
Sun Microsystems, Inc.
www.sun.com

User’s Guide

Sun JavaTM Wireless Toolkit for CLDC

Version 2.5.2

v252
September 2007

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by
third parties.

Sun, Sun Microsystems, the Sun logo, Java, Javadoc, Java Community Process, JCP, JDK, JRE, J2ME, and J2SE are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

OpenGL is a registered trademark of Silicon Graphics, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie inclus dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et
dans les autres pays. L'utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des
tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Javadoc, Java Community Process, JCP, JDK, JRE, J2ME, et J2SE sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Ètats-Unis et dans d'autres pays.

OpenGL est une marque déposée de Silicon Graphics, Inc.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Ètats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, et de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents
http://www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xiii

1. Introduction 1–1

1.1 About the Multiple User Environment 1–1

1.1.1 The Installation Directory and the Working Directory 1–1

1.1.2 Working Directory Files 1–2

1.2 Quick Start 1–4

1.3 Toolkit Components 1–5

1.4 Toolkit Features 1–6

1.5 Toolkit Updates 1–6

1.6 Supported Technology 1–7

2. Developing MIDlet Suites 2–1

2.1 About Projects 2–1

2.2 Simple Development Cycle 2–3

2.2.1 Edit Source Code 2–4

2.2.2 Build 2–4

2.2.3 Run 2–5

2.3 Full Development Cycle 2–7

2.3.1 Package 2–8
iii

2.3.2 Install 2–8

2.3.3 Run 2–12

2.4 Creating a Project from a MIDlet Suite 2–13

2.5 Using an Obfuscator 2–14

2.5.1 Installing ProGuard 2–14

2.5.2 Using ProGuard 2–14

2.6 Using a Debugger 2–15

2.7 Deploying Applications on a Web Server 2–16

3. Working With Projects 3–1

3.1 Selecting APIs 3–1

3.2 Changing MIDlet Suite Attributes 3–3

3.3 Manipulating MIDlets 3–5

3.4 Using the Push Registry 3–6

3.5 Setting Up Content Handlers 3–7

3.6 Project Directory Structure 3–11

3.7 Using Third-Party Libraries 3–11

3.7.1 Using External APIs 3–12

3.7.2 Third-Party Libraries for One Project 3–13

3.7.3 Third-Party Libraries for All Projects 3–14

3.8 Configuring the Wireless Toolkit 3–14

3.8.1 Changing the Console Font 3–14

3.8.2 Setting the Application Directory 3–15

3.8.3 Setting the javac Encoding Property 3–15

3.8.4 Working with Revision Control Systems 3–15

4. Using the Emulator 4–1

4.1 Emulator Skins 4–1

4.2 Emulator Controls 4–2
iv Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

4.3 Setting Emulator Preferences 4–3

4.3.1 Network Proxies 4–3

4.3.2 Storage Sizes 4–4

4.3.2.1 Persistent Storage 4–5

4.3.2.2 Heap Size 4–5

4.3.3 Adjusting Emulator Performance 4–6

4.4 Pausing and Resuming 4–8

4.5 Running the Emulator Solo 4–8

4.6 Using Third-Party Emulators 4–9

5. Monitoring Applications 5–1

5.1 Using the Profiler 5–1

5.1.1 Call Graph 5–3

5.1.2 Execution Time and Number of Calls 5–4

5.1.3 Saving and Loading Profiler Information 5–4

5.2 Using the Memory Monitor 5–4

5.2.1 Saving and Loading Memory Monitor Information 5–7

5.3 Using the Network Monitor 5–7

5.3.1 Filtering Messages 5–8

5.3.2 Sorting Messages 5–9

5.3.3 Saving and Loading Network Monitor Information 5–10

5.3.4 Clearing the Message Tree 5–10

6. Security and MIDlet Signing 6–1

6.1 Permissions 6–1

6.2 Selecting the Security Policy 6–3

6.2.1 MSA Protection Domains 6–3

6.2.2 Java for the Wireless Toolkit Industry Protection Domains 6–4

6.3 Signing a MIDlet Suite 6–4
Contents v

6.4 Managing Keys 6–5

6.4.1 Creating a New Key Pair 6–5

6.4.2 Getting Real Keys 6–7

6.4.3 Importing an Existing Key Pair 6–7

6.4.4 Removing a Key Pair 6–8

6.5 Managing Certificates 6–8

6.5.1 Enabling and Disabling Certificates 6–9

6.5.2 Importing Certificates 6–9

6.5.3 Removing Certificates 6–10

6.6 USB Token Support 6–10

6.6.1 Installing USB Token Drivers 6–10

6.6.2 Using the USB Token 6–11

7. Using the Wireless Messaging API 7–1

7.1 Setting Emulator Phone Numbers 7–1

7.2 Simulating an Unreliable Network 7–3

7.3 Sending Messages With the WMA Console 7–3

7.3.1 Sending a Text SMS Message 7–4

7.3.2 Sending a Binary SMS Message 7–5

7.3.3 Sending Text or Binary CBS Messages 7–6

7.3.4 Sending MMS Messages 7–7

7.4 Receiving Messages in the WMA Console 7–9

7.5 Using the Network Monitor with WMA 7–9

8. Using the Mobile Media API 8–1

8.1 Supported Formats and Protocols 8–1

8.2 Adaptive Multi-Rate (AMR) Content 8–2

8.2.1 Windows 8–2

8.2.2 Linux 8–2
vi Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

8.2.2.1 Enabling AMR Support 8–2

8.2.2.2 AMR Format Support 8–3

8.3 Using MediaControlSkin 8–4

8.4 Media Capture 8–4

8.5 Well-Behaved MIDlets 8–4

8.6 Ring Tones 8–5

8.6.1 Download Ring Tones 8–5

8.6.2 Ring Tone Formats 8–5

9. Working With Mobile Graphics 9–1

9.1 Using the Mobile 3D Graphics API 9–1

9.1.1 Immediate Mode 9–2

9.1.2 Retained Mode 9–2

9.1.3 Trading Quality for Speed 9–2

9.1.4 Creating Mobile 3D Graphics Content 9–3

9.2 Rendering Scalable Vector Graphics Content 9–3

9.3 OpenGL® ES Overview 9–4

10. Using the PIM and FileConnection APIs 10–1

10.1 FileConnection API 10–1

10.2 The PIM API 10–3

11. Using the Bluetooth and OBEX APIs 11–1

11.1 Bluetooth Simulation Environment 11–1

11.2 OBEX Over Infrared 11–2

11.3 Setting OBEX and Bluetooth Preferences 11–2

11.3.1 OBEX Preferences 11–3

11.3.2 Bluetooth Internal Properties 11–4

11.3.3 Bluetooth System Properties 11–4

11.3.4 Bluetooth BCC Properties 11–4
Contents vii

12. Using Web Services 12–1

13. Using the Location API 13–1

13.1 Setting the Emulator’s Location at Runtime 13–1

13.2 Configuring the Location Provider 13–3

13.3 Setting Up Landmarks 13–4

14. Using SATSA 14–1

14.1 Card Slots in the Emulator 14–2

14.2 Using the Java Card Platform Simulator 14–3

14.3 Using the Network Monitor with SATSA 14–4

14.4 Adjusting Access Control 14–5

14.4.1 Specifying PIN Properties 14–5

14.4.2 Specifying Application Permissions 14–5

14.4.3 Access Control File Example 14–7

15. Using SIP 15–1

15.1 Understanding the Registrar and Proxy 15–1

15.2 SIP Settings 15–2

15.3 SIP Traffic in the Network Monitor 15–3

15.4 SIP Proxy Server and Registrar 15–4

16. Working with the Payment API 16–1

16.1 Project Settings for Payment 16–1

16.2 Editing Payment Attributes Directly 16–4

16.3 Payment Preferences 16–4

16.4 Viewing Transaction History 16–6

16.5 Monitoring Payments 16–7

17. Using the Mobile Internationalization API 17–1

17.1 Setting the Emulator’s Locale 17–1
viii Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

17.2 Viewing Application Resources 17–1

17.3 Working With Locales 17–3

17.4 Working With Resource Files 17–3

17.5 Working With Resources 17–3

A. Application Demonstrations A–1

A.1 Overview A–1

A.2 General Instructions A–4

A.3 Advanced Multimedia Supplements A–5

A.4 Bluetooth Demo A–7

A.5 CHAPIDemo A–8

A.6 CityGuide A–12

A.7 Demos A–15

A.7.1 Colors A–15

A.7.2 Properties A–15

A.7.3 Http A–16

A.7.4 FontTestlet A–17

A.7.5 Stock A–17

A.7.5.1 Working with Settings A–18

A.7.5.2 Stock Tracker A–18

A.7.5.3 What If? A–18

A.7.5.4 Alerts A–19

A.7.6 Tickets A–19

A.7.7 ManyBalls A–20

A.8 Demo3D A–20

A.8.1 Life3D A–20

A.8.2 PogoRoo A–22

A.8.3 retainedmode A–22

A.9 GoSIP A–23
Contents ix

A.10 i18nDemo A–25

A.11 JBricks A–27

A.12 JSR172Demo A–31

A.13 MobileMediaAPI A–31

A.13.1 Simple Tones A–31

A.13.2 Simple Player A–32

A.13.3 Video A–34

A.13.4 Pausing Audio Test A–35

A.13.5 Attributes for MobileMediaAPI A–35

A.14 Network Demo A–36

A.14.1 Socket Demo A–36

A.14.2 Datagram Demo A–38

A.15 ObexDemo A–39

A.16 PDAPDemo A–41

A.16.1 Browsing Files A–41

A.16.2 The PIM API A–44

A.17 SATSADemos A–46

A.17.1 APDUMIDlet A–47

A.17.2 SATMIDlet A–47

A.17.3 CryptoMIDlet A–48

A.17.4 MohairMIDlet A–48

A.18 SATSAJCRMIDemo A–49

A.19 SIPDemo A–49

A.20 SVGContactList A–49

A.21 SVGDemo A–51

A.21.1 SVG Browser A–51

A.21.2 Render SVG Image A–52

A.21.3 Play SVG Animation A–52
x Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.21.4 Create SVG Image from Scratch A–53

A.21.5 Bouncing Balls A–53

A.21.6 Optimized Menu A–53

A.21.7 Picture Decorator A–54

A.21.8 Location Based Service A–56

A.22 WMADemo A–56

B. Command Line Reference B–1

B.1 Prerequisites B–1

B.2 The Development Cycle B–2

B.2.1 Build B–2

B.2.2 Package B–3

B.2.3 Run B–4

B.2.4 Debugging B–6

B.3 Launching Toolkit GUI Components B–7

B.4 Setting Emulator Preferences B–7

B.5 Using Security Features B–9

B.5.1 Changing the Emulator’s Default Protection Domain B–10

B.5.2 Signing MIDlet Suites B–10

B.5.3 Managing Certificates B–11

B.6 Using the Stub Generator B–12

B.6.1 Options B–12

C. Localization C–1

C.1 Locale Setting C–1

C.2 Emulated Locale C–2

C.3 Character Encodings C–2

C.4 Java Technology Compiler Encoding Setting C–3

C.5 Font Support in the Default Emulator C–3
Contents xi

Index Index–1
xii Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Preface

This document describes how to work with the Sun Java™ Wireless Toolkit for
CLDC.

Who Should Use This Book
This guide is intended for developers creating Mobile Information Device Profile
(MIDP) applications with the Sun JavaTM Wireless Toolkit for CLDC. This book is
not a tutorial in MIDP programming, nor is it a tutorial in programming any of the
additional APIs that are supported by the toolkit. You should already understand
how to use the Mobile Information Device Profile (MIDP) and the Connected
Limited Device Configuration (CLDC).

If you need help getting started with the Java programming language, try the New to
Java Center:

http://java.sun.com/learning/new2java/

For a quick start with MIDP programming, read Learning Path: Getting Started with
MIDP 2.0:

http://developers.sun.com/techtopics/mobility/learn/midp/midp20/
xiii

http://java.sun.com/learning/new2java/
http://developers.sun.com/techtopics/mobility/learn/midp/midp20/
http://developers.sun.com/techtopics/mobility/learn/midp/midp20/
http://java.sun.com/learning/new2java/

Related Documentation
This section lists related Java Platform, Micro Edition (Java ME) specifications. Java
ME was formerly referred to as the Java 2 Platform, Micro Edition, or J2ME™, as you
see in some of the specification names. Although specifications are definitive, they
are not always the most accessible kind of information. For a variety of
developer-centered articles, try Sun’s mobility web site:

http://developers.sun.com/techtopics/mobility/

TABLE P-1 Related Documentation

Topic Title

Customizing the Sun JavaTM

Wireless Toolkit for CLDC
Sun JavaTM Wireless Toolkit for CLDC Basic Customization
Guide

Release Notes Sun JavaTM Wireless Toolkit for CLDC Release Notes

CLDC 1.0 - JSR 30 J2ME Connected Limited Device Configuration

MIDP 1.0 - JSR 37 Mobile Information Device Profile for the J2ME Platform

PDAP Optional Packages - JSR 75 PDA Optional Packages for the J2ME Platform

Bluetooth and OBEX - JSR 82 Java APIs for Bluetooth

MIDP 2.1 - JSR 118 Mobile Information Device Profile 2.0
(Final Release 2 is referred to as MIDP 2.1)

CLDC 1.1 - JSR 139 J2ME Connected Limited Device Configuration

MMAPI - JSR 135 Mobile Media API

J2ME Web Services - JSR 172 J2ME Web Services Specification

SATSA - JSR 177 Security and Trust Services APIs for J2ME

Location API - JSR 179 Location API for J2ME

SIP API - JSR 180 SIP API for J2ME

Mobile 3D Graphics - JSR 184 Mobile 3D Graphics API for J2ME

JTWI - JSR 185 Java Technology for the Wireless Industry

WMA 2.0 - JSR 205 Wireless Messaging API (WMA)

CHAPI 1.0 - JSR 211 Content Handler API

SVG API - JSR 226 Scalable 2D Vector Graphics API for J2ME

Payment API - JSR 229 Payment API

Advanced Multimedia - JSR 234 Advanced Multimedia Supplements
xiv Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://developers.sun.com/techtopics/mobility/
http://developers.sun.com/techtopics/mobility/

How This Book Is Organized
This guide contains the following chapters and appendices:

Chapter 1 introduces the Sun JavaTM Wireless Toolkit for CLDC and the
development features it provides.

Chapter 2 describes the development processes for creating and running MIDlets.

Chapter 3 explains how to work with projects in the toolkit. You’ll learn how to
adjust project properties, manipulate MIDlets, work with the push registry, and
understand the project directory structure.

Chapter 4 describes the emulator and explains how to adjust its options and take
advantage of its many features.

Chapter 5 shows how you can examine the performance of your application using
the method profiler, memory monitor, and network monitor.

Chapter 6 describes how to sign MIDlet suites and manage keys and certificates.

Chapter 7 details support for running and testing wireless messaging applications.

Chapter 8 explains how the Sun JavaTM Wireless Toolkit for CLDC supports the
Mobile Media API.

Chapter 9 contains information about developing 3D graphics content.

Chapter 10 describes how the toolkit implements access to local files and personal
information like contacts and calendar appointments.

Chapter 11 covers the toolkit’s Bluetooth and OBEX simulation environment.

Chapter 12 shows how to use the web services stub generator.

Chapter 13 describes how to work with the emulator’s location features.

Mobile Internationalization - JSR
238

Mobile Internationalization API

Java Binding for OpenGL® ES API
- JSR 239

Java Binding for OpenGL® ES API

Mobile Service Architecture
- JSR 248

Mobile Service Architecture

TABLE P-1 Related Documentation (Continued)

Topic Title
Preface xv

Chapter 14 discusses the toolkit’s support for SATSA.

Chapter 15 covers the toolkit’s SIP support.

Chapter 16 describes the toolkit’s Payment API features.

Chapter 17 shows how to manage resources for the Mobile Internationalization API.

Appendix A describes the application demonstrations that are included in the Sun
JavaTM Wireless Toolkit for CLDC.

Appendix B explains how to use the functionality of the Sun JavaTM Wireless Toolkit
for CLDC from the command line.

Appendix C describes localization features in the Sun JavaTM Wireless Toolkit for
CLDC.

Typographic Conventions
TABLE P-2 describes font uses cases in this document.

TABLE P-2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

Command-line variable; replace
with a real name or value

To delete a file, type rm filename.

{AaBbCc.dir} Variable file names and
directories.

In this book, toolkit always refers to the
directory where the Sun JavaTM Wireless
Toolkit for CLDC is installed. workdir
refers to a user’s working directory, as
explained in Section 1.1.1, “The
Installation Directory and the Working
Directory” on page 1-1.
xvi Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Accessing Sun Documentation Online
The following sites provide technical documentation related to Java technology:

■ http://developer.sun.com/

■ http://java.sun.com/javame/

We Welcome Your Comments
We are interested in improving our documentation. Email your feedback from
developers.sun.com.
Preface xvii

developers.sun.com
http://java.sun.com/javame/
http://developer.sun.com/
http://java.sun.com/javame/
http://developers.sun.com/contact/feedback.jsp?&category=j2me&mailsubject=Sun%20Java%20Wireless%20Toolkit%20for%20CLDC
http://developer.sun.com/

xviii Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 1

Introduction

This book describes how to use the Sun JavaTM Wireless Toolkit for CLDC.

The Sun JavaTM Wireless Toolkit for CLDC is a set of tools that makes it possible to
create applications for mobile phones and other wireless devices. Although it is
based on the Mobile Information Device Profile (MIDP) 2.1, the Sun JavaTM Wireless
Toolkit for CLDC also supports many optional packages, making it a widely capable
development toolkit.

1.1 About the Multiple User Environment
The Sun Java Wireless Toolkit 2.5.2 for CLDC can be installed on a system running a
supported version of either Windows or Linux. All users with an account on the host
machine can access the toolkit, either singly or simultaneously.

1.1.1 The Installation Directory and the Working
Directory
Windows paths include a drive letter and use backslashes as directory separators.
Linux paths use forward slashes. In Linux paths, ~ represents a Linux user’s home
directory.

To support multiple users the toolkit creates an installation directory that is used as
a source for copying. This document uses the variable workdir to represent the toolkit
working directory and toolkit to represent the installation directory. Each user’s
1-1

personal files are maintained in a separate working directory named j2mewtk that
has a subdirectory for each version installed. The default location of workdir is
typically in one of these locations:

Prominent differences between Windows and Linux are described in the
documentation. If only one operating system is mentioned, you can assume the
above path notation differences apply.

1.1.2 Working Directory Files
At installation time the installer copies a subset of files from the installation
directory to the working directory of each user. The working directory contents are
as follows:

■ .settings - Initially contains security.properties.

■ appdb - The entire applications database is copied to your working directory.

■ apps - The apps directory is created empty in your working directory. If you
open a demonstration project it is automatically copied to this location. When you
create a new project (Section 2.1, “About Projects” on page 2-1), it is stored here.

■ wtklib - Contains the emulator properties file (see Chapter 4) and state
information for the HTTP and WMA servers and clients.

■ sessions - This is the default save destination for monitoring tools (see Chapter 5).
It is initially empty.

All the source code for the demonstration applications is available in toolkit\apps,
and each demonstration has its own project directory. Any applications placed in
toolkit\apps are visible to all users.

For example, on Windows the source code for the MobileMediaAPI demonstration
is in toolkit\apps\MobileMediaAPI\src. When you use the Open Project
command, you can see projects in the installation directory and your working
directory (if they exist). As shown in FIGURE 1-1, projects in your local directory are
shown in bold font, and projects in the installation directory are shown in italic font.
To see only your local files, clear the Show available demos check box.

Windows: C:\Documents and Settings\User\j2mewtk\2.5.2
(where User is your account name)

Linux: ~/j2mewtk/2.5.2 (where ~ is your home directory)
1-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 1-1 Project Listing Shows Local Projects in Bold Face

When you open a project from the installation directory, a copy of the application is
imported into workdir\apps. Often the import process is undetectable, but on slower
machines you might see a progress dialog like that in FIGURE 1-2. Any customizations
should be made to your local copy.
Chapter 1 Introduction 1-3

FIGURE 1-2 Project Import from toolkit to workdir

1.2 Quick Start
To get started right away, try the demonstration applications that are included with
the Sun JavaTM Wireless Toolkit for CLDC.

To run the demonstrations, start the toolkit as follows.

■ On Microsoft Windows choose Start > Programs > Sun Java Wireless Toolkit
2.5.2 for CLDC > Wireless Toolkit 2.5.2.1

■ On Linux, change directory to toolkit/bin. To run the toolkit, enter
./ktoolbar.

A window similar to FIGURE 1-3 opens.

1. Depending on how Microsoft Windows is configured, you might need to choose Start > All Programs instead
of Start > Programs.
1-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 1-3 Toolkit User Interface

Click the Open Project button to see a list of all the available applications. As shown
in FIGURE 1-1, italicized names denote applications stored in the installation
directory, and bold names, if any, are stored in your working directory. Pick one of
them and click the Open Project button in the dialog. If you have not opened this
project before, a copy will be created in your working directory, as discussed in
Section 1.1.2, “Working Directory Files” on page 1-2.

Once the application is open, press the Run button. The emulator appears running
the example application.

Most demonstrations are self explanatory, but some have additional instructions.
Some demos require you to use Project > Run via OTA instead of run. See
Appendix A for general instructions and descriptions of demos.

1.3 Toolkit Components
The Sun JavaTM Wireless Toolkit for CLDC has three main components:

■ The user interface automates many of the tasks involved in creating MIDP
applications.

■ The emulator is a simulated mobile phone. It is useful for testing MIDP
applications.

■ A collection of utilities provides other useful functionality, including a text
messaging console and cryptographic utilities.
Chapter 1 Introduction 1-5

From the user interface you can build applications, launch the emulator, and start
the utilities. Alternatively, the emulator and utilities can be run by themselves,
which is useful in many situations. If you want to demonstrate MIDP applications,
for example, it’s useful to run the emulator by itself.

The only additional tool you need is a text editor for editing source code.

1.4 Toolkit Features
The Sun JavaTM Wireless Toolkit for CLDC supports the creation of MIDP
applications with the following main features:

■ Building and packaging: You write the source code and the toolkit takes care of
the rest. With the push of a button, the toolkit compiles the source code,
preverifies the class files, and packages a MIDlet suite.

■ Running and monitoring: You can run a MIDlet suite directly in the emulator or
install it using a process that resembles application installation on a real device. A
memory monitor, network monitor, and method profiler are provided to analyze
the operation of your MIDlets.

■ MIDlet suite signing: The toolkit contains tools for cryptographically signing
MIDlet suites. This is useful for testing the operation of MIDlets in different
protection domains.

1.5 Toolkit Updates
At installation you are given the option to activate the Check for Product Updates
feature. This feature uses the network to check for an update every seven days. To
determine whether an update is needed, it collects the following information:

■ Operating System

■ Country and Language setting on your computer

■ Date and Version of the current Wireless Toolkit

■ A Unique random user ID generated by the Wireless Toolkit

This data is used to improve the product. Please read Sun’s privacy policy at
http://www.sun.com/privacy/index.html.

To activate or deactivate this feature, select Edit > Preferences and click Network
Configuration. Towards the bottom of the panel, check or uncheck the Check for
updates box.
1-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://www.sun.com/privacy/index.html
http://www.sun.com/privacy/index.html

1.6 Supported Technology
The Sun JavaTM Wireless Toolkit for CLDC supports many standard Application
Programming Interfaces (APIs) defined through the Java Community Process™
(JCP™) program. TABLE 1-1 shows the APIs and includes links to the specifications.

TABLE 1-1 Supported JCP Program APIs

JSR
API

Name
URL

JSR 248
MSA 1.0

Mobile Service Architecture
http://jcp.org/en/jsr/detail?id=248

JSR 185
JTWI 1.0

Java Technology for the Wireless Industry
http://jcp.org/en/jsr/detail?id=185

JSR 139
CLDC 1.1

Connected Limited Device Configuration
http://jcp.org/en/jsr/detail?id=139

JSR 118
MIDP 2.0

Mobile Information Device Profile
http://jcp.org/en/jsr/detail?id=118

JSR 75
PIM and File

PDA Optional Packages for the J2ME Platform
http://jcp.org/en/jsr/detail?id=75

JSR 82
Bluetooth and OBEX

Java APIs for Bluetooth
http://jcp.org/en/jsr/detail?id=82

JSR 135
MMAPI 1.1

Mobile Media API
http://jcp.org/en/jsr/detail?id=135

JSR 172 J2ME Web Services Specification
http://jcp.org/en/jsr/detail?id=172

JSR 177
SATSA

Security and Trust Services API for Java ME
http://jcp.org/en/jsr/detail?id=177

JSR 179
Location

Location API for Java ME
http://jcp.org/en/jsr/detail?id=179

JSR 180
SIP

SIP API for Java ME
http://jcp.org/en/jsr/detail?id=180

JSR 184
3D Graphics

Mobile 3D Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=184

JSR 205
WMA 2.0

Wireless Messaging API
http://jcp.org/en/jsr/detail?id=205
Chapter 1 Introduction 1-7

http://jcp.org/en/jsr/detail?id=248
http://jcp.org/en/jsr/detail?id=185
http://jcp.org/en/jsr/detail?id=139
http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=75
http://jcp.org/en/jsr/detail?id=82
http://jcp.org/en/jsr/detail?id=135
http://jcp.org/en/jsr/detail?id=172
http://jcp.org/en/jsr/detail?id=177
http://jcp.org/en/jsr/detail?id=179
http://jcp.org/en/jsr/detail?id=180
http://jcp.org/en/jsr/detail?id=184
http://jcp.org/en/jsr/detail?id=205

JSR 211
CHAPI

Content Handler API
http://jcp.org/en/jsr/detail?id=211

JSR 226 Scalable 2D Vector Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=226

JSR 229 Payment API
http://jcp.org/en/jsr/detail?id=229

JSR 234
AMMS

Advanced Multimedia Supplements
http://jcp.org/en/jsr/detail?id=234

JSR 238
MIA

Mobile Internationalization API
http://jcp.org/en/jsr/detail?id=238

JSR 239 Java Binding for OpenGL® ES API
http://jcp.org/en/jsr/detail?id=239

JSR 248 Mobile Service Architecture
http://jcp.org/en/jsr/detail?id=248

TABLE 1-1 Supported JCP Program APIs (Continued)

JSR
API

Name
URL
1-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://jcp.org/en/jsr/detail?id=211
http://jcp.org/en/jsr/detail?id=226
http://jcp.org/en/jsr/detail?id=229
http://jcp.org/en/jsr/detail?id=234
http://jcp.org/en/jsr/detail?id=238
http://jcp.org/en/jsr/detail?id=239
http://jcp.org/en/jsr/detail?id=248

CHAPTER 2

Developing MIDlet Suites

This chapter describes how you can use the Sun JavaTM Wireless Toolkit for CLDC to
create applications. It begins with a description of toolkit projects, then works
through the development process.

You are likely to follow two basic development cycles in creating MIDlet suite
applications. The first is quicker and simpler. It is useful in your initial development.
The second cycle is longer but allows for more comprehensive and realistic testing.

The end of the chapter contains information on how to use the Sun JavaTM Wireless
Toolkit for CLDC with advanced development tools like an obfuscator and a
debugger. A final section briefly describes how to configure a web server to serve
MIDP applications.

2.1 About Projects
In the Sun JavaTM Wireless Toolkit for CLDC, MIDlet suites are organized into
projects, where the end result of one project is one MIDlet suite. A project contains all
of the files that will be used to build a MIDlet suite, including Java source files,
resource files, and the MIDlet descriptor.

The Sun JavaTM Wireless Toolkit for CLDC works on one project at a time. You can
create a new project or open an existing project.

In this chapter uses a very simple example project. As you read about each step in
the development cycles, you can work along in the toolkit.

To create a new project, first start the user interface. On Microsoft Windows, choose
Start > Programs > Sun Java Wireless Toolkit 2.5.2 for CLDC > Wireless Toolkit
2.5.2.1 The user interface appears, as shown in FIGURE 2-1.

1. Depending on how Microsoft Windows is configured, you might need to choose Start > All Programs instead
of Start > Programs.
2-1

FIGURE 2-1 The Toolkit’s User Interface

Click New Project. The toolkit will ask you for the name of the project and the name
of the MIDlet class you will write. Fill in the names and click Create Project.

FIGURE 2-2 Creating a New Project

The Settings window is displayed. Your choices affect the build environment for the
project. The default options are fine for this example, so click OK to dismiss the
window. Messages appear in the console telling you exactly where to store the
source code and resource files for this project.
2-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 2-3 File Locations in the Console

2.2 Simple Development Cycle
The simple development cycle looks like this:

Edit source code > Build > Run

1. Edit source code.

In this step, you create Java source files and resource files that will be used by
your application.

2. Build.

The toolkit compiles and preverifies your Java source files.

3. Run.

The compiled Java class files are run on the emulator.

If an error occurs when the toolkit attempts to compile your source files, go back and
edit them again. If you find a bug when you are testing your application in the
emulator, edit the source files to fix the bug.

Now that you understand the simple development cycle at a high level, the rest of
this section illustrates how you can accomplish each step using the Sun JavaTM

Wireless Toolkit for CLDC.
Chapter 2 Developing MIDlet Suites 2-3

2.2.1 Edit Source Code
Editing source code is the only step in which the Sun JavaTM Wireless Toolkit for
CLDC is no help at all. Use the text editor of your choice to create and edit source
code files. If you don’t have a favorite text editor, try jEdit, at http://jedit.org/.

If you are following along with the sample project, create a new Java technology
source file TinyMIDlet.java. Save it in your project’s source directory. For
example, on Windows this would be workdir\apps\Tiny\src\TinyMIDlet.java.
This file contains this simple MIDlet:

Save the file when you are finished.

2.2.2 Build
The next step is to build your source code. The toolkit makes this part very easy.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;

public class TinyMIDlet
 extends MIDlet
 implements CommandListener {

public void startApp() {
 Display display = Display.getDisplay(this);

 Form mainForm = new Form("TinyMIDlet");
 mainForm.append("Welcome to the world of MIDlets!");

 Command exitCommand = new Command("Exit", Command.EXIT, 0);
 mainForm.addCommand(exitCommand);
 mainForm.setCommandListener(this);

 display.setCurrent(mainForm);
}
public void pauseApp () {}

public void destroyApp(boolean unconditional) {}

public void commandAction(Command c, Displayable s) {
 if (c.getCommandType() == Command.EXIT)
 notifyDestroyed();

}
}

2-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://jedit.org/
http://jedit.org/

In the user interface, click the Build button. Assuming you saved your source file in
the right place, the toolkit finds it and compiles it. Compilation errors are displayed
in the console. If you have errors, as shown in FIGURE 2-4, edit the source code to fix
them. Once you eliminate your errors, the console informs you that the build has
completed successfully.

FIGURE 2-4 Messages About Building

Behind the scenes, the toolkit also preverifies the compiled class files. MIDlet class
files must be preverified before they can be run on a MIDP device or emulator. The
toolkit silently handles this detail for you. See the CLDC specification for more
information on preverification.

2.2.3 Run
Once the project builds successfully, you are ready to try it out in the emulator. Click
the Run button. The emulator displays a list of all the MIDlets in your project.
Chapter 2 Developing MIDlet Suites 2-5

FIGURE 2-5 List of Project MIDlets

Choose the MIDlet you want and select Launch. If you’re following along with the
TinyMIDlet example, the result is as shown in FIGURE 2-6.
2-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 2-6 TinyMIDlet in Action

2.3 Full Development Cycle
The second development cycle is slightly more complicated. It consists of the
following high-level steps:

Edit source code > Package > Install > Run

1. Edit source code.

This is the same as in the simple cycle.

2. Package.

In this step, the Sun JavaTM Wireless Toolkit for CLDC compiles and preverifies
the source files (essentially the same as the Build step from before). Then it
bundles the Java class files and resource files into a MIDlet suite Java Archive
(JAR) file and a MIDlet suite descriptor.
Chapter 2 Developing MIDlet Suites 2-7

3. Install.

MIDlet suites need to be installed before they can be run. You can install the
MIDlet suite into the Sun JavaTM Wireless Toolkit for CLDC emulator or a real
device.

4. Run.

As in the simple development cycle, run your application and test for bugs.

In the full development cycle, the first step is identical to the simple development
cycle. Editing source code is the same as always. The Build step is now incorporated
in packaging.

The full development cycle includes two new steps, packaging and installing.
Finally, running an installed application is different in important ways from running
an application in the simple development cycle.

2.3.1 Package
The Sun JavaTM Wireless Toolkit for CLDC automates the task of packaging a MIDlet
suite. The end result of packaging is two files, a MIDlet descriptor and a MIDlet
suite JAR file. The descriptor is a small text file that contains information about the
MIDlet suite. The JAR file contains the class files and resources that make up the
MIDlet suite. Devices can use the descriptor to learn about the application before
downloading the entire JAR file, an important consideration in a memory-lean,
bandwidth-starved wireless world.

To ask the toolkit to package your MIDlet suite, choose Project > Package > Create
Package. The MIDlet suite descriptor and JAR file are generated and placed in the
bin directory of your project.

Packaging might involve additional steps. You can use a code obfuscator to shrink
the size of the MIDlet suite JAR file, a technique that is described later in this
chapter. In addition, the toolkit provides tools to enable you to cryptographically
sign MIDlet suites. See Chapter 6 for more information.

2.3.2 Install
To properly test a MIDlet suite, install it into the toolkit’s emulator or a real device.
When you press the Run button in the user interface, the MIDlet suite is not installed
into the emulator. Instead, the emulator runs the MIDlet classes directly.
2-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

The emulator also can install applications into its memory in a process that
resembles how applications are transmitted and installed Over the Air (OTA) on real
devices. To install applications in the Sun JavaTM Wireless Toolkit for CLDC
emulator, choose Project > Run via OTA.

The emulator window opens, but instead of running your MIDlet classes directly, the
emulator shows the Application Management Software (AMS) welcome screen. The
emulator’s software is an example of the type of software that real devices must
have to manage MIDlet suites.

FIGURE 2-7 Emulator AMS Welcome Screen

Choose Apps to go to the main list of installed applications. Select Install
Application and press the select button on the emulator. The emulator prompts you
for the URL location of the application you want to install. The URL is already
completed for you.
Chapter 2 Developing MIDlet Suites 2-9

FIGURE 2-8 URL Prompt

From the menu, choose Go to begin the installation. The emulator shows a list of the
applications it finds at the URL. Choose the only one and select Install from the
menu. The emulator gives you one last chance to confirm your intentions.
2-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 2-9 Confirming the Installation

Choose Install again to finish the installation. You are returned to the emulator’s
installed list of applications, which now includes the application you just installed.
Chapter 2 Developing MIDlet Suites 2-11

FIGURE 2-10 Application Menu

Run via OTA is an extremely useful mechanism that makes it easy to install your
MIDlet suite on the toolkit emulator. Some features must be tested using this
technique, including the push registry and the installation of signed MIDlet suites.

If you want to test your MIDlet suite on a real device, you must install it first. How
this happens depends heavily on the device you are using. The following two
possibilities are most likely:

■ You can deploy the application on a web server, then transmit the application
from server to device using the Over the Air (OTA) protocol described in the
MIDP 2.0 specification. This is most likely the same mechanism that users will
encounter when they go to purchase or install your application.

■ You might be able to transfer the MIDlet suite to the device using a Bluetooth,
infrared, or serial connection. This is quite a bit simpler than running a web
server, and although it won’t give you any insights into the process of installing
your application on the device using OTA, it enables you to see how your
application performs on the device.

2.3.3 Run
Once the application is installed, choose the application from the list and choose
Launch from the menu.
2-12 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 2-11 Launching the Installed Application

Running an application on a real device depends heavily on the device itself.
Consult your device documentation for information.

2.4 Creating a Project from a MIDlet Suite
You can also create a Sun JavaTM Wireless Toolkit for CLDC project from a MIDlet
suite archive (.jar file) and descriptor (.jad file). This is useful for running MIDlet
suites from the toolkit user interface even when you don’t have the source code
available. You can use the toolkit to easily manipulate the attributes in the
descriptor, or you can run the project and use the toolkit’s monitoring tools
(described in Chapter 5) to scrutinize its behavior.

To create a project based on a MIDlet suite choose File > Create project from
JAD/JAR. Navigate to the descriptor you wish to use and click Open. Note that the
descriptor and the JAR file must be in the same directory.
Chapter 2 Developing MIDlet Suites 2-13

2.5 Using an Obfuscator
An obfuscator is a tool that reduces the size of class files. MIDlet suites need to be
compact, both to minimize download times and to comply with sometimes stringent
limits on JAR file size imposed by manufacturers or carriers. Using an obfuscator is
one way (not the only way) that you can keep your MIDlet suite JAR file small.

You can use an obfuscator in the packaging step of the development cycle. Although
the Sun JavaTM Wireless Toolkit for CLDC doesn’t come with an obfuscator, it is
already configured to use the ProGuard obfuscator. All you need to do is download
ProGuard and put it in a place where the toolkit can find it.

ProGuard is published under the terms of the GNU General Public License (GPL). If
you are comfortable with the terms of the license, you can download and use
ProGuard free of charge.

2.5.1 Installing ProGuard
Follow these steps to install ProGuard:

1. Go to the ProGuard web site, http://proguard.sourceforge.net/.

2. Download the latest version.

3. Uncompress the proguard.jar file from the lib directory of the ProGuard
installation to the toolkit/bin directory.

2.5.2 Using ProGuard
Once ProGuard is installed, you can use it by choosing Project > Package > Create
Obfuscated Package.

In some cases, you need to provide a script file that controls how the obfuscator
works. If you are loading classes using Class.forName(), for example, you need
to tell ProGuard to leave the class names unchanged.

To call the script file you must be able to modify your own copy of the file
ktools.properties.

● Copy toolkit/wtklib/os/ktools.properties to
workdir/wtklib/os/ktools.properties.
2-14 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://proguard.sourceforge.net/
http://proguard.sourceforge.net/

Create a script file using a text editor, then save it under the project’s main directory.
Consult the ProGuard documentation for information on script files. Next, tell the
toolkit how to find this file. To do this, edit the ktools.properties file you have
copied to workdir/wtklib. Add a line as follows:

obfuscate.script.name: scriptfile

Replace scriptfile with the name you used for the script file. You must quit and restart
the toolkit for the change to take effect.

2.6 Using a Debugger
A variation on running your application is running it with a debugger. A debugger
enables you to monitor the running application more closely, set breakpoints, and
examine variables.

You must supply your own debugger. You can use the jdb debugger from the
Java SE platform or another debugger of your choice. If you want to use a debugger,
an Integrated Development Environment (IDE) like Sun Java Studio Mobility
software, which incorporates the Sun JavaTM Wireless Toolkit for CLDC, is your
most likely choice. See
http://www.sun.com/software/products/jsmobility/ for more
information.

Begin by choosing Project > Debug. Enter the TCP/IP port number that the
debugger uses to connect to the emulator. Click Debug. The emulator begins running
and waits for a connection from a debugger.

Start your debugger and attach it to the port you specified. Make sure to set the
remote debugger to run in remote mode and to use TCP/IP. For more information,
consult the debugger’s documentation.

Debugging MIDlets has information about using jdb with the Sun JavaTM Wireless
Toolkit for CLDC. It is available at
http://developers.sun.com/techtopics/mobility/midp/questions/jdb/.
Chapter 2 Developing MIDlet Suites 2-15

http://developers.sun.com/techtopics/mobility/midp/questions/jdb/
http://www.sun.com/software/products/jsmobility/
http://www.sun.com/software/products/jsmobility/
http://developers.sun.com/techtopics/mobility/midp/questions/jdb/

2.7 Deploying Applications on a Web Server
The MIDP 2.0 specification includes the Over The Air User Initiated Provisioning
Specification, which describes how MIDlet suites can be transferred over-the-air
(OTA) to a device. You can test this type of scenario using the Sun JavaTM Wireless
Toolkit for CLDC emulator.

To deploy a packaged MIDP application remotely on a web server, change the Java
Application Descriptor (JAD) file’s MIDlet-Jar-URL property to the URL of the
JAR file. The URL must be an absolute path. For example:

MIDlet-Jar-URL: http://your.server.com/midlets/example.jar

Next, ensure that the web server uses the correct MIME types for JAD and JAR files:

■ For MIDlet suite descriptors, map the .jad extension to the
text/vnd.sun.j2me.app-descriptor MIME type.

■ For MIDlet suite JAR files, map the .jar extension to the
application/java-archive MIME type.

The details of how to configure a web server depend on the specific software used.

The emulator implements the device behavior during OTA provisioning. You can
use the emulator to test and demonstrate the full provisioning process of MIDlet
suites from a server to the device. All you need to do is launch the emulator’s AMS.
You might already be familiar with the AMS if you have used the Run via OTA
option.

To launch the emulator’s AMS, you have two options:

■ In the Microsoft Windows start menu, choose Start > Programs > Sun Java
Wireless Toolkit 2.5.2 for CLDC > OTA Provisioning.

■ From the command line, issue the following command:

Now follow the AMS prompts to install your application. This process is very
similar to the Run via OTA option described earlier in this chapter, except you must
enter the URL of your own server to install your application.

Windows: toolkit\bin\emulator -Xjam

Linux: toolkit/bin/emulator -Xjam
2-16 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 3

Working With Projects

In the last chapter, you learned how the Sun JavaTM Wireless Toolkit for CLDC helps
you with the MIDP development cycle. This chapter delves more deeply into the
details of working with projects, including the following:

■ Selecting the target APIs for a project

■ Manipulating MIDlet suite attributes, including the list of MIDlets

■ Understanding the project directory structure

■ Including third-party libraries in a project

3.1 Selecting APIs
Each project is built against some set of APIs. The Sun JavaTM Wireless Toolkit for
CLDC supports many APIs. The full list is detailed in Section 1.6, “Supported
Technology” on page 1-7. The toolkit enables you to develop applications for some
subset of APIs based on the type of devices you expect to run your software.

For example, even though the toolkit supports JSR 184, the Mobile 3D Graphics API,
you might want to develop applications that don’t make use of that API. The
project’s API Selection settings make it possible to choose only the APIs you want to
use.

To see how this works, launch the toolkit and open a project. Click Settings to bring
up the window shown in FIGURE 3-1:
3-1

FIGURE 3-1 Project Settings Window

On the API Selection pane, the Target Platform setting controls the appearance of the
rest of the pane. Choose the setting that best suits your need, and tweak your
selection with the controls below. For example, if you’re developing applications for
devices that are compliant with the Java Technology for the Wireless Industry JSR,
choose JTWI from the combo box. Then use the controls below to specify a version of
CLDC and choose optional APIs.

The toolkit applies your selections when you compile your source code.
3-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Note – API selections do not apply to the emulator. The emulator always supports
all the available APIs. The API selections you make in the project settings apply only
to building a project. In essence, the API selections choose which classpath the
toolkit uses for compiling and preverifying your source files.

3.2 Changing MIDlet Suite Attributes
The project settings window also allows you to control the MIDlet suite attributes,
which are stored in the descriptor as well as the manifest file of the MIDlet suite JAR
file.

To see the attributes, open a project, then click the Settings button. The icon bar on
the left of the settings window has three icons for attributes: Required, Optional, and
User Defined.

Consult the MIDP 2.0 specification, final release 2 (referred to as MIDP 2.1) for the
definitions of the required and optional attributes. The Sun JavaTM Wireless Toolkit
for CLDC takes care of most of the details. In the early stages of development, you
might not have to worry about the attributes at all. Once your application is stable
and you’re starting to think about deploying on real devices and going to market,
adjust the values.

To adjust a value on the Required or Optional panes, click in the cell next to the
attribute key you wish to change. Type in the new value.
Chapter 3 Working With Projects 3-3

FIGURE 3-2 Editing MIDlet Suite Attributes

To create new user-defined attributes, click the User Defined icon. Click the Add
button and fill in the property name and value, then click OK.

To edit the user-defined property value, click the value column next to the key, just
as you would with required or optional attributes.

To remove an attribute, select an attribute and click Remove.
3-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

3.3 Manipulating MIDlets
The project settings also provide a way to add or modify the MIDlets that are
contained in the current MIDlet suite project. To see how this works, start the toolkit
and open an existing project. Click Settings and choose the MIDlets icon. You will
see a list of all MIDlets in the project. If you just created a new project, the toolkit
automatically fills in the first MIDlet entry.

FIGURE 3-3 List of MIDlets in a Project

To add a new MIDlet, click Add. Fill in the name, icon file name, and class name.
You can leave the icon file name blank if you wish. To change values or remove
MIDlet entries, use the Edit and Remove buttons.

The MIDlet names are presented to the user in the order shown when the MIDlet
suite is launched. You can modify the order by selecting a MIDlet and clicking Move
Up or Move Down.
Chapter 3 Working With Projects 3-5

3.4 Using the Push Registry
You can also use project settings to work with a MIDlet suite’s push registry settings.
Click on Settings... and choose the Push Registry icon.

FIGURE 3-4 Project Push Registry Settings
3-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

To add an entry to the push registry, press Add and fill in values for the connection
URL, MIDlet class, and allowed sender, then click OK. To edit an entry, select the
entry and press the Edit button. To remove a push registry entry, select it and click
Remove.

If you do make push registry entries for your application, make sure you also enter
the appropriate permissions. See Chapter 6 for details.

3.5 Setting Up Content Handlers
The Sun JavaTM Wireless Toolkit for CLDC supports the Content Handler API
(CHAPI), which is defined by JSR 211. The basic concept of CHAPI is that MIDlets
can be launched in response to incoming content (files). Modern mobile phones can
receive content using SMS, infrared, Bluetooth, e-mail, and other methods. Most
content has an associated content type. CHAPI specifies a system by which MIDlets
can be launched in response to specific types of content.

To modify the content handler settings in your project, click on Settings and choose
the Content Handlers pane.
Chapter 3 Working With Projects 3-7

FIGURE 3-5 Configuring Content Handlers

Each line in the list represents the settings for a content handler. In this example, two
content handlers have been configured, one for TextViewer and one for
ImageViewer. To create a new content handler, press Add, or to edit an existing
content handler, press Edit. You can adjust the order of the content handlers by
selecting one and using the Move Up and Move Down buttons. To remove a content
handler from the list, press Remove.
3-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

When you add or edit a content handler, the details window appears:

FIGURE 3-6 Content Handler Details

In the Class field, fill in the name of a MIDlet. ID is an identification string that can
be used to invoke a content handler and control access.

Content types is a list of content types for which this content handler is responsible.
Use Add and Remove to manage the list. Suffix strings is a list of URL suffixes that
are often a substitute for an explicit content type. Finally, Access allowed to is a list of
content handler IDs that indicates which other content handlers have access to this
content handler. If the list is empty, access to this content handler is granted to every
other content handler.
Chapter 3 Working With Projects 3-9

Content handlers have associated actions, which give invoking applications a choice
about how to handle content. An image viewer content handler, for example, might
include an action for viewing the image at its original size and another action that
makes the image fill the available screen space. Click the Actions tab of the content
handler details window to edit the actions for a content handler.

FIGURE 3-7 Content Handler Actions

The Actions list contains the internal names of the actions for this content handler.
Locales is a list of all the locales for which human-readable action names will be
provided. Localized actions is a grid which contains the human-readable action
names for various locales. Each locale is represented by a row, while the actions are
listed as columns. You can see all the human-readable action names for a particular
locale by reading across a single row.
3-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

3.6 Project Directory Structure
Projects have a standard directory structure. The project itself is represented by a
directory in the apps subdirectory. For example, on Windows the demos project
resides in workdir\apps\demos. The following table describes the project directory
structure.

In addition, the project directory contains a project.properties file that contains
information about the project.

To remove temporary directories and files from the project, choose Project > Clean.

3.7 Using Third-Party Libraries
The Sun JavaTM Wireless Toolkit for CLDC enables you to incorporate third-party
libraries in your applications. Using third-party libraries can reduce your
development time by providing functionality you don’t wish to build yourself, but
keep a close eye on the size of your MIDlet suite JAR file.

When you use a third-party library in your application, your JAR expands by the
size of the third-party library. You can use an obfuscator to reduce the code size, and
a good obfuscator even eliminates whatever parts of the library you are not using.
Even with the use of an obfuscator, a third-party library is probably still larger than

TABLE 3-1 Project Directory Structure

Directory Description

bin The MIDlet suite descriptor and JAR file are placed in this directory when
you package the project. This directory also contains the unpackaged
manifest information and might include an HTML file that is used internally
if you use Run via OTA.

classes This directory is used to store compiled class files.

lib Place a third-party library in this directory to include it in this project.

res Place images, sounds, and other resource files in this directory. They are
packaged into the root of the MIDlet suite JAR file.

src Place source files in this directory.

tmpclasses For toolkit use.

tmplib For toolkit use.
Chapter 3 Working With Projects 3-11

your own custom code, carefully written from scratch. You have to evaluate the
trade-off between reducing your development time and the size of your MIDlet suite
JAR file.

The Sun JavaTM Wireless Toolkit for CLDC supplies two methods for incorporating
third-party libraries. The External APIs pane in the project settings makes it easy to
include or exclude libraries in a project. In addition, you can place libraries in
specific locations to make them available to one or all projects.

3.7.1 Using External APIs
To specify which APIs should be included, click Settings and click the External APIs
icon. A list of available external APIs appears (the list might be empty).

To add the API to the classpath at build time, check the box in the Use column (see
FIGURE 3-8). If you want the API bundled into your application, also check the
Bundle box. If you know you will deploy your application on devices where your
selected external APIs are not present, you need to bundle those APIs in your
application.
3-12 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 3-8 Choosing External APIs

3.7.2 Third-Party Libraries for One Project
Any library files placed in your project’s lib directory are included in the building
and packaging of your project. Libraries should be JAR or Zip files of Java
technology classes.

So, if you installed on Windows and your application is called Tiny, the class
library goes in workdir\apps\Tiny\lib. When you build, run, debug, and package
your project, the class files in the lib directory are used.
Chapter 3 Working With Projects 3-13

3.7.3 Third-Party Libraries for All Projects
Some devices have libraries available to all installed MIDlet suites. A manufacturer,
for example, can make additional APIs available on all their devices. In this case,
you want to be able to use these libraries when you build and test your application.
You don’t want the libraries to be included in your packaged MIDlet suite because
you are installing the MIDlet suite on devices where the library is already present.

You can accomplish this by placing libraries in the workdir\apps\lib directory.
Libraries in this directory are available for all projects.

3.8 Configuring the Wireless Toolkit
The toolkit includes some advanced configuration options. You can use these
options by editing a copy of the ktools.properties file, which is found in the
following location:

Copy ktools.properties to workdir/os/wtklib and make changes as described
in the remainder of this section.

■ Changing the Console Font

■ Setting the Application Directory

■ Setting the javac Encoding Property

■ Working with Revision Control Systems

The effect of changes to ktools.properies is visible the next time the toolkit is
started.

3.8.1 Changing the Console Font
You can change the font that’s used in the console (and other text areas) by editing
two properties. Here is one example that changes the font to Times New Roman 20
point:

font.JTextArea=Times New Roman
font.size.JTextArea=20

To restore the default font and size, remove both properties.

Windows: toolkit\wtklib\Windows\ktools.properties
Linux: toolkit/wtklib/Linux/ktools.properties
3-14 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

3.8.2 Setting the Application Directory
By default, the Sun JavaTM Wireless Toolkit for CLDC stores applications in your
working directory’s apps subdirectory. You can change this by adding a line to
ktools.properties of the following form:

kvem.apps.dir: application-directory

For Windows, any backslash (\) characters in the directory’s path must be preceded
by another backslash. Also, the directory’s path cannot contain any spaces.

For example, to set the application directory to D:\dev\midlets, use:

kvem.apps.dir: D:\\dev\\midlets

Linux paths can be specified as usual.

3.8.3 Setting the javac Encoding Property
By default, the javac uses the encoding set in the Java SE platform that you are
running. For information on how to override the default source file encoding, see
Appendix C.

3.8.4 Working with Revision Control Systems
Using the filterRevisionControl property, you can configure the toolkit to
recognize and ignore auxiliary files created by the SCCS, RCS and CVS revision
control systems.

To recognize and ignore auxiliary files, include the following line in
ktools.properties:

kvem.filterRevisionControl: true

This prevents the toolkit from treating revision control files as source and resource
files. For example, the toolkit treats a file named src\SCCS\s.MyClass.java as
being an SCCS revision control file and not a Java technology source file.
Chapter 3 Working With Projects 3-15

3-16 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 4

Using the Emulator

The Sun JavaTM Wireless Toolkit for CLDC emulator simulates a MIDP device on
your desktop computer. It is a convenient way to see how your application performs
in a MIDP environment and gives you a tight development cycle that is entirely
contained on your desktop computer.

The emulator does not represent a specific device, but it provides correct
implementations of its supported APIs.

4.1 Emulator Skins
A skin is a thin layer on top of the emulator implementation that provides it with a
certain appearance, screen characteristics, and input controls. The Sun JavaTM

Wireless Toolkit for CLDC comes with skins that represent different kinds of devices.

You can create your own emulator skins if you wish. See the Basic Customization
Guide for details.

TABLE 4-1 Emulator Skins

Name Screen size Canvas size Colors Input

DefaultColorPhone 240 x 320 240 x 289 4096 ITU-T

DefaultGrayPhone 180 x 208 180 x 177 4096 ITU-T

MediaControlSkin 180 x 208 180 x 177 4096 ITU-T

QwertyDevice 636 x 235 540 x 204 4096 Qwerty
4-1

4.2 Emulator Controls
The emulator looks and acts like a mobile phone inside a standard desktop window.
This section describes how to control the emulator. The description and figures are
based on the DefaultColorPhone skin, but all the skins operate in a similar way.

FIGURE 4-1 The DefaultColorPhone Emulator skin
4-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

You can use the mouse to click the buttons to press them. Most buttons also have
keyboard shortcuts, which are generally easier to use. Keyboard numbers 0 through
9 correspond to the emulator’s 0 through 9 buttons. Some less obvious keyboard
shortcuts are in the following table.

Entering text works much as it does on many real devices. Press a number key
multiple times to get the letter you want. For example, press the 5 key twice for the
letter K. When you are entering text, the asterisk key (*) switches between upper
case, lower case, numbers, and symbols. The indicator at the top of the screen shows
your current mode. The pound key (#) enters a space.

Alternatively, you can just type on your keyboard to enter text. Although this is
convenient for entering text, you must remember that it is a convenience your users
will most likely be lacking.

Another convenience is the capability to copy and paste information in text areas.
You can paste text from the clipboard into a TextBox or TextField by pressing
Control-v. To copy the contents of a TextBox or TextField, press Control-c. The entire
contents of the text field will be placed on the clipboard.

4.3 Setting Emulator Preferences
You can adjust the emulator settings to more closely resemble a specific device or to
test your application under different resource conditions.

4.3.1 Network Proxies
The emulator uses your desktop network connection. For example, if the emulator
runs a MIDlet that makes an HTTP connection, the emulator attempts to make the
HTTP connection using the desktop’s network setup.

TABLE 4-2 Keyboard Shortcuts

Emulator Button Keyboard Key

Left soft button F1

Right soft button F2

Power button Esc

SELECT Enter
Chapter 4 Using the Emulator 4-3

If your development computer is behind a firewall, you might use a proxy server to
make HTTP connections. If you’re not sure, try examining your browser’s settings to
see if it uses proxy servers.

If you are using proxy servers, you need to configure the emulator to use the same
proxy servers. To do this, choose Edit > Preferences. On the Network Configuration
pane, fill in the names and port numbers for the proxy server you wish to use. You
can also select which version of HTTP you wish to use.

If your proxy servers use HTTP Basic authentication (see RFC 2617), check
Authentication and fill in the user name and password.

4.3.2 Storage Sizes
You can set or modify the amount of persistent storage assigned to each emulator, or
you can change the heap size (the amount of storage allowed for your application’s
objects). Choose Edit > Preferences and select the Storage item.

FIGURE 4-2 Storage Preferences
4-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

4.3.2.1 Persistent Storage

The emulator has persistent storage, which by default is placed below the appdb
subdirectory in a phone skin directory. These files have a .db extension.

For example, on Windows the persistent storage for the DefaultColorPhone
emulator skin is stored in workdir\appdb\DefaultColorPhone\
manager_storage_settings.db.

If multiple instances of the same emulator skin run simultaneously, the toolkit
generates unique file paths for each one. For example, on Windows instances of
DefaultColorPhone might have a file path name of workdir\appdb\
temp.DefaultColorPhone1, workdir\appdb\temp.DefaultColorPhone2, and
so forth.

Note – The file workdir\appdb\DefaultColorPhone\in.use keeps track of the
number of storage roots marked as in use. If the emulator crashes, you need to
delete the in.use file.

The toolkit enables you to choose a different location for the storage files, and you
can limit the size of the storage. This is useful if you wish to test your application’s
behavior when a small amount of persistent storage is available.

To adjust the persistent storage settings, choose Edit > Preferences and click Storage
in the left pane. In the Storage root directory field, enter the name of the directory
you want to use for persistent storage. You can only enter a relative path, and the
directory you specify is created in the appdb subdirectory.

By default you are allowed one megabyte (1024 Kbytes) of persistent storage. You
can enter a limit in kilobytes. Bear in mind that the storage implementation has some
overhead in addition to the space your application uses. For example, if you enter 8
kilobytes for the persistent storage size, 8192 bytes is available for both your
application data and the storage overhead.

To erase the emulator’s persistent storage, choose File > Utilities. Click the Clean
Database button to wipe the persistent storage clean. Clean Database does not affect
installed applications.

4.3.2.2 Heap Size

The heap is memory where your application’s objects are stored. To change the heap
size, choose Edit > Preferences and select the Storage item (see FIGURE 4-2). By
default the heap size is one megabyte. You can set the maximum heap size to more
closely simulate the conditions on a real device. Fill in the maximum heap size in
kilobytes in the Heap Size field.
Chapter 4 Using the Emulator 4-5

4.3.3 Adjusting Emulator Performance
The emulator uses many of the resources of your desktop computer, including its
display and network connection. Compared to the desktop-based emulator, a real
MIDP device usually has a slower processor, less memory, and a slower network
connection, and might have a different type of display.

The Sun JavaTM Wireless Toolkit for CLDC enables you to simulate the constrained
environment of a real device. Although the emulator does not represent a real
device, adjusting the performance settings gives you useful information about how
your application performs under varying runtime conditions.

Choose Edit > Preferences and click Performance in the left pane. See FIGURE 4-3.
4-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 4-3 Adjusting the Emulator’s Performance

Adjust the Graphics primitives latency to have an effect on the amount of time that
elapses between your application’s calls to drawing methods in the Graphics class
and when the drawing actually takes place.

To change the screen characteristics, choose one of the Display refresh types. If you
choose a Periodic type, you also need to specify the Refresh Rate.

To simulate the slower speed of a real device, check Enable VM speed emulation and
choose the speed you want.

To adjust the simulated network speed, check Enable network throughput
emulation, and choose a speed in bits/sec.
Chapter 4 Using the Emulator 4-7

4.4 Pausing and Resuming
MIDlets have a life cycle that is defined by the MIDP specification. MIDlets can be
started and stopped by the device. Furthermore, external events like incoming
phone calls can cause the device to pause a MIDlet.

The emulator provides a simple mechanism to pause and resume running MIDlets.
This is very helpful for testing your application’s behavior when it is paused.

When the emulator is running, choose MIDlet > Pause from the emulator window’s
menu. The running MIDlet is paused and the screen displays an “Incoming Call...”
message.

To resume operation, choose MIDlet > Resume from the menu.

4.5 Running the Emulator Solo
During development, you usually run the emulator directly from the toolkit by
pressing the Run button or selecting Project > Run via OTA. For testing or
demonstrations, you might want to run the emulator by itself. Several different
approaches are described in this section. The program group that the Sun JavaTM

Wireless Toolkit for CLDC installer creates includes several options for running the
emulator by itself.

■ To run an application directly, which is analogous to pressing the Run button,
choose the Run MIDP Application... item. The toolkit prompts you to locate a
MIDlet descriptor file on your local disk. Note that the corresponding MIDlet
suite JAR must also be present.

■ To run the emulator’s Application Management Software (AMS), choose the OTA
Provisioning item, which is roughly analogous to Run via OTA feature in the user
interface. The emulator pops up with the AMS welcome screen, and you can
install applications by typing in a URL.

■ To change the emulator’s preferences, choose the Preferences item from the
toolkit program group. This pulls up the same preferences window as choosing
Edit > Preferences... in the user interface.

■ The Sun JavaTM Wireless Toolkit for CLDC utilities are also accessible without
running the user interface. Just choose the Utilities item.

■ Finally, you can change which emulator skin is used by default. Choose the
Default Device Selection item, and choose one of the available emulator skins. The
next time you launch the emulator the selected skin is used.
4-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

You can also run the emulator from a command prompt. See Appendix B for more
information.

4.6 Using Third-Party Emulators
Third-party companies, like device manufacturers and wireless carriers, sometimes
create device emulators that are compatible with the toolkit. You can gain experience
running your application on a wider variety of implementations by installing
additional emulators into the toolkit. The procedure is usually to unpack or install
the third party emulator, then copy its directory into workdir\wtklib\devices.
The next time you run the toolkit, the emulator is available.

A partial listing of some of the currently available emulators is available here:

http://developers.sun.com/techtopics/mobility/midp/articles/emulators/
Chapter 4 Using the Emulator 4-9

http://developers.sun.com/techtopics/mobility/midp/articles/emulators/

4-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 5

Monitoring Applications

The Sun JavaTM Wireless Toolkit for CLDC provides several tools to monitor the
behavior of your applications. These tools are helpful in debugging and optimizing
your code:

■ The profiler lists the frequency of use and execution time for every method in your
application.

■ The memory monitor shows the usage of memory while your application runs.

■ The network monitor shows network data transmitted and received by your
application. It supports many network protocols including HTTP, HTTPS, SMS,
and CBS.

■ Tracing outputs low-level information to the toolkit console.

Note – Monitoring features might slow the execution of your application.

5.1 Using the Profiler
The profiler keeps track of every method in your application. For a particular run, it
figures out how much time was spent in each method and how many times each
method was called. After you finish running your application and shut down the
emulator, the profiler pops up, allowing you to browse through the method call
information.

To turn on the profiler, choose Edit > Preferences. See FIGURE 5-1. Click Monitor in
the left pane. In the right pane, check Enable Profiling. If you are interested in seeing
profiling information for all the system implementation methods, check Show
System Classes. Otherwise, the profiler shows only system methods that contain
calls to your application methods. Click OK.
5-1

FIGURE 5-1 Turning on the Profiler

Now click the Run button to start your application. Interact with your application as
you normally would. When you are finished, shut down the emulator. The profiler
pops up with information about all the method calls in your application.
5-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 5-2 Method Profiler

The profiler displays two types of information:

■ Method relationships are shown in a hierarchical list, the Call Graph.

■ The right side of the profiler shows the execution time and number of calls for
each method and its descendants.

Note – The profiling values obtained from the emulator do not reflect actual values
on a real device.

5.1.1 Call Graph
The call graph shows a hierarchy of method calls. Methods that call other methods
are shown as folders. Double-click a method to open it and see the methods it calls.
Methods that do not call any other method are shown as gray circles.

You can search for a particular class or method name. Click Find and fill in a name.
The search is performed from the current selection in the call graph to the end. If
you want to search the entire call graph, check Wrap before you click the Find
button.

As you click different nodes in the call graph, the right side of the profiler shows
details about the methods for that node.
Chapter 5 Monitoring Applications 5-3

5.1.2 Execution Time and Number of Calls
The right side of the profiler window displays detailed information about methods.
You can see the method name, the number of times it was called, and the amount of
time that the emulator spent in the method. The execution time is described in four
distinct ways:

■ Cycles shows the amount of processor time spent in the method itself.

■ %Cycles is the percentage of the total execution time that is spent in the method
itself.

■ Cycles with Children is the amount of time spent in the method and its called
methods.

■ %Cycles with Children shows the time spent in the method and its called
methods as compared to the total execution time.

Click any column to sort by that column. Click a second time to switch the sort
between ascending and descending.

The right pane shows the methods contained in the currently selected node in the
call graph. If you want to see every method, click on the <root> node in the call
graph.

5.1.3 Saving and Loading Profiler Information
To save your profiler session, click the Save button in the profiler window. Choose a
file name.

To load a profiler session, choose File > Utilities. Click Profiler and press Launch.
When you select a file, the profiler window appears with all the session information.

5.2 Using the Memory Monitor
Memory is scarce on many MIDP devices. The Sun JavaTM Wireless Toolkit for
CLDC includes a memory monitor that makes it easy to examine the memory usage
of your application. You can see the total memory used by your application and a
detailed listing of the memory usage per object.

To turn on the memory monitor, choose Edit > Preferences. Click on Monitor in the
left pane. Check Enable Memory Monitor.
5-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Next time you run the emulator, the memory monitor window appears, displaying a
graph of your application’s memory usage over time. The memory monitor slows
your application startup because every object created is recorded.

FIGURE 5-3 Memory Monitor Graph

The memory monitor graph shows the following information:

■ Current - Current amount of memory used by the application.

■ Maximum - Maximum amount of memory used since program execution began,
shown in the graph by a broken red line.

■ Objects - Number of objects in the heap.

■ Used - Amount of memory used.

■ Free - Amount of unused memory available.

■ Total - Total amount of memory available at startup.

Remember, to modify the heap size select Edit > Preferences and choose the Storage
tab. See Chapter 3 for details.

To request the system to perform a garbage collection, click Run GC.

Note – The memory usage you observe with the emulator is not exactly the same as
memory usage on a real device. Remember, the emulator does not represent a real
device. It is just one possible implementation of its supported APIs.
Chapter 5 Monitoring Applications 5-5

To see details about the objects in your application, click the Objects tab in the
memory monitor window.

FIGURE 5-4 Memory Monitor Objects Display

A table with the following columns appears:

■ Name - Class name of the objects.

■ Live - Number of instances. Some of these might be eligible for garbage
collection.

■ Total - Total number of objects that have been allocated since the application
began.

■ Total Size - Total amount of memory used by the objects.

■ Average Size - Average object size, calculated by dividing the live instances into
the total size.

Click any column header to sort on that column.

You can search for a specific class name by choosing View > Find... from the memory
monitor window menu.
5-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

5.2.1 Saving and Loading Memory Monitor
Information
To save your memory monitor session, click the Save button. Choose a file name.

To load a memory monitor session, choose File > Utilities. Click Memory Monitor
and press Launch. When you select a file, the memory monitor window appears
with all the session information.

5.3 Using the Network Monitor
MIDP applications, at a minimum, are capable of HTTP network connections, but
many other types of network connections are also possible. The network monitor
provides a convenient way to see the information your application is sending and
receiving on the network. This is helpful if you are debugging network interactions
or looking for ways to optimize network traffic.

To turn on the network monitor, choose Edit > Preferences. Click Monitor in the left
pane. Check Enable Network Monitoring.

Next time you run the emulator, the network monitor window appears.
Chapter 5 Monitoring Applications 5-7

FIGURE 5-5 Network Monitor

When your application makes any type of network connection, information about
the connection is captured and displayed. The figure shows HTTP requests and
responses.

The display on the left side shows a hierarchy of messages and message pieces. Click
a message or a portion of a message to see details in the right side of the network
monitor. Double-click messages or message portions to expand or collapse them.

Message bodies are shown as raw hexadecimal values and the equivalent text.

Note – You can examine messages that are still in the process of being sent.
Incomplete messages are indicated by bold highlighting in the message tree.

5.3.1 Filtering Messages
Filters are useful for examining some subset of the total network traffic. Filter
settings are specific to the network protocol used.

Press the Filter Settings button to use the filter. Change the filter settings to suit your
needs.
5-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

When you are done entering filter settings, press OK to return to the network
monitor. The Filter checkbox is checked, indicating that a filter is in use. To disable
the filter and see all messages, uncheck the checkbox.

5.3.2 Sorting Messages
To arrange the message tree in a particular order, click on the Sort By combo box and
choose a criteria.

■ Time - Messages are sorted in chronological order of time sent or received.

■ URL - Messages are sorted by URL address. Multiple messages with the same
address are sorted by time.

■ Connection - Messages are sorted by communication connection. Messages using
the same connection are sorted by time. This sort type enables you to see
messages grouped by requests and their associated responses.

■ Sorting parameters are dependent on the message protocol you choose. For
instance, sorting by time is not relevant for socket messages.

TABLE 5-1 Network Monitor Filter Settings

Network Protocol Filter Settings

HTTP/HTTPS Enter text to match the various parts of HTTP messages: URL, status
line, headers, or body. For example, entering slashdot in the URL
field filters to show only messages whose URL contain slashdot.

SMS/CBS You can specify a protocol, message type, and direction to match.
Furthermore, you can enter text to match in the sender, receiver, and
message content.

MMS Enter text to match the direction, sender, receiver, and copied (cc) and
blind copied (bcc) receivers. In addition, you can filter on the subject,
content ID, content location, MIME type, and encoding.

OBEX, SPP/L2CAP You can filter using the URL or header content.

APDU, JCRMI Filter on the URL or the message content.

SIP None available

Socket, SSL,
Datagram, Comm

Enter text to match in either the connection string (URL) or content.
Chapter 5 Monitoring Applications 5-9

5.3.3 Saving and Loading Network Monitor
Information
To save your network monitor session, choose File > Save or File > Save As from the
network monitor window menu. Choose a file name.

To load a network monitor session, choose File > Utilities. Select Network Monitor
from the list and press Launch. When you select a file, the network monitor window
appears with all the session information.

5.3.4 Clearing the Message Tree
To remove all messages from the network monitor, choose Edit > Clear from the
network monitor menu.
5-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 6

Security and MIDlet Signing

MIDP 2.0 (JSR 118) includes a comprehensive security model based on protection
domains. MIDlet suites are installed into a protection domain that determines access
to protected functions. The MIDP 2.0 specification also includes a recommended
practice for using public key cryptography to verify and authenticate MIDlet suites.

For definitive information, consult the MIDP 2.0 specification. For an overview of
MIDlet signing using the Sun JavaTM Wireless Toolkit for CLDC, read the article
Understanding MIDP 2.0's Security Architecture, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/perm
issions/

If you need more background on public key cryptography, try the article MIDP
Application Security 1: Design Concerns and Cryptography, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/secu
rity1/

This chapter describes support for protection domains, permissions, and MIDlet
signing in the Sun JavaTM Wireless Toolkit for CLDC.

6.1 Permissions
MIDlets must have permission to perform sensitive operations, such as connecting
to the network. Permissions have specific names, and MIDlet suites can indicate
their need for certain kinds of permissions through attributes in the MIDlet suite
descriptor.

You can add these permission attributes to a project by clicking the Settings button.
Select the Permissions icon. The MIDlet-Permissions box shows permissions which
the MIDlet must possess, while the MIDlet-Permissions-Opt box contains
permissions that are optional.
6-1

http://developers.sun.com/techtopics/mobility/midp/articles/permissions/
http://developers.sun.com/techtopics/mobility/midp/articles/permissions/
http://developers.sun.com/techtopics/mobility/midp/articles/security1/
http://developers.sun.com/techtopics/mobility/midp/articles/security1/
http://developers.sun.com/techtopics/mobility/midp/articles/security1/
http://developers.sun.com/techtopics/mobility/midp/articles/permissions/

FIGURE 6-1 MIDlet Suite Permissions

To add a permission to either box, click Add and choose the permission you want to
add. To remove a permission, highlight it and click Remove.
6-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

6.2 Selecting the Security Policy
The Sun JavaTM Wireless Toolkit for CLDC supports the security policies defined by
both JSR 185 (Java Technology for the Wireless Industry) and JSR 248 (Mobile Service
Architecture or MSA). The protection domains are further described in Section 6.2.1,
“MSA Protection Domains” on page 6-3 and Section 6.2.2, “Java for the Wireless
Toolkit Industry Protection Domains” on page 6-4.

To choose the security policy you want the emulator to use, select Edit > Preferences
and select Security in the Category list. From the Security Policy combo box, choose
either MSA or JTWI. Select one of the available security policies.

When you use Run via OTA. your packaged MIDlet suite is installed directly into
the emulator and it is placed in a protection domain at installation time. The
emulator uses public key cryptography to determine the protection domain of
installed MIDlet suites.

If the MIDlet suite is not signed, it is placed in the default protection domain. The
default is different for MSA and JTWI. See Sections 6.2.1 and 6.2.2. If the MIDlet is
signed, it is placed in the protection domain that is associated with the root
certificate of the signing key’s certificate chain.

For example, suppose Respectable Software, a hypothetical company, wants to
distribute a cryptographically signed MIDlet suite. Respectable Software buys a
signing key pair from Super-Trustee, a hypothetical certificate authority. Using the
signing key, Respectable Software signs the MIDlet suite and distributes their
certificate with the MIDlet suite. When the MIDlet suite is installed on the emulator
or on a device, the implementation verifies Respectable’s certificate using its own
copy of Super-Trustee’s root certificate. Then it uses Respectable’s certificate to verify
the signature on the MIDlet suite. Assuming everything checks out, the device or
emulator installs the MIDlet suite into the protection domain that is associated with
Super-Trustee’s root certificate, most likely identified_third_party.

The toolkit provides tools to sign MIDlet suites, manage keys, and manage root
certificates.

6.2.1 MSA Protection Domains
The toolkit supports five protection domains for MSA:

■ unidentified_third_party - Provides a high level of security for applications
whose origins and authenticity cannot be determined. The user is prompted
frequently when the application attempts a sensitive operation
Chapter 6 Security and MIDlet Signing 6-3

■ identified_third_party - Intended for MIDlets whose origins were
determined using cryptographic certificates. Permissions are not granted
automatically, but the user is prompted less often than for the
unidentified_third_party domain.

■ manufacturer - Intended for MIDlet suites whose credentials originate from the
manufacturer’s root certificate.

■ minimum - All permissions are denied to MIDlets in this domain.

■ maximum - All permissions are granted to MIDlets in this domain.

When you press the Run button to run your application in the emulator, your code
runs in the unidentified_third_party protection domain by default.

6.2.2 Java for the Wireless Toolkit Industry Protection
Domains
The Sun Java Wireless Toolkit includes four protection domains:

■ untrusted - Provides a high level of security for applications whose origins and
authenticity cannot be determined. The user is prompted frequently when the
application attempts a sensitive operation.

■ trusted - All permissions are granted to MIDlets in this domain.

■ minimum - All permissions are denied to MIDlets in this domain.

■ maximum - All permissions are granted to MIDlets in this domain (equivalent to
trusted.).

When you press the Run button to run your application in the emulator, your code
runs in the untrusted protection domain by default.

6.3 Signing a MIDlet Suite
To sign a MIDlet suite, you must package it first (select Project > Package). Then
choose Project > Sign. The signing window appears (FIGURE 6-2).
6-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 6-2 MIDlet Suite Signing Window

Select the key you want to use in the Alias List and click the Sign MIDlet Suite
button (the green triangle).

6.4 Managing Keys
The MIDlet signing window can also be used to manage keys. For test purposes, you
can create a key pair to sign a MIDLet. To deploy on a device, you must obtain a
signing key pair from a certificate authority recognized by the device. You can also
import keys from an existing Java SE platform keystore.

6.4.1 Creating a New Key Pair
To create an entirely new key pair, click New Key Pair. The toolkit prompts you for
a key alias and information that will be associated with the key pair.
Chapter 6 Security and MIDlet Signing 6-5

FIGURE 6-3 Creating a New Key Pair

After you click Create, the toolkit prompts you to choose a protection domain. The
connection between the key pair you just created and a protection domain might
seem oblique, but it makes perfect sense:

■ The toolkit creates a self-signed root certificate using the key pair you just created.

■ The root certificate is added to the emulator’s list of root certificates.

■ The toolkit needs to associate the root certificate with a protection domain.

Now imagine what happens when you install a MIDlet suite signed with your new
key:

■ The implementation examines the certificate chain in the MIDlet suite descriptor.
In this case the certificate chain is a single certificate, the self-signed root.

■ The implementation tries to find the root of the certificate chain in its internal list.
This succeeds because the root certificate was added when you create the key
pair.

■ The implementation considers the certificate valid and uses it to verify the
signature on the MIDlet suite.

■ The MIDlet suite is installed into whatever protection domain you picked.
6-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

6.4.2 Getting Real Keys
The ability to create a key pair and sign a MIDlet within the Sun JavaTM Wireless
Toolkit for CLDC environment is for testing purposes only. When you run your
application on an actual device, you must obtain a signing key pair from a certificate
authority recognized by the device.

The procedure for signing MIDlet suites with real keys works this way:

1. Generate a new key pair.

In the Sun JavaTM Wireless Toolkit for CLDC, you can do this by pressing New
Key Pair in the MIDlet signing window, as described above.

2. Generate a Certificate Signing Request (CSR).

a. Press Generate CSR in the signing window.

b. To change the location of the CSR file, enter a new path or press Browse
and choose a new file location.

c. Press Create to write the CSR file.

After the CSR is written, a message that indicates success appears.

3. Send the CSR to a certificate authority (CA).

The CA needs more information from you to verify your identity. You must also
pay the CA for the certificate they generate for you.

Once the CA verifies your identity and taken your money, it sends a certificate
that certifies your public key.

4. Import the certificate into the Sun JavaTM Wireless Toolkit for CLDC by
pressing Import Certificate... in the MIDlet signing window.

You can now use your own private key to sign MIDlet suites. The Sun JavaTM

Wireless Toolkit for CLDC takes care of the details of placing the signature and your
certificate into the MIDlet suite.

6.4.3 Importing an Existing Key Pair
You might have keys in a Java SE platform keystore that you would like to use for
MIDlet signing. In this case, you need to import your signing keys to the Sun JavaTM

Wireless Toolkit for CLDC so that you can sign your MIDlet suite. To do this from
the MIDlet signing window, click Import Key Pair. Select a file that contains a
Java SE platform keystore. You are prompted to select the alias of the key pair you
want to import, then you just supply the alias you want to identify the key pair once
it is imported to your keystore. Finally, you must select a protection domain for the
key pair’s root certificate.
Chapter 6 Security and MIDlet Signing 6-7

6.4.4 Removing a Key Pair
To remove a key pair from the MIDlet signing window, select its alias and choose
Action > Delete Selection.

6.5 Managing Certificates
This section describes how to manage the emulator’s list of root certificates using the
Sun JavaTM Wireless Toolkit for CLDC.

Real devices have similar lists of root certificates, although they cannot usually be
modified by the user. When you want to deploy your application on a real device,
you must to use signing keys issued by a certificate authority whose root certificate
is present on the device. Otherwise, the device is unable to verify your application.

While you’re developing your application, the toolkit’s certificate management
utility provides a convenient way to manipulate the emulator’s list of root
certificates for testing purposes.

Choose File > Utilities. Select Manage Certificates and press Launch to open up the
certificate manager window. The micro keystore, _main.mks is displayed. This
keystore resides in the appdb directory.

The appdb directory also contains keystore.ks and serverkeystore.ks. The
Java ME Platform Certificate Manager cannot open *.ks files, but you can import
certificates from these keystores as described in Section 6.5.2, “Importing
Certificates” on page 6-9.
6-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 6-4 Certificate Manager

Each certificate is shown as a single line in the left part of the window, the Certificate
List. When you click a certificate, its details are shown in the right part of the
window along with the certificate’s associated protection domain.

6.5.1 Enabling and Disabling Certificates
Certificates can be enabled or disabled. This is handy if you want to make
certificates temporarily unavailable without removing them from the keystore. To
enable or disable a certificate, select it in the list and press Enable/Disable
Certificate. The toolkit asks you to confirm the action. Choose Yes to proceed.

6.5.2 Importing Certificates
You can import certificates either from certificate files or from Java SE platform
keystore files.

To import a certificate from a file, click Import Certificate in the certificate manager
window. After you locate the certificate file, choose which protection domain is
associated with the certificate.
Chapter 6 Security and MIDlet Signing 6-9

To import a certificate from a Java SE platform keystore, choose Action > Import
Java SE Certificate from the menu in the certificate manager window. First, choose a
protection domain for the certificate. Then select the keystore file and enter the
keystore password. Finally, select the alias for the certificate you wish to import.

6.5.3 Removing Certificates
To remove a certificate from the list, select the certificate and choose Action > Delete
Selection.

6.6 USB Token Support
A USB token provides portable password-protected storage for public and private
keys and certificates. The Java SE PKCS#11 native interface supports access to a USB
token that has a PKCS#11-compliant native driver. When the driver is installed, a
PKCS#11 library is included. On Windows the library is a win32 DLL.

This section provides sample instructions for installing and using a USB Token on
the Windows platform.

Note – Linux is not supported because we have not fully tested a USB token with a
Linux driver. USB tokens might work on Linux if a PKCS#11-compliant native driver
is available.

The remainder of this section steps through the installation and setup process
required for USB token support.

6.6.1 Installing USB Token Drivers
Close all applications.

1. Go to http://downloads.geotrust.com/TCSPIKEY0407203016.exe

2. When the File Download dialog box opens, click Save.

Note the directory where you save the executable.

3. Select the executable and double-click to start the Crypto Token installation.

Follow the installation prompts. insert the token so you can complete the
installation.
6-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://downloads.geotrust.com/TCSPIKEY0407203016.exe
http://downloads.geotrust.com/TCSPIKEY0407203016.exe

4. The Windows New Hardware Wizard launches.

Follow the instructions, accepting all default actions.

5. When the Wizard finishes, answer Yes to restart your computer.

Resetting the USB Token Passphrase
This step is valid only for new USB tokens. All USB tokens arrive with the default
passphrase, PASSWORD (all upper case). You should reset this PassPhrase.

1. Click Start on your Windows task bar. Select All Programs > GeoTrust Token,
> iKey 2000 Series Software > PassPhrase Utility.

2. Click Update Passphrase.

You are prompted to input your "old passphrase" before you can input your new
one.

3. Reset the passphrase.

GeoTrust and Cingular recommend making your passphrase a combination of at
least eight mixed characters.

Managing the USB Token
Go to the GeoTrust driver installation directory. Run CIPUtils.exe to manage the
content of USB token.

6.6.2 Using the USB Token
The Sign MIDlet Suite dialog provides access to the USB token. With the USB token
attached and the driver installed, select File > Load keystore > from USB Token (or,
type Ctrl -T). If the USB token is password protected, you are prompted to enter a
password. When the token is properly loaded all aliases and key details are listed.
You can then select keys and use them for signing as described in Section 6.3,
“Signing a MIDlet Suite” on page 6-4.

When you attempt to load a keystore from the USB token you might see an error
message.

■ If the USB token cannot be accessed, you might see the error “USB token or driver
might be unplugged or invalid.“ Make sure the token is plugged in. You might
need to try different USB ports on your machine.
Chapter 6 Security and MIDlet Signing 6-11

■ If the native library is not found, you are prompted to enter the path to the DLL
library installed with the driver. It is usually in the directory in which you
installed the driver.
6-12 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 7

Using the Wireless Messaging API

The Sun JavaTM Wireless Toolkit for CLDC supports the Wireless Messaging API
(WMA) with a sophisticated simulation environment. WMA 1.1 (JSR 120) enables
MIDlets to send and receive Short Message Service (SMS) or Cell Broadcast Service
(CBS) messages. WMA 2.0 (JSR 205) includes support for MMS messages as well.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing how to configure the emulator’s support of WMA. Next, it describes the
WMA console, a handy utility for testing WMA applications. The chapter concludes
with a brief description of the network monitor’s WMA support.

7.1 Setting Emulator Phone Numbers
Each running instance of the emulator has a simulated phone number that is shown
in the title bar of the emulator window. The phone numbers are important because
they are used as addresses for WMA messages. By default, the first emulator
instance has a phone number of +555000. Subsequent instances of the emulator have
unique numbers in ascending order: +5550001, +5550002, +5550003, etc.

You can affect the assigned phone numbers by choosing Edit > Preferences and
selecting WMA in the left pane.
7-1

FIGURE 7-1 Setting WMA Preferences

The Phone Number of Next Emulator field is just what it sounds like. If you fill in a
number for this field, the next emulator instance will have that number.

If the Phone Number of Next Emulator is already in use, or if the field is blank, then
the First Assigned Phone Number is used for the next emulator instance. Subsequent
instances count up.

For example, for the Phone Number of Next Emulator, suppose you enter +6269333,
and for the First Assigned Phone Number you enter +5550000. If you launch four
emulator instances, their numbers are +6269333, +5550000, +5550001, and +5550002.
7-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

7.2 Simulating an Unreliable Network
Long messages are sent by splitting them, sending the fragments separately, and
reassembling the fragments on the receiving end. You can simulate some of the
hazards of the wireless network in the Sun JavaTM Wireless Toolkit for CLDC. As
before, choose Edit > Preferences and select WMA.

If you want the toolkit to lose some message fragments, adjust the Random Message
Fragment Loss slider to the desired percentage. To simulate a delay between the
time message fragments are sent and received, enter the delay in milliseconds in the
Message Fragment Delivery Delay field.

7.3 Sending Messages With the WMA
Console
The WMA console is a handy utility that enables you to send and receive messages.
You can, for example, use the WMA console to send SMS messages to a MIDlet
running on the emulator.

To launch the WMA console, choose File > Utilities. Click on WMA Console and
press Launch.
Chapter 7 Using the Wireless Messaging API 7-3

FIGURE 7-2 The WMA Console

7.3.1 Sending a Text SMS Message
To send a text SMS message, click Send SMS The send window appears.
7-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 7-3 Sending a Text Message

The window automatically lists the phone numbers of all running emulator
instances. Select a destination (Control-click to select multiple destinations) and
enter a port number if you wish. Type your message and click Send.

7.3.2 Sending a Binary SMS Message
You can use the WMA console to send the contents of a file as a binary message.
Click Send SMS to bring up the send window. Click the Binary SMS tab.
Chapter 7 Using the Wireless Messaging API 7-5

FIGURE 7-4 Sending a Binary Message

Selecting recipients is the same as for sending text SMS messages. You can type in
the path of a file directly, or click Browse to open a file chooser.

7.3.3 Sending Text or Binary CBS Messages
Sending CBS messages is similar to sending SMS messages except that you don’t
need to choose recipients. To send a text or binary CBS message, click Send CBS in
the WMA console. The Send window appears.
7-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 7-5 Sending CBS Messages

7.3.4 Sending MMS Messages
MMS messages consist of one or more files, usually images or sounds. MMS
message can be sent to multiple recipients. To send an MMS message from the WMA
console, click the Send MMS button.

The window for composing MMS messages has two tabs, one for recipients and one
for content. Begin by filling in a subject and recipient. If you wish to add more
recipients, click the Add button. For example, to send a message to a running
emulator whose number is +5550001, fill in the To line as mms://+5550001. To
remove a recipient, first select its line, then click Remove.
Chapter 7 Using the Wireless Messaging API 7-7

FIGURE 7-6 Adding Recipients for an MMS Message

To add media files to the message, click the Parts tab. Click Add to add a part to the
message. To remove a part, select it and press Remove.
7-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 7-7 Adding Parts to an MMS Message

7.4 Receiving Messages in the WMA
Console
The WMA console can also receive messages. The WMA console window has its
own phone number in the title bar. You can send messages to the WMA console
from your applications running on the emulator.

Received messages are shown in the WMA console’s text area.

7.5 Using the Network Monitor with WMA
The network monitor is fully described in Chapter 5. You can use the network
monitor to track WMA messages that are sent to or from the emulator.

Click the SMS/CBS or MMS tabs to see WMA messages. Information about the
messages and their fragments is shown in the left pane of the network monitor. Click
a message or message fragment to see its details in the right pane.
Chapter 7 Using the Wireless Messaging API 7-9

FIGURE 7-8 Using the Network Monitor to View a WMA Message
7-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 8

Using the Mobile Media API

JSR 135, the Mobile Media API (MMAPI), provides a standard API for rendering and
capturing time-based media, like audio or video. The API is designed to be flexible
with respect to the media formats, protocols, and features supported by various
devices. For information on programming with MMAPI, see the following articles:

■ Mobile Media API Overview
http://developers.sun.com/techtopics/mobility/apis/articles/mmapi_overview/

■ The J2ME Mobile Media API
http://developers.sun.com/techtopics/mobility/midp/articles/mmapioverview/

8.1 Supported Formats and Protocols
The emulator’s MMAPI implementation supports the following media types.

TABLE 8-1 Supported MMAPI Media Formats

MIME Type Description

audio/amr Adaptive Multi-Rate

audio/midi MIDI files

audio/sp-midi Scalable Polyphony MIDI

audio/x-tone-seq MIDP 2.0 tone sequence

audio/x-wav WAV PCM sampled audio

image/gif GIF 89a (animated GIF)

video/mpeg MPEG video

video/vnd.sun.rgb565 Video capture
8-1

http://developers.sun.com/techtopics/mobility/apis/articles/mmapi_overview/
http://developers.sun.com/techtopics/mobility/midp/articles/mmapioverview/
http://developers.sun.com/techtopics/mobility/apis/articles/mmapi_overview/
http://developers.sun.com/techtopics/mobility/midp/articles/mmapioverview/

8.2 Adaptive Multi-Rate (AMR) Content
The Sun JavaTM Wireless Toolkit for CLDC simulates support for Adaptive
Multi-Rate (AMR) content (http://www.ietf.org/rfc/rfc3267.txt).
Although the toolkit cannot decode AMR content, the implementation returns a
player for AMR content when requested.

8.2.1 Windows
On Windows, AMR files are converted to regular WAVE files and passed to Qsound.
Because the Windows version interfaces with the 3GPP implementation, you do not
have to do anything to ge t AMR files to play.

8.2.2 Linux
The AMR support for Linux is based on the 3GPP AMR Narrow Band (AMR-NB)
Reference Implementation decoder and the SOX audio processor (AMR Wide Band
is not supported).

8.2.2.1 Enabling AMR Support

Follow these steps to enable AMR support.

1. Get the AMR-NB RI provided by 3GPP.

There are several versions available. One can be found here:

http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-
530.zip

2. Open the makefile contained in the package.

Find the line starting with ’CFLAGS = ’.

a. Add the DMMS_IO option.

b. Remove the pedantic-errors option.

Save and compile. If you have problems, try removing the the O3 (or O2)
optimization flags as well (the binaries will be nearly twice the size).
8-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-530.zip
http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-530.zip
http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-530.zip
http://www.ietf.org/rfc/rfc3267.txt

3. To build the RI , enter: make VAD=VAD1

After the compilation you should have a binary file named decoder. That’s the
AMR-NB decoder itself.

4. Set the environment variable AMR_DECODER to point to the path to the decoder.

For example, if ~/amr is the path to the decoder, specify:

export AMR_DECODER=~/amr/decoder

5. Set execution access rights for the decoder file.

In the same directory as the decoder, type:

chmod 555 ./decoder

6. Test the decoder as follows:

Run the MobileMediaAPI demo Simple Player as described in Section A.13,
“MobileMediaAPI” on page A-31. From the main menu select Simple Player and
then ’AMR Narrow Band [jar]’. Don’t forget to turn your speakers on.

8.2.2.2 AMR Format Support

You may also encounter problems with some "clones" of the AMR-NB. There appear
to be at least two file formats for AMR-NB codec data:

■ .AMR files stored in "AMR File Storage Format"

This is specified in draft-ietf-avt-rtp-amr-10.txt, Sec. 6.2, which is
included with the Ericsson AMR converter tool. (The draft is an early form of
RFC 3267). These files are handled by the Ericsson AMR tool and Nokia Series 60
phones. They have a header of #!AMR\n and they’re encoded in big-endian.

■ .COD files stored in "AMR Interface Format 2"

This format is specified in 3GPP TS 26.101, Appendix A. These are coded and
decoded by the 3GPP TS 26.104 floating point reference codec source package.
These files have no header and are encoded in little-endian.

To convert from between these formats try this Python script:

http://www.connactivity.com/~eaw/amrwork/amrconv.py
Chapter 8 Using the Mobile Media API 8-3

http://www.connactivity.com/~eaw/amrwork/amrconv.py
http://www.connactivity.com/~eaw/amrwork/amrconv.py

8.3 Using MediaControlSkin
The Sun JavaTM Wireless Toolkit for CLDC comes with an emulator skin,
MediaControlSkin, that is focused on multimedia playback and control. The skin
includes buttons with symbols representing play, stop, volume up and volume
down, and other commands. To see the usefulness of MediaControlSkin, try it out
with the MobileMediaAPI demonstration application.

8.4 Media Capture
The Sun JavaTM Wireless Toolkit for CLDC emulator supports audio and video
capture. Audio capture is supported by using the capture capabilities of the system
upon which the emulator runs.

Video capture is supported by simulating a camera input.

Consult the MobileMediaAPI example application for details and source code that
demonstrates how to capture audio and video.

8.5 Well-Behaved MIDlets
MIDlets have a life cycle that is defined in the MIDP specification. MIDlets can be
paused by events such as incoming phone calls. A well-behaved MIDlet releases
important device resources when it is paused and reallocates or restarts those
resources when the MIDlet is resumed. In the MMAPI arena, stop any Players that
are rendering content when a MIDlet is paused.

The Sun JavaTM Wireless Toolkit for CLDC prints a message to the console if you
pause a MIDlet and it does not stop its running Players. You can test this feature
using the Pausing Audio Test MIDlet in the MobileMediaAPI demonstration
application. See Appendix A for details.

The warning message is printed once only for each running emulator.
8-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

8.6 Ring Tones
MMAPI can be used to play ring tones, as demonstrated in Section A.13.1, “Simple
Tones” on page A-31 and Section A.13.2, “Simple Player” on page A-32. Several ring
tone formats are in common use. You can download ring tones or create your own.

8.6.1 Download Ring Tones
Ring tone files can be downloaded from many internet sites, including the following:

■ http://www.surgeryofsound.co.uk/

■ http://www.convertyourtone.com/

■ http://www.filmfind.tv/ringtones/

8.6.2 Ring Tone Formats
This section provides samples of several formats

■ RTTTL, the Ringing Tones text transfer language format, is explained at

http://www.convertyourtone.com/rtttl.html

■ Nokia Composer

This is a rendition of Beethoven’s 9th symphony in Nokia Composer format:

16g1,16g1,16g1,4#d1,16f1,16f1,16f1,4d1,16g1,16g1,16g1,16#d1,

16#g1,16#g1,16#g1,16g1,16#d2,16#d2,16#d2,4c2,16g1,16g1,16g1,

16d1,16#g1,16#g1,16#g1, 16g1,16f2,16f2,16f2,4d2

■ Ericsson Composer

Beethoven’s Menuett in G:

a b + c b + c b + c b + C p + d a B p + c g A

p f g a g a g a g A p b f G p a e F

Beethoven’s 9th symphony theme:

f f f # C # d # d # d C p f f f # c # f #f # f f +# c + #
c + # c # A ff f c # f # f # f f + # d + # d + # d
Chapter 8 Using the Mobile Media API 8-5

http://www.surgeryofsound.co.uk/
http://www.convertyourtone.com/
http://www.filmfind.tv/ringtones/
http://www.convertyourtone.com/rtttl.html
http://www.convertyourtone.com/rtttl.html
http://www.convertyourtone.com/
http://www.surgeryofsound.co.uk/

■ Siemens Composer Format

Inspector Gadget theme:

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8)

P(1/16) Dis2(1/8) P(1/16) Fis2(1/8) P(1/16)

D2(1/8) P(1/16) F2(1/8) P(1/16) Dis2(1/8)

P(1/16) C2(1/8) D2(1/16) Dis2(1/8) F2(1/16)

G2(1/8) P(1/16) C3(1/8) P(1/16) B2(1/2) P(1/4)

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8) P(1/16)

Dis2(1/8) P(1/16) Fis2(1/8) P(1/16) D2(1/8) P(1/16)

F2(1/8) P(1/16) Dis2(1/8) P(1/16) C3(1/8) B2(1/16)

Ais2(1/8) A2(1/16) Gis2(1/2) G2(1/8) P(1/16) C3(1/2)

■ Motorola Composer

Beethovens 9th symphony:

4 F2 F2 F2 C#4 D#2 D#2 D#2 C4 R2 F2 F2 F2 C#2 F#2 F#2

F#2 F2 C#+2 C#+2 C#+2 A#4 F2 F2 F2 C2 F#2 F#2 F#2 F2

D#+2 D#+2 D#+2

■ Panasonic Composer

Beethovens 9thsymphony:

444** 444** 444** 1111* 4444** 4444** 4444** 111*

0** 444** 444** 444** 1111** 4444** 4444** 4444**

444** 11** 11** 11** 6666* 444** 444** 444** 111**

4444** 4444** 4444** 444** 22** 22** 22**

■ Sony Composer

Beethovens 9th sympony:

444****444****444****111#*****444#****444#****444#****

111*****(JD)0000444****444****444****111#****444#****

444#****444#****444****11#****11#****11#****666#*****

444****444****444****111****444#****444#****

444#****444****22#****22#****22#****
8-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 9

Working With Mobile Graphics

This chapter provides a brief overview of working with graphics content. The Sun
JavaTM Wireless Toolkit for CLDC offers three APIs that provide comprehensive
capabilities for interactive 2D and 3D graphics:

■ The Mobile 3D Graphics API for J2ME, JSR 184, provides 3D graphics capabilities
with a low-level API and a high-level scene graph API. This chapter provides a
brief overview and general guidelines for working with JSR 184.

■ The Scalable 2D Vector Graphics API for J2ME, JSR 226, supports rendering
sophisticated and interactive 2D content.

■ Java Bindings for OpenGL® ES, JSR 239, provides a Java language interface to the
open standard OpenGL® ES graphics API.

9.1 Using the Mobile 3D Graphics API
JSR 184 is a specification that defines the Mobile 3D Graphics (M3G) API for the
J2ME. This API provides 3D functionality in a compact package that’s appropriate
for CLDC/MIDP devices. The API provides two methods for displaying 3D graphics
content. The immediate mode API makes it possible for applications to directly create
and manipulate 3D elements. Layered on top of this is a scene graph API, also called
retained mode, that makes it possible to load and display entire 3D scenes that are
designed ahead of time. Applications are free to use whichever approach is most
appropriate or to use a combination of the retained mode and immediate mode
APIs. The JSR 184 specification also defines a file format (.m3g) for scene graphs.

For more information, consult the JSR 184 specification at
http://jcp.org/en/jsr/detail?id=184.
9-1

http://jcp.org/en/jsr/detail?id=184
http://jcp.org/en/jsr/detail?id=184

JSR 184 provides a standard API for CLDC/MIDP devices, enabling a new
generation of 3D applications. The immediate mode API, in turn, is compatible with
OpenGL ES, a standard lightweight API for 3D graphics. See
http://khronos.org/ for more information on OpenGL ES.

9.1.1 Immediate Mode
Immediate mode is appropriate for applications that generate 3D graphics content
algorithmically, like scientific visualizations or statistical graphs. The application
creates 3D objects and manipulates them directly.

For an example of immediate mode, see the Life3D MIDlet in the Demo3D example
application.

9.1.2 Retained Mode
Most applications, particularly games, use the retained mode or scene graph API. In
this approach, a graphic designer or artist uses 3D modeling software to create a
scene graph. The scene graph is saved in the JSR 184 file format. The scene graph file
is bundled with the application. At runtime, the application uses the scene graph
API to load and display the file.

Applications can manipulate parts of a loaded scene graph to animate characters or
create other effects. The basic strategy is to do as much work as possible in the
modeling software. At runtime, the application can grab and manipulate parts of the
scene graph, which can also include paths for animation or other effects.

For an example of retained mode, see the retainedmode MIDlet in the Demo3D
example application.

9.1.3 Trading Quality for Speed
One of the challenges of MIDP development is the constrained environment of
typical devices. Compared to desktop computers, MIDP devices have slow
processors and little memory. These challenges extend into the arena of 3D graphics.
To accommodate a wide variety of implementations, the JSR 184 specification
provides various mechanisms to make the display of a 3D scene as efficient as
possible.

One approach is scoping, a technique where you tell the 3D graphics implementation
when objects are not going to interact with each other. For example, if you defined a
scene graph for a house, you could use scoping to specify that the light in the
9-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://khronos.org/
http://khronos.org/

basement doesn’t affect the appearance of the bedroom on the second floor. Scoping
makes the implementation’s job easier by reducing the number of calculations
required to show a scene.

In general, however, the best way to improve the rendering speed of 3D scenes is to
make some compromises in quality. The Mobile 3D Graphics API includes rendering
hints so that applications can suggest how the implementation can compromise
quality to improve rendering speed.

9.1.4 Creating Mobile 3D Graphics Content
Most mobile 3D applications use scene graphs in resource files to describe objects,
scenes, and characters. Usually it is not programmers but graphic designers or artists
who create the scene graphs, using standard 3D modeling tools.

Several vendors offer tools for authoring content and converting files to the JSR 184
format. Superscape (http://superscape.com/) is one such vendor.

Because it is relatively difficult to create and manipulate 3D graphics content in an
application using the immediate mode API, most applications rely as much as
possible on a scene graph file. By putting as much as possible into the scene graph
file at design time, the application’s job at runtime is considerably simplified.

9.2 Rendering Scalable Vector Graphics
Content
Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web
Consortium. It is an XML grammar for describing rich, interactive 2D graphics.

The Sun JavaTM Wireless Toolkit for CLDC emulator support JSR 226, the Scalable
2D Vector Graphics API for J2ME. JSR 226 is a Java ME API to load, manipulate,
render and play SVG content. SVG Tiny is an compact yet powerful XML format for
describing rich, interactive, animated 2D content.

While it is possible to produce SVG content with a text editor, most people prefer to
use an authoring tool. Here are three possibilities:

■ BeatWare Mobile Designer -
http://www.beatware.com/products/md_golive.html

■ Ikivo Animator - http://www.ikivo.com/animator/

■ Adobe Illustrator CS2 -
http://www.adobe.com/products/illustrator/main.html
Chapter 9 Working With Mobile Graphics 9-3

http://superscape.com/
http://www.beatware.com/products/md_golive.html
http://www.ikivo.com/animator/
http://www.adobe.com/products/illustrator/main.html
http://superscape.com/
http://www.adobe.com/products/illustrator/main.html
http://www.ikivo.com/animator/
http://www.beatware.com/products/md_golive.html

Java ME applications using SVG content can create graphical effects that adapt to the
display resolution and form factor of the user's display.

SVG images can be animated in two ways. One is to use declarative animations. The
other is to repeatedly modify the SVG image parameters (such as color or position),
through API calls. Section A.21.3, “Play SVG Animation” on page A-52 illustrates
declarative animation.

9.3 OpenGL® ES Overview
JSR 239 defines the Java programming language bindings for two APIs, OpenGL®
for Embedded Systems (OpenGL® ES) and EGL. OpenGL® ES is a standard API for
3D graphics, a subset of OpenGL®, which is pervasive on desktop computers. EGL
is a standard platform interface layer. Both OpenGL® ES and EGL are developed by
the Khronos Group (http://khronos.org/opengles/).

While JSR 184 (which is object oriented) requires high level functionality, OpenGL®
is a low level graphics library that is suited for accessing hardware accelerated 3D
graphics. Explore the OpenGLESDemo sample project code.
9-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://khronos.org/opengles/

CHAPTER 10

Using the PIM and FileConnection
APIs

The Sun JavaTM Wireless Toolkit for CLDC supports JSR 75, the PDA Optional
Packages (PDAP) for the J2ME Platform. JSR 75 includes two independent APIs:

■ The FileConnection optional package allows MIDlets access to a local device file
system.

■ The Personal Information Management (PIM) optional package includes APIs for
manipulating contact lists (address book), calendars, and to-do lists.

This chapter describes how the Sun JavaTM Wireless Toolkit for CLDC implements
the FileConnection and PIM APIs.

10.1 FileConnection API
On a real device, the FileConnection API typically provides access to files stored in
the device’s memory or on a memory card.

In the Sun JavaTM Wireless Toolkit for CLDC emulator, the FileConnection API
enables MIDlets to access files stored on your desktop computer’s hard disk.

The files that can be accessed using FileConnection are stored in subdirectories of
workdir\appdb\skin\filesystem. For example, the DefaultColorPhone
emulator skin comes with a root directory installed called root1, which contains a
file called Readme and an empty directory named photos. The full path of the file
is:

Windows: workdir\appdb\skin\filesystem\root1\photos
Linux: workdir/appdb/skin/filesystem/root1/photos
10-1

Note – If multiple instances of the same emulator skin run simultaneously, the Sun
JavaTM Wireless Toolkit for CLDC generates unique file paths for each one. For
instance, the first directory is named DefaultColorPhone and the second instance
is named DefaultColorPhone1.

Each subdirectory of filesystem is called a root. The Sun JavaTM Wireless Toolkit
for CLDC provides a mechanism for managing roots. While the emulator is running,
choose MIDlet > External events from the emulator window’s menu. A utility
window for adding and removing roots appears.

FIGURE 10-1 Managing File System Roots

The mounted roots and their contents are available to applications using the
FileConnection API.

To add a new root directory, click Mount New and fill in a name for the directory. To
make a directory inaccessible to the FileConnection API, select it in the list and click
Unmount.
10-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

10.2 The PIM API
The Sun JavaTM Wireless Toolkit for CLDC emulator stores contact, calendar, and to-
do information in standard files on your desktop computer’s hard disk. All
information is stored in workdir\appdb\skin\pim. This directory is shared by all
running emulators. Lists are stored in subdirectories of the contacts, events, and
todo directories. For example, a contact list called Contacts is contained in:

Inside the list directory, items are stored in vCard (.vcs) or vCalendar (.vcf)
format (see http://www.imc.org/pdi/). Contacts are stored in vCard format,
while calendar and to-do items are both stored in vCalendar format.

Windows: workdir\appdb\skin\pim\contacts\Contacts
Linux: workdir/appdb/skin/pim/contacts/Contacts
Chapter 10 Using the PIM and FileConnection APIs 10-3

http://www.imc.org/pdi/
http://www.imc.org/pdi/

10-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 11

Using the Bluetooth and OBEX APIs

The Sun JavaTM Wireless Toolkit for CLDC emulator supports JSR 82, the Java APIs
for Bluetooth. The emulator is fully compliant with version 1.1 of the specification,
which describes integration with the push registry. JSR 82 includes two independent
APIs:

■ The Bluetooth API provides an interface to Bluetooth wireless networking,
including device discovery and data exchange.

■ The OBEX API allows applications to use the Object Exchange (OBEX) protocol
over Bluetooth or other communication channels.

This chapter describes how the Sun JavaTM Wireless Toolkit for CLDC implements
the Bluetooth and OBEX APIs.

11.1 Bluetooth Simulation Environment
The Sun JavaTM Wireless Toolkit for CLDC emulator enables you to develop and test
application that use Bluetooth without having actual Bluetooth hardware. The
toolkit simulates a Bluetooth environment for running emulators. Multiple emulator
instances can discover each other and exchange data using the Bluetooth API.

For an example, see the documentation of BluetoothDemo in Appendix A.
11-1

11.2 OBEX Over Infrared
The Sun JavaTM Wireless Toolkit for CLDC implements OBEX transfer over
simulated Bluetooth and infrared connections. The simulated infrared connection
follows the IrDA standard (see http://www.irda.org/). Simulated infrared
transfers can take place between multiple running emulators.

11.3 Setting OBEX and Bluetooth Preferences
The Sun JavaTM Wireless Toolkit for CLDC enables you to configure the Bluetooth
and OBEX simulation environment. Choose Edit > Preferences and select
Bluetooth/OBEX to display the following window.
11-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://www.irda.org/
http://www.irda.org/

FIGURE 11-1 Bluetooth and OBEX Preferences

11.3.1 OBEX Preferences
Devices using IrDA in the real world discover other devices by listening. You can
configure how long the Sun JavaTM Wireless Toolkit for CLDC emulator waits to
discover another device using the Discovery timeout field in the IrDA OBEX section
of the preferences window. Enter a value in milliseconds.

At the API level, the discovery timeout value determines how long a call to
Connector.open("irdaobex://discover...") blocks before it returns or
throws an exception.
Chapter 11 Using the Bluetooth and OBEX APIs 11-3

The maximum packet length affects how much data is sent in each packet between
emulators. Shorter packet values result in more packets and more packet overhead.

11.3.2 Bluetooth Internal Properties
In the Bluetooth section of the preferences window, the Device discovery timeout is
the amount of time, in milliseconds, the emulator waits while attempting to locate
other devices in the simulated Bluetooth environment.

Bluetooth Address of Next Emulator is the Bluetooth address to be assigned to the
first emulator instance. Subsequent instances of the emulator receive an
automatically generated address.

11.3.3 Bluetooth System Properties
The System Properties tab in the Bluetooth section of the preferences contains
properties that can be retrieved in an application using the getProperty() method
in javax.bluetooth.LocalDevice.

The Bluetooth properties are fully described in the JSR 82 specification.

11.3.4 Bluetooth BCC Properties
The Bluetooth Control Center (BCC) controls Bluetooth settings. Some devices might
provide a GUI to customize Bluetooth settings. In the Sun JavaTM Wireless Toolkit
for CLDC, the BCC is configured using the BCC Properties tab of the Bluetooth
preferences. The properties are as follows.

TABLE 11-1 BCC Properties

Property Description

Enable Bluetooth
support

If this property is disabled, LocalDevice.getLocalDevice()
throws a BluetoothStateException and no connections can be
created. This is useful to test the behavior of your application on
devices that support JSR 82 but might have the Bluetooth feature
turned off.

Device is
discoverable

Indicates whether or not this emulator can be discovered by other
emulators.

Friendly name A human-readable name for the emulator in the simulated Bluetooth
environment. If the name is left blank, the emulator does not support
the friendly name feature.
11-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Encryption Determines whether connection encryption is supported (on) or not
(off). In addition, the force settings means all connections must be
encrypted. See the documentation for RemoteDevice’s encrypt()
method for details.

Authorization Similar to the Encryption property. See RemoteDevice’s
authorize() method.

Authentication Similar to Encryption and Authorization. See RemoteDevice’s
authenticate() method.

TABLE 11-1 BCC Properties (Continued)

Property Description
Chapter 11 Using the Bluetooth and OBEX APIs 11-5

11-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 12

Using Web Services

The Sun JavaTM Wireless Toolkit for CLDC emulator supports JSR 172, the J2ME Web
Services Specification. JSR 172 provides APIs for accessing web services from mobile
applications. It also includes an API for parsing XML documents.

The Sun JavaTM Wireless Toolkit for CLDC provides a stub generator that automates
creating source code for accessing web services. To get to the stub generator, choose
File > Utilities. Click Stub Generator and press Launch.

FIGURE 12-1 Web Services Stub Generator
12-1

In the field WSDL Filename or URL supply the path to the Webservices Description
Language (WSDL) file for the web service you want to access. The Output Path
indicates the location where you want the stub files to be placed. Output Package
indicates the Java programming language package name for the stub files. Finally,
choose whether you want to generate CLDC 1.0 or CLDC 1.1 stubs.

Press OK to generate the stub files.
12-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 13

Using the Location API

The JSR 179 Location API gives applications the opportunity to use a device’s
location capabilities. For example, some devices include Global Positioning System
(GPS) hardware. Other devices might be able to receive location information from
the wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location API, a location provider encapsulates a positioning method and
supplies information about the device’s location. The application requests a provider
by specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, the application can use it to obtain
information about the device’s physical location.

The Sun JavaTM Wireless Toolkit for CLDC includes a simulated location provider.
You can use the emulator’s External Events window to specify where the emulator
should think it is located. In addition, you can configure the properties of the
provider itself, and you can manage a database of landmarks.

13.1 Setting the Emulator’s Location at
Runtime
You can specify the simulated location of the emulator while it is running. To do
this, choose MIDlet > External Events from the emulator window’s menu. Click the
Location tab. See FIGURE 13-1.
13-1

FIGURE 13-1 Controlling Location in the Emulator

In the Location area of the tab, you can fill in values for the latitude, longitude,
altitude, speed, and course. Applications that use the Location API can retrieve these
13-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

values as the location of the emulator.

For more elaborate testing, you can set up a location script that describes motion
over time. Location scripts are XML files consisting of a list of locations, called
waypoints, and associated times. The Sun JavaTM Wireless Toolkit for CLDC
determines the current location of the emulator by interpolating between the points
in the location script. Here, for example, is a simple location script that specifies a
starting point (time="0") and moves to a new point in ten seconds:

<waypoints>
<waypoint time="0"

latitude="14" longitude="50" altitude="310" />
<waypoint time="10000"

latitude="14.5" longitude="50.1" altitude="215" />
</waypoints>

The altitude measurement is in meters, and the time values are in milliseconds.

Use a text editor to create your location script. You can load it into the external event
window by pressing the Browse button next to the Script field. Immediately below
are controls for playing, pausing, stopping, and moving to the beginning and end of
the location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation
box to Supported and fill in values for azimuth, pitch, and roll. The Magnetic
Orientation checkbox indicates whether the azimuth and pitch measurements are
relative to the Earth’s magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider box to Temporarily Unavailable or Out of Service.
When your application attempts to retrieve the emulator’s location, an exception is
thrown and you can see how your application responds.

13.2 Configuring the Location Provider
You can configure the properties of the Sun JavaTM Wireless Toolkit for CLDC’s
location provider using the preferences. In the user interface, choose Edit >
Preferences and click Location.
Chapter 13 Using the Location API 13-3

FIGURE 13-2 Configuring the Location Provider

The fields in the Location tab enable you to specify the properties of the toolkit’s
built-in location provider. The properties you specify in the preferences correspond
to the Criteria class applications use to request a location provider.

13.3 Setting Up Landmarks
The Sun JavaTM Wireless Toolkit for CLDC emulator includes a landmark store
system, just like many real devices. A landmark store is a collection of places with
associated names and other information. To manage landmark stores, choose File >
Utilities from the menu, select Manage Landmarks, and press Launch.
13-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 13-3 Landmark Manager

The landmark manager shows the content of a single landmark store. JSR 179
requires a minimum of one landmark store, and it is referred to as the default store.
To select a different landmark store or create a new one, make a selection from the
Landmark stores combo box at the top of the window.

You can add or remove landmark stores by clicking the Manage Landmark Stores
button. Landmark stores cannot be renamed.
Chapter 13 Using the Location API 13-5

Landmarks can be associated with categories, which are specific to a landmark store.
The categories for the current landmark store are shown in the left pane of the
window. You can add or remove categories using the buttons at the bottom of the
list. Check off one or more of the categories if you would like to see only the
matching landmarks. You can also check no category set to see landmarks with no
associated categories.

The right pane of the landmark manager lists the landmarks in the current landmark
store. Click a landmark to see its details listed in the bottom part of the right pane.

To add a new landmark, click Add and fill in the fields as appropriate. Click Edit to
change the currently selected landmark. Finally, press Remove to remove the
currently selected landmark.

FIGURE 13-4 Adding or Editing a Landmark

You can also use the Assign Categories in the main window to specify the categories
for a landmark.
13-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 14

Using SATSA

The Security and Trust Services APIs (SATSA) provide smart card access and
cryptographic capabilities to applications running on small devices. JSR 177 (the
SATSA specification) defines four distinct APIs as optional packages:

■ SATSA-APDU - Enables applications to communicate with smart card
applications using a low-level protocol.

■ SATSA-JCRMI - Provides an alternate method for communicating with smart
card applications using a remote object protocol.

■ SATSA-PKI -Enables applications to use a smart card to digitally sign data and
manage user certificates.

■ SATSA-CRYPTO - A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

The Sun JavaTM Wireless Toolkit for CLDC emulator fully supports SATSA. This
chapter describes how you can use the Sun JavaTM Wireless Toolkit for CLDC to
work with SATSA in your own applications.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer’s Guide, which is available at
http://java.sun.com/j2me/docs/satsa-dg/.

The Sun JavaTM Wireless Toolkit for CLDC includes the Java Card Platform
Simulator, which you can use to simulate smart cards in the Sun JavaTM Wireless
Toolkit for CLDC emulator’s slots. The Java Card Platform Simulator is found in.

Hereafter we refer to it as simply cref.

If you need to develop your own Java Card applications, download the Java Card
Development Kit, available at http://java.sun.com/products/javacard/.

Windows: toolkit\bin\cref.exe
Linux: toolkit/bin/cref
14-1

http://java.sun.com/j2me/docs/satsa-dg/
http://java.sun.com/products/javacard/
http://java.sun.com/products/javacard/
http://java.sun.com/j2me/docs/satsa-dg/

14.1 Card Slots in the Emulator
Real SATSA devices are likely to have one or more slots that house smart cards.
Applications that use SATSA to communicate with smart cards need to specify a slot
and a card application.

The Sun JavaTM Wireless Toolkit for CLDC emulator is not a real device and,
therefore, does not have physical slots for smart cards. Instead, it communicates with
a smart card application using a socketprotocol. The other end of the socket might be
a smart card simulator or it might be a proxy that talks with real smart card
hardware.

The Sun JavaTM Wireless Toolkit for CLDC emulator includes two simulated smart
card slots. Each slot has an associated socket that represents one end of the protocol
that is used to communicate with smart card applications. You can set the socket
port number for each slot. Choose Edit > Preferences, then click the SATSA tab. The
default ports are 9025 for slot 0 and 9026 for slot 1.
14-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 14-1 Setting Port Numbers for Smart Card Slots

14.2 Using the Java Card Platform Simulator
The basic procedure for testing SATSA applications with the Sun JavaTM Wireless
Toolkit for CLDC is as follows:

1. Start cref with a Java Card platform application.

2. Start the Sun JavaTM Wireless Toolkit for CLDC emulator.

When a SATSA application attempts to communicate with a smart card, it uses a
socket connection to communicate with cref.

It’s important, therefore, to make sure that you start cref with the same port
number as one of the slot port numbers you specified in the Sun JavaTM Wireless
Toolkit for CLDC preferences.

For example, you could run cref on port 9025 with a prebuilt memory image
using a command line like this:

cref -p 9025 -i memory_image.eeprom
Chapter 14 Using SATSA 14-3

The Sun JavaTM Wireless Toolkit for CLDC includes a demonstration application,
Mohair, which illustrates how to use SATSA. For detailed instructions on running
Mohair, see Appendix A.

14.3 Using the Network Monitor with SATSA
The Sun JavaTM Wireless Toolkit for CLDC can display data exchanged with
simulated smart card applications in the network monitor. The network monitor
displays Application Protocol Data Units (APDUs) that are exchanged between the
emulator and the smart card simulator. It can also show data exchanged using the
Java Card Remote Method Invocation (Java Card RMI) protocol. The APDU and
JCRMI tabs in the network monitor show data exchanged with a smart card.

The network monitor parses each APDU and shows fields in the request and
response as appropriate.

FIGURE 14-2 Viewing an APDU in the Network Monitor
14-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

14.4 Adjusting Access Control
Access control permissions and PIN properties can be specified in text files. When
the first APDU or Java Card RMI connection is established, the implementation
reads the ACL and PIN data from the acl_slot-number in the workdir\appdb
directory. For example, an access control file for slot 0 is workdir\appdb\acl_0. If
the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

14.4.1 Specifying PIN Properties
PIN properties are represented by a pin_data record in the access control file.

14.4.2 Specifying Application Permissions
Application permissions are defined in access control file (acf) records.

pin_data {
label string
id number
type bcd | ascii | utf | half-nibble | iso
min minLength -
stored storedLength
max maxLength
reference byte
pad byte - optional
flag case-sensitive | change-disabled |

unblock-disabled | needs-padding |
disable-allowed | unblockingPIN

}

acf AID fnumbers separated by blanks {
ace {

root CA name
...
apdu {

eight numbers separated by blanks
...

}

Chapter 14 Using SATSA 14-5

The acf record is an Access Control File. The AID after acf identifies the
application. A missing AID indicates that the entry applies to all applications. The
acf record can contain ace records. If there are no ace records, access to an
application is restricted by this acf.

The ace record is an Access Control Entry. It can contain root, apdu, jcrmi,
pin_apdu, and pin_jcrmi records.

The root record contains one CA name. If the MIDlet suite was authorized using a
certificate issued by this CA, this ace grants access to this MIDlet. A missing root
field indicates that the ace applies to all identified parties. One principal is
described by one line. This line must contain only the word root and the principal
name, for example:

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

The apdu or jcrmi record describes an APDU or Java Card RMI permission. A
missing permission record indicates that all operations are allowed.

...
jcrmi {

classes {
classname
...
}
hashModifier string
methods {

method name and signatiure
...

}
}
...
pin_apdu {

id number
verify | change | disable | enable | unblock
four hexadecimal numbers

...
}
...
pin_jcrmi {

id number
verify | change | disable | enable | unblock
method name and signature

...
}

...
}

...
}

14-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

An APDU permission contains one or more sequences of eight hexadecimal values,
separated by blanks. The first four bytes describe the APDU command and the other
four bytes are the mask, for example:

apdu {
0 20 0 82 0 20 0 82
80 20 0 0 ff ff 0 0

}

The Java Card RMI permission contains information about the hash modifier
(optional), class list, and method list (optional). If the list of methods is empty, an
application is allowed to invoke all the remote methods of interfaces in the list of
classes, for example:

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as
separators. Separators can be omitted before and after symbols { and }.

The pin_apdu and pin_jcrmi records contain information necessary for PIN entry
methods, which is the PIN identifier and APDU command headers, or remote
method names.

14.4.3 Access Control File Example

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}
hashModifier zzz
methods {

debit(S)V
setAccountNumber([B)V
getAccountNumber()[B

}
}

pin_data {
label Unblock pin
id 44
type utf
min 4
stored 8
max 8
reference 33
pad ff
flag needs-padding
Chapter 14 Using SATSA 14-7

yflag unblockingPIN
}
pin_data {

label Main pin
id 55
type half-nibble
min 4
stored 8
max 8
reference 12
pad ff
flag disable-allowed
flag needs-padding

}

acf a0 0 0 0 62 ff 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_jcrmi {
id 55
verify enterPIN([B)S
change changePIN([B[B)S
disable disablePIN([B)S
enable enablePIN([B)S
unblock unblockPIN([B[B)S
}

}
}

acf a0 0 0 0 62 ee 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_apdu {
id 55
verify 1 2 3 1
change 4 3 2 2
disable 1 1 1 3
enable 5 5 5 4
unblock 7 7 7 5

}
}

}

acf a0 0 0 0 62 3 1 c 8 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
14-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}

hashModifier xxx
methods {

setAccountNumber([B)V
getBalance()S
credit(S)V

}
}

}
ace {

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}

debit(S)V
getAccountNumber()[B

}
}

}
}

acf a0 00 00 00 62 03 01 0c 02 01 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
apdu {

0 20 0 82 0 20 0 82
80 20 0 0 ff ff 0 0

}
apdu {

80 22 0 0 ff ff 0 0
}

}
}

acf a0 00 00 00 62 03 01 0c 02 01 {

ace {
apdu {

0 20 0 82 ff ff ff ff
}

}
}

acf a0 00 00 00 62 03 01 0c 06 01 {

ace {
Chapter 14 Using SATSA 14-9

apdu {
0 20 0 82 ff ff ff ff

}
}

}

14-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 15

Using SIP

The Sun JavaTM Wireless Toolkit for CLDC supports the SIP API for J2ME (JSR 180)
with a proxy server, registrar, and network monitor support.

Session Initiation Protocol (SIP) is defined by RFC 3261, available at
http://www.ietf.org/rfc/rfc3261.txt.

SIP provides a standard way for applications to set up communications. The
application determines what communication actually takes place. SIP can be used to
set up instant messaging, text chat, voice chat, video conferencing, or other types of
sessions.

15.1 Understanding the Registrar and Proxy
A SIP registrar enables client applications to associate a user name with a specific
network address. In essence, registering provides a way for a user to say “Here I
am!”

A SIP proxy server is really just an entry point into a larger network of proxy
servers. SIP messages that arrive at one proxy are routed to an appropriate
destination, which is usually another proxy server or an end point, like a desktop
computer or a mobile device. Although SIP messages can be sent directly between
devices, they are usually routed through a proxy server.

For example, suppose Diggory wants to start a video conference with Polly. Polly is
on the road and her mobile phone sends a message to a registrar that associates her
name with the mobile phone’s network address. When Diggory tries to set up the
video conference with Polly, his application uses SIP to ask the registrar for Polly’s
current network location.
15-1

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

The Sun JavaTM Wireless Toolkit for CLDC includes a very simple SIP proxy and
registrar server that you can use for testing applications that use the SIP API. You
can also configure the toolkit to use an external proxy server and registrar server.

15.2 SIP Settings
To adjust settings for the Sun JavaTM Wireless Toolkit for CLDC’s SIP environment,
choose Edit > Preferences and click SIP.

FIGURE 15-1 SIP Settings

Display name and Address fields set the system properties sip.display.name and
sip.address, respectively. Applications can use these system properties as a
standard way to retrieve the identity associated with the device.
15-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

15.3 SIP Traffic in the Network Monitor
Network data that is sent and received using the SIP API can be recorded with the
network monitor. The network monitor is fully described in Chapter 5. You can use
the network monitor to track SIP messages that are sent to or from the emulator.

Click on the SIP tab to see SIP messages. SIP messages are shown in the left pane of
the network monitor. Click a message to see its details in the right pane.

FIGURE 15-2 SIP Messages in the Network Monitor
Chapter 15 Using SIP 15-3

15.4 SIP Proxy Server and Registrar
The Sun JavaTM Wireless Toolkit for CLDC provides a simple SIP proxy server and
registrar to make it easier to create SIP applications. To start the server, choose File >
Utilities. Select Start SIP Server from the list and press Launch. The SIP server
console window appears.

FIGURE 15-3 SIP Server Console

To stop the server, click Stop. To start the server, click Start.
15-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

While the server is running, the top left pane shows all users known to the registrar.
Click a user name to see details about the user in the top right pane. The bottom
pane of the window is a console that shows SIP messages that are received and sent
by the proxy.

You can adjust the server options when the server is not running. Stop the server
and click Options to see the options window (see FIGURE 15-4).

FIGURE 15-4 Setting Proxy Options

On the Proxy tab, you can set the IP address and ports upon which the server listens
for incoming messages. Note that 5060, the default listening point, is a well known
port for the SIP proxy. If you are working in a multiuser environment there is a
chance another user may be using the port and you might accidentally connect to
someone else’s SIP server instance(the SIP server does not have any authentication
mechanism and TCP/IP ports are freely accessible). If this happens you must specify
another port.

Click Add to specify more ports and their types. Select a port and click Remove to
remove a listening port.

Check Use Authentication to force connecting clients to authenticate themselves to
the server. The scheme used is digest authentication, which is described in section
22.4 of RFC 3261. SIP’s digest authentication is nearly identical to HTTP digest
authentication.
Chapter 15 Using SIP 15-5

On the Registrar tab, you can set up the users and domains known to the registrar.
The top list contains SIP users that are automatically registered when the SIP server
is started. You can add a new user, edit an existing user, or remove a user.

In addition, you can adjust the list of domains managed by this registrar. Press Add
to add a domain, Edit to edit an existing domain name, or Remove to remove a
domain.

FIGURE 15-5 Setting Registrar Options
15-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 16

Working with the Payment API

JSR 229, the Payment API, enables applications to make payments on behalf of their
users. The Payment API supports different payment mechanisms through payment
adapters. A device that implements the Payment API has one or more adapters.
MIDlet suites use descriptor attributes to specify what types of payment adapters
they can use.

The Sun JavaTM Wireless Toolkit for CLDC’s emulator implements the Payment API
with an example payment adapter that simulates both Premium Priced SMS
(PPSMS) and credit card payments. In addition, the toolkit makes it easy to set the
necessary attributes in the MIDlet’s descriptor and JAR file manifest. Finally, a
payment console enables you to easily track payments made or attempted by an
application.

Because the Payment API is closely tied to provisioning and external device
payment mechanisms, and because payments can only succeed in a trusted
protection domain, always test and debug your Payment API applications using the
toolkit’s Run via OTA mechanism. See Chapter 2 for details.

16.1 Project Settings for Payment
To adjust the payment attributes for a project, click Settings and select the Payment
icon.
16-1

FIGURE 16-1 Payment Settings

The fields and values are explained fully in JSR 229, the Payment API specification.
16-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

The General box contains information about the Payment API version in use and
where to find payment updates. For testing, you can specify a localhost URL (as
shown in the screen shot) that retrieves an update file directly from your project
directory.

The Debug box contains options that are useful during application testing. Each
option is explained in the Payment API specification.

The Features box lists the features your application can charge. These features
correspond to the pricing information that is listed for each provider. You can
modify the list of features by using the Add and Remove buttons.

The Providers box lists specific payment providers that can be used for this
application. When the time comes to make a payment, the emulator (or device)
matches one of its available payment adapters to one of the providers listed for the
application. You can modify the list of providers with the Add, Edit, and Remove
buttons. If you add or edit a provider, the following window appears.

FIGURE 16-2 Editing a Payment Provider

These fields are also described fully in the Payment API specification.

The Price Info box contains one line for each defined payment feature. To edit a
value for a price tag, double click the corresponding cell in the Value column.
Chapter 16 Working with the Payment API 16-3

16.2 Editing Payment Attributes Directly
Payment attributes are stored in a payment update file with a .jpp extension. Read
the specification for full details. The Sun JavaTM Wireless Toolkit for CLDC provides
a utility that makes it easy to edit the payment update file independently of the
project settings.

To run the utility, choose File > Utilities, select Payment Edit Dialog, and press
Launch. You are prompted to select the payment update file you wish to edit. After
you choose a file, a window that looks nearly identical to the Payment section of the
project settings appears. The debug settings are not included in the payment edit
utility.

Edit the payment update settings and press OK when you’re finished. Because
payment update files are cryptographically signed, the toolkit shows you a list of
keys that you can use to sign the file. Select the key you wish to use and press Sign
Payment Update File.

16.3 Payment Preferences
To adjust the Payment API settings for the toolkit, chooseEdit > Preferences and click
Payment.
16-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE 16-3 Setting Payment Preferences

The Mobile Country Code (MCC) and Mobile Network Code (MNC) are used in
conjunction with PPSMS payment providers. Taken together, the MCC and MNC
identify the wireless carrier of a device. At payment time, the MCC and MNC are
used to find a matching provider from the list of providers in the project settings.
Because the emulator is not a real device, you can simulate a carrier by filling in
appropriate values for MCC and MNC. Consult the Payment API specification for
more details.

Past Transactions Limit determines how many previous transactions are recorded in
the emulator. This affects the length of the list shown in the external event window,
described below, as well as the number of past transactions that can be retrieved by
the application itself.

Finally, Console Phone Number determines the simulated phone number of the
payment console, which is described later.
Chapter 16 Working with the Payment API 16-5

16.4 Viewing Transaction History
The emulator keeps track of payment transactions, just as a real device does. To see
the history of transactions, choose MIDlet > External Events from the emulator
window’s menu. Click the Payment Transactions tab.

FIGURE 16-4 Viewing Payment Transactions

Click Refresh to update the list after making more payments. Select a transaction
and click Details to see all the details in a separate window.

The external events window only shows transactions that have been made while the
emulator is running via OTA. Although it is possible to complete transactions
without using OTA, such transactions are not shown. For the most realistic
simulation of payments, always use Run via OTA to test applications.
16-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

16.5 Monitoring Payments
The Sun JavaTM Wireless Toolkit for CLDC provides a payment console that makes it
easy to see payments passing through the example payment adapter. To launch the
Payment Service Provider Console, select File > Utilities > Payment Console.

FIGURE 16-5 Payment Console

In addition, you can view transactions using the network monitor. Credit card
transactions are conducted using HTTPS, while PPSMS transactions use SMS. For a
full description of the network monitor, see Chapter 5.
Chapter 16 Working with the Payment API 16-7

16-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

CHAPTER 17

Using the Mobile
Internationalization API

JSR 238, the Mobile Internationalization API, is designed for applications that are to
be displayed in multiple languages and used in multiple countries. The combination
of country (or region) and language is a locale.

The central concept of JSR 238 is a resource, which is a string, image, or other object
that is suitable for a particular locale. For example, an application that is to be
distributed in Europe might include resources for Italian-speaking people living in
Italy, Italian-speaking people living in Switzerland, Spanish-speaking people living
in Spain, Spanish-speaking people living in Portugal, and so on.

Resources are stored in files in a format defined in JSR 238. The resource files are
bundled as part of the MIDlet suite JAR file. The Sun JavaTM Wireless Toolkit for
CLDC provides a resource manager that simplifies the job of creating and
maintaining resource files.

17.1 Setting the Emulator’s Locale
A device’s locale is contained in the system property microedition.locale. You
can change the emulator’s locale by choosing Edit > Preferences, then selecting i18n.
Choose a locale from the combo box or type it in directly.

17.2 Viewing Application Resources
To launch the resource manager, choose File > Utilities. Select i18n Resources
Manager and click Launch.
17-1

FIGURE 17-1 Resource Manager

First, choose your project from the Projects menu. All the resources for the selected
project are shown in the rest of the window. If this is your first time looking at the
resource manager, look at the resources for the i18nDemo demonstration
application, which contains lots of interesting resources.

You can click + symbols to expand directories or - symbols to collapse them.

Nearly all other operations are available by right-clicking directories or resource
files.

The top pane of the window shows the hierarchy of resource files in the application,
while the bottom pane shows the contents of a resource file. In FIGURE 17-1, the
contents of the top-level common resource file are being displayed.
17-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

17.3 Working With Locales
Locales are represented by directories under the top-level global directory. The
locale directories contain resource files which, in turn, hold the actual resources that
can be used by the application.

Locales are represented by standard language and country codes as described in the
MIDP 2.0 specification. For example, pt-BR represents Portuguese-speaking people
living in Brazil.

To add a locale directory, right-click on the top-level global directory and choose
Add Locale. Choose the locale from the combo box, or type it directly, and click OK.

To rename a locale, right-click the locale directory and choose Rename.

To remove a locale and all its contained resource files, right-click the locale directory
and choose Delete.

17.4 Working With Resource Files
Resource files can be global (at the top level) or inside a locale directory. To create a
new global resource file, right-click the top-level global directory and choose Add
new resource file. Choose a name for the file.

Rename a resource file by right-clicking the file and choosing Rename.

Remove a resource file by right-clicking the file and choosing Delete.

You can copy, cut, and paste entire resource files. Right-click a file and choose Copy
or Cut. Then right-click the locale directory (or the top-level global) and choose
Paste.

17.5 Working With Resources
Click on a resource file in the top pane of the resource manager window to see its
contents in the bottom pane.
Chapter 17 Using the Mobile Internationalization API 17-3

To add a new text resource, click on Add and select Add string resource. An
identifier is automatically assigned, but you can enter a different one if you want.
Click OK.

To add an image or another type of data, click Add and select Add binary resource.
You can browse to whatever file you want to add. Again, you can change the
identifier if you wish. Click OK to add the resource.

FIGURE 17-2 Adding an Image Resource

To edit a resource, double-click it. You can type a new value for a string resource. If
you double-click file resources, you can choose another file.
17-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

APPENDIX A

Application Demonstrations

This appendix describes the application demonstrations that are bundled with the
Sun JavaTM Wireless Toolkit for CLDC.

A.1 Overview
The Sun JavaTM Wireless Toolkit for CLDC includes demonstration applications that
highlight some of the technologies and APIs that are supported by the emulator. The
goal of these demonstrations is to ive you a glimpse of the API features of the
emulator and the enhancements throughout the toolkit.

TABLE A-1 lists all the demonstration applications that are included in this release.

Most demonstration applications are simple to run. Section A.2, “General
Instructions” on page A-4 contains instructions for running most demonstrations.
Demonstrations that have additional documentation are linked in TABLE A-1. If there
is no link, the demonstration is simple (or has its own instructions) and the general
instructions are sufficient.

The source code for every demonstration application is available in toolkit/apps
directory. Subdirectories contain projects, and each project has a src directory that
contains Java programming language source code. For example, on Windows, if the
toolkit is installed in C:\WTK2.5.2, the source code for the SMS sender MIDlet
(example.sms.SMSSend) in WMADemo resides in C:\WTK2.5.2\apps\WMADemo\
A-1

src\example\sms\SMSSend.java. As discussed in Section 1.1.2, “Working
Directory Files” on page 1-2, when you open a project it is copied to your
workdir/apps directory.

TABLE A-1 Application Demonstrations

Demonstration APIs Description
Special
Instructions

AdvancedMultimedia
Supplements

JSR 234 Advanced
Multimedia
Supplements

Shows 3D audio, reverberation,
image processing, and camera
control.

A.3

Audiodemo MMAPI 1.1 Demonstrates audio
capabilities, including mixing
and playing audio with an
animation.

BluetoothDemo JSR 82 Bluetooth Demonstrates device discovery
and data exchange using
Bluetooth.

A.4

CHAPIDemo JSR 211 CHAPI A content viewer that also
makes uses of MediaHandler.

A.5

CityGuide JSR 179 Location API Shows a city map that displays
landmarks based on the current
location.

A.6

Demos MIDP 2.0 Includes various examples:
animation, color, networking,
finance, and others.

A.7

Demo3D JSR 184 Mobile 3D
Graphics

Contains MIDlets that
demonstrate how to use 3D
graphics, both immediate mode
and retained mode.

A.8

FPDemo CLDC 1.1 Simple floating point calculator.

Games MIDP 2.0 Includes TilePuzzle,
WormGame, and PushPuzzle.

GoSIP JSR 180 SIP Demonstrates setting up a chat
using SIP and a SIP server

A.9

i18nDemo JSR 238 Mobile
Internationalization
API

Includes string sorting, number
formatting, and a phrase
translator.

A.10

JBricks JSR 229 Payment API A game that uses the Payment
API for buying extra lives or
levels.

A.11
A-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

JSR172Demo Web services Demonstrates how to use the
JSR 172 API to connect to a web
service from a MIDlet.

A.12

MobileMediaAPI MMAPI 1.1 Demonstrates MMAPI features,
including tone sequences, MIDI
playback, sampled audio
playback, and video.

A.13

NetworkDemo MIDP 2.0 Shows how to use datagrams
and serial connections.

A.14

ObexDemo JSR 82 OBEX Demonstrates transferring data
using OBEX over IrDA.

A.15

OpenGL® ES Demo JSR 239 OpenGL® ES Shows how to create 3D
graphics using OpenGL® ES.

PDAPDemo JSR 75 PIM and
FileConnection

Shows how to manipulate
contacts, calendar items, and to-
do items. Demonstrates
accessing local files.

A.16

Photoalbum MIDP 2.0 Demonstrates a variety of image
formats.

SATSADemos JSR 177 SATSA Demonstrates communication
with a smart card and other
features of SATSA.

A.17

SATSAJCRMIDemo JSR 177 SATSA Shows how to use SATSA-Java
Card RMI.

A.18

SIPDemo JSR 180 SIP Simple message exchange using
SIP.

A.19

SnapMobileSample Demonstrates the connected
community game play feature.

SVGContactList JSR 226 SVG API Demonstrates a contact list
displayed with different skins.

A.20

SVGDemo JSR 226 SVG API Shows different techniques for
rendering SVG.

A.21

UIDemo MIDP 2.0 Showcases the breadth of MIDP
2.0’s user interface capabilities

WMADemo WMA 2.0 Shows how to send and receive
SMS, and CBS, and MMS
messages.

A.22

TABLE A-1 Application Demonstrations (Continued)

Demonstration APIs Description
Special
Instructions
Appendix A Application Demonstrations A-3

A.2 General Instructions
Most of the demonstration applications can be run then launched with no special
preparation. Some demonstrations, however, require changes to the toolkit
preferences or settings. This section describes the general procedure.

The first step is to run the toolkit. To do this, go to the Microsoft Windows Start
menu and choose Start > All Programs > Sun Java Wireless Toolkit 2.5.2 for CLDC >
Wireless Toolkit 2.5.2. The user interface appears as shown in FIGURE A-1.

FIGURE A-1 Wireless Toolkit User Interface

Click the Open Project button to open a demonstration application. A list of all the
available applications appears. As discussed in Section 1.1.2, “Working Directory
Files” on page 1-2, projects in the installation directory are italicized, and projects in
your working directory are shown in bold (FIGURE 1-1). When you open a project in
the installation directory a copy is created in your working directory, then opened.

Once the application is open you can press the Run button in the toolbar, or if an
installation on the emulator is required, click Project > Run via OTA

The device emulator window opens with the demo application running. If there is a
menu of MIDlets, use the navigation arrows to choose an item, then choose SELECT.
As the demonstration progresses you might need to press one of the soft keys below
the screen on the left or right side. You use soft keys to istall or launch an
application, open a menu, exit, or perform some other action. Some examples
include these instructions.
A-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Some demonstrations require specific setup and instructions. For example, if an
example uses web services and you are behind a firewall, you must configure the
emulator’s proxy server settings or the demo will fail:

■ Choose Edit > Preferences

■ Select the Network Configuration icon.

■ Check Use proxy server.

■ Fill in the proxy server address field and the port number.

Read each demonstration description for more operating instructions.

A.3 Advanced Multimedia Supplements
This MIDlet suite demonstrates the power of JSR 234 Advanced Multimedia
Supplements (AMMS). It consists of the following MIDlets:

■ Image Effects - Shows standard image processing operations. Choose an effect
from the menu. The processed image is shown following the source image. Note
that some items, Set Transforms, for example, can perform several operations.
Click the Done soft button to apply every effect.
Appendix A Application Demonstrations A-5

FIGURE A-2 Processing Images in a MIDlet

■ Radio Tuner - Simulates a radio tuner by reading audio files from the project
directory via the toolkit’s built-in HTTP server.

■ Camera - Shows how the Advanced Multimedia Supplements provide control of
a device’s camera. The screen shows the viewfinder of the camera (simulated with
a movie). You can use commands in the menu to change the camera settings and
take and manage snapshots.

■ Moving Helicopter - Simulates a helicopter flying around a stationary observer.
Use headphones for best results. You can control many of the parameters of the
simulation, including the size of the helicopter, whether the Doppler effect is
used, and the spectator orientation (for example, standing straight or lying face
down).

■ Music Effects - Shows off the advanced audio capabilities of the Advanced
Multimedia Supplements. As an audio file loops continuously, you can adjust the
volume, pan, equalizer settings, reverberation, and chorus settings.
A-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.4 Bluetooth Demo
This application contains MIDlets that demonstrate the use of JSR 82’s Bluetooth
API.

The project BluetoothDemo shows how images can be transferred between devices
using Bluetooth. You must run two instances of the emulator to see how this
demonstration works.

In the first emulator, launch Bluetooth Demo, then choose Server. The emulator asks
you if you want to allow a Bluetooth connection. Choose Yes. The server starts and
displays a list of images. At the beginning, none of the images are available on the
Bluetooth network. To make images available, select them and from the menu
choose Publish image (or type or click 1). The icon color changes from purple to
green, indicating it is published.

FIGURE A-3 Running the Bluetooth Demo Server

On the second emulator, launch Bluetooth Demo, then select Client. The MIDlet tells
you it’s ready to search for images. Click the Find soft button. The MIDlet finds the
other emulator and get a list of images from it. Select one from the list and choose
Load. The emulator asks if you want to allow the connection. Choose Yes.
Appendix A Application Demonstrations A-7

■ If you are running the demonstration in a trusted protection domain, the image is
transferred using simulated Bluetooth and is shown on the client emulator.

■ If you are not running in a trusted protection domain, the first emulator (the
server) displays a prompt asking if you want to authorize the connection from the
client. Choose Yes. The image is displayed in the client emulator.

FIGURE A-4 Image Transferred Using Simulated Bluetooth

A.5 CHAPIDemo
CHAPIDemo is a content browser (see JSR 211). It maintains a list of favorites and
enables you to select and view various kinds of content.

This demonstration uses the content handler registry, so you cannot see all of its
features when you use the Run button. Instead, use Project > Run via OTA to install
the application into the emulator. If you don’t know how to do this, read about it in
Section 2.3.2, “Install” on page 2-8.
A-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

After you install CHAPIDemo, it appears in the application list as Text Viewer. It is
a MIDlet that is a content handler for plain text. Select Text Viewer and choose
Launch from the soft button menu. A list of favorite links appears.

FIGURE A-5 Viewing Favorite Links in CHAPIDemo

Use the navigation keys to highlight CHAPIDemo then press SELECT on the
emulator. The application asks if it is OK to use airtime. Press the Yes soft button. A
list of various types of content appears (FIGURE A-6).
Appendix A Application Demonstrations A-9

FIGURE A-6 Content List

Try selecting one of the Duke.png. Use the arrows to highlight the link, then press
SELECT to view the file. Using CHAPI, the ImageViewer MIDlet is launched and
displays the content.
A-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-7 Viewing a PNG Image

The other types of content require another content handler MIDlet suite,
MediaHandler. To install this suite from CHAPIDemo, select the
MediaHandler.jad link (the first item in the list shown in FIGURE A-6). The AMS is
invoked and leads you through the installation.

After the MIDlet suite is installed, you can view the other types of content listed in
Text Viewer. For example, select http:video/test-mpeg.mpg to see a series of
images including the one shown in FIGURE A-8.
Appendix A Application Demonstrations A-11

FIGURE A-8 Viewing an MPEG Movie Using MediaHandler

To view the content handler settings for the TextViewer and ImageViewer MIDlets,
click Settings, then click on the Content Handlers icon. You might also wish to
examine the MediaHandler project.

A.6 CityGuide
CityGuide demonstrates how to use the Location API (JSR 179). It shows a walker’s
current position superimposed on a city map. The walker moves around the city and
landmarks are highlighted and identified as the walker approaches. In this demo we
get the walker’s location from an XML script named citywalk.xml (the event file)
that submits the device location information. See Chapter 13 for a full explanation.

Because location prompts occur frequently, it is best to run this demonstration in
manufacturer (trusted) mode, as explained in Section 6.2.1, “MSA Protection
Domains” on page 6-3. In the user interface, select Edit > Preferences, then select
Security. Choose Manufacturer for the Security domain.

Open and run the CityGuide project. In the emulator, launch the CityGuide MIDlet.
Click Next to view the map page.
A-12 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-9 Your Location in the City

Choose MIDlet > External events from the emulator window menu. On the Location
tab click the browse button. Select the following event file in workdir\apps\
CityGuide\citywalk.xml.

The player buttons at the bottom of the window are now active. See FIGURE 13-1.
Press the green play button (right-pointing triangle) to run the script.

The display shows four types of landmarks: restaurants, museums, shops, and
theaters. To adjust the landmark display, open the soft menu and choose the Settings
command. See FIGURE A-10. Use the navigation keys to highlight a category, then use
SELECT to check or uncheck an item.

When you are near a landmark (shown highlighted on the map), open the soft menu
and choose the Detail command to see more information. See Chapter 13 for more
details on location scripts.
Appendix A Application Demonstrations A-13

FIGURE A-10 Location Settings

FIGURE A-11 Landmark Details
A-14 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.7 Demos
This demo contains several MIDlets that highlight different MIDP features.

A.7.1 Colors
This application displays a large horizontal rectangle that runs the width of the
screen. Below, ten small vertical rectangles span the screen. Finally, three horizontal
color bars indicate values for blue, green, and red (RGB). Values are expressed as
decimal (0-255) or hexadecimal (00-ff) based on the first menu selection.

■ To select a vertical bar to change, use the up navigation arrow to move to the
color bars. Use the right navigation arrow to highlight a color bar. The large
rectangle becomes the color of the selected bar.

■ Use the up or down selection arrows to choose the value to change (red, green, or
blue). Use the left or right arrow keys to increase or decrease the selected value.
The second menu item allows you to jump in increments of 4 (Fine) or 32 (coarse).

■ You can change the color on any or all of the vertical bars.

A.7.2 Properties
This MIDlet displays property values. For example, see FIGURE A-12:
Appendix A Application Demonstrations A-15

FIGURE A-12 System Properties

A.7.3 Http
This test application uses an HTTP connection to request a web page. The request is
issued with HTTP protocol GET or POST methods. If the HEAD method is used, the
head properties are read from the request.

Preparing to Run the Demo

Before beginning, examine your settings as follows.

■ Go to Preferences > Security. Set the policy to JTWI and the domain to maximum.

■ In Preferences > Network Configuration, the HTTP version must be 1.1.

■ If you are behind a firewall, go to Preferences > Network Configuration and
specify your proxy server information.

■ If you are running antivirus software, you might need to create a rule that allows
this MIDlet to allow connections to and from a specific web site.
A-16 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4

Running the Demo

Launch the Http MIDlet. By default the MIDlet attempts to contact
http://www.yahoo.com. To test, choose the Menu soft key and choose 1, 2, or 3 to
test the selected URL.

Http Test returns the information it is able to obtain. If the information fills the
screen use the down arrow to scroll to the end. The amount of information depends
on the type of request and on the amount of META information the page provides. To
provide body information or content, the page must declare CONTENT-LENGTH as
described in RFC 2616.

Using Menu Options

Use the Menu soft key for the following actions.

■ Choose 1 to GET information from the selected page.

■ Choose 2 to obtain the POST information from the selected page.

■ Choose 3 to display the HEAD attributes for the page.

■ Choose 4 to bring up the current list of web pages. You can chose a new page or
add your own page to the list. To specify a new URL, choose the Menu soft key
and choose 4. The screen displays http://. Type in the rest of the URL, making
sure to end with a slash (/). For example http://www.internetnews.com/.
Press the OK soft button. The Http Test screen shows your new URL and prompts
for an action.

A.7.4 FontTestlet
This MIDlet shows the various fonts available: Proportional, Regular, Regular Italic,
Bold Plain, and Bold Italic. Choose 1 or 2 from the menu to toggle between the
system font (sans serif) and the monospace font.

A.7.5 Stock
Like the Http demonstration, This sample uses an HTTP connection to obtain
information. Use the same preparation steps as Section A.7.3, “Http” on page A-16.

Run the Demos project and launch the Stock MIDlet.

By default, the screen displays an empty ticker bar at the top. Below the ticker, the
menu list shows four applications: Stock Tracker, What If? Alerts, and Settings. You
must add stock symbols before you can use the first three applications.
Appendix A Application Demonstrations A-17

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4
http://www.yahoo.com
http://www.internetnews.com/

A.7.5.1 Working with Settings

To use the applications features, you must supply some stock symbols for the
application to act upon.

Add Stock Symbols to the Ticker

To add a stock symbol to the ticker, use the navigation arrows to select Settings.

Select Add Stock.

The display prompts you to enter a stock symbol. Type SUNW and select the Done
soft key. The stock you added and its current value is now displayed in the ticker.
Add a few more stock symbols, such as IBM and HPQ.

Change the Update Interval

By default the update interval is 15 minutes. Select Updates to change the interval.
Use the navigation arrows to select one of Continuous, 15 minutes, 30 minutes,
1 hour, or 3 hours. Select the Done soft key.

Remove a Stock

Select Remove a Stock. You see a list of the stocks you have added. Use the
navigation keys to select one or more stocks to remove. Choose the Done soft key.

A.7.5.2 Stock Tracker

Stock Tracker displays a list of the stocks you added and their current values. Stock
tracker display additional information about the selected stock, for example, the last
trade and the high and low values.

Choose a stock and press SELECT.

A.7.5.3 What If?

What If? is an application that asks for the original purchase price and the number of
shares you own. It calculates your profit or loss based on the current price.

Select a stock symbol.

Enter the purchase price and the number of shares, then press Calc.
A-18 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.7.5.4 Alerts

This application sends you a notification when the price changes to a value you
specify.

From the main menu, select Alerts.

Select Add.

Choose a Stock. The screen prompts, Alert me when a stock reaches. Enter
an integer.

The alert is placed on the Current Alerts list. To remove an alert, press Remove and
select the alert. Choose the Done soft key.

When the value is reached you will hear a ring and receive a message. For example,
Symbol has reached your price point of $value and is currently trading at
$current_value. Once the alert is triggered it disappears from the Current Alerts list.

A.7.6 Tickets
This demonstrates how an online ticket auction application might behave. The home
screen displays a ticket ticker across the top. The Choose a Band field displays
Alanis Morrisette by default.

To select a band, highlight the band name and press SELECT. Use the down arrow to
highlight a different band, moby, for example, then press SELECT. The available
auction appears.

To make a bid, select the Menu soft key and choose 2. Use the arrow keys to move
from field to field. Fill out each field. Select the Next soft key. The application asks
you to confirm your bid. Use the arrow keys to highlight Submit then press SELECT.
You receive a Confirmation number. Click Bands to return to the welcome page.

To set an alert, select the Menu soft key and choose 3. Use the navigation arrows to
move to the field and type in a value higher than the current bid. Select the Save soft
key. You are returned to the welcome page. You can trigger the alert by making a bid
that exceeds your alert value. Your settings determine how often the application
checks for changes, so the alert may not sound for a few minutes.

To add a band, select the Menu soft key and choose 4. Type in a band name or a
comma-separated list of names. Choose the Save soft key. After confirmation you are
returned to the welcome page. The added band(s) are displayed in the Choose a
Band drop down.
Appendix A Application Demonstrations A-19

Note – This is only a demonstration. To fully describe the band you must edit the
file workdir\apps\Demos\src\example\auction\NewTicketAuction.java.

To remove a band, select the Menu soft key and choose 5. Navigate to a band then
choose SELECT to mark the check box. You can select multiple bands. Choose the
Save soft key.

To display the current settings for ticker display, updates, alert volume, and date,
select the Menu soft key and choose 6. If desired, use the arrow keys and the select
key to change these values. Choose the Save soft key.

A.7.7 ManyBalls
This MIDlet starts with one ball traveling the screen. Use the up and down arrows to
accelerate or decelerate the ball speed (fps). Use the right or left arrows to increase
or decrease the number of balls.

A.8 Demo3D
This application contains three MIDlets that show off the emulator’s support of JSR
184, the Mobile 3D Graphics API.

A.8.1 Life3D
Life3D implements the popular Game of Life in three dimensions. Live cells are
represented by cubes. Each cell has 26 possible neighbors (including diagonals). For
each step of the animation, cells with fewer than four neighbors die of loneliness,
while cells with more than five neighbors die of overcrowding. An empty cell with
exactly four neighbors becomes a new live cell.

The view of the playing board rotates slowly so you can view the board from all
angles.
A-20 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-13 Game of Life in Three Dimensions

The keypad buttons in TABLE A-2 provide control over the game.

The source code for this example is particularly well documented. See toolkit\apps\
Demo3D\src\com\superscape\m3g\wtksamples\life3d\Life3D.java.

TABLE A-2 Controls for Life3D

Button Description

0 Pause the animation.

1 Resume the animation at its default speed.

2 Speed up the animation.

3 Slow down the animation.

4 Choose the previous preset configuration from an arbitrary list. The name of the
configuration is shown at the top of the screen.

5 Choose the next preset configuration from the list.

* Generate a random configuration and animate until it stabilizes or dies. If it dies,
generate a new random configuration.
Appendix A Application Demonstrations A-21

A.8.2 PogoRoo
PogoRoo shows you a kangaroo bouncing up and down on a pogo stick. To steer the
kangaroo, use the arrow keys. Push up to go forward, down to go backward, and left
and right to change direction. You might need to hold down the key to see an effect.

FIGURE A-14 Bouncing Kangaroo

A.8.3 retainedmode

The retainedmode MIDlet plays a scene file that shows a tireless skateboarder in
an endless loop.
A-22 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-15 Tireless Skateboarder

A.9 GoSIP
GoSIP is a chat application that uses SIP (JSR 180) to set up communications using a
SIP proxy server and registrar.

Begin by running the SIP server. Choose File > Utilities. Select Start SIP Server and
press Launch. The SIP proxy server window appears. Click Start to run the server.

Next, run two instances of the emulator with the GoSIP application.
Appendix A Application Demonstrations A-23

FIGURE A-16 SIP Proxy and Registrar

In the first emulator, launch Sippy A. Enter your local machine name or IP address
when you are prompted for the proxy host and choose Next, then Register. In the SIP
server window, SIP messages from the emulator appear. Sippy A appears in the list
of registered users. The emulator suggests you invite your friend Sippy B to talk.
Don’t do it yet.

In the second emulator, launch Sippy B. Just as before, enter the address of the SIP
proxy, choose Next, then Register. The Sippy B user appears in the SIP server
window.

In the first emulator, choose Invite. The second emulator indicates that it’s ringing.
Choose Answer to start the chat. Both emulators now show a Talking screen. You
can send messages back and forth using the Send command.

When you are finished, choose Bye to end the chat.
A-24 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.10 i18nDemo
This MIDlet suite shows off the JSR 238 Mobile Internationalization API. The
MIDlets String Comparator and Formatter show how to sort strings and display
numbers appropriately for different locales. The third MIDlet, MicroLexicon, is a
small phrase translator that comes in handy if you need to ask for a beer in Prague,
Herzliya, Beijing, Milan, or several other locations.

Note – The default fonts for the Sun JavaTM Wireless Toolkit for CLDC do not
support Chinese and Japanese. To use these languages, follow these steps before
running this demo:

1. Install a True Type font that supports Chinese or Japanese.
2. Modify toolkit\wtklib\devices\skin-directory\skin.properties to specify that
font.

To run a MIDlet, use SELECT to highlight the MIDlet, then use the lower right
button to Launch the MIDlet.

The String Comparator MIDlet demonstrates how strings (city names) are sorted
differently depending on locale. Launch the MIDlet. Use the lower right button to
view the menu. Click or Type 2 to select Sort - default, and the list is sorted
alphabetically. Click or Type 3 to select Sort - slovak. It’s easy to see the difference in
the cities that begin with the letter Z, with and without the mark on top. Click Exit
to return to the list of MIDlets.

The second MIDlet, Formatter, simply displays times and numbers formatted for
different locales. Click next to view all four screens. Click Exit to return to the list of
MIDlets.

The final MIDlet, MicroLexicon, translates phrases from one language to another
language. To select the target language from the list, use the navigation arrows to
highlight Choose Language. Click SELECT to view the language drop down. Use the
navigation arrows to choose a language (see FIGURE A-17) and then click SELECT.
Appendix A Application Demonstrations A-25

FIGURE A-17 Choosing the Target Language

MicroLexicon displays a list of phrases. Highlight one and press the SELECT button
on the emulator. You see the flag of the target language and the translated phrase.

To change the source language, choose Edit > Preferences. Click the i18n tab and
enter a valid locale string. The next time you run the emulator and MicroLexicon,
the instruction text appears in the given locale, if it is supported. One example that
works is cs-CZ.

MicroLexicon is powered by MIDlet resources. To understand how you can use the
toolkit to localize an application, choose Project > i18n Resources Manager. All the
resources, both text and images, used by MicroLexicon, appear. You can edit the
resources and run MicroLexicon again to see what happens. You don’t need to build
the application again because the resources are loaded at runtime.
A-26 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-18 Internationalization Resources Manager

The resources themselves are stored in workdir\apps\i18nDemo\res\global.

A.11 JBricks
JBricks is a game that demonstrates the use of the JSR 229 Payment API. The game
itself resembles Breakout or Arkanoid. In JBricks, you can buy another life or a new
game level. Behind the scenes, the Payment API handles the details.
Appendix A Application Demonstrations A-27

To use the payment features of JBricks, use Project > Run via OTA to install JBricks
into the emulator. If you don’t know how to do this, read about it in Section 2.3.2,
“Install” on page 2-8.

To see how JBricks uses the Payment API, choose either Buy Life or Buy Level
from the game’s main menu. Next, choose whether you want to buy a single life or
three lives for a reduced price. The next screen gives you a choice of payment types.

FIGURE A-19 Choosing a Payment Type

Use the navigation arrows to select the line starting with Pay by. Click the SELECT
button to see the possible credit card adaptors in a drop down menu. Use the
navigation arrows to select the VISA adaptor, then click SELECT. Click Yes on the
lower right to proceed.

Next, you will be able to enter credit card information. Use any valid VISA number
(for example, 4111111111111111) and a valid expiration date.
A-28 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-20 Providing Payment Information

To view the transactions for the current instance of the emulator, choose MIDlet >
External Events and click on the Payment Transactions tab. Transactions for this
specific instance of the emulator appear.
Appendix A Application Demonstrations A-29

FIGURE A-21 Viewing Transactions

In addition, you can view all transactions passing through the toolkit’s payment
system. Choose File > Utilities, then select Payment Console. A transaction in the
console looks something like the following:

PSP Console running, using phone number +5550001.
PSP Server running at https://localhost:-1
Received Payment Request from 127.0.0.1
 Credit card issued by: VISA
 Credit Card type: 0
 Credit Card Number: 4111111111111111
 Credit Card Holder: Jonathan Knudsen
 Feature ID: 3_lives
 Credit Card Verification Number (CCV): 123
 Payload: null
Response to 127.0.0.1
A-30 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.12 JSR172Demo
JSR172Demo shows how to access a web service from a MIDlet. The web service is
already running on an Internet server. If you are behind a firewall, you must
configure the emulator’s proxy server settings. Choose Edit > Preferences, then
select Network Configuration. Fill in the proxy server address file and the port
number. Build and run the example.

JSR172Demo contains a single MIDlet named Server Script. Launch it and follow the
prompts. You can browse through simulated news headlines, all of which are
retrieved from the web service.

To see what is going on behind the scenes, use the network monitor.

A.13 MobileMediaAPI
The MobileMediaAPI application contains four MIDlets that showcase the toolkit’s
multimedia capabilities. This section describes the MIDlets and includes additional
information about using multimedia from your applications.

A.13.1 Simple Tones
The Simple Tones example demonstrates how to use interactive synthetic tones.
Select an example, then click Play on the lower right.

■ Short Single Tone and Long Single Tone use Manager.playTone() to play tones
with different pitch.

■ Short MIDI event plays a chord on the interactive MIDI device (locator
"device://midi"). The shortMidiEvent() method of MIDIControl is used
to trigger the notes of the chord.

■ To run the MMAPI Drummer demo, click or type number keys (0-9). Each
number plays a different sound.

HTTP/1.1 200 OK
Content-Length: 0
Pay-Response: SUCCESSFUL
Pay-Timestamp: 1156282954734
Appendix A Application Demonstrations A-31

A.13.2 Simple Player
The Simple Player application demonstrates the range of audio and video
capabilities of the emulator. It includes sample files in a variety of formats and can
play files from the emulator's persistent storage or from HTTP URLs.

The player portion uses a generic javax.microedition.media.Player interface.
The player displays duration, media time, and controls for running the media file. If
metadata is available in a file, the player enables you to view the information, such
as author and title. In the case of MIDI files, if karaoke text is present in the file, it
displays on the screen during play. Graphical user interface controls can be viewed
on the display screen if applicable. You can access these controls by selecting one of
the media samples in Simple Player, then pressing the Menu button to view and
select the desired command.

Select Simple Player then click Launch. The demo includes the following media
samples:

■ Bong plays a short WAV file. You can adjust certain playback features, as
described later in this document. The display shows the duration of the sound in
minutes:seconds:tenths of a second, for example 00:17:5. This audio sample is a
resource file in the MIDlet suite JAR file.

■ MIDI Scale plays a sample musical scale. The display shows the title of the
selected music file, the duration of the song, the elapsed time during playback,
and the current tempo in beats per minute (bpm). This MIDI file is stored in the
MIDlet suite JAR file.

■ Simple Ring Tone plays a short sequence of Beethoven's Fifth Symphony. The
display shows the title of the selected music file, the duration of the song, the
elapsed time in seconds and tenths of a second during playback, and the current
tempo in beats per minute (bpm). This ringtone file (.jts format) is stored in the
MIDlet suite JAR file.

■ WAV Music plays a brief audio file. The display shows the title of the audio file,
the duration of the audio the elapsed time during playback, and the playback rate
in percent. This WAV file is retrieved from an HTTP server.

■ MIDI Scale plays a MIDI file that is retrieved from an HTTP server.

■ The Animated GIF example shows an animated GIF that counts from 1 to 5. The
file is stored in the MIDlet suite JAR file.

■ Audio Capture from a default device lets you capture audio from a microphone
or connected device. The sound is captured and played back on the speaker. To
avoid feedback, use a headset.

■ Video Capture Simulation simulates viewing input video such as might be
possible on a device equipped with a camera.

■ MPEG1 Video [http]. Plays an MPEG video found at
http://java.sun.com/products/java-media/mma/media/test-
mpeg.mpg.
A-32 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

■ [enter URL] allows you to play back media files from arbitrary HTTP servers.
Type a valid URL (for example, http://java.sun.com/products/java-
media/mma/media/test-wav.mpg) at the insertion point and click OK to play a
file. If you want to open an HTTP directory from which to select media, be sure to
add a slash to the end of the URL.

In addition, Simple Player parses ring tones in Ringing Tones text transfer language
(RTTTL). See http://www.convertyourtone.com/rtttl.html for information
on RTTTL.

The Simple Player includes a common set of commands that control media playback.
The commands are available from the Simple Player menu, and some have
associated keypad buttons. The following table describes these commands.

TABLE A-3 Simple Player Commands

Command Key Description

Mute/Unmute 0 Turns off sound but the file continues to play. This command
toggles to Unmute.

Volume * and # Increases or decreases loudness.

META Data Displays information provided by the media file such as
copyright information, title, and track list.

Stop in 5
seconds

Pauses the audio play in five seconds when set during playback.

Rate 4 and 6 Alters the rate of speed of playback.

Tempo Increases or decreases the tempo of the tone sequence or MIDI
file.

Pitch up and
down

Lowers or raises the notes in a MIDI file.

Start/Stop
Recording

Records the audio playback. A file is created containing the
recorded audio in the directory in which the emulator is
running. If you do not specify a filename, a file called
recording.wav is created. This command toggles to Stop
Recording.

Step Frame 7 and 9 Jumps forward or backward one frame at a time in a video file.

Play/Stop 2 and
Select

Starts or stops the media.

Loop Mode Plays back the audio file immediately after completion of play.
Running Loopmode once plays the audio file once. Pressing a
second time plays the file three times. Pressing a third time
plays the file repeatedly. Pressing a fourth time returns to single
play.
Appendix A Application Demonstrations A-33

http://www.convertyourtone.com/rtttl.html
http://www.convertyourtone.com/rtttl.html

The commands may or may not be available depending on the media type that
Simple Player is playing. In addition, some commands can be invoked using the
keypad buttons. The following table describes the availability of commands, their
keypad equivalents, and the relevant class from MMAPI.

Note that a short list of commands and the corresponding keypad buttons is
available in the Simple Player application itself. Just choose the Quick Help
command from the menu.

A.13.3 Video
The Video application illustrates how the emulator is capable of playing animated
GIF files and capturing video. On a real device with a camera, video capture can be
used to show the user what the camera sees.

Animated GIFs and video capture can be implemented using either a Form Item or
a Canvas. The Video demonstration includes all the possibilities. Animated GIF -
Form [jar] shows an animated GIF as a Form Item. The form also includes some
information about the playback, including the current time. Choose the Snapshot
command to take a snapshot of the running animation. The snapshot will be placed
in the form following the animated GIF.

■ Animated GIF - Canvas [jar] shows an animated GIF in a Canvas. A simple
indicator shows the progress through the animation. Choose Snapshot to get a
still image of the current appearance. The snapshot is shown briefly, then the
display goes back to the animation.

■ Video Capture - Form simulates capturing video from a camera or other source
and showing it as an Item in a Form. Choose the Snapshot command to take a
snapshot of the captured video. The snapshot will be placed in the form following
the video capture.

■ Video Capture - Canvas simulates capturing video from a camera or other source
and showing it in a Canvas. Choose Snapshot to get a still image of the current
appearance. The snapshot is shown briefly, then the display goes back to the
video capture.

Skip 1 and 3 Skips forward or backward five percent of the duration of the
media file. The sound track syncs to the video.

Rewind Returns to the start time of the audio playback.

Stop and
Rewind

5 Stops playback and rewinds to the start time.

Quick Help Displays a list of commands and keypad buttons.

TABLE A-3 Simple Player Commands (Continued)

Command Key Description
A-34 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

■ MPEG1 Video - Form, MPEG1 Video - Canvas

The MPEG1 applications obtain MPEGs from the web, so if you are behind a
firewall, you must configure the emulator’s proxy server settings.

Choose Edit > Preferences, then select Network Configuration. Check Use proxy
server. Fill in the proxy server address field and the port number. For this demo,
select HTTP/1.0.

When you play the demo, expect to wait a few seconds while WTK obtains the
data. The MPEG1 demos have the same behavior as Video Capture - Form and
Video Capture - Canvas, respectively.

A.13.4 Pausing Audio Test
This MIDlet exists to demonstrate how the Sun JavaTM Wireless Toolkit for CLDC
will warn you if a paused MIDlet has not stopped its running Players. After you
launch the MIDlet, choose the Play command to start playing some audio. The
screen displays a status, which is either “Well-behaved” or “Not Well-Behaved.”

Choose MIDlet > Pause from the emulator window’s menu. As expected, the MIDlet
is paused and no message is displayed on the toolkit console. Choose MIDlet >
Resume from the emulator window’s menu.

Now choose the Misbehave command. Pause the MIDlet again. In the toolkit
console, you see the warning: An active media (subtype Player) resource
was detected while the MIDlet is paused. Well-behaved MIDlets
release their resources in pauseApp().

A.13.5 Attributes for MobileMediaAPI
The MobileMediaAPI applications have the following attributes that you can
modify in the project settings dialog box User Defined tab:

TABLE A-4 Descriptions of MMAPI-specific MIDlet attributes

Attribute Description

PlayerTitle-n Name of the nth media title to be played back by the Simple Player
MIDlet.
Appendix A Application Demonstrations A-35

A.14 Network Demo
This demo has two MIDlets: Socket Demo and Datagram Demo. Each demo requires
you to run two emulator instances so that you can emulate the server and client
relationship.

A.14.1 Socket Demo
Run two instances of the emulator. One acts as the socket server, and the other as the
socket client.

In the first emulator, launch the application, then select the Server peer. Choose
Start. The emulator explains that the demo wants to send and receive data over the
network and asks, “Is it OK to use network?” Choose Yes. The Socket Server
displays a screen that indicates it is waiting for a connection.

In the second emulator, launch the application, select the Client peer, then choose
Start. The emulator explains that the demo wants to send and receive data over the
network and asks, “Is it OK to use network?” Choose Yes. The Socket Client displays
a screen that indicates it is connected to the server. Use the down navigation arrow
to highlight the Send box. Type a message in the Send box, then choose the Send soft
key.

For example, in the client, type Hello Server In the Send box (see FIGURE A-22).
Choose the Send soft key. The emulator activates a blue light during the
transmission.

PlayerURL-n Location of the nth media title, PlayerTitle-n, to be played back
by the Simple Player MIDlet.

VideoTest-n The name of the nth media title to be played back by the Video
application.

VideoTest-URLn Location of the nth media title, VideoTest-n, to be played back
by the Video application.

TABLE A-4 Descriptions of MMAPI-specific MIDlet attributes (Continued)

Attribute Description
A-36 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-22 Sending a Message from the Socket Client

On the emulator running the Socket Server, the Status reads: Message received -
Hello Server. You can use the down arrow to move to the Send box and type a
reply. For example, Hello Client, I heard you. Select Send. See FIGURE A-23.
Appendix A Application Demonstrations A-37

FIGURE A-23 Server Shows Message Received and Message to Send

Back in the Socket Client, the status shows the message received from the server.
Until you send a new message, the Send box contains the previous message you
sent.

A.14.2 Datagram Demo
This demo is similar to Socket Demo.

Run two instances of the emulator. One acts as the datagram server, and the other as
the datagram client.

In the first emulator, launch Datagram Demo, then select the Server peer. Choose
Start. The emulator explains that the demo wants to send and receive data over the
network and asks, “Is it OK to use network?“ Choose Yes. Initially, the Datagram
Server status is Waiting for connection, and the Send box is empty.

In the second emulator, launch Datagram Demo, select the Client peer, then choose
Start. The emulator explains that the demo wants to send and receive data over the
network and asks, “Is it OK to use network?“ Choose Yes. The Datagram Client
status is: Connected to server. Use the down navigation arrow to highlight the
Send box. Type a message in the Send box, then choose the Send soft key. For
example, type Hello datagram server.
A-38 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

On the emulator running the Datagram Server, the Status displays: Message
received - Hello datagram server. You can use the down arrow to move to
the Send box and type a reply to the client.

In the Datagram Client, the status field displays the message received from the
server. The Send box contains the last message you sent.

A.15 ObexDemo
This application shows how to transfer image files between emulator instances using
the OBEX API. This demonstration shows the use of OBEX over a simulated infrared
connection.

Run two instances of the emulator. One listens for incoming connections, while the
other attempts to send an image. In the first emulator, launch the application then
choose Obex Demo, then Receive Image. The emulator explains that an OBEX
connection allows other devices to talk to yours and asks, “Is it OK to make the
connection?“ Choose Yes. The listener emulator displays a screen that indicates it is
waiting for incoming connections.

In the second emulator (the sender), launch Obex Demo, then choose Send Image.
You see a list of images. Select one and choose Send. The emulator explains the
demo wants to make an outgoing client connection, and asks if it is OK. Choose Yes.
The Send Image utility uploads the image.

In the listening emulator, the utility displays information about the incoming image
and asks “Would you like to receive it?“ See FIGURE A-24.
Appendix A Application Demonstrations A-39

FIGURE A-24 Listener Prompting to Accept a Connection

Choose Yes. The image you selected is transferred over the simulated infrared link
and displayed on the first emulator. See FIGURE A-25.
A-40 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-25 Successfully Transferred Image

A.16 PDAPDemo
PDAPDemo shows how to use the PIM and FileConnection APIs that are part of the
JSR 75 specification.

A.16.1 Browsing Files
To run the file browser, you’ll need to give the MIDlet appropriate security
authorization, if you have not already done so. Choose Edit > Preferences. Click on
the Security tab. Change the Security domain to maximum and press OK.

Now open and run the PDAPDemo project. Launch the FileBrowser MIDlet. You
see a directory listing, and you can browse through the available directories and
files. By default there is one directory, root1.
Appendix A Application Demonstrations A-41

FIGURE A-26 Browsing Files

Select the directory and press the select button to enter it.
A-42 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-27 Contents of the root1 Directory

Using the commands in the demonstration, you can view the file or see its
properties. Try selecting the file and choosing Properties or View from the menu.
Appendix A Application Demonstrations A-43

FIGURE A-28 Viewing File Contents and File Properties

The actual files are located in workdir\appdb\DefaultColorPhone\filesystem,
assuming you are using the DefaultColorPhone emulator skin. You can add files
and root directories as you wish and they will be visible to the JSR 75 File API. See
Chapter 10 for more information.

A.16.2 The PIM API
The JSR75 PIM APIs example demonstrates how to access personal information,
like contact lists, calendars, and to-do lists. After you launch the example, choose a
type of list from the main menu.

In this example application, each type of list works the same way and each list type
contains a single list. For example, if you choose Contact Lists, there is a single
contact list called Contacts. Event Lists contains a single list called Events, and To Do
Lists contains a single list named To Do.
A-44 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-29 Choosing a List Type

Once you've selected a list type and chosen the specific list, you can view all the
items in the list. If this is the first time you've run the example, the list is probably
empty.

To add an item, choose New from the menu. The application prompts you for a
Formatted Name for the item. You can add more data fields to this item using Add
Field in the menu. You see a list of field names. Pick one, then enter the value for the
new field.
Appendix A Application Demonstrations A-45

FIGURE A-30 Adding Contact Fields

To save the list item, choose Commit (option 3) from the menu.

You can return to the list by choosing the Back command. You'll see the item you just
created in the list.

The items that you create are stored in standard vCard or vCalendar format in the
workdir\appdb\skin\pim directory. See Chapter 10 for more information.

The PIM API allows for exporting contact, calender, and to-do items in a standard
format. The exact format depends on the list type. When you are viewing an item in
any list, the menu contains a command for viewing the exported item.

For example, when you are viewing a contact list item, the menu contains Show
vCard. When you choose this command, the exported item is shown on the screen.
Calendar items and to-do items both get exported as vCalendar.

A.17 SATSADemos
SATSADemos includes demonstrations of SATSA, the Security and Trust Services
APIs. Most of the demonstrations show how to communicate with a smart card. The
emulator can communicate with a simulated smart card using a socket protocol. The
smart card simulator, cref, is included with the toolkit. See Chapter 14 for details.
A-46 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

The following sections contain instructions for each menu choice for this demo. For
each demo, be sure to do the following before launching the emulator:

■ Run the instance(s) of cref from the command line.

■ Be sure to set the set the security domain to maximum.

A.17.1 APDUMIDlet
This MIDlet demonstrates communication with a smart card using Application
Protocol Data Units (APDUs), small packets of data. APDUMIDlet expects to find
two simulated smart cards. You can run the smart card simulator using cref, which
is part of the Java Card Development Kit.

The Mohair application includes pre-built memory images that you can use with
cref. The memory images contain Java Card applications with which Mohair
interacts. The memory images are in the root directory of the Mohair project.

On Windows, start up two instances of cref like this, one for each simulated card
slot (assuming the current directory is the toolkit installation directory):

start bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom
start bin\cref -p 9026 -i apps\SATSADemos\demo2.eeprom

On Linux you can use:

toolkit/bin/cref -p 9025 -i apps/SATSADemos/demo2.eeprom
toolkit/bin/cref -p 9026 -i apps/SATSADemos/demo2.eeprom

Note that the port numbers (9025 and 9026 in this example) must match the port
numbers you specified in the SATSA preferences, described in Chapter 14. Also,
make sure you use the correct path to demo2.eeprom.

Once you have the two smart card simulators running, you can run APDUMIDlet.

A.17.2 SATMIDlet
SATMIDlet demonstrates smart card communication with a slight variation on
APDU communication.

To set up the simulated smart card, use cref, very much like you did for
APDUMIDlet. This time you don’t have to specify a port number, and the memory
image is different:

Windows: start bin\cref -i apps\SATSADemos\sat.eeprom

Linux: toolkit/bin/cref -i apps/SATSADemos/sat.eeprom
Appendix A Application Demonstrations A-47

When the smart card simulator is running, you can run SATMIDlet to communicate
with card applications.

A.17.3 CryptoMIDlet
CryptoMIDlet demonstrates the general cryptographic features of SATSA. It does
not interact with a smart card in any way.

A.17.4 MohairMIDlet
MohairMIDlet has two functions. The first, Find slots, displays all the available
card slots. Each slot has a number followed by ‘C’ or ‘H’ indicating whether the slot
is cold-swappable or hot-swappable. After viewing the slots select Back to return to
the first screen.

The second part of MohairMIDlet, SATSA-PKI Sign test, uses a smart card to
generate a digital signature. As with the earlier demonstrations, you need to run
cref with the right memory image to prepare for the connection from
MohairMIDlet. Type the following in the installation directory:

In the emulator, highlight SATSA-PKI Sign test and choose SELECT. The following
confirmation message appears:

This certificate will be used: MohairAuth

Select the OK soft key.

For PIN 1, type: 1234

Select the OK soft key. The following confirmation message appears:

This string will be signed: JSR 177 Approved

Select the OK soft key. The following confirmation message appears:

This certificate will be used: MohairAuth

Select the OK soft key.

For non repudiation key 1 PIN, type: 2345

Windows: start bin\cref -i apps\SATSADemos\sat.eeprom

Linux: workdir/bin/cref -i apps/SATSADemos/sat.eeprom
A-48 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.18 SATSAJCRMIDemo
This application contains a single MIDlet, JCRMIMIDlet, which shows how to
communicate with a card application using Java Card RMI, a card-friendly remote
object protocol. As with some of the MIDlets in SATSADemos, you need to start up
cref with an appropriate memory image:

Now run JCRMIMIDlet to see how your application can communicate with a
distributed object on the card.

A.19 SIPDemo
This application is a very simple example of using SIP (JSR 180) to communicate
directly between two devices. Usually devices will use SIP with a proxy server to set
up direct communications of some kind. For a more complete example involving a
proxy, take a look at GoSip.

To see how SIPDemo works, run two instances of the emulator. In the first, choose
Receive message. You can use the default port, 5070, and choose Receive. The first
emulator is now listening for incoming messages.

In the second emulator, choose Send message. Fill in values for the recipient, port
number, subject, and message, or accept the defaults, and choose Send. Your
message will be displayed in the first emulator. The first emulator’s response is
displayed in the second emulator.

Try it again with the network monitor turned on. You can see the communication
between the emulators in the network monitor SIP tab.

A.20 SVGContactList
This application uses different skins to display the same contact list information and
a news banner. The skins have different colors and fonts.

Windows: start bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom

Linux: workdir/bin/cref -i apps/SATSADemos/demo2.eeprom
Appendix A Application Demonstrations A-49

Select SVGContactlist(skin 1) or SVGContactlist(skin 2), then click Launch.

Use the up and down arrows to navigate the list of contacts. The highlighted name
is marked with a special character (a > or a dot) and is displayed in a larger font.

FIGURE A-31 Contact List Shown with Skin 2

Press the select button to see more information for the highlighted name.
A-50 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-32 Contact List Details

Press select again to return to the contact list.

A.21 SVGDemo
This suite contains MIDlets that demonstrate different ways of using the JSR 226
Scalable 2D Vector Graphics API for J2ME. This API provides ways to load
manipulate, render, and play SVG content.

The Scalable Vector Graphics (SVG) 1.1 specification defines a language for
describing two-dimensional graphics in XML. The full specification is available at
http://www.w3.org/TR/SVG11/.

SVG Tiny (SVGT) is a subset of SVG that is appropriate for small devices like mobile
phones. See http://www.w3.org/TR/SVGMobile/. SVG Tiny is a compact yet
powerful XML format for describing rich, interactive, and animated 2D content.
Graphical elements can be logically grouped and identified by the SVG markup.

A.21.1 SVG Browser
The SVGBrowser MIDlet displays SVG files residing in the phone file system. Before
running this demo, place an SVG file in the directory workdir\appdb\
DefaultColorPhone\filesystem\root1.
Appendix A Application Demonstrations A-51

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/SVG11/

Launch the demo. The application displays the contents of root1. Select your SVG
file and choose the Open soft key.

A.21.2 Render SVG Image
Render SVG Image loads an SVG image from a file and renders it. Looking at the
demo code you can see that the image is sized on the fly to exactly fit the display
area. The output is clear and sharp.

A.21.3 Play SVG Animation
This application plays an SVG animation depicting a Halloween greeting card. Press
8 to play, 5 to start, and 0 to stop. If you press 8, pressing 5 resumes the animation.
If you press 0, pressing 5 starts the animation from the beginning.

The SVG file contains a description of how the various image elements evolve over
time to provide this short animation.

In the following code sample, the JSR 226 javax.microedition.m2g.SVGImage
class is used to load the SVG resource. Then, the
javax.microedition.m2g.SVGAnimator class can take all the complexity of
SVG animations and provides a java.awt.Component or
javax.swing.JComponent which plays the animation. The SVGAnimator class
provides methods to play, pause and stop the animation.

import javax.microedition.m2g.ScalableGraphics;
import javax.microedition.m2g.SVGImage;

...
String svgURI = ...;
SVGImage svgImage = (SVGImage) SVGImage.createImage(svgURI, null);
SVGAnimator svgAnimator = SVGAnimator.createAnimator(svgImage);

// If running a JSE applet, the target component is a JComponent.
JComponent svgAnimationComponent = (JComponent)
svgAnimator.getTargetComponent();
...

svgAnimator.play();
...
svgAnimator.pause();
...
svgAnimator.stop();
A-52 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

A.21.4 Create SVG Image from Scratch
This demo builds an image using API calls. It creates an empty SVGImage,
populates it with a graphical content, and then displays that content.

A.21.5 Bouncing Balls
Bouncing Balls plays an SVG animation. Press 8 to play, 5 to start, and 0 to stop. If
you press 8, pressing 5 resumes the animation. If you press 0, pressing 5 starts the
animation from the beginning.

A.21.6 Optimized Menu
In this demo, selected icons have a yellow border. As you move to a new icon, it
becomes selected and the previous icon flips to the unselected state. If you navigate
off the icon grid, selection loops around. That is, if the last icon in a row is selected,
moving right selects the first icon in the same row.

This demo illustrates the flexibility that combining UI markup and Java offers: a rich
set of functionality (graphics, animations, high-end 2D rendering) and flexibility in
graphic manipulation, pre-rendering or playing.

In this example, a graphic artist delivered an SVG animation defining the transition
state for the menu icons, from the unselected state to the selected state. The program
renders each icon's animation sequence separately into off-screen buffers (for faster
rendering later on), using the JSR 226 API.

With buffering, the MIDlet is able to adapt to the device display resolution (because
the graphics are defined in SVG format) and still retain the speed of bitmap
rendering. In addition, the MIDlet is still leveraging the SVG animation capabilities.

The task of defining the look of the menu items and their animation effect (the job of
the graphic artist and designer) is cleanly separated from the task of displaying the
menu and starting actions based on menu selection (the job of the developer). The
two can vary independently as long as both the artist and the developer observe the
SVG document structure conventions.
Appendix A Application Demonstrations A-53

A.21.7 Picture Decorator
In this demo you use the phone keys to add decorations to a photograph. The key
values are:

This demo provides 16 pictures for you to decorate.

Use the 2 and 6 keys to page forward and back through the photos.

To decorate, press # to display the picker. Use the arrow keys to highlight a graphic
object. The highlighted object is enlarged. Press SELECT to choose the current
graphic or press the arrow keys to highlight a different graphic. Press SELECT again
to add the graphic to the photo. When the decoration is added you see a red + on the
graphic. This means it is selected and can be moved, resized, and manipulated.

1 key shrink

2 key next picture

3 key grow

4 key help

5 key horizontal flip

6 ley vertical flip

7 key rotate counter-clockwise

8 key previous picture

9 key rotate clockwise

display picker options
A-54 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-33 Decorated Picture with Quotation Selected

Use the navigation arrows to move the graphic. Use 1 to shrink the graphic, and 3 to
enlarge the graphic. Use 5 or 6 to flip, and 7 or 9 to rotate. When you are satisfied
with the position, press SELECT. Note that a green triangle appears. This is a cursor.
Use the navigation keys to move the green triangle around the picture. When the
cursor is over an object it is highlighted with a red box. Press SELECT. The red +
indicates the object is selected.

FIGURE A-34 Highlighted Mustache

To remove a decoration (a property), select an object, then click the Menu soft key.
Press 2 to remove a property.
Appendix A Application Demonstrations A-55

A.21.8 Location Based Service
Launch the application. A splash screen (also used as the help) appears. The initial
view is a map of your itinerary - a walk through San Francisco. The bay (in blue) is
on the right of your screen. Press 1 to start following the itinerary. The application
zooms in on your location on the map. Turn-by-turn directions appear in white
boxes on the horizontal axis. While the itinerary is running, Press 7 to rotate the map
counter-clockwise. Note, the map rotates and the text now appears on the vertical
axis. Press 7 again to restore the default orientation. Press 4 to display the help
screen.

FIGURE A-35

A.22 WMADemo
This application shows how to send and receive SMS, CBS, and MMS messages. The
Sun JavaTM Wireless Toolkit for CLDC offers a flexible emulation environment to
support messaging. Messages can be exchanged between emulator instances and can
be generated or received using the WMA console utility.
A-56 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Because this example makes use of the push registry, you can't see all of its features
just by using the Run button. Use the Run via OTA feature to install the application
into the emulator in a process that mirrors how applications are installed on real
devices. If you don’t know how to do this, read about it in Chapter 2.

To exercise the push registry, use the WMA console to send the emulator a message.
Launch the console by choosing File > Utilities. Click on the Open Console button in
the WMA box to launch the WMA console.

Click on the Send SMS... button in the WMA console window. Choose the number
that corresponds to the emulator, probably +5550000. If you're not sure what number
the emulator is using, look in its title bar. Choose the number in the SMS message
window, then fill in a port number of 50000. Type your text message in the Message
field and click on Send.

FIGURE A-36 Sending a Text Message

The emulator asks if it can launch the WMADemo application.
Appendix A Application Demonstrations A-57

FIGURE A-37 Push Registry Message

Choose Yes. The SMSReceive MIDlet is launched and immediately displays the
incoming SMS message.
A-58 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-38 Incoming Text Message

You can also use the WMA console to send and receive CBS and MMS messages. See
Chapter 7 for more information.

Note – If you are attempting to send text messages to WMADemo using the WMA
console, make sure to specify the port number as 50000. Use port 50001 for CBS
messages. For MMS messages, use example.mms.MMSDemo as the application ID.

For example, to send an MMS message from the WMA console to the emulator,
make sure that WMADemo has been installed using Run via OTA as described above.
Launch the demo and choose MMS Receive.

In the WMA console, click on Send MMS... to open the MMS composition window.
Fill in a message subject, the application ID example.mms.MMSDemo, and the
telephone number of the running emulator.
Appendix A Application Demonstrations A-59

FIGURE A-39 Addressing an MMS message

Next, click on the Parts tab. The WMA console allows you to select files from your
hard disk that you wish to send as parts of the MMS message. Click Add to add a
file to the message. Use the file browser to find the file you want to send and click
OK.
A-60 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

FIGURE A-40 Adding Parts to an MMS Message

Click on Send to send the message.

The emulator asks if it can launch WMADemo. Click on Yes. The image and its
information are displayed.
Appendix A Application Demonstrations A-61

FIGURE A-41 WMADemo Receives the Image
A-62 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

APPENDIX B

Command Line Reference

This appendix describes how to operate the Sun JavaTM Wireless Toolkit for CLDC
from the command line and details the steps required to build and run an
application. It also describes the Sun JavaTM Wireless Toolkit for CLDC certificate
manager utility, called MEKeyTool, and the MIDlet signing utility, called JadTool
(Java Application Descriptor Tool).

B.1 Prerequisites
Before building and running an application from the command line, verify that you
have a version no earlier than 1.4.2 of the Java SE software development kit. Make
sure the jar command is in your path. To find the version of the development kit,
run the jar command and then run java -version at the command line.

For more examples, see the files build.bat and run.bat in the bin directories of
the demonstration applications. You can find these files in:

toolkit is the installation directory of the Sun JavaTM Wireless Toolkit for CLDC and
demo is the name of one of the demo applications.

Windows: toolkit\apps\demo\bin

Linux: toolkit/apps/demo/bin
B-1

B.2 The Development Cycle
For a full description of developing MIDP applications, see Chapter 2. This section
describes how to accomplish each of the steps in the development cycle from the
command line.

B.2.1 Build
In the user interface, building a project is a single step. Behind the scenes, however,
there are actually two steps. First, Java source files are compiled into Java class files.
Next, the class files are preverified, which means they are prepared for the CLDC
KVM.

Use the javac compiler from the Java SE development kit to compile Java source
files. You can use the existing Sun JavaTM Wireless Toolkit for CLDC project
directory structure. You’ll need to use the -bootclasspath option to tell the
compiler to use the MIDP APIs, and you’ll use the -d option to tell the compiler
where to put the compiled class files.

The following example shows how you could compile a MIDP 2.0 application,
taking source files from the src directory and placing the class files in the
tmpclasses directory. Newlines have been added for clarity.

Windows

javac
-bootclasspath ..\..\lib\cldcapi10.jar;..\..\lib\midpapi20.jar
-d tmpclasses
src*.java

Linux

javac
-bootclasspath ../../lib/cldcapi10.jar;../../lib/midpapi20.jar
-d tmpclasses
src/*.java

If you want to use the optional APIs that are supported by the toolkit, add their JAR
files to the -bootclasspath option.

For more information on javac, consult the Java SE documentation.

The next step is to preverify the class files. In the bin directory of the Sun JavaTM

Wireless Toolkit for CLDC lives a handy utility called preverify. The syntax for the
preverify command is as follows:
B-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

preverify [options] files | directories

Some of the options are as follows:

-classpath classpath

Specify the directories or JAR files (given as a semicolon-delimited list) from
which classes are loaded.

-d output-directory

Specify the target directory for the output classes. This directory must exist before
preverifying. If this option is not used, the preverifier places the classes in a
directory called output.

Following the example for compiling, use the following command to verify the
compiled class files. As before, newlines are added for clarity.

Windows

preverify
-classpath ..\..\lib\cldcapi10.jar;..\..\lib\midpapi20.jar
-d classes
tmpclasses

Linux

preverify
-classpath ../../lib/cldcapi10.jar;../../lib/midpapi20.jar
-d classes
tmpclasses

As a result of this command, preverified class files are placed in the classes
directory. If your application uses WMA, MMAPI, or other versions of CLDC or
MIDP, be sure to include the relevant .jar files in the classpath.

B.2.2 Package
To package a MIDlet suite, you must create a manifest file, an application JAR file,
and finally, a MIDlet suite descriptor.

Create a manifest file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the manifest file. A manifest
might have the following contents, for example:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
Appendix B Command Line Reference B-3

MicroEdition-Profile: MIDP-2.0

Create a JAR file containing the manifest as well as the suite’s class and resource
files. To create the JAR file, use the jar tool that comes with the Java SE software
development kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .

The arguments are as follows:

■ file - JAR file to create.

■ manifest - Manifest file for the MIDlets.

■ class-directory - Directory containing the application’s classes.

■ resource-directory - Directory containing the application’s resources.

For example, to create a JAR file named MyApp.jar whose classes are in the
classes directory and resources are in the res directory, use the following
command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the JAD file. This file must have
the extension .jad.

Note – You need to set the MIDlet-Jar-Size entry to the size of the JAR file
created in the previous step.

For example, a JAD file might have the following contents:

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

B.2.3 Run
You can run the emulator from the command line. The Sun JavaTM Wireless Toolkit
for CLDC’s bin directory contains the command emulator. The syntax for the
emulator command is as follows:

emulator options

The general options are as follows:

■ -help - Display a list of valid options.
B-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

■ -version - Display version information about the emulator.

■ -Xquery - Print emulator skin information on the standard output stream and
exit immediately. The information includes the skin name, screen size, and other
capabilities.

Options that pertain to running MIDlet suites are as follows:

■ -Xdevice:skin-name - Run an application on the emulator using the given skin
name. For a list of skin names, see Section 4.1, “Emulator Skins” on page 4-1.

■ -Xdescriptor:jad-file - Run an application locally using the given JAD file.

■ -classpath classpath - Specify the classpath for libraries required to run the
application. Use this option when running an application locally.

■ -Dcom.sun.midp.io.http.proxy - Set the HTTP and HTTPS proxy servers at
run time. For example:

-Dcom.sun.midp.io.http.proxy=proxy-host:proxy-port

■ -Dcom.sun.midp.midlet.platformRequestCommand - Specify the browser
to use when applications call a URL. For example:

-Dcom.sun.midp.midlet.platformRequestCommand=browser

A sample call might look like:

emulator -Dcom.sun.midp.midlet.platformRequestCommand=firefox
-Xjam:install=URL-to-app-using-platformRequest-method

If you want to use the same browser every time, you can add the following line to
toolkit/lib/system.config:

com.sun.midp.midlet.platformRequestCommand: browser

Windows: In Windows, if this parameter is not specified, the default browser is
used.

Linux: For Linux, this parameter is required because Linux systems do not
usually have a default browser. If it is missing, nothing happens when an
application tries to open a URL.

■ -Xjam:command=application - Run an application remotely using the Application
Management Software (AMS) to run using OTA provisioning. If no application is
specified with the argument, the graphical AMS is run. The commands are as
follows:

install=jad-file-url | force | list | storageNames|

Install the application with the specified JAD file onto a device.

Also

run=[storage-name | storage-number]

Run a previously installed application. The application is specified by its
valid storage name or storage number.
Appendix B Command Line Reference B-5

remove=[storage-name | storage-number | all]

Remove a previously installed application. The application is specified by its
valid storage name or storage number. Specifying all, all previously
installed applications are removed.

■ transient=jad-file-url - Install, run, and remove the application with the
specified JAD file. Specifying transient causes the application to be installed
and run and then removed three times.

B.2.4 Debugging
You can use the following options with the emulator for debugging and tracing.

■ -Xverbose:trace-options - Display trace output, as specified by a list of comma-
separated options, as follows:

■ gc - Trace garbage collection

■ class - Trace class loading

■ all - Use all tracing options

■ -Xdebug - Enable runtime debugging. The -Xrunjdwp option must also be used.

■ -Xrunjdwp:debug-settings - Start a Java debug wire protocol session, as specified
by a list of comma-separated debug settings. The -Xdebug option must also be
used. Valid debug settings include the following:

■ transport=transport-mechanism - Transport mechanism used to communicate
with the debugger. The only transport mechanism supported is dt_socket.

■ address=host:port - Transport address for the debugger connection. You can
omit providing a host. If host is omitted, localhost is assumed to be the host
machine.

■ server={y|n} - Starts the debug agent as a server. The debugger must connect
to the port specified. The possible values are y and n. Currently, only y is
supported (the emulator must act as a server).
B-6 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

B.3 Launching Toolkit GUI Components
The components of the Sun JavaTM Wireless Toolkit for CLDC can all be launched
from the command line. Each component is in the toolkit’s bin directory.

B.4 Setting Emulator Preferences
You can change the emulator preferences from the command line by using the
-Xprefs option for the emulator command. The format is as follows:

-Xprefs:filename

Provide a filename that is the full path name of a property file whose values override
the values in the preferences dialog box. The property file can contain the properties
described in the following table.

TABLE B-1 Toolkit Component Commands

Command Description

DefaultDevice Displays a dialog that allows you to choose the default emulator skin

ktoolbar Launches the user interface.

prefs Launches the toolkit preferences

utils Launches the toolkit utilities window

TABLE B-2 Emulator Preferences Properties List

Property Name Property Description and Legal Values

http.version Network Configuration > HTTP Version
Value: HTTP/1.1 | HTTP/1.0

http.proxyHost Network Configuration > HTTP Address
Value: hostname

http.proxyPort Network Configuration > HTTP Port
Value: integer

https.proxyHost Network Configuration > HTTPS Address
Value: hostname
Appendix B Command Line Reference B-7

https.proxyPort Network Configuration > HTTPS Port
Value: integer

kvem.memory.monitor.enable Monitor > Enable memory monitor
Value: true | false

kvem.netmon.comm.enable Monitor > Enable Comm monitoring
Value: true | false

kvem.netmon.datagram.enable Monitor > Enable Datagram monitoring
Value: true | false

kvem.netmon.http.enable Monitor > Enable HTTP monitoring
Value: true | false

kvem.netmon.https.enable Monitor > Enable HTTPS monitoring
Value: true | false

kvem.netmon.socket.enable Monitor > Enable Socket monitoring
Value: true | false

kvem.netmon.ssl.enable Monitor > Enable SSL monitoring
Value: true | false

kvem.profiler.enable Monitor > Enable profiling
Value: true | false

netspeed.bitpersecond Performance > bits/sec combo box
Value: integer

netspeed.enableSpeedEmulation Performance > Enable network throughput emulation
Value: true | false

screen.graphicsLatency Performance > Graphics primitives latency
Value: integer

screen.refresh.mode Performance > Display refresh (radio button)
Value: default | immediate | periodic

screen.refresh.rate Performance > Display refresh (slider)
Value: integer

vmspeed.bytecodespermilli Performance > Enable VM speed emulation (check box)
Value: integer

vmspeed.enableEmulation Performance > Enable VM speed emulation (slider)
Value: true | false

storage.root Storage > Storage root directory
Value: String (relative path to appdb)

TABLE B-2 Emulator Preferences Properties List (Continued)

Property Name Property Description and Legal Values
B-8 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

B.5 Using Security Features
The full spectrum of the Sun JavaTM Wireless Toolkit for CLDC’s security features
are also available from the command line. You can adjust the emulator’s default
protection domain, sign MIDlet suites, and manage certificates.

storage.size Storage > Storage size
Value: integer

mm.control.capture MMedia > Audio Capture
Value: true | false

mm.control.midi MMedia > MIDI tones
Value: true | false

mm.control.mixing MMedia > Audio Mixing
Value: true | false

mm.control.record MMedia > Audio Record
Value: true | false

mm.control.volume Value: true | false

mm.format.midi MMedia > MIDI format
Value: true | false

mm.format.video MMedia > Video format
Value: true | false

mm.format.wav MMedia > WAV Audio format
Value: true | false

wma.client.phoneNumber WMA > Phone Number of Next Emulator
Value: integer

wma.server.firstAssignedPhoneNumber WMA > First Assigned Phone Number
Value: integer

wma.server.percentFragmentLoss WMA > % Random Message Fragment Loss
Value: integer

wma.server.deliveryDelayMS WMA > Message Fragment Delivery Delay (ms)
Value: integer

TABLE B-2 Emulator Preferences Properties List (Continued)

Property Name Property Description and Legal Values
Appendix B Command Line Reference B-9

B.5.1 Changing the Emulator’s Default Protection
Domain
To adjust the emulator’s default protection domain, use the following option with
the emulator command:

-Xdomain domain-type

Assigns a security domain to the MIDlet suite. Domain types include untrusted,
trusted, minimum, and maximum.

B.5.2 Signing MIDlet Suites
JadTool is a command-line interface for signing MIDlet suites using public key
cryptography according to the MIDP 2.0 specification. Signing a MIDlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. JadTool is also capable of signing payment update (JPP) files.

JadTool only uses certificates and keys from Java SE platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

JadTool is packaged in a JAR file. To run it, open a command prompt, change the
current directory to toolkit\bin, and enter the following command:

java -jar JadTool.jar command

The commands are as follows:

■ -help

Prints the usage instructions for JADTool.

■ -addcert -alias alias [-keystore keystore] [-storepass password]
[-certnum number] [-chainnum number] [-encoding encoding] -inputjad
| inputjpp input-file -outputjad | outputjpp output-file

Adds the certificate of the key pair from the given keystore to the JAD file or
JPP file.

■ -addjarsig -jarfile jarfile -keystore keystore -alias alias -storepass
password -keypass password -inputjad input-jadfile -outputjad output-jadfile

Adds the digital signature of the given JAR file to the specified JAD file. The
default value for -jarfile is the MIDlet-Jar-URL property in the JAD file.

■ -showcert [([-certnum number] [-chainnum number]) |-all [-encoding
encoding] -inputjad filename

Displays the list of certificates in the given JAD file.
B-10 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

■ -addjppsig -alias alias -keypass password [-keystore keystore] [-
storepass password] [-encoding encoding] -inputjpp filename -outputjpp
filename

Adds a digital signature of the input JPP file to the specified output JPP file.

The default value are as follows:

■ -encoding - UTF-8

■ -jarfile - MIDlet-Jar-URL property in the JAD file

■ -keystore - %HOMEPATH%\.keystore

■ -certnum - 1

■ -chainnum - 1

B.5.3 Managing Certificates
MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keytool utility that comes with the Java SE SDK. The
keys can be used to facilitate secure HTTP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography
Extension keystore. You can create one using the Java SE keytool utility.

Windows

http://java.sun.com/javase/6/docs/technotes/tools
/windows/keytool.html

Linux

http://java.sun.com/javase/6/docs/technotes/tools
/solaris/keytool.html

To run MEKeyTool, open a command prompt, change the current directory to
toolkit\bin, and enter the following command:

The command keywords follow. Note that while MEKeyTool runs from the
installation directory, the default keys and keys you create will reside in your
personal directory, workdir\appdb.

■ -help

Prints the usage instructions for MEKeyTool.

Windows: toolkit\bin\mekeytool.exe -command

Linux: toolkit/bin/mekeytool -command
Appendix B Command Line Reference B-11

http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html

■ -import -alias alias [-keystore JCEkeystore] [-storepass storepass]
-domain domain-name

Imports a public key into the ME keystore from the given JCE keystore using
the given Java Cryptography Extension keystore password. The default ME
keystore is workdir\appdb_main.mks and the default Java Cryptography
Extension keystore is user.home\.keystore.

■ -list

Lists the keys in the ME keystore, including the owner and validity period for
each. The ME keystore is workdir\appdb_main.mks.

■ -delete (-owner owner | -number key-number)

Deletes a key from the given ME keystore with the given owner. The ME
keystore is workdir\appdb_main.mks.

Note – The Sun JavaTM Wireless Toolkit for CLDC contains an ME keystore called
_main.mks, which is located in the appdb subdirectory. This keystore includes all
the certificates that exist in the default Java SE platform keystore, which comes with
the Java SE SDK installation.

B.6 Using the Stub Generator
Mobile clients can use the Stub Generator to access web services. The wscompile
tool generates stubs, ties, serializers, and WSDL files used in Java API for XML (JAX)
RPC clients and services. The tool reads a configuration file, which specifies either a
WSDL file, a model file, or a compiled service endpoint interface. The syntax for the
stub generator command is as follows:

wscompile [options] configuration-files

B.6.1 Options

TABLE B-3 Options for the wscompile Command

Option Description

-d output directory Specifies where to place generated output files

-f:features Enables the given features

-features:features Same as -f:features
B-12 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Note – Exactly one -gen option must be specified. The -f option requires a comma-
separated list of features.

TABLE B-4 lists the features (delimited by commas) that can follow the -f option. The
wscompile tool reads a WSDL file, compiled service endpoint interface (SEI), or
model file as input. The Type of File column indicates which of these files can be
used with a particular feature.

-g Generates debugging info

-gen Same as -gen:client

-gen:client Generates client artifacts (stubs, etc.)

-httpproxy:host:port Specifies a HTTP proxy server (port defaults to 8080)

-import Generates interfaces and value types only

-model file Writes the internal model to the given file

-O Optimizes generated code

-s directory Specifies where to place generated source files

-verbose Outputs messages about what the compiler is doing

-version Prints version information

-cldc1.0 Sets the CLDC version to 1.0 (default). Float and double
become String.

-cldc1.1 Sets the CLDC version to 1.1 (float and double are OK)

-cldc1.0info Shows all CLDC 1.0 information and warning messages.

TABLE B-4 Command Supported Features (-f) for wscompile

Option Description Type of File

explicitcontext Turns on explicit service context mapping WSDL

nodatabinding Turns off data binding for literal encoding WSDL

noencodedtypes Turns off encoding type information WSDL, SEI, model

nomultirefs Turns off support for multiple references WSDL, SEI, model

novalidation Turns off full validation of imported WSDL
documents

WSDL

searchschema Searches schema aggressively for subtypes WSDL

TABLE B-3 Options for the wscompile Command (Continued)

Option Description
Appendix B Command Line Reference B-13

Example

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -O -cldc1.1 -d generated config.xml

serializeinterfaces Turns on direct serialization of interface
types

WSDL, SEI, model

wsi Enables WSI-Basic Profile features (default)

resolveidref Resolves xsd:IDREF

nounwrap No unwrap.

TABLE B-4 Command Supported Features (-f) for wscompile

Option Description Type of File
B-14 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

APPENDIX C

Localization

This appendix describes setting the language displayed in the Sun JavaTM Wireless
Toolkit for CLDC and the localization setting of the emulation environment.

C.1 Locale Setting
A locale is a geographic or political region or community that shares the same
language, customs, or cultural conventions. In software, a locale is represented by a
collection of files, data, and code, which contains the information necessary to adapt
software to a specific location.

Some software uses a locale to tailor information for users, such as:

■ Messages displayed to the user

■ Fonts used or other writing-specific information

By default, all strings in the user interface are displayed in the language of the
supported platform’s locale.

For example, Japanese characters can be displayed in a toolkit that is running on a
Japanese Microsoft Windows machine, provided that the correct localized Sun
JavaTM Wireless Toolkit for CLDC is downloaded and installed.

You can set the wtk.locale property to have the user interface displayed in a
specified locale’s language. As discussed in Section 3.8, “Configuring the Wireless
Toolkit” on page 3-14, you must copy ktools.properties from the installation
directory to your working directory (workdir/wtklib/ktools.properties), then
edit your copy. For example, you can have the toolkit running on a Japanese
machine but still have the user interface display shown in English by setting the
locale property to en-US, and making sure that the proper supplement has been
downloaded and installed over the Sun JavaTM Wireless Toolkit for CLDC.
C-1

C.2 Emulated Locale
A device’s locale is contained in the system property microedition.locale. You
can change the emulator’s locale by choosing Edit > Preferences and selecting i18n.
Choose a locale from the combo box or type it in directly.

For information on microedition.locale, consult the MIDP specification.

C.3 Character Encodings
The CLDC system property, microedition.encoding, defines the default
character encoding name of the MIDP environment. In the Sun JavaTM Wireless
Toolkit for CLDC emulator, this property is set according to the underlying window
system you are using. The property’s value is set to the default encoding for the Java
SE platform running on the same window system. For example, in an English
window system, the encoding setting is as follows:

microedition.encoding=ISO8859_1

You can override the default value by adding the microedition.encoding
property to the workdir\wtklib\ktools.properties file. For example, if you
want to use UTF-8 as the default setting on Microsoft Windows, you can set the
property in the workdir\wtklib\ktools.properties file as follows:

microedition.encoding=UTF-8

For more information on character encoding, see the CLDC specification.

Note – All the Java SE platform encoders are available in the emulated
environment. See the Sun JavaTM Wireless Toolkit for CLDC Basic Customization Guide
for information on how to limit the list of available encoders for a specific device.
C-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

C.4 Java Technology Compiler Encoding
Setting
The javac.encoding property determines the encoding used by the javac
compiler to compile your source files. The property’s value is set to the default
encoding for the Java SE platform running on the same window system.

You can override the default value by adding the javac.encoding property to the
ktools.properties file. For example, if you are running in an English system but
find you need to compile a Japanese resource bundle, you can specify a Japanese
character set, such as:

javac.encoding=EUCJIS

C.5 Font Support in the Default Emulator
The default fonts that are used in the emulated environment are set according to the
underlying window system locale. By default, the MIDP environment fonts are
mapped to the default Java SE platform Java technology fonts. These fonts usually
support all the characters that are required by the current window’s locale.

You can override these fonts to support other characters that are not supported by
the default fonts. See the Sun Java™ Wireless Toolkit for CLDC Basic Customization
Guide for information on how to configure them.
Appendix C Localization C-3

C-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Index
A
AMR, 8-2
AMS, 2-9
application descriptor, 2-8
applications

deploy on web server, 2-16
running remotely, 2-16

applications directory, setting, 3-15
attributes, 3-3

B
Bluetooth, 11-1
browser

specify at emulator run time, B-5
specify in config file, B-5

building (command line), B-2
building (from the user interface), 2-4

C
call graph, 5-3
CBS message, sending, 7-6
certificate importing, 6-9
certificate management, 6-8
certificate manager utility, B-1
character encodings, C-2
checking for updates, 1-6
-classpath option, B-3
clean RMS, 3-11
command line operations, B-1
command path, B-1

compiler encoding, C-3
cref, 14-1

D
debugging, 2-15

from command line, B-6
options, B-6

demonstrations, A-1
source code, 1-2

deploying on a web server, 2-16
descriptor, 2-8

attributes, 3-3
development cycle

full, 2-7
simple, 2-3

E
emulator, 4-1

default font support, C-3
default protection domain, B-10
keyboard shortcuts, 4-3
language support, C-1
locale, C-2
performance, 4-6
preferences, 4-3, B-7
running solo, 4-8
skins, 4-1

emulator command, B-4
encoding, javac, 3-15

F
FileConnection API, 10-1
Index-1

font support, C-3

G
generating stub from command line, B-12

H
heap, 4-5
heap size, 4-4
-help option, B-4

I
-import command, B-12
in.use file, 4-5
IrDA, 11-2

J
J2ME Web Services Specification, 12-1
JAD file, 2-8

attributes, 3-3
creating, 2-8
MIME type, 2-16

JadTool, B-10
JAR file

creating, 2-8
in package, 2-8
MIME type, 2-16

Java Cryptography Extension (JCE) keystore, B-11
JSR 75, 10-1
JSR 82, 11-1, A-7
JSR 118, 6-1
JSR 120, 7-1
JSR 135, 8-1
JSR 172, 12-1, A-31
JSR 177, 14-1
JSR 179, 13-1, A-12
JSR 180, 15-1, A-23, A-49
JSR 184, 9-1, A-20
JSR 185, 6-3
JSR 205, 7-1
JSR 211, A-8
JSR 226, 9-3, A-51
JSR 229, 16-1, A-27
JSR 234, A-5
JSR 238, 17-1, A-25

JSR 239, 9-4
JSR 248, 6-3
JSR 75, A-41, A-44
JTWI protection domains, 6-4

K
key management, 6-5
key pair

creating, 6-5
importing, 6-7

keystore, JCE, B-11
keytool utility, B-11
ktools.properties, C-1
ktools.properties, 3-15

L
libraries, 3-11
locale, C-1
Location API, 13-1

M
M3G, 9-1
managing certificates from command line, B-11
manifest file, creating, B-3
MEKeyTool, B-11
memory monitor, 5-4

graph, 5-5
object details, 5-6

message URL http
//www.ietf.org/rfc/rfc3267.txt, 8-2

messages tree sorting, 5-9
messaging, network simulation, 7-3
method profiling, 5-1
MIA, 17-1
microedition.encoding property, C-2
MIDlet

add new, 3-5
descriptor, 2-8
JAR file, 2-8
modifying, 3-5

MIDlet suite, signing, 6-4
MIDlet suite, signing with real keys, 6-7
MIME types, 2-16
MMAPI, 8-1, A-31
Mobile 3D Graphics API, 9-1
Index-2 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

Mobile Internationalization API, 17-1
Mobile Media API, 8-1
Mobile Media API (MMAPI), 8-1

capture, 8-4
formats and protocols, 8-1

MSA protection domains, 6-3

N
network monitor, 5-7

filtering, 5-8
sorting messages, 5-9
using with WMA, 7-9

O
OBEX, 11-1

demo, A-39
preferences, 11-3

obfuscation, 2-14
installing ProGuard, 2-14

OpenGL® ES, 9-4
optional APIs, 1-7

P
packaging

example from command line, B-4
pausing and resuming, 4-8
Payment API, 16-1, A-27
PDA Optional Packages, 10-1
PDAP, 10-1
performance, 4-6
permissions, 6-1
persistent storage, 4-5

clean database, 4-5
Personal Information Management (PIM) API, 10-1
phone number, setting in emulator, 7-1
PIM API, 10-3
preverifying, 2-5, B-2

example from command line, B-3
profiler, 5-1

call graph, 5-3
projects, 2-1, 3-1

attributes, 3-3
building, 2-4
create from JAD/JAR, 2-13
creating, 2-2
deploying on real devices, 2-12

libraries, 3-11
MIDlets, 3-5
packaging, 2-8
push registry, 3-6
running, 2-5
selecting APIs, 3-1
source code, 2-2

protection domain
JTWI, 6-4

protection domains, 6-1
MSA, 6-3

proxy server settings, A-5
proxy servers, 4-3
push registry, 3-6

R
remotely-deployed applications, 2-16
revision control, 3-15
revision control files, 3-15
Revision Control System (RCS), 3-15
RevisionControl property, 3-15
ring tones, 8-5
roots in the FileConnection API, 10-2
run options, B-5
Run via OTA, 2-9, 6-3

S
SATSA, 14-1
SATSA demos, A-46
signed MIDlet suites, 6-1
signing MIDlet suites, 6-4, B-10
SIP API, 15-1
SMS binary message, sending, 7-5
SMS text message, sending, 7-4
source code

creating, 2-4
location, 2-2

storage preferences, 4-4, 4-5
stub generator for web services, 12-1
supported APIs, 1-7
SVG, 9-3
SVG rendering, 9-3

T
Target Platform, 3-2
Index-3

toolkit
application directory, 3-15
starting, 1-4, 2-1

toolkit, 1-1
tracing options, B-6

U
updates, 1-6
USB token, 6-10

V
version control, 3-15
-version option, B-5

W
Web Services specification, 12-1
web services, stub generator, 12-1
Wireless Messaging API, 7-1
Wireless Toolkit

certificate manager utility, B-1
running from command line, B-1

WMA, 7-1
WMA console, 7-3, A-59
workdir, 1-2
wscompile tool, B-12
WSDL file, 12-2

X
-Xdebug option, B-6
-Xquery option, B-6
-Xrunjdwp option, B-6
-Xverbose option, B-6
Index-4 Sun Java Wireless Toolkit for CLDC User’s Guide • September 2007

	Contents
	Preface
	Introduction
	1.1 About the Multiple User Environment
	1.1.1 The Installation Directory and the Working Directory
	1.1.2 Working Directory Files

	1.2 Quick Start
	1.3 Toolkit Components
	1.4 Toolkit Features
	1.5 Toolkit Updates
	1.6 Supported Technology

	Developing MIDlet Suites
	2.1 About Projects
	2.2 Simple Development Cycle
	2.2.1 Edit Source Code
	2.2.2 Build
	2.2.3 Run

	2.3 Full Development Cycle
	2.3.1 Package
	2.3.2 Install
	2.3.3 Run

	2.4 Creating a Project from a MIDlet Suite
	2.5 Using an Obfuscator
	2.5.1 Installing ProGuard
	2.5.2 Using ProGuard

	2.6 Using a Debugger
	2.7 Deploying Applications on a Web Server

	Working With Projects
	3.1 Selecting APIs
	3.2 Changing MIDlet Suite Attributes
	3.3 Manipulating MIDlets
	3.4 Using the Push Registry
	3.5 Setting Up Content Handlers
	3.6 Project Directory Structure
	3.7 Using Third-Party Libraries
	3.7.1 Using External APIs
	3.7.2 Third-Party Libraries for One Project
	3.7.3 Third-Party Libraries for All Projects

	3.8 Configuring the Wireless Toolkit
	3.8.1 Changing the Console Font
	3.8.2 Setting the Application Directory
	3.8.3 Setting the javac Encoding Property
	3.8.4 Working with Revision Control Systems

	Using the Emulator
	4.1 Emulator Skins
	4.2 Emulator Controls
	4.3 Setting Emulator Preferences
	4.3.1 Network Proxies
	4.3.2 Storage Sizes
	4.3.2.1 Persistent Storage
	4.3.2.2 Heap Size

	4.3.3 Adjusting Emulator Performance

	4.4 Pausing and Resuming
	4.5 Running the Emulator Solo
	4.6 Using Third-Party Emulators

	Monitoring Applications
	5.1 Using the Profiler
	5.1.1 Call Graph
	5.1.2 Execution Time and Number of Calls
	5.1.3 Saving and Loading Profiler Information

	5.2 Using the Memory Monitor
	5.2.1 Saving and Loading Memory Monitor Information

	5.3 Using the Network Monitor
	5.3.1 Filtering Messages
	5.3.2 Sorting Messages
	5.3.3 Saving and Loading Network Monitor Information
	5.3.4 Clearing the Message Tree

	Security and MIDlet Signing
	6.1 Permissions
	6.2 Selecting the Security Policy
	6.2.1 MSA Protection Domains
	6.2.2 Java for the Wireless Toolkit Industry Protection Domains

	6.3 Signing a MIDlet Suite
	6.4 Managing Keys
	6.4.1 Creating a New Key Pair
	6.4.2 Getting Real Keys
	6.4.3 Importing an Existing Key Pair
	6.4.4 Removing a Key Pair

	6.5 Managing Certificates
	6.5.1 Enabling and Disabling Certificates
	6.5.2 Importing Certificates
	6.5.3 Removing Certificates

	6.6 USB Token Support
	6.6.1 Installing USB Token Drivers
	Resetting the USB Token Passphrase
	Managing the USB Token
	6.6.2 Using the USB Token

	Using the Wireless Messaging API
	7.1 Setting Emulator Phone Numbers
	7.2 Simulating an Unreliable Network
	7.3 Sending Messages With the WMA Console
	7.3.1 Sending a Text SMS Message
	7.3.2 Sending a Binary SMS Message
	7.3.3 Sending Text or Binary CBS Messages
	7.3.4 Sending MMS Messages

	7.4 Receiving Messages in the WMA Console
	7.5 Using the Network Monitor with WMA

	Using the Mobile Media API
	8.1 Supported Formats and Protocols
	8.2 Adaptive Multi-Rate (AMR) Content
	8.2.1 Windows
	8.2.2 Linux
	8.2.2.1 Enabling AMR Support
	8.2.2.2 AMR Format Support

	8.3 Using MediaControlSkin
	8.4 Media Capture
	8.5 Well-Behaved MIDlets
	8.6 Ring Tones
	8.6.1 Download Ring Tones
	8.6.2 Ring Tone Formats

	Working With Mobile Graphics
	9.1 Using the Mobile 3D Graphics API
	9.1.1 Immediate Mode
	9.1.2 Retained Mode
	9.1.3 Trading Quality for Speed
	9.1.4 Creating Mobile 3D Graphics Content

	9.2 Rendering Scalable Vector Graphics Content
	9.3 OpenGL® ES Overview

	Using the PIM and FileConnection APIs
	10.1 FileConnection API
	10.2 The PIM API

	Using the Bluetooth and OBEX APIs
	11.1 Bluetooth Simulation Environment
	11.2 OBEX Over Infrared
	11.3 Setting OBEX and Bluetooth Preferences
	11.3.1 OBEX Preferences
	11.3.2 Bluetooth Internal Properties
	11.3.3 Bluetooth System Properties
	11.3.4 Bluetooth BCC Properties

	Using Web Services
	Using the Location API
	13.1 Setting the Emulator’s Location at Runtime
	13.2 Configuring the Location Provider
	13.3 Setting Up Landmarks

	Using SATSA
	14.1 Card Slots in the Emulator
	14.2 Using the Java Card Platform Simulator
	14.3 Using the Network Monitor with SATSA
	14.4 Adjusting Access Control
	14.4.1 Specifying PIN Properties
	14.4.2 Specifying Application Permissions
	14.4.3 Access Control File Example

	Using SIP
	15.1 Understanding the Registrar and Proxy
	15.2 SIP Settings
	15.3 SIP Traffic in the Network Monitor
	15.4 SIP Proxy Server and Registrar

	Working with the Payment API
	16.1 Project Settings for Payment
	16.2 Editing Payment Attributes Directly
	16.3 Payment Preferences
	16.4 Viewing Transaction History
	16.5 Monitoring Payments

	Using the Mobile Internationalization API
	17.1 Setting the Emulator’s Locale
	17.2 Viewing Application Resources
	17.3 Working With Locales
	17.4 Working With Resource Files
	17.5 Working With Resources

	Application Demonstrations
	A.1 Overview
	A.2 General Instructions
	A.3 Advanced Multimedia Supplements
	A.4 Bluetooth Demo
	A.5 CHAPIDemo
	A.6 CityGuide
	A.7 Demos
	A.7.1 Colors
	A.7.2 Properties
	A.7.3 Http
	A.7.4 FontTestlet
	A.7.5 Stock
	A.7.5.1 Working with Settings
	A.7.5.2 Stock Tracker
	A.7.5.3 What If?
	A.7.5.4 Alerts

	A.7.6 Tickets
	A.7.7 ManyBalls

	A.8 Demo3D
	A.8.1 Life3D
	A.8.2 PogoRoo
	A.8.3 retainedmode

	A.9 GoSIP
	A.10 i18nDemo
	A.11 JBricks
	A.12 JSR172Demo
	A.13 MobileMediaAPI
	A.13.1 Simple Tones
	A.13.2 Simple Player
	A.13.3 Video
	A.13.4 Pausing Audio Test
	A.13.5 Attributes for MobileMediaAPI

	A.14 Network Demo
	A.14.1 Socket Demo
	A.14.2 Datagram Demo

	A.15 ObexDemo
	A.16 PDAPDemo
	A.16.1 Browsing Files
	A.16.2 The PIM API

	A.17 SATSADemos
	A.17.1 APDUMIDlet
	A.17.2 SATMIDlet
	A.17.3 CryptoMIDlet
	A.17.4 MohairMIDlet

	A.18 SATSAJCRMIDemo
	A.19 SIPDemo
	A.20 SVGContactList
	A.21 SVGDemo
	A.21.1 SVG Browser
	A.21.2 Render SVG Image
	A.21.3 Play SVG Animation
	A.21.4 Create SVG Image from Scratch
	A.21.5 Bouncing Balls
	A.21.6 Optimized Menu
	A.21.7 Picture Decorator
	A.21.8 Location Based Service

	A.22 WMADemo

	Command Line Reference
	B.1 Prerequisites
	B.2 The Development Cycle
	B.2.1 Build
	B.2.2 Package
	B.2.3 Run
	B.2.4 Debugging

	B.3 Launching Toolkit GUI Components
	B.4 Setting Emulator Preferences
	B.5 Using Security Features
	B.5.1 Changing the Emulator’s Default Protection Domain
	B.5.2 Signing MIDlet Suites
	B.5.3 Managing Certificates

	B.6 Using the Stub Generator
	B.6.1 Options

	Localization
	C.1 Locale Setting
	C.2 Emulated Locale
	C.3 Character Encodings
	C.4 Java Technology Compiler Encoding Setting
	C.5 Font Support in the Default Emulator

	Index

