
JavaTest Harness

Architect’s Guide
Part No.: JTAG
May 2011

Copyright © 2005, 2011 Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
in writing.
If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Copyright © 2005, 2011, Oracle et/ou ses affiliés. Tous droits réservés.
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des
restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire,
diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par
quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à
des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.
Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles
soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.
Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de
ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :
U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas
conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous
utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de
sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés
déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.
Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques
appartenant à d’autres propriétaires qu’Oracle.
AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des
marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.
Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et
des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou
services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts
occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Please
Recycle

Contents

Preface xv

1. Introduction 1

Examples 2

Part I The Basics

2. JavaTest Tutorial 5

Overview 5

Running the Tutorial 6

▼ Start the JavaTest Harness 7

▼ Run the Quick Start Wizard 8

▼ Configure Test Information 8

▼ Run Tests 10

Browse the Results 12

The Folder Pane 12

The Test Pane 14

▼ Exclude the Failed Test 16

▼ Generate a Report 17

3. Overview 19
iii

Test Suite Components 19

Remote Execution 22

4. Creating a Test Suite 25

Create a Test Suite 26

▼ Create a Test Suite Directory 26

▼ Create the testsuite.jtt File 26

▼ Copy javatest.jar 27

▼ Set Up the classes Directory 28

▼ Use a Simple Test Template 28

▼ Create and Compile a Simple Test Example 30

▼ Run a Test Suite 31

Odds and Ends 32

Top-Level Test Suite Directory 32

The Test Suite JAR File 33

Class Paths 34

JavaTest Class Path 35

Agent Class Path 35

Test Class Path 35

5. Writing Tests 37

The Test Execution Model 37

The Test Interface 38

Class Paths 39

Test Status 40

Test Description Entries 41

Keywords 42

Multiple Tests in a Single Test File 43

Subtyping MultiTest 44
iv JavaTest Architect’s Guide • May 2011

Organizing Tests Within Your Test Suite 44

Source Files 45

Class Files 45

Error Messages 46

6. Creating a Configuration Interview 47

Designing Your Configuration 47

What is a Configuration? 47

Test Script Information 48

Test Description Entries 48

Which Tests to Run 49

Designing Your Interview 49

Command Strings 50

Example 1 51

Example 2 53

Test Environment Variables 53

Writing Your Interview 53

Demo TCK interview 54

Demo Interview 54

▼ Start the Demo Interview 54

Interview Classes 54

The Current Interview Path 55

Determining the Next Question 56

Error Checking 56

Exporting the Test Environment 57

Question Types 57

Designing Your Questions 59

Landing Point Questions 60

Sub-Interviews 60
Contents v

Putting it All Together 62

Providing the Prolog 65

Providing the Environment Group 66

Providing the Resource File for the Interview 66

Providing the More Info Help for the Interview 66

Creating Question Text and More Info 67

Writing Style 68

Creating Question Text and Keys 69

Creating More Info 70

▼ Set Up the More Info System 71

▼ Create HTML Topics for All Interview Questions 72

▼ Customizing Standard Question More Info 73

Creating the JAR File 74

Part II Advanced Topics

7. Compiling Test Suites 77

System Properties 77

8. The TestSuite Object 81

The testsuite.jtt File 81

Overriding Default Methods 86

9. Test Finder 87

Test Finder Subtypes 87

Tag Test Finder 88

HTML Test Finder 89

Binary Test Finder 90

BinaryTestWriter 91

BinaryTestFinder 92
vi JavaTest Architect’s Guide • May 2011

10. Test Scripts 95

Design Decisions 95

Simple Test Scripts 95

More Flexible Test Scripts 96

Example 1 98

Example 2 98

Writing Custom Commands 98

Test Result 100

11. Service Management 101

Description 101

Services-Related Work Flow 103

Implementation 104

Implementation of ServiceReader Interface 105

Implementation of Service Interface 106

Service Properties 107

Service Management Architecture 109

Mechanism to Instantiate Service, Connector, and ServiceExecutor
Interfaces 111

Separate Services Start Up 111

12. Running JUnit Tests 113

The Retrofit Process 113

Prerequisites for Converting Tests 114

▼ Procedure for Converting Tests 114

Technical Details 116

Support Classes 116

JUnitSuperTestFinder 117

JUnitAnnotationTestFinder 118

JUnitBareMultiTest 119
Contents vii

JUnitAnnotationMultiTest 119

Implementation Notes 119

Areas for Improvement 120

References 120

13. Customization 123

Customization API 123

Internationalization 124

Customizing the Splash Screen 125

Example of splash.properties File 126

Notes About the Implementation 126

Customizing Menus 126

Adding Menu Items to Test Manager Menus 127

Adding Menu Items to the Tree Popup Menu 127

Customizing Toolbars 128

A. Standard Commands 129

ActiveAgentCommand 130

ExecStdTestSameJVMCmd 132

ExecStdTestOtherJVMCmd 133

JavaCompileCommand 134

PassiveAgentCommand 135

ProcessCommand 138

SerialAgentCommand 139

B. Formats and Specifications 141

Test URL Specification 141

Test Paths 142

Exclude List File Format 143

Syntax 143
viii JavaTest Architect’s Guide • May 2011

Test URL and Test Cases 144

BugIDs 145

Keywords 145

Synopsis 145

Comments and Header Information 145

C. What Technical Writers Should Know About Configuration Interviews 147

Question Text 147

More Info 148

Formatting Styles 149

Usage and Conventions 150

Glossary 151

Index 159
Contents ix

x JavaTest Architect’s Guide • May 2011

Figures

FIGURE 2-1 JavaTest Harness and Tests Running on Same System 6

FIGURE 2-2 The JavaTest Harness with Quick Start Wizard 7

FIGURE 2-3 Expanded Test Tree 11

FIGURE 2-4 The Folder Pane 13

FIGURE 2-5 The Test Pane 14

FIGURE 2-6 Test Messages 15

FIGURE 2-7 Logged Error Messages 16

FIGURE 3-1 Test Suite Components 21

FIGURE 6-1 Interview Question Group First/Next Question Methods 64

FIGURE 6-2 Skipping the Keywords Standard Question 65

FIGURE 6-3 The JavaTest Configuration Editor: Question and More Info Panes 67

FIGURE 6-4 Question without More Info Help 68

FIGURE 6-5 Question with More Info Help 69

FIGURE 11-1 Service Management Architecture 109

FIGURE 11-2 Separate Service Start-Up 112

FIGURE C-1 The JavaTest Configuration Editor: Question and More Info Panes 149
xi

xii JavaTest Architect’s Guide • May 2011

Tables

TABLE 3-1 Summary of JavaTest Harness Operation 21

TABLE 4-1 Top-Level Test Suite Files and Directories 32

TABLE 5-1 Exit Status Values 40

TABLE 5-2 Default Test Description Entries 42

TABLE 6-1 Commonly Used Test Commands 50

TABLE 6-2 Test Environment Variables 53

TABLE 6-3 Question Types 58

TABLE 6-4 Interview Question Groups 62

TABLE 7-1 System Properties Used in Compilation 77

TABLE 7-2 Compilation Command Components 78

TABLE 8-1 testsuite.jtt Properties 82

TABLE 9-1 Test Description Table 90

TABLE 9-2 BinaryTestWriter Command Components 91

TABLE 11-1 Service Manager Features 102

TABLE 12-1 JUnitSuperTestFinder Test Description Values 118

TABLE 12-2 JUnitAnnotationTestFinder Test Description Values 119

TABLE B-1 Exclude List Field Descriptions 143
xiii

xiv JavaTest Architect’s Guide • May 2011

Preface

This manual is intended for test suite architects who design JavaTest harness test
suites. It assumes that you are familiar with the Java programming language and
with running Java programs on at least one platform implementation.

Before You Read This Book
It is highly recommended that you read the JavaTest online help, the Test Suite
Developer’s Guide, and TCK Project Planning and Development Guide, which are
available as part of the Java Compatibility Test Tools release. Note that for
convenience, the JavaTest online help is also available in PDF format

This guide is divided into the following chapters and appendices:

Chapter 1 Introduction

Part I The Basics

Chapter 2 A tutorial that introduces the JavaTest GUI.

Chapter 3 Describes the test suite components for which architects are
responsible.

Chapter 4 Leads you through the process of creating a small working test
suite.

Chapter 5 Describes how to write tests that work well with JavaTest
Harness.

Chapter 6 Describes how to create configuration interviews for test suites.
xv

Part II Advanced Topics

Chapter 7 Describes how to use the JavaTest Harness to compile test
suites.

Chapter 8 Describes how test finders work and how to create a
customized version for your test suite.

Chapter 9 Describes how test scripts work and how to create a customized
version for your test suite.

Chapter 10 Describes how the test suite object works and how to create a
customized version for your test suite.

Chapter 11 Describes the ServiceManager component provided by JavaTest
Harness and how test suite architects can use it to manage
services.

Chapter 12 Describes how to retrofit existing JUnit 3.x or 4.x test suites to
enable them to run with the JavaTest Harness harness.

Chapter 13 Describes customizations that test suite architects can make in
the JavaTest Harness harness.

Appendix A Describes the standard commands available from the JavaTest
command library.

Appendix B Describes the file formats and specifications used by JavaTest
Harness.

Appendix C Tips for writing interviews.

Glossary Defines terms used in this book and other TCK documentation.
xvi JavaTest Architect’s Guide • May 2011

Typographic Conventions

Shell Prompts

Related Documentation

Accessing Java Platform Documentation Online
The Oracle Technology Network enables you to access Java SE or Java ME technical
documentation on the Web:

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompt

Bourne shell and Korn shell %

MSDOS C:\>

Technology Title

JavaTest harness JavaTest online help (available both online and in PDF
format)

TCK development process TCK Project Planning and Development Guide

Java Compatibility Test Tools Test Suite Developer’s Guide
Preface xvii

http://download.oracle.com/javase/index.html

http://download.oracle.com/javame/index.html

Oracle Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

javasedocs_us@oracle.com or javamedocs_us@oracle.com
xviii JavaTest Architect’s Guide • May 2011

http://download.oracle.com/javame/index.html
http://download.oracle.com/javase/index.html

CHAPTER 1

Introduction

A Technology Compatibility Kit (TCK) is a test suite and a set of tools used to certify
that an implementation of a Java technology conforms both to the applicable Java
platform specifications and to the corresponding reference implementations — the
end result is a Java technology that is certified as compatible. The architect designs
test suites to exercise assertions described in the technology specifications. TCK test
suites may use the JavaTest harness for test execution and test suite management
tools.

As the test suite architect, it is your job to design the framework for the test suite,
and if necessary, create custom plug-in components required to implement the
design.

Each TCK that you design should be composed of the following:

Test suite: A collection of tests that fit within a common framework. The framework
is typically designed by the architect — the individual tests are designed to work
within the framework and are usually written by a team of test suite developers.

JavaTest harness: The test harness used to run the tests in the test suite. You (the
architect) may have to provide plug-in components that know how to identify and
execute the tests.

Configuration interview: To run the tests in a test suite, the JavaTest harness
requires site-specific information about the computing environment, such as the
location of the Java launcher, and the Java technology being tested. The JavaTest
harness provides the means to collect this information based on an interview that
you provide.

Documentation: A well documented TCK generally includes the following
information, provided by the architect:

■ Test Suite User’s Guide: Contains instructions about how to start and run the
tests and rules for certification. The Java Compatibility Test Tools (JCTT) release
contains a TCK User’s Guide Template that can serve as the basis for this document.
1

■ Configuration editor “More Info” text: Provides explanation and examples for
each question in the configuration interview

Architects design test suites and the characteristics of the various tests, but are not
typically concerned with the specific details of individual tests. That is the task of
test suite developers (see the Test Suite Developer’s Guide). Architects design the
framework in which the individual tests fit.

This document describes the tasks associated with the TCK architect.

Examples
The examples directory contains example test suites that are used throughout this
book in tutorials and to illustrate how tests and test suites are constructed. Please
use these examples to supplement the discussions in this manual. The examples
directory contains the following:

Note – Unless otherwise indicated, all examples in this book use Microsoft
Windows style command prompts and file separators.

...\examples\
javatest\

demoapi.jar API classes tested by the Demo TCK test suite
interviewDemo\ A self-documenting configuration interview demo

demotck\ The test suite used to run the interview demo
src The interview demo source files

simpleHTML\
demotck\ Demo test suite that uses HTML-based test
src Demo TCK configuration interview source files

simpleTags\
demotck\ Demo test suite that uses HTML-based test
src Demo TCK configuration interview source files

sampleFiles\ Miscellaneous sample source files in this manual.
2 JavaTest Architect’s Guide • May 2011

PART I The Basics

The chapters in this part of the JavaTest Architect’s Guide introduce the JavaTest
GUI, basic concepts, and provide enough information to create a basic test suite.

CHAPTER 2

JavaTest Tutorial

This tutorial introduces you to the JavaTest version GUI and some basic underlying
concepts. The tutorial instructions have you run a very simple test suite called Demo
TCK that is included in the examples directory. Demo TCK contains 17 tests that
test the functionality of some very simple demo APIs.

This tutorial touches only on the core functionality of the JavaTest harness GUI.
Please consult the online help for information about all of the JavaTest features.

Overview
The tutorial should be run using version 6.0 or later of the Java Platform, Standard
Edition (Java SE) on either the Solaris Operating System (Solaris OS) or the Microsoft
Windows (WIN32) operating system.

Note – Unless otherwise indicated, all examples in this book use Microsoft
Windows style command prompts and file separators.

To keep things simple, these instructions show you how to run both the JavaTest
harness and the tests on the same system in different1 Java virtual machines (JVM
processes2). FIGURE 2-1 diagram illustrates this point.

1. It is also possible to run the JavaTest harness and the tests on separate systems using the JavaTest Agent.

2. The terms “Java virtual machine” and “JVM” are sometimes used to mean “a virtual machine for the Java
platform”.
5

FIGURE 2-1 JavaTest Harness and Tests Running on Same System

Running the Tutorial
The tutorial tasks are as follows:

1. Start the JavaTest Harness

2. Run the Quick Start Wizard

3. Configure Test Information

4. Run Tests

5. Browse the Results

6. Exclude the Failed Test

7. Generate a Report
6 JavaTest Architect’s Guide • May 2011

▼ Start the JavaTest Harness
1. Verify that the Java SE platform (version 1.5 or later) is in your path.

At a command prompt, enter:

C:\> java -version

2. Make jt_install\examples\javatest\simpleTags\demotck the current
directory.

The directory jt_install is the directory into which you installed the JavaTest
harness software.

3. Start the JavaTest harness.

At a command prompt enter:

C:\> java -jar lib\javatest.jar -newDesktop

Note – The -newDesktop option is used here to ensure that the JavaTest harness
starts up exactly as described in these instructions — under normal circumstances
you should not use this option because you will lose information that the harness
saved about your previous session. For information about JavaTest options, see the
JavaTest online help.

The JavaTest harness should start and display the Quick Start wizard window:

FIGURE 2-2 The JavaTest Harness with Quick Start Wizard
Chapter 2 JavaTest Tutorial 7

▼ Run the Quick Start Wizard
The Quick Start wizard leads you through the basic steps required to start running
the test suite.

1. Panel 1: Welcome to the JavaTest Harness

Choose “Start a new test run”, and click Next

2. Panel 2: Test Suite

Click the Next button (accept the default).

3. Panel 3: Configuration

Choose “Create a new configuration”, and click Next

4. Panel 4: Work Directory

The JavaTest harness uses the work directory to store information and to write
test results. Click the Browse button to activate a file chooser. Use the file chooser
to create a work directory — be sure to create the work directory in a convenient
location outside of the test suite directory (demotck). Click Next.

5. Panel 5: Almost Done ...

Click the Finish button to complete the Quick Start process. For these options, the
configuration editor window is started automatically.

▼ Configure Test Information
Because the “Start the configuration editor” checkbox was checked in the last panel
of the Quick Start wizard, the configuration editor starts automatically.

You use the configuration editor to configure the information required to run the test
suite. As shown below, the configuration editor consists of three panes and a menu
bar:
8 JavaTest Architect’s Guide • May 2011

The left pane lists the titles of the questions you have answered, are currently
answering, or that the editor deduces must be answered. The current question is
highlighted.

The center pane displays the interview questions. You answer the questions by using
controls such as text boxes, radio buttons, or combo boxes located below each
question. Whenever possible, the editor deduces answers from your system
configuration and includes them in text boxes, combo boxes, and radio buttons. You
can accept these answers or provide other answers.

The right pane displays important information about each question, such as:

■ Background information

■ Examples of answers

■ Additional information about choosing an answer

● Answer the questions in the configuration editor.

The following table presents the titles, answers, and information about each of the
thirteen questions in the Demo TCK interview.

Question Title Answer Description

Welcome! Briefly describes the purpose and function
of the Demo TCK Configuration Editor.

Configuration Name Demo_TCK Names the interview file.

Description tutorial Describes the configuration.

How to Run Tests On this computer Runs both the JavaTest harness and the
tests on the same computer.
Chapter 2 JavaTest Tutorial 9

▼ Run Tests
1. Set the view filter to Last Test Run.

Choose “Last Test Run” in the View Filter combo box located in the tool bar. This
changes your “view” of the test tree so that you only see the results of the current
test run. This is generally the view that most users prefer to begin with.

Java Virtual Machine The absolute path to the java command
on a WIN32 system. For example:
jdk_inst_dir\bin\java.exe
or
jre_inst_dir\jre\java.exe

Click the Browse button to activate a file
chooser, or type the path directly in the text
box.

Test Verboseness Medium Causes all executing tests to emit standard
information messages.

Parameters... Introduces the section of questions that
collect information about which tests to
run and how to run them.

Specify Tests to Run? No Runs all of the tests.

Specify an Exclude List? No Given No, specifies that an exclude list is
not used for this test run.

Specify a Known
Failures List

No Given No, specifies that a list of known
failures is not used in this test run.

Specify Status? No Specifies that prior run status is not used to
filter the test run. Feel free to try it on
subsequent runs.

Concurrency 1 Specifies the default concurrency setting
(1).

Time Factor 1 Specifies the default standard time out
value for each test (1).

Congratulations! The configuration editor has collected all of
the information it needs to run the tests.
Click the Done button to save the
interview. JavaTest interviews are saved to
files that end with the .jti suffix. Use the
file chooser to specify a file in a convenient
location.

Question Title Answer Description
10 JavaTest Architect’s Guide • May 2011

Note – Note that when you change to the Last Run filter before you do a test run,
the folders and tests in the tree turn to gray, indicating that they are filtered out. This
occurs because there are currently no results from a “last test run”.

2. Choose Run Tests > Start to start the test run.

The test suite should begin to run. You will see activity in the test tree panel that
indicates which tests are running. You can also watch the progress of the test run
in the progress monitor on the bottom-right portion of the JavaTest harness
window and the pie chart in the Summary tab.

3. Expand the test tree folders to reveal the tests.

Click on different test folders to expand the test tree.
Chapter 2 JavaTest Tutorial 11

FIGURE 2-3 Expanded Test Tree

As tests complete, the tests and their folders change color to represent their state.
The following table briefly describes the colors and their meaning:

Folders reflect the state of the tests hierarchically beneath them. You know that
the entire test suite passed if the test suite root folder is green. See the JavaTest
online help for more information.

Note – The test lists\DoublyLinkedList\InsertTest.java intentionally
contains errors and is supposed to fail as part of the tutorial. If any other tests fail,
check your answers to the configuration interview.

Color Description

green Passed

red Failed

blue Error — The test could not run properly. Usually indicates a configuration problem.

gray Filtered out — Due to a parameter setting (for example, it is on an exclude list), the
test is not selected to be run.

white Not run
12 JavaTest Architect’s Guide • May 2011

Browse the Results
Now that the test run is complete, you will use the Folder tabbed pane and Test
tabbed pane portion of the JavaTest harness to examine the results. You will also
examine the output of the test that failed.

Note – The Folder tabbed pane and the Test tabbed pane occupy the same portion
of the Test Manager window. The Folder tabbed pane is displayed when you choose
a folder entry in the test tree and the Test tabbed pane is displayed when you choose
a test entry in the test tree.

The Folder Pane
The Folder tabbed pane displays information about the tests in the selected folder.

FIGURE 2-4 The Folder Pane

▼ Browse the Folder Pane Results

1. Click on the top folder in the test tree (the test tree root).

2. Click on the Summary tab (shown by default).

Notice the statistics displayed in the Summary panel. It describes how many tests
in the test suite passed, failed, had errors, and were filtered out.
Chapter 2 JavaTest Tutorial 13

3. Click on any of the other folder icons in the test tree.

Notice that the Summary panel changes to reflect the statistics for tests
hierarchically beneath it.

4. Click on the test tree root folder again.

5. Click on the Passed tab.

This pane contains a list of the tests that passed during the test run.

6. Click on the Failed tab.

This pane contains a list of the tests that failed during the test run (only one test
in this case).

7. Double-click the lists\DoublyLinkedList\InsertTest.java test in the
Failed tab.

This automatically selects the test in the test tree and changes the display from the
Folder pane to the Test pane.

Note – To read more information about any of the panes, click on a tab to establish
focus, and press F1 to activate online help about that pane.

The Test Pane
The Test tabbed pane displays information about the selected test. The five tabs
provide information about the test and information about the results of its execution.

FIGURE 2-5 The Test Pane
14 JavaTest Architect’s Guide • May 2011

▼ Browse the Test Pane Results

Click on the different tabs and examine the information the panes contain.

The following table briefly describes each tabbed pane:

Note – To read more information about any of the panes, click on a tab to establish
focus, and press F1 to activate the online help about that pane.

1. Click on the Test Run Messages tab.

This pane provides access to any messages generated by the JavaTest harness or
the test during execution. Notice that the various red icons indicate that the test
failed.

2. Click on the Execute/Messages entry in the left hand column.

The display on the right shows the command line used to run the test. Problems
can often be debugged by examining how the test was invoked. In this case it was
invoked correctly.

Tab Description

Test Run Messages Displays messages generated during the selected test’s execution

Test Run Details A table of values generated during the selected test’s execution

Configuration A table of the configuration values used during the selected test’s
execution

Files Displays the Java language source code and any other files
related to the selected test

Test Description A table of the test description values specified for the test
Chapter 2 JavaTest Tutorial 15

FIGURE 2-6 Test Messages

3. Click on the out1 entry in the left-hand column.

The display on the right shows errors reported by the test. The messages indicate
that either the test or the API contain errors — in this case the test contains errors.

FIGURE 2-7 Logged Error Messages
16 JavaTest Architect’s Guide • May 2011

▼ Exclude the Failed Test
The JavaTest harness allows you to “exclude” tests from a test suite by specifying an
exclude list file. This section shows you how to use the quick set mode of the
configuration editor window to specify an exclude list that includes lists\
DoublyLinkedList\InsertTest.java. Tests that are excluded are not executed
during test runs, and though they are still displayed in the test tree, their status is
not reflected in the pass/fail status of the test suite.

1. Choose Configure > Change Configuration > Exclude List from the test manager
menu bar.

The configuration editor window opens directly to a panel that allows you to
specify an exclude list. This quick set mode allows you to quickly change values
that change frequently between test runs. These values are also referred to as
standard values. Note that standard values can also be changed using the
configuration editor window in question mode.

2. In the Exclude List pane, click Other.

This activates a tool with which you can specify a set of exclude lists.

3. Click the Add button on the upper right portion of the tool.

This invokes a file chooser with which you can specify an exclude list. The current
directory of the file chooser should be the directory in which you started the
JavaTest harness. If it is not, please navigate to that directory.

4. Double-click on the lib directory entry in the file chooser.

5. Choose the demo.jtx entry in the file chooser and click Select.

Notice that the exclude list (demo.jtx) is added to the Exclude Lists text box.

6. Click Done in the configuration editor.

7. Change the view filter to “Current Configuration”.

The Current Configuration filter shows which tests are selected and filtered out in
the configuration, in effect a filter that shows which tests will be run next, as
opposed to the Last Test Run filter which shows the tests that were run.

Notice that the icon for the for InsertTest.java entry in the Test tree changes
from red to gray. This indicates that the test has been filtered out and will not be
executed. Also notice that the Test Suite Root folder has changed from red to
green, indicating that all the currently selected tests have passed.
Chapter 2 JavaTest Tutorial 17

▼ Generate a Report
You can use the JavaTest harness to generate an HTML report that describes the
results of the test run. All of the information contained in the report is available from
the GUI; however, the following steps describe how to generate and browse a report
that describes the test run done in the previous sections of this tutorial.

1. Choose Report > Create Report

The Create a New Report dialog box opens.

2. Specify the directory in which you want the report files to be written

If you wish to use a file chooser to specify the directory, click on the Browse
button.

3. Click the Create Report(s) button

The reports are generated and you are asked whether you want to view the
report.

4. Click Yes

The reports are displayed in the JavaTest report browser window. Scroll through
the report and follow the various links to view data about the test run.

Note – If you wish to print the report, you can open the report in your favorite web
browser and print it from there.
18 JavaTest Architect’s Guide • May 2011

CHAPTER 3

Overview

JavaTest test suites are comprised of a number of components, many of which you,
as the test suite architect, provide. This chapter introduces you to these components
and some underlying concepts that are discussed in much greater detail later in this
manual.

Test Suite Components
The most fundamental components of a test suite are the tests themselves. Tests are
typically Java programs that exercise aspects of an API or compiler. To work well
with the JavaTest harness, these files are organized in the file system hierarchically.
The JavaTest harness finds the tests and displays them in the JavaTest GUI test tree
based on this hierarchy.

Before the JavaTest harness can execute a test, it must know some fundamental
things about the test — for example, where to find the class file that implements the
test and what arguments the test takes. This information is contained in a test
description. The test description is a group of name/value pairs that can be embodied
in different ways — for example, as tag test descriptions and HTML test descriptions.
Tag test descriptions are inserted directly into the test source files using Javadoc
style tags. HTML test descriptions are HTML tables contained in HTML files
separate from the test source and class files. The examples included with the
JavaTest Architect’s release demonstrate both types of test descriptions.

The JavaTest harness uses a specialized class called a test finder to locate tests, read
test descriptions, and pass test description values to the JavaTest harness. As the
architect, you specify a test finder that knows how to read the test descriptions you
have designed for your test suite. The JavaTest Architect’s release includes test
finders that know how to read tag and HTML test descriptions; you can use the
included test finders as-is, modify them, or create your own.
19

Once the test finder locates the test and reads the test description, it is up to the test
script to actually run the test. The test script is a Java class whose job is to interpret
the test description values, run the tests, and report the results back to the JavaTest
harness. As the test suite architect, you are responsible for providing the test script
that JavaTest uses. Test scripts can be very simple or complex, depending on the
requirements of your test suite. A number of test script examples are included with
the JavaTest Architect’s release that you can use as is, extend, or use as a template
for your test script.

In addition to the fundamental information about each test, the test script might also
require platform-specific information about each test to execute it. This information
is provided by the person running the tests, usually by completing a wizard-like
configuration interview designed by you. Platform-specific information includes
information such as the location of the JVM to be used when running the tests, the
names of remote computers, and other resources required to run the tests.

When test execution is complete, a test normally creates a Status object and passes
it back to the test script; the test script then stores the test results in the TestResult
object. Test status includes an integer that represents the status (pass, fail, error, not
run) and a short message that describes what happened — for example, an error
message. Test results include more detailed information about the results of the test’s
execution — for example, any additional messages produced by the test.

When the JavaTest harness loads a test suite, the first thing it does is read a file
named testsuite.jtt located in the top-level directory of the test suite. The
testsuite.jtt file is a registry of information about the test suite that includes
the paths to the components described above and other static information about the
test suite. The JavaTest harness internalizes this information in a TestSuite object
that acts as a portal to all information about the test suite. Whenever the JavaTest
harness requires information about the test suite, it queries the TestSuite object.
As test suite architect, you create and maintain the testsuite.jtt file.

FIGURE 3-1 shows a graphical representation of the different test suite components:
20 JavaTest Architect’s Guide • May 2011

FIGURE 3-1 Test Suite Components

The following table summarizes the sequence of steps the JavaTest harness uses to
run test suites and your responsibility for each step. These steps are described in
more detail in the following chapters.

TABLE 3-1 Summary of JavaTest Harness Operation

Events Architect’s Role

1 The user starts the JavaTest harness Optionally, create a wrapper command to start the
JavaTest harness in the right location and with the
correct arguments.

2 The JavaTest harness reads testsuite.jtt to gather
information about the test suite including the names
and class paths for classes such as the finder, test script,
and configuration interview. The JavaTest harness calls
the TestSuite class, which in turn creates the
TestSuite object. The JavaTest harness passes
information from testsuite.jtt to the TestSuite
class when it is created.

Determine what information is included in
testsuite.jtt and what information (if any) is
built directly into your test suite class. The
components you create, including your test suite
class are contained in a Java archive (JAR) file
installed in the test suite. The path to the JAR file is
specified in the testsuite.jtt file.
Provide your test suite class

3 The JavaTest harness queries the TestSuite object to
determine which test finder to use.

Provide your test finder class
Chapter 3 Overview 21

Remote Execution
It is often convenient or necessary to run tests on a system other than the one
running the JavaTest harness. In this case, an agent must be used to run the tests on
the test platform and communicate with JavaTest harness. The JavaTest harness
provides a general purpose agent (JavaTest Agent), but test architects can also create
custom agents.

The JavaTest Agent is a lightweight program compatible with JDK 1.1 (does not
require the Java SE platform, or Swing). The JavaTest Agent uses a bidirectional
connection to communicate between the test platform and JavaTest—it supports
both the TCP/IP and RS-232 protocols. Other types of connections can be added
through the JavaTest API, for example, infrared, parallel, USB, firewire connections
can be added and modelled on the existing system. If a test platform meets the
following requirements the JavaTest Agent will probably work well:

■ The device supports a communication layer that can last the duration of a test
(couple of minutes)

■ The agent code can be loaded into the device

4 The JavaTest harness starts the test finder. The test
finder reads test descriptions and creates
TestDescription objects. The JavaTest GUI displays
the test tree.

5 The user starts the test run. If the configuration
information is incomplete, the JavaTest harness
activates the configuration editor.

Provide the configuration interview

6 The JavaTest harness asks the TestSuite object to
create a fresh copy of the test script for each test. The
test script runs tests according to the information in the
test description and environment. When the test is
complete, the test script reports the test’s exit status to
the JavaTest harness.

Design the test execution model and create the test
script

6 The test suite updates the TestResult object with the
results of the test execution and writes the test results
to a file in the work directory. Test results are described
in “Test Result” on page 100”.

8 The JavaTest harness updates the GUI and/or displays
information at the command line.

TABLE 3-1 Summary of JavaTest Harness Operation (Continued)

Events Architect’s Role
22 JavaTest Architect’s Guide • May 2011

If the test platform does not meet these requirements, the JavaTest API can be used
to create a custom agent. Agents have been created to run tests on devices such as
cell phones, PDAs, and pagers.
Chapter 3 Overview 23

24 JavaTest Architect’s Guide • May 2011

CHAPTER 4

Creating a Test Suite

This chapter leads you through the process of creating a very small working test
suite quickly and easily by following step-by-step instructions. To simplify the
process, conceptual information is generally not provided but is available in later
chapters.

The test suite you create here can serve as the basis for your entire test suite. If your
tests have no special requirements that the Standard Test Finder and Standard Test
Script cannot accommodate, you may be able to create your product test suite by
simply adding additional tests and creating a configuration interview to gather the
information required to execute your tests.

Notes:

■ The instructions in this chapter assume that you have completed the tutorial in
Chapter 2 and that you have read Chapter 3.

■ The instructions also assume that you are familiar with basic operating system
commands on your system.

■ In the examples, path names are given using the “\” file separator. If your system
uses a different file separator, please substitute it where appropriate.

This chapter describes how to:

1. Create a test suite directory

2. Create a testsuite.jtt file

3. Copy javatest.jar to the test suite lib directory

4. Add appropriate classes to the classes directory

5. Create a test

6. Run the test suite

Other issues of interest regarding test suite creation are discussed at the end of the
chapter.
25

Create a Test Suite
To create a test suite, follow the steps in these simple tasks.

1. “Create a Test Suite Directory” on page 26

2. “Create the testsuite.jtt File” on page 26

3. “Copy javatest.jar” on page 27

4. “Set Up the classes Directory” on page 28

5. “Use a Simple Test Template” on page 28

6. “Create and Compile a Simple Test Example” on page 30

▼ Create a Test Suite Directory
Create the directory and sub-directories for your test suite.

1. Create the top-level test suite directory.

Create the directory somewhere convenient in your file system. This directory is
referred to as ts_dir for the remainder of this chapter.

2. Under ts_dir, create sub-directories named tests, lib, and classes.

▼ Create the testsuite.jtt File
As described in Chapter 3, the JavaTest harness reads the testsuite.jtt file to
find out information about your test suite. The following steps describe how to
create the testsuite.jtt file for this test suite.

1. Make ts_dir the current directory.
26 JavaTest Architect’s Guide • May 2011

2. Create the testsuite.jtt file.

Enter the following information into a text editor:

You can substitute your own string values for the name and id properties.

Note – The classpath entry is not used here because the Standard Test Finder,
Standard Test Script, and Simple Interview classes are all contained within
javatest.jar which is automatically on the class path. If you create your own
components, you must include the classpath entry to point to the JAR file that
contains these classes. See Chapter 8 for more information about the
testsuite.jtt file.

Save the file as ts_dir\testsuite.jtt.

▼ Copy javatest.jar

The test suite works best if there is a copy of the javatest.jar file in the lib
directory of the test suite; this enables the JavaTest harness to automatically locate
the test suite.

● Copy javatest.jar from the jt_install\examples\javatest\simpleTags\
demotck\lib directory to ts_dir\lib.

Note – The javatest.jar file contains the SimpleInterview class that is used
with this test suite (com.sun.javatest.SimpleInterview.Parameters). As
your test suite becomes more complicated and customized, you may need to create a
custom interview. See Chapter 6 for more information.

Test Suite properties file for DemoTCK test suite
with tag-style tests
name=My Test Suite
id=1.0
finder=com.sun.javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.javatest.interview.SimpleInterviewParameters
Chapter 4 Creating a Test Suite 27

▼ Set Up the classes Directory
In order to execute, tests must have access to some of the classes contained in
javatest.jar. Extracting these classes eliminates the need for each test to have
javatest.jar on its class path. The the most convenient location to place these
classes is the ts_dir\classes directory.

1. Make ts_dir\classes the current directory.

2. Verify that the Java SE platform (version 1.5 or later) is in your path.

At a command prompt, enter:

C:\> java -version

3. From javatest.jar, extract the classes required to run the tests.

Use the following command line:

jar -xvf ..\lib\javatest.jar com\sun\javatest\Test.class

com\sun\javatest\Status.class

Note – As your test suite become more complex, you may have to add additional
libraries to the classes directory.

▼ Use a Simple Test Template
The following instructions describe how to create a very simple test to add to your
test suite. For more detailed instructions about writing TCK tests, see the Test Suite
Developers Guide.

1. Make ts_dir\tests the current directory.
28 JavaTest Architect’s Guide • May 2011

2. Enter the test code into your favorite text editor.

The following template can be used as the basis for writing simple tests:

Note that the section delimited with the /** **/ characters is the test description
portion of the test. It must be present for the JavaTest harness to locate and
recognize the test. You will change all instances of MyTest, and replace the line
// your test code here... with your own code. The following table
describes the test description entries recognized by the Standard Test Script:

You can create simple tests by replacing the comment:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/
public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();

 }
public Status run(String[] args, PrintWriter log1, PrintWriter log2) {

Status result;
// your test code here ...
return result;

}
}

Test Description Entry Description

test Identifies the comment block as a test description and the containing file as a test

executeClass Specifies the name of the test’s executable class file (assumed to be located in the
classes directory)

executeArgs Specifies arguments (if any) that the test accepts

sources Names the source files required to compile the test. This entry is required if you use the
JavaTest harness to compile your tests. See Chapter 7 for more information. This tag is
also used by the JavaTest harness to display a test’s sources in the Files tab of the Test
pane.

keywords Specifies user-defined keywords that direct the JavaTest harness to include or exclude
tests from a test run.
Chapter 4 Creating a Test Suite 29

// your test code here ...

with code that tests your API. Note that the test must return a Status object as a
result.

Note – You can find examples of simple tests at:
jt_install\examples\javatest\simpleTags\demotck\tests

▼ Create and Compile a Simple Test Example
The following sample is a very simple test you can use to get started.

1. Save the following file as MyTest.java.

Be sure to copy the entire file, including the test description delimited with the
/** **/ characters

2. Compile MyTest.java.

Use the following command on WIN32 systems:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();

 }

public Status run(String[] args, PrintWriter log1, PrintWriter log2) {
Status result;

if (1 + 1 == 2)
result = Status.passed(“OK”);

else
result = Status.failed(“Oops”);

return result;
}

}

30 JavaTest Architect’s Guide • May 2011

C:\> javac -d ..\classes -classpath ..\classes MyTest.java

Use the following command on Solaris or Linux systems:

% javac -d ../classes -classpath ../classes MyTest.java

MyTest.class is created in the ts_dir\classes directory. As you add more and
more tests you should organize them hierarchically in subdirectories.

Note – As you add more and more tests, you may want to use the JavaTest harness
to compile the tests. For more information, see Chapter 7.

▼ Run a Test Suite
You are now ready to run the test suite.

1. Make ts_dir the current directory.

2. Start the JavaTest harness.

At a command prompt enter:

c:\> java -jar lib\javatest.jar -newdesktop

Note – The -newdesktop option is used here to ensure that the JavaTest harness
starts up like it did in the tutorial — under normal circumstances you should not use
this option. For information about JavaTest options, see the online help.

3. Run the tests the same way you ran the tests in Chapter 2.

The configuration interview for this test suite contains a question not included in
the tutorial configuration interview. Use the following information to answer the
question:

Question Title Answer Description

Class Path ts_dir\classes The test uses library classes located in the classes
directory.
Click the Add button to activate a file chooser. Select the
classes directory and click the Add File button.
Chapter 4 Creating a Test Suite 31

Odds and Ends
This section takes a closer look at the components that make up a typical test suite
and how they are organized. In addition, the various class paths required to run the
JavaTest harness, the agent, and tests classes are discussed.

Note that much of the organization described here is optional; however, experience
has shown that it works well for most test suites.

Top-Level Test Suite Directory
The top-level test suite directory generally contains the following files and
directories:

TABLE 4-1 Top-Level Test Suite Files and Directories

File/Directory Description

testsuite.jtt A text file that serves as a registry of information about the test suite. This files includes
the paths to plug-in components (for example, the test finder, test script, or configuration
interview) as well as other static information about the test suite. The presence of this file
defines the top-level directory of the test suite; therefore it must be located there. This file
is described in detail in Chapter 8.

lib\javatest.jar Contains all of the classes required to execute the JavaTest harness and library classes.
The library classes can be used to simplify the creation of tests. If javatest.jar is
located in the same directory as the testsuite.jtt file, or in the ts_dir\lib directory,
the JavaTest harness automatically locates the test suite and does not prompt the user for
the path to test suite directory.
Note that it is very important not to put javatest.jar on the test suite class path. It is
very large and scanning it for library classes at every test invocation impacts the
performance of your test suite. The best option is to extract any referenced classes into
the classes directory as shown in Step 3 in “Set Up the classes Directory” on
page 28. Use of these library classes is described in Chapter 5.

tests\ Contains test source files and test descriptions. Tests should be organized hierarchically
the way you want them to be displayed in the test tree.
If you use the HTML test finder rather than the tag test finder, include the HTML test
description files along with the test sources in the tests directory. For a discussion of
test finders, see Chapter 9.
32 JavaTest Architect’s Guide • May 2011

The Test Suite JAR File
All of the components you create for the test suite should be delivered to the user in
a single JAR file installed in the lib directory of the test suite. The JAR file is added
to the class path in the testsuite.jtt file as described in Chapter 8. Experience
has shown that it is best to organized the JAR file with the following directory
structure:

For example, the JAR file for the demo TCK test suite:

jt_install\examples\javatest\simpleTags\demotck\jtdemotck.jar

is organized like this:

classes\ The directory that contains all of the compiled test classes and library classes required to
run your tests. This directory is automatically placed on the JavaTest harness class path.

lib\ An optional directory that contains any other files required by your the test suite. These
files might include:
jttestsuite.jar — If you create a custom interview, or customize any of the JavaTest
plug-in classes, you package the classes and interview files in a custom JAR file. See “The
Test Suite JAR File” below for details.
test_suite_x.x.jtx — The exclude list is a mechanism used by test suites to identify tests
that should not be run.

doc\ An optional directory that contains documentation that describes how to run the test
suite and specifies the rules for certifying a product.

com\
your_company\

your_product\
Interview class files and resource files, More Info help

com\
sun\

demotck\
Interview class files and resource files, More Info help

TABLE 4-1 Top-Level Test Suite Files and Directories (Continued)

File/Directory Description
Chapter 4 Creating a Test Suite 33

If you provide a large number of components, you can further organize them into
sub-packages:

Class Paths
When you create a test suite, it is important to keep in mind the three potential class
paths that are involved:

■ JavaTest class path

■ Agent class path

■ Test class path

Two of the ways described in the following sections in which you can set a class
path are through a CLASSPATH environment setting or through a -classpath flag
in the command line. The CLASSPATH environment setting is generally a safe way to
set the classpath, although setting it as an environment variable is less explicit than
using the -classpath flag.

The -classpath flag to the particular software development kit tool (such as java
and javac) is generally the best way to set the class path if you know it explicitly.
The main disadvantage of using the -classpath flag is that it overrides the
CLASSPATH environment setting.

Note – If you have required classes that are set in the environment variable and you
also use the -classpath flag, you must make special arrangements for the
additional class paths to be set through the -classpath parameter.

Shell example:

% CLASSPATH=otherclasses javac -classpath classes -d out foo/

In this example, only classes set by -classpath are on the classpath. The otherclasses
set by the CLASSPATH environment setting are dropped.

Shell example:

% CLASSPATH=otherclasses javac -classpath $CLASSPATH:classes d out foo/

com\
your_company\

your_product\
Interview class files and resource files, More Info help

lib\
Everything else (TestSuite, Script, Finder, etc.)
34 JavaTest Architect’s Guide • May 2011

In this example, the environment setting is added to the -classpath argument. The
resulting classpath is otherclasses:classes.

JavaTest Class Path
This is the class path that the JavaTest harness uses to access its classes, libraries, and
your plug-in classes. The JavaTest class path can be set by means of:

■ The CLASSPATH environment variable

■ The -classpath option to the Java runtime

■ The -jar option to the Java runtime (this is the standard)

In addition, each test suite can use the classpath entry in the testsuite.jtt file
to extend the class path. The classpath entry is used to add custom plug-in
components and interviews that you create.

Agent Class Path
Often you must run tests on a system other than one on which the JavaTest harness
runs. In this case you use an agent (such as the JavaTest Agent) to run the tests on
that system. The agent class path is used by the agent to access its classes, libraries,
and any plug-in classes. The class path can be set by means of:

■ The CLASSPATH environment variable

■ The -classpath option to the Java runtime

■ The -jar option to the Java runtime

■ Some other platform-specific mechanism

Test Class Path
This is the class path used by the tests during execution. It is normally the
responsibility of the configuration interview and/or test script to set the class path
for each test in the test environment command entry (see “Command Strings” on
page 50). Test classes are normally located in the ts_dir\classes directory, you
normally include this on the test class path. You can also put any classes that your
tests require in ts_dir\classes and they will be found.

Note – If your platform requires that tests run in the same JVM as the agent, you
must include the classes required by the tests on the agent class path. In this case
your interview need not put a test class path in the test environment command
entry.
Chapter 4 Creating a Test Suite 35

36 JavaTest Architect’s Guide • May 2011

CHAPTER 5

Writing Tests

This chapter describes how to write tests that work well with the JavaTest harness.
Special attention is paid to the test execution model implemented by the Standard
Test Script which is designed to work well with test suites that test the compatibility
of Java APIs and should work well with most Java SE technology-based TCK test
suites.

Note that this discussion focuses on the mechanics of writing tests that work with
the JavaTest harness. For information about the “art” of writing compatibility tests,
see the Test Suite Developers Guide.

The example test suites included with the JavaTest Architect’s release contain
numerous test examples. See the following directories:

jt_install\examples\javatest\simpleTags\tests

jt_install\examples\javatest\simpleHTML\tests

You might find it helpful to refer to those tests as you read this chapter.

The Test Execution Model
The design and invocation of a test is a reflection of the test execution model that
you design for your test suite. The test execution model describes the steps involved
in executing the tests in your test suite and is implemented by the test script.

As you design your test suite you should think about how your tests are going to be
executed. Some typical questions you might ask:

■ Is each test invoked by executing a single class?

■ Do the tests require multiple steps, implemented by multiple class invocations?

■ Must test classes be started on different machines and in a specific order?
37

Most TCK test suites test specific aspects of an API. These types of tests lend
themselves to an execution model in which tests are run by invoking a single class
that exercises a method or group of methods. The JavaTest Architect’s release
includes the Standard Test Script (com.sun.javatest.lib.StdTestScript) that
implements this test execution model. The Standard Test Script is discussed in more
detail in Chapter 10.

If your test suite requires a more complex test execution model, you have to create a
test script to implement it. See Chapter 10 for information about creating a custom
test script.

Note – The test execution model implemented by the Standard Test Script includes
an optional compilation step. The Standard Test Script can be used to:
- Execute precompiled tests
- Compile the tests
- Compile and execute the tests

See Chapter 7 for more information about compiling tests with the JavaTest harness.

The Test Interface
If you plan to run your tests using the execution model embodied by the Standard
Test Script, the tests must implement the run method of the interface
com.sun.javatest.Test. The Test interface provides a very flexible mechanism
that is well suited for creating most tests. If the Test interface does not suite your
needs, you can write your own interface. You can find information about creating
your own interface in Chapter 10.

The Test interface run method takes an array of strings and two output streams
and returns a Status object. The array of strings is taken from the executeArgs
entry in the test description. The output streams are provided by the JavaTest
harness; any output written to the output streams is saved in the TestResult object
and is displayed in the Test Run Messages tab in the JavaTest GUI. The end result of
the test is a Status object — a combination of an integer code and a message string
(see “Test Status” on page 40).

The following code example shows a template for tests written to work with the
Standard Test Script; the areas you change are in bold font:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
38 JavaTest Architect’s Guide • May 2011

Note that the section delimited with the /** **/ characters is the test description
portion of the test which is described in more detail later in this chapter in “Test
Description Entries” on page 41. The Status object is described in “Test Status” on
page 40.

Class Paths
The com.sun.javatest.Test interface is delivered in javatest.jar; however,
you should extract it into your test suite’s classes directory so that it is easily
available to all of your test classes.

Note – To improve test performance, never add javatest.jar to test paths
anywhere in your test suite. If you use classes provided in javatest.jar, extract
them into your test suite’s classes directory.

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter out = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, out, null);
s.exit();

 }

public Status run(String[] args, PrintWriter out1, PrintWriter
out2) {

Status result;
// your test code here ...
return result;

}
}

Chapter 5 Writing Tests 39

Test Status
The Status object is an integer/string pair that encodes the exit status of the test.
The JavaTest harness supports the following exit status values:

Note – The NOT_RUN status indicates that the test has not been run. This is a
special case and is reserved for internal JavaTest harness use only.

The integer portion of the Status object represents the exit status; the string portion
is a message that summarizes the outcome (for example, an error message). Only the
short integer portion is used by the JavaTest harness to determine the test status. The
message string provides information to the user running the test. The message is
passed to the test script which writes it into the test result file.

Note that the object is immutable once it is created — if the test script modifies the
message string it must take the Status object created by the test and recreate the
Status object including the new message string.

The JavaTest harness uses the information in the Status object in its GUI status
displays and reports.

There are two important methods in the Status API that your tests can use:
passed() and failed(). Both methods take a string as an argument and return a
Status object. The JavaTest harness displays these strings in the Test Run Message
tab in the JavaTest GUI and they can be an important source of information to users
running the tests. The following example shows how these methods are used:

TABLE 5-1 Exit Status Values

Status Meaning

PASSED A test passes when the functionality being tested behaves as expected.

FAILED A test fails when the functionality being tested does not behave as expected.

ERROR A test is considered to be in error when something (usually a configuration
problem) prevents the test from executing as expected. Errors often indicate a
systemic problem — a single configuration problem can cause many tests to fail.
For example, if the path to the Java runtime is configured incorrectly, no tests can
run and all are in error.

public Status run(String[] args, PrintWriter out1, PrintWriter out2) {
Status result;

if (1 + 1 == 2)
result = Status.passed(“OK”);
40 JavaTest Architect’s Guide • May 2011

The test entries in the reports generated by the JavaTest harness are grouped based
on the string arguments you supply to Status.passed and Status.failed. It’s
generally a good idea to keep all of the Status.passed messages short and
consistent so that similar tests are grouped together in reports. Status.failed
messages should generally be longer and more descriptive to help the user
determine why the test failed. Complete details should be written to the output
stream.

See the API documentation (doc\javatest\api) for the Status class.

Test Description Entries
All tests must have an associated test description that contains entries that identify it
as a test and provide the information required to run it. Test descriptions are located
and read by a test finder; the two standard test finders included with the JavaTest
harness read two styles of test description: tag test descriptions and HTML test
descriptions. It is your decision as test suite architect which style to use (you can
even create a custom style). Test finders are discussed in detail in Chapter 9. For
simplicity, only the tag style is shown in this chapter.

Test finders read all entries listed in the test description and add them to the
TestDescription object. The Standard Test Script looks for and uses the values
specified in the executeClass, executeArgs, and sources entries; the script
disregards any other entries. You can create your own custom script that recognizes
additional test description entries and validate those entries. See Chapter 10 for
more information.

else
result = Status.failed(“Simple addition performed incorrectly”);

return result;
}

}

Chapter 5 Writing Tests 41

The following table describes the entries understood by the Standard Test Script:

The following code snippet shows how a tag test description appears in a test source
file:

Keywords
You can add keywords to test descriptions that provide a convenient means by
which users can choose to execute or exclude pre-selected groups of tests. The
person who runs the test suite can specify keyword expressions in the configuration
editor. When the test suite is run, the JavaTest harness evaluates the keyword
expressions and determines which tests to run based on the keywords specified in
the test description. See the JavaTest harness online help for information about
specifying keyword expressions.

TABLE 5-2 Default Test Description Entries

Test Description Entry Description

test Identifies the comment block as a test description. This entry is required. There
is no “test” entry in the TestDescription object.

executeClass Specifies the name of the test’s executable class file (assumed to be located in the
classes directory). This entry is required.

executeArgs Specifies the arguments (if any) that the test accepts. This entry is a list of strings
separated by white space. This entry is optional.

sources Specifies the names of the source files required to compile the test. This entry is
required if you use the JavaTest harness to compile your tests. See Chapter 7 for
more information. This tag is also used by the JavaTest harness to display a test’s
sources in the Files tab of the Test pane. This entry is optional.

keywords Specifies keywords that the user can specify to direct the JavaTest harness to
include or exclude tests from a test run. Keyword values consists of a list of
words (letters and numbers only) separated by white space. This entry is
optional.

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 * @executeArgs arg1 arg2
 * @keywords keyword1 keyword2
 **/
42 JavaTest Architect’s Guide • May 2011

Multiple Tests in a Single Test File
If you find that you are writing lots of very small tests to test similar aspects of your
API, you can group these similar tests together as test cases in a single test file. Tests
that contain test cases should use the com.sun.javatest.lib.MultiTest class
rather than the com.sun.javatest.Test class. MultiTest extends
com.sun.javatest.Test to add this functionality. One of the major benefits of
using MultiTest to implement test cases, is the test cases can be addressed
individually in the test suite’s exclude list. Another advantage to using MultiTest is
that the test cases are run in the same JVM which is generally faster than starting a
new JVM for each test. The downside to using MultiTest is that tests are more
susceptible to errors introduced by memory leaks.

MultiTest is included with the JavaTest release as a standard library class.
MultiTest is a class that implements the com.sun.javatest.Test interface and
allows you to write individual test cases as methods with a specific signature. These
methods cannot take any parameters and must return a
com.sun.javatest.Status object as a result. Argument decoding must be done
once by a test for its test case methods. MultiTest uses reflection to determine the
complete set of methods that match the specific signature. MultiTest calls test case
methods individually, omitting any tests cases that are excluded. The individual
Status results from those methods are combined by MultiTest into an aggregate
Status object. The test result is presented as a summary of all the test cases in the
test.

The following example shows a very simple test that uses MultiTest to implement
test cases:

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
import com.sun.javatest.lib.MultiTest;

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest extends MultiTest {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
// Run calls the individual testXXX methods and
// returns an aggregate result.
Chapter 5 Writing Tests 43

For more information about com.sun.javatest.lib.MultiTest, please refer to
the API documentation.

Subtyping MultiTest
If you create a number of tests that are similar you can create a super class to
implement functionality they have in common. You can also create this class as a
subtype of the MultiTest class rather than the Test interface so that you can take
advantage of the test case functionality it provides. Such subtypes are typically used
to perform common argument decoding and validation, or common set-up and tear-
down before each test or test case.

Organizing Tests Within Your Test Suite
This section describes some guidelines about how to organize your test source and
class files.

s.exit();
 }
public Status testCase1() {

if (1 + 1 == 2)
return Status.passed("OK");

else
return Status.failed("1 + 1 did not make 2");

}
public Status testCase2() {

if (2 + 2 == 4)
return Status.passed("OK");

else
return Status.failed("2 + 2 did not make 4");

}
public Status testCase3() {

if (3 + 3 == 6)
return Status.passed("OK");

else
return Status.failed("3 + 3 did not make 6");

}
}

44 JavaTest Architect’s Guide • May 2011

Source Files
It is very important to ship the source files for tests in your test suite. Test users must
be able to look at the sources to help debug their test runs.

Test sources should be located with the files that contain their test descriptions. If
you use tag test descriptions, the test description is included as part of the source
file; however, if you use HTML test descriptions, they are contained in separate
HTML files that should be included in the same directories as their test source files.

The JavaTest harness assumes that tests are organized hierarchically in a tree
structure under the ts_dir/tests directory. The test hierarchy contained in the
tests directory is reflected in the test tree panel in the JavaTest GUI (technically, it
is a tree of the test descriptions). When you organize your tests directory, think
about how it will look in the test tree panel. In test suites that test APIs, the upper
part of the tree generally reflects the package structure of the product you are
testing. Farther down the tree, you can organize the tests based on the sub-packages
and classes being tested. The leaves of the tree might contain one test per method of
that class. In some cases it might make sense to organize the tree hierarchy based on
behavior; for example, you could group all event handling tests in one directory.

Class Files
Experience has shown that it is a good idea to place all of your test class files in the
ts_dir\classes directory rather than locating them with the source files in the
ts_dir\tests directory. Placing class files in the classes directory has the
following benefits:

■ It simplifies the specification of the test execution class path, especially on smaller
devices that can only specify a single class path for all the tests.

■ The standard configuration interview automatically places ts_dir\classes on the
test class path

■ It permits easier code sharing among tests

Note – In some cases the test platform may dictate where you can put your classes.
For example, if your test platform requires the use of an application manager, it may
require that your classes be placed in a specific location.
Chapter 5 Writing Tests 45

Error Messages
It is important that your tests provide error messages that test users can readily use
to debug problems in their test runs. One useful method is for your error messages
to compare expected behavior to the actual behavior. For example:

Addition test failed: expected a result of “2”; got “3”

Longer detailed messages should go to the test and/or test script diagnostic streams.
Use the Status object for shorter summary messages.
46 JavaTest Architect’s Guide • May 2011

CHAPTER 6

Creating a Configuration Interview

As you design your test suite, you must decide how to provide the JavaTest harness
with all of the information required to execute your tests. Some of this information is
static — it is known prior to runtime through the test description mechanism.
However, some information cannot be determined ahead of time and differs based
on the context in which the tests are run. This information is called the configuration
and is obtained from the user through a configuration interview that you design.
The configuration interview is presented to the user in the JavaTest configuration
editor and consists of a series of simple questions that the user answers. The
interview exports the answers in a format called a test environment that the JavaTest
harness understands.

This chapter describes how to create and package a configuration interview.

Designing Your Configuration
This section focuses on the design of the configuration information and how to
determine what information is necessary to run your tests suite.

What is a Configuration?
The configuration provides the JavaTest harness with the information it needs to
execute tests. This information falls in the following categories:

■ Information required by the script to execute the tests

■ Information required by tests. This information augments the test description and
usually consists of information that changes based on the test execution context
(for example, the platform or network).

■ Information that determines which tests to include or exclude from a test run
47

These categories are discussed in the following sections.

Test Script Information
A test script is responsible for running your tests. The test script knows the series of
steps required to execute each test. It typically relies on test commands to perform
each step and you design your configuration to provide the test commands (and
their arguments) that the test script uses to execute each test. Test commands are
Java classes that the test script instantiates to run tests.

As an example, the Standard Test Script uses a single step to execute tests; that step
is defined in the configuration entry called command.execute. The configuration
interview is responsible for setting the value of command.execute so that the
Standard Test Script uses the appropriate command and arguments. For example,
you can tell the Standard Test Script to use the ExecStdTestOtherJVMCmd
command which executes tests in a process on the same computer that runs the
JavaTest harness:

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd args

If you intend to execute the tests differently; for example, on a different computer,
you would define command.execute differently in your configuration. For a list of
test commands included with the JavaTest release, see Appendix A. For information
about creating custom test commands, see Chapter 10.

Test Description Entries
In the previous chapters of this manual, you have seen that most test descriptions
are static; these entries consist of values that are known ahead of time and can be
specified directly. In some cases these arguments cannot be determined ahead of
time, especially test arguments (executeArgs). For example, tests that test network
APIs may require the names of hosts on the network to exercise the API. If the test
suite runs in different locations and on different networks, these values cannot be
known ahead of time by the test developer. The configuration interview is expected
to collect this information and make it available to the test.

A script may allow the test developer to specify variables in some test description
entries that are defined in the configuration; these variables are prefixed with the
“$” character. For example the Standard Test Script allows variables in the
executeArg entry; in the case of a network test, here is what the test description
might look like:

/** @test
 * @executeClass MyNetworkTest
48 JavaTest Architect’s Guide • May 2011

The arguments to the executeClass and sources entries are static — they are
known ahead of time and do not change based on the context in which the test runs.
The host names or IP addresses cannot be known ahead of time and are specified as
variables to which the JavaTest harness assigns values when the test is run. The test
suite’s configuration interview asks the user to specify the values of the hosts and
port numbers required to run the test; the values of $testHost and $testPort are
defined from those answers. The configuration interview creates entries in the test
environment as name/value pairs. For example:

Which Tests to Run
The JavaTest harness provides a number of ways that the user can specify which
tests in the test suite to run. These standard values can be specified by the user in the
configuration editor window question mode or quick set mode. You can easily
include interview questions that gather this information at the end of the interview
for you and require no extra work on your part.

Designing Your Interview
The goal of the configuration interview is to create (or export) a test environment.
The test environment consists of one or more command templates that the test script
uses to execute tests and the set of name/value pairs that define values required to
run the tests.

The previous section described how to think about the kinds of configuration values
your test suite needs; this section focuses on how you collect configuration values
and translate them into test environment entries.

 * @sources MyNetworkTest.java
 *@executeArgs -host $testHost -port $testPort
 **/

testHost=129.42.1.50
testPort=8080
Chapter 6 Creating a Configuration Interview 49

Command Strings
The most complex test environment entries are almost always the command strings
the test script uses to execute the tests. A command string is a template that specifies
the command used by the test script to execute the test. A command string contains
symbolic values (variables) whose values are provided when the test is executed.

The complexity of these entries is determined by the versatility required by the test
suite. If the test suite is always run on the same computer, in the same network, the
command string is probably very easy to specify. In many cases the computing
environment varies considerably, in which case the command strings are built up
largely from answers that users provide in the configuration interview.

As previously described, test scripts depend on test commands to know how to
execute tests in specific ways. The JavaTest release contains a set of standard library
test commands that you can use to execute tests. The following table describes the
most commonly used test commands. These test commands are described in more
detail in Appendix A.

If your platform requires a custom agent in order to run tests, use the test command
designed for use with that agent.

Commands and command templates are described in more detail in Chapter 10.

The examples in this section show how to create command entries for the Standard
Test Script using two of these commands: ActiveAgentCommand and
ExecStdTestOtherJVMCmd.

TABLE 6-1 Commonly Used Test Commands

Test Command Description

ExecStdTestSameJVMCmd Executes a simple API test in the same JVM as the caller.
Typically used with the JavaTest Agent.

ActiveAgentCommand
PassiveAgentCommand

Execute a subcommand on a JavaTest Agent running in
active or passive mode
50 JavaTest Architect’s Guide • May 2011

Example 1
The Standard Test Script uses the value of the command entry command.execute to
execute tests. If the tests are executed on the same computer running the JavaTest
harness, a typical command entry for the Standard Test Script looks something like
the following:

The portion of the entry to the left of the “=” is the name of the test environment
entry, the portion to the right is the command string.

Let’s examine the command string in detail:

com.sun.javatest.lib.ExecStdTestOtherJVMCmd

The first part of the command string is the name of the test command class used to
execute the test classes. In this example the command executes tests in a process on
the same computer that runs the JavaTest harness.

Interview implications:

Your configuration interview specifies the command to use to execute the tests. If the
API you are testing always runs in a known computing environment, your interview
might create this part of the entry without input from the user. However, if the API
being tested can be run in different ways, you must ask the user which way they
choose to run it and provide the appropriate test command based on the user’s
input.

Imagine an API that can be tested on the same computer running the JavaTest
harness, or on a different computer on the same network. In this case the interview
must determine which way the user intends to run the tests and provide the
appropriate command — ActiveAgentCommand or ExecStdTestOtherJVMCmd.

-classpath ts_dir\classes

The class path required by the tests. Replace ts_dir with the path to your test suite.
To enhance performance, you should place all library classes required to run the test
classes in the classes directory.

See “Test Environment Variables” on page 53 for a list of available variables.

Interview implications:

You can determine the path to your test suite inside your interview. See “Exporting
the Test Environment” on page 57 for details. If the test classes require no additional
classes be on the class path other than the ones you provide in the test suite’s
classes directory, your interview can insert the class path value directly into the

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath $testSuiteRootDir\classes
$testExecuteClass $testExecuteArgs
Chapter 6 Creating a Configuration Interview 51

entry without asking the user for input. If additional class path entries may be
required, your interview may include questions that ask the user to provide
additional entries that your interview appends to the class path.

This environment entry that can get more complicated if the test suite may be run
using different versions of the Java runtime. Some Java runtime systems do not use
the -classpath option; for example, they might use a syntax such as -cp or /cp.
Additionally, some systems use the “:” character as the class path separator and
others use the “;” character. If this is the case, your interview must include
additional questions that determine the platform on which the tests are run so that
you can create the appropriate command entry.

C:\JDK\bin\java.exe

The path to the Java runtime command used to execute the test classes.

Interview implications:

This path almost certainly differs from user to user, so almost any interview must
obtain this path from the user. The interview libraries include a question type named
“file” that is very useful for obtaining path names.

Although no additional options or arguments are shown in this example, many Java
runtimes or test suites require additional options and arguments. If your tests
require any additional options, you include them in additional portions of the entry.

$testExecuteClass

A variable that represents the name of the test class. The test script obtains the class
name from the executeClass entry in the test description and provides it at
runtime.

Interview implications:

The interview adds the variable to the environment entry.

$testExecuteArgs

A variable that represents the arguments specified in the test description. The test
script obtains this value from the test description and provides it at runtime.

Interview implications:

The interview adds the variable to the environment entry.
52 JavaTest Architect’s Guide • May 2011

Example 2
For this example, imagine a test suite that runs in a limited environment — it always
runs on a remote system using the JavaTest Agent in passive mode. The command
entry looks like this:

Although this command is quite long, because of its limitations most of it is
boilerplate; the only values that your interview has to gather from the user are the
arguments to the -host and -port options.

Test Environment Variables
The following variables are available for use in test descriptions if you use the
Standard Test Script or a test script derived from it. If you create a custom test script,
it can provide additional values.

Writing Your Interview
The previous two sections focused on the design of your configuration and your
interview; this section focuses on writing the code to implement the interview.

This section takes a high-level view of the process of writing configuration
interviews; complete, working code examples are provided separately from this
manual. These examples are:

command.execute=com.sun.javatest.lib.PassiveAgentCommand
-host myHost -port 501
com.sun.javatest.lib.ExecStdTestSameJVMCmd
$testExecuteClass $testExecuteArgs

TABLE 6-2 Test Environment Variables

Variable Name Definition

$testExecuteArgs The value for the executeArgs parameter from the test
description of the test being run

$testExecuteClass The value of the executeClass parameter from the test
description of the test being run

$testSource The value of the source parameter defined in the test
description of the test being run. Valid only when using the
JavaTest harness to compile a test suite. See Chapter 7.
Chapter 6 Creating a Configuration Interview 53

Demo TCK interview
The Demo TCK is a simple test suite created to demonstrate the basic principles of
writing and running test suites. The Demo TCK was featured in Chapter 7. The
source code and More Info files for the configuration interview used in the Demo
TCK test suite are included in the JavaTest Architect’s release at the following
location:

jt_install\examples\javatest\simpleTags\src

Demo Interview
The Demo Interview is a self-documenting JavaTest interview that demonstrates all
of the interview question types, and other important interview techniques. A special
viewer allows you to view the source of a question as you run it. Follow these
instructions to start the Demo Interview:

▼ Start the Demo Interview
1. In a command window make the following your current directory:

jt_install\examples\javatest\interviewDemo\demotck

2. Start the Demo Interview test suite

At the command prompt enter:

C:\>java -jar lib\javatest.jar -newDesktop

The -newdesktop option is used here to ensure that the JavaTest harness loads
the correct test suite. For information about JavaTest options, see the online help.

3. Choose Configure > New Configuration to start the interview

Follow the directions in the interview. You can also browse the source for the
interview at:

jt_install\examples\javatest\interviewDemo\src

Interview Classes
Interviews are built from the following classes:

com.sun.javatest.InterviewParameters
54 JavaTest Architect’s Guide • May 2011

The top-level class used to build JavaTest configuration interviews. This class is a
special subtype of com.sun.interview.Interview
that provides the API required by the JavaTest harness. You do not normally use this
class directly, see BasicInterviewParameters below.

com.sun.interview.Question (and its subtypes)

Questions are the primary constituent elements of interviews. Questions provide
text and appropriate controls and serve as a place to store the user’s response.

com.sun.interview.Interview

The base interview class. This class is used directly to implement sub-interviews (if
any).

com.sun.javatest.interview.BasicInterviewParameters

A subtype of com.sun.javatest.InterviewParameters that provides standard
questions for all of the “standard” configuration values (for example, which tests to
execute). You usually subtype this interview and expand it to obtain your specific
test environment information. The BasicInterviewParameters class is flexible,
see “Putting it All Together” on page 62 for details.

For more information about these classes, please refer to the API documentation
available in doc\javatest\api.

To create a configuration interview, you normally provide a subclass of the
BasicInterviewParameters class and add questions to the interview. This class
is responsible for collecting all test environment and standard value information and
providing it to the JavaTest harness.

Interviews can contain nested sub-interviews. The choice of whether to break
interviews into smaller sub-interviews is a design decision based on manageability
— generally interviews over 20 questions are candidates for this kind of hierarchical
organization. Interviews often contain a number of branches, and these branches are
also often good candidates for becoming sub-interviews. Sub-interviews directly
extend com.sun.interview.Interview.

The Current Interview Path
As mentioned in the previous section, interviews are often composed from sub-
interviews that branch off of the main interview. During the interview process,
branches of the interview can become inactive because the user changes the answer
to a question; the branch can become reactivated if the user later changes the answer
back. When a user completes a configuration interview, the answers to all questions
the user has ever answered are stored on disk in an interview data file with the .jti
extension. Because active and inactive questions are present in the interview data
Chapter 6 Creating a Configuration Interview 55

file, whenever the JavaTest harness needs configuration information (for example, to
run tests or to display the environment) the JavaTest harness must determine the
current interview path.

To determine the current interview path, the JavaTest harness starts at the first
question and queries each question for the next question on the path, attempting to
reach the Final question (see TABLE 6-3TABLE 6-3for a description of different question
types). If it does not reach the Final question, the interview is considered incomplete;
the test configuration cannot be exported and the test suite cannot be run until the
missing questions are answered. If the user attempts to run the test suite with an
incomplete interview, they are asked whether they want to complete the interview at
that time — if they do, the configuration editor is activated.

Determining the Next Question
Every question except the Final question must provide a getNext() method that
determines the next (successor) question. The successor question can be fixed
(constant) or determined based on the answer of a current question or on the
cumulative answers of multiple preceding questions. Questions can also provide no
successor question (by returning null). Lack of a successor question usually means
that the current question is unanswered or contains an error; in that case the
interview is incomplete.

You may add questions to the interview that gather no configuration information,
they are only used to determine the next question in the interview. These are
typically Choice questions used to determine a branch point in the interview. For
example, you might include a question that asks the user whether they want to
execute the tests locally (on the computer running the JavaTest harness) or on a
remote computer using the JavaTest agent. Depending on the answer, you branch to
the questions that gather information about how to run the JavaTest Agent.

Error Checking
If the user provides an invalid answer to a question, the interview cannot proceed.
You use the boolean isValueValid() method to check the validity of an answer
before you proceed to the getNext() method. You can handle error conditions in two
ways: by returning null which causes the configuration editor to display the
“Invalid response” message in red at the bottom of the question pane, or by making
the successor question an Error question that causes the configuration editor to
display a pop-up window with an error message that you provide (see
ErrorQuestion in).
56 JavaTest Architect’s Guide • May 2011

Generally, an “Invalid response” message is sufficient if the error is a simple one; for
example, if the user answers an integer question with a letter. However, for more
subtle errors (for example, if an answer conflicts with a previous answer), it is
necessary to provide more information to the user in a pop-up window.

Exporting the Test Environment
As previously mentioned, one of the goals of the interview is to produce a test
environment. The JavaTest harness uses the InterviewParameters class’s
getEnv() method to obtain the test environment.

If you extend BasicInterviewParameters to create your interview, it provides an
implementation of the getEnv() method that uses the values you export.

If, however, you extend InterviewParameters directly, you must provide a
getEnv() method that gathers answers from the main interview and any sub-
interviews and returns an TestEnvironment object. The best and simplest way to
implement the getEnv() method is to use the interview’s export() method,
which in turn calls the export() method of each question on the current interview
path that provides one. Note that an interview does not normally override/provide
export()— it is provided automatically. When it is time to export the test
environment, the getEnv() method calls export() to gather their test
environment information. These questions export their values into a Map object from
which you can construct a test environment. For detailed examples see the source
code examples in the jt_install\examples directory.

When exporting the test environment, you can use the getTestSuite() method to
get information about the test suite. This information (for example, the location of
the test suite) is often useful in building test environment entries.

Note – It is generally a very good idea for the controlling question to precede the
questions that collect a given value, because the question text can provide
information to the user about the series of questions coming up.

Question Types
The Question class is a base class that provides the different types of questions that
you use to build your interview. You need not concern yourself about the GUI layout
of a question; the configuration editor automatically determines the presentation of
each question based on the question’s type.
Chapter 6 Creating a Configuration Interview 57

The following table lists all of the question types and shows (when applicable) how
they are represented in the configuration editor.

TABLE 6-3 Question Types

Question Type Description GUI Example

ChoiceArray A set of independent boolean
choices

Set of named checkboxes

Choice A set of alternative choices Combo box or radio buttons,
depending on the number of
choices

Error A pseudo question used to
present error messages

Pop-up dialog box

File A single file Type-in field with associated
file chooser

FileList A set of files A list box with an associated
file chooser

Final 1. A pseudo question that marks
successful completion of the
interview

Text only, no user input

2. A pseudo question that marks
the end of a sub-interview

For internal use only; never
displayed

Float A floating point value (optional
min./max. values)

Either slider or type-in field
depending on the range

InetAddress An IPv4 or IPv6 address Either four integer fields, each
of value 0 - 255, or a type-in
field with a lookup button.

Int An integer value Either slider or type-in field
depending on the range

Interview A pseudo question used for sub-
interviews; see
interview.callInterview(...
) in the API

For internal use only; never
displayed
58 JavaTest Architect’s Guide • May 2011

Designing Your Questions
Be sure to break down complex environment entries into simple values that can be
answered by a single question, then build up the entry from those values. For
example, if you are creating an environment entry that requires the name of a remote
host and its port address, it’s best not to ask for both pieces of information in a
single question, but to ask for each piece of information in a separate question.

For example, the following entry previously seen in “Example 1” on page 51:

List A list of complex values built
from a set of questions.

A list box that displays the
current contents of the list. The
following questions add or edit
a selected value in the list. This
sequence is automatically
terminated by a corresponding
marker question.

Null Expository text; generally used to
introduce a set of questions

Text only; no user input

Properties Enables configuring multiple key-
value pairs in a single question.

String String information Type-in field that optionally
includes suggested answers

StringList A list of strings A list box

Tree A tree selection A tree selection GUI based on
JTree

YesNo A convenience choice question for
Yes/No answers

Radio buttons

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath $testSuiteRootDir\classes
$testExecuteClass $testExecuteArgs

TABLE 6-3 Question Types

Question Type Description GUI Example
Chapter 6 Creating a Configuration Interview 59

could be built up from a number of interview answers:

■ Questions to determine whether the user plans to run the test locally or on a
remote computer, and whether they plan to run the tests in the same JVM as the
JavaTest Agent

■ A question to determine the path of the Java runtime command

■ One or more questions to determine the class path

■ Questions that determine the path separator on the test platform

Landing Point Questions
You might find it convenient and useful to include questions that do not gather any
information, but rather provide space between sections of the interview or provide a
frame of reference to the user about where they are in the interview. You can use the
Null question type for this type of interview question. In some cases you can use
landing points as bridges between the main interview and sub-interviews.

Sub-Interviews
If your interview contains a large number of questions, you can break it up into sub-
interviews. To create a sub interview, create a subtype of an Interview class. For
example:

The constructor should take a reference to the parent interview as an argument, and
this reference should be passed to the superclass constructor. This identifies this
interview as a sub-interview of the parent interview. For example:

In the constructor, use the setFirstQuestion method to specify the first question
in the sub-interview. Subsequent questions are found in the normal way using the
getNext method. For example:

class MySubInterview extends Interview {
....

}

MySubInterview(MyParentInterview parent) {
super(parent, "myTag");
...

}

MySubInterview(Interview parent) {
60 JavaTest Architect’s Guide • May 2011

By default, a sub-interview shares a resource file and More Info help files (see
“Creating More Info” on page 70) with its parent interview (another reason to pass
in that parent pointer). You can choose to use a different resource file and HelpSet if
you want, although that is not typical for simple or moderately complex interviews.
See the API specifications for setResourceBundle and setHelpSet for details.

At the end of the interview, have the last question return an instance of a
FinalQuestion. This FinalQuestion is only a marker and does not have any
question text, More Info, or a getNext method. For example:

For the parent interview to use a sub-interview, it must first create an instance of the
sub-interview. This should be created once and stored in a field of the interview. For
example:

Interview iMySubInterview = new SubInterview(this);

To call the sub-interview, use callInterview in a getNext method. The
callInterview method takes two parameters — a reference to the interview to be
called, and a follow-on question to be called when all the questions in the sub-
interview have been asked. When the JavaTest harness sees the FinalQuestion at
the end of a sub-interview, it goes back to where the interview was called and
automatically uses the follow-on question that was specified there. For example:

Flow Charts

Experience has shown that commercial flow charting tools can be very helpful if the
interview becomes large and complicated. These tools can help you track the logical
flow of the interview and keep track of sub-interviews.

super(parent, "myTag");
setFirstQuestion(qIntro);

}

Question qXXX = {
Question getNext() {

return qEnd;
}

};
Question qEnd = new FinalQuestion(this);

Question getNext() {
return callInterview(iMySubInterview, qFollowOnQuestion)

}

Chapter 6 Creating a Configuration Interview 61

Putting it All Together
To write a configuration interview, you must provide a class that implements the
abstract class InterviewParameters. This class provides the JavaTest harness
access to both the environment values and to the standard values. Standard values are
configuration values used by the JavaTest harness to determine:

■ Which tests in the test suite to run

■ How to run them

To simplify this task, the JavaTest harness provides an implementation called
BasicInterviewParameters that does a lot of the work for you. This class
provides a standard prolog, questions for all the standard values, and a standard
epilog. All you have to do is to implement the methods and questions for your test
environment. However, you can also customize the other parts of the interview if
you wish to.

The questions in BasicInterviewParameters are divided into the following
groups:

TABLE 6-4 Interview Question Groups

Group Description

prolog Identifies the interview and provides helpful information to the user about
the interview such as how many questions the average interview consists of
and how to proceed. Optionally, provides questions about the environment
name and description.

environment The questions you write to gather information for the test environment

tests Allows users to specify sub-branches of test trees as a way of limiting which
tests are executed during a test run

keywords Allows uses to filter tests based on keyword values. Test suites can associate
keywords with tests so that the keywords can be used as a basis for including
and excluding tests from test runs.

prior status Allows users to include and exclude tests based on their outcome in a prior
test run. Test can be excluded and included based on the following status
values: passed, failed, not run, error (test could not be run).

concurrency Allows users to run tests concurrently on multi-processor computers

timeout factor A value that is multiplied against a test’s default timeout if a larger timeout
is needed. The default timeout is 10 minutes.

epilog Informs the user that they have completed the interview. May also provide
information about how to run tests.
62 JavaTest Architect’s Guide • May 2011

The groups of questions are presented in the order shown. Each group provides a
method that identifies the first question in its group. The last question in the group
uses another method to determine the next question. By default, the next question is
the first question of the following group.

FIGURE 6-1 shows the “first” and “next” questions for each group of questions.
Chapter 6 Creating a Configuration Interview 63

FIGURE 6-1 Interview Question Group First/Next Question Methods

In most cases you only need to concern yourself with the environment group. For all
the other groups, BasicInterviewParameters provides standard questions. If
you find that you must customize the standard questions, you can replace the

(Determined by setFirstQuestion(XXX))

getPrologSuccsessorQuestion()

getEnvFirstQuestion()

getEnvSuccessorQuestion()

getTestsFirstQuestion()

getTestsSuccessorQuestion()

getKeywordsFirstQuestion()

getKeywordsSuccessorQuestion()

getPriorStatusFirstQuestion()

getPriorStatusSuccessorQuestion()

getConcurrencyFirstQuestion()

getconcurrencySuccessorQuestion()

getTimeoutFactorFirstQuestion()

getTimeoutFactorSuccessorQuestion()

getEpilogFirstQuestion()

(End of Interview)

Prolog

Environment

Tests

Keywords

Prior Status

Concurrency

Timeout Factor

Epilog
64 JavaTest Architect’s Guide • May 2011

questions for a group by redefining getXxxFirstQuestion() to get your custom
questions. In this case, you must also override the methods that provide access to
these configuration values. See the API for more details.

If you find that any of the standard questions do not apply to your test suite, you
can override the getXxxFirstQuestion() question of any group you wish to skip
so that it directly returns that group’s getXxxSuccessorQuestion(). This
circumvents the code that executes the group’s questions and jumps directly to the
next group. For example, if your test suite does not use keywords, you can override
the getKeywordsFirstQuestion() method and implement it so that it returns
getKeywordsSuccessorQuestion() as shown in the following diagram.

FIGURE 6-2 Skipping the Keywords Standard Question

Providing the Prolog
The standard prolog always contains a standard welcome question; it also contains
optional environment name and description questions. By default, the name and
description questions are not displayed. You can enable the name and description
questions by calling the setNameAndDescriptionInPrologEnabled method in
your interview.

If the standard prolog questions do not meet your needs, you can override the
prolog with one of your own. Specify your prolog by means of the standard
setFirstQuestion() method of the interview. At the end of your prolog you
must call the getPrologSuccessorQuestion() method to determine the first
question of the next group.

getTestsFirstQuestion()

getTestsSuccessorQuestion()

getKeywordsFirstQuestion()

getKeywordsSuccessorQuestion()

getPriorStatusFirstQuestion()

getPriorStatusSuccessorQuestion()

Tests

Keywords

Prior Status
Chapter 6 Creating a Configuration Interview 65

Providing the Environment Group
This section describes the basic tasks necessary to write the environment portion of
the interview. Unless your test suite requires you to make changes to the standard
questions (prolog, standard values, epilog), the steps in this section describe what is
required for you to produce your interview.

Put the group of questions that gather information for your test environment in your
interview class. Remember to implement the getEnvFirstQuestion method to
identify the first question of the group.

You must link the last question in the environment group to the rest of the interview
(the standard values and epilog). In the getNext() method of the last question of
your environment group, use getEnvSuccessorQuestion() to determine the next
question in the interview — BasicInterviewParameters provides the rest of the
interview.

Finally, you must implement the getEnv() method. The getEnv() method returns
a TestEnvironment created from the responses to the questions. The easiest way is
to call the interview’s export method. The interview’s export method calls the
export methods for the questions on the current interview path. These questions
export their values into a Map object from which you can construct a test
environment. For detailed examples see the source code examples in the jt_install\
examples directory.

Providing the Resource File for the Interview
In the constructor for your interview class, call:

setResourceBundle(bundle_name);

For example:

setResourceBundle("i18n");

This uses a file called i18n.properties (or a localized variant) in the same
directory as the interview class. See “Creating Question Text and More Info” on
page 67 below for more information.

Providing the More Info Help for the Interview
In the constructor for your interview class, call:

setHelpSet(moreInfo_helpset_name);

For example:
66 JavaTest Architect’s Guide • May 2011

setHelpSet("moreInfo\demotck.hs");

This uses a HelpSet called demotck.hs (or a localized variant) in the moreInfo
directory located in the directory that contains the interview class. See “Creating
Question Text and More Info” on page 67 for more information.

Creating Question Text and More Info
As you saw when you ran the tutorial in Chapter 2, the configuration interview is
presented to the user in the configuration editor. The question text and answer
controls are presented in the Question pane, and information that helps the user
answer the question is presented in the More Info pane.

FIGURE 6-3 The JavaTest Configuration Editor: Question and More Info Panes

The following sections focus on the text portions of the interview — the question
text and the More Info help.

Writing Style
The style that you use for writing question text is very important. Experience has
shown that it is very important to make the question text as clear, concise, and
unambiguous as you can. Always try to use imperative statements, direct questions,
and short explanations. If possible, have a proficient writer edit the questions to
ensure readability and consistency.
Chapter 6 Creating a Configuration Interview 67

Only put question text in the question pane. Information that helps the user answer
the questions, including examples, should be provided in the More Info pane. The
following figure shows a question where examples and other helpful information are
included in the question pane with the question text:

FIGURE 6-4 Question without More Info Help

The following example shows how this question can be improved by reorganizing
and slightly rewriting the question text and moving the examples and extra
information to the More Info pane:

FIGURE 6-5 Question with More Info Help

There are a number of advantages to using the More Info pane to provide examples
and other explanatory information:

Browse

Specify the path of the Java Virtual
Machine you wish to use to execute the
tests.

For example:

jdk_install_dir\bin\java
jdk_install_dir\jre\java

Type the path in the text box, or click
Browse to invoke a file chooser to make
your selection.

This is the path of the Java runtime
system you wish to run your tests. For
example:

jdk_install_dir\bin\java
jdk_install_dir\jre\java

Type the path in the text box, or click
Browse to invoke a file chooser to make
your selection.Browse

Specify the path of the Java Virtual
Machine you wish to use to execute the
tests.
68 JavaTest Architect’s Guide • May 2011

■ It allows you to keep the questions simpler. As users become familiar with the
interview, they may no longer need the additional information to answer the
questions. Displaying the extra information to the More Info pane moves it out of
the way.

■ The HTML-based More Info pane offers richer formatting, including: images,
fonts, and tables

■ The More Info pane can be scrolled to enable longer discussions and examples

Creating Question Text and Keys
Every interview question has its own unique key. The key is based on a name
assigned by you and should uniquely identify the question with the interview.
Normally, keys are of the form:

interview_class_name.question_name

You specify the question_name when you create the question, the interview_class_name
is automatically added for you.

Question keys are used to identify question titles and text in resource files. The title
of the interview and the title and text for every question in the interview is located
in a Java resource file. The file contains the following types of elements:

■ The title of the full interview

■ A title for each question of the form: question_key.smry

■ The text for each question of the form: question_key.text

■ Additional entries for choice items that must be localized

For every interview question you create you must add corresponding .smry and
.text entries into the resource file.

The following example shows a fragment of the Demo TCK configuration interview
resource file:

You can find the full Demo TCK configuration interview resource file in:

jt_install\examples\javatest\simpleTags\src\i18n.properties

title=Demo Interview Configuration Editor
AgentInterview.mapArgs.smry=Agent Map File
AgentInterview.mapArgs.text=Will you use a map file when you run the JavaTest
Agent?
DemoInterview.name.smry=Configuration Name
DemoInterview.name.text=Please provide a short identifier to name the
configuration you are creating here.
Chapter 6 Creating a Configuration Interview 69

The JavaTest harness uses the standard rules for accessing resource files. You can
provide alternate versions for other locales by creating additional files in the same
directory as i18n.properties with names of the form: i18n_locale.properties.
See the Java SE platform resource file specification for more details.

Creating More Info
The JavaTest configuration editor enables architects and technical writers to present
supplemental information for every question in the interview in the More Info pane.
This information may include background information about the question, and
examples and suggestions about how to answer them.

The More Info pane is implemented using an embedded JavaHelp window. The
JavaHelp viewer supports HTML 3.2 with some additional extensions. For
information about the JavaHelp technology, see:
http://java.sun.com/products/javahelp

Note – The JavaHelp libraries required to display More Info help are included in
javatest.jar and should not be included separately.

The following procedures describe how to set up the More Info system for your
interview and how to add More Info topics as you add questions to the interview.

▼ Set Up the More Info System
Create the directories and files used by the More Info system:

1. Create a top-level directory called moreInfo

The moreInfo directory should be located in the same directory as your
interview class file(s).

2. Create directories named default and images in the moreInfo directory

The default directory contains the default localization. If your test suite is ever
localized, the other locales can be added beside the default directory. The
images directory contains any images you may use in the More Info help.
70 JavaTest Architect’s Guide • May 2011

http://java.sun.com/products/javahelp

3. Copy the Demo TCK HelpSet file to your moreInfo directory and rename it
appropriately (retaining the .hs extension)

The HelpSet file is the XML file that the JavaHelp libraries look for to find all of
the help information that defines the HelpSet. Rename it to reflect the name of
your test suite. When you write your interview you specify the path to your
HelpSet file.

The path to the Demo TCK HelpSet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\demotck.hs

4. Edit the HelpSet file

The Demo TCK HelpSet file looks like:

Edit the contents of the <title> tag to reflect the name of your test suite.

5. Copy the Demo TCK map file to the default directory

The JavaHelp map file is an XML file that contains a <mapID> entry for every
More Info topic. The JavaHelp system uses it to assign an ID to every HTML file.

6. Copy the Demo TCK style sheet to the default directory

Use the CSS, level 1 style sheet from the Demo TCK example for your More Info
topics. Feel free to change it to suite your needs.

The path to the Demo TCK style sheet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\default\moreInfo.css

▼ Create HTML Topics for All Interview Questions
For every question in your interview, you should create an HTML topic file and add
an entry for that topic in the map file. The following steps describe how to do both:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE helpset

 "http://java.sun.com/products/javahelp/helpset_1_0.dtd">
<helpset version="1.0">
<!-- title -->
 <title>DemoTCK Configuration Interview - Help</title>
<!-- maps -->
 <maps>
 <mapref location="default/map.xml"/>
 </maps>
</helpset>
Chapter 6 Creating a Configuration Interview 71

1. Create a map entry for the More Info topic

Every More Info topic file must have a corresponding <mapID> entry in the
map.xml file. The JavaHelp system uses the IDs created in these files. The
target attribute defines the ID, and the url attribute defines the path to HTML
topic file (relative to the map file). The following example shows the map file for
the Demo TCK test suite that you copied to your interview in a previous step.

Replace the target and url attributes to match your More Info topics. Remove
any extra entries and add new entries as required.

2. Create an HTML More Info topic file in the default directory

Copy one of the Demo TCK More Info files from:

jt_install\examples\javatest\simpleTags\src\moreInfo\default

and use it as a template. Be sure to include the <link> tag that references the
style sheet.

Experience has shown that it is helpful for the architect to create “stub” files for
every question in the interview. These files are later completed by a technical
writer and can provide information that the writer can use.

▼ Customizing Standard Question More Info
The JavaTest package includes default versions of the More Info HTML topics that
describe the standard interview questions in both Question mode and Quick Set
mode. However, should you wish to customize the content for some or all of these
questions, you can override the defaults with files of your own. The following steps
describe how to substitute your More Info topics for one of the standard interview
questions:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
 "http://java.sun.com/products/javahelp/map_1_0.dtd">
<map version="1.0">
<!-- More Info IDs -->
<mapID target="DemoTCKParameters.cmd Type" url="cmdType.html" />
<mapID target="DemoTCKParameters.testVerboseLevel" url=

"testVerboseLevel.html" />
<mapID target="DemoTCKParameters.desc" url="desc.html" />
<mapID target="DemoTCKParameters.envEnd" url="envEnd.html" />
<mapID target="DemoTCKParameters.epilog" url="epilog.html" />
<mapID target="DemoTCKParameters.jvm" url="jvm.html" />
<mapID target="DemoTCKParameters.name" url="name.html" />
<mapID target="DemoTCKParameters.prolog" url="prolog.html" />

</map>
72 JavaTest Architect’s Guide • May 2011

1. Determine the More Info ID for the question

You will override the More Info ID in your interview HelpSet. To do so, you have
to determine the ID name of the standard question.

a. Open the configuration editor window to the question you wish to override

Make sure that you establish cursor focus in the question pane.

b. Press Alt-Shift-D

This opens the Configuration Editor Details Browser. The More Info ID is listed
in the “id” field.

2. Create a map entry in your map file as described in the previous section with
the same name as the More Info ID you found in step 1.

For example:

<mapID target="TestsInterview.needTests" url="my_needTests.html" />

Note that the URL must contain the path to a file you create and must be included
in your interview HelpSet.

3. Create your custom version of the HTML More Info topic

Be sure that you create it at the location you specified in the map file URL field.

Creating the JAR File
After you have created your interview, you must package it into a JAR file for
inclusion with your test suite. If you include other custom components with your
test suite, they can be packaged together with the interview. See “The Test Suite JAR
File” on page 33 for more information. You can also use the following file as an
example:

jt_install\examples\javatest\simpleTags\demotck\lib\jtdemotck.jar

After you create the JAR file, put it in the test suite’s lib directory and add it to the
classpath entry in the testsuite.jtt file.
Chapter 6 Creating a Configuration Interview 73

74 JavaTest Architect’s Guide • May 2011

PART II Advanced Topics

The chapters in this part of the JavaTest Architect’s Guide describe advanced
features of the JavaTest harness that allow you to customize your test suite.

CHAPTER 7

Compiling Test Suites

Depending on how you design your test suite, you may be able to use the JavaTest
harness to compile your tests when building your test suite. The instructions below
describe how to compile tests if your test suite uses the Simple Interview and
Standard Test Script (StdTestScript) as described in Chapter 12. To use the
JavaTest harness to compile your tests you must:

■ Specify the source files required to compile them in the tests’ test descriptions

■ Set two system properties on the JavaTest command line

System Properties
The following table describes the system properties used in compilation:

These properties are set on the JavaTest command line using the -D option, usually
when running the JavaTest harness in batch mode in a shell script or batch command
(see the JavaTest online help for details about batch mode).

TABLE 7-1 System Properties Used in Compilation

System Property Description

SimpleInterviewParameters.mode Specifies the operating mode used by this configuration. The valid
values are:

certify Executes test suite classes (assumes that tests are
already compiled)

precompile Compiles the tests

developer Compiles the tests and runs them

command.compile.java Specifies the command that the JavaTest harness uses to compile
the tests.
77

You can use the following command lines as templates for compiling the simple test
suite you created in Chapter 4:

Windows:

UNIX:

Note – Line breaks are added here to improve readability; your command line
should be a single line that contains no line breaks.

The following table describes the parts of the command:

java -DSimpleInterviewParameters.mode=precompile
-Dcommand.compile.java=’com.sun.javatest.lib.ProcessCommand

javac -d $testSuiteRootDir\classes -classpath $testSuiteRootDir\classes
$testSource -jar javatest.jar -batch -testsuite ts_dir

-workdir -overwrite work_dir -report report_dir

java -DSimpleInterviewParameters.mode=precompile
-Dcommand.compile.java=’com.sun.javatest.lib.ProcessCommand

javac -d $testSuiteRootDir/classes -classpath $testSuiteRootDir/classes
$testSource -jar javatest.jar -batch -testsuite ts_dir

-workdir -overwrite work_dir -report report_dir

TABLE 7-2 Compilation Command Components

Component Description

com.sun.javatest.lib.ProcessCommand The library command used to run processes (in this case the
Java compiler) on the same machine as the one the JavaTest
harness is running. See for more information about this and
other library commands.

$testSuiteRootDir The JavaTest variable that represents the root directory of the
test suite. This value is provided by the JavaTest harness when
the command is executed. This value is taken from the path you
specify to the -testsuite option.

$testSource The JavaTest variable that represents the test source file to
compile. This value is provided by the JavaTest harness.

-batch Specifies that the JavaTest harness be executed in “batch” mode.
When run in batch mode the JavaTest GUI is not started. See the
JavaTest online help for more information.
78 JavaTest Architect’s Guide • May 2011

-testsuite The fully qualified path name of the top-level test suite
directory.

-workdir -overwrite work_dir Specifies the name of the work directory to use for the
compilation. The -overwrite option causes the JavaTest
harness to first delete (if it exists) and create the specified work
directory. It’s generally a good idea to create fresh results each
time you recompile.

-report report_dir Specifies the name of the directory where reports are to be
written. It is best to specify report_dir as a simple file name (no
“\”
or “/” characters; this causes the reports to be written in
work_dir\reports\report_dir.

TABLE 7-2 Compilation Command Components (Continued)
Chapter 7 Compiling Test Suites 79

80 JavaTest Architect’s Guide • May 2011

CHAPTER 8

The TestSuite Object

The JavaTest harness uses the TestSuite object as a portal to information about the
test suite; whenever the JavaTest harness requires information about the test suite, it
queries the TestSuite object. JavaTest reads the testsuite.jtt file to determine
the class name and class path for the test suite; JavaTest then uses those properties to
instantiate the TestSuite object. By default, the TestSuite object also gets a
number of other standard properties from the testsuite.jtt file. As test suite
architect, you create and maintain your TestSuite class and the testsuite.jtt
file.

The testsuite.jtt File
The testsuite.jtt file is located in the top-level directory of the test suite and is
a registry of information about the test suite that includes the paths to various
JavaTest components as well as other static information about the test suite. The
testsuite.jtt file generally contains at least two entries that tell the JavaTest
harness how to start the TestSuite class:

■ A testsuite entry that specifies the name of the TestSuite class and any
arguments the class requires

■ A classpath entry that specifies the class path on which the main TestSuite
class can be found (typically, a JAR file that contains test suite-specific
components). This entry is required if the TestSuite class or any other classes
the TestSuite refers to are not located within javatest.jar.
81

The testsuite.jtt file usually contains other entries that specify information
about the test suite; the JavaTest harness reads the file and passes the information to
the TestSuite class when it starts. The following table describes the standard
properties used by the TestSuite and may be specified in the testsuite.jtt
file:

TABLE 8-1 testsuite.jtt Properties

Property Description

additionalDocs An optional list of resource names that identify JavaHelp helpsets for
documents to be added to the JavaTest Help menu. The content of the
helpsets must be provided on the test suite classpath (see classpath
above).
Example: additionalDocs=jck.hs releasenotes.hs

classpath Extends the class path beyond javatest.jar. The class path is used to
locate JavaTest plug-in classes (script, finder, interview) in JAR files, Zip
files, or directories. You must separate entries with white space; relative
paths are relative to the test suite root directory. If not given, classes must
be located on the main JavaTest class path (not recommended). Always
use “/” as the file separator.
Default: Nothing in addition to javatest.jar

Example: classpath=lib/jtdemotck.jar

env.tsRoot A specialized entry to allow a legacy (prior to JavaTest version 3.0) test
suite to override the values of $testSuiteRoot and
$testSuiteRootDir that get set in the environment used to run tests.
Most test suites should not need to set this property.

finder The name of the test finder class and arguments (if any). This property is
used by the default implementation of TestSuite.createTestFinder
to determine the test finder to be used to locate tests. This property
should be of the form “classname args“, where classname identifies the
name of the test finder class itself; any arguments are passed to the test
finder’s init method.
Example: testsuite=com.sun.javatest.finder.TagTestFinder
The default implementation of TestSuite.createTestFinder uses
the following logic to determine the test finder:
• If a testsuite.jtd file is found in the test suite tests/ directory,

or in the location specified in the testsuite.jtd entry of the
testsuite.jtt file, the test finder is assumed to be
com.sun.javatest.finder.BinaryTestFinder (which reads the
testsuite.jtd file)

• If a finder entry is found in the testsuite.jtt file, it is used to
determine the test finder

• If neither of the preceding are found, the default is to use
com.sun.javatest.lib.HTMLTestFinder

See the description of the testsuite.jtd entry below.
82 JavaTest Architect’s Guide • May 2011

id A unique identifier composed of letters, digits, underscore, minus, and
hyphen used to identify a specific version of a test suite. The JavaTest
harness uses this property to ensure that component versions are
compatible. By convention, the name is composed of the following parts:
technologyNameTCK_version.
Example: id=DemoTCK_tags_1.0

initial.jtx The path to the exclude list shipped with the test suite. If the path is
relative, it is evaluated relative to test suite root directory. Always use
“/” as the file separator. The recommended location for this file is in the
test suite lib/ directory.
Example: initial.jtx=lib/my_testsuite.jtx

interview The name of the interview class and arguments (if any). The default
implementation of TestSuite.createInterview uses this property to
determine the interview to use to obtain configuration information
required to run the tests. The property should be of the form “classname
args“, where classname identifies the name of the interview class itself;
any arguments are passed to the interview’s init method.
Example: interview=com.sun.demotck.DemoInterview

keywords The list of valid keywords for this test suite.
If the entry is present and contains a list of keywords, the keywords are
added to the configuration editor keywords combo box.
If the entry is omitted, it is taken to mean “unspecified” — in which case
the user can use the configuration editor to specify keywords, but the
configuration editor keywords combo box is disabled.
If the entry is present but empty, it is taken to mean “none” — in which
case the configuration editor does not present the keyword questions and
tabs to the user.

latest.jtx Specifies the location (as a URL) where the latest exclude list can be
obtained. The http: and file: protocols are supported; authentication
access is not yet supported.
Example: latest.jtx=http://my_company.com/support/exclude

logo Specifies the location on the class path of an image to be used as the test
suite logo. The path is evaluated relative to the test suite root directory.
This logo is displayed in the JavaTest Quick Start wizard.

name The name of the test suite. This property is a string of up to 80 characters.
By convention the name is composed of the following parts:
technology_name TCK version| Test Suite [(additional text)]
Example: name=DemoTCK 1.0 Test Suite (Tag Tests)

TABLE 8-1 testsuite.jtt Properties

Property Description
Chapter 8 The TestSuite Object 83

script The name of the test script class and arguments (if any). This property is
used by the default implementation of TestSuite.createScript to
determine the script to run the tests. The value should be of the form
“classname args”, where classname identifies the name of the Script class
itself; any arguments are passed to the Script’s init method.
If this property is not specified, the default implementation of
TestSuite.createScript reverts to the behavior defined for the
JavaTest harness, version 2. Relying on this behavior is not
recommended.
Example: script=com.sun.javatest.lib.StdTestScript

serviceReader Enables service management for the test suite. See Chapter 13 for
detailed information about the service management feature.

testCount The number of tests in the test suite. This property gives the JavaTest
GUI a hint as to how many tests are in the test suite.
Example: testCount=450

tests By default, the JavaTest harness looks for test source files and test
descriptions in the tests/ directory in the test suite root directory. If
you locate your test sources and test descriptions in a different directory,
you must specify it using this property.
Example: tests=apitests

TABLE 8-1 testsuite.jtt Properties

Property Description
84 JavaTest Architect’s Guide • May 2011

Note – The testsuite.jtt file is a Java property file and follows all the standard
rules for Java property files defined in java.util.Properties.

The following example shows the testsuite.jtt file that is included with the tag
example test suite.

testsuite Optional class name for a custom TestSuite class. The value should be
of the form “classname args”, where classname identifies the name of the
TestSuite class itself; any arguments are passed to the TestSuite
init method. The TestSuite class is used to access virtually all
information about the test suite. Defaults to
com.sun.javatest.TestSuite, which provides default behavior in
concert with the testsuite.jtt file.
Default: testsuite=com.sun.javatest.TestSuite

testsuite.jtd Can be used to override the default location of the BinaryTestFinder data
file.
By default the TestSuite class looks for a file named testsuite.jtd in
the directory specified by the “tests” property in testsuite.jtt. To
override the default, specify the name and location of the
BinaryTestFinder data file relative to the top-level directory of the
product (location of the testsuite.jtt file).
Example: testsuite.jtd=tests/testsuite.jtd

tmcontext Optional class name for a custom ContextManager class. The value
should be of the form “classname”, where class name identifies the name
of the ContextManager class itself. The Test Manager (ExecTool) will
query the test suite for this value as it builds the GUI. Defaults to
com.sun.javatest.exec.ContextManager, which provides the
default behavior of the harness. See Chapter 13 for more information on
customization.
Default: tmcontext=com.sun.javatest.exec.ContextManager

Test Suite properties file for DemoTCK test suite with
tag-style tests

name=DemoTCK 1.0 Test Suite (Tag Tests)
id=DemoTCK_tags_1.0
classpath=lib/jtdemotck.jar
finder=com.sun.javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.demotck.DemoTCKParameters

TABLE 8-1 testsuite.jtt Properties

Property Description
Chapter 8 The TestSuite Object 85

Overriding Default Methods
Although by default these properties are obtained from the testsuite.jtt file,
you can override this behavior in your TestSuite class. By overriding the methods
that get these properties, you can specify your own properties directly in the
TestSuite class and/or manipulate the properties from testsuite.jtt as you
wish. This is generally not necessary, but it is an option. Some reasons why you
might choose to do this:

■ To hide or protect some of the properties

■ To determine some of these properties programmatically at runtime

To customize the TestSuite class, you must extend the base
com.sun.javatest.TestSuite class. For details about which methods you may
choose to override, see the TestSuite API documentation.
86 JavaTest Architect’s Guide • May 2011

CHAPTER 9

Test Finder

After the TestSuite object is created, the JavaTest harness starts the test finder for
the test suite. The TestFinder class creates the object responsible for finding and
reading test descriptions — information required to execute a test is provided in its
test description. At a basic level, the TestFinder class does the following:

1. Given an object (for example, a file) that contains a test description, the test finder
uses the read() method to read the object. The read() method in turn calls the
scan() method that must be provided by the test finder. The scan() method
scans the file object for a test description or any references to other files that must
be read (for example, if the file object is a directory).

2. The test finder creates one TestDescription object per test from the
information it reads from the test description.

3. The getTests() method returns any test description information that it finds,
and the getFiles() method returns a list of any other files that it must read to
locate other tests.

Test Finder Subtypes
Because test descriptions can be embodied in a wide variety of formats, you can
extend the base TestFinder class, customizing the read() method to meet the test
suite’s needs. The JavaTest Architect’s release provides library classes that you can
use directly; however, these classes do not provide much error checking. You can
conveniently subtype a library class to provide additional validity checking.
87

Tag Test Finder
The TagTestFinder extends the TestFinder class. This class is also provided so
that you can further extend and customize it to your own needs.

The TagTestFinder looks for test description information in specially commented
tags in Java programs and shell scripts. The TagTestFinder recursively scans test
directories looking for files with the .java extension and extracts test description
information embedded directly in the test source files using specialized tags. These
tags are located with Java language comments and begin with the @ character. The
following figure shows an example of a file that contains tag test description entries.

This format has the advantage of being very convenient for the test developer.

/* @test
 * @bug 4105080
 * @summary Activation retry during a remote method call
 * to an activatable object can cause infinite recursion in
 * some situations.
 * @author John Brown
*
 * @bug 4164971
 * @summary Allow non-public activatable class and/or
 * constructor Main test class has a non-public
 * constructor to ensure functionality is in
 * place
 *
 * @library ../../../testlibrary
 * @build TestLibrary RMID
 * @build ActivateMe CheckActivateRef_Stub CheckActivateRef
 * @run main/othervm/policy=security.policy/timeout=240
 */

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

public class CheckActivateRef
extends Activatable
implements ActivateMe, Runnable

{

private CheckActivateRef(ActivationID id, MarshalledObject obj)
throws ActivationException, RemoteException
{
super(id, 0);
}

[...]
88 JavaTest Architect’s Guide • May 2011

Examples of tag test descriptions can be found in jt_install\examples\javatest\
simpleTags\demotck\tests.

HTML Test Finder
An example of a test finder that reads HTML test descriptions is the
JCKTestFinder — a subtype of the HTMLTestFinder class that provides
additional error checking. The JCKTestFinder is described in some detail here to
demonstrate how a test finder works. HTMLTestFinder is provided with the
JavaTest harness so that you can further extend it and customize it to your own
needs.

Test suites that use the HTMLTestFinder class use HTML-based test descriptions to
provide the information required to execute their tests. Distributed throughout the
directories that contain the tests are HTML test description files that contain one or
more test description tables. Each HTML test description table contains information
about a single test (for example, its name in the class path). Every test must be
represented by its own unique test description table; however, test description files
can contain multiple test description tables. Test description tables are always
assigned the HTML class “TestDescription” using the class attribute:

<TABLE BORDER=”1” class=”TestDescription”>

The following HTML source produces the test description table that follows:

<table border=”1” class=”TestDescription”>
<tr>

<td>title</td>
<td>Checkbox Tests</td>

</tr>
<tr>

<td>source</td>
<td>CheckboxTest.java</td>

</tr>
<tr>

<td>executeClass</td>
<td>javasoft.sqe.tests.api.java.awt.Checkbox.CheckboxTests</td>

</tr>
<tr>

<td>executeArgs</td>
<td>-TestCaseID ALL</td>

</tr>
<tr>

<td>keywords</td>
<td>runtime positive</td>

</tr>
</table>
Chapter 9 Test Finder 89

The JCKTestFinder test finder locates the HTML test description files by
recursively scanning directories to look for files with the .html suffix, ignoring any
other types of files. It reads the test description table, ignoring all information in the
file except the content of the basic table tags.

If you include multiple test description tables in a single test description file, each
test description table must be preceded by an <A NAME> HTML tag that provides a
unique identifier for each test description table.

Note – Test description files should also contain comments and text that describe
the test.

The HTMLTestFinder class can also check the validity of test description values.
For example, the HTMLTestFinder can be run with flags that cause error messages
to be printed if any of the test description fields are invalid. When you extend
HTMLTestFinder, you can add your own validity checks.

The benefit of this format is that it makes it easy and convenient for users to browse
test descriptions using the JavaTest harness GUI or a web browser. The trade-offs are
that more work is required of the test developers to create and maintain the HTML
files, and parsing these separate files has an impact on performance.

Examples of HTML test descriptions can be found in jt_install\examples\
javatest\simpleHTML\demotck\tests.

Binary Test Finder
BinaryTestFinder was created to improve the startup performance of large test
suites. It is capable of reading test description information from a highly optimized
format created from any type of native test description.

The optimized format (filename.jtd) is created using a companion program called
BinaryTestWriter. BinaryTestWriter uses a native test finder such as HTMLTestFinder,
or TagTestFinder to find and read native test descriptions (for example, HTML files
or source tags) and then creates a single, optimized file that contains the test

TABLE 9-1 Test Description Table

Title Checkbox Tests

source CheckboxTest.java

executeClass javasoft.sqe.tests.api.java.awt.Checkbox.CheckboxTest

executeArgs -TestCaseID ALL

keywords runtime positive
90 JavaTest Architect’s Guide • May 2011

description information for all the tests in the test suite. If one is available for the test
suite, the test suite uses the BinaryTestFinder to read test descriptions from that
optimized file. Use of the BinaryTestFinder is highly recommended for larger test
suites — it greatly reduces the time required to populate the JavaTest harness test
tree.

BinaryTestWriter
BinaryTestWriter is a standalone utility that creates compressed file that contains a a
set of binary test descriptions. It uses a test finder that you specify to locate the test
descriptions for your test suite, and writes a compact representation of those test
descriptions to a file that can be read by BinaryTestFinder (described in the next
section).

BinaryTestWriter is run from the command line as follows:

java -cp javatest.jar com.sun.javatest.finder.BinaryTestWriter
arguments test-suite[tests]

The following table describes the parts of the command:

TABLE 9-2 BinaryTestWriter Command Components

Component Description

-cp javatest.jar Puts javatest.jar on the class path

arguments -finder finderClass [finderArgs] -end

Specifies the test finder to use to locate the test descriptions in the specified test suite.
finderClass: The name of the plug-in class for the desired test finder. The class must be
on the class path used to run BinaryTestWriter.
finderArgs: Any optional arguments passed to the test finder’s init method.
-o output-file
Specifies where the set of compressed test descriptions is written. The output file
always contains the .jtd suffix and is typically named testsuite.jtd. The
testsuite.jtd file is usually placed in the test suite tests/ directory.
-end

Defines the end of the finder specification

test-suite The path to the directory in the test suite that contains the test descriptions (typically,
the tests/ directory)

tests An optional list of directories in which to search for test descriptions (typically,
directories under tests/)
Chapter 9 Test Finder 91

Note – The finderClass, finderArgs, test-suite arguments are specified here exactly as
they are when you run the JavaTest harness without using BinaryTestWriter.

BinaryTestFinder
BinaryTestFinder is a standard JavaTest test finder that knows how to read test
descriptions stored in the file written by BinaryTestWriter. The full name of the class
is:

com.sun.javatest.finder.BinaryTestFinder

The BinaryTestFinder class is provided in the standard javatest.jar file. You
can use it through the standard string interface, or directly via the API. For details
about the API, see the Javadoc documentation.

There are two ways you can use BinaryTestFinder:

■ If you use the standard TestSuite class, you can place testsuite.jtd in the
test suite tests\ directory. If the file is found there it is used, otherwise the
uncompressed files in this directory are used.

■ Specify the finder explicitly in the testsuite.jtt file:

finder=com.sun.javatest.finder.BinaryTestFinder -binary testsuite.jtd

This method requires that testsuite.jtd be present when the test suite is run.
If it is not present, the tests are not run and an error condition exists. You can use
the testsuite.jtd property in the testsuite.jtt file to specify the location
of the testsuite.jtd file. You must remember to run BinaryTestWriter before
running the test suite.

■ Override the createTestFinder method for the TestSuite class you provide
for your test suite. This method allows you to dynamically determine whether to
use BinaryTestFinder. The TestSuite class can check for the existence of the binary
test description file (testsuite.jtd) before running tests; if the .jtd file is not
found, it can choose to use an alternate finder.

Examples

The following example shows the command line used to start the basic non-
customized TestFinder class:

java -cp lib/javatest.jar com.sun.javatest.finder.BinaryTestWriter
-finder com.sun.javatest.lib.HTMLTestFinder -dirWalk -end top_level_testsuite_dir/tests
92 JavaTest Architect’s Guide • May 2011

This example shows the command line for starting a customized TestFinder class
(MyTestFinder). The finder class takes -dirWalk and -specialMode as arguments.
Note that the JAR file that contains the custom finder class (in this case
lib/mytck.jar) is added to the class path.

java -cp lib/javatest.jar:lib/mytck.jar com.sun.javatest.finder.BinaryTestWriter -
finder com.sun.mytck.lib.MyTestFinder -dirWalk -specialMode 2 -end
top_level_testsuite_dir/tests
Chapter 9 Test Finder 93

94 JavaTest Architect’s Guide • May 2011

CHAPTER 10

Test Scripts

The test script is responsible for running a test, recording all the details in a
TestResult object, and returning the test’s status (pass, fail, error) to the JavaTest
harness. The test script must understand how to interpret the test description
information returned to it by the test finder. The test script breaks down the
execution of the test into a series of logical steps based on information from the test
description and the test execution model. The test script can run the test itself or
delegate all or part of that responsibility to commands. A fresh, new copy of the test
script is created for each test. This design allows you to create test scripts for
different test suites that use the same commands, much like shell and batch scripts
are composed from different operating system commands.

Design Decisions
One of the most significant design decisions that you make is how the test script
executes tests. The mechanism that you design can be very simple but inflexible, or
it can be more complex and much more flexible.

Simple Test Scripts
Simple and less flexible test scripts construct test command lines directly from the
test description and the test environment.

At the most simplistic level, scripts can execute tests using Runtime.exec. For
example using the JDK:

Runtime r = Runtime.getRuntime();
String[] cmd = {"java", "MyTest"};
String[] env = {"-classpath", testsDir + "/classes"};
95

In this case the test script is responsible for collecting the test’s exit status.

The JavaTest harness provides a number of library commands that the script can use
to execute system commands in different execution environments; these are
described in Appendix A. One example is the library command named
com.sun.javatest.lib.ProcessCommand. ProcessCommand executes a system
command in a separate process on the same machine running the test script. For
example:

The result of the command is a Status object based upon the exit code of the
process. The exit code is analyzed by the test script and factored into the final test
result. For example, if a script is executing a test by means of a series of commands
and one of them fails unexpectedly, the execution may stop at that point.

More Flexible Test Scripts
More sophisticated and flexible test scripts use command templates to create custom
commands. Command templates are designed by you and are created by the
configuration interview from configuration information and test description
information (see Chapter 6). Command templates can be created with some
components of the template specified in the form of variables that the test script
resolves when it uses the command to run a test. A configuration interview may
provide several different templates; the script chooses among them as required for
each individual test.

Process p = r.exec(cmd, env);
// read output from test using
// p.getInputStream() and p.getErrorStream()
// (best done with a separate thread for each stream)
int rc = p.waitFor();
Status s = (rc == 0 ? Status.passed("OK") :
Status.failed("process exited with return code " + rc);

// s contains result status from executing command

String[] args = {"-classpath" + testsDir + "/classes", "java", "MyTest"};
PrintWriter out1 = ... // create error message stream
PrintWriter out2 = ... // create output message stream
Command cmd = new ProcessCommand();
Status s = cmd.run(args, out1, out2);
// output from command will be written automatically to
// the out1 and out2 streams
// s contains result status from executing command
96 JavaTest Architect’s Guide • May 2011

For example, a configuration interview might create a custom command template
named command.testExecute that can be used to run all of the tests in a test suite.

The test script sets the value of the variables ($testExecuteClass and
$testExecuteArgs) for each test. To review the parts of the template see “Example 1”
on page 51.

The use of variables allows you to create flexible commands that can be used with
all of the tests in the test suite. The following test script fragment shows how a test
script invokes the testExecute command1 whenever it runs a test. Note that the
test script uses its invokeCommand() method to execute commands:

In this example, the test script executes a single command for each test — the test
scripts can also execute complex, multi-part tests that may involve multiple
command invocations. The following examples describes some common multi-part
test scenarios.

command.testExecute=com.sun.javatest.lib.ProcessCommand
\bin\java.exe -classpath $testSuiteRootDir\classesJDKC:\
$testExecuteClass $testExecuteArgs

1. When the command is invoked, the “command.” prefix is not used.

import com.sun.javatest.*;

class MyScript extends Script {
 public Status run(String[] args, TestDescription td,
TestEnvironment env) {

...

// Extract values from the test description
String executeClass = td.getParameter("executeClass");
String executeArgs = td.getParameter("executeArgs");

...

// Set variables in the template
env.put("testExecuteClass", executeClass);
env.put("testExecuteArgs", executeArgs);
// Invoke the command
Status s = invokeCommand("testExecute");

...

return s;
 }
}

Chapter 10 Test Scripts 97

Example 1
Compiler tests generally require a multi-part test script. To test the Java compiler
two stages are required:

1. The compiler compiles test files

2. The output from that compilation is run to ensure that it executes as expected

Example 2
Distributed tests are required to start a process on a remote system with which the
test interacts. This requires a multi-part test that:

1. Sets up the remote system

2. Runs the primary test class that interacts with the remote system

The JavaTest harness is shipped with the source to a sample test script
(StdTestScript.java) that you can refer to in the jt_install\examples\javatest\
sampleFiles directory.

See the Script API documentation for information about the Script class.

Writing Custom Commands
Commands are the means by which the JavaTest harness invokes platform or test
components to perform a step of the test execution model embodied in a test script.
The JavaTest harness provides standard commands that are suitable for most uses,
including test systems that can execute programs in a separate address space, and
test systems that provide a single Java virtual machine.

If none of the standard commands are suitable, you can write a new one tailored to
the test suite’s specific requirements. One scenario that requires a custom command
is when the test suite uses a single JVM, and the test invokes a program that does
not have a standard interface that can be used by one of the standard commands. In
this case, you can write a very simple converter command that connects the interface
expected by the JavaTest harness with the interface provided by the program.
98 JavaTest Architect’s Guide • May 2011

The class for a command is similar (apart from the name) to the standard Test
interface. The full class name is com.sun.javatest.Command.

The args argument is constructed in and passed down from the script that invokes
the command. Output written to the out1 stream and out2 stream is recorded in
the appropriate test result file.

EXAMPLE 10-1 is an example of a command that invokes a compiler in the same JVM
as the JavaTest harness, using an API for the compiler. The example uses the JDK
compiler which is usually invoked directly from the command line; however, in this
case an undocumented API is used. The details of how to create the PrintStream
outStream from the PrintWriter out are omitted here for simplicity; the main
point is to illustrate how easy it can be to write a wrapper class that passes
arguments through to a non-standard API, and converts the results into the format
that the JavaTest harness requires.

See the source code for JavaCompileCommand in the jt_install\examples\
javatest\sampleFiles directory for a complete, commented example.

EXAMPLE 10-1 JavaCompileCommand

For information on the standard commands provided with JavaTest see Appendix A.

abstract class Command {
Status run(String[] args, PrintWriter out1, PrintWriter out2)
...

}

public class JavaCompileCommand implements Command
{

public Status run (String[] args, PrintWriter out1,PrintWriter out2)
{

PrintStream outStream = ... // create stream from out
sun.tools.javac.Main compiler = ;

new sun.tools.javac.Main(outStream, “javac”)
boolean ok = compiler.compile(args);
return (ok ? Status.passed(“Compilation OK”) :

Status.failed(“Compilation failed”));
}

}

Chapter 10 Test Scripts 99

Test Result
To store test results, the JavaTest harness creates and maintains a TestResult object
for each test. The test script stores information in a TestResult object while it
executes a test. This information is presented to users in the JavaTest GUI and is
useful when troubleshooting test runs. The more information the test script
provides, the easier it is for the user to understand what occurred when the test was
run.

The TestResult object contains the following elements:

When a test completes execution, the JavaTest harness writes the results to the file
testname.jtr in the work directory. Test result files are created in directory
hierarchies analogous to the hierarchies in which the tests are organized.

See the API documentation for the TestResult class.

Test description The test description used for the test.

Configuration The portions of the environment used to run the test. This information
is displayed to the user in the Configuration tab of the JavaTest GUI.

Test run details Information about the test run. For example, start time, end time, This
information is displayed to the user in the Test Run Details tab of the
JavaTest GUI.

Note: The test script has access to this field and can write additional
information using the TestResult API.

Test run messages Test output messages. This section is written by the Script class’s
invokeCommand() method. This section contains at least two
subsections, one for messages from the test script and one for each part
of the test (if it is a multi-part test). This information is displayed to the
user in the Test Run Message tab of the JavaTest GUI.
100 JavaTest Architect’s Guide • May 2011

CHAPTER 11

Service Management

This chapter describes the ServiceManager (com.sun.javatest.services)
component provided by the JavaTest harness and how test suite architects can use it
to manage services that a test suite might require for test execution.

This chapter contains the following sections:

■ “Description” on page 101

■ “Services-Related Work Flow” on page 103

■ “Implementation” on page 104

■ “Service Management Architecture” on page 109

Description
A service is any unique component related to a test suite that is required for test
execution and must be started in separate process or thread (such as RMI daemon or
ORB service) before the test suite is run. Some TCKs might require many services.
The ServiceManager component enables users to configure the services required
to run tests.

Each test suite optionally specifies and describes a set of services that it requires to
run tests. During the test suite load process, the TestSuite instantiates objects that
implement the Service interface and uploads those objects to the
ServiceManager component.

The ServiceManager component manages all aspects of the service life cycle. From
information given by the test suite and the JavaTest harness, it determines which
services are required and when they should be started. From test execution events, it
also determines which services should be stopped.
101

The ServiceManager is available either when running the JavaTest harness or as a
separate service without running the JavaTest harness.

TABLE 11-1 Service Manager Features

Features Description

Automatically start and stop services Can start and stop services automatically.

Mapping services on tests or test suites Mapping services on individual tests or a set of tests, not on
the whole test suite, enables the ServiceManager to start/stop
services for group of tests.
For example, if a user is not running CORBA tests, the
Service Manager will not try to start CORBA services.
Consequently the user should not have to configure CORBA
services.

Manually start a service In case of remote test execution, users need the ability to
determine (manually or automatically) if a service should be
started or not.

Services are thread safe Services work safely in case of parallel test execution.

Process management - when to start services Provides an ability to start services in two modes:
1. As needed - Start service only when the first test or group

of tests that needs the service is about to run.
2. Up front - Start all needed services up front so that any

errors starting services can be detected before the actual
test run.

Process management - when to stop services Needed services stay up, once started, until the end of the
run or until it can be shown they are no longer be required.
Test execution finish, time out, and end of test run are points
to stop related services.

Performance The test suite does not run noticeably slower with this
mechanism enabled.

Usability - configuration file The user only provides or edits a single configuration file for
all the services, not a file for each service. The file is optional.
If the user doesn’t provide a file, the test suite should assume
that any required services will be started manually.

Services dependencies Dependencies between different services are supported.
For example, one service must be started or stopped before
other services.
102 JavaTest Architect’s Guide • May 2011

Services-Related Work Flow
Services-related work flow of harness execution is supported in both GUI and batch
mode test execution. The work flow consists of the following:

1. The ServiceManager and Service instances are instantiated after the test suite
is loaded inside harness.

2. When the JavaTest harness object (Harness) starts a test run, information that the
Harness has about the tests and groups of tests that should be run is provided to
the ServiceManager.

3. The ServiceManager filters out services that are unnecessary for the test run
based on information from the Harness and information from deployed services
regarding which test paths for which the service should be started.

The services-related workflow is performed before starting a test run in the main
Harness execution thread. During this process one of the following actions is
taken based on the information that the harness has about the tests and groups of
tests that should be run:

■ Start services as needed.

After being notified by the Harness that a test has started, the
ServiceManager determines if a particular service should be started for
running the next test. This enables "lazy" service start up, which may be useful
for performance reasons.

■ Start all required services now.

Before running any tests, the ServiceManager starts all required services.

■ Start services manually.

Service management is turned off for the test run. The Harness assumes that
the user will manually start all required services.

Note – When running in GUI mode, the ServiceManager functionality is enabled
after the user presses the Run button which blocks the Harness execution thread
until it determines how services will be started. In batch mode, the
ServiceManager is functionality is enabled by using an option in the command
line.

4. The ServiceManager stops services either as it determines that a service is not
required (all tests that require this service are completed) or at the end of test run.

Stopping services after the test run finished is preferred.
Chapter 11 Service Management 103

Implementation
Because the ServiceManager component must serve different requirements, its
service support design is as flexible as possible.To achieve this flexibility, the design
uses abstract concepts of service, service description, service execution and service
parameters. Some functionality, such as remote service management when services
are instantiated and run on a remote host, has not been implemented. However the
capability to implement the functionality is supported in the architecture. Additional
functionality could be implemented by the test suite and set through the API, as is
currently done in the JavaTest harness for other components.

Note – Services support is optional, so that test suites, which do not need services
support, are not required to implement additional components.

The JavaTest harness provides useful default implementations of the following
interfaces:

■ Service - Interface describing a service.

Service objects should be instantiated by ServiceReader. The particular
implementation class should be specified so that the ServiceReader can access
it. A default implementation, AntService (see “Implementation of Service
Interface” on page 106) is provided by the JavaTest harness. Such a service is the
Ant target in provided ant xml file. The benefit of such a service representation is
that the service can easily be started without running the JavaTest harness.

■ ServiceReader - Interface responsible for reading service definitions and
parameters.

The implementation should be provided by the test suite. A default
implementation, XMLServiceReader (see “Implementation of ServiceReader
Interface” on page 105), is provided by the JavaTest harness. This implementation
reads Service type definitions and start parameters of each particular instance,
as well as maps test paths to service instances from a single XML document.

■ ServiceConnector and ServiceExecutor - ServiceConnector is
responsible for the connection between harness representative (Service
interface) and ServiceExecutor is responsible for responsible for running
service in case of remote execution.

Each executor type is related to a respective service type, such as AntService
and AntServiceExecutor (see “Implementation of Service Interface” on
page 106). Connector doesn’t depend on the Service and ServiceExecutor
type. Connector has a unified interface and any Connector implementation
should work with any Service - ServiceExecutor pair. The JavaTest harness
104 JavaTest Architect’s Guide • May 2011

only provides a pseudo local connector that redirects requests to a
ServiceExecutor working in the same VM. The following are available types
of ServiceExecutor:

■ ThreadServiceExecutor - Executes any service described by Runnable
object in a separate thread.

■ ProcessServiceExecutor - Executes in a separate process by
Runnable.exec().

■ AntServiceExecutor - Extends ProcessServiceExecutor to execute ant
tasks using Ant.

Implementation of ServiceReader Interface
To make the process of acquiring information about services and instantiating
components more flexible, a test suite should provide a special component that
implements the ServiceReader interface. The ServiceReader interface reads
information regarding service descriptions and tests-to-services mappings during
test suite load, instantiates Service objects, and pushes the collected information
into them.

The JavaTest harness provides a default implementation (XMLServicesReader) of
the ServicesReader interface. XMLServicesReader looks for information inside
one XML file. The following sample provides a description of the contents and
format of this file.

<Services>
<property file=”local.properties”/>
<property name=”port” value=”8080”/>
<property name=”testsuite” value=”${root}/tests”/>
...................................
<service id=”rmid_1” class=”com.foo.bar.RMIDService” description=”This is first
variant of service to start rmid daemon”>
<arg name=”arg1” value=”5000”/>
<arg name=”arg2” value=”${testsuite}”/>
</service>
<service id="rmid_2" class="com.foo.bar.RMIDService" description=”This is second
variant of service to start rmid daemon”>
</service>
<service id=”msg_service” class=”com.foo.bar2.MessagingService” description=
”messaging service”>
<arg name=”timeout” value=”1000”/>
</service>
..................................
<testpath path=”api/java_rmi”>
<service refid="ant"/>
<service refid="rmid_1">
Chapter 11 Service Management 105

The format of the XMLServicesReader file consists of three sections:

■ Properties - The first section of the file specifies the properties.

You can load property values from a file or specify them separately. Properties
that do not have explicitly-set values are called parameters. Parameter values are
resolved later by Service or ParamResolver classes. In the code example, root
and testsuite properties are parameters. The Service interface should
provide operations to get and set parameters and arguments. Service properties
are described in “Service Properties” on page 107.

■ Services - The first section of the file describes the services.

Services are described by using a tag. Each service specification tag contains a
unique string ID that enables the user to refer to this service in the test map
section, a Service interface implementation class, and description text.

■ Test Map - The third section of the file provides a map from test paths to services.

Based on this information, ServiceManager determines, which services should
be started/stopped and when. It consists of a regular expression with path-to-
tests pattern and tags with references to services. One test path can refer to many
services. Different test paths can refer to the same services. In case both such test
paths are selected for test run, only one instance of a service will be started.

Implementation of Service Interface
The JavaTest harness provides a default implementation (AntService) of the
Service interface that not only provides a description but also provides a definition
and execution. The default implementation uses Ant. Each service is presented as an
Ant target in a valid Ant file. In the service description XML file, a special service
class (com.sun.javatest.services.AntService) describes the Ant-based
service as follows:

</testpath>
<testpath path=”api/foo_bar”>
<service refid="rmid_2"/>
<service refid="msg_service"/>
</testpath>
.....................................
</Services>

<servicedef id=”any_uniq_id _you_want”
class=”com.sun.javatest.services.AntService”>
<arg name=”ant.bin” value=”~/apache-ant/bin/ant”/>
<arg name=”ant.targets” value=”rmid-target run-tests”/>
<arg name="ant.workdir" value="directory_to_start_ant_from"/>
<arg name="ant.env.JAVA_HOME" value="path to JDK"/>
<arg name=”option1” value=”-buildfile ${lib}/build.xml”/>
106 JavaTest Architect’s Guide • May 2011

■ ant.bin - Specifies path to ANT execution script.

■ ant.targets - Specifies targets to execute

■ ant.workdir - Specifies the directory from which to start ant.

This is set to java.lang.ProcessBuilder using its directory() method.

■ ant.env.JAVA_HOME - The environment entry with which the process starts.

Set to ProcessBuilder through its environment() method.

■ "option1" and "option2" - All other arguments inside the AntService are
interpreted as ant start options.

No special naming conventions are needed for them.

■ Ant-based services are the only service implementations provided by JavaTest
harness. JavaTest harness provides AntService, which implements the Service
interface, and AntServiceExecutor, which implements the ServiceExecutor
interface.

Service Properties
All possible parameters, commands, and arguments, could be described as string
key-value pairs. Such pairs should be passed to the Service object by the
ServiceReader, who creates the Service objects. Each particular Service type
may interpret them and pass through a connector to the ServiceExecutor.

However, not all key-value pairs or values may be known when the test suite is
created. For example, some host names and port numbers may be known only when
answering an Interview question before a test run. To resolve this issue, values in
service descriptions are parametrized. That means, that some key-value pairs will
have variable values with references to other keys, and are resolved when additional
non-variable sets of properties are passed from somewhere outside (such as after
interview completion).

The ServiceManager has a public API used to access to each Service and its
ServiceProperties object. The non-variable set of properties may be passed at
any time. However, a more convenient approach is to resolve variable properties
using values obtained from the interview. These values are also key-value pairs and
are stored in a special object, TestEnvironment. Harness passes this object to
resolve service properties before every test run. Consequently, refer to interview
question’s tags to resolve variable values by interview.

<arg name="option2" value="-verbose"/>
</service>
Chapter 11 Service Management 107

A special ServiceProperties class performs this behavior. Its instance is the main
part of each Service object. ServiceReader should instantiate a
ServiceProperties object, fill it with information available from the service
description file and pass it to the corresponding Service object. Should the test
suite use the standard XMLServiceReader, the test suite developer shouldn’t care
about this.

Each key-value pair from the ServiceReader must use the format:

string=[string | ${string}]*

If a key has no value, it becomes a variable.

${string} represents a reference to another key. If its value has at least one
reference inside it, it also becomes variable.

Example:

Later if we pass key1=value1, the expression is resolved as:

As described in “Implementation of ServiceReader Interface” on page 105, some
properties are common to several objects and some are individually specified for
each Service object. That is the reason why there are two namespaces for property
names. One namespace is a common namespace, and the other is an individual
namespace. The common namespace is shared between all Services.
Consequently, a property, specified inside each particular Service, may refer to
common properties. If a name of a property specified for an individual Service is
contained in a common namespace, the individual property overwrites the common
property.

Individual namespaces are not shared between Service objects. A property from
one individual namespace cannot refer to a property from another individual
namespace. If a property attempts to do this, the reference is interpreted as
unknown.

When it prepare a command, a Service objects asks its ServiceProperties
object to resolve its arguments. The ServiceProperties object returns a Map
containing only the resolved individual properties (not the common properties).
Resolved common properties may be achieved, using another method. Such division

key1=
key2=value2
key3=value31_${key1}_value32_${key2}_value33

key1=value1

key2=value2

key3=value31_value1_value32_value2_value33
108 JavaTest Architect’s Guide • May 2011

enables the Service class implementation to be simplified. It treats its individual
arguments by using its own name conventions. Common properties are used to
resolve individual properties or for other goals.

Service Management Architecture
The architecture of the Service Management feature of the JavaTest harness consists
of five components:

■ ServiceManager

■ Service

■ ServiceExecutor

■ Connector

■ ParamResolver

FIGURE 11-1 illustrates the relationship between these components.

FIGURE 11-1 Service Management Architecture

1. ServiceManager - Instantiated for each test suite instance.

The same test suite, opened two times in different tabs, is interpreted as two
different test suites and will have different ServiceManager objects.
ServiceManager objects accomplish the following functions:
Chapter 11 Service Management 109

■ Are notified of all Harness events.

■ Manage a set of services.

■ Provide methods to achieve service’s state, info and data to the JavaTest
harness and test suite.

■ Provide methods for external configuration by JavaTest and test suite.

■ Start and stop services

■ Count which services and when should be started and stopped.

2. Service - Root service interface.

Service interface has two main goals:

■ Contains service information, execution parameters, and test mapping.

■ Provides start, stop, other operating methods, are invoked by
ServiceManager, and are delegated through Connector to
ServiceExecutor

3. ServiceExecutor - Root interface for the service executor.

Method invocations from Service go through Connector and are executed by
ServiceExecutor. The Service and ServiceExecutor implementation types
have a 1:n relationship. Consequently, each Service implementation can have
different ServiceExecutors for different situations (such as local and remote
execution). ServiceExecutor implementations can execute a service as separate
process, as a thread, or in any other required manner. Service and
ServiceExecutor types must be coordinated to perform message exchange
correctly.

4. Connector - Interface that determines common connection methods between
Service and ServiceExecutor, such as sendMessage or getOutputStream
methods.

Particular implementation should not be related with concrete Service and
ServiceExecutor realizations. Connector is harness-side component, and we have
no any interface for agent side part, because on those side such component (and
it’s incoming events) manages ServiceExecutor. Agent-side component is not
under any management, so there is no need for it to have API.

5. ParamResolver - Component, related with ServiceExecutor. Connector,
that sends commands to a service and provides the parameters for this command
execution.

The parameters are decoded by ParamResolver and passed to
ServiceExecutor. For example, if a connector sends “$host_name” param, it
should be resolved by the ParamResolver. Implementations of ParamResolver
should be interoperable with ServiceExecutor. How and what to resolve
depends on the implementations of both components.
110 JavaTest Architect’s Guide • May 2011

Service execution is divided into 3 components (Service, Connector,
ServiceExecutor), because it must be able to implement remote services start-up
and execution by any test suite. It is not possible to implement this feature directly
in the JavaTest harness and its agent, as requirements from different customers vary.

Mechanism to Instantiate Service, Connector,
and ServiceExecutor Interfaces
The Connector and ServiceExecutor may differ because configuration settings
(such as local or remote execution) and the specific implementors are known only at
the beginning of a test run. The ServiceManager should have a public API to
enable any object (such as a test suite) to specify non-default Connectors for each
service.

The Service interface has a method that returns an instance of the default
ServiceExecutor, which will be used should service be run in the same VM as the
JavaTest harness. This executor interoperates with the pseudo LocalConnector,
which directly delegates requests to this executor by invoking its methods. If a test
suite wants to execute a service in another way, before starting test run, it should set
another Connector for this Service (through the ServiceManager by using the
Service’s ID). This Connector may be directly associated with a ServiceExecutor
(as LocalConnector does it), or it can be a network connector, and send messages
to a remote agent.

Separate Services Start Up
To simplify service start-up (in case there is no remote environment or you don’t
want to use the JavaTest harness to run the Service management feature), a separate
entry point is available inside the JavaTest harness, such as ServicesMain, that
performs the following operations:

1. Takes the test suite path as input.

2. Instantiates all found Services, ServiceExecutors, and local Connectors.

3. Invokes the Service.start methods.

Services are unmanageable in this case and must be stopped by shutdown hook.
FIGURE 11-2 illustrates the sequence of performing a separate services start-up.
Chapter 11 Service Management 111

FIGURE 11-2 Separate Service Start-Up
112 JavaTest Architect’s Guide • May 2011

CHAPTER 12

Running JUnit Tests

This chapter explains how to retrofit existing JUnit 3.x or 4.x test suites to enable
them to run with JavaTest Harness. This information can also help you author new
JUnit tests that run under the harness.

JUnit is a simple framework for writing and running automated tests. Written by
Erich Gamma and Kent Beck in 1997, JUnit exposed test driven development
practices from the Smalltalk world into the Java programming community. JUnit is
now an open-source project at SourceForge.net.

The JUnit framework provides a fast, simple interface for creating a set of tests and
executing them by a common method (for example, using Ant or a shell script). The
framework places very few restrictions on what the tester must do to write a test
class. The core JUnit distribution has few facilities for GUI interaction or reporting,
and it has no robust interface for configuration.

The procedure described here enables JUnit tests to be run under the JavaTest
Harness harness. The JavaTest Harness harness provides a robust GUI interface,
many reporting options, and an opportunity to build a robust configuration system
for the tests. The harness can be configured to allow customization of the GUI,
report types, result presentation, and more. These services might be useful for users
who want to wrap more powerful facilities around their existing test infrastructure.

The Retrofit Process
This section describes the process of retrofitting JUnit tests so that they run on the
JavaTest Harness harness.
113

http://sourceforge.net/projects/junit

Prerequisites for Converting Tests
To undertake a conversion process, you must be familiar with some of the inner
workings of the JUnit test suite you are converting. Specifically, you need to know:

■ How the JUnit tests can be distinguished from other tests.

■ The version of JUnit that works with the test suite (3.x or 4.x).

■ Where the tests are stored. For example, are they in a single directory tree?

■ The libraries or supporting processes required to run the tests.

■ The configuration settings or files necessary to run the tests.

Tests written to work with JUnit 3.x are typically identified as being a subclass of
junit.framework.TestCase. To find JUnit 3.x tests, use the
com.sun.javatest.junit.JUnitSuperTestFinder class (located in the
jt-junit.jar archive) to scan the test classes. Each class that is a subclass of
junit.framework.TestCase is designated as a recognized test.

JUnit 4.x style tests do not use a specific superclass, rather, they tag classes with the
org.junit.Test annotation. The JavaTest Harness harness library jt-junit.jar
provides the class com.sun.javatest.junit.JUnitAnnotationTestFinder to
find 4.x style tests. It operates much like the JUnitSuperTestFinder class, but
looks for different criteria.

See “JUnitSuperTestFinder” on page 117 and “JUnitAnnotationTestFinder” on
page 118 for more details.

▼ Procedure for Converting Tests
This procedure describes how to set up files, property settings, and configuration
settings before running a JUnit test.

1. Create a testsuite.jtt file in root of the product directory.

For example, if the product unpacks into directory foo/, the testsuite.jtt file
should be in that directory. It does not necessarily need to be co-located with the
tests.

The .jtt file is a properties formatted file, with key=value pairs on each line.
Setting the name and id keys is mandatory. The name is a short descriptive name
for your test suite, the id is an internal key used identify this test suite.

2. Select your method for scanning for tests by specifying a TestFinder class.

The line for specifying the TestFinder class looks like this:

finder = com.sun.javatest.junit.JUnitSuperTestFinder
114 JavaTest Architect’s Guide • May 2011

-superclass junit.framework.TestCase

See “JUnitAnnotationTestFinder” on page 118 and “JUnitAnnotationTestFinder”
on page 118 for further information.

3. Select your TestSuite class, using
com.sun.javatest.junit.JUnitTestSuite if you do not subclass it.

Use a fully qualified class name. This class must be available on the system class
path, preferably on the class path defined in your .jtt file. For example:

testsuite = com.sun.javatest.junit.JUnitTestSuite

4. Specify the interview.

If you don’t have your own interview, use the line below as the default. This class
must be available on the system class path, preferably on the class path setting in
your .jtt file. For example:

interview = com.sun.javatest.junit.JUnitBaseInterview

5. Provide a tests setting.

The tests location is important because it is forwarded to the TestFinder class
you specified in Step 2. This location is often relative to the location of the
testsuite.jtt file as described in Step 2. Use forward slashes to make the path
platform independent. Do not use absolute paths or relative paths to places above
testsuite.jtt. One of the following lines might serve as an example:

■ If you are scanning .java files, they might be located below the tests/
directory.

tests = tests

■ If you are scanning class files, they might be located below the classes/
directory:

tests = classes

See “JUnitSuperTestFinder” on page 117 and “JUnitAnnotationTestFinder” on
page 118 for further information.

6. Make sure that the paths to any classes you specify in the testsuite.jtt file
are assigned to the classpath key in the testsuite.jtt file.

This how the harness locates the classes. For example, if you specify:

interview = com.sun.javatest.junit.JUnitBaseInterview

be sure to add the path to the JAR file that contains that class to the classpath
key as shown here:

classpath = lib/jt-junit.jar lib/jt-myts.jar
Chapter 12 Running JUnit Tests 115

7. Try running the harness to see if it finds your tests.

You have to decide how to arrange your (JAR) files and resolve paths. The general
form is:

> cd mytestsuite/

> java -jar lib/javatest.jar -ts .

This starts the harness and forces it to load the test suite located in the current
directory (represented by “.”). The testsuite.jtt file must be located in the “.”
directory.

When the main window comes up, you should see a tree populated with the tests
you intended. Check the counters on the main panel to view a summary of the
tests that were found. You can check the View > Properties menu item to verify
that the plug-in classes are loaded as you expect.

Technical Details
This section describes the two main sets of classes that provide JUnit support. The
first is the JUnitTestFinder (a subclass of com.sun.javatest.TestFinder).
Variations of the JUnitTestFinder, JUnitSuperTestFinder and
JUnitAnnotationTestFinder classes roughly correspond to JUnit 3.x and 4.x
support. The difference is explained below.

The second supporting component is the JUnitMultiTest class that is responsible
for executing the tests.

Support Classes
The following additional “glue” classes are provided to connect everything:
JUnitTestSuite, JUnitBaseInterview, and JUnitTestRunner. Each
supporting class is explained below.

■ The JUnitTestSuite class is a very simple class that instructs the harness to use
the JUnitTestRunner to execute tests. If this method is not present, the
DefaultTestRunner is used. This is the traditional way to execute tests
requiring a Script class. Because the TestRunner class is present, there is full
control over how the tests are executed. For example, the harness can determine
how many tests are run simultaneously and how they are launched (for example,
using exec). By extending this class, you have access to override other aspects of
the harness. See the TestRunner API for more information. Note that many of
116 JavaTest Architect’s Guide • May 2011

the settings that this document describes in the testsuite.jtt file can be hard
coded into the TestSuite subclass. The TestSuite base class provides the
functionality to instantiate the settings in the testsuite.jtt.

■ The JUnitBaseInterview class is a skeleton interview class that does not
require any input from the user. If your JUnit tests do not require a setting from
the user, do not modify it. Try one of the following methods to get values from
the user:

■ Read a configuration file from a pre-determined location, perhaps a location
relative to the test suite root (TestSuite.getRootDir()).

■ Ask the user for the values directly using the com.sun.interview API. This
is the primary means by which the harness is designed to get values from the
user. In either case, the value(s) must end up in the Map provided in
Interview.export(Map). The Map is the set of values that the other classes
must have access to, namely the JUnitTestRunner and classes it creates
(JUnitMultiTest). Read Chapter 6 for more information.

■ The JUnitTestRunner class is responsible for dispatching tests. It has access,
via an Iterator, to the entire list of tests to be executed during a test run.
Because a test is represented by a TestDescription, you must customize your
test finder to add any settings that you will want later (in this class). The default
implementation executes the test using JUnitBareMultiTest if the
TestDescription property junit.finderscantype is set to superclass. If
it is not set to superclass, it uses the JUnitAnnotationMultiTestclass. You
may want to change this behavior, use your own JUnitMultiTest class, or a
subclass of one of these.

JUnitSuperTestFinder
This class looks for a superclass that identifies the class as a JUnit test. By default it
searches the ancestors of each class for junit.framework.TestCase. Because a
test suite might require further derivations of junit.framework.TestCase to
support its particular needs, you can use the -superclass option to specify a more
specific class.

For example, consider the following class structure:

Test0002a is a subclass of BetterTestCase, and so forth.

java.lang.Object
junit.framework.TestCase

foo.BetterTestCase
product.Test0002a
Chapter 12 Running JUnit Tests 117

■ If given Test0002a, JUnitSuperFinder ascends the inheritance chain until it
reaches either a matching superclass or java.lang.Object. It searches for the
TestCase class by default, so when given Test0002a, it ascends two levels,
finds java.lang.Object, and returns Test0002a to the harness as a test.

■ If this test finder is given java.util.ArrayList, it ascends until it reaches
java.lang.Object, at which point it decides that the class is not a test and
moves on.

To change the superclass for which you are scanning, supply the -superclass
argument and specify a class name. You can supply this argument multiple times to
scan for multiple superclasses. For example, in the testsuite.jtt file you might
specify the following:

finder = com.sun.javatest.junit.JUnitSuperTestFinder -superclass

foo.BetterTestCase -superclass foo.CustomTestCase

Although it does not execute tests, the test finder attempts to pick out test methods
by looking for public methods that begin with the string “test”. It then lists these
in a space-separated list, without the parameters (just the method name). The list
might contain duplicates because the full signature is not evaluated. Semantics for
this TestDescription value are loosely defined at this point. Public comment is
welcome (submit your comments to the JT harness interest forum at
https://jtharness.dev.java.net

This superclass finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in TABLE 12-1.

JUnitAnnotationTestFinder
This annotation test finder scans classes for the org.junit.Test annotation. It
uses the same scanning strategy as JUnitSuperTestFinder.

TABLE 12-1 JUnitSuperTestFinder Test Description Values

Key Value(s)

keywords junit, junit3

junit.finderscantype superclass

junit.testmethods (list of identified test methods)
118 JavaTest Architect’s Guide • May 2011

https://jtharness.dev.java.net

This annotation finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in TABLE 12-2TABLE 12-2.

JUnitBareMultiTest
This is the execution class for JUnit 3.x style tests. Execution is accomplished using
the class name supplied by the test finder (through the TestDescription) which is
used to execute that class’s TestCase.runBare() method. This might not be
sufficient for all test suites. Output from stdout and stderr are captured. The test
passes if no exceptions are thrown and fails if there are any Throwable results.

JUnitAnnotationMultiTest
This is the execution class for JUnit 4.x style tests. It takes the class that was
identified by the test finder and executes it using the JUnit library
TestResult.Section parts. Also, because execution is turned over to JUnit, it
does not report any of its own debugging output during execution. (In the future, it
would be useful to take more advantage of the Result API and any observer APIs
that are available.)

Implementation Notes
The use of the junit3 and junit4 keywords might be a generalization, since it
really represents how the class was found. A test suite might mix use of version 3
and 4 features, meaning it is not necessarily completely 4.x compliant. Nonetheless,
perhaps being able to run 3.x style tests out of a mixed set (see
com.sun.javatest.finder.ChameleonTestFinder) can be useful. Do not
forget that the junit keyword is also added so that JUnit tests can be selected from
among non-JUnit tests.

Two of the most likely changes you should make is to modify the test finder or
modify how to execute the test. To change the test finder, simply subclass
JUnitTestFinder, provide it on the class path in testsuite.jtt and change the
finder setting in testsuite.jtt.

TABLE 12-2 JUnitAnnotationTestFinder Test Description Values

Key Value(s)

keywords junit, junit4

junit.finderscantype annotation

junit.testmethods (list of identified test methods)
Chapter 12 Running JUnit Tests 119

To change the method for executing a test, you must change how it is dispatched in
JUnitTestRunner. To change that, you must subclass JUnitTestRunner and
provide it on the testsuite.jtt class path. You must also subclass
JUnitTestSuite and change its setting in testsuite.jtt (see).

Areas for Improvement
This section lists implementation features that might ben122efit from user feedback
and further development. You can provide this on the JT harness web site
(https://jtharness.dev.java.net).

■ The use of class path is currently not convenient. The general design of the
harness is that the setting in testsuite.jtt affects the tests, rather than the
system class path that the harness uses. This area can be more refined.

■ Some additional base implementations of the interview class would be useful. In
particular, providing one that reads a properties file and dumps it directly into
the Map of Interview.export(Map) would provide a “quick and dirty” way
for people to configure their test suites. Perhaps the location of the file can be
written as a setting in testsuite.jtt.

Note – Users should generally not be instructed to alter testsuite.jtt. These
settings are designed to be static. Information the user provides should be gathered
through the interview system. As an architect, you should configure the
testsuite.jtt file for general use during the retrofit process. Once the conversion
is completed, the file should remain relatively untouched.

■ It might be useful to hard code the Interview class and accept an override in the
testsuite.jtt file, rather than forcing the developer to specify it in the file as
documented above. This also applies to the JUnitTestRunner (or just the
TestRunner class) in the implementation of JUnitTestSuite.

References
■ JT Harness project (open source version of the JavaTest harness)

■ JUnit project (http://SourceForge.net/projects/junit)

■ JUnit 3.X home page
(http://junit.sourceforge.net/junit3.8.1/index.html)

■ JUnit 4.X home page (http://junit.sourceforge.net)

■ API documentation
(http://junit.sourceforge.net/javadoc_40/index.html)
120 JavaTest Architect’s Guide • May 2011

■ JUnit Cookbook
(http://junit.sourceforge.net/doc/cookbook/cookbook/htm)
Chapter 12 Running JUnit Tests 121

122 JavaTest Architect’s Guide • May 2011

CHAPTER 13

Customization

This chapter describes customizations that can be made in the JavaTest harness
appearance and function. Customizations not documented in this guide are
described in the appropriate Javadoc tool (API) documentation.

While most of this guide describes customization, this chapter describes advanced
customization beyond that usually required to configure and execute a test suite. In
this chapter, topics discussed include:

■ “Customization API” on page 123

■ “Internationalization” on page 124

■ “Customizing the Splash Screen” on page 125

■ “Customizing Menus” on page 126

■ “Customizing Toolbars” on page 128

For architects, this chapter is most useful either after you have developed a basic
version of a test suite and want to customize harness capabilities or as an overview
to see exactly how much of the harness can be customized.

Customization API
Several sections in this chapter refer to methods present in the ContextManager API
with many of the harness customization features described in this chapter controlled
by the ContextManager class (com.sun.javatest.exec.ContextManager).
The harness queries this class to determine if a particular feature is enabled and if it
is necessary for the supporting classes or objects to realize the customization.

An architect can create a single custom ContextManager implementation class for
their test suite and override any methods as needed. The only thing required inside
a custom implementation of MyContextManager is overriding the appropriate
123

methods for the customized features. No additional implementation is required
beyond that provided by the base class. The base class is not abstract and the default
implementation provides the default behavior intended for the harness.

Architects then provide the custom ContextManager class to the harness by adding
a value as part of the TestSuite properties (see
TestSuite.getTestSuiteInfo(String)). The property name that should be
provided is tmcontext. This can be done programmatically in the TestSuite
class, but is more easily accomplished by placing the value in the testsuite.jtt
file (see Chapter 8) of the test suite. For example:

tmcontext=com.yourdomain.jtharness.MyContextManager

That class should be available to the harness in the classpath value that is also
provided in the testsuite.jtt file. See Chapter 8 for more information about this
file.

Note – The classpath value in testsuite.jtt is a space separated value.

Internationalization
Many harness APIs refer to resource bundles (java.util.ResourceBundle) and
String keys instead of raw strings for presentation. For example, in the
JavaTestToolBar API the default implementation of getName() and
getDescription() make it easier to provide a resource bundle instead of
overriding the methods. The API documentation for
JavaTestToolBar.getDescription() states:

In the custom code that the test suite provides, there will be a line of code which
creates the toolbar, JavaTestToolBar. The constructors for that class require
passing a ResourceBundle and a String key.

public JavaTestToolBar(ResourceBundle bundle, String resourceID)

Get the long description of this toolbar’s purpose.
May be multiple sentences if desired. This is automatically
retrieved from the supplied resource bundle by combining it with
the toolbar ID with getID(()), e.g. it will try to retrieve
getId().tb.desc from the resource bundle.
124 JavaTest Architect’s Guide • May 2011

Assuming that the code creating the toolbar (provided by the test suite) is in
package foo.bar and is called MyContextManager, it is common in the harness to
write code similar to the following example:

This i18n object can then be reused throughout the lifetime of that custom context
manager for any necessary purpose. In this case it is passed to the toolbar being
customized.

Continuing with the code example and how JavaTestToolBar would use it, when
getDescription() on that toolbar object is called by the harness, it attempts to
retrieve getId().tb.desc from the resource bundle. In the example, the harness
loads the string named mytoolbar.tb.desc from the file (on the classpath)
foo/bar/i18n.properties. The content of foo/bar/i18n.properties might
be:

It is typical to provide each package with its own i18n.properties file and then
use a single instance of I18NResourceBundle object within that package, passing
it around as needed. See the java.util.ResourceBundle API documentation for
more information about how it automatically resolves the name of the resource file
to load and for the format of the entries in the bundle.

Customizing the Splash Screen
Instead of using the default JavaTest harness splash screen, architects can insert a
custom test suite splash screen for users.

To use a custom splash screen, test suite architects must accomplish the following
actions:

package foo.bar;
import com.sun.javatest.util.I18NResourceBundle;
class MyContextManager extends ContextManager {
 ... {
 toolbar = new JavaTestToolBar(i18n, "mytoolbar");
 }
 private static I18NResourceBundle i18n =

I18NResourceBundle.getBundleForClass(MyContextManager.class);
}

i18n file for package foo.bar
mytoolbar.tb.desc=This is my great toolbar for you to use.
mytoolbar.tb.name=My Tools
Chapter 13 Customization 125

■ Insert a splash.properties file that specifies the custom splash image in the
test suite lib/ directory (below javatest.jtt).

Refer to “Example of splash.properties File” on page 126” for the content
and format of a splash.properties file.

■ Insert the splash image file in a location relative to the splash.properties file.

Acceptable image formats for the splash screen are GIF, JPEG and PNG.

Once the splash.properties and the splash image files are integrated in the test
suite lib/ directory, the JavaTest harness will display the custom splash screen
instead of the default when starting.

In the current implementation, the JavaTest harness displays the custom splash
screen when users start the harness with -ts or -testsuite flags to specify the
specific test suite. In the future additional flags might be used to start the harness
with the custom splash screen.

Example of splash.properties File
The following is an example of the required format of the splash.properties file. In
this example, the custom image name is splashMyProduct.gif.

Notes About the Implementation
Because the splash screen must be capable of being internationalized, the
testsuite.jtt file is not used to directly specify the splash screen. This capability
of being internationalized requires that it should go through the standard
ResourceBundle searching. The standard ResourceBundle searching is facilitated by
using the splash.properties file. Other options for specifying the custom splash
screen were not utilized because they increase the startup overhead of the harness
by requiring it to perform additional file operations.

Customizing Menus
Test suite architects can customize the GUI menus in the Test Manager (ExecTool) by
using the API provided by the harness. Common uses of this customization are to
turn on and off frequently used test suite options or to trigger customized

comment
splash.icon=splashMyProduct.gif
126 JavaTest Architect’s Guide • May 2011

informational dialogs. The API provides limited access to the menu structure of the
Test Manager, but relatively unlimited capabilities for the menu items themselves
(such as the ability to insert multi-level menus, enable or disable a menu item, or
provide a checkbox menu item). In addition, the popup menu available on the main
test tree can also be customized.

Adding Menu Items to Test Manager Menus
Menu additions are managed by the JavaTestMenuManager
(com.sun.javatest.exec.JavaTestMenuManager) provided by the
ContextManager (com.sun.javatest.exec.ContextManager). The menu
manager class provides an abstract class for the architect to populate. The most
important part of the class are the set of constants that it defines. These constants
define a set of logical positions within the Test Manager’s menu structure. Instead of
allowing the architect to determine the exact position of the menu items, which
makes it virtually impossible to make future harness menu changes, the API defines
the logical positioning with which the harness will determine the final position of a
custom menu item.

The constants take the form of <logical menu>_<logical position>, such as
HELP_ABOUT. If the architect wanted to add a menu item labeled About My Test
Suite, they would use the HELP_ABOUT menu position. In the same manner, for the
FILE_OTHER position, the architect would use file related label or a related label
that logically belongs in a location on the File menu.

See the JavaTestMenuManager API documentation provided by the harness for
detailed implementation information.

Adding Menu Items to the Tree Popup Menu
Similar to customizing the main Test Manager menus, the ContextManager must
provide a class to manage the popup menu items. However, unlike the
JavaTestMenuManager, it does not manage the position of items or serve as a
container of multiple menus. Instead, JavaTestContextMenu represents a single
menu item (in the Swing sense) that is activated on demand. The class manages the
underlying JMenuItem and the rules for displaying that item.

Note – This class assumes that the context menu is displayed in the context of a test
folder or single test (such as a folder in the test tree or a test in the test tree). It
cannot be used to insert context menus at other locations within the harness GUI
and the availability of the custom menu items is limited to certain locations.
Chapter 13 Customization 127

The most important considerations for this class are the rules for deciding whether
or not to display the tree popup menu:

1) Is this menu item applicable to test entities, folders, or both?

2) Is the item applicable for cases in which multiple items (multiple tests for
example) are selected?

For example, by using these rules, an architect can create popup menu items that
appear only on tests, such as a menu item that says Configure Test. An architect can
also create a menu item, such as Delete, that acts on homogeneous selection sets.

See the JavaTestContextMenu API documentation provided by the harness for
more details.

Customizing Toolbars
The architect can add custom toolbars to the Test Manager, which are combined with
the toolbars provided by the harness. The harness provides a default toolbar
manager (com.sun.javatest.exec.ToolBarManager) which is suitable for most
uses. Using either the default context manager or preferably a custom
ContextManager (see “Customization API” on page 123), the toolbar manager is
retrieved through the getToolBarManager() method. The API on this object
allows the test suite to add and remove toolbars of the type
com.sun.javatest.exec.JavaTestToolBar, which is a subclass of Swing’s
JToolBar.

On the JavaTestToolBar API, methods are provided that enable the harness to
query the toolbar for its name, description and optional behavior. These methods
enable the harness to automatically manage the toolbar, especially in the case of
presenting menus which control visibility. Architects should pay attention to the
internationalization practices that the harness enforces (see “Internationalization” on
page 124). See the API documentation for JavaTestToolBar methods getId(),
getDescription(), and getName().
128 JavaTest Architect’s Guide • May 2011

APPENDIX A

Standard Commands

The JavaTest harness provides a number of standard commands that you can use to
configure an environment to run a test suite on your test platform. These commands
all extend the standard JavaTest Command class.

With these standard commands, you can configure the JavaTest harness for a wide
variety of test platforms. If, however, you find that you cannot create an environment
for your test platform using these commands, you may need to write your own: see
“Writing Custom Commands” on page 98 for more details.

The standard commands are as follows:

■ ActiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in active mode

■ ExecStdTestSameJVMCmd: A command to execute a simple API test in the same
JVM in which the JavaTest harness or the JavaTest Agent is running

■ ExecStdTestOtherJVMCmd: A command to execute a simple API test in a JVM that
is separate from the JVM in which the JavaTest harness or the JavaTest Agent is
running

■ JavaCompileCommand: An example command that demonstrates how to invoke a
Java application via a wrapper class

■ PassiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in passive mode

■ ProcessCommand: A command to execute a system command in a separate
process

■ SerialAgentCommand: A command to execute a subcommand on a JavaTest
Agent, communicating via a serial line

Note – Examples in this appendix use Unix style commands and file separators.
129

ActiveAgentCommand
A command to execute a command in a separate JVM, typically on a remote machine,
by delegating it to a JavaTest Agent which has been configured to run in active mode.
This means it contacts the JavaTest harness to determine what it should do.

The JavaTest active agent pool must be started before you start running tests that use
this command. The active agent pool holds the requests from the active agents until
they are required. You can start the active agent pool from the JavaTest GUI or
command line.

Usage com.sun.javatest.agent.ActiveAgentCommand [options]
command-class [command-arguments]

Arguments Options Description

-classpath path This option allows you to specify a classpath on the system running the JavaTest harness
from which to load the command class and any classes it invokes. The classes are
automatically loaded into the agent as needed. If the class path is not specified, the
classes are loaded from the agent’s class path. See Chapter 4 for additional
information about using the -classpath option.

–mapArgs The command to be executed might contain values that are specific to the host
running the JavaTest harness and that might not be appropriate for the host that
actually runs the command. If this option is given, the agent uses a local mapping file
to translate specified string values into replacement values. This is typically used to
map filenames from the view on one host to the view on another. See the JavaTest
online help for more information.

–tag tag This option allows the user to specify a string that is used to identify the request on
the agent. If not specified, the default value, command-class, is used. It is suggested
that the URL of the test should be used as the value for this option. A configuration
can use the symbolic name $testURL, which is substituted when the command is
executed.

command class The name of a command class to be executed by the agent. If the -classpath option is
not used, the class should be on the classpath of the agent, and should be appropriate
for the agent, depending on the security restrictions in effect. For example, an agent
running as an application might be able to run a ProcessCommand, but an agent
running as an applet might not. The class should implement the interface
com.sun.javatest.Command.
130 JavaTest Architect’s Guide • May 2011

command arguments The arguments to be passed to the run method of an instance of the command class
running on the agent. The arguments can be translated to agent-specific values if the
–mapArgs option is given.

Description ActiveAgentCommand is a facility to execute a command on a JavaTest Agent that
has been configured to run in active mode. A JavaTest Agent provides the ability to
run tests in a context that might not be able to support the JavaTest harness. This
could be because the tests are to be run on a machine with limited resources (such as
memory), or in a security-restricted environment (such as a browser), or on a newly
developed platform on which it is not possible to run the JDK.
Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a
Solaris platform might be mounted as a network drive like H: on a Windows
platform. When an agent is initialized, it may be given information on how to
translate strings from one domain to another. On a per-command basis, the agent can
be instructed to translate a command according to the translation tables it is given.
The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.
Any output written by the command when it is executed by the agent appears as the
output of the ActiveAgentCommand command itself. If the command is successfully
executed by the agent (i.e. the Command object is successfully created and the run
method invoked), the result of ActiveAgentCommand is the result of the command
executed by the agent. Otherwise, an appropriate error status is returned.

Examples Using ActiveAgentCommand to Execute a ProcessCommand on an Active Agent:

This example is based on the following sample code demonstrating
ProcessCommand:

com.sun.javatest.lib.ProcessCommand
/usr/local/jdk1.3/solaris/bin/javac

-classpath /home/juser/classes –d /home/juser/classes
HelloTest.java

To make a command execute on another machine, prefix it with
ActiveAgentCommand and any arguments that ActiveAgentCommand requires:

compile.java=com.sun.javatest.agent.ActiveAgentCommand
com.sun.javatest.lib.ProcessCommand \

/usr/local/jdk1.3/solaris/bin/javac \
-classpath /home/juser/classes \
–d /home/juser/classes HelloTest.java

See Also All the other standard commands in this appendix. Subject to security restrictions on
the agent, they can all be executed remotely by means of ActiveAgentCommand.
Appendix A Standard Commands 131

ExecStdTestSameJVMCmd
A command that executes a standard test in the same JVM in which JavaTest Agent is
running.

Usage com.sun.javatest.lib.ExecStdTestSameJVMCmd [options] test_class [test_args]

Arguments Options

–loadDir directory

Creates a ClassLoader that loads any necessary classes from the specified directory. The
ClassLoader is garbage collected once ExecStdTestSameJVMCmd has completed. If you do not
specify -loadDir, the system class loader is used. Using a separate ClassLoader for each test
reduces the chance that one test interferes with another. Also, using a separate ClassLoader
allows the command to unload test classes after the test is executed, which could be critical in
memory constrained environments.
On some systems, the security manager restricts the ability to create a ClassLoader. If you use
this option and cannot create a ClassLoader, the command throws a SecurityException.

test class

Specifies the name of the test class to execute. This class must be a subtype of
com.sun.javatest.Test. To specify a class in the test description currently being processed by
the JavaTest harness, use the $executeClass substitution variable.

test args

Specifies a list of arguments to be passed to the run method of the class being executed. To
specify arguments in the test description currently being processed by the JavaTest harness, use
the $executeArgs substitution variable

Description ExecStdTestSameJVMCmd is a JavaTest command that executes a standard test in the same JVM
in which the JavaTest Agent is running. The class must be a subtype of
com.sun.javatest.Test.
ExecStdTestSameJVMCmd creates a new instance of the class, calls its run method, and passed
the class args. If the class is successfully created and invoked, the result of
ExecStdTestSameJVMCmd is equal to the result of the run method of the object.

Examples Simple use of ExecStdTestSameJVMCmd:

command.execute=com.sun.javatest.lib.ExecStdTestSameJVMCmd \
$testExecuteClass $testExecuteArgs

Using ExecStdTestSameJVMCmd Inside an Environment:

com.sun.javatest.lib.ExecStdTestSameJVMCmd HelloTest

See Also ExecStdTestOtherJVMCmd
132 JavaTest Architect’s Guide • May 2011

ExecStdTestOtherJVMCmd
A variant of ProcessCommand that executes a standard test using a subcommand in
a separate process.

Usage com.sun.javatest.lib.ExecStdTestOtherJVMCmd [options]
[shell variables] subcommand [args]

Arguments Options

–v

Used for verbose mode. When ExecStdTestOtherJVMCmd is in verbose mode, additional
output information is sent to the TestResult object.

shell variables

Specifies one or more shell environment values that are required by the sub-command. Shell
environment variables are written as: name=value.

subcommands

Specifies the name of a program that is executed.

args

Specifies the arguments that are passed to the subcommand.

Description ExecStdTestOtherJVMCmd is a JavaTest command that executes a test with a subcommand
in a separate process (using a separate runtime). You would normally use this command to
invoke a JVM to run the test class.
Examples of subcommands are the compiler for the Java programming language (javac) and
the JVM (java). Normally, a test exits by creating a Status object and then invoking its exit
method. This command also returns a Status object, which is equal to the object returned by
the test.

Examples Simple Use of ExecStdTestOtherJVMCmd

com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
/usr/local/jdk1.4/solaris/bin/java \
-classpath /home/juser/classes
HelloTest

Using ExecStdTestOtherJVMCmd Inside an Environment

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
/usr/local/jdk1.4/solaris/bin/java \
-classpath /home/juser/classes
$testExecuteClass $testExecuteArgs

See Also ExecStdTestSameJVMCmd

ProcessCommand
Appendix A Standard Commands 133

JavaCompileCommand
Invokes a compiler in the same JVM in which the JavaTest harness or the JavaTest
Agent is running.

Usage com.sun.javatest.lib.JavaCompileCommand
[–compiler compiler-spec] [args]

Arguments Options

-compiler compiler-spec

If the –compiler option is given, compiler-spec specifies the class name for the compiler,
optionally preceded by a name for the compiler followed by a “:”. If no compiler name is
given before the class name, the default name is “java” followed by a space and then the class
name. If the –compiler option is not given, the default value for compiler-spec is
javac:sun.tools.javac.Main.

args

Specifies the arguments to the compiler’s compile method. If you use the default compiler,
javac, the arguments are exactly the same as those you would use for javac. In this case, you
should refer to documentation for the JDK for more details. Otherwise, refer to the
documentation for the compiler you specify.

Description This command is primarily an example that shows how any application written in the Java
programming language can be interfaced to the JavaTest harness by writing a wrapper
command. By default, the application in this example is the JDK compiler, javac, but any class
implementing the same signature can be invoked. javac is normally run from the command
line, per its specification, but it does have an undocumented interface API, that is sufficiently
typical to be used as the basis for this example.
The compiler is assumed to have a constructor and compile method matching the following
signature:
public class COMPILER {

public COMPILER(java.io.OutputStream out, String name);
boolean compile(String[] args);

}

When JavaCompileCommand is used, an instance of the compiler is created. The constructor
is passed a stream to which to write any messages, and the name of the compiler to be used
in those messages. Then, the compile method is called with any args passed to
JavaCompileCommand. If the compile method returns true, the result is a status of “passed”;
if it returns false, the result is “failed”. If any problems arise, the result is “error”.
The source code for this example is provided in the examples directory. It is the file
JavaCompileCommand.java in the directory
src/share/classes/com/sun/javatest/lib/ under the main JavaTest installation
directory.
134 JavaTest Architect’s Guide • May 2011

PassiveAgentCommand
A command to execute a command on a remote machine by delegating it to a
JavaTest Agent that is configured to run in passive mode.

Examples Simple use of JavaCompileCommand

com.sun.javatest.lib.JavaCompileCommand HelloWorld.java

Using JavaCompileCommand Inside an Environment

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
–d $testClassDir $testSource

Using JavaCompileCommand to Invoke the RMI compiler

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
–compiler rmic:sun.rmi.rmic.Main \
–d $testClassDir $testSource

See Also ProcessCommand

Usage com.sun.javatest.agent.PassiveAgentCommand [options] command
-class [command-arguments]

Arguments Options

-classpath path

This option lets you to specify a classpath on the system running the JavaTest harness from
which to load the command class and any classes it invokes. The classes are automatically
loaded into the agent as needed. Otherwise, classes are loaded using the agent’s class path.
See Chapter 4 for additional information about using the -classpath option.

–host host-name

Specifies the host on which to run the command. A passive JavaTest Agent must be running
on this host to execute the command. The option must be given; there is no default.

–mapArgs

The command to be executed might contain values that are specific to the host running the
JavaTest harness and that might not be appropriate for the host that actually runs the
command. If this option is given, the agent uses a local mapping file to translate specified
string values into replacement values. This is typically used to map filenames from the view
on one host to the view on another. See the JavaTest online help for more information.

–port port-number

This option specifies the port to which to connect when requesting an agent to run a
command. The default value, 1908, is used if no value is explicitly given.
Appendix A Standard Commands 135

–tag tag

This option lets the user specify a string that identifies the request on the agent. If not
specified, the default value, command-class, is used. It is suggested that the URL of the test be
used as the value for this option. A configuration can use the symbolic name $testURL,
which is substituted when the command is executed.

command class

The name of a command class to be executed by the agent. The class should be on the
classpath of the agent and be appropriate for the agent, depending on the security restrictions
imposed on the agent. For example, an agent running as an application might be able to run
a ProcessCommand, but an agent running as an applet might not. The class should
implement the standard interface com.sun.javatest.Command.

command args

The arguments to be passed to the run method of an instance of the command class running
on the agent. The arguments might be translated to agent-specific values if the –mapArgs
option is given.

Description PassiveAgentCommand is a facility to execute a command on a JavaTest Agent that has been
configured to run in passive mode. A JavaTest Agent provides the ability to run tests in a
context that might not be able to support the entire JavaTest harness. Factors that require use
of the JavaTest Agent include limited resources (such as memory), or in a security-restricted
environment (such as a browser), or on a newly developed platform on which is not possible
to run the JDK.
The host and port options identify an agent to be used to execute the command. The JavaTest
harness attempts to contact an agent on that system that is running and waiting for requests.
Commands often contain host-specific arguments, such as filenames or directories. Although
the files and directories might be accessible from the agent host (and in general, should be),
the paths might be different. For example, /usr/local on a Solaris platform can be mounted
as a network drive like H: on a Windows NT platform. When an agent is initialized, it may be
given information on how to translate strings from one domain to another. On a per-
command basis, the agent can be instructed to translate a command according to the
translation tables it is given.
The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.
Any output written by the command when it is executed by the agent appears as the output
of the PassiveAgentCommand command itself. If the command is successfully executed by
the agent (i.e. the Command object is successfully created and the run method invoked) then
the result of PassiveAgentCommand is the result of the command executed by the agent.
Otherwise, an appropriate error status is returned.
136 JavaTest Architect’s Guide • May 2011

Examples Using ActiveAgentCommand to Execute a ProcessCommand on an Active Agent:

compile.java=\
com.sun.javatest.agent.PassiveAgentCommand –host calloway \
com.sun.javatest.lib.ProcessCommand \
/usr/local/jdk1.3/solaris/bin/javac \
-classpath /home/juser/classes \
–d /home/juser/classes HelloTest.java

See Also All the other standard commands in this appendix. Subject to security restrictions on the
agent, they can all be executed remotely by means of PassiveAgentCommand.
Appendix A Standard Commands 137

ProcessCommand

Usage com.sun.javatest.lib.ProcessCommand [options] [env variables]
command [command-arguments]

Arguments Options

–v

Verbose mode: tracing information is output to the log.

env variables

This is a list of named values to be passed as environment variables to the command to be
executed. Each named value should be written as name=value.

command

This is the name of the command to be executed in a separate process.

command arguments

This is a list of arguments to be passed to the command to be executed.

Description ProcessCommand executes a system command in a separate process with the specified set of
environment variables and arguments.
The result of the command is a Status object based upon the exit code of the process. An exit
code of zero is interpreted as Status.PASSED; all other exit codes are interpreted as
Status.FAILED. There are variants of ProcessCommand that provide different
interpretations of the exit code. These variants can be used in more specialized circumstances,
such as running tests that use exit codes like 95, 96, and 97.
ProcessCommand copies the standard output stream of the process to the out2 command
stream, and the standard error stream of the process to the out1 command stream.

Examples Simple use of ProcessCommand

com.sun.javatest.lib.ProcessCommand
/usr/local/jdk1.3/solaris/bin/javac
-classpath /home/juser/classes –d /home/juser/classes HelloTest.java

Using ProcessCommand in an Environment

compile.java=com.sun.javatest.lib.ProcessCommand \
/usr/local/jdk1.3/solaris/bin/javac \
-classpath /home/juser/classes \
–d /home/juser/classes $testSource

See Also ExecStdTestOtherJVMCmd
138 JavaTest Architect’s Guide • May 2011

SerialAgentCommand
A command to execute a command on a remote machine, by delegating it to a
JavaTest Agent that has been configured to communicate via a serial RS232 line.

Usage com.sun.javatest.agent.SerialAgentCommand [options]
command-class [command-arguments]

Arguments Options

-classpath path

This option lets you specify a classpath on the system running the JavaTest harness from which to
load the command class and any classes it invokes. The classes are automatically loaded into the
agent as needed. See Chapter 4 for additional information about using the -classpath option.

–mapArgs

The command to be executed might contain values that are specific to the host running the
JavaTest harness and that might not be appropriate for the host that actually runs the command.
If this option is given, the agent uses a local mapping file to translate specified string values into
replacement values. This is typically used to map filenames from the view on one host to the view
on another. See the JavaTest online help for more information.

–port port-name

This option specifies the name of the serial port on the system running the JavaTest harness to be
used to communicate with a JavaTest Agent that has also been configured to communicate via a
serial line. The set of possible names is determined dynamically, and is dependent on the
underlying implementation of the javax.comm API. On Solaris, the names are typically ttya, ttyb;
on a PC, the names are typically COM1, COM2, COM3 and COM4.

–tag tag

This option lets the user specify a string to be used to identify the request on the agent. If not
specified, the default value, command-class, is used. It is suggested that the URL of the test be used
as the value for this option. In an environment file, this is available as the symbolic name
“$testURL”.

command class

The name of a command class to be executed by the agent. The class should be on the class path
of the agent, and should be appropriate for the agent, depending on the security restrictions
imposed on the agent. For example, an agent running as an application might be able to run a
ProcessCommand, but an agent running as an applet might not.

command arguments

The arguments to be passed to the run method of an instance of the command class running on
the agent. The arguments can be translated to agent-specific values if the –mapArgs option is
given.
Appendix A Standard Commands 139

Description SerialAgentCommand is a facility to execute a command on a JavaTest Agent that has been
configured to communicate via a serial line. A JavaTest Agent lets you run tests in a context that
might not be able to support all of the JavaTest harness. This might be because the tests are to be
run on a machine with limited resources (such as memory), or in a security-restricted
environment (such as a browser), or on a newly developed platform on which is not possible to
run the JDK.
The port option identifies a serial port on the system running the JavaTest harness, which should
be connected to a serial port on the system running the JavaTest Agent. The serial line is accessed
via the javax.comm optional package. This is not part of the standard JDK, and must be added to
your class path when you start the JavaTest harness.
Commands often contain host-specific arguments, such as filenames or directories. Although the
files and directories might be accessible from the agent host (and in general, should be), the paths
might be different. For example, /usr/local on a Solaris platform could be mounted as a
network drive like H: on a Windows NT platform. When an agent is initialized, it may be given
information on how to translate strings from one domain to another. On a per-command basis, the
agent can be instructed to translate a command according to the translation tables it is given.
The command to be executed on an agent can be identified with a tag for tracing and debugging
purposes. If none is specified, a default identification is used.
Any output written by the command when it is executed by the agent appears as the output of the
SerialAgentCommand command itself. If the command is successfully executed by the agent (i.e.
the Command object is successfully created and the run method invoked), then the result of
SerialAgentCommand is the result of the command executed by the agent. Otherwise, an
appropriate error status is returned.

Examples This example is based on the following sample code demonstrating ProcessCommand:

com.sun.javatest.lib.ProcessCommand /usr/local/jdk1.3/solaris/bin/javac
-classpath /home/juser/classes –d /home/juser/classes HelloTest.java

A command can be made to execute on another machine simply by prefixing it with
SerialAgentCommand and any arguments that SerialAgentCommand requires.

compile.java=\
com.sun.javatest.agent.SerialAgentCommand –port ttya \
com.sun.javatest.lib.ProcessCommand \
/usr/local/jdk1.3/solaris/bin/javac -classpath /home/juser/classes
–d /home/juser/classes HelloTest.java

See Also All the other standard commands in this appendix. Subject to security restrictions on the agent,
they can all be executed remotely by means of SerialAgentCommand.
140 JavaTest Architect’s Guide • May 2011

APPENDIX B

Formats and Specifications

This appendix describes file formats and specifications that test architects should
know about.

Test URL Specification
This specification describes how test files must be named to work properly with the
JavaTest harness.

The JavaTest harness converts the native path names of tests to an internal format
called a test URL. When the JavaTest harness converts a path name to a test URL, it:

■ Makes the path relative to the root of the test suite

■ Converts the path separator to a forward slash

A test URL consists of three components:

■ The folder/directory path name (relative to the test suite tests directory)

■ The name of the file that contains the test description

■ An optional test identifier can be appended to designate a test description table
within a test description file

For example:

api/javatest/TestSuite.html#getName

The JavaTest harness evaluates test URLs without regard to case; however, it does
preserve case when possible to increase readability for the user.

The path names you create can contain only the following characters:

■ ISO Latin 1 characters A-Z and a-z

■ Digits 0-9
141

■ Underscore character “_”

■ Dash character “-”

■ Period character “.” (deprecated)

■ Open and close parentheses (deprecated)

Test URLs must never contain whitespace characters.

Deprecated characters are included for backward compatibility; please do not use
them as they might become unsupported in future releases. Whenever possible, use
short names to make best use of screen real estate.

Note – When the result file (.jtr) is created, the text after the last period is omitted.

The test identifier may only contain the following characters:

■ ISO Latin 1 characters A-Z and a-z

■ Digits 0-9

■ Underscore character “_”

Test Paths
An test path can be used by a user to specify a particular subset of tests in the test
suite hierarchy; for example, in the Tests tab of the JavaTest configuration editor
(Standard Values view).

Initial URLs specify a set of tests in the following ways:

■ A folder that contains one or more tests

■ A file that contains one or more tests

■ A single, complete test URL

The test path conforms to the rules specified in the previous section, but is not
required to resolve the complete URL. If the test path is an incomplete test URL (for
example, a folder), the JavaTest harness generates a list of the tests’ URLs contained
hierarchically beneath it.
142 JavaTest Architect’s Guide • May 2011

Exclude List File Format
Test suites use the exclude list mechanism to identify tests that should not be run.
The JavaTest harness consults the exclude list when it selects tests to run, and does
not run the tests on the list. Excluded tests normally appear as filtered out in the
JavaTest test tree.

When the JavaTest harness is used with TCK test suites, the exclude list mechanism
is used to determine the correct set of tests that must be executed for certification.
The exclude list mechanism is a mechanism for “removing” broken or invalid tests in
the field without having to ship a new test suite.

Syntax
The exclude list is a four-column table that uses ISO Latin 1 (ISO 8859-1) character
encoding. Lines that are completely empty or contain only whitespace (space, tab,
newline) are allowed. Comment lines begin with the “#” character. Each line has the
following format:

Test_URL[Test_Cases] BugID_List Keywords Synopsis

For example:

api/index.html#attributes[Char2067] 4758373 reference,test Bug is intermittent

TABLE B-1 Exclude List Field Descriptions

Field Description

Test_URL[Test_Cases] The URL of the test to be excluded. This field can specify an entire
test or can use the Test_Cases parameter to specify a subset of its
test cases. The test cases field is optional and the brackets must not
be present if the field is empty.

BugID_List A comma-separated (no spaces) list of bug identifiers associated
with the excluded test.

Keywords A comma-separated (no spaces) list of keywords that can be used to
classify exclusions. The particular values are project specific.

Synopsis A short comment that describes the reason the test is excluded. This
optional field is recommended because it helps track entries on the
exclude list.
Appendix B Formats and Specifications 143

Each field is separated by spaces and/or tabs. A line break terminates the entry.
There is no way to indicate that the entry continues on the next line. Comments can
appear on any line of the file, see the rules below.

Although it is not recommended, you can omit the synopsis, keywords, or
bugID_List field; however, the entry is only valid if everything to the right of the
omitted field is also omitted. For example, you cannot omit a bugID and include a
keyword; but you can include a bugID and omit the keywords and synopsis.

Test URL and Test Cases
Entries must not specify overlapping test cases. For example, you cannot exclude an
entire test and then exclude a test case inside that test. These two entries can never
appear in the same file:

api/java_lang/Character/index.html#attributesFullRange

api/java_lang/Character/index.html#attributesFullRange[Character2067
]

The URL must specify a specific test or test case. Entire subsections of the test suite
cannot be excluded with a single entry. Continuing with the API example, if a test
suite is rooted at the ts_dir\tests directory and the index.html file contains many
test descriptions, all of the following test URLs are invalid:

api

api/java_lang/

api/java_lang/Character

api/java_lang/Character/index.html

tests/api/java_lang/xyz

java_lang/xyz

You can exclude individual test cases within a test description by appending a list of
those tests cases at the end of the test URL. The list of test cases must be enclosed
within square brackets. The list of test cases is separated by commas with no internal
whitespace. There is no whitespace between the end of the test URL and the opening
square brackets. The following figure shows valid test URL entries:

For information about constructing valid test URLs, see “Test URL Specification” on
page 141.

vm/instr/ifnull/ifnull003/ifnull00303m1/ifnull00303m1.html
api/java_beans/beancontext/BeanContextMembershipEvent/index.html#Constructor
api/java_lang/Character/index.html#attributesFullRange[Character2067]
api/SystemFlavorMap/index.html#method[SystemFlavorMap0001,SystemFlavorMap0004]
144 JavaTest Architect’s Guide • May 2011

BugIDs
The list of bug IDs is separated by commas, and contains no whitespace characters.
Items in the BugID_List are entries that correspond to a bug in a bug tracking system.
Letters, integers, dashes and underscore characters are valid.

Keywords
It is recommended that keyword entries be no longer than 20 characters long.
Keyword entries must start with a letter and can contain letters, numbers, and the
underscore character. The list of keywords is separated by commas, without any
whitespace characters.

Synopsis
Any description or notes about a particular entry. There are no special restrictions on
the content of this field. It is recommended that the field contain no more than 100
characters.

Comments and Header Information
Comments always extend from column zero of a line to end of the line. To be a
comment line, the character in column zero must be “#”; two consecutive “#”
characters at the beginning of a line are allowed, but the use of three or more is
reserved.

Optional (but recommended) header lines can be added to your exclude list file to
improve readability. Header lines always begin with “###” and can be used to
designate titles, and revision histories. The format is:

header_type heading content...

The case-sensitive header type specification is separated from the “###” prefix by
white space characters, the heading content is separated from the header type
specification by more whitespace characters. These values should appear only once
in any exclude list file, and it is recommended that they be placed at the top of the
file. Currently, the only supported header type is “title”. The title describes the
exclude list and must be terminated with a newline.

The following is an example of a valid exclude list:

title My example exclude list
revised Mon Jul 23 18:15:04 PDT 2001
api/java_lang/runtimetest.java
Appendix B Formats and Specifications 145

this is a comment line
api/index.html#attributes[Char2067] 1234567 reference,test
Invalid assumption
this is another comment line
api/mytest.java#1 1234568,987654321 spec
146 JavaTest Architect’s Guide • May 2011

APPENDIX C

What Technical Writers Should
Know About Configuration
Interviews

Technical writers can greatly contribute to the quality of a JavaTest configuration
interview — think of the text in a configuration interview as being equivalent to an
application’s user interface; the better the text, the easier the test suite is to run. There
are two areas where a writer’s contribution is extremely important:

■ The careful construction and phrasing of the question text

■ Providing extra help and examples in the More Info pane

Question Text
Interview questions should be written as concisely, consistently, and clearly as
possible. Any amplification, clarification, or examples should be included in the
More Info pane.

Not all questions are really questions; some “questions” are written as statements
that instruct the user to specify, choose, or select an item of information.

To see an example interview, run the JavaTest tutorial in Chapter 2. The tutorial uses
the Demo TCK that is part of the JavaTest Architect’s release.

Question text is kept in a Java properties file associated with the interview class files;
you get the path to the properties file from the interview developer. Every interview
question is identified by a unique key. The key is based on a name assigned by the
developer and should uniquely identify the question with the interview. Keys are of
the form:

interview_class_name.question_name
147

The following is a snippet from the Demo TCK interview properties file:

The file contains the following types of elements:

■ The title of the full interview

■ A title for each question of the form: question_key.smry

■ The text for each question of the form: question_key.text

■ Additional entries for choice items that are localized

Note – Do not type carriage return or linefeed characters within entries in a Java
properties files. This causes an error when the interview is built. Use the “\n”
characters to specify line breaks in question text.

More Info
As a technical writer, you can really add value to a test suite in the configuration
interview More Info pane.

title=Demo Interview Configuration Editor
.
.
DemoTCKParameters.cmdType.smry=How to Run Tests
using a JavaTest Agent?computer (using a separate JVM), or to run
them on another computer DemoTCKParameters.cmdType.text=Do you
wish to run the tests on this
DemoTCKParameters.cmdType.agent=Using a JavaTest Agent
DemoTCKParameters.cmdType.otherVM=On this computer
DemoTCKParameters.data.smry=Test Configuration Values...
local settings of some parameters required by some of the
tests.DemoTCKParameters.data.text=The following questions
determine the
DemoTCKParameters.desc.smry=Description
identify the configuration you are creating
here.DemoTCKParameters.desc.text=Please provide a short
description to
.
.

148 JavaTest Architect’s Guide • May 2011

FIGURE C-1 The JavaTest Configuration Editor: Question and More Info Panes

The text displayed in the More Info pane is formatted using HTML 3.2 tags and
provides a reasonably rich environment for formatting text. Although the text can be
created using a WYSIWYG HTML editor, most More Info text is short and simple and
is easy to create manually using a text editor.

Typically, the developer who creates the configuration interview creates the basic
More Info system, seeding it with empty HTML files that you can fill in with text.

Experience has shown that it is best to create one HTML More Info file per interview
question. It is also a good idea to name the More Info HTML files after the property
names of the questions they describe. For example, in the snippet in the previous
section, you can see that the DemoTCKParameters interview contains a question
named cmdType — you should expect to see a corresponding More Info file named
cmdType.html.

Formatting Styles
The following tips can be helpful when formatting your More Info topics:

Your More Info topics should link to the style sheet included in this package named
moreInfo.css.

■ Use only HTML 3.2 tags because of limitations in the HTML viewer

■ Section 508 accessibility rules may apply

■ Do not create hypertext links to other More Info topics or other external
documents

■ Do not add any <p> tags between the <body> tag and the initial paragraph
Appendix C What Technical Writers Should Know About Configuration Interviews 149

■ Use the <i> tag for variables in command lines — use the tag for emphasis

■ All file names and code examples should be formatted in the fixed-width font
using the <code> or <pre> tags

■ The style sheet (moreInfo.css) contains a “tight” class that you can use with
 tags for lists in which you want less vertical space between list items. For
example:

■ <li class="tight">This item is closer to the previous list item

■ Indent path names and code examples using the <p class="code"> tag. The
code class indents the lines 8 pixels and has no top margin. For example, the
following HTML:

Produces the following output:

jdk_install_dir/bin/java
jdk_install_dir/jre/java

Usage and Conventions
The following list describes some conventions that have proven useful for writing
More Info text:

■ Use the present tense when possible. For example, instead of:

“The following questions will gather...”

use:

“The following questions gather...”

■ When reasonable, provide examples in both Unix and Microsoft Windows format

<p class="code">
<i>jdk_install_dir</i><code>/bin/java</code>

</p>
<p class="code">

<i>jdk_install_dir</i><code>/jre/java</code>
</p>
150 JavaTest Architect’s Guide • May 2011

Glossary

A
active agent A type of test agent that initiates a connection to the JavaTest harness. Active

test agents allow you to run tests in parallel using many agents at once and
to specify the test machines at the time you run the tests. Use the agent
monitor to view the list of registered active agents and synchronize active
agents with the JavaTest harness before running tests. See also test agent,
passive agent, and JavaTest agent.

agent monitor The JavaTest window that is used to synchronize active agents and to
monitor agent activity. The Agent Monitor window displays the agent pool
and the agents currently in use.

agents See test agent, active agent, passive agent, and JavaTest agent.

Application
Programming Interface

(API)

An API defines calling conventions by which an application program
accesses the operating system and other services.

assertion A statement contained in a structured Java technology API specification to
specify some necessary aspect of the API. Assertions are statements of
required behavior, either positive or negative, that are made within the Java
technology specification.

assertion testing Compatibility testing based on testing assertions in a specification.

atomic operation An operation that either completes in its entirety (if the operation succeeds)
or no part of the operation completes at all (if the operation fails).
151

B
behavior-based testing A set of test development methodologies that are based on the description,

behavior, or requirements of the system under test, not the structure of that
system. This is commonly known as “black-box” testing.

C
class The prototype for an object in an object-oriented language. A class may also

be considered a set of objects which share a common structure and behavior.
The structure of a class is determined by the class variables which represent
the state of an object of that class and the behavior is given by a set of
methods associated with the class. See also classes.

classes Classes are related in a class hierarchy. One class may be a specialization (a
“subclass”) of another (one of its “superclasses”), it may be composed of
other classes, or it may use other classes in a client-server relationship. See
also class.

compatibility rules Compatibility rules define the criteria a Java technology implementation
must meet in order to be certified as “compatible” with the technology
specification. See also compatibility testing.

compatibility testing The process of testing an implementation to make sure it is compatible with
the corresponding Java technology specification. A suite of tests contained in
a Technology Compatibility Kit (TCK) is typically used to test that the
implementation meets and passes all of the compatibility rules of that
specification.

configuration Information about your computing environment required to execute a
Technology Compatibility Kit (TCK) test suite. The JavaTest harness version
3.x uses a configuration interview to collect and store configuration
information. The JavaTest harness version 2.x uses environment files and
parameter files to obtain configuration data.

configuration editor The dialog box used JavaTest harness version 3.x to present the
configuration interview.

configuration interview A series of questions displayed by JavaTest harness version 3.x to gather
information from the user about the computing environment in which the
TCK is being run. This information is used to produce a test environment
that the JavaTest harness uses to execute tests.
152 JavaTest Architect’s Guide • May 2011

configuration value Information about your computing environment required to execute a TCK
test or tests. The test environment version 3.x uses a configuration interview
to collect configuration values. The JavaTest harness version 2.x uses
environment files and parameter files to obtain configuration data.

E
equivalence class

partitioning
A test case development technique which entails breaking a large number of
test cases into smaller subsets with each subset representing an equivalent
category of test cases.

exclude list A list of TCK tests that a technology implementation is not required to pass
in order to certify compatibility. The test environment uses exclude list files
(*.jtx), to filter out of a test run those tests that do not have to be passed.
The exclude list provides a level playing field for all implementors by
ensuring that when a test is determined to be invalid, then no
implementation is required to pass it. Exclude lists are maintained by the
Maintenance Lead (ML) and are made available to all technology licensees.
The ML may add tests to the exclude list for the test suite as needed at any
time. An updated exclude list replaces any previous exclude lists for that test
suite.

H
HTML test description A test description that is embodied in an HTML table in a file separate from

the test source file.

I
implementation See technology implementation.

instantiation In object-oriented programming, means to produce a particular object from
its class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either
default values or those provided by the class’s constructor function.
153

J
Java Platform, Standard

Edition (Java SE)
The Java SE platform is a set of specifications that defines the desktop
runtime environment required for the deployment of Java applications. Java
SE technology implementations are available for a variety of platforms, but
most notably Solaris and Microsoft Windows.

Java Application
Manager (JAM)

A native application used to download, store and execute Java applications.

Java Archive (JAR) A JAR is a platform-independent file format that combines many files into
one.

Java Platform Libraries The class libraries that are defined for each particular version of a Java
technology in its Java technology specification.

Java technology A Java technology is defined as a Java technology specification and its
reference implementation (RI). Examples of Java technologies are Java
Platform, Standard Edition (Java SE), the Connected Limited Device
Configuration (CLDC), and the Mobile Information Device Profile (MIDP).

Java technology
specification

A written specification for some aspect of the Java technology.

JavaTest agent A test agent supplied with the JavaTest harness to run TCK tests on a Java
implementation where it is not possible or desirable to run the main JavaTest
harness. See also test agent, active agent, and passive agent.

JavaTest harness The JavaTest Harness is a test harness that has been developed to manage
test execution and result reporting for a Technology Compatibility Kit
(TCK). The harness configures, sequences, and runs test suites. The JavaTest
harness is designed to provide flexible and customizable test execution. It
includes everything a test architect needs to design and implement tests for
Java technology specifications.

K
keywords Keywords are defined for a test suite by the test suite architect. Keywords

are used to direct the JavaTest harness to include or exclude tests from a test
run.
154 JavaTest Architect’s Guide • May 2011

M
Maintenance Lead (ML) The person responsible for maintaining an existing Java technology

specification and related reference implementation (RI) and Technology
Compatibility Kit (TCK). The ML manages the TCK appeals process, exclude
list, and any revisions needed to the specification, TCK, or RI.

methods Procedures or routines associated with one or more classes, in
object-oriented languages.

MultiTest A JavaTest library class that enables tests to include multiple test cases. Each
test case can be addressed individually in a test suite exclude list.

N
namespace A set of names in which all names are unique.

O
object-oriented A category of programming languages and techniques based on the concept

of objects which are data structures encapsulated with a set of routines,
called methods, which operate on the data.

objects In object-oriented programming, objects are unique instances of a data
structure defined according to the template provided by its class. Each object
has its own values for the variables belonging to its class and can respond to
the messages (methods) defined by its class.

P
packages A namespace within the Java programming language. It can have classes

and interfaces. A package is the smallest unit within the Java programming
language.
155

passive agent A type of test agent that must wait for a request from the JavaTest harness
before they can run tests. The JavaTest harness initiates connections to
passive agents as needed. See also test agent, active agent, and JavaTest
agent.

prior status A JavaTest filter used to restrict the set of tests in a test run based on the last
test result information stored in the test result files (.jtr).

R
reference

implementation (RI)
The prototype or proof of concept implementation of a Java technology
specification. All new or revised specifications must include an RI. A
specification RI must pass all of the TCK tests for that specification.

S
signature file A text representation of the set of public features provided by an API that is

part of a finished TCK. It is used as a signature reference during the TCK
signature test for comparison to the technology implementation under test.

signature test A TCK signature test for a Java technology implementation checks that all
the necessary API members are present and that there are no extra members
which illegally extend the API. It compares the API being tested with a
reference API and confirms if the API being tested and the reference API are
mutually binary compatible.

specification A plan or blueprint for structuring and delivering information.

See Java technology specification.

standard values A configuration value used by the JavaTest harness to determine which tests
in the test suite to run and how to run them. The user can change standard
values using either the Question mode or Quick Set mode in the
configuration editor.

system configuration Refers to the combination of operating system platform, Java programming
language, and JavaTest harness tools and settings.
156 JavaTest Architect’s Guide • May 2011

T
tag test description A test description that is embedded in the Java language source file of each

test.

Technology
Compatibility Kit (TCK)

The suite of tests, tools, and documentation that allows an implementor of a
Java technology specification to determine if the implementation is
compliant with the specification.

technology
implementation

Any binary representation of the form and function defined by a Java
technology specification.

technology specification See Java technology specification.

test agent A test agent is a Java application that receives tests from the test harness,
runs them on the implementation being tested, and reports the results back
to the test harness. Test agents are normally only used when the TCK and
implementation being tested are running on different platforms. See also test
agent, passive agent, and JavaTest agent.

test The source code and any accompanying information that exercise a
particular feature, or part of a feature, of a See also technology
implementation to make sure that the feature complies with the Java
technology specification’s compatibility rules. A single test may contain
multiple test cases. Accompanying information may include test
documentation, auxiliary data files, or other resources used by the source
code. Tests correspond to assertions of the specification.

test cases A small test that is run as part of a set of similar tests. Test cases are
implemented using the JavaTest MultiTest library class. A test case tests a
specification assertion, or a particular feature, or part of a feature, of an
assertion.

test command A class that knows how to execute test classes in different environments.
Test commands are used by the test script to execute tests.

test command template A generalized specification of a test command in a test environment. The test
command is specified in the test environment using variables so that it can
execute any test in the test suite regardless of its arguments.

test description Machine readable information that describes a test to the test harness so that
it can correctly process and run the related test. The actual form and type of
test description depends on the attributes of the test suite. A test description
exists for every test in the test suite and is read by the test finder. When
using the JavaTest harness, the test description is a set of test-suite-specific
name/values pairs in either HTML tables or Javadoc-style tags.
157

test environment A test environment consists of one or more test command template that the
test script uses to execute tests and set of name/value pairs that define test
description entries or other values required to run the tests.

test execution model The steps involved in executing the tests in a test suite. The test execution
model is implemented by the test script.

test finder When using the JavaTest harness, a nominated class, or set of classes, that
read, verify, and process the files that contain test description in a test suite.
All test descriptions that are located or found are handed off to the JavaTest
harness for further processing.

test harness The applications and tools that are used for test execution and test suite
management. The JavaTest harness is an example of a test harness.

test script A Java class whose job it is to interpret the test description values, run the
tests, and then report the results back to the JavaTest harness. The test script
must understand how to interpret the test description information returned
to it by the test finder.

test specification A human-readable description, in logical terms, of what a test does and the
expected results. Test descriptions are written for test users who need to
know in specific detail what a test does. The common practice is to write the
test specification in HTML format and store it in test suite’s test directory
tree.

test suite A collection of tests, used in conjunction with the JavaTest harness to verify
compliance of the licensee’s implementation of Java technology
specification. All TCKs contain one or more test suites.

W
work directory A directory associated with a specific test suite and used by the JavaTest

harness to store files containing information about the test suite and its tests.
158 JavaTest Architect’s Guide • May 2011

Index
Symbols
$testExecuteArgs, 53
$testExecuteClass, 53
$testSource, 53
$testURL, 130, 136, 139
.jtr files, 100
.jtt file, 27
.jtt file, 20, 26, 32, 81
.jtx files, 17, 153
@executeArgs test description entry, 29
@executeClass test description entry, 29
@sources test description entry, 29
@test test description entry, 29

A
active agent, 151
ActiveAgentCommand, 130
adding entries to the Help menu, 82
additionalDocs entry (testsuite.jtt), 82
agent (remote execution), 22
agent class path, 35
agent monitor, 151
agent see test agent
Alt-Shift-D, using to view question ID, 73
AntService, 104, 106
AntServiceExecutor, 104, 105
API see Application Programing Interface
Application Programming Interface, 151
architect, TCK, 2
assertion testing, 151

assertions, 151
atomic operation, 151

B
BasicInterviewParameters, 62
BasicInterviewParameters class, 55
batch mode, 78
-batch option, 78
behavior-based testing, 152
binary test finder, 90
black-box testing, 152

C
ChameleonTestFinder, 119
class files, test, 45
class path, 34, 39

agent, 35
JavaTest, 35
setting in testsuite.jtt, 82
test, 35

classes, 152
classes directory, 28
classes directory, 33
classpath entry in testsuite.jtt, 27
com.sun.interview.Interview, 55
com.sun.interview.Question, 55
com.sun.javatest.Command, 99
com.sun.javatest.interview.BasicInterv

iewParameters, 55
com.sun.javatest.InterviewParameters, 5

4

159

com.sun.javatest.lib
ExecStdTestSameJVMCmd, 132, 133, 134, 135,

138, 139
JavaCompileCommand, 134
ProcessCommand, 138
SerialAgentCommand test suite, 139

com.sun.javatest.Status, 41
com.sun.javatest.TestResult, 100
command interface, 99
command strings, configuration interview, 50
commands, custom, 98
commands, standard (defined), 129
compatibility rules, 152
compatibility testing, 152
compiling test suites with JavaTest, 77
components, JavaTest, 19

diagram, 21
configuration, 152
configuration editor, 1, 8, 152
configuration interview, 20, 47 to 74

classes, 54
command strings, 50
controlling question, 57
current interview path, 55
designing configuration, 47
designing interview, 49
designing questions, 59
error checking, 56
exporting, 57
final question, 56
flow charts, 62
getEnv() method, 66
getNext() method, 56
JAR file, 74
landing point questions, 60
More Info help, 66, 67, 70, 73
prolog, 65
question text, 67 to 70
questions, 57
resource file, 66, 70
standard values, 49, 62
sub-interviews, 60
test commands, 48
test description, 48
test environment, 49
test script, 48
tutorial, 9

writing your interview, 53
Connector, 104, 109
creating a test suite, 25
creating tests, 28
current interview path, 55
custom commands, 98
custom splash screen, 125

D
-D option, 77
default tags

@executeArgs, 42
@executeClass, 42
@sources, 42

Demo Interview, 54
Demo TCK, 5
Demo TCK configuration interview, 54
demoapi.jar, 2
descriptions, test, 157
doc directory, 33

E
env.tsRoot, 82
equivalence class partitioning, 153
error checking in configuration interviews, 56
error exit value, 40
error messages, 46
examples directory, 2
exclude list, 16

file format, 143
file syntax, 143

exclude lists, 153
ExecStdTestSameJVMCmd, 132, 133
executing tests remotely, 22
export() method, 57
exporting test environment, 57

F
failed exit value, 40
failed method, 40
finder, test, 19

binary, 90
HTML, 89
tag, 88
160 JavaTest Architect’s Guide • May 2011

first question (interview), 65
flow charts, 62
Folder pane, 12

G
generate a report, 17
getEnv() method, 57, 66
getNext() method, 56

H
Help menu, adding entries, 82
HelpSet file, 71
–host option, 135
HTML test description, 19
HTML test finder, 89

I
id keys, 114
implementation, 153
Instantiation, 153
Interview class, 55
interview. See configuration interview
InterviewParameters class, 54

J
J2SE see Java Platform Standard Edition
JAM see Java Application Manager
JAR see Java Archive
Java Application Manager (JAM), 154
Java Archive, 154
Java Platform Libraries, 154
Java Platform, Standard Edition, 154
Java SE, 154
Java technology, 154
Java technology specification, 154
JavaCompileCommand, 99
JavaTest Agent, 22
JavaTest class path, 35
JavaTest components, 19

diagram, 21
JavaTest harness, 1
JavaTest tutorial, 5
javatest.jar, 32
JCKTestFinder, 90

JDKCompileCommand, 99
jt-junit.jar, 114
jtt file, 81
jtx files, 153
JUnit 3.x, 114
JUnit 4.x, 114
JUnit distribution, 113
JUnit framework, 113
junit keyword, 119
JUnit library, 119
JUnit test suite, 114
JUnit tests, 113
junit.finderscantype, 118, 119
junit.framework.TestCase, 114, 117
junit.testmethods, 118, 119
JUnitAnnotationMultiTest, 119
JUnitAnnotationTestFinder, 114, 116
JUnitBareMultiTest, 119
JUnitBaseInterview, 115, 116
JUnitMultiTest, 116
JUnitSuperTestFinder, 114, 116
JUnitTestFinder, 116
JUnitTestRunner, 116
JUnitTestSuite, 116

K
keywords, 42, 118, 119, 154

L
lib directory, 33

M
maintenance lead, 155
map file, More Info help, 72
–mapArgs, 131, 135, 136, 139
method, 155
ML see maintenance lead
More Info help, 66, 67, 70 to ??, 73

HelpSet file, 71
map file, 72

More Info topic substitution, 73
MultiTest, 155
MultiTest class, 43
Index 161

N
namespace, 155
-newdesktop option (JavaTest), 7, 31
next question (interview), 64

O
object-oriented, 155
objects, 155
org.junit.Test, 114
Overriding default testsuite.jtt default

methods, 86

P
package, 155
packaging

test suite JAR file, 33
testsuite.jtt, 32

ParamResolver, 109
passed exit value, 40
passed() method, 40
PassiveAgentCommand, 135
–port, 135, 139
prior status, 156
ProcessCommand, 138
processCommand, 78
ProcessServiceExecutor, 105
prolog (configuration interview), 65

Q
Question class, 55
questions, configuration interview, 57

designing, 59
keys, 69
landing point questions, 60
text, 69

questions, interview
question text, 67 to 70

R
remote execution, 22
remote service management, 104
report directory, 79
report generation, 17
-report option, 79
resource file, configuration interview, 66

resource file, interview, 70
retrofitting JUnit tests, 113

S
sampleFiles directory, 2
script, test, 20, 98, 158

designing, 95 to 98
sequence of events (table), 31
SerialAgentCommand, 139
Service, 103
Service Management architecture, 109
Service properties, 107
service start-up, 111
service support, 104
Service.start methods, 111
ServiceConnector, 104
ServiceExecutor, 104, 109
ServiceManager, 101
ServiceProperties object, 107
ServiceReader, 104
setHelpSet method, 66
signature file, 156
signature test, 156
Smalltalk, 113
source files, test, 45
SourceForge.net, 113
specification see Java technology specification
specification, URL, 141
splash screen

custom, 125
splash.properties file, 126
standard commands (defined), 129
standard configuration values, 49
Standard Test Script, 48
Status object, 20
sub-interviews, configuration interview, 60
summary of JavaTest events (table), 21
system configuration, 156

T
-tag, 130, 136, 139
tag test description, 19, 157
tag test finder, 88
TCK, 1
162 JavaTest Architect’s Guide • May 2011

TCK see Technology Compatibility Kit
Technology Compatibility Kit, 157
technology see Java technology
test agent, 157
test cases, 157
test class files, 45
test class path, 35
test command templates, 157
test commands, 48, 157
test description, 19

configuration interview, 48
HTML, 19
tag, 19
variables, 48

test description default entries
@executeArgs, 29
@executeClass, 29
@sources, 29
@test, 29

test description file, 89
test descriptions, 157
test environment, 49, 66
test environment, exporting, 57
test execution mode, 158
test execution model, 37, 98
test finder, 19, 22, 158

binary, 90
HTML, 89
tag, 88

Test interface, 38
Test pane, 14
test script, 20, 98, 158

designing, 95 to 98
test source files, 45
test specification, 158
test status, 20, 40
test suite, 1
test suite JAR file, 33
test suite user’s guide, 1
test suite, creating, 25
test suites, 158
test URL specification, 141
test, creating, 28
TestEnvironment, 107

TestResult, 20
tests, 157
tests directory, 32
-testsuite, 126
TestSuite object, 20, 21
-testsuite option, 79
testsuite.jtt, 20, 26, 81
testsuite.jtt entries, 82

additionalDocs, 82
classpath, 82
finder, 82
id, 83
initial.jtx, 83
interview, 83
keywords, 83
latest.jtx, 83
logo, 83
name, 83
script, 84
testCount, 84
tests, 84
testsuite, 85

ThreadServiceExecutor, 105
-ts, 126
tutorial configuration answers, 9
tutorial, JavaTest, 5

U
URL specification, 141
user’s guide, test suite, 1

V
variables, test description, 48
variables, test environment

configuration environment
variables, 53

W
work directory, 8, 79, 158
-workdir option, 79
wrapper class, 99

X

XMLServiceReader, 104
Index 163

164 JavaTest Architect’s Guide • May 2011

	JavaTest Harness
	Contents
	Figures
	Tables
	Preface
	Introduction
	Examples

	I The Basics
	JavaTest Tutorial
	Overview
	Running the Tutorial
	Start the JavaTest Harness
	Run the Quick Start Wizard
	Configure Test Information
	Run Tests
	Browse the Results
	The Folder Pane
	Browse the Folder Pane Results

	The Test Pane
	Browse the Test Pane Results

	Exclude the Failed Test
	Generate a Report

	Overview
	Test Suite Components
	Remote Execution

	Creating a Test Suite
	Create a Test Suite
	Create a Test Suite Directory
	Create the testsuite.jtt File
	Copy javatest.jar
	Set Up the classes Directory
	Use a Simple Test Template
	Create and Compile a Simple Test Example
	Run a Test Suite

	Odds and Ends
	Top-Level Test Suite Directory
	The Test Suite JAR File
	Class Paths
	JavaTest Class Path
	Agent Class Path
	Test Class Path

	Writing Tests
	The Test Execution Model
	The Test Interface
	Class Paths

	Test Status
	Test Description Entries
	Keywords

	Multiple Tests in a Single Test File
	Subtyping MultiTest

	Organizing Tests Within Your Test Suite
	Source Files
	Class Files

	Error Messages

	Creating a Configuration Interview
	Designing Your Configuration
	What is a Configuration?
	Test Script Information
	Test Description Entries
	Which Tests to Run

	Designing Your Interview
	Command Strings
	Example 1
	Example 2

	Test Environment Variables

	Writing Your Interview
	Demo TCK interview
	Demo Interview
	Start the Demo Interview

	Interview Classes
	The Current Interview Path
	Determining the Next Question
	Error Checking
	Exporting the Test Environment
	Question Types
	Designing Your Questions
	Landing Point Questions
	Sub-Interviews
	Flow Charts

	Putting it All Together
	Providing the Prolog
	Providing the Environment Group
	Providing the Resource File for the Interview
	Providing the More Info Help for the Interview

	Creating Question Text and More Info
	Writing Style
	Creating Question Text and Keys
	Creating More Info
	Set Up the More Info System
	Create HTML Topics for All Interview Questions
	Customizing Standard Question More Info

	Creating the JAR File

	II Advanced Topics
	Compiling Test Suites
	System Properties

	The TestSuite Object
	The testsuite.jtt File
	Overriding Default Methods

	Test Finder
	Test Finder Subtypes
	Tag Test Finder
	HTML Test Finder
	Binary Test Finder
	BinaryTestWriter
	BinaryTestFinder
	Examples

	Test Scripts
	Design Decisions
	Simple Test Scripts
	More Flexible Test Scripts
	Example 1
	Example 2

	Writing Custom Commands
	Test Result

	Service Management
	Description
	Services-Related Work Flow
	Implementation
	Implementation of ServiceReader Interface
	Implementation of Service Interface
	Service Properties

	Service Management Architecture
	Mechanism to Instantiate Service, Connector, and ServiceExecutor Interfaces
	Separate Services Start Up

	Running JUnit Tests
	The Retrofit Process
	Prerequisites for Converting Tests
	Procedure for Converting Tests

	Technical Details
	Support Classes
	JUnitSuperTestFinder
	JUnitAnnotationTestFinder
	JUnitBareMultiTest
	JUnitAnnotationMultiTest

	Implementation Notes

	Areas for Improvement
	References

	Customization
	Customization API
	Internationalization
	Customizing the Splash Screen
	Example of splash.properties File
	Notes About the Implementation

	Customizing Menus
	Adding Menu Items to Test Manager Menus
	Adding Menu Items to the Tree Popup Menu

	Customizing Toolbars

	Standard Commands
	ActiveAgentCommand
	ExecStdTestSameJVMCmd
	ExecStdTestOtherJVMCmd
	JavaCompileCommand
	PassiveAgentCommand
	ProcessCommand
	SerialAgentCommand

	Formats and Specifications
	Test URL Specification
	Test Paths

	Exclude List File Format
	Syntax
	Test URL and Test Cases
	BugIDs
	Keywords
	Synopsis
	Comments and Header Information

	What Technical Writers Should Know About Configuration Interviews
	Question Text
	More Info
	Formatting Styles
	Usage and Conventions

	Glossary
	Index

