutManager

mainForm.setLayout(new BorderLayout());

// 3. Add a Label to the center of Form content pane

mainForm.addComponent(BorderLayout.CENTER, new Label(“Hello World”));

// 4. Set Transitions animation of Fade

mainForm.setTransitionOutAnimator(CommonTransitions.createFade(400));

// 5. Add Command key

mainForm.addCommand(new Command("Run", 2));

// 6. Show it

mainForm.show();

Create and Set Up a Form Label

2-2 Lightweight UI Toolkit

The following notes correspond to the comments in Example 2–1.

1. The first line of code creates a form using a constructor that lets you set the form
title. The other frequently used form constructor is the no-argument constructor.

2. Next the code specifies the layout manager of the form. Layout managers are
discussed later in this guide.

3. The next bit of code adds a label to the form content pane. Adding components to
a Form (which is a Container) is done with addComponent(Component cmp) or
addComponent(Object constraints, Component cmp), where
constraints are the locations in the layout manager, BorderLayout.

4. A Transition is the movement effect action that occurs when switching between
forms. See the Transitions and Animation chapter.

5. Form has menus to emulate the device soft keys, for example. To set such a menu
bar item, command, use the addCommand(Command cmd) method. The
Commands are placed in the order they are added. If the Form has one Command
it is placed on the right. If the Form has two Commands the first one added is
placed on the left and the second one is placed on the right. If the Form has more
than two Commands the first one stays on the left and a Menu is added with all
the remaining Commands.

6. The show method displays the current form on the screen.

Figure 2–1 Form Element

2.4 Create and Set Up a Form Label
The Label widget can display a single line of text and/or an image and align them
using multiple options. If you need to create a component that displays a string, an
image, or both, you should use or extend Label. If the component is interactive and
has a specific state, a Button is the most suitable widget (instead of a label).

To create a Label, use one of the following calls:

Label textLabel = new Label("I am a Label"); // for a text label

Create and Set Up a Form Label

Using Lightweight UI Toolkit Widgets 2-3

Create an image for an icon label:

Image icon = Image.createImage("/images/duke.png");

Label imageLabel = new Label(icon);

Labels can be aligned to one of the following directions: CENTER, LEFT, RIGHT. LEFT
is the default. In addition the text can be aligned relative to the image position. Valid
values are TOP, BOTTOM, LEFT, RIGHT, where the default is RIGHT. To update the
text position use:

setTextPosition(int alignment);

Figure 2–2 displays three types of labels with text to icon alignment position of RIGHT.
The container is divided into three rows, and the label in each row is as wide as
possible. Figure 2–3 shows relative alignment, with the label below the icon.

Figure 2–2 Label With Text, Label With Icon, and Label with Text and Icon

Button

2-4 Lightweight UI Toolkit

Figure 2–3 Text to Icon Alignment Position of BOTTOM

2.5 Button
The Button component enables the GUI developer to receive action events when the
user focuses on the component and clicks. In some devices a button might be more
practical and usable than a command option. Button is the base class for several UI
widgets that accept click actions. It has three states: rollover, pressed, and the default
state. It can also have ActionListeners that react when the Button is clicked.

To get the user clicking event, you must implement an ActionListener, which is
notified each time the user clicks the button. The following code snippet creates an
action listener and changes the text on the button, every time the user clicks it.

final Button button = new Button("Old Text");

button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 button.setText("New Text");

 }

 });

Button extends Label, so you can create three type of buttons: text only, image only or
image and text button.

RadioButton

Using Lightweight UI Toolkit Widgets 2-5

Figure 2–4 Button With Text, Button With Icon, and Button With Text and Icon

2.6 RadioButton
RadioButton is a Button that maintains a selection state exclusively within a specific
ButtonGroup. Because RadioButton inherits from Button, radio buttons have all the
usual button characteristics, as discussed in Section 2.5, "Button". For example, you can
specify the image displayed in a radio button. Each time the user clicks a radio button
(even if it was already selected), the button fires an action event, just as in Button.

To create a RadioButton use:

RadioButton radioButton = new RadioButton(“Radio Button”);

Figure 2–5 shows the RadioButton this code produces.

ButtonGroup

2-6 Lightweight UI Toolkit

Figure 2–5 Sample Radio Button

2.7 ButtonGroup
The ButtonGroup component manages the selected and unselected states for a set of
RadioButtons. For the group, the ButtonGroup instance guarantees that only one
button can be selected at a time.

Initially, all RadioButtons in a ButtonGroup are unselected. Each ButtonGroup
maintains the selected index, and can get a specific RadioButton by calling
getRadioButton(int index).

The following code snippet creates a button group made of two RadioButtons.

Label radioButtonsLabel = new Label("RadioButton:");

....

RadioButton rb1 = new RadioButton("First RadioButton in Group 1");

RadioButton rb2 = new RadioButton("Second RadioButton in Group 1");

 ButtonGroup group1 = new ButtonGroup();

 group1.add(rb1);

 group1.add(rb2);

exampleContainer.addComponent(radioButtonsLabel);

exampleContainer.addComponent(rb1);

exampleContainer.addComponent(rb2);

The code snippet result is shown in Figure 2–6.

CheckBox

Using Lightweight UI Toolkit Widgets 2-7

Figure 2–6 RadioButton Group

2.8 CheckBox
Check boxes are similar to RadioButtons but their selection model is different, because
they can flip the selection state between selected and unselected modes. A group of
radio buttons, on the other hand, can have only one button selected. Because
CheckBox inherits from Button, check boxes have all the usual button characteristics,
as discussed in Section 2.5, "Button". For example, you can specify the image displayed
in a check box. Each time the user select a check box (even if it was already selected), it
fires an action event, just as in Button.

To create a CheckBox use:

final CheckBox checkBox = new CheckBox(“Check Box”);

This code produces the CheckBox shown in Figure 2–7.

To catch select and unselect events you can try this:

checkBox.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 if(checkBox.isSelected()) {

 System.out.println("CheckBox got selected");

 } else {

 System.out.println("CheckBox got unselected");

 }

 }

});

ComboBox

2-8 Lightweight UI Toolkit

Figure 2–7 CheckBox Sample

2.9 ComboBox
A combo box is a list that allows only one selection at a time. When a user clicks the
combo box button, a drop-down list of elements allows the user to select a single
element. The combo box is driven by the list model and allows all the renderer features
of the List as well.

Other components that can display one-of-many choices are groups of radio buttons,
check boxes, buttons, and lists. Groups of radio buttons are generally the easiest for
users to understand, but combo boxes can be more appropriate when space is limited
or more than a few choices are available. Lists are not always attractive, but they are
more appropriate than combo boxes when the number of items is large (say, over five).

The following code creates a combo box (a list model that is built from check boxes)
and sets it up:

String[] content = { "Red", "Blue", "Green", "Yellow" };

// 1. Creating the combo box

ComboBox comboBox = new ComboBox(content);

// 2. Setting a checkBox renderer

comboBox.setListCellRenderer(new checkBoxRenderer());

// 3. Adding a action listener to catch user clicking

// to open the ComboBox

comboBox.addActionListener(myActionListener......);

The following notes correspond to the comments in the code above.

1. This combo box code contains an array of strings, but you could just as easily use
labels instead.

ComboBox

Using Lightweight UI Toolkit Widgets 2-9

2. To put anything else into a combo box or to customize how the items in a combo
box look, you need to write a custom renderer.

3. The next line of code (which calls setListCellRender) registers an action listener on
the combo box.

The following is a sample of renderer code:

/**

 * Demonstrates implementation of a renderer derived from a CheckBox

 */

private static class checkBoxRenderer extends CheckBox implements ListCellRenderer

{

 /** Creates a new instance of checkBoxRenderer */

 public checkBoxRenderer() {

 super("");

 }

 // Setting the current check box text and status

 public Component getListCellRendererComponent(List list,

 Object value, int index, boolean isSelected) {

 setText("" + value);

 if (isSelected) {

 setFocus(true);

 setSelected(true);

 } else {

 setFocus(false);

 setSelected(false);

 }

 return this;

 }

 // Returning the list focus component

 public Component getListFocusComponent(List list) {

 setText("");

 setFocus(true);

 setSelected(true);

 return this;

 }

 }

The sample code produces the combo box in Figure 2–8.

Tabs

2-10 Lightweight UI Toolkit

Figure 2–8 Combo Box

2.10 Tabs
Tabs are containers that let the user switch between a group of components that all
share the same space by focusing on a tab with a title, an icon, or both. The user
chooses which component to view by selecting the tab corresponding to the desired
component.

To create a tab pane, instantiate Tabs, create the components you wish it to display,
and then add the components to the tabbed pane using the addTab or insertTab
methods. Tabs has the ability to remove tabs as well, by calling removeTabAt(int
index) at a given position index. A tab is represented by an index corresponding to
the position it was added in, where the first tab has an index equal to 0 and the last tab
has an index equal to the tab count minus 1.

If the tab count is greater than 0, then there is always a selected index, which by
default is initialized to the first tab. If the tab count is 0, then the selected index is -1.

Tabs has four different tab placement orientations. The default tab placement is set to
the TOP location. You can change the tab placement to LEFT, RIGHT, TOP or BOTTOM
using the setTabPlacement method.

The following code creates a pane with tab placement of bottom, and places a Label in
the center of the first (and only) tab.

Tabs tabs = new Tabs(Tabs.TOP);

tabs.addTab("Tab 1", new Label("I am a Tab!"));

tabs.addTab("Tab 2", new Label("Tab number 2"));

...

2.11 TextArea
The text area represents text that might be editable using the system native editor (it
might occur in a new screen). The native editor is used to enable complex input

TextField

Using Lightweight UI Toolkit Widgets 2-11

methods (such as T9) and application internationalization. The following code creates
and initializes the text area:

TextArea textArea = new TextArea(5, 20, TextArea.NUMERIC);

textArea.setEditable(false);

The first two arguments to the TextArea constructor are hints as to the number of rows
and columns, respectively, that the text area should display. The third one is a
constraint that is passed into the native text editor. Valid values can be one of ANY,
EMAILADDR, NUMERIC, PHONENUMBER, URL, or DECIMAL. In addition it can be bitwise
OR'd with one of PASSWORD, UNEDITABLE, SENSITIVE, NON_PREDICTIVE,
INITIAL_CAPS_SENTENCE, INITIAL_CAPS_WORD. For example, ANY |
PASSWORD. The default value is ANY. In the above example NUMERIC only allows the
user to type numbers.

Text areas are editable by default. The code setEditable(false) makes the text
area uneditable. It is still selectable, but the user cannot change the text area's contents
directly.

A 5 x 20 text area is shown in Figure 2–9.

Figure 2–9 Form With Text Area

2.12 TextField
TextArea doesn't always allow in-place editing on existing devices and doesn't provide
"fine grained control" over the input. This allows a text area to be lightweight, and
portable for all possible devices. These restrictions sometimes cause a poor user
experience because it requires users to go into a different screen for input (since all
input is handled natively by the device). From a developer standpoint the native input
can be a problem since it doesn't send change events and doesn't provide control over
allowed input.

LWUIT provides the TextField component to support direct mobile phone input from
within LWUIT. Unlike a TextArea, TextField is completely implemented in LWUIT.

Calendar

2-12 Lightweight UI Toolkit

Developers can override almost all of its features to provide deep customization (for
example, masked input, localization, and more).

TextField inherits the TextArea component and all of its features. It also supports
moving to the native text editor.

The constructor also accepts several arguments, similar to the TextArea component.

TextField also has some limitations:

n Does not support input in foreign locales unless you provide code for foreign
input

n Does not support device features, such as T9 input

n Might not correctly detect QWERTY devices

n Does not work on devices with unique keyboards, such as the Perl

Creating a text field is trivial:

TextField f = new TextField();

Figure 2–10 Sample Text Field

2.13 Calendar
The LWUIT calendar component allows users to pick a date using a monthly calendar
user interface. Use the calendar component to navigate and pick a date, as shown in
the following code:

Calendar cal = new Calendar();

Developers can monitor state changes within the calendar using a data change listener
or an action listener.

Bidi

Using Lightweight UI Toolkit Widgets 2-13

Figure 2–11 Calendar Component

2.14 Tickering
Label (and all its subclasses) includes ticker support. A ticker scrolls the content of a
long label across the screen. Ticker ability in labels is usually indicated by displaying
three dots "..." after the end of the label. When the label (button, checkbox, etcetera)
receives focus, these three dots disappear and the label starts animating like a stock
ticker.

A ticker can be started explicitly using a call to startTicker or stopTicker in
Label. It can also be prevented by invoking setTickerEnabled(false). To prevent
the three dots from appearing at the end of labels or components that support
tickering, use setEndsWith3Points(false).

2.15 Bidi
BiDi refers to bidirectional language support, generally used for right-to-left (RTL)
languages. There is plenty of information about RTL languages (Arabic, Hebrew,
Syriac, Thaana) on the internet, but as a brief primer here is a minor summary.

Most western languages are written from left to right (LTR), however some languages
are normally written from right to left (RTL). Speakers of these languages expect the
UI to flow in the opposite direction, otherwise it seems "weird" just like reading this
word in RTL would look: "driew" to most English speakers.

The problem posed by RTL languages is known as bi-directional) and not as RTL since
the "true" problem isn't the reversal of the writing/UI but rather the mixing of RTL
and LTR together. For example, numbers are always written from left to right (just like
in English) so in an RTL language the direction is from right to left and once we reach
a number or English text embedded in the middle of the sentence (such as a name) the
direction switches for a duration and is later restored.

LWUIT supports BiDi with the following components:

Virtual Keyboard

2-14 Lightweight UI Toolkit

n BiDi algorithm - allows converting between logical to visual representation for
rendering

n Global RTL flag- default flag for the entire application indicating the UI should
flow from right to left

n Individual RTL flag - flag indicating that the specific component/container should
be presented as an RTL/LTR component (for example, for displaying English
elements within an RTL UI).

n RTL text field input

n RTL text field input

n RTL bitmap font rendering

Most of LWUIT's RTL support is under the hood. The LookAndFeel global RTL flag
can be enabled using:

UIManager.getInstance().getLookAndFeel().setRTL(true)

(Notice that setting the RTL to true implicitly activates the BiDi algorithm).Once RTL is
activated all positions in LWUIT become reversed and the UI becomes a mirror of
itself. For example, a softkey placed on the left moves to the right, padding on the left
becomes padding on the right, the scroll moves to the left, etcetera.

This applies to the layout managers (except for group layout) and most components.
BiDi is mostly seamless in LWUIT but a developer still needs to be aware that his UI
might be mirrored for these cases.

2.16 Virtual Keyboard
LWUIT supports a lightweight Virtual Keyboard which is implemented with LWUIT’s
own components. The LWUIT virtual keyboard is used seamlessly where access to the
native virtual keyboard isn't possible (for example, MIDP).

Customizing the Virtual Keyboard

Using Lightweight UI Toolkit Widgets 2-15

2.17 Customizing the Virtual Keyboard
Since the Virtual Keyboard is a pure LWUIT component it can be customized in
various ways.

2.17.1 Changing the Virtual Keyboard Look and Feel

All Virtual Keyboard items can be customized from the resource editor. The associated
UI IDs are as follows:

2.17.2 Adding a Language

The following example demonstrates how to add an input mode that supports
Hebrew.

2.17.3 Adding an Input Mode for Hebrew

1. Create an array of String arrays in which each array represents a button’s column.

private static final String[][] DEFAULT_HEBREW = new String[][]{

 {"\u05e7", "\u05e8", "\u05d0", "\u05d8", "\u05d5", "\u05df", "\u05dd",

 "\u05e4", "$Delete$"},

 {"\u05e9", "\u05d3", "\u05d2", "\u05db", "\u05e2", "\u05d9", "\u05d7",

 "\u05dc", "\u05da"},

 {"\u05d6", "\u05e1", "\u05d1", "\u05d4", "\u05e0", "\u05de", "\u05e6",

 "\u05ea", "\u05e5"},

 {"$Mode$", "$Space$", "\u05E3", "OK"}

 };

2. Now extend the VirtualKeyboard and make sure the new language mode is added
when the VirtualKeyboard is initialized.

public static class HebrewK extends VirtualKeyboard {

 public HebrewK() {

 addInputMode("05d005d105d2", DEFAULT_HEBREW);

 setInputModeOrder(new String[]{"05d005d105d2", QWERTY_MODE,

 NUMBERS_SYMBOLS_MODE, NUMBERS_MODE, SYMBOLS_MODE

 });

 }

}

3. When calling the virtual keyboard, specify the HebrewK class to make it the
default:

VKBImplementationFactory.init(HebrewK.class);

Table 2–1 Virtual Keyboard User Interface IDs

VKB Customizes the Virtual Keyboard body.

VKBtooltip Customizes the popup tooltip.

VKBButton Customizes a regular button on the virtual keyboard (usually a char or
a string).

VKBSpecialButton Customizes the special buttons such as: ’Space’, ’SH’, etcetera.

VKBTextInput Customizes the textfield on the virtual keyboard.

Customizing the Virtual Keyboard

2-16 Lightweight UI Toolkit

2.17.4 Binding a Virtual Keyboard to a TextField

In some cases a TexField should accept only numbers, therefore launching the regular
VirtualKeyboard is a mistake. What we need to do is to create a “numbers only”
VirtualKeyboard and launch it for a specific TextField.

TextField txt = new TextField();

txt.setConstraint(TextField.NUMERIC);

txt.setInputModeOrder(new String[]{"123"});

txt.setInputMode("123");

VirtualKeyboard vkb = new VirtualKeyboard();

vkb.setInputModeOrder(new String[]{VirtualKeyboard.NUMBERS_MODE});

VirtualKeyboard.bindVirtualKeyboard(txt, vkb);

2.17.5 Adding Your Own Button to a TextField

There are several use cases where you would want to place your own buttons on a
specific Virtual Keyboard. For example if you are asking the user to insert input for a
search field you might want a "search" command instead of the regular "ok" command
that when pressed automatically invokes a submit action to the network.To
accomplish that you must create a new virtual keyboard, declare your own input
buttons, and to add your own special button to be part of the virtual keyboard. (By
default the Virtual Keyboard understands only the following special keys: "Shift",
"Delete", "T9", "Mode", "Space", and "OK").

The following example declares a new input with a new special button "Search".

String[][] SEARCH_QWERTY = new String[][]{

 {"q", "w", "e", "r", "t", "y", "u", "i", "o", "p"},

Customizing the Virtual Keyboard

Using Lightweight UI Toolkit Widgets 2-17

 {"a", "s", "d", "f", "g", "h", "j", "k", "l"},

 {"$Shift$", "z", "x", "c", "v", "b", "n", "m", "$Delete$"},

 {"$Mode$", "$Space$", "$Search$"}

};

VirtualKeyboard vkb = new VirtualKeyboard();

//add the new input mode

 vkb.addInputMode("ABC_S", SEARCH_QWERTY);

 vkb.setInputModeOrder(new String[]{"ABC_S"});

//add the new special button to the vkb

 vkb.addSpecialButton("Search", new Command("Search") {

 public void actionPerformed(ActionEvent evt) {

 //search logic...

 }

});

//bind the vkb to the textfield

VirtualKeyboard.bindVirtualKeyboard(txt, vkb);

f.addComponent(txt);

Customizing the Virtual Keyboard

2-18 Lightweight UI Toolkit

Creating a Model

Using Lists 3-1

3Using Lists

Because screen size is limited, lists are the most common basic UI widget on devices. A
List presents the user with a group of items displayed in a single column. The set of
elements is rendered using a ListCellRenderer and is extracted using the ListModel.
Swing’s Model/View/Controller architecture (MVC) makes it possible for a list to
represent many UI concepts ranging from a carousel to a To-Do checklist. A list
component is relatively simple. It invokes the model in order to extract the displayed
or selected information and invokes the cell renderer to show it to the user. The list
class itself is completely decoupled from everything, so you can extract its content
from any source (for example, the network, storage etcetera) and display the
information in any form (for example, Checkboxes, Strings, Icons, and so forth).

3.1 Initializing a List
You can create a list in one of four ways:

3.2 Creating a Model
There are two ways to create a list model:

3.2.1 ListModel

Represents the data structure of the list, thus allowing a list to represent any potential
data source by referencing different implementations of this interface. For example, a
list model can be implemented in such a way that it retrieves data directly from
storage (although caching is recommended). It is the responsibility of the list to notify
observers (specifically the view List of any changes to its state (items removed, added,
or changed, and so forth) thus the data is updated on the view.

3.2.2 DefaultListModel

The following code demonstrates using the DefaultListModel class with a vector of
elements.

// Create a set of items

String[] items = { "Red", "Blue", "Green", "Yellow" };

List() Creates a new instance of List with an empty default model.

List(ListModel model) Creates a new instance of List with the given model.

List(Object[] items) Creates a new instance of List with an array of Objects that are
placed into the list model.

List(Vector items) Creates a new instance of List where a set of items are placed
into the list model.

ListModel Implement the list model interface (use a general purpose
implementation of the list model interface derived from the
DefaultListModel)

DefaultListModel Everything is taken care of for you.

List Cell Renderer

3-2 Lightweight UI Toolkit

// Initialize a default list model with “item” inside

DefaultListModel myListModel = new DefaultListModel(items);

// Creating a List with “myListModel”

3.3 List Cell Renderer
A list uses an object called a cell renderer to display each of its items. The default cell
renderer knows how to display strings and icons and it displays Objects by invoking
toString. If you want to change the way the default renderer display icons or strings,
or if you want behavior different than what is provided by toString, you can
implement a custom cell renderer. You can create a list renderer using ListCellRenderer
or DefaultListCellRenderer:

n Section 3.3.1, "ListCellRenderer"

n Section 3.3.2, "DefaultListCellRenderer"

3.3.1 ListCellRenderer

ListCellRenderer is a "rubber stamp" tool that allows you to extract a renderer instance
(often the same component instance for all invocations) that is initialized to the value
of the current item. The renderer instance is used to paint the list and is discarded
when the list is complete.

An instance of a renderer can be developed as follows:

public class MyYesNoRenderer extends Label implements ListCellRenderer {

 public Component getListCellRendererComponent(List list,

 Object value, int index, boolean isSelected) {

 if(((Boolean)value).booleanValue()) {

 setText("Yes");

 } else {

 setText("No");

 }

 return this;

 }

 public Component getListFocusComponent(List list) {

 Label label = new label("");

 label.getStyle().setBgTransparency(100);

 return label;

 }

}

It is best that the component whose values are manipulated does not support features
such as repaint(). This is accomplished by overriding repaint in the subclass with
an empty implementation. This is advised for performance reasons, otherwise every
change made to the component might trigger a repaint that wouldn't do anything but
still cost in terms of processing.

3.3.2 DefaultListCellRenderer

The DefaultListCellRender is the default implementation of the renderer based on a
Label and the ListCellRenderer interface.

List Events

Using Lists 3-3

3.4 Adding Items to and Removing Items From a List
You can add items to a list in one of two ways. The first way is to create a ListModel
and add it to the list, either when initiating a List or using the method
setModel(ListModel model). To remove an item or all items from a List, use
removeItem(int index) or removeAll() methods. For example:

// Adding to a list using above DefaultListModel snipped code or:

....

myListModel.addItem(“New Item”);

// Removing is done by

....

myListModel.removeItem(index);

// or

myListModel.removeAll();

3.5 List Events
Two types of events are supported here, ActionEvent and SelectionsListener in
addition to addFocusListener(FocusListener l) that is inherited from
Component. ActionEvent binds a listener to the user selection action, and the
SelectionListener is bound to the List model selection listener. The listener bindings
mean you can track changes in values inside the Model.

3.5.1 Fixed Selection Feature

The fixed selection feature supports a dynamic versus static item movement in a List.
In a Java SE environment the list items are typically static and the selection indicator
travels up and down the list, highlighting the currently selected item. The
Lightweight UI Toolkit introduces a new animation feature that lets the selection be
static while the items move dynamically up and down. To indicate the fixed selection
type, use setFixedSelection(int fixedSelection) where fixedSelection
can be one of the following:

getListCellRendererComponent(

)

Returns a component instance that is already set to renderer "value".
While it is not a requirement, many renderers often derive from a
component (such as a label) and return "this".

getListFocusComponent() Returns a component instance that paints the list focus item. When the
selection moves, this component is drawn above the list items. It’s best
to give some level of transparency (see code example in Section 3.3.1,
"ListCellRenderer"). Once the focused item reaches the cell location then
this Component is drawn under the selected item.

Note: To emulate this animation, call
List.setSmoothScrolling(true). This method is optional an
implementation can choose to return null

FIXED_NONE Behave as the normal (Java SE) List behaves. List items are static and the
selection indicator travels up and down the list, highlighting the currently
selected item.

FIXED_TRAIL The last visible item in the list is static and list items move up and down.

FIXED_LEAD The first item in the list is static and list items move up and down.

FIXED_CENTER The middle item in the list is static and list items are move up and down.

Tickers in List

3-4 Lightweight UI Toolkit

3.6 Tickers in List
Because list items are essentially rendered as a rubber stamp they can't be treated as
typical LWUIT components. Things such as binding event listeners to the components
in the list won't work since the list reuses the same component to draw all the entries.

Features such as tickering an individual cell are often requested and the solution isn't
trivial because what we need to do is essentially "ticker the List" not the renderer.

The sample below tickers a renderer by registering itself as an animation in the parent
form and calling the list's repaint method to ticker. Notice that it has a separate entry
for the selected list item otherwise the entire content of the list would constantly ticker.

Example 3–1 Tickering a Renderer

class TickerRenderer extends DefaultListCellRenderer {

 private DefaultListCellRenderer selectedRenderer = new

 DefaultListCellRenderer(false);

 private List parentList; public TickerRenderer()

 super(false);

 }

 public boolean animate() {

 if(parentList != null && parentList.getComponentForm() != null) {

 if(selectedRenderer.isTickerRunning()) {

 if(selectedRenderer.animate()) {

 parentList.repaint();

 }

 }

 }

 return super.animate()

 }

 public Component getListCellRendererComponent(List list, Object value, int

 index, boolean isSelected) {

 if(isSelected) { selectedRenderer.getListCellRendererComponent(list, value, index,

 isSelected);

 // sometimes the list asks for a dummy selected value for size

 // calculations and this might break the tickering state

 if(index == list.getSelectedIndex()) {

 if(selectedRenderer.shouldTickerStart()) {

 if(!selectedRenderer.isTickerRunning()) {

 parentList = list;

 list.getComponentForm().registerAnimated(this);

 selectedRenderer.startTicker(UIManager.getInstance().

 getLookAndFeel().getTickerSpeed(), true);

 } } else {

 if(selectedRenderer.isTickerRunning()) {

 selectedRenderer.stopTicker();

 }

 }

 }

 return selectedRenderer;

 } else {

 return super.getListCellRendererComponent(list,value,index,

isSelected);

 }

 }

}

Generic List Cell Renderer

Using Lists 3-5

3.7 Generic List Cell Renderer
GenericListCellRenderer is a renderer designed to be as simple to use as a
Component-Container hierarchy. This single class supports most of the common use
cases. To GenericListCellRenderer assumes the model contains only Hashtable
objects. Since Hashtables can contain arbitrary data, the list model is still quite
generic and allows application-specific data storage. Furthermore, a Hashtable can
still be derived and extended to provide domain-specific business logic.

3.7.1 Mapping Components to Hashtable Entries

The GenericListCellRenderer accepts two Container instances and maps them to
individual Hashtable entries within the model by finding the appropriate
components within the given Container hierarchy.

Components are mapped to the Hashtable entries based on the name property of the
component (getName , setName) and the key value within the Hashtable.

Assume a model that contains a Hashtable entry like this:

"Foo": "Bar"

"X": "Y"

"Not": "Applicable"

"Number": Integer(1)

In this model a renderer loops over the component hierarchy in the Container
searching for components whose name matches Foo, X, Not and Number and assigns
the appropriate value to them. Notice that if you use image objects as values they are
assigned to labels as expected. You can't assign both an image and text to a single label
because a key takes only one object. Two labels can be used quite easily in this case.

Even better, the renderer supports list tickering when appropriate, and if a CheckBox
appears within the renderer it seamlessly toggles a boolean flag within the Hashtable.

If a value is missing from the Hashtable it is treated as empty and the component is
reset. This is an issue if you hardcode an image or text within the renderer and you
don't want it replaced. To ensure a component is preserved, use the setName property
to append Fixed to the name. For example: Given an address, specify:

address.setName("addressFixed");

Naming a component within the renderer with $number will automatically set it as a
counter component for the offset of the component within the list. For example:

c.mycomponent("Idate$1");

Styling the GenericListCellRenderer is slightly different. The renderer uses the UIID of
the Container passed to the generic list cell renderer and the background focus uses
that same UIID with the word "Focus" appended. For example:

c.setUIID("ListRendererFocused");

3.7.2 Focus for Tickering and Fisheye

It is important to notice that the generic list cell renderer will grant focus to the child
components of the selected entry if they are focusable, thus changing the style of said
entries. For example, a Container might have a child label that has one style when the
parent Container is unselected and another when it is selected (focused). This can be
easily achieved by defining the label as focusable. Notice that the component will
never receive direct focus since it is still a part of a renderer.

Generic List Cell Renderer

3-6 Lightweight UI Toolkit

Because the generic list cell renderer accepts two or four instances of a Container, the
renderer can treat the selected entry differently which is very important for tickering.

It might not be practical to seamlessly clone the Container instances for the renderer's
needs, so LWUIT expects the developer to provide two separate instances. This is
essential for tickering; there must be separate instances, even if they are identical.

The renderer also supports a fisheye effect in which the selected entry is actually
different from the unselected entry in its structure. This behavior supports a pinstripe
effect where odd and even rows can have different styles. For example to get a
pinstripe effect, provide 4 instances of the Containers and selected and unselected
values for odd and even rows.

3.7.3 Hashtable Sample

The best way to learn about the generic list cell renderer and the Hashtable model is
by playing with them in the GUI builder, however they can be used in code without
any dependency on the GUI builder.

Example 3–2 List With Checkboxes

Here is a simple sample for a list with checkboxes that get updated automatically:

List list = new List(createGenericListCellRendererModelData());

list.setRenderer(new GenericListCellRenderer(createGenericRendererContainer(),

createGenericRendererContainer()));

private Container createGenericRendererContainer() {

Container c = new Container(new BorderLayout());

c.setUIID("ListRenderer");

Label name = new Label();

name.setFocusable(true);

name.setName("Name");

c.addComponent(BorderLayout.CENTER, name);

Label surname = new Label();

surname.setFocusable(true);

surname.setName("Surname");

c.addComponent(BorderLayout.SOUTH, surname);

CheckBox selected = new CheckBox();

selected.setName("Selected");

selected.setFocusable(true);

c.addComponent(BorderLayout.WEST, selected);

return c;

}

private Hashtable[] createGenericListCellRendererModelData() {

Hashtable[] data = new Hashtable[5];

data[0] = new Hashtable();

data[0].put("Name", "Shai");

data[0].put("Surname", "Almog");

data[0].put("Selected", Boolean.TRUE);

data[1] = new Hashtable();

data[1].put("Name", "Chen");

data[1].put("Surname", "Fishbein");

data[1].put("Selected", Boolean.TRUE);

data[2] = new Hashtable();

data[2].put("Name", "Ofir");

data[2].put("Surname", "Leitner");

data[3] = new Hashtable();

data[3].put("Name", "Yaniv");

data[3].put("Surname", "Vakarat");

Generic List Cell Renderer

Using Lists 3-7

data[4] = new Hashtable();

data[4].put("Name", "Meirav");

data[4].put("Surname", "Nachmanovitch");

return data;

}

Generic List Cell Renderer

3-8 Lightweight UI Toolkit

Table

Table and Tree 4-1

4Table and Tree

Unlike the list that uses the render approach to create exceptionally large lists without
much of an overhead, the tree and table are more "stateful" components and use a
more conventional approach of nesting components.

To create a table instance a developer needs to first instantiate a model with the data
and then create a table as follows:

4.1 Table
A table is an editable grid component with variable sizes for its entries. Entries can be
editable or not. Just like the list, the table has a model (TableModel) and a default
model implementation (DefaultTableModel).

To create a table instance a developer needs to first instantiate a model with the data
and then create a table as follows:

TableModel model = new DefaultTableModel(new String[] {

 "Col 1", "Col 2", "Col 3"}, new Object[][] {

 {"Row 1", "Row A", "Row X"}, {"Row 2", "Row B", "Row Y"},

 {"Row 3", "Row C", "Row Z"},

 {"Row 4", "Row D", "Row K"},

});

Table table = new Table(model);

Figure 4–1 Sample Table

A cell can be made editable by overriding the isCellEditable method of the model
as follows:

public boolean isCellEditable(int row, int col) {

Tree

4-2 Lightweight UI Toolkit

 return col != 0;

}

The table component contains a few more elaborate features such as the ability to span
columns and rows and determine their width or height as percentage of available
space. A table can be made to scroll on the X axis as well by setting it to
setScrollableX(true), in which case it can "grow" beyond the screen size.

To control the "rendering", the way in which a table creates the cells within it one
needs to derive the table itself and override the method createCell as such:

Table table = new Table(model) {

 protected Component createCell(Object value, int row, int column, boolean

editable) {

 // custom code for creating a table cell

 ...

 }

};

Notice that components created using createCell are "live" for the duration of the
table's existence and are able to receive events and animate. They also occupy
resources for the duration of the table’s existence.

4.2 Tree
The LWUIT tree is remarkably similar to the table in its design. It however represents a
hierarchical view of data such as a filesystem. In that sense a tree is must be provided
with a model to represent the underlying data. It is assumed that the underlying data
is already "hierarchic" in its nature, such as a corporate structure or a file system.

The tree model exists as an interface for this reason alone. Building it as a class doesn't
make sense for the common use case of a domain specific data model. To create a tree
model one must implement the two methods in the interface: getChildren and
isLeaf.

getChildren is the "heavy lifter" within the interface. It has one argument for the
parent node and returns the children of this node as a vector. This method is called
with a null argument for its parent representing the "root" of the tree (which isn't
displayed). From that point forward all calls to the method will be with objects
returned via this method (which are not leafs).

isLeaf is trivial. It just indicates whether the object within a tree is a leaf node that
has no children and can't be expanded.

Tree

Table and Tree 4-3

Figure 4–2 Tree Sample

For example, the Tree would invoke getChildren(null) and receive back the
String's "X", "Y' and "Z" within the return vector. It would then call isLeaf("X"),
isLeaf("Y"), isLeaf("Z") and render the tree appropriately (as parent nodes or
as leafs based on the response to isLeaf).

If the user clicks the "X" node and it is not a leaf the tree expands to contain (in
addition to the existing nodes) the response for getChildren("X") as subnodes of
"X".

Most of the code below relates to the model. It would be more domain specific for any
specific case.

class Node {

 Object[] children;

 String value;

 public Node(String value, Object[] children) {

 this.children = children;

 this.value = value;

 }

 public String toString() {

 return value;

 }

}

TreeModel model = new TreeModel() {

 Node[] sillyTree = {

 new Node("X", new Node[] {

 new Node("Child 1", new Node[] {

 }),

 new Node("Child 2", new Node[] {

 }),

 new Node("Child 3", new Node[] {

 }),

 }),

Customizing the Tree

4-4 Lightweight UI Toolkit

 new Node("Y", new Node[] {

 new Node("A", new Node[] {

 })

 }),

 new Node("Z", new Node[] {

 new Node("A", new Node[] {

 }),

 }),

 };

 public Vector getChildren(Object parent) {

 Node n = (Node)parent;

 Object[] nodes;

 if(parent == null) {

 nodes = sillyTree;

 } else {

 nodes = n.children;

 }

 Vector v = new Vector();

 for(int iter = 0 ; iter < nodes.length ; iter++) {

 v.addElement(nodes[iter]);

 }

 return v;

 }

 public boolean isLeaf(Object node) {

 Node n = (Node)node;

 return n.children == null || n.children.length == 0;

 }

};

Form treeForm = new Form("Tree");

treeForm.setLayout(new BorderLayout());

treeForm.addComponent(BorderLayout.CENTER, new Tree(model));

treeForm.show();

4.3 Customizing the Tree
The tree has special static methods to determine icons appropriate for expanded or
folded folder and leaf nodes: setFolderOpenIcon(Image),
setFolderIcon(Image), setNodeIcon(Image).

Besides that, one can derive the tree component and override the
createNodeComponent method to customize the returned component in any
desired way.

Creating a Dialog

Using Dialogs 5-1

5Using Dialogs

A Dialog is a form that occupies a part of the screen as a top level component. By
default dialogs always appear as a modal entity to the user. Modality indicates that a
dialog blocks the calling thread even if the calling thread is the Event Dispatcher Thread
(EDT). Dialogs allow us to prompt users for information and rely on the information
being returned as a response after the dialog show method. Each Dialog has a body
that is located in the center of the dialog. The Body can contain a component, so you
can use your own customer component or pre-built container.

5.1 Dialog Types
For better user experience, dialogs have five types of alerts. The alert type indicates a
sound to play or an icon to display if none is explicitly set:

n ALARM

n CONFIRMATION

n ERROR

n INFO

n WARNING

By default the alerts are set to play the device alert sounds.

Icons are not currently provided by default, but you can manually add them to
customized dialogs. Icons can be used to indicate the alert state, similar to JDialog
icons in Swing. See
http://java.sun.com/docs/books/tutorial/uiswing/components/dialog.html
(http://java.sun.com/docs/books/tutorial/uiswing/components/dial
og.html).

5.2 Creating a Dialog
To create and show a dialog you can do the following:

n Create and show the dialog using one of the static show methods.

n Use new Dialog() and invoke its show() method. The static methods are only
helpers.

The arguments to all of the show methods are standardized, though the number of
arguments for each method varies. The static show methods provide support for
laying out standard dialogs, providing icons, specifying the dialog title and text, and
customizing the button text.

The following list describes each argument. To see the exact list of arguments for a
particular method, see the Dialog API in the API documentation located in
install-dir/docs/api/lwuit.

n String title

Note: A modal dialog does not release the block until a dispose
method is called. For example, calling show() from another form
does not release the block.

Creating a Dialog

5-2 Lightweight UI Toolkit

The title of the dialog.

n Component body

Component placed in the center of the dialog. This component can be a container
that contains other components.

n String text

The text displayed in the dialog which can be used instead of Body.

n Command[] cmds

Array of commands that are added to the dialog. Any click on any command
disposes of the dialog. Examples of commands are OK and Cancel.

n int type

The type of the alert can be one of TYPE_WARNING, TYPE_INFO, TYPE_ERROR,
TYPE_CONFIRMATION or TYPE_ALARM to indicate the sound to play or an
icon to display.

n Image icon

The icon to display in the dialog.

n long timeout

A timeout in milliseconds, after which the dialog closes and null is returned. If
time-out value is 0, the dialog remains open indefinitely, until its dispose method
is invoked.

n Transition transition

The transition installed when the dialog enters and leaves the screen. For more
information see Section 13.3, "Transition".

n String okText

The text to appear in the command dismissing the dialog.

n String cancelText

Optionally null for a text to appear in the cancel command for canceling the
dialog.

n int top

Inset in pixels between the top of the screen and the form.

n int bottom

Inset in pixels between the bottom of the screen and the form.

n int left

Inset in pixels between the left of the screen and the form.

n int right

Inset in pixels between the right of the screen and the form.

n boolean includeTitle

Whether the title should hang in the top of the screen or be glued onto the dialog
content pane.

Creating a Dialog

Using Dialogs 5-3

5.2.1 Return Types of Show Methods

You can use one of three convenient return value show methods: void, Command, or
boolean.

n Command returns the command object the user clicked. See the Command API in
the API documentation found in install-dir/docs/api/lwuit.

n The boolean value of true is returned when the OK command is pressed or if
cancelText is null (meaning there is no cancel command text visible). It is false
otherwise.

5.2.2 Non-Static Show Methods

The dialog API provides two non-static methods to create two more types of dialogs.

The first method takes no arguments and produces a dialog without any commands.
The only way to close such a dialog is to invoke the dispose() method on the dialog.
Since the dialog is blocking, meaning once the dialog is displayed its calling thread can
not proceed until it is closed, the call to dispose must be made from a different
thread. To do this, schedule the call to dispose with a timer thread. Note that the
timer thread must be started before the dialog is displayed. This approach is referred
to as an auto-closing dialog.

The second dialog type has five parameters. The first four are the four wing insets
(top, bottom, left, and right) and the fifth parameter determines whether to include the
Dialog title assigned through the dialog constructor (see Figure 5–1).

// Call show with inset parameters

dialog.show(90, 90, 10, 10, true);

5.2.3 Using the dispose() Method

The dispose methods closes the current dialog and returns to the parent form. When
show() is used without arguments, one way to close the dialog is to set a timer to call
dispose just before calling the show method (otherwise the dispose method is never
performed).

5.2.4 Getting the User's Input from a Dialog

As mentioned in Section 5.2.2, "Non-Static Show Methods", return value types can be
either Command or a boolean value. For example, if a user has a dialog with two
commands, Approve and Decline, the user clicks and the selected command is
returned. For the boolean return type, a true or false value indicates whether the user
clicked the OK command.

Creating a Dialog

5-4 Lightweight UI Toolkit

Figure 5–1 Typical Dialogs

BorderLayout

Using Layout Managers 6-1

6Using Layout Managers

This chapter shows you how to use the layout managers provided by the Lightweight
UI Toolkit library. It also gives an example of writing a custom layout manager. For
each layout manager, this chapter supplies sample code demonstrating how to use the
layout manager and a general illustration.

In Lightweight UI Toolkit you can find the following layout managers:

n BorderLayout

n BoxLayout

n FlowLayout

n GridLayout

n GroupLayout

n Coordinate Layout

n Table Layout

6.1 BorderLayout
A BorderLayout object has five areas. These areas are specified by the BorderLayout
constants:

n Center

n East

n North

n South

n West

When adding a component to a container, specify the component's location (for
example, BorderLayout.CENTER) as one of the arguments to the addComponent
method. If this component is missing from a container, controlled by a BorderLayout
object, make sure that the component's location was specified and that no other
component was placed in the same location.

addComponent(BorderLayout.CENTER, component) // preferred

or

addComponent(“Center”, component) // valid but error prone

The center area gets as much of the available space as possible. The other areas expand
only as much as necessary to fit the components that have been added to it. Often a
container uses only one or two of the areas of the BorderLayout object — just the
center, or the center and the bottom.

BoxLayout

6-2 Lightweight UI Toolkit

Figure 6–1 BorderLayoutLocations

6.2 BoxLayout
The BoxLayout class puts components either on top of each other or in a row – your
choice.

6.2.1 X_AXIS

To lay out components in a row, use BoxLayout.X_AXIS as the axis indication.

BoxLayout boxLayout = new BoxLayout(BoxLayout.X_AXIS);

In this layout, the box layout manager honors the component width of each layout
component to fill the width of the container, and the height is determined by the
container height. Any extra space appears at the right side of the container, as shown
in Figure 6–2.

BoxLayout

Using Layout Managers 6-3

Figure 6–2 BoxLayout.X_AXIS Components in a Row

6.2.2 Y_AXIS

To lay out components in a column, use BoxLayout.Y_AXIS as the axis indication.

BoxLayout boxLayout = new BoxLayout(BoxLayout.Y_AXIS);

In this layout, the box layout manager honors the component height of each layout
component to fill the height of the container, and the width is determined by the
container width. Any extra space appears at the bottom of the container, as shown in
Figure 6–3.

Figure 6–3 BoxLayout_Y_Axis Components in a Row

FlowLayout

6-4 Lightweight UI Toolkit

6.3 FlowLayout
The FlowLayout class provides a very simple layout manager that is the default layout
manager for Container objects.

The FlowLayout class puts components in a row, sized at their preferred size. If the
horizontal space in the container is too small to put all the components in one row, the
FlowLayout class uses multiple rows. To align the row to the left, right, or center, use a
FlowLayout constructor that takes an alignment argument.

The code snippet below creates a FlowLayout object and the components it manages.

FlowLayout exampleLayout = new FlowLayout();

...

container.setLayout(exampleLayout);

container.addComponent(new Button("Button 1"));

container.addComponent(new Button("Button 2"));

container.addComponent(new Button("Button 3"));

container.addComponent(new Button("Button 4"));

Figure 6–4 FlowLayout Default Alignment

When constructing a FlowLayout manager you can select either the Left, Right, or
Center option to set up the component's orientation. The default alignment is Left. The
following code snippet applies the Right component orientation to the above
exampleLayout.

FlowLayout exampleLayout = new FlowLayout(Component.RIGHT);

GridLayout

Using Layout Managers 6-5

Figure 6–5 FlowLayout With Right Alignment

6.4 GridLayout
A GridLayout object places components in a grid of cells. Each component takes all the
available space within its cell, and each cell is exactly the same size.

The code snippet below creates the GridLayout object and the components it manages.

GridLayout exampleLayout = new GridLayout(0,2);

...

container.setLayout(exampleLayout);

container.addComponent(new Button("Button 1"));

container.addComponent(new Button("Button 2"));

container.addComponent(new Button("Button 3"));

container.addComponent(new Button("Button 4"));

In this example the constructor of the GridLayout class creates an instance that has
two columns and as many rows as necessary.

GroupLayout

6-6 Lightweight UI Toolkit

Figure 6–6 GridLayout With Two Columns

6.5 GroupLayout
GroupLayout is a layout manager that was developed for GUI builders such as
Matisse, the Java SE GUI builder delivered with the NetBeans IDE. Although the
layout manager was originally designed to suit GUI builder needs, it also works well
for manual coding. To get more information you can refer to the GroupLayout API
(http://java.sun.com/javase/6/docs/api/javax/swing/GroupLayout.html
(http://java.sun.com/javase/6/docs/api/javax/swing/GroupLayout.h
tml)) or review the Swing GroupLayout tutorial at:

http://java.sun.com/docs/books/tutorial/uiswing/layout/group.html
(http://java.sun.com/docs/books/tutorial/uiswing/layout/group.ht
ml)

6.6 Coordinate Layout
Unlike other layout managers coordinate layout assigns a component an absolute
position in relation to the space available within the UI. The coordinate layout allows
developers to position components within an X/Y location, however, it doesn't
guarantee the position won't change and doesn't determine absolute positions.

Instead coordinate layout accepts positions as "relative" and calculates the actual
position based on available space. This is essential since the available size for a
container might change at runtime based on font size, screen rotation, etcetera.

For example, a coordinate layout for 200x200 will show a 20x20 component placed in
the 90x90 position exactly in the center, regardless of the actual size of the container. If
the container is laid out to a larger size, for example, 190x300 the component in the
center would still be centered.

Unlike the other standard layouts in LWUIT the coordinate layout allows positioning
components on top of one another to achieve z-ordering. The z-ordering is determined
by the order in which the components are placed into the parent container.The last
component added is the one on top.

Coordinate Layout

Using Layout Managers 6-7

Display.init(this);

final Form mainForm = new Form("Coordinate Layout");

mainForm.setLayout(new CoordinateLayout(200, 200));

Label centeredLabel = new Label("Center");

centeredLabel.setX(90);

centeredLabel.setY(90);

centeredLabel.getUnselectedStyle().setBgTransparency(100);

centeredLabel.getUnselectedStyle().setBgColor(0xff);

Label underCenter = new Label("Under Center");

underCenter.setX(80);

underCenter.setY(95);

Label top = new Label("Top Left");

top.setAlignment(Component.CENTER);

top.setX(0);

top.setY(0);

top.setPreferredW(200);

top.setPreferredH(30);

top.getUnselectedStyle().setBgColor(0xff0000);

mainForm.addComponent(underCenter);

mainForm.addComponent(centeredLabel);

mainForm.addComponent(top);

mainForm.show();

This code produces Figure 6–7:

Figure 6–7 Coordinate Layout Sample

There are several interesting things we can glean even from this simple example:

n Coordinate layout must be hard-coded. The coordinates are implicitly scaled by
LWUIT so there is no need to use logic, such as getWidth/Height, to calculate
positions.

Table Layout

6-8 Lightweight UI Toolkit

n Elements are sized based on their preferred size, yet positioned based on their X
and Y coordinates. Their dimensions determined via setWidth and getHeight
are ignored.

n Unlike the X and Y coordinates that are relative to layout dimensions, the
preferred size is absolute in pixels and should be calculated based on content
dimensions. This works as expected as long as you don't change the preferred size
on your own.

n Alignment and other LWUIT related positioning logic should work as you would
expect.

6.7 Table Layout
The table layout is a part of the table component discussed later, however it is quite
useful on its own. It is largely inspired by the HTML table tag and also influenced by
AWT's GridBagLayout.

The table layout is a constraint based layout (similar to the border layout). Other
layout managers expect components to be added on their own. For example:

container.addComponent(component);

The table layout container expects something like this:

container.addComponent(tableConstraint, component);

Notice that this syntax is optional. If the constraint is omitted, the component is placed
in the next available cell.

The table layout will automatically size components to the largest preferred size in the
row or column until you run out of space. If the table is not horizontally scrollable this
happens when the edge of the parent container is reached (near the edge of the screen),
and additional components are "crammed together". Notice that all cells in the table
layout are always sized to fit the entire cell. To change a cell’s alignment or margin, use
the Component or Style methods.

The constraint argument is an instance of TableLayout.Constraint that can be used
only once. Reusing the instance will cause an exception.

A constraint can specify the absolute row/column where the entry should fit as well as
spanning between cell boundaries.

Table Layout

Using Layout Managers 6-9

Figure 6–8 Table Layout Sample

In Figure 6–8, the "First" cell is spanned vertically while the "Spanning" cell is spanned
horizontally. This is immensely useful in creating elaborate UIs.

Constraints can also specify a height/width for a column/row that will override the
default. This size is indicated in percentage of the total table layout size. In the code
below you can see that the "First" label is sized to 50% width while the "Fourth" label is
sized to 20% height.

final Form mainForm = new Form("Table Layout");

TableLayout layout = new TableLayout(4, 3);

mainForm.setLayout(layout);

TableLayout.Constraint constraint = layout.createConstraint();

constraint.setVerticalSpan(2);

constraint.setWidthPercentage(50);

mainForm.addComponent(constraint, new Label("First"));

mainForm.addComponent(new Label("Second"));

mainForm.addComponent(new Label("Third"));

constraint = layout.createConstraint();

constraint.setHeightPercentage(20);

mainForm.addComponent(constraint, new Label("Fourth"));

mainForm.addComponent(new Label("Fifth"));

constraint = layout.createConstraint();

constraint.setHorizontalSpan(3);

Label span = new Label("Spanning");

span.getStyle().setBorder(Border.createLineBorder(2));

span.setAlignment(Component.CENTER);

mainForm.addComponent(constraint, span);

mainForm.show();

Table Layout

6-10 Lightweight UI Toolkit

Margin and Padding

Using the Style Object 7-1

7Using the Style Object

The Style object sets colors, fonts, transparency, margin, padding, images, and borders
to define the style for a given component. Each Component contains a selected Style
Object and allows Style modification at runtime using
component.getSelectedStyle() and component.getUnselectedStyle().
The style is also used in Theming (Chapter 8). When a Theme is changed, the Style
objects are updated automatically.

7.1 Color
Each Component has two adjustable colors:

The color specification is RGB. There is no alpha channel within the color (the
background transparency is separate).

Valid values are integers ranging from 0x000000 to 0xffffff (black to white respectively)
or a decimal number.

7.2 Font
Fonts are set with the Font object (see the Font API in the API documentation located
in install-dir/docs/api/lwuit. Lightweight UI Toolkit supports both for Bitmap
fonts and for system fonts, similar to common MIDP fonts. Fonts are discussed in
Chapter 9.

7.3 Transparency
Lightweight UI Toolkit style supports background component transparency, to add
flexibility and appeal to the UI. To set a component transparency level, call
setBgTransparency and specify an integer or a byte. The integer value must range
between 0 to 255, where 255 (the default) is opaque.

7.4 Margin and Padding
Margin and Padding are inspired by the CSS Box Model. Each component has a main
content area (for example, text or icon) and optional surrounding padding and margin
areas. The size of each area is specified by four integers that represent the top, bottom,
left and right space (similar to component Insets terminology in SWING). The
following diagram shows the placement of the areas in relation to the component
content area:

Foreground color The component foreground color that usually refers to the
component text color. For example, for a Button it's the text color.

Background color The component background color.

Images

7-2 Lightweight UI Toolkit

Figure 7–1 Padding and Margin Relationships

Padding and margins can be set as follows:

// Setting padding with positive values

setPadding(int top, int bottom, int left, int right)

// orientation can be Component.TOP, BOTTOM, LEFT or RIGHT

setPadding(int orientation, int gap)

// Setting margin with positive values

setMargin(int top, int bottom, int left, int right)

// orientation can be Component.TOP, BOTTOM, LEFT or RIGHT

setMargin(int orientation, int gap)

7.5 Images
In Style, Images refer to a component background image. By default components do
not have a background image, so the bgImage parameter is null by default. For more
details about images, please refer to Chapter 9.

7.6 Borders
The Style object supports defining custom rendering of a border. There are several
default built-in border types (see the Javadoc™ of the Border class). Borders can either
replace the background painter (as is the case with round borders and sometimes with
image borders) or they can be rendered after the component itself is rendered. A
custom border can be built by deriving the Border class and overriding the
appropriate methods.

A border is rendered into the padding area of the component so it is important that the
component padding is large enough to contain the border drawing.

7.6.1 Bevel

The bevel border type presents a simple 3D style border that can appear lowered or
raised, providing simple depth perception for actions such as button presses.

Borders

Using the Style Object 7-3

Figure 7–2 Bevel Lowered Border

Figure 7–3 Bevel Raised Border

7.6.2 Etched

The etched border type provides a look similar to an engraved line. Like the bevel
border, it too can appear raised or lowered.

Figure 7–4 Etched Lowered Border

Figure 7–5 Etched Raised Border

7.6.3 Line

The line border just draws a rectangle around the component with the option of
defining the thickness and color of the rectangle.

7.6.4 Round

The round border draws a rounded rectangle and optionally fills the background
appropriately.

PERFORMANCE WARNING:

The round border might be very expensive! A round border is cheap for a completely
opaque solid color. However, when using features such as gradients, images or alpha
channel the round border effect is calculated on the fly! This is computationally
expensive. We recommend trying to achieve these same effects with image borders
which are cheaper.

The round border supports defining its color (or using the theme color) and defining
the size of the arcs rounding the border.

Figure 7–6 Round Border

7.6.5 Image

The image border option will only appear when images exist in the resource file, you
can read more on creating image borders in the image border wizard. Image borders
come in 4 flavors:

Style Listener

7-4 Lightweight UI Toolkit

7.6.5.1 9 Part

Uses 9 or 8 images to represent the border for the component. The structure is as
shown in Figure 7–7:

Figure 7–7 9-Part Image Border

Notice that the center image is optional. The top, bottom, left and right images are
tiled while the corners (Top Left, Top Right, Bottom Left, and Bottom Right) are kept in
place. The center image (if defined) is also tiled. This allows LWUIT to resize the
component without any scaling, degradation, performance cost, or memory overhead.

Remember that drawing an image is an expensive operation, so images in the image
border shouldn't be too small. For example, a common designer mistake is to produce
a single pixel image for tiling. LWUIT seamlessly crops tiled images, so you should
make an effort to make images a reasonable size (when in doubt use something in the
area of 80-100 pixels).

7.6.5.2 3 Part

The 3 Part is somewhat unique to LWUIT and relies on MIDP's fast rotation drawing.
It assumes perfectly rectangular images and draws the top left image rotated to
produce all corners and does the same for the top image (center is again optional and
used as usual). Thus the 3 part border can produce some attractive results in a smaller
size.

7.6.5.3 Horizontal/Vertical

The image border is highly biased to symmetric shapes that can be enlarged to all
directions. However, some shapes (such as the iPhone's angular back button) cannot
be cut into a 9-patch image without causing artifacts.

The Horizontal and Vertical Image borders accept 3 images each and only grow on one
axis. We don't recommend using them freely, even when text (which can vary wildly in
size) isn't used, one often needs to align to text which requires resizing.

7.7 Style Listener
The Style listener gives you the ability to track changes in a certain component style
object. For example you might want to monitor changes in the background color of a
component, and react accordingly.

The following code shows how to add a listener and track any style property change
to the Font.

Painters

Using the Style Object 7-5

myComponent.getStyle().addStyleListener(new StyleListener() {

 public void styleChanged(String propertyName, Style source) {

 if (propertyName.equals(Style.FONT)) {

 System.out.println("Font of myComponent got changed.");

 }

 }

});

7.8 Painters
Painters in Style refers to the component's background drawing. The Painter draws
itself and then the component draws itself on top. For more information please refer to
Chapter 10.

To set a painter, use the setBgPainter method. For example to set myPainter as the
component background painter, write:

mycomponent.getStyle().setBgPainter(myPainter);

Painters

7-6 Lightweight UI Toolkit

Basic Theming

Theming 8-1

8Theming

The Lightweight UI Toolkit library supports pluggable themes similar to CSS and
somewhat simpler than Swing's pluggable Look And Feel.

8.1 Basic Theming
Every LWUIT component has a style associated with it (see Chapter 7). This style can
be manipulated manually and can be customized using a set of definitions for a
specific component type. For example, in order to make the backgrounds for all the
buttons red you can use the following theme:

Button.bgColor=ff0000

This theme sets the background in the style object within the button object to red. A
theme can be packaged into a resource file (see Chapter 9) and it can be loaded or
switched in runtime. In order to update a theme after switching you must refresh the
root component (the Form/Dialog containing our component tree) using the
refreshTheme method to update all styles.

For example, if you have a button whose background is customized to blue, and you
load or refresh a theme with a different background color for buttons, the new theme
affects all button instances except for the one you have modified manually.

This allows you to determine styles for specific components yet still be able to use
themes for the general look of the application without worrying about how they affect
your changes.

A theme file is very similar in spirit to CSS, yet it is much simpler and it is structured
like a Java properties file. A theme file is comprised of key value pairs. The key acts in
a similar way to a CSS selector that indicates the component or attribute affected by
the theme value. For example:

n Button.font – font for all buttons

n font – default application font applied to all components where no default is
defined

The key element is comprised of an optional unique identifier ID for the component
(the UIID) and a required attribute type. Unlike CSS, themes do not support elements
such as hierarchy or more complex selectors.

Component UIIDs correspond to the component class name by convention. For
example.: Button, Label, CheckBox, RadioButton, Form, etcetera.

The supported attributes and their value syntax are illustrated in Table 8–1:

Note: Manually modified style elements are not updated when
switching a theme.

Basic Theming

8-2 Lightweight UI Toolkit

Table 8–1 Attributes

Attribute Value

bgGradient Determines the values for the gradient of the image. Accepts
source/destination color as well as X/Y of the center of a radial
gradient.

bgColor Hexadecimal number representing the background color for the
component in an unselected widget. For example, blue would be: ff

bgImage Name of an image from within the resource that should be used as the
background for this component. The image referenced must exist
within the resource using the same name mentioned here. See the
resources chapter for further details about resources and theme files.

bgType Allows determining the type of the background whether it is an image,
color, or gradient. Valid values are:

BACKGROUND_IMAGE_SCALED

BACKGROUND_IMAGE_TILE_BOTH

BACKGROUND_IMAGE_TILE_VERTICAL_ALIGN_LEFT

BACKGROUND_IMAGE_TILE_VERTICAL_ALIGN_CENTER

BACKGROUND_IMAGE_TILE_VERTICAL_ALIGN_RIGHT

BACKGROUND_IMAGE_TILE_HORIZONTAL_ALIGN_TOP

BACKGROUND_IMAGE_TILE_HORIZONTAL_ALIGN_CENTER

BACKGROUND_IMAGE_TILE_HORIZONTAL_ALIGN_BOTTOM

BACKGROUND_IMAGE_ALIGNED_TOP

BACKGROUND_IMAGE_ALIGNED_BOTTOM

BACKGROUND_IMAGE_ALIGNED_LEFT

BACKGROUND_IMAGE_ALIGNED_RIGHT

BACKGROUND_IMAGE_ALIGNED_TOP_LEFT

BACKGROUND_IMAGE_ALIGNED_TOP_RIGHT

BACKGROUND_IMAGE_ALIGNED_BOTTOM_LEFT

BACKGROUND_IMAGE_ALIGNED_BOTTOM_RIGHT

BACKGROUND_IMAGE_ALIGNED_CENTER

BACKGROUND_GRADIENT_LINEAR_HORIZONTAL

BACKGROUND_GRADIENT_LINEAR_VERTICAL

BACKGROUND_GRADIENT_RADIAL

fgColor Hexadecimal number representing the foreground color for the
component usually used to draw the font in an unselected widget. For
example, red would be: ff0000

font The name of the bitmap or system font from the build XML file.

margin The amount of margin for the component defined as 4
comma-separated integer values representing top, bottom, left, and
right. For example, 1, 2, 3, 4 results in 1 pixel margin top, 2 pixels
margin bottom, 3 pixels margin left and 4 pixels margin right.

padding Padding is identical to margin in terms of format but it updates the
padding property of the component. To understand padding versus
margin further please refer to the box model explanation in Section 7.4,
"Margin and Padding".

Look and Feel

Theming 8-3

To install a theme you must load it from the Resources class (see Chapter 9), from
which you receive the already parsed hashtable containing the selectors (keys) and
their appropriate values. You then submit this class to the UI manager's
setThemeProps method in order to update the current theme. It is a good practice to
call refreshTheme on all components in memory (even those that are not visible)
otherwise behavior is unpredictable.

8.2 Look and Feel
While a theme is remarkably powerful and relatively simple, it doesn't allow the deep
type of customization some applications require. Developers would often like the
ability to control the drawing of all widgets from a single location, relieving them of
the need to subclass widgets and manipulate their paint behavior.

LWUIT delegates all drawing to a single abstract base class called LookAndFeel, an
instance of which may be obtained from the UIManager. This class has a concrete
subclass which provides the default LWUIT look called DefaultLookAndFeel. Both
LookAndFeel and DefaultLookAndFeel may be subclassed in order to
extend/replace their functionality.

The look and feel class has methods for determining the boundaries (preferred size) of
component types and for painting all components. In addition it has some special
methods that allow you to bind special logic to components and manually draw
widgets such as scroll bars. It is the responsibility of the Look and Feel developer to
properly use the Style objects delivered by the theme. If you replace the look and feel
class, you must make sure to extract values appropriately from component styles of
the theming functionality or LWUIT can break.

For further details about the look and feel classes, please consult the API
documentation.

transparency A number between 0 and 255 representing the opacity of a component’s
background. 0 means the background of the component doesn’t draw
at all (fully transparent) while 255 represents a completely opaque
background. Notice that this value currently has no effect on
background images (although this behavior might change in a future
release).

Table 8–1 (Cont.) Attributes

Attribute Value

Look and Feel

8-4 Lightweight UI Toolkit

Resource Elements

Resources 9-1

9Resources

LWUIT permits the following resource elements:

n Image Resources

n Dynamic Fonts

n Localization (L10N) bundles

n Themes

n GUI / UI Builder

Resources can be delivered as a bundle (a binary file that can be loaded and used on
the device). A bundle can combine several different resource types within a single file,
thereby easing distribution and improving compression. LWUIT supports two
methods for creating a resource bundle: a set of Ant tasks, or the graphical Resource
Editor utility (see Section 9.2, "The LWUIT Resource Editor").

9.1 Resource Elements
The following sections detail the five resource types and the ways in which they relate
to the resource bundle mechanism.

9.1.1 Building a Bundle

A resource bundle can be built using Ant during the standard application build
process. Resource files convert existing files into bundles as necessary. An application
can have any number of resource files.

A resource file it is loaded fully into memory (due to Java ME IO constraints), so you
should group resources based on the needs of the application flow. This allows the
application to load only the necessary resources for a given form or use case and
leaves memory free for additional resources needed by other forms or use cases.

9.1.1.1 Creating a Resource

To create a resource, use code similar to the following example in your build file:

<taskdef

 classpath="editor.jar"

 classname="com.sun.lwuit.tools.resourcebuilder.LWUITTask"

 name="build" />

<build dest="src/myresourceFile .res">

 <image file="images/myImage.png" name=”imageName” />

</build>

You can add several additional types of resources to the build tag. These optional
resource tags are explained in the remainder of this chapter.

9.1.1.2 Loading a Resource

To load a resource into your application, use code similar to this:

Resources res = Resources.open(“/myresourceFile.res”);

Resource Elements

9-2 Lightweight UI Toolkit

Image i = res.getImage(“imageName”);

9.1.2 Image Resources

There are several types of images in LWUIT, most of which can be stored either
individually in the Java archive (JAR™) or packaged as part of a resource bundle.

To load an image stored in the JAR file, use the following code:

Image image = Image.createImage("/images/duke.png");

The Image tag supports the following attributes:

Once loaded, the image is ready to be used as a background image of a component or
even as an icon for a component that can contain an image.

9.1.3 Fonts

The LWUIT library supports bitmap fonts, system fonts, and loadable fonts. System
fonts use basic native fonts and are based on the common MIDP fonts. For more
detailed information please see the Font API in the API documentation located in
install-dir/docs/api/lwuit.

Bitmap fonts generate fonts on the desktop as image files. These image can be used to
draw desktop quality fonts on a device without requiring specific support from the
device.

Loadable fonts support specifying a font as a name or even as a TrueType font file, if
the underlying operating system supports such fonts, the font object would be created.

All fonts can be used in a theme file and are represented using the Font class in
LWUIT.

9.1.3.1 System Font

Three basic parameters define a system font:

To create a system font, use the following code:

Font.createSystemFont(Font.FACE_SYSTEM,

 Font.STYLE_BOLD,

 Font.SIZE_MEDIUM);

To create a bold italic font style use code similar to the following:

Font.createSystemFont(Font.FACE_SYSTEM,

 Font.STYLE_BOLD | Font.STYLE_ITALIC,

 Font.SIZE_MEDIUM);

name The name of the resource (defaults to the name of the file name).

file The file that would be used for the image (required)

Face Valid values are FACE_SYSTEM, FACE_PROPORTIONAL and FACE_MONOSPACE.

Style Valid values are STYLE_PLAIN, STYLE_ITALIC, STYLE_BOLD.

Size Valid values are SIZE_SMALL, SIZE_MEDIUM, SIZE_LARGE.

Resource Elements

Resources 9-3

9.1.3.2 Dynamic Fonts

Different platforms have different font support. For example, phones usually only
support system and bitmap fonts while TVs usually support TrueType fonts but don't
work well with bitmap fonts. LWUIT has support for defining fonts in resources that
allow a resource to adapt for different devices. To support portability LWUIT allows
specifying a loadable font if such a font is supported by the underlying system and
allows bundling bitmaps for increased portability. As a fallback a system font is
always defined, thus if the native font isn't supported or a developer isn't interested in
using a bitmap font the system font fallback can always be used. It is possible to define
such a font using the Ant task with the following syntax:

<build dest="src/myresourceFile.res">

</build>

The following attributes are supported for the font Ant task:

9.1.4 Localization (L10N)

Resource bundles support localization resources, allowing the developer to store
key-value pairs within the resource file. The localization bundles use the format of
Java property files, which only support USASCII characters. To enter characters in a
different script, either use a special editor (such as NetBeans) or use the native2ascii
JDK tool with the Ant task to convert the file.

To create a resource bundle use the following code

<build dest="src/myresourceFile.res">

 <l10n name="localize">

 <locale name="en" file="l10n/localize.properties" />

 <locale name="iw" file="l10n/localize_iw_IL.properties" />

 </l10n>

</build>

To load the localization resource use the following syntax:

name Name of the font to load from the resource file (optional: defaults to logical
name or file name).

charset Defaults to the English alphabet, numbers and common signs. Should
contain a list of all characters that are supported by a font. For example, if a
font is always used for uppercase letters then it would save space to define
the charset as: "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

src Font file in the case of using a file. Defaults to TrueType font. size floating
point size of the font.

bold Defaults to False. Indicates whether the font should be bold.

trueType Defaults to True, relevant only when src is used. If set to False, type 1 fonts
are assumed.

antiAliasing Defaults to True. If false, fonts are aliased.

logicalName The logical name of the font as specified by java.awt.Font in Java SE:
Dialog, DialogInput, Monospaced, Serif, or SansSerif.

createBitmap Defaults to True. If false no bitmap version of the font is created.

The LWUIT Resource Editor

9-4 Lightweight UI Toolkit

Hashtable h = bundle.getL10N("localize", "en");

The hashtable contains the key value pairs of the resources within the bundle allowing
for easy localization. LWUIT supports automatic localization through the
UIManager.setResourceBundle(Hashtable) method. This installs a global
resource bundle which is “checked” whenever a localizable resource is created, thus
allowing for the replacement of the entire UI language without querying the resource
bundle manually.

9.1.5 Themes

This section discusses how themes work as resources. See Chapter 7 and Chapter 8 to
both of these chapters in-depth discussions of styles and theming in LWUIT.

A theme can be defined using a key value properties file containing selectors and
values. A selector can be defined as an attribute value, optionally with a component
name prepended to it for narrowing the selection further.

The value of an entry in the theme depends on the type of the entry, some entries such
as bgImage expect an image object and some entries such as Font expect a font
definition. Most entries just expect numbers. For example, this is a typical snippet
from a theme:

sel#fgColor= 0017ff

font= systemSmall

Form.bgImage=myBackground

Form.font=Serif

SoftButton.bgColor= ff

SoftButton.fgColor= ffffff

To add this theme into a resource, add the following:

<build dest="src/myresourceFile .res">

 <font createBitmap="false" name="systemSmall"

 system="FACE_SYSTEM ; STYLE_PLAIN; SIZE_SMALL" />

 <image file="images/background.png" name="myBackground" />

 <theme file="themes/myTheme.conf" name="myTheme" />

</build>

This theme can then be installed as follows:

UIManager.getInstance().setThemeProps(res.getTheme(myTheme));

9.2 The LWUIT Resource Editor
The Resource Editor is a standalone GUI tool that allows UI experts, developers, and
translators to open, create, and edit resource packages for LWUIT. The Resource Editor
was designed for visual work and provides “live” preview of all UI changes, enabling
rapid UI customization.

The resource editor and the Ant tasks accomplish similar things, with some limitations
in the Ant task feature set. The Ant task is designed for features that make more sense
as developer tasks, while the Resource Editor is a tool aimed at designers doing visual
work.

The Resource Editor supports the resource types described in Section 9.1, "Resource
Elements".

The LWUIT Resource Editor

Resources 9-5

Figure 9–1 Editing the Default LWUIT Look and Feel

To use the tool, launch the Resource Editor application from your LWUIT distribution.

n Use File > Open to load an existing resource (.res) file.

n To add a resource, click the + button in the tab representing the element type you
wish to add and specify a name for the resource. Specify a name for the resource.
The new resource is added under the appropriate tab.

n To create a new theme, select the Theme node, then click the + button. Note that a
resource bundle can contain more than one theme.

9.2.1 Images and Animations

The LWUIT Resource Editor supports the following image types:

n RGB: Standard JPG/PNG formats. Indexed PNGs also work very well (and are
highly recommended) with this image type.

n SVG: SVG Tiny images are supported. LWUIT can optionally seamlessly generate
PNG images for the SVG files when a device doesn't support SVG.

Note: The live preview is displayed for themes only and
represents the behavior of the theme alone. It doesn’t contain the
other resources in the file that do not relate to the theme.

The LWUIT Resource Editor

9-6 Lightweight UI Toolkit

n Multi-Image: One can add several images based on the DPI of the device (one of
several predefined family ranges). Irrelevant images are skipped when loading the
resource file .

Multi-images are ideal for icons or small artifacts that are hard to scale properly.
They are not meant to replace things such as 9-image borders and so forth since
adapting them to every resolution or to device rotation isn't practical.

n Timeline: A timeline is a set of images that can be moved rotated, scaled, and
blended to provide interesting animation effects.Timelines allow rudimentary
animation and enable GIF importing using the resource editor.

9.2.2 Fonts

The Resource Editor can use device specific fonts or create bitmap fonts for the devices
from any font installed in your desktop operating system. Figure 9–2 shows the font
editing dialog that appears when adding a new font to the resource file.

Figure 9–2 Font Editing View

Make sure to specify the characters you need from the font (defaults to upper and
lower case English with numbers and symbols). Notice that the more characters you
pick in the character set, the more RAM the font will consume on the device.
Anti-aliasing is built in to the bitmap font. When running under Java 5 the Resource

Note: Using the Resource Editor does not grant you permission to
use the fonts commercially in any way. Licensing the right to use a
particular font within a mobile application is strictly your
responsibility!

The LWUIT Resource Editor

Resources 9-7

Editor has two anti-aliasing options: Off indicates no anti-aliasing in the bitmap font,
and Simple indicates standard anti-aliasing.

9.2.3 Localization

A localization resource can be edited by assigning key/value pairs to use within the
application. A key can be mapped to a resource name in any locale.

The editor allows you to add or remove locales listed in the combo box above and
appropriately edit the locale entries in the table below. To add or remove a locale
property use the buttons on the bottom of the screen.

Figure 9–3 Localization and Internationalization View

9.2.4 Themes

To modify a theme resource, set the selectors and the theme resources to appropriate
values to produce an attractive UI. When creating a new theme you see a UI
containing the table of selectors and resources (for more in depth details of themes for
developers, see Chapter 8).

The LWUIT Resource Editor

9-8 Lightweight UI Toolkit

Figure 9–4 Blank Theme View Without Any Styles

To modify the theme, choose a selector on the left side and click the Edit button. You
can add new selectors using the Add button in the theme. To modify an existing
selector, select it in the table and double click or press the Edit button.

9.2.4.1 Example: Adding a New Theme

This section describes how to add a new theme using the Resource Editor.

1. Select the theme tab on the left, and click the + button to open the New Theme
window. From the Template combo box, select Blank.

2. The UI area on the right shows the Unselected tab by default. Click the Add
button at the bottom of the UI area.

The Add window opens.

Select Form from the Component combo box at the top of the Add window.

n In the Background tab uncheck Derive. From the Type dropdown, choose
GRADIENT_RADIAL.

n Type ff into the left gradient color (to select a blue to black radial gradient).

n Type 2 into the gradient Size spinner to double the size of the gradient.

The LWUIT Resource Editor

Resources 9-9

Click OK to save your changes.

3. Click the Add button again and select Title from the Component combo box.

n Select the Background tab.

Uncheck Derive.

In the Type combo box select GRADIENT_LINEAR_VERTICAL.

In the Gradient input field on the right, type 6363ff to select a light blue color.

n Select the Color Tab.

Uncheck the Derive Foreground checkbox

Type ffffff into theForeground field.

n Select the Alignment tab.

Uncheck the Derive checkbox and make sure Left is selected in the Alignment
combo box.

n Select the Padding tab.

Uncheck the Derive checkbox

Type 10 in the Left and Right fields, and type 5 in the Top and Bottom fields.

n Select the Font tab.

Uncheck the Derive Font check box.

Select BOLD in the center combo box and LARGE in the combo box on the
right.

These steps will create a left-aligned spaced large title that uses white bold text on
a vertical gradient background.

4. In the UI area Unselected tab, double-click the [Default Style] selector to open the
Edit window.

n Select the Color tab.

n Uncheck Derive Foreground and type in ffffff to make the default text color
white.

n Uncheck Derive Transparency and type in 0 to make components transparent
by default.

5. In the UI area choose the Selected tab and double-click the [Default Style] entry.

a. Select the Color tab.

The LWUIT Resource Editor

9-10 Lightweight UI Toolkit

– Uncheck Derive Foreground.

– Type in ff to make the foreground blue

– Uncheck Derive Transparency

Type in 200 to make the selection color blend nicely. Click OK.

6. Click the Border Wizard button on the top of the UI area.

Make these changed on the Create Image tab:

– In the Width and Height spinners, type 200.

– In the Thickness spinner, type 4.

– In the Arc Width and Arc Height fields, type 30.

– In Color A and Color D fields, type in ffffff.

In Color B and Color C fields, type in 9f9f9f.

This creates a reverse border gradient which strengthens a sense of depth.

– In the opacity spinner type 130 to make the image translucent.

Select the Cut Image tab.

– Type 100 in the Top spinner, 90 in the Bottom spinner.

– Type 25 in the Left and Right spinners.

Select the Apply To tab.

– In the Component field, type Content Pane.

– In the Style combo box, choose Unselected.

– Click the Add button on the Right. This populates the Applies To area.

– Click the Generate button at the bottom, and close the wizard.

7. Click the Unselected tab.

Double-click the ContentPane style entry.

Select the Padding tab.

n Uncheck Derive.

n Input 5 in Top, Bottom, Left and Right spinners.

Select the Margin tab.

n Uncheck Derive.

n Input 14 in Top, Bottom, Left and Right spinners.

This will provide some spacing around the border to accentuate its effect.

Figure 9–5 shows the final result.

The LWUIT Resource Editor

Resources 9-11

Figure 9–5 New Theme

To gain a deeper understanding of themes add a theme from a template and review its
settings. In the Themes tab on the left, click + to add a new theme. From the template
combo box, choose Wood and click OK. For example, view the Transitions.

Figure 9–6 Wood Theme Default

You can gain deeper understanding of the selector concepts from Chapter 7 and
Chapter 8.

The LWUIT Resource Editor

9-12 Lightweight UI Toolkit

9.2.4.2 Modifying Theme Entries

A theme entry is comprised of a UIID and the attributes modified for the specific UIID.
The hardest part in building a theme is understanding the component names for the
entries within the UI.

When pointing at the UI preview on the right, a tooltip pops up indicating the UIID of
the component you are pointing at, however, this might not work as expected for list
renderers (who are no longer there) or for components that are underneath other
components (for example. a container that has components on top of it).

When adding a new entry (using the Add button at the bottom of the screen) the
combo box at the top highlights in bold the UIIDs that are present in the current
screen. This allows discovery via trial and error.

Figure 9–7 Component UIIDs

Notice that every attribute within this dialog has a Derive check box associated with it.
The default behavior of adding a new theme entry is to derive from the base style. You
need to explicitly indicate that you are interested in modifying a specific attribute. This
allows the theme to remain efficient by reducing the amount of "noise" within the
theme and also allows inheritance to work properly.

LWUIT style inheritance is built in stages:

n LWUIT has constant "sensible defaults" for some component behaviors (for
example, Buttons have a border style by default).

n Every style type has the [Default Style] global scope where you can define your
own defaults for components (although this won't replace LWUIT's builtin
defaults such as the button borders).

n Individual styles can use the Derive tab to define explicit inheritance hierarchy
from a specific style UIID to reuse definitions made for one component. This is

The LWUIT Resource Editor

Resources 9-13

very useful when you have multiple style types because the Selected, Pressed and
Disabled component styles can derive from the Unselected style of a component.

9.2.4.3 Data

Data is generally designed for developers and shouldn't be used by designers.

An arbitrary file can be placed within this section and it can be accessed by developers
in runtime. This section has no effect on the rest of the functionality even if the data
file is an image or font.

9.2.4.4 Customizing the Preview

The preview showing the LWUIT Demo allows for easy customization of a MIDlet.
This capability is not limited to the LWUIT Demo. The Resource Editor supports
plugging in your own MIDlet so you can test your theme on the fly.

You can install your own MIDlet into the Resource Editor preview panel. In the
Resource Editor menu bar, select Application > Pick Application MIDlet and select
your MIDlet’s JAR file.

Figure 9–8 LWUIT Browser Demo With

There are, however, several restrictions and limitations in this feature:

Since the MIDlet is executed in Java SE it can't leverage javax.microedition APIs.
While the APIs are present they are implemented in stub form. For example, if you use
RMS, GCF, and so forth, they will return null for all queries and do nothing in all
operations. Additionally, invoking features such as theming won't work.

If there is a failure in the MIDlet the Resource Editor will silently load the LWUIT
Demo in the preview and use it instead. To debug the failure, execute the Resource

The LWUIT Resource Editor

9-14 Lightweight UI Toolkit

Editor from command line using java -jar ResourceEditor.jar. When
entering the theme option you can see the stack trace of the exception that caused the
failure.

It is critical that you DO NOT obfuscate the MIDlet meant for the Resource Editor's
preview feature since the Resource Editor must replace the LWUIT instance used
within the MIDlet with its own!

Some developers use a preprocessor to create a custom version of their MIDlet for use
within this feature. This allows them to avoid functionality that won't work properly
in the tool and still give designers the ability to view the entire application for
customization.

9.2.4.5 Known Issues

There is currently a known issue in some operating systems which causes the Resource
Editor to fail in some cases when using the Aero theme. This issue stems from Java
SE's look and feel implementation and the only workaround is to change the
application look and feel using the Look And Feel menu option.

Using Painter

Painters 10-1

10Painters

Painter is an interface that can be used to draw on a component background. The
Painter draws itself and then the component draws itself on top within the restrictions
of the component bounds. One of the biggest advantages of using a painter is that you
can write arbitrary code to draw the component background. An example of such code
might be a gradient background for a component, or tiling (using an image to tile the
component background). Using a generic painter allows you to reuse background
painters for various components.

To clarify these points, assume you want to make a painter that draws a diagonal line
in the background of a component. This kind of painting is vectoring since you are
specifying the absolute coordinates and dimensions of a component. You can reuse the
painter for other components.

10.1 Using Painter
The Painter code might look like the following example:

Painter diagonalPainter = new Painter() {

 public void paint(Graphics g, Rectangle rect) {

 g.drawLine(rect.getX(),

 rect.getY(),

 rect.getX() + rect.getSize().getWidth(),

 rect.getY() + rect.getSize().getHeight());

 }

};

To use the diagonalPainter you created, use it as the component background painter:

myComponent.getStyle().setBgPainter(diagonalPainter);

Let's create a Label, Button and a RadioButton and set their background painter with
the above diagonalPainter.

....

Label myLabel = new Label(Image.createImage("/images/duke.png"));

myLabel.setAlignment(Component.CENTER);

myLabel.getStyle().setBgTransparency(100);

myLabel.getStyle().setBgPainter(diagonalPainter);

....

Button myButton = new Button("Image and Text Button");

myButton.setIcon(Image.createImage("/images/duke.png"));

myButton.setAlignment(Component.CENTER);

myButton.getStyle().setBgTransparency(100);

myButton.getStyle().setBgPainter(diagonalPainter);

Note: To view the painter drawing, a component must have some
level of transparency.

Painter Chain

10-2 Lightweight UI Toolkit

....

RadioButton myRadioButton = new RadioButton("RadioButton");

myRadioButton.getStyle().setBgTransparency(100);

myRadioButton.getStyle().setBgPainter(diagonalPainter);

....

The three components are shown in Figure 10–1.

Figure 10–1 Label, Button, and RadioButton With diagonalPainter in Background

As a result, you see a diagonal line that is painted in the components’ background
(behind the Duke images and text).

10.2 Painter Chain
Sometimes a single painter is not enough to represent complex drawing logic
necessary for an application's needs. The painter chain allows you to bind together
several painters and present them as one. This can be used to separate responsibilities.
For example, one painter can draw a background image while another painter can
highlight validation errors.

To create a painter chain just use:

PainterChain chain = new PainterChain(new Painter[]{painter1, painter2});

The painter chain is very useful with the glass pane.

10.3 Glass Pane
The glass pane is a painter that is drawn on top of the form. The form cannot paint
over the glass panel! This allows creating very unique visual effects for an application
and allows a developer to implement functionality such as validation errors, or special
effects such as fading tooltips.A glass pane can be installed using a painter chain to
prevent a new glasspane from overriding the already installed glass pane.

Glass Pane

Painters 10-3

To install a glass pane invoke:

Painter glassPane = ...;

myForm.setGlassPane(glassPane);

Use this code to install a glass pane without overriding an existing glass pane (this
method works correctly even if a glass pane is not installed):

Painter glassPane = ...;

PainterChain.installGlassPane(myForm, glassPane);

Glass Pane

10-4 Lightweight UI Toolkit

LWUIT Class

LWUIT Implementation 11-1

11LWUIT Implementation

The LWUIT implementation is the foundation of LWUIT and its portability. It is a
single huge class representing a hardware abstraction layer (HAL) that contains all the
platform-specific code within LWUIT.

WARNING:

The LWUIT implementation is a mechanism for the use of LWUIT developers and
"deep hacking." It won't maintain compatibility between versions since it is not
generally exposed for developers.

11.1 LWUIT Class
The underlying implementation is often replaced implicitly by using things like the
CDC port of LWUIT, which is mostly an implementation class that delegates its calls to
the appropriate CDC APIs rather than MIDP's APIs.

Developers should be aware that the LWUIT implementation can be replaced. That is,
a developer relying on MIDP API's such as Canvas might run into errors when
running on different platforms.

LWUIT ships with an SVGImplementation that can be installed by invoking:

SVGImplementationFactory.init();

Notice that this method must be invoked before Display.init() is invoked! The
implementation cannot be replaced at runtime.

The SVGImplementation allows LWUIT to treat SVG image files as if they were
standard LWUIT images.

LWUIT also features a VKBImplementation that allows binding a virtual keyboard for
touch devices. There are several 3rd-party and LWUIT team implementations mostly
designed for porting LWUIT to various platforms.

LWUIT Class

11-2 Lightweight UI Toolkit

HTMLComponent Use Cases

HTMLComponent 12-1

12HTMLComponent

The HTMLComponent class allows rendering of HTML documents that conform to the
XHTML Mobile Profile 1.0 (XHTML-MP 1.0) standard.

XHTML-MP 1.0 is a subset of XHTML adapted for mobile. The standard supports
most of the basic elements such as Images, Fonts, Lists, Tables, Forms, and even WCSS
(a subset of CSS2 for wireless). It does not support Javascript or frames, and it does not
support all CSS2 tags or attributes.

This chapter discusses HTMLComponent use cases, interfaces, and implementation
details. To learn more about HTMLComponent check out the LWUITBrowser
application from the LWUIT SVN repository and examine the code. LWUITBrowser
uses most of HTMLComponent’s capabilities.

12.1 HTMLComponent Use Cases
HTMLComponent can be used to render local or remote documents. It extends
Container and as such it can be added to any Form.

HTMLComponent uses an internal parser to parse the given HTML documents. The
parser is not 100% strict and can tolerate some errors in the document, however, some
errors may be too fatal for the parser. It is very important to stick to the XHTML-MP1
standard. You must close all open tags in the correct hierarchical order.

12.1.1 Rendering Rich Text

The most simple use case of HTMLComponent is rendering rich text:

HTMLComponent htmlC = new HTMLComponent(null);

htmlC.setBodyText("Hello bold text");

The only parameter the constructor expects is a class implementing the
DocumentRequestHandler interface. This interface defines how links and external
resources (such as images, CSS files) in the document are fetched.

Since the example does not use links, we can specify null instead of the document
handler. In this case, if links or external resources are specified in the document body
they are disabled or ignored.

setBodyText accepts a string containing any text with XHTML-MP 1.0 tags. The text
is wrapped with the HTML and BODY tags and passed on for parsing.

If the text is encoded, you can specify the encoding as follows:

setBodyText(String htmlText,String encoding)

If you have a full HTML file and not just the body text, the following can be used:

setHTML(String htmlText,String encoding,String title,boolean isFullHTML)

To make the HTMLComponent visible add it to a form and display that form. For
example:

HTMLComponent Use Cases

12-2 Lightweight UI Toolkit

Form form = new Form("HTML Test");

form.setLayout(new BorderLayout());

form.addComponent(BorderLayout.CENTER,htmlC);

form.show();

Figure 12–1 Rich Text Rendered Using HTMLComponent

12.1.2 Reading HTML and Enabling External Resources

The most common use case for HTMLComponent is reading HTML files from either a
local or remote source, while enabling external resources such as images and CSS files,
and allowing the user to follow links.

To support this use case you must first implement a DocumentRequestHandler
interface that contains a single method:

InputStream resourceRequested(DocumentInfo docInfo)

This method is called by HTMLComponent (and other internal classes in the html
package) to obtain the InputStream of the specified document. Requested
documents are HTML files (followed links), referenced CSS files, and referenced
images.

The requested document information is stored in a DocumentInfo object, which is
populated automatically by HTMLComponent. The DocumentInfo values can be
used to determine the document's path, file name, type, etcetera.

This example does not implement a DocumentRequestHandler. It uses the
HttpRequestHandler (a ready-made implementation that can be found in the
LWUITBrowser application) instead. LWUITBrowser be checked out from the LWUIT
SVN under MIDP/applications.

HTMLCallback

HTMLComponent 12-3

HttpRequestHandler implementation supports fetching HTML documents via both
HTTP and from a JAR file. It supports cookies, encoding, error handling and caching
via the Storage class (also available in LWUITBrowser).

12.2 HTMLCallback

During the lifecycle of HTMLComponent there are many events that the developer can
respond to. Developers should implement the HTMLCallback interface and set it to
the HTMLComponent.

The html package provides a default implementation of the HTMLCallback named
DefaultHTMLCallback. This implementation doesn't do too much, but it does
demonstrate how to implement the interface methods without harming
HTMLComponent tasks (as there are several potential pitfalls). The methods are
parsingError, pageStatusChanged, titleUpdated, linkClicked,
getLinkProperties and Auto Complete.

12.2.1 parsingError

This method is called whenever the internal parser encounters an error during the
document's parsing. This can occur while processing the main HTML document or its
referenced CSS files.

You must return a boolean value denoting whether to continue the document
processing despite the error (true) or to stop processing (false).

Detailed information on the error can be found in the parameters the method passes,
especially errorId which holds the error code (one of the ERROR_* constants).

12.2.2 pageStatusChanged

This method notifies detects changes in the page loading lifecycle.
pageStatusChanged can help you display status information to the user or to delay
to certain statuses for certain flows.

A new HTMLComponent starts as STATUS_NONE. Shortly after a page URL is set it
becomes STATUS_REQUESTED. After a successful connection to the input stream it
changes to STATUS_CONNECTED. When the page is displayed (and this can be before
images have been completely loaded) the status changes to STATUS_DISPLAYED and
finally after all resources have been fully loaded the status becomes STATUS_
COMPLETED.

If an error is encountered during the page loading, for example an unrecoverable
parsing error, then the status is STATUS_ERROR. If the page loading was cancelled the
status becomes STATUS_CANCELLED.

12.2.3 titleUpdated

A useful event that is called after the document's title has been extracted from the
TITLE tag of the HTML document.

12.2.4 linkClicked

Called whenever a link is clicked to allow alternative or additional handling. Usually
when a link is clicked the link is simply followed through, but in some cases you
might want to take additional actions. For example, some updates to the UI outside
the HTMLComponent.

Fonts

12-4 Lightweight UI Toolkit

The return value should be true if the regular link processing should proceed, and
false if it should not.

12.2.5 getLinkProperties

This method is used to support Visited and Forbidden links.

n Visited Links: Most browsers to mark visited links in different colors.
HTMLComponent does not have any info on which links have been visited before,
but getLinkProperties can help hook it to any implementation that tracks
links, returning LINK_VISITED for visited links. (See LWUITBrowser for an
example.)

n Forbidden Links: Sometimes you may want to disallow the use of some links. A
common use case may be restricting the user from accessing links outside a
defined domain. Another may be blocking content types that HTMLComponent
can not render. When getLinkProperties is called, the implementation can
look at the URL and determine whether it returns LINK_REGULAR which enables
the link, or LINK_FORBIDDEN which disables it.

12.2.6 Auto Complete

The fieldSubmitted and getAutoComplete methods support an auto complete
implementation.

fieldSubmitted is called whenever a field in an HTML form is submitted. In return,
the implementation should return the actual field value to send to the form. This can
be used to perform some content filtering if needed. When none is needed, the value
should be returned as is. However, you get the chance to store the field value along
with its name, the form URL etc.

Data collected with fieldSubmitted can be used to populate form fields with
getAutoComplete, which is called while constructing forms to obtain values for the
various fields. Returning null simply means that users must fill out the form
themselves. You can also supply another value that is appropriate for the form's
specific field,. For example from a repository of stored values as recorded by
fieldSubmitted.

12.3 Fonts
When rendering HTML, the HTMLComponent uses the following font facilities
described in the following sections:

n Default Font

n System Fonts in HTMLComponent

n Bitmap Fonts

n Font Tags

12.3.1 Default Font

The default font used is the system font with FACE_SYSTEM, STYLE_PLAIN and
SIZE_MEDIUM. This can be changed using the setDefaultFont method that accepts
a font key (see Section 12.3.3, "Bitmap Fonts") and the font itself.

Fonts

HTMLComponent 12-5

12.3.2 System Fonts in HTMLComponent

HTMLComponent automatically uses all available system fonts. For example if the
tag is encountered while rendering text with the default system font, the text in the tag
is rendered with a system font with the style STYLE_BOLD. Same goes for the <big>
tag which causes text to be rendered with a system font that has a size of SIZE_
LARGE.

Note that not all system fonts, faces, styles, and sizes are available on all handsets. In
fact it is very rare that a device has the full range of fonts representing all possible
combinations of those properties. When HTMLComponent attempts to use unavailable
fonts they are rendered according to fonts the device actually supports.

12.3.3 Bitmap Fonts

To enable HTMLComponent to use bitmap fonts, introduce them with the addFont
method. This method accepts a String identifying the font (Font Key), and a LWUIT
Font object. Usually this would be a bitmap font loaded from one of the resource files.

The font keys is an important concept in HTMLComponent. A font key identifies the
font properties such as its family, style and size. While these properties are known for
system fonts, they are unknown for bitmap fonts – and providing them to
HTMLComponent allows them to be used correctly while rendering documents.

For example, to add a bold Arial font with a size of 20 pixels, one should use:

Font font = Font.getBitmapFont("myarialfont");

addFont("arial.12.bold", font);

The format of the font key is the family, size and style(s) delimited with the period
sign. Order is irrelevant (i.e. arial.12.bold is the same as 12.bold.arial).

Note that the name of the font may be different in the resource files than the font key
(In our example it is called "myarialfont"), though it is a good practice to name the
font according to the font key.

Let's say that we add the following fonts as well:

// fonts = …

// filling the fonts array with fonts from the resource file

setDefaultFont("arial.12", fonts[0]);

// Specifying "plain" as a style is optional

addFont("arial.12.bold.italic", fonts[1]);

addFont("timesnewroman.10", fonts[2]);

addFont("arial.14", fonts[3]);

And now we load the following HTML:

<html>

 <body>

 Default font

 <Bold font <i>Bold and Italic</i>

 <big> Big font </big>

 <small> Small font </small>

 </body>

</html>

By specifying the font keys we allow HTMLComponent to know which font to assign
when encountering font related tags (and also CSS attributes).

Fonts

12-6 Lightweight UI Toolkit

In the example above the words "Default font" are displayed in arial.12 font, and
the rest of the text is displayed according to the tags. However, the "Small font"
text is displayed in the default font, because even though there is a smaller font
("timesnewroman.10") it is not of the same family. The font matching algorithm
gives more weight to the family than the size, and in fact is configured to match only
fonts from the same family. Font matching is done sometimes under less then ideal
scenarios. While HTML documents may be rich in fonts, the mobile client can offer a
limited number of system and bitmap fonts. You should try to match the content with
the available fonts in the application.

Also note that system fonts are always matched with other system fonts and bitmap
fonts only with other bitmap fonts.

12.3.4 Font Tags

HTML defines several tags that cause (among other thing) a font change when
rendered. The font selected to render these tags can be defined in a similar way to
adding bitmap fonts. All you need to do is add the desired tag name to the font key.
For example:

addFont("arial.20.bold.h1", myheaderfont);

Now text inside the <h1> tag is rendered with the specified font. Note that the font is
added to the font pool and can be also used, for example, when the component seeks a
matching bold and big font. Technically, you can prevent the component from using
this font by adding it with a font key of just "h1", but of course this is not
recommended.The tags that have associated fonts are: H1, H2, H3, H4, H5, H6, EM,
STRONG, DFN, CODE, SAMP, KBD, VAR, CITE and PRE.

By default these tags are assigned with the following system fonts:

n EM, DFN, VAR, CITE: system, italic, medium

n CODE, SMAP, KBD: monospace, plain, medium

n STRONG, H3: system, bold, medium

n H1:system, bold, large

n H2:system, italic, large

Note that while usually there is no reason to add a system font (as they are all
automatically used), there is a use case for defining a tag-related font as follows:

Font sysFont=Font.createSystemFont(Font.FACE_SYSTEM,

 Font.STYLE_BOLD, Font.SIZE_SMALL);

addFont("h4", sysFont);

Note that here it is totally unnecessary to provide any other font properties in the font
key because system fonts are supported without explicit addition. But denoting the
font key as "h4" makes the component render text inside the H4 tag with the specified
font.

Small-caps Font

One special case worth noting is small-caps fonts. In CSS one can define the
font-variant property to the small-caps value. In this case the text should be
displayed all in caps, with large capital letters depicting “regular” capital letters, and
small caps depicting regular text.

System and bitmap fonts do not have this effect. If you have system or bitmap fonts in
the documents the application renders, add the font to a resource file. In the resource

Character Entities

HTMLComponent 12-7

editor, select a font that behaves like a small caps font) and it should be named as a
“small-caps” family:

addFont(“small-caps.14.bold”, smallcapsFont);

If no small-caps fonts are added, the font-variant: small-caps CSS directive is
ignored if encountered.

12.4 Styles in HTMLComponent
HTMLComponent renders most of the HTML tags as regular LWUIT components and
as such uses the defined styles for these components. For example, form buttons
render as LWUIT's Button, and as such any style that is applied in the theme to Button
is expressed in buttons inside the HTML document.

There are however some custom components with the following UIIDs:

n HTMLLink: Used for links in the document.

n HTMLHR: Used for the HTML hr tag (Horizontal separator)

n HTMLFieldSet: Used to render the HTML fieldset tag

n HTMLOptgroup: Used to render the title of an option group inside a ComboBox
(option groups are defined by the optgroup html tag)

n HTMLOptgroupItem: Used to render a ComboBox single item that is a part of an
option group.

n HTMLMultiComboBoxItem: Used to render an item in a multiple choice
ComboBox. LWUIT ComboBox

One can define the style of these components in the theme by using the above UIIDs.
The LWUITBrowser application contains a theme that includes standard definitions
for these UIIDs and can be used as a starting point.

Page Styling

Pages rendered with HTMLComponent are rendered on an internal container. This
means that setting styles to the HTMLComponent itself won't necessarily affect the
page style.

To change the style of this internal container, one can use the setPageStyle method
that accepts a Style object.

12.5 Character Entities
Some characters are represented by character entities (which can be compared to Java
escape sequences) either because the characters are reserved or because the character
matching key in the keyboard.

A character entity is represented either by its Unicode numeric value or by a verbal
symbol. For instance the character > (greater than) which is reserved for HTML tags, is
represented either by > (its Unicode value) or by > (gt is the symbol assigned
to this character).

HTMLComponent translates any numeric value and display the according character
(of course depending on its availability in the font used). As for symbols, it supports
all the standard ISO 8859-1 symbols (up until Unicode value of 255) and does not
recognize symbols with Unicode value greater than 255 except 2 very common
symbols - euro and bull (bullet).

HTMLComponent Settings

12-8 Lightweight UI Toolkit

If you need support for upper symbols, they can be added using the static methods
addCharEntity and addCharEntitiesRange. For example:

HTMLComponent.addCharEntity("spades",9824);

12.6 HTMLComponent Settings
There are various settings you can control (or relay to the user's control) with
HTMLComponent:

n Image loading: Can be turned on/off using setShowImages(boolean). The
default is true (showing images). When this is set to false, referenced images are
not loaded nor are they displayed.

n CSS loading: Can be turned on/off using setIgnoreCSS(boolean). The
default is false (CSS are loaded). When this is set to true, all CSS directives are
ignored including inline CSS, embedded CSS and external CSS files.

n CSS media types: CSS references can specify which media types they are suitable
for. For example an HTML document can have 2 separate CSS files, one for use
with the "handheld" media type and the other with the "screen" media type. By
default HTMLComponent accepts CSS files and segments that are defined as
"handheld" or "all" (or if the media type is unspecified). To modify the supported
media types one can use the setCSSSupportedMediaTypes method.

n Max Threads: The number of threads used by HTMLComponent to load external
referenced images and CSS files can be set with setMaxThreads(int). The
default is 2.

12.7 CSS Support
HTMLComponent supports WCSS which is a subset of CSS 2.0. It supports inline CSS
directives, embedded CSS segments, and external CSS files. Following are the
supported attributes in HTMLComponent:

CSS Support

HTMLComponent 12-9

Fully supported CSS properties:

Partially supported properties:

Unsupported properties:

clear, float

Known issues:

n width or height work for simple elements, but may be problematic with
complex elements (for example tables).

n font-family accepts the first mentioned font and ignores all fallback fonts, since
finding a matching font is very time consuming, and also since in the ME
environment usually there aren't that many fonts anyway.

n text-decoration is irrelevant: since the only mandatory WCSS decoration
value is 'none' which is usually used to remove underlines from links - since we
don't have underlines it has no meaning.

n text-transform may have issues when overriding a parent which has a different
transform.

n Some properties are ignored if associated with a pseudo-class (such as a:focus or
hover) - and that's because while LWUIT does have separate styles for selected,
unselected and pressed states - these styles include properties such as padding,
margins, colors, background, font - but for example not alignment or visibility
which affect the component in all of its states.

Background background-color, background-image, background-repeat,
background-attachment, background-position-x, background-position-y

Border border-*-width, border-*-style, border-*-color

Fonts font-family, font-size, font-style, font-weight, font-variant

Lists list-style-image, list-style-position, list-style-type

Margins margin-*, padding-*

Text text-align, text-indent, text-transform

Misc color, height, width, visibility

WAP -wap-access-key, -wap-input-format, -wap-input-required

Shorthand

properties

All shorthand properties are fully supported

* represents top, left, bottom, right

display Supported: none, marquee

Unsupported: block, inline , list-item

white-space Supported: normal, nowrap

Unsupported: pre

vertical-align Works only within tables

Implementing a DocumentRequestHandler

12-10 Lightweight UI Toolkit

12.8 Implementing a DocumentRequestHandler
In the first example we have used a ready-made DocumentRequestHandler
implementation. In this section we will create our own simple implementation that
reads from files stored in the JAR.

Our implementation will accept URLs with the file:// protocol only, and fetch them
from the JAR:

import com.sun.lwuit.html.DocumentInfo;

import com.sun.lwuit.html.DocumentRequestHandler;

import java.io.ByteArrayInputStream;

import java.io.InputStream;

class FileRequestHandler implements DocumentRequestHandler {

 public InputStream resourceRequested(DocumentInfo docInfo) {

 // Get the full URL from the docInfo

 String url=docInfo.getUrl();

 if (!url.startsWith(“file://”)) { // We support only files

 return getErrorStream(“This handler handles files only.”)

 }

 if (docInfo.isPostRequest()) { // We don't support POST

 return getErrorStream(“GET requests only please!”);

 }

 url=url.substring(7); // Cut the file://

 return getClass().getResourceAsStream(url);

 }

 // Utility method to get a stream out of a string

 private InputStream getErrorStream(String err) {

 err=”<html><body>”+err+”</body></html>”;

 ByteArrayInputStream bais =

 new ByteArrayInputStream(err.getBytes());

 return bais;

 }

}

As we can see the implementation is quite simple. It uses the
getResourceAsStream method to obtain an InputStream of the file and send it
over, but before that it queries the passed DocumentInfo object to get some
information on the requested page. This object is explained in detail in the next
section.

12.9 DocumentInfo
The DocumentInfo is an object that is passed from the HTMLComponent to the
DocumentRequestHandler, and can be used by the latter to obtain information
about the document such as its location, type, encoding etcetera, and also to hint back
to the HTMLComponent about attributes it found about the document.

When a setPage is called on an HTMLComponent, it results in a call to the
DocumentRequestHandler's resourceRequested method, with a populated
DocumentInfo object. This method is also called when links are clicked or referenced
images and CSS files are needed. The remainder of this section discusses some useful
DocumentInfo getters/setters that a DocumentRequestHandler implementation
should consider:

DocumentInfo

HTMLComponent 12-11

n getUrl

n getEncoding and setEncoding

n getParams

n getExpectedContentType and setExpectedContentType

n getFullUrl or getBaseUrl

12.9.1 getUrl

This method returns the absolute URL of the requested document. The absolute URL
is automatically calculated internally according to the page on which the link was
clicked on. Implementations can learn about the document protocol (file, http etc.) and
about the document's domain and act accordingly. For example, it is possible to allow
only certain protocols or domains, or to use custom protocol strings etc.

12.9.2 getEncoding and setEncoding

getEncoding and setEncoding are quite important when reading documents that
can have different encodings.Encoding information of HTML and CSS documents can
appear in multiple places. For example when posting a form, its FORM tag can have an
ENCTYPE property that specifies the form's encoding. This is one situation in which
the encoding in the provided DocumentInfo is different than the default (which is
ISO-8859-1), and thus has to be queried to set encoding headers appropriately. On the
other direction, when requesting a document, the encoding can be specified by the
response headers (charset in the content-type header) – and then in order for
HTMLComponent to be able to read the document properly, the encoding type must be
set using setEncoding. Note that encoding can be set in other ways as well such as
BOM (Byte Order Mark), and it is the responsibility of the
DocumentRequestHandler to figure it out and relay that info to HTMLComponent
via the DocumentInfo object.

12.9.3 getParams

getParams returns the request parameters. It can be used for example to screen
parameters before sending to the server (And it has a matching setter as well)

12.9.4 getExpectedContentType and setExpectedContentType

The expected content type is what the HTMLComponent expects to find when
requesting the resource in question. This would be an HTML document (TYPE_HTML)
when setting a page or clicking links, an image (TYPE_IMAGE) for image references
and a CSS file (TYPE_CSS) for CSS references. Queering the expected content type can
help processing, for example we will check encoding only for HTML and CSS, but not
for images. Another reason may be that we want to cache images and not HTML
documents and so on.

12.9.5 getFullUrl or getBaseUrl

Other more informative methods include getFullUrl returning a string composed of
the absolute URL plus the parameters of the request (if any, and only if this was a GET
request). Another one is getBaseUrl returning the document base URL.

DocumentInfo

12-12 Lightweight UI Toolkit

Transition

Using Transitions and Animations 13-1

13Using Transitions and Animations

The Lightweight UI Toolkit library implements transitions using animation.

13.1 Animation
Animation is an interface that allows any object to react to events and draw an
animation at a fixed interval. All animation methods are executed on the EDT. For
simplicity’s sake, all Components can be animated, however, no animation appears
unless it is explicitly registered into the parent form. To stop animation callbacks the
animation must be explicitly removed from the form (notice that this differs from
removing the component from the form)! In Lightweight UI Toolkit there are few
transitions that have been extended from Animation. See Section 13.3, "Transition".

13.2 Motion
The Motion class abstracts the idea of motion over time, from one point to another.
Motion can be subclassed to implement any motion equation for appropriate physics
effects. This class relies on the System.currentTimeMillis() method to provide
transitions between coordinates. Examples for such movement equations can be;
parabolic, spline, or even linear motion. Default implementation provides a simple
physical algorithm giving the feel of acceleration and deceleration. In this
implementation all animation elements (Transition, Scrolling, and so forth) use the
same motion implementation, so they all have smooth movement.

13.3 Transition
Currently a transition refers to the transition between two Forms as animate In and
Out transition animation. All transitions use a physical animation curve calculation to
simulate acceleration and deceleration while pacing a motion based on the amount of
time specified. There are three types of transitions:

13.3.1 Slide Transition

To create a slide transition, that reacts while exiting the first form, use:

CommonTransitions.createSlide(int type, boolean forward, int

speed)

Slide Exiting form by sliding out of the screen while the new form slides in.

Fade Components fade into and out of the screen at a predefined speed.

type Type can be either SLIDE_HORIZONTAL or SLIDE_VERTICAL, indicating the
movement direction of the forms.

forward Forward is a boolean value representing the directions of switching forms. For
example for a horizontal type, true means horizontal movement to the right. For a
vertical type, true means movement towards the bottom.

speed Speed is an integer representing the speed of changing components in
milliseconds.

Transition

13-2 Lightweight UI Toolkit

For example:

// Create a horizontal transition that moves to the right

// and exposes the next form

myForm.setTransitionOutAnimator(CommonTransitions.createSlide(

 CommonTransitions.SLIDE_HORIZONTAL, true, 1000));

Figure 13–1 shows four snapshots of the horizontal transition from a menu to a radio
button list.

Figure 13–1 Slide Transition from Form to Theme Menu

Transition

Using Transitions and Animations 13-3

13.3.2 Fade Transition

Fade transition creates a fade-in effect when switching to the next form. To create this
transition use:

CommonTransitions.createFade(int speed)

In the above code speed is an integer representing the speed of changing components,
in milliseconds.

For example:

// Create a fade effect with speed of 400 millisecond,

// when entering myform

themeForm.setTransitionInAnimator(CommonTransitions.createFade(400)

);

Figure 13–2 Fade Transition From Form to Theme Menu

Transition

13-4 Lightweight UI Toolkit

Painting

Authoring Components 14-1

14Authoring Components

LWUIT is designed to be as extensible and modular as possible. A developer can
replace or extend almost every component within LWUIT (as of this writing none of
the LWUIT components are defined as final). In the spirit of Swing, a third-party
developer can write an LWUIT component from scratch by implementing painting and
event handling.

Furthermore, thanks to the composite pattern used by LWUIT (and Swing with AWT),
small custom and preexisting components can be combined to form a single
component.

The composite approach is mentioned in Chapter 2. This chapter focuses on writing a
component from scratch and plugging it into the LWUIT features such as the theme
engine, painters, etcetera. This chapter discusses direct derivation from the
Component, but you can derive from any existing LWUIT component to produce
similar results. For example, ComboBox derives from List, Button from Label,
CheckBox from Button, Dialog from Form, and so forth.

14.1 Painting
Writing a custom component should be immediately familiar to Swing/AWT
developers. The following example derives from Component and overrides paint in
order to draw on the screen:

public class MyComponent extends Component {

 public void paint(Graphics g) {

 g.setColor(0xffffff);

 g.fillRect(getX(), getY(), getWidth(), getHeight());

 g.setColor(0);

 g.drawString("Hello World", getX(), getY());

 }

}

This component writes Hello World in black text on a white background. To show it
we can use the following code, resulting in Figure 14–1. As mentioned earlier, you can
also derive from an appropriate subclass of Component; overriding paint is optional.

Form testForm = new Form();

testForm.setLayout(new BorderLayout());

testForm.addComponent(BorderLayout.CENTER, new MyComponent());

testForm.show();

Sizing In Layout

14-2 Lightweight UI Toolkit

Figure 14–1 Hello World

Notice several interesting things that might not be obvious in the example:

n Setting the color ignores the alpha component of the color. All colors are presumed
to be opaque RGB colors.

n The rectangle is filled and the text is drawn in the X coordinate of the component.
Unlike Swing, which “translates” for every component coordinate, LWUIT only
translates to the parent container’s coordinates, so it is necessary to draw in the
right X/Y position (rather than 0,0) because the component position might not be
the same as the parent’s. For example, to draw a point a the top left of the
component, you must draw it from getX() and getY().

14.2 Sizing In Layout
In most cases the example above won't work properly because the layout manager
doesn't “know” how much space to allocate. To fix this you must define a preferred
size.

A preferred size is the size which the component requests from the layout manager. It
might take more (or less) but the size should be sufficient to support rendering. The
preferred size is calculated based on images used and font sizes used. The component
developer (or look and feel author) is responsible for calculating the proper size.

The calcPreferredSize() method is invoked when laying out the component
initially (and later when changing themes). It allows you to determine the size you
want for the component as follows:

protected Dimension calcPreferredSize() {

 Font fnt = Font.getDefaultFont();

 int width = fnt.stringWidth(“99999-9999”)

 int height = fnt.getHeight();

 return new Dimension(width, height);

}

Focus

Authoring Components 14-3

Unlike Swing/AWT, LWUIT doesn't have minimum or maximum size methods, thus
your job as a component developer is simpler. Components grow based on the layout
manager choices rather than component developer choices

This example uses a hardcoded text for sizing rather than the input string, so the
component won't constantly resize itself in the layout as the user inputs characters.

After making these changes you no longer need to use the border layout to place the
component and it now occupies the correct size, so you can show the component using
the following code (default layout if FlowLayout):

Form testForm = new Form();

testForm.addComponent(new MyComponent());

testForm.show();

14.3 Event Handling
So far the component doesn't have any interactivity or react to user events. To improve
the component, we can build a simple input area that accepts only numeric values (for
simplicity’s sake we do not support cursor navigation).

Event handling in LWUIT is very similar to MIDP event handling (which is designed
for small devices) in which we receive the calls from the platform in methods of the
subclass. To accept user key presses, override the appropriate key released method as
follows:

public void keyReleased(int keyCode) {

 if(keyCode >= '0' && keyCode <= '9') {

 char c = (char)keyCode;

 inputString += c;

 repaint();

 }

}

Note, it is an LWUIT convention to place actions in the key released event rather than
the key press event (except for special cases). This is important from a UI perspective,
because navigation triggered by a key press event might send the key release event to
a new form, causing odd behavior.

14.4 Focus
If you run the event handing code above, you can see the event never actually occurs.
This is because the component must accept focus in order to handle events. By default,
components are not focusable and you must activate focus support as follows:

setFocusable(true);

Once activated, focus works as you would expect and the behavior is correct. It makes
sense to detect focus within the paint(Graphics) method (or paintBorder) and
draw the component differently in order to visually indicate to the user that focus has
reached the given component.

The Painting Pipeline

14-4 Lightweight UI Toolkit

14.5 The Painting Pipeline
This section discuss painting the component with regard to styles and focus. To
understand styling and proper painting process it’s necessary to understand the basics
of how painting occurs in LWUIT.

Painting operations are performed in order by the rendering pipeline, and all painting
is performed in order on the event dispatch thread (EDT):

1. First the background is painted using the appropriate painter (see the background
painters section). This makes sure the background is properly “cleared” to draw.

2. The paint method is invoked with the coordinates translated to its parent
container.

3. The paintBorder method is invoked with the same translation.

4. Both paint and paintBorder delegate their work to the LookAndFeel and
Border classes respectively to decouple the drawing code. For example, Button's
paint method looks something like this:

public void paint(Graphics g) {

 UIManager.getInstance().getLookAndFeel().drawButton(g, this);

}

Paint border from component defaults to a reasonable value as well:

Border b = getBorder();

if(b != null){

 g.setColor(getStyle().getFgColor());

 b.paint(g, this);

}

14.6 Styling
In the beginning we painted the component using simple drawing methods,
completely disregarding the style. While this is perfectly legal it fails to take advantage
of LWUIT's theming functionality.

The “right way” to paint in LWUIT regards the Style object and ideally delegates work
to the LookAndFeel class. Notice that you can subclass DefaultLookAndFeel and
add any method you want, such as paintMyComponent(). This allows you to
implement component painting “correctly” within the look and feel. However, for
custom-made components this might not be the best approach since it blocks other
third parties from using your components if they have already created a look and feel
of their own.

For simplicity, this example does all the painting within the component itself.

To paint the input component correctly, implement the paint method as follows:

public void paint(Graphics g) {

 UIManager.getInstance().getLookAndFeel().setFG(g, this);

 Style style = getStyle();

 g.drawString(inputString,

 getX() + style.getPadding(LEFT),

 getY() + style.getPadding(TOP));

}

Styling

Authoring Components 14-5

There are several things of interest in the code above:

n setFG sets the foreground color and font based on the state of the component
(enabled, hasFocus).

n Style padding positions the text. Notice it ignores the margins, which are already
in the translated coordinates of the paint (margins work without any change in the
code).

n There’s no need to paint the background, draw a border or check for focus. These
things are all handled implicitly by LWUIT!

This isn't enough though, the implementation of calcPreferredSize must take all
of these things into account, including the possibility of user installed fonts.

protected Dimension calcPreferredSize() {

 Style style = getStyle();

 Font fnt = style.getFont();

 int width = fnt.stringWidth(inputString);

 int height = fnt.getHeight();

 height += style.getPadding(Component.TOP) +

style.getPadding(Component.BOTTOM);

 width += style.getPadding(Component.LEFT) +

style.getPadding(Component.RIGHT);

 return new Dimension(width, height);

}

With these two things in order our component is functional and works with the
existing theme!

Figure 14–2 Original Component Theme

If we change the theme to the Java theme from the UI demo, the same code produces
Figure 14–3.

Figure 14–3 New Theme

However, there is one last thing for styles to work correctly. Currently the component
uses the default color scheme and font and doesn't allow the designer to specify a style
specific to this component. To allow this functionality you must allow the component
to be identified in the theme editor, even in obfuscated code and in case of subclasses.
To do this, override getUIID() and return the name you want for the component:

public String getUIID() {

 return “NumericInput”;

}

Background

14-6 Lightweight UI Toolkit

This allows a designer to specify NumericInput within the Resource Editor's theme
builder (in the Component combo box) in order to customize this component. Note,
currently the Resource Editor doesn't support previews for custom-built components.

14.7 Background
Up until now we’ve assumed that LWUIT takes care of the background handling for
us. However, it is important to understand how this works, otherwise performance
might be impacted.

The background of a component is managed by a Painter (see the API documentation
for Painter for further details). A Painter can draw any arbitrary graphics in the
background and can be translucent or opaque. LWUIT creates painters implicitly
based on background image or color in the style. Furthermore you can customize them
either by creating your own special painter or by manipulating the style.

Since a painter can be translucent or transparent LWUIT recurses to the top-most
component, starts drawing its painter, then recurses down the paint hierarchy until the
background is properly drawn. If your component is completely opaque (a square that
draws all of its data) this extra work is redundant. To improve performance, define
background transparency (in the style) to be 255 (0xff). This indicates your background
is opaque.

Painters are designed for general pluggability. They work with your customized
component without any effort on your part.

14.8 Animating The Component
We briefly discussed the animation framework in Section 13.1, "Animation". However,
with a custom component the features are far more powerful.

First you must register the component as interested in animation. You cannot perform
this registration during construction since there is no parent form at this stage. The
component has an initComponent method that is guaranteed to invoke before the
component is visible to the user and after the parent form is available.

protected void initComponent() {

 getComponentForm().registerAnimated(this);

}

The code above registers the animation, essentially triggering the animate method. The
animate method can change the state of the component and optionally trigger a
repaint when it returns true.

It is relatively easily to implement a “blinking cursor“ using the animate method:

private boolean drawCursor = true;

private long time = System.currentTimeMillis();

public boolean animate() {

 boolean ani = super.animate();

 long currentTime = System.currentTimeMillis();

 if(drawCursor) {

 if((currentTime - time) > 800) {

 time = currentTime;

 drawCursor = false;

 return true;

 }

 } else {

The Custom Component

Authoring Components 14-7

 if((currentTime - time) > 200) {

 time = currentTime;

 drawCursor = true;

 return true;

 }

 }

 return ani;

}

Notice that all this code really does is change the drawCursor state in which case it
returns true, indicating the need for a repaint. Now implementing a cursor within our
paint method requires only the following lines:

public void paint(Graphics g) {

 UIManager.getInstance().getLookAndFeel().setFG(g, this);

 Style style = getStyle();

 g.drawString(inputString, getX() + style.getPadding(LEFT),

 getY() + style.getPadding(TOP));

 if(drawCursor) { int w = style.getFont().stringWidth(inputString);

 int cursorX = getX() + style.getPadding(LEFT) + w;

 int cursorY = getY() + style.getPadding(TOP);

 int cursorY = getY() + style.getPadding(TOP);

 }

}

14.9 The Custom Component
Example 14–1 shows the MIDlet Code with a theme.

Example 14–2 shows the component code.

Example 14–1 "Col 1", "Col 2", "Col 3"}, new Object[][] {

import java.io.IOException;

import javax.microedition.midlet.MIDlet;

import com.sun.lwuit.Display;

import com.sun.lwuit.Form;

import com.sun.lwuit.plaf.UIManager;

import com.sun.lwuit.util.Resources;

public class LWUITMIDlet extends MIDlet {

 private boolean started;

 protected void startApp() {

 try {

 Display.init(this);

 Resources r1 = Resources.open("/javaTheme.res");

 UIManager.getInstance().setThemeProps(r1.getTheme("javaTheme"));

 // distinguish between start and resume from pause

 if (!started) {

 started = true;

 Form testForm = new Form();

 testForm.addComponent(new MyComponent());

 testForm.show();

 }

The Custom Component

14-8 Lightweight UI Toolkit

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 protected void pauseApp() {

 }

 protected void destroyApp(boolean arg0) {

 }

}

The Custom Component

Authoring Components 14-9

Example 14–2 Component Code

import com.sun.lwuit.Component;

import com.sun.lwuit.Font;

import com.sun.lwuit.Graphics;

import com.sun.lwuit.geom.Dimension;

import com.sun.lwuit.plaf.Style;

import com.sun.lwuit.plaf.UIManager;

public class MyComponent extends Component {

 private boolean drawCursor = true;

 private long time = System.currentTimeMillis();

 private String inputString = "";

 public MyComponent() {

 setFocusable(true);

 }

 public void paint(Graphics g) {

 UIManager.getInstance().getLookAndFeel().setFG(g, this);

 Style style = getStyle();

 g.drawString(inputString, getX() + style.getPadding(LEFT), getY() +

 style.getPadding(TOP));

 if (drawCursor) {

 int w = style.getFont().stringWidth(inputString);

 int cursorX = getX() + style.getPadding(LEFT) + w;

 int cursorY = getY() + style.getPadding(TOP);

 g.drawLine(cursorX, cursorY, cursorX, cursorY +

 style.getFont().getHeight());

}}

 protected Dimension calcPreferredSize() {

 Style style = getStyle();

 Font fnt = style.getFont();

 int width = fnt.stringWidth("99999-9999");

 int height = fnt.getHeight();

 height += style.getPadding(Component.TOP) +

 style.getPadding(Component.BOTTOM);

width += style.getPadding(Component.LEFT) +return new Dimension(width, height);

 style.getPadding(Component.RIGHT);}

 public String getUIID() {

 return "NumericInput";

 }

 public void keyReleased(int keyCode) {

 if (keyCode >= '0' && keyCode <= '9') {

 char c = (char) keyCode;

 inputString += c;

 repaint();

 }

 }

 protected void initComponent() {

 getComponentForm().registerAnimated(this);

 }

The Custom Component

14-10 Lightweight UI Toolkit

 public boolean animate() {

 boolean ani = super.animate();

 long currentTime = System.currentTimeMillis();

 if (drawCursor) {

 if ((currentTime - time) > 800) {

 time = currentTime;

 drawCursor = false;

 return true;

 }

 } else {

 if ((currentTime - time) > 200) {

 time = currentTime;

 drawCursor = true;

 return true;

 }

 }

 return ani;

 }

}

Performance

Portability and Performance 15-1

15Portability and Performance

While portability is one of LWUIT’s best attributes, it is also one of the hardest features
to grasp. LWUIT is portable as a library and it also enables application porting in such
a way that binary code or source can be compatible across different Java ME profiles.

15.1 Introduction
Much has been said in the past about Java device fragmentation (write once debug
everywhere). To understand LWUIT's portability you must first understand the
original problems and the solutions LWUIT provides for each problem:

n Low quality or buggy implementations of the specification

This problem was far more severe with older (prior to CLDC 1.1) devices that
LWUIT does not support. Thanks to modern TCKs, the virtual machine (VM) in
modern devices is compatible, and furthermore the UI layer on which LWUIT is
based is very narrow and relatively robust across devices.

n Low power, low memory devices

Again with newer CLDC 1.1 devices this is not as much of a problem as it used to
be, but there are still concerns. See Chapter 2 for a discussion on increasing
performance and reducing memory overhead (sometimes trading off one for the
other).

n Varying screen resolutions

LWUIT ships with a very fast low memory overhead scaling algorithm that doesn't
lose transparency information. For extreme cases where the algorithm is not
enough, LWUIT supports pluggable themes, allowing the UI to be customized
with images more fitting to the resolution of the phone.

n Varying input methods

LWUIT detects soft buttons automatically, and navigation is already portable.
LWUIT supports touch screens seamlessly out of the box. Text input works with
the device native text box, ensuring proper input.

n Over-The-Air (OTA) code size limitations

This problem is solving itself, given relaxed carrier restrictions and increasing JAR
file size allocations. LWUIT fully supports obfuscation and works properly with
obfuscators that remove redundant code.

n Non-UI related pitfalls (networking issues, RMS incompatibility, etcetera)

LWUIT currently focuses only on UI related issues, so you must find your own
solution for the many minor issues related to these problems. For most common
use cases failure occurs because the device expects the “right thing”. For example,
networking is problematic on some devices due to a connection that was never
closed, and so forth.

15.2 Performance
Performance is a huge problem in portability. Problems in performance often creep on
an application only to appear later in its life cycle. Performance is often a trade-off,

Performance

15-2 Lightweight UI Toolkit

mostly of memory for CPU or visa versa. The easiest way to improve performance is to
reduce functionality.

Since LWUIT has pluggable theming you can substitute a simple theme without
changing code. This makes it easier to see whether the problem is in the UI itself.

The following subsections discuss the specifics of memory and responsiveness. One
thing to keep in mind is that performance and memory use on an emulator is no
indication of device performance and memory overhead.

15.2.1 Memory

This section discussions factors that impact memory and speed.

15.2.1.1 Encoded Images

Memory is problematic, especially when programming small devices. When using
LWUIT you must understand how memory directly relates to resolution and bit depth.

Assume you have two devices, a 16-bit color (65536 colors) device with 128x128
resolution that has 2 megabytes of memory, and a 24-bit color device (1.6 million
colors) with a 320x240 resolution and 3 megabytes of memory. Which device provides
more memory for a LWUIT application? The answer is not so simple.

Assume both devices have a background image set and scaled, so they need enough
RAM to hold the uncompressed image in memory.

The smaller device needs 32,768 bytes just for a background buffer of the screen. The
larger device requires 307,200 bytes for the same buffer!

Because screen buffers are needed both for the current form, the current transition
(twice), and the MIDP implementation, the amount of memory the larger device
consumes is staggering! How did we reach these numbers?

The simple formula is:

screen width * screen height * bytes per pixel = memory

Therefore:

16 bit: 128 * 128 * 2 = 32,768

24 bit: 320 * 240 * 4 = 307,200

Notice that in the 24-bit device 24 bits are counted as an integer because there is no
24-bit primitive and implementations treat 24-bit color as 32-bit color.

So getting back to the two devices: In the worst case scenario four buffers are
immediately consumed, and the remaining RAM compares as follows:

16 bit: 2,097,152 – 32,768 * 4 = 1,966,125

24 bit: 3,145,728 – 307,200 * 4 = 1,916,928

It turns out the 24-bit device has more RAM to begin with but doesn't have as much
RAM to work with!

Note:

All of these calculations don't take into account the additional
memory overhead required for LWUIT and your application.

Performance

Portability and Performance 15-3

Thankfully, LWUIT offers a partial solution in the form of encoded images, which
allow the device to cleanup unnecessary bitmap data from memory when it is scarce.

Encoded images work by using a weak/soft reference to a keep the encoded version of
an image. For example, a PNG or JPEG is usually compressed at a very high ratio
producing a much smaller byte size than the ones mentioned above (typically a
240x320 image can be 4-5kb or even less!). The EncodedImage keeps in memory the
actual JPEG or PNG data, when image information such as pixels, dimensions etc. is
needed the native Image object is dynamically created and maintained in a weak/soft
reference for caching.

This allows the garbage collection to remove the image from memory when additional
memory is needed, however its potentially expensive since an image might be created
multiple times. It is also expensive to scale an encoded image since scaling is far more
expensive for these cases.

The encoded image is the default image type returned when loading an image through
a resource file.

Using encoded images, a UI-heavy application can be run on a 2 megabyte 320x240
24-bit color device. Note that using tiled images or a solid color to fill the background
is much “cheaper” than the savings reachable using encoded images.

15.2.2 Speed

UI speed is often a user perception rather than a “real” performance issue. Slow
performance happens, but a developer’s opinion of performance may not match an
end-user’s perception. The best way to measure the speed of a UI is to give devices to
a focus group of objective people and ask them how the UI “feels”.

That said, the following subsections you can monitor the event dispatch thread and
LWUIT performance.

15.2.2.1 Event Dispatch Thread (EDT)

Performance often suffers because of slow paints. This often occurs when the EDT is
being used without being released. It’s important not to “hold” the EDT and release it
immediately when performing long running tasks. For further details on releasing the
EDT see Display methods callSerially, callSeriallyAndWait, and
invokeAndBlock.

The EDT might be blocked due to unrelated work on a different thread. Bad thread
scheduling on devices causes this problem, in part because many hardware devices
ignore thread priorities.

On some devices networking can cause a visible stall in the UI, a problem for which
there is no “real” solution. The workaround for such cases is logical rather than
technical. In this case a standard progress indicator stalls during a networking
operation. It might work better to use a progress indicator heuristic that moves slower
or does not move at all so the user is less likely to notice the interruption in the display.

15.2.2.2 LWUIT Performance

Different transition types have different performance overheads on devices. Play with
the transition selection and possibly disable transitions if necessary.

Indexed images carry a performance overhead. It shouldn't be excessive, but when
using many animations or indexed images you can expect a slower repaint cycle,
especially on devices without a JIT or fast CPU.

Device Bugs And Limitations

15-4 Lightweight UI Toolkit

Light mode often trades speed for memory overhead. If there is plenty of memory and
low performance, explicitly turning off light mode (after Display.init()) might
impact speed.

15.3 Device Bugs And Limitations
This section describes the device bugs and limitations the LWUIT development team
found while in the process of creating demos and applications. While this is not an
exhaustive list, you can apply these principles if you encounter device issues of your
own.

15.3.1 Bugs

The LWUIT development team encountered several device bugs and limitations (but
not nearly as many as were expected). The first rule of bug investigation is:

It is not a VM bug.

Often developers blame the VM for bugs. Despite many rumors, the development
team hasn’t found a CLDC 1.1 VM with a significant bug (they reproduced crashes,
but they were all due to bad API implementations).

The VM and GC seem to work pretty flawlessly, which means several things should
work. You should be able to rely on proper exception handling and proper class
loading behavior. This essentially allows you to use Java technology for exception
handling and class loading to work with multiple devices, instead of the
“problematic” preprocessor statements used in the past.

The preprocessor approach was essential in the past when targeting all phones (even
seriously broken VMs) with code size requirements that were very low. Today’s
market has changed considerably, both in the quality of the common devices and in
the space or OTA code size available for a typical application.

The advantages of avoiding preprocessor are mostly in code maintenance (refactoring,
compiler checks, etcetera), simplicity in reusing object oriented paradigms, and easier
deployment (one JAR file for all or most devices).

Rather than beat around the bush, here are a few examples of actual device behaviors:

n A device throws an exception in a certain condition when using an API. This
happens with several devices that fail in drawRGB. The solution is to catch the
exception and activate a flag to invoke a different code path designed for that
device class only.

n Some devices have a bug with API X or with a specific usage of API X. Avoid that
API or usage if possible. For example, many devices have a problem with
flushGraphics(int, int, int, int), but all devices tested worked
perfectly with flushGraphics().

As you can see, you can rely on Java working properly and throwing exceptions,
making it possible to implement workarounds on the fly.

15.3.2 Limitations

The rules for dealing with device limitations are very similar to the rules for dealing
with device bugs. If a missing API is invoked in code, it throws an exception because it
doesn't exist. You can catch that exception and activate a flag disabling the
functionality related to the feature. For example, your application might offer a
location based feature based on JSR 179. You can wrap the calls related to JSR 179 code

Input

Portability and Performance 15-5

in try/catch and disable the functionality if a Throwable is thrown by the code (for
example, NoSuchMethodError or ClassNotFoundException).

An example of this approach exists in the M3G class from LWUIT which is designed to
run on devices that do not support JSR 184. The Log class is also designed in a similar
way. It can utilize the FileConnector when the API is available in order to log to the
device file system rather than RMS.

Limitations are often related to appearance, number of colors, device speed, device
resolution, and so forth. These can be worked around using a multitude of themes and
picking the right default theme upon startup. Use the methods in Display to check
general device capabilities, then enable or disable some features.

For example, some devices support only three alpha levels (0%, 50%, 100%). This
causes anti-aliased fonts to look horrible on those devices especially when using white
over black color schemes. Devices like these can be easily detected using
Display.numAlphaLevels() and such themes can be disabled on these devices (or
simply excluded from the default state). Similar properties such as numColors are
available on display.

Speed and memory constraints are much harder to detect on the fly. TotalMemory is
often incorrect on devices and speed is notoriously hard to detect. True memory heap
can be detected by allocating byte arrays until an OutOfMemoryError is thrown.
While the VM is not guaranteed to be stable after an OOM it generally recovers nicely.
Store the amount of memory in RMS to avoid the need to repeat this exercise.

The best solution is to allow your users as much configurability as possible (to themes,
animations, transitions, etcetera) thus giving them the choice to tailor the application
to their device needs.

15.4 Resolution Independence
One of the biggest problems in Java ME programming is the selection of device
resolutions. This problem is aggravated by lack of scaling support and the small
selection of devices with SVG device. A bigger problem than multiple resolutions is
the problem of varying aspect ratios, even changing in runtime on the same device!
(For example some slider devices change resolution and aspect ratio on the fly.)

LWUIT solves the lack of scaling support by including a fast low overhead scaling
algorithm that keeps the image’s alpha channel intact. Scaling on devices is far from
ideal for some image types. It is recommended that designers avoid “fine details” in
images that are destined for scaling.

Since images and themes can be stored in resource bundles, such bundles can be
conditionally used to support different resolutions. This solution is not practical on a
grand scale with a single JAR file strategy, however, for some basic resolution and
important images this is a very practical solution, especially when dynamically
downloading resources from a server.

15.5 Input
This section describes input methods that LWUIT supports.

15.5.1 Soft Buttons

Soft buttons for common devices in the market are detected automatically by LWUIT.
If LWUIT fails to detect a specific device a developer can still set the key code for the
soft keys using setter methods in Display.

Specific Device Issues

15-6 Lightweight UI Toolkit

LWUIT supports 3 SoftButton navigation common in newer phones from Sony
Ericsson and Nokia. The 3 SoftButton mode can be activated via the Display class. In
this mode the center “fire” key acts as a soft button.

15.5.2 Back Button

Some devices, most commonly older Sony Ericsson devices, have a special hardcoded
back button device. You can assign a command as a “back command” using the form
method for determining the back command. This ensures that only one command at
any given time is deemed as a back command. The back command can also be
configured using the Display methods. Currently the back button is only supported on
Sony Ericsson devices.

15.5.3 Touch Screen Devices

Touch screens are supported out of the box, however, designing a UI for finger
operation is very different from designing a UI for general use. Finger operations
expect everything to be accessible via taps (not keys).

A touch interface expects widgets to be big enough to fit the size of a human finger.
This is somewhat counter-intuitive because normally you might want to cram as much
UI detail as possible into a single screen to avoid scrolling.

Component sizes can be easily customized globally using the theme. Simply set the
default padding attribute to a large enough value (e.g. 5, 5, 5, 5) and all widgets
“grow” to suit finger navigation. It is also a good practice to use buttons for touch
devices and avoid menus where possible.

The only problem is that currently there is no standard code that allows you to detect
touch screen devices on the fly. However such information can be easily placed in the
Java application descriptor (JAD) file for the application to query.

15.6 Specific Device Issues
This list is rather limited since the development team doesn't have much to say about
most devices. Most of the common CLDC 1.1 devices just work out of the box without
much of a hassle. This section describes behaviors that might catch developers off
guard. This is by no means an exhaustive or definitive list.

15.6.1 Motorola

The RAZR family doesn't support different levels of translucency -only 50%
translucency is supported. This causes anti-aliased fonts to look bad on these devices.

15.6.2 Create a .cod File

1. Create a new project in JDE and name it appropriately. Select project type: "Empty
Midlet project".

2. Right click on the project and choose the "add file to project" option and choose the
JAR file from your projects /dist directory.

3. Right click on the project and choose "properties".

4. In the "Application" tab insert the name of your main MIDlet class.

5. Build and run the project.

Specific Device Issues

Portability and Performance 15-7

15.6.3 Nokia S40

Generally series 40 devices work well. Some “high end” S40 devices only contain 2mb
of memory yet have 24-bit color 320x240 resolutions. These devices have 3mb installed
but only 2mb is accessible to Java applications.

The Nokia S40 emulator provides a very good approximation of the devices.

15.6.4 Sony Ericsson

Sony Ericsson makes good Java devices that are indexed with memory and have 16-bit
color for even better memory.

The Back button, as discussed in Section 15.5.2, "Back Button" exists in SE until JP-8, at
which point a new interface based on three soft keys was introduced.

Native Networking Sony Ericsson threads in SE tend to freeze the GUI. The devices in
JP-7 and newer completely ignore thread priorities as well.

15.6.5 General Portability Tip

Test on manufacturers emulators. While development is easier using the Java ME SDK,
the Sprint Plugin for Java ME SDK, or the Sprint Wireless Toolkit, there is no substitute
for occasional emulator testing. An emulator provides more accurate memory readings
especially related to images and buffers.

Specific Device Issues

15-8 Lightweight UI Toolkit

LWUIT Mini FAQ A-1

ALWUIT Mini FAQ

This appendix addresses common questions about LWUIT.

Performance on the Java ME SDK or the Wireless Toolkit is very slow, what is the
problem?

There are documented issues of slow performance due to Hyperthreading.

n Slow loopback in the network interface (often caused by miss-configured
networking) also impacts performance because the toolkit uses network calls to
perform all drawing.

n Sprint WirelessToolkit versions 3.2 and higher do not have these performance
issues because they feature a different architecture.

How does painting in LWUIT differ from Swing/AWT?

Generally both are very much alike. There are, however, some minor key differences
that might “bite” an unsuspecting Swing/AWT developer:

n LWUIT clears the background – when drawing the component LWUIT makes sure
to first clear the background for the component using the painters for its parents if
necessary.

n LWUIT translates to parent component coordinates – A Swing component always
starts at 0, 0. This is because Graphics.translate is invoked with the X and Y
coordinates of the component. In LWUIT this is done only for parent containers,
which is why the components in LWUIT must be drawn in their X and Y location.
The problem with this approach is that drawing in 0,0 often works for the first
component in the container and fail for subsequent components.

n LWUIT doesn't make a distinction between paintContent or paintChildren – All
calls in LWUIT lead to paint and paintBorder. There is no separate call for painting
the children of a container.

Scrolling isn't working like I expect. What went wrong?

There are several common possibilities.

n You nested a scrollable component within another scrollable component (this is
technically legal but might look odd). By default the form is scrollable so just try
invoking setScrollableY(false) on the form.

n Scrolling behaves based on the amount of space allocated by the layout manager.
Some layout managers do everything to prevent scrolling (such as grid layout)
while the box layout tries to increase size as much as possible. Read the
documentation for your layout manager of choice.

n For group layout components (generated by the UI builder) you must make sure
to mark components to grow and verify that they indeed do so in preview mode.
You must size the container to match the size of the component boundaries,
otherwise the container size is hardcoded.

What is a painter? Why not just use an image?

The idea behind a painter is simple, provide flexibility to the developer and allow the
developer to define rendering suitable for his needs on any device. While images
provide decent flexibility for artists’ ideas, painters provide limitless flexibility:

A-2 Lightweight UI Toolkit

n A developer can use a relatively low overhead gradient painter to get a very
compelling look without a single additional image file. Furthermore, the gradient
adapts nicely to any screen resolution.

n In high-end devices that support SVG, etcetera, painters can use SVG to render
and scale vector graphics rather than scale raster graphics. This increases the
application UI fidelity.

Is LWUIT identical across all platforms?

Yes and No.

The basic core API is the same on most tested platforms and is binary compatible,
allowing MIDP applications to run on Java SE (for example, in the Resource Editor
actual MIDlet code is running in Java SE).

The catch is in several details:

n Some components aren't available in other platforms: M3G, Media (sometimes
available), and SVG.

n Rendering might seem different on other platforms due to platform issues. For
example, in some platforms LWUIT takes advantage of anti-aliasing. System fonts
look completely different between platforms and bitmap fonts look odd in some
platforms that don't properly support alpha channels.

n Different platforms have different performance characteristics.

For more details on these issues check out the portability chapter.

Does LWUIT support 3 SoftButton devices?

Yes, 3 SoftButton mode is implemented in display. However, since there is no reliable
way to detect 3 SoftButton phones this features can be activated either
programmatically or through a JAD file attribute.

A device doesn't seem to work with LWUIT. What should I do?

Is it a MIDP 2.0/CLDC 1.1 device? If it is then please mail lwuit@sun.com with the
following additional details:

n Does LWUIT hello world work on the device?

n Does the LWUIT UIDemo work on the device?

n What is the resolution+color depth of the device, and how much memory is
allocated for Java?

I want my application to look "native" on the device. Is there any way to accomplish
that?

While LWUIT is designed to do the exact opposite (support your own look and feel) a
native look and feel can be partially achieved if you implement a theme or look and
feel that resembles the native look.

This won't work very well on most devices since there is no way to detect if the user
switched the default theme.

Downloadable themes are probably a good approach for a strong user community.

The UI for my touch screen phone seems too small for my fingers. How do I make
the UI more appropriate for such a device?

Use a global padding setting in the theme to increase the size of all widgets to a point
where they are big enough for a finger tip.

LWUIT Mini FAQ A-3

Why am I getting memory errors in LWUIT? Why is LWUIT is consuming a lot of
memory in my memory monitor?

Check that your application doesn't hold onto pointers for components. Because a
component references its parent component, holding onto a single button can keep an
entire form with all its content in memory... LWUIT allocates and discards frequently
to allow for a small memory footprint. This causes the graph of free memory to
fluctuate but the alternative of caching would be worse for highly constrained devices.
Check out the LWUIT blog for more information on the subject of tracking and
identifying memory issues.

Why won't my list/text area scroll? Why does my list/text area jump around?

You need to disable the scrolling for the form using myForm.setScrollable(false) and
you should place the list in the center of a border layout. For deeper understanding of
why this is required, read the next question about scrolling.

How do I change the appearance of the list? Remove the numbers from the side
etcetera? Can I nest containers in the list?

Listis designed for a very large number of element and fast traversal. You can use its
cell renderer facility to customize it any way you want as explained here. How the list
can scale and grow is explained here and additionally here.

My application freezes or stalls. How do I fix this?

99% of the problems of this type are related to Event Dispatch Thread (EDT)
violations.

What is the Event Dispatch Thread (EDT)?

The EDT broadcasts all the events in LWUIT. It is also responsible for drawing all
elements on the screen.The EDT thread is responsible for drawing all screen elements,
if it is blocked by a long running operation elements won't update and key/pointer
events won't be received. The solution is to use threads for such long running tasks,
however interaction with LWUIT can only be performed on the EDT. To return into the
EDT you can use Display.callSerially and callSeriallyAndWait. A different option is to
use invokeAndBlock.

I'm not opening any threads, why am I having problems?

A typical application always uses at least two threads, lifecycle and the EDT. The
lifecycle thread is the callback thread used for the application. For example, in MIDP
the startApp method is invoked from the MIDP thread which is different from the
EDT.

Does anything work from a separate thread?

There are no guarantees, but repaint() should generally work from every thread and
show() should as well.

How do I reposition/resize a dialog?

Use a Dialog instance and a version of show which accepts 4 integer values to position
the dialog. You can use the set the default dialog position to simplify dialog
positioning.

How do I show Video?

Use MMAPI to create a Player object, then use the VideoComponent class.

A-4 Lightweight UI Toolkit

Can I create my own components?

Everything in LWUIT is fully extensible.You can derive from any component and
extend it. It is demonstrated in the Chapter 14 and it is discussed extensively in the
blog at http://codename-1.blogspot.com/.

I'm trying to display an animated gif. Why isn't it working?

Animated gifs can be shown in MIDP using the MMAPI and VideoComponent (see
How do I show Video?). LWUIT has special support for StaticAnimation which is a
LWUIT specific format very similar to the animated gif. Both the Resource Editor and
the Ant task accept animated GIF files to create static animations.

I'm having issues on a Windows Mobile device?

Windows mobile VMs vary significantly in their quality. If the VM is giving you
problems try the Phone ME open source VM port for Windows mobile devices.

How do I create resource (.res) files?

Use the Resource Editor or the Ant task.

What is the difference between the Resource Editor and the Ant task?

The difference is mainly in the use case, the ant tool is designed mostly for developer
related resources (locales, application images, etcetera). The Resource Editor is
targeted for use by graphic designers.

Index-1

Index

A

abstract classes, 1-2
ActionListener, 2-4
addCommand(), 2-2
addComponent(), 2-2, 6-1
addFocusListener(), 3-3
Animation, 13-1
attributes, 8-1

B

back button, 15-6
background color, 7-1
background image, 7-2
bgColor, 8-2
bgGradient, 8-2
bgImage, 7-2, 8-2
bgType, 8-2
bidirectional language support, 2-12
border, 7-2

3-part image, 7-4
9-part image, 7-4
bevel etched raised, 7-3
bevel lowered, 7-2
bevel raised, 7-2
horizontal and vertical image, 7-4
image, 7-3
line, 7-3
round, 7-3

BorderLayout(), 6-1
BoxLayout(), 6-2
Button, 2-2, 2-4

radio, 2-4
states, 2-4
types, 2-4

ButtonGroup, 2-5

C

calcPreferredSize(), 14-2
calendar, 2-11
CheckBox, 2-6
color, 7-1, 14-2
ComboBox, 2-7
Component, 2-1, 14-1
component.getSelectedStyle(), 7-1
component.getUnselectedStyle(), 7-1
composite, 2-1
coordinate layout, 6-6
custom component, 14-7

D

DefaultListModel, 3-1

derive, 9-12
device resolutions, 15-5
Dialog, 5-1

type, 5-1
Display class, 1-3
Display.numAlphaLevels(), 15-5
dispose(), 5-1, 5-3

E

EDT, 1-3, 14-4, 15-3, A-3
encoded image, 15-3
event dispatch, 1-3
event dispatch thread, 5-1, 15-3
event handling, 14-3

focus, 14-3

F

fgColor, 8-2
fieldSubmitted, 12-4
Fixed, 3-5
FlowLayout(), 6-4
flushGraphics(), 15-4
focus, 14-3
font key, 12-5
font keys, 12-5
fonts, 7-1, 9-2, 9-6

dynamic, 9-3
system font, 9-2

foreground color, 7-1
Form, 2-1

menus, 2-2
setup, 2-1

G

garbage collection, 15-3
GenericListCellRenderer, 3-5
getAutoComplete, 12-4
getLinkProperties, 12-4
getListCellRendererComponent(), 3-3
getListFocusComponent(), 3-3
getRadioButton(), 2-5
getUIID(), 14-5
glass pane, 10-2
GridLayout(), 6-5
GroupLayout API, 6-6

H

Hashtable, 3-5
key value, 3-5
name, 3-5

HTMLCallback, 12-3
HTMLComponent, 12-1

I

image type
Multi-image, 9-6

Index-2

RGB, 9-5
SVG, 9-5
timeline, 9-6

images, 9-2
indexed, 15-3

indexed images, 15-3

L

Label, 2-2
align, 2-3
alignment, 2-3

linkClicked, 12-4
List, 3-1

initialize, 3-1
list, A-3
ListCellRenderer, 3-2
ListModel, 3-1
localization, 9-3, 9-7
look and feel, 8-3
LookAndFeel, 8-3
LookAndFeel class, 14-4
LWUIT class, 11-1

M

margin, 7-1, 8-2
memory, A-3
MIDlet failure, 9-13
Motion, 13-1

P

padding, 7-1, 8-2
pageStatusChanged, 12-3
paint call dispatch, 1-3
painter, A-1
painter chain, 10-2
Painter(), 10-1
painting, 14-1, A-1

pipleline, 14-4
parsingError, 12-3
performance, 15-1
pluggable themes, 8-1
portability, 1-2, 15-1
preferred size, 14-2
preprocessor, 9-14
preview, 9-13

R

RadioButton, 2-4
removeAll(), 3-3
removeTabAt(), 2-9
renderer sample, 2-8
repaint(), 3-2
resource

create, 9-1
images, 9-2
load, 9-1

resource bundle, 9-1

Resource Editor, 9-4
preview, 9-13

resource editor, A-4
resource file format, 1-2
RGB, 9-5

S

scrolling, A-1, A-3
setBgPainter(), 7-5
setBgTransparency, 7-1
setEditable(), 2-10
setFG(), 14-5
setFixedSelection(), 3-3
setListCellRender(), 2-8
setModel(), 3-3
setName, 3-5
show, 2-2
size, 14-2
small-caps font, 12-7
soft buttons, 15-5
Style listener, 7-4
Style(), 7-1
SVG Tiny, 9-5
system font, 9-2

T

tab placement, 2-9
table layout, 6-8
Tabs, 2-9
TextArea, 2-10
TextField, 2-10
theme, 9-4, 9-7

add, 9-8
theme file, 8-1
thread, EDT, 1-3
ticker in list, 3-4
tickering, 2-12
Timeline, 9-6
titleUpdated, 12-4
touch screen, A-2
touch screen support, 15-6
Transition

fade, 13-3
slide, 13-1

transparency, 7-1, 8-3

U

UI code, 1-3
UIID, 8-1, 9-12

V

virtual keyboard, 2-13
virtual keyboard user IDs, 2-14
VKBImplementationFactory, 2-14

Index-3

W

widget class hierarchy, 1-1

Index-4

	Contents
	Preface
	Before You Read This Document
	How This Document Is Organized
	Shell Prompts
	Typographic Conventions
	Related Documentation
	We Welcome Your Comments

	1 Introducing the Lightweight UI Toolkit Library
	1.1 API Overview
	1.1.1 Scope and Portability
	1.1.2 Events and Threading

	2 Using Lightweight UI Toolkit Widgets
	2.1 Component
	2.2 Container
	2.3 Form
	2.4 Create and Set Up a Form Label
	2.5 Button
	2.6 RadioButton
	2.7 ButtonGroup
	2.8 CheckBox
	2.9 ComboBox
	2.10 Tabs
	2.11 TextArea
	2.12 TextField
	2.13 Calendar
	2.14 Tickering
	2.15 Bidi
	2.16 Virtual Keyboard
	2.17 Customizing the Virtual Keyboard
	2.17.1 Changing the Virtual Keyboard Look and Feel
	2.17.2 Adding a Language
	2.17.3 Adding an Input Mode for Hebrew
	2.17.4 Binding a Virtual Keyboard to a TextField
	2.17.5 Adding Your Own Button to a TextField

	3 Using Lists
	3.1 Initializing a List
	3.2 Creating a Model
	3.2.1 ListModel
	3.2.2 DefaultListModel

	3.3 List Cell Renderer
	3.3.1 ListCellRenderer
	3.3.2 DefaultListCellRenderer

	3.4 Adding Items to and Removing Items From a List
	3.5 List Events
	3.5.1 Fixed Selection Feature

	3.6 Tickers in List
	3.7 Generic List Cell Renderer
	3.7.1 Mapping Components to Hashtable Entries
	3.7.2 Focus for Tickering and Fisheye
	3.7.3 Hashtable Sample

	4 Table and Tree
	4.1 Table
	4.2 Tree
	4.3 Customizing the Tree
	5 Using Dialogs
	5.1 Dialog Types
	5.2 Creating a Dialog
	5.2.1 Return Types of Show Methods
	5.2.2 Non-Static Show Methods
	5.2.3 Using the dispose() Method
	5.2.4 Getting the User's Input from a Dialog

	6 Using Layout Managers
	6.1 BorderLayout
	6.2 BoxLayout
	6.2.1 X_AXIS
	6.2.2 Y_AXIS

	6.3 FlowLayout
	6.4 GridLayout
	6.5 GroupLayout
	6.6 Coordinate Layout
	6.7 Table Layout
	7 Using the Style Object
	7.1 Color
	7.2 Font
	7.3 Transparency
	7.4 Margin and Padding
	7.5 Images
	7.6 Borders
	7.6.1 Bevel
	7.6.2 Etched
	7.6.3 Line
	7.6.4 Round
	7.6.5 Image
	7.6.5.1 9 Part
	7.6.5.2 3 Part
	7.6.5.3 Horizontal/Vertical

	7.7 Style Listener
	7.8 Painters
	8 Theming
	8.1 Basic Theming
	8.2 Look and Feel
	9 Resources
	9.1 Resource Elements
	9.1.1 Building a Bundle
	9.1.1.1 Creating a Resource
	9.1.1.2 Loading a Resource

	9.1.2 Image Resources
	9.1.3 Fonts
	9.1.3.1 System Font
	9.1.3.2 Dynamic Fonts

	9.1.4 Localization (L10N)
	9.1.5 Themes

	9.2 The LWUIT Resource Editor
	9.2.1 Images and Animations
	9.2.2 Fonts
	9.2.3 Localization
	9.2.4 Themes
	9.2.4.1 Example: Adding a New Theme
	9.2.4.2 Modifying Theme Entries
	9.2.4.3 Data
	9.2.4.4 Customizing the Preview
	9.2.4.5 Known Issues

	10 Painters
	10.1 Using Painter
	10.2 Painter Chain
	10.3 Glass Pane
	11 LWUIT Implementation
	11.1 LWUIT Class
	12 HTMLComponent
	12.1 HTMLComponent Use Cases
	12.1.1 Rendering Rich Text
	12.1.2 Reading HTML and Enabling External Resources

	12.2 HTMLCallback
	12.2.1 parsingError
	12.2.2 pageStatusChanged
	12.2.3 titleUpdated
	12.2.4 linkClicked
	12.2.5 getLinkProperties
	12.2.6 Auto Complete

	12.3 Fonts
	12.3.1 Default Font
	12.3.2 System Fonts in HTMLComponent
	12.3.3 Bitmap Fonts
	12.3.4 Font Tags

	12.4 Styles in HTMLComponent
	12.5 Character Entities
	12.6 HTMLComponent Settings
	12.7 CSS Support
	12.8 Implementing a DocumentRequestHandler
	12.9 DocumentInfo
	12.9.1 getUrl
	12.9.2 getEncoding and setEncoding
	12.9.3 getParams
	12.9.4 getExpectedContentType and setExpectedContentType
	12.9.5 getFullUrl or getBaseUrl

	13 Using Transitions and Animations
	13.1 Animation
	13.2 Motion
	13.3 Transition
	13.3.1 Slide Transition
	13.3.2 Fade Transition

	14 Authoring Components
	14.1 Painting
	14.2 Sizing In Layout
	14.3 Event Handling
	14.4 Focus
	14.5 The Painting Pipeline
	14.6 Styling
	14.7 Background
	14.8 Animating The Component
	14.9 The Custom Component
	15 Portability and Performance
	15.1 Introduction
	15.2 Performance
	15.2.1 Memory
	15.2.1.1 Encoded Images

	15.2.2 Speed
	15.2.2.1 Event Dispatch Thread (EDT)
	15.2.2.2 LWUIT Performance

	15.3 Device Bugs And Limitations
	15.3.1 Bugs
	15.3.2 Limitations

	15.4 Resolution Independence
	15.5 Input
	15.5.1 Soft Buttons
	15.5.2 Back Button
	15.5.3 Touch Screen Devices

	15.6 Specific Device Issues
	15.6.1 Motorola
	15.6.2 Create a .cod File
	15.6.3 Nokia S40
	15.6.4 Sony Ericsson
	15.6.5 General Portability Tip

	A LWUIT Mini FAQ
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	P
	R
	S
	T
	U
	V
	W

