
JavaTest™ Harness 4.4.1

JavaTest Agent User’s Guide

November 2011

Please
Recycle

Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to
or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to
and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has
been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied,
reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license
agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Contents

Preface 3

1. What is the JavaTest Harness Agent? 1

JavaTest Harness Agent Features 1

Installation and Runtime Security Guidelines 2

2. Installing Agent Classes on a Test System 5

Classes Required to Use the GUI 6

Classes Required to Use the Command Line 7

Classes Required to Use Applets 8

Choosing the Type of Agent 10

Creating a Map File 12

Starting a JavaTest Harness Agent 14

Agent Application 14

Agent Applet 15

Using the GUI 15

Starting an Agent Application 16

Classpaths 17

Application Classes 18

Agent Options 19
1

Starting an Agent Applet 19

Agent Applet Tag 20

Setting Parameters in the Applet Tag 21

Specifying Active Agent Options 22

Mode 23

Host 23

Port 24

Specifying Passive Agent Options 24

Mode 25

Port 25

Specifying Serial Agent Options 26

Mode 26

Port 27

Specifying Additional Agent Options 27

Options Used to Display Help 28

Options Used to Run and Monitor the Agent 28

3. Monitoring JavaTest Harness Agents 33

Agent Monitor Window 33

Agent Pool 34

Agents Currently In Use 35

Statistics Pane 36

History Pane 36

Selected Task Pane 38

4. Troubleshooting JavaTest Harness Agents 41

Troubleshooting Active Agents 41

Troubleshooting Passive Agents 42

5. Glossary 45
2 JavaTest Agent User’s Guide • November 2011

Preface

This manual describes how to use the JavaTest™ agent (the agent) in conjunction
with the JavaTest™ harness (the harness) to run tests of the test suite, write reports,
and audit test results. This User’s Guide is a PDF version of the agent online help. It
is provided in PDF format so that users can conveniently view and print the contents
of the online help without starting the harness.

There are minor differences between the online help and the PDF document although
the basic contents are the same. The following changes have been made in the PDF
document:

■ The contents are re-sequenced.

■ Additional contents are included.

■ Hypertext links from the online help are converted to page references embedded
in text.

■ Navigation links from the online help are removed.

The harness includes the following User’s Guides:

■ Graphical User Interface Users’ Guide
■ Command-Line Interface Users’ Guide
■ JavaTest Agent Users’ Guide

Security Note
This section discusses potential security vulnerabilities in the harness deliverables.

The harness is a self-contained package and only requires the Java archive
(/lib/javatest.jar) to execute.
3

You can reduce risk by restricting access to optional files or removing them
completely. “Optional Components” on page 4 lists portions of the distribution that
are not required. Please refer to all the product release notes for the most recent notes
about security.

Architects creating test suites should carefully select the set of files to include, and
should ensure that file permissions are restricted to essential access.

Optional Components
The harness includes the following optional components:

■ Launch scripts are located in each platform’s /bin directory (for example,
javatest.ksh or javatest.bat.

Launch scripts are provided for convenience. If you keep the launch scripts, check
to ensure that they do not have administrative privileges.

■ Documentation is located in the /doc directory.

■ Examples or sample code (varies across distributions).

■ A test suite might include additional files. Refer to your test suite’s documentation
to see which files are optional.

Remote Agent Risks
The harness includes the JavaTest agent, a remote execution framework. Using the
agent opens communication ports on your machine and on the agent machine,
therefore care is required to ensure that the machine is protected against malicious
attack.

For secure operation, both the host and the remote machine should be used in a
protected intranet on a physically isolated network.

Before You Read This Book
To fully use the information in this document, you must have a thorough knowledge
of the topics discussed in the documentation delivered with your test suite.
4 JavaTest Agent User’s Guide • November 2011

How This Book Is Organized
Chapter 1 describes the requirements for installing the agent on a test system.

Chapter 2 describes how the agent is used to run tests on a test system.

Chapter 3 describes how the agent is monitored during a test run.

Chapter 4 describes basic troubleshooting for problems in using the agent.

Using System Commands
This document does not contain information on basic system commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook2™ software online documentation for the Solaris™ operating
environment

■ Other software documentation that you received with your system
Preface 5

Typographic Conventions
This User’s Guide uses the following typographic conventions:

Shell Prompts
Examples in this User’s Guide contain the following shell prompts:

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
6 JavaTest Agent User’s Guide • November 2011

Related Documentation
The following documentation provides additional detailed information about the
JavaTest harness:

Accessing Documentation Online
The Oracle Technology Network enables you to access Java ME technical
documentation on the Web:

http://download.oracle.com/javame/index.html

We Welcome Your Comments
We are interested in improving our documentation and we welcome your comments
and suggestions. Provide feedback at javamedocs_us@oracle.com.

Application Title

JavaTest harness GUI Graphical User Interface User’s Guide

JavaTest harness
command-line interface

Command-Line Interface User’s Guide
Preface 7

8 JavaTest Agent User’s Guide • November 2011

1

What is the JavaTest Harness Agent?

An agent is a separate program that works in conjunction with the JavaTest harness
to run tests on a system other than the one that is running the JavaTest harness.

You can use custom agents or the JavaTest harness agent to run tests. The topics in
this guide describe how to configure and run the agent provided with the JavaTest
harness. If you are using a custom agent, refer to your test suite documentation for a
description of how to configure and run it.

JavaTest Harness Agent Features
Depending on your test suite, agents are typically used to run tests on small devices
that do not support online help.

The following table describes the features of the JavaTest harness agent.

TABLE 1 JavaTest Harness Agent Features

Feature Description

Multiple User
Interfaces

The JavaTest harness agent can be run from any one of the following
supported user interfaces:
• Agent GUI
• Command-Line Interface
• Applets

Configurable Modes The JavaTest harness agent can be run in active, passive, or serial
modes.

Monitoring The JavaTest harness agent and the tests that it is running can be
monitored in the Agent GUI.
Chapter 1 What is the JavaTest Harness Agent? 1

Installation and Runtime Security
Guidelines
It is extremely important to note that the JavaTest installation and runtime system is
fundamentally a developer system that is not specifically designed to guard against
any malicious attacks from outside intruders. If sample code or tests you author
make a network call, you can expose the JavaTest operating environment during
execution. For this reason, it is critically important to observe the precautions
outlined in the following security guidelines when installing and running JavaTest.

The harness itself is self-contained in javatest.jar. The only external dependency
is jh.jar, which should be placed either on the classpath or in the same directory
as javatest.jar. If desired, the following optional parts of the binary distribution
can be deleted:

The examples in the examples/ directory.

Documentation in the doc/ directory.

lib/jt-junit.jar which is an optional binary component.

To maintain optimum network security, JavaTest can be installed and run in a
"closed" network operating environment, meaning JavaTest is not connected directly
to the Internet, or to a company Intranet environment that could introduce
unwanted exposure to malicious intrusion. This is the ideal secure operating
environment when it is possible.

JavaTest does not require an "Intranet" connection that supports network
connections to systems outside the JavaTest architecture to intra-company resources,
but, for example, some Java ME applications in a test suite might use an HTTP
connection. If JavaTest or applications launched from JavaTest are open to any
network access you must observe the following precautions to protect valuable
resources from malicious intrusion:

Install JavaTest behind a secure firewall that strictly limits unauthorized network
access to the Java ME SDK file system and services. Limit access privileges to
those that are required for JavaTest usage while allowing all the I-directional local
network communications that are necessary for JavaTest functionality. The
firewall configuration must support these requirements to run JavaTest while also
addressing them from a security standpoint.

Follow the principle of "least privilege" by assigning the minimum set of system
access permissions required for installation and execution of JavaTest.

Do not store any data sensitive information on the same file system that is hosting
JavaTest.
2 JavaTest Agent User’s Guide • November 2011

To maintain the maximum level of security, make sure the operating system
patches are up-to-date on the JavaTest host machine.
Chapter 1 What is the JavaTest Harness Agent? 3

4 JavaTest Agent User’s Guide • November 2011

2

Installing Agent Classes on a Test
System

Before you can use the JavaTest Harness harness agent to run tests, you must load
the agent classes on your test system. You can load the agent classes by doing one of
the following:

■ Copy the javatest.jar file directly to the test system if adequate space is
available (approximately 5.7megs). The javatest.jar file contains all of the
required JavaTest Harness harness agent classes.

■ Extract the minimum set of classes from the javatest.jar file for the type of
agent user interface and copy them to the test system.

The following table provides links to the required classes for each type of agent user
interface.

TABLE 2 Agent User Interface Required Classes

Agent User
Interface Required Classes

Agent GUI See Classes Required to Use the GUI for a list of the minimum set of classes
required for using the GUI to run agents.

Command
Line

See Classes Required to Use the Command Line for a list of the minimum
set of classes required for using the command line to run agents.

Applets See Classes Required to Use Applets for a list of the minimum set of classes
required for using applets to run agents.
Chapter 2 Installing Agent Classes on a Test System 5

Classes Required to Use the GUI
The following list contains the minimum set of classes required to run an agent by
using a GUI on your test system. You might require additional classes for some tests
run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.ProductInfo
com.sun.javatest.ResourceLoader
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentFrame
com.sun.javatest.agent.AgentFrame$1
com.sun.javatest.agent.AgentFrame$2
com.sun.javatest.agent.AgentFrame$3
com.sun.javatest.agent.AgentFrame$Listener
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
6 JavaTest Agent User’s Guide • November 2011

com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.InterruptableSocketConnection
com.sun.javatest.agent.InterruptableSocketConnection$1
com.sun.javatest.agent.InterruptableSocketConnection$InterruptableI
nputStream
com.sun.javatest.agent.InterruptableSocketConnection$InterruptableI
nputStream$InterruptableReader
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.ExitCount
com.sun.javatest.util.I18NResourceBundle
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

Classes Required to Use the Command Line
The following list contains the minimum set of classes required to run an agent from
a command line on your test system. You might require additional classes for some
tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
Chapter 2 Installing Agent Classes on a Test System 7

com.sun.javatest.agent.AgentMain
com.sun.javatest.agent.AgentMain$BadArgs
com.sun.javatest.agent.AgentMain$ErrorObserver
com.sun.javatest.agent.AgentMain$Fault
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Map
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

Classes Required to Use Applets
The following list contains the minimum set of classes required to run an agent as an
applet on your test system. You might require additional classes for some tests run
in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.ProductInfo
com.sun.javatest.ResourceLoader
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentApplet
com.sun.javatest.agent.AgentApplet$1
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
8 JavaTest Agent User’s Guide • November 2011

com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.InterruptableSocketConnection
com.sun.javatest.agent.InterruptableSocketConnection$1
com.sun.javatest.agent.InterruptableSocketConnection$InterruptableI
nputStream
com.sun.javatest.agent.InterruptableSocketConnection$InterruptableI
nputStream$InterruptableReader
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.I18NResourceBundle
com.sun.javatest.util.MainAppletContext
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream
Chapter 2 Installing Agent Classes on a Test System 9

Choosing the Type of Agent
The JavaTest Harness harness agent is a lightweight program compatible with Java
Development Kit, version 1.1, that uses a bi-directional serial connection supporting
both TCP/IP and RS-232 protocols to communicate between the test system and the
JavaTest Harness harness.

You can use the agent provided by the JavaTest Harness harness if your test system
meets the following minimum requirements:

■ The device supports a communication layer that can last the duration of a test
(several minutes).

■ The device must be able to have the agent classes loaded on it.
10 JavaTest Agent User’s Guide • November 2011

The type of agent that you use depends on the communication protocol used
between your test system and the JavaTest Harness harness and on the type of initial
connection made between the agent and the JavaTest Harness harness. The following
table describes the types of agent and the communication protocol.

TABLE 3 Types of Agent Modes

Mode Description

Active Use active mode (active agent) when you want the agent to initiate the connection to the
JavaTest Harness harness via TCP/IP.
Agents using active communication allow you perform the following actions:
• Run tests in parallel using many agents at once
• Specify the test machines at the time you run the tests
Active agents are used for network connections and are recommended. If the security
restrictions of your test system prevent incoming connections then you must use an
active agent.
The JavaTest Harness harness must be running and agent pool listening must be enabled
before starting an active agent. Use the Agent Monitor window in the JavaTest
Harness harness GUI to enable listening.
If listening is not enabled when the agent starts, it returns an error message and waits
until its timeout period ends before re-contacting the JavaTest Harness harness.
Chapter 2 Installing Agent Classes on a Test System 11

Creating a Map File
Some tests require contextual information, such as the host name on which they are
executed, before they can run. Because network file systems might be mounted
differently on different systems, the path names used by the JavaTest Harness
harness might not be the same for the agent. The agent uses a map file to translate
these strings into values it can use to run tests.

1. Use a text editor to open a simple ASCII file and enter the following types of
lines:

■ Comment line : Begins with the # symbol and provides information that is not
processed by the agent. Comment lines are optional.

Passive Use passive mode (passive agent) when you want the agent to wait for the JavaTest
Harness harness to initiate the connection via TCP/IP.
Because the JavaTest Harness harness only initiates a connection to a passive agent when
it runs tests, passive communication has the following characteristics:
• Requires that you specify the test machine as part of the test configuration, not at the

time you run the tests
• Does not allow you to run tests in parallel
Passive agents are used for network connections and must be started before the harness
attempts to run tests. If the JavaTest Harness harness issues a request before the passive
agent is started, the harness waits for an available agent until its timeout period ends. If
the timeout period ends before an agent is available, the JavaTest Harness harness reports
an error for the test.

Serial Use serial mode (serial agent) when you want the agent to use an RS-232 serial
connection. Serial agents wait for the JavaTest Harness harness to initiate the connection.
Infrared, parallel, USB, and firewire connections can also be added through the JavaTest
Harness harness API by modeling the existing serial system.
Because the JavaTest Harness harness only initiates a connection to serial agent when it
runs tests, serial communication has the following characteristics:
• Requires that you specify the test machine as part of the test configuration, not at the

time you run the tests
• Does not allow you to run tests in parallel

Other If your system does not meet the minimum requirements or if you have unique
performance requirements, you can use the JavaTest Harness harness API to create a
custom agent. Refer to your test suite documentation for a description of how to
configure and run it.

TABLE 3 Types of Agent Modes
12 JavaTest Agent User’s Guide • November 2011

Example:

#Replace all /home/user1 with /user1

■ Translation line : Contains the target and substitution strings. Enter the string
that is to be replaced followed by one or more spaces and the replacement
string. The agent replaces all occurrences of the first string with the second.

Example:

/home/user1/user1

Because the agent uses the map file to perform global string substitution on all
matching values received from the JavaTest Harness harness, you must be as
specific as possible when specifying strings in a translation line.

Refer to Troubleshooting JavaTest Harness harness agents for additional
information about determining the substitution strings required in a map file.

2. Save the map file in the test suite root directory.

You can use any name and extension. If you are unable to use the root directory, you
can use any writable directory on the test system. When starting an agent you must
specify which map file, if any, to use.

Example of a map file:

#This is a sample map file
#Replace all /home/user1 with /user1

/home/user1 /user1

#Replace all /home/user2/JavaTest Harness with
/myhome/JavaTest Harness
/home/user2/JavaTest Harness /myhome/JavaTest Harness
Chapter 2 Installing Agent Classes on a Test System 13

Starting a JavaTest Harness Agent
You can start an agent either as an application or as an applet. While the application
provides you with the option of using either a GUI or a command line to configure
and run the agent, the applet requires that you use a GUI. The following table
describes the agent interface support for application and applets.

Agent Application
You can either use the application GUI or command line to configure and start an
agent if the test system provides AWT support.

If a test platform is unable to or does not provide AWT support, you must use the
command line to configure and start the agent. When using the command line to
directly configure and run an agent, the following conditions apply:

■ All agent options must be specified in the command line.

■ Agent performance cannot be monitored during a test run.

■ Agent properties cannot be modified without killing the agent and starting a new
agent from the command line.

If you use the GUI to run the agent, the following conditions apply:

■ Agent options can be included in the command line or the GUI can be started
without specifying agent options.

■ Agent performance is monitored during a test run.

■ Agent can be configured or reconfigured after the GUI starts.

The GUI used by the application is the same as that used by the applet. Refer to
Using the GUI for a description of the tabbed panes.

TABLE 4 Supported Agent Interfaces

Interface Application Applet

GUI Supported Supported

Command Line Supported Not Supported
14 JavaTest Agent User’s Guide • November 2011

Agent Applet
You can use either an applet or an application to run the agent on any test system
that supports a web browser. However, you must use the applet when testing Java
virtual machines that run in web browsers.

The GUI used by the applet is the same as that used by the application. Refer to
Using the GUI for a description of the tabbed panes.

When using the applet, you can perform the following actions:

■ Include parameters in the applet tag or start the GUI without specifying any
parameters

■ Configure or reconfigure the agent after the GUI starts

■ Monitor agent performance during a test run.

Using the GUI
The GUI contains four tabbed panes and three buttons used to configure, control,
and monitor the agent.

■ The parameters tabbed pane allows you to configure, start, and stop the agent.

■ The statistics tabbed pane displays detailed information about the tests that the
agent is running.

■ The history and selected task tabbed panes allow you to monitor tasks performed
by the agent.

■ The Start and Stop buttons control the agent.

The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java"
platform.
Chapter 2 Installing Agent Classes on a Test System 15

Starting an Agent Application
Before you can start an agent application, the required classes must be installed on
your test system. Refer to Installing Agent Classes on Test Systems for the location
and list of classes required to start the agent directly from the command line or
using the application GUI. Complete the following actions to start an agent
application:

1. Start the JavaTest Harness harness GUI.

2. Open the Configuration Editor window and configure the JavaTest Harness
harness to use an agent. In most cases, the window displays detailed instructions
about configuring the JavaTest Harness harness to run tests using an agent.

3. If you are starting an active agent, open the Agent Monitor window and enable
agent pool listening. Refer to Agent Monitor Window.

Note – If the agent pool is not listening when an active agent starts, the agent
cannot contact the harness. The agent returns an error message and then waits until
its timeout period ends before recontacting the JavaTest Harness harness.

4. Use the following example to enter the appropriate agent command at the
command prompt:

java -cp classpath [application class] [options]

■ The -cp option sets the classpath required to run the agent. Use the ; or :
separator appropriate for your test system when more than one class path is
included in the command string. Refer to Class Paths for detailed descriptions
of the classes that your agent requires.

■ [application class] sets the class used to run the agent application. Refer to
Application Classes for a list and description of the classes used to start an
agent application.

■ [options] can be included in the command line to specify the agent parameters.
Refer to Agent Options for a list and description of the parameters that you can
use to configure and start an agent.

Example:
java -cp /lib/javatest.jar
com.sun.javatest.agent.AgentFrame
16 JavaTest Agent User’s Guide • November 2011

Note – You must include the path of the javatest.jar file (represented as
/lib/javatest.jar in the example). The javatest.jar file is usually installed
in the test suite lib directory when the JavaTest Harness harness is bundled with a
test suite.

If you are using the application GUI to run the agent, use the Parameters
tabbed pane to verify the agent settings and start the agent.

The following topics provide detailed information about agent parameter
settings:

■ Specifying Active Agent Options: Parameter settings required to run an active
agent.

■ Specifying Passive Agent Options: Parameter settings required to run a
passive agent.

■ Specifying Serial Agent Options: Parameter settings required to run a serial
agent.

Classpaths
The following table describes the classpaths that are required in the command line.

The most common error made when setting up a test platform to use an agent is
entering the wrong classpaths in the command string. Configuring your test
platform to use the simplest classpaths increases the reliability of the test run.

TABLE 5 Required Class Paths

Classes Description

Agent The location of the agent classes installed on
your test system.
The agent classes are either located in the
javatest.jar file or in the directory
containing the minimum set of classes
required to run the agent from the GUI.
Some test suites include additional .jar files
containing classes needed for an agent to run
tests. These .jar files must also be included
in the command string. Refer to Installing
Agent Classes on a Test System for a
description of how agent classes can be
installed.

Test Test classes are located in the classes directory
of the test suite.
Chapter 2 Installing Agent Classes on a Test System 17

Application Classes
An application class is required in the command line to run the agent. The following
table describes the two application classes.

TABLE 6 Required Application Class

Mode Application Class

No GUI com.sun.javatest.agent.AgentMain
options
Used when the agent GUI is not wanted or
not available. In this mode, all options must
be fully specified on the command line. The
agent automatically starts when the Return
key is pressed. Refer to Agent Options for
the options that are included on the
command line.

With GUI com.sun.javatest.agent.AgentFrame
options
Used to start the agent GUI. In this mode,
options might either be given on the
command line or in the agent GUI. The agent
GUI is used to start and stop the agent. Refer
to Agent Options for the options that are
included on the command line.
18 JavaTest Agent User’s Guide • November 2011

Agent Options
The following table describes the two types of options used in the command line.

Starting an Agent Applet
Before you can start an agent applet, the required classes must be installed on your
test system. Refer to Installing Agent Classes on Test Systems for the location and
list of classes required to start the agent applet.

1. If an HTML page containing the required applet is not available, create it in your
test suite root directory.
Refer to Agent Applet Tag" for a detailed description of an applet tag.

TABLE 7 Type of Agent Options

Type of Option Description

Agent parameters Set the parameters for the type of agent that you are
using. See the following topics for additional
information:

• Specifying Active Agent Options: The parameter
settings required to run an active agent.

• Specifying Passive Agent Options: The parameter
settings required to run a passive agent.

• Specifying Serial Agent Options: The parameter
settings required to run a serial agent.

If you are using the command-line application class
(com.sun.javatest.agent.AgentMain) to directly
configure and run the agent, you must include all
options in the command line that are used to run the
agent.
If you are using the GUI application class
(com.sun.javatest.agent.AgentFrame) you can
either set the agent options in the command line or in
the GUI before running the agent.

Additional parameters Display help, run the agent, or configure other agent
properties.

Refer to Specifying Additional Agent Options for a
description of the additional parameters that can be
set.
Chapter 2 Installing Agent Classes on a Test System 19

2. Use a web browser to open an HTML page containing the agent applet tag.
The applet tag must be compatible with your browser’s VM.

3. Use the Parameters tabbed pane to configure and run the agent. See the following
topics for additional information:

■ Specifying Active Agent Options: Parameter settings required to run an active
agent.

4. Specifying Passive Agent Options: Parameter settings required to run a passive
agent.

5. Specifying Serial Agent Options: Parameter settings required to run a serial
agent.

Agent Applet Tag
Because some browsers use built-in VMs to run applets, you must use a compatible
applet or object tag. Refer to your VM documentation for a description of the tags
required to run applets on your browser. The following example calls the agent
applet and sets the parameters of the applet GUI. It might not be compatible with
your browser VM.

Agent parameters and run options can also be set in the applet tag. Refer to Setting
Parameters in the Applet Tag.

Sample agent applet tag:

<APPLET/
code=applet-class-path/
archive=JavaTest Harness harness-classes/
width=display-width/
height=display-height/
>
Applets have not been enabled
on your browser. You must enable
applets on your browser to display
the applet GUI used to run the agent.
</APPLET>
20 JavaTest Agent User’s Guide • November 2011

The following table describes the tags used in the applet.

Setting Parameters in the Applet Tag
Parameters can also be set in the applet tag. Parameters in the applet tag are
included as <param name |value> pair tags.

Sample agent applet tag:

<APPLET
code=applet-class-path
archive=JavaTest Harness harness-classes
width=display-width
height=display-height
>

...
<param name=parameter-name value=parameter-value>

TABLE 8 Applet Tags and Descriptions

Tag Description

code The agent applet class installed on your test system.
Example:
code=com.sun.javatest.agent.AgentApplet

archive The URL of the classes required to run the agent applet on your test system.
The classes are either located in the javatest.jar file or in a directory
containing the minimum set of classes required to run the agent applet.
In the following example, the classes are contained in the javatest.jar file
located in the same directory as the HTML page. Refer to Installing Agent
Classes on a Test System for a description of how the agent applet classes
can be installed.
Example:
archive=javatest.jar

width Sets the width of the GUI. An initial value of 600 is suggested. However, you
might need to adjust the value based on your screen size and resolution.
Example:
width=600

height Sets the height of the applet. An initial value of 600 is suggested. However, you
might need to adjust the value based on your screen size and resolution.
Example:
height=600
Chapter 2 Installing Agent Classes on a Test System 21

Applets have not been enabled on your browser.
You must enable applets on your browser to display
the applet GUI used to run the agent.
</APPLET>

The following two types of parameters can be included in the applet tag:

■ Agent Parameters : Specifies the agent type. Can be set either in the applet tag or
in the GUI. Anytime the agent is not running, you can also use the Parameters
tabbed pane to change the agent parameters. See the following topics for
additional information:

■ Specifying Active Agent Options: Parameter settings required to run an active
agent.

■ Specifying Passive Agent Options: Parameter settings required to run a passive
agent.

■ Specifying Serial Agent Options: Parameter settings required to run a serial
agent.

■ Additional Parameters: Specifies how an agent is run.

See Specifying Additional Agent Options for additional information.

Specifying Active Agent Options
Active agents can be configured and run from the application command-line, the
application or applet GUI, or the applet tag. Refer to Starting a JavaTest Harness
harness agent for a description of the different features and functions that each
provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters either in the command line, the GUI Parameter pane, or
the applet tag:

■ Mode

■ Host

■ Port
22 JavaTest Agent User’s Guide • November 2011

Mode
The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. An active agent initiates
the connection to the JavaTest Harness harness using TCP/IP communications
protocol.

To specify an active agent mode, use the appropriate setting or option from the
following table.

Host
The host option identifies the system running the JavaTest Harness harness. Because
an active agent initiates the connection to the JavaTest Harness harness, the location
of the system running the JavaTest Harness harness must be set before it can run.

To specify the system running the JavaTest Harness harness, use the appropriate
setting or option from the following table.

TABLE 9 Specify Agent Mode Options and Settings

Interface Option or Setting

Default Active

Command
line

-active

Applet tag <param name=mode value=active>

GUI
Parameter
pane

TABLE 10 Active Agent Host Option or Setting

Interface Option or Setting

Default None

Command
line

-activeHost host-name

Applet tag <param name=activeHost value=host-name>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 23

Port
The port option specifies the port used by the active agent to communicate with the
JavaTest Harness harness. The agent and JavaTest Harness harness must use the
same port. If the ports are not the same, the agent cannot communicate with the
JavaTest Harness harness. The default value for active agents is 1907.

To specify a port other than 1907, use the appropriate setting or option from the
following table.

Specifying Passive Agent Options
Passive agents can be configured and run from the application command line, the
application or applet GUI, or the applet tag. Refer to Starting a JavaTest Harness
harness agent for a description of the different features and functions that each
provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters either in the command line, the GUI Parameter pane, or
the applet tag:

■ Mode

■ Port

TABLE 11 Active Agent Port Option or Setting

Interface Option or Setting

Default 1907

Command
line

-activePort port-number

Applet tag <param name=activePort value=port-number>

GUI
Parameter
pane
24 JavaTest Agent User’s Guide • November 2011

Mode
The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. A passive agent waits for
the JavaTest Harness harness to initiate the connection using TCP/IP
communications protocol.

To specify a passive agent, use the appropriate setting or option from the following
table.

Port
The port option specifies the port that the passive agent uses to listen for the
JavaTest Harness harness. The JavaTest Harness harness and agent must use the
same port. If the ports are not the same, the JavaTest Harness harness cannot
communicate with the agent. The default value for passive agents is 1908.

To specify a port other than 1908, use the appropriate setting or option from the
following table.

TABLE 12 Passive Agent Mode Option or Setting

Interface Option or Setting

Default Active

Command
line

-passive

Applet tag <param name=mode value=passive>

GUI
Parameter
pane

TABLE 13 Passive Agent Port Option or Setting

Interface Option or Setting

Default 1908
Chapter 2 Installing Agent Classes on a Test System 25

Specifying Serial Agent Options
Serial agents can be configured and run from a command-line, GUI, or applet tag.
Refer to Starting a JavaTest Harness harness agent for a description of the different
features and functions that each provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters from the command line, GUI Parameter pane, or applet
tag:

■ Mode

■ Port

Mode
The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. A serial agent waits for
the JavaTest Harness harness to initiate the connection via an RS-232 serial
connection or a connection added through the JavaTest Harness harness API that
models the serial system.

To specify a serial agent, use the appropriate setting or option from the following
table.

Command
line

-passivePort port-number

Applet tag <param name=activePort value=port-number>

GUI
Parameter
Pane

TABLE 14 Serial Agent Mode Option or Setting

Interface Option or Setting

Default Active

TABLE 13 Passive Agent Port Option or Setting
26 JavaTest Agent User’s Guide • November 2011

Port
Specifies the com port that the serial agent uses to listen for the JavaTest Harness
harness. The JavaTest Harness harness and agent must use the same port. If the ports
are not the same, the JavaTest Harness harness cannot communicate with the agent.

To specify a port, use the appropriate setting or option from the following table.

Specifying Additional Agent Options
The following topics describe the additional options for using an agent:

■ Options Used to Display Help

■ Options Used to Run and Monitor the Agent

Command
line

-serial

Applet tag <param name=mode value=serial>

GUI
Parameter
pane

TABLE 15 Serial Agent com Port Option or Setting

Interface Option or Setting

Command
line

-serialPort port-number

Applet tag <param name=serialPort value=port-number>

GUI
Parameter
pane

TABLE 14 Serial Agent Mode Option or Setting
Chapter 2 Installing Agent Classes on a Test System 27

Options Used to Display Help
The help option only displays command-line help for the agent regardless of the
application class used in the command line. To start an agent application or applet
after displaying command-line help, perform the steps in Starting a JavaTest
Harness Agent.

The following table contains options that are only used on the command line to
display help.

You must include the path of the javatest.jar file (represented as
/lib/javatest.jar in the example). The javatest.jar file is usually installed
in the test suite lib directory when the JavaTest Harness harness is bundled with a
test suite.

Options Used to Run and Monitor the Agent
The following options can be set in the application command line, the application or
applet GUI, or the applet tag:

■ Specify a Map File

■ Set Concurrency

■ Set Number of Tasks in the History Tabbed Pane

■ AutoStart the Agent

■ Set Tracing

Specify a Map File

The map option specifies that the agent use a map file to translate host specific
values. Refer to Create a Map File for additional information about map files.

TABLE 16 Command-Line Options to Display Help

Option Function

-help or -usage Displays command-line help.
Example:
java -cp /lib/javatest.jar
com.sun.javatest.agent.AgentMain -help
28 JavaTest Agent User’s Guide • November 2011

To specify a map file, use the appropriate setting or option from the following table.

Set Concurrency

To run tests concurrently, set the maximum number of simultaneous requests
handled by the agent. Each request requires a separate connection to the JavaTest
Harness harness and a separate thread inside the agent. The request might also
require a separate process on the test system running the agent. The default setting
is one.

To run concurrent tests, use the appropriate setting or option from the following
table.

TABLE 17 Map File Options

Interface Option or Setting

Default None (empty)

Command
line

-map map-file

Applet tag <param name=map value=map-file-url>

GUI
Parameter
pane

TABLE 18 Run Concurrent Tests Option

Interface Option or Setting

Default One

Command
line

-concurrency number-of-tests

Applet tag <param name=concurrency value=number-of-tests>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 29

Set Number of Tasks in the History Tabbed Pane

The history option specifies the maximum number of tasks displayed in the history
tabbed pane. Refer to History Tabbed Pane for a description of the history tabbed
pane and how it is used to monitor an agent.

To set the tasks displayed in the history tabbed pane, use the appropriate setting or
option from the following table.

AutoStart the Agent

Th start option is only used with the application GUI class or as a parameter in the
applet tag. When used, the start option automatically starts the agent after all
command line options are validated and the GUI is displayed. The agent must be
completely configured in the command line or applet tag. When the -start option
is not used, click the Start button in the agent GUI to start testing.

To autostart the agent when the GUI is displayed, use the appropriate setting or
option from the following table.

TABLE 19 History Tabbed Pane Options

Interface Option or Setting

Default One

Command
line

-history number-of-items

Applet tag <param name=history value=number-of-items>

GUI Not supported

TABLE 20 AutoStart Agent Options

Interface Option or Setting

Default False

Command
line

-start

Applet tag <param name=start value=true>

GUI
30 JavaTest Agent User’s Guide • November 2011

Set Tracing

The trace option sends detailed information about agent activity to the system
output stream.

To start tracing when the agent is run, use the appropriate setting or option from the
following table.

TABLE 21 Set Tracing Options

Interface Option or Setting

Default False

Command
line

-trace

Applet tag <param name=trace value=true>

GUI Not Supported
Chapter 2 Installing Agent Classes on a Test System 31

32 JavaTest Agent User’s Guide • November 2011

3

Monitoring JavaTest Harness
Agents

You can monitor JavaTest Harness harness agents in one of the following ways:

■ View all agents in a test system that are running tests. Refer to Agent Monitor
Window for detailed information about opening and using the Agent Monitor
window to view all agents in a test system that are running tests.

■ Monitor specific information about an agent and the tests that it runs. To display
information about the agent, you must use the tabbed panes in the application or
applet GUI. See the following topics for detailed information about the GUI:

■ Statistics Pane: Displays the current status of the tests that the agent is running.

■ History Pane: Displays a list of tasks performed by the agent.

■ Selected Task Pane: Displays details about a specific task or test chosen in the
history tabbed pane.

Agent Monitor Window
Open the Agent Monitor window by using the JavaTest Harness harness GUI Test
Manager to choose Window -> Open -> Agent Monitor. See the JavaTest Harness
User’s Guide: Graphical User Interface for detailed description of the Test Manager
window.

The Agent Monitor window contains two sections, Agent Pool and Agents Currently
In Use.
Chapter 3 Monitoring JavaTest Harness Agents 33

Agent Pool
Agent Pool lists the active agents that are available to run tests. When active agents
connect to the JavaTest Harness harness, they are added to the agent pool. When the
JavaTest Harness harness requires an active agent to run a test, it moves the agent
from Agent Pool to Agents Currently In Use until the test is completed.

The following table lists and describes the contents of the Agent Pool GUI.

TABLE 22 Agent Pool GUI Contents

Field Description
34 JavaTest Agent User’s Guide • November 2011

Agents Currently In Use
Agents Currently In Use lists all agents currently used by the JavaTest Harness
harness to run tests. When agents are not running tests they are removed from the
list (active agents re-register with the agent pool). Click on an agent in the list to
display detailed information about the agent and the test it is running. The detailed
information is displayed in the text fields at the bottom and can be used to
troubleshoot problems using an agent to run tests.

The following table lists and describes the contents of the Agents Currently In Use
GUI.

Listening Click the check box to enable listening for active agents. If listening is not enabled
when an agent starts, the agent issues a message that it cannot connect to the
JavaTest Harness harness and then waits for its timeout period to end before
attempting to recontact the harness.

Port Port 1907 is the default port used by active agents. If your agent uses a different
port, you must either change the value used by the agent or change this value to
match the agent.

Timeout When the agent pool is empty, the timeout value sets the number of seconds that
the JavaTest Harness harness waits between tests for an available agent before
reporting the test result as an error. If you run tests with one agent, a latent period
might occur between the time when the agent completes the test and when it
returns to the agent pool. The timeout value must be greater than the agent’s latent
period. The default value of 180 seconds is usually sufficient.

TABLE 23 Agents Currently In Use GUI Contents

Field Description

Address Network address of the agent

Tag Test executed by the agent

Request Function executed by the agent

Execute Class executed by the agent

Args Arguments passed to the class executed by the agent

Localize Args Checked if the agent uses a map file

TABLE 22 Agent Pool GUI Contents
Chapter 3 Monitoring JavaTest Harness Agents 35

Statistics Pane
The statistics tabbed pane in the agent GUI displays the cumulative statistics for the
tests in the test suite.

The following table describes the contents of the statistics tabbed pane.

History Pane
The agent GUI uses the history tabbed pane to enable monitoring and
troubleshooting agent activity by displaying a dynamic list of tasks that an agent is
currently executing and tasks that an agent recently completed. The number of tasks
maintained in this list is not configurable.

TABLE 24 Statistics Pane Contents

Field Description

currently active Number of tests being run by the agent

passed Number of tests run by the agent that had
passing results

failed Number of tests run by the agent that had
failing results

error Number of tests run by the agent that had
errors

not run Number of tests not run by the agent and not
filtered out by the JavaTest Harness harness

exceptions Number of tests filtered out of the test run by
the JavaTest Harness harness
36 JavaTest Agent User’s Guide • November 2011

To view the details about a specific task, click on it in the list. The GUI displays the
selected task tabbed pane contained details about the task.

Refer to Selected Task Pane for a detailed description of the task information that is
displayed.

Each task in the list contains a code indicating its current state. The following table
describes the state codes displayed in the GUI.

If a task in the list displays a state from the following table, this indicates that the
JavaTest Harness harness agent has completed a request for JavaTest Harness
harness. These states correspond to the various possible outcomes of the task and

TABLE 25 Current State Codes

Current State Description

CONN host:port Shows that the JavaTest Harness harness agent has an open connection to the
JavaTest Harness harness, at the specified network address, and that the JavaTest
Harness harness agent is waiting for a request to be sent over the connection. If the
JavaTest Harness harness agent is running in active mode, it waits until JavaTest
Harness harness sends the request. If the agent is running in passive mode, this
state usually appears temporarily because JavaTest Harness harness normally
initiates a connection and then immediately sends the request. The host normally is
identified by its host name. If JavaTest Harness harness cannot determine the host
name, the IP address of the host is shown instead.

EXEC tag This state shows that the JavaTest Harness harness agent is executing a task on
behalf of JavaTest Harness harness. The tag is an identification of the task supplied
by JavaTest Harness harness as part of the request.

IO tag This state shows that the JavaTest Harness harness agent was executing a task on
behalf of JavaTest Harness harness but that some exception occurred while trying to
send the results to the JavaTest Harness harness.
Chapter 3 Monitoring JavaTest Harness Agents 37

are the same as the outcomes that the JavaTest Harness harness gets when it runs
tests directly (without the assistance of the JavaTest Harness harness agent). The
following table describes the states that a task might have.

Selected Task Pane
The selected task tabbed pane in the agent GUI displays detailed information about
a task selected from the task list in the history pane.

Refer to History Pane for a description of the task list.

TABLE 26 JavaTest Harness Agent Completed Request States

State Description

PASS: Task completed successfully.

FAIL: Task indicated that it failed.

ERR: Task encountered some error before it could properly be executed.

!RUN: Task has inappropriately indicated that it has not been run. This state
must never occur.
38 JavaTest Agent User’s Guide • November 2011

The following table describes the contents of the selected task tabbed pane.

TABLE 27 Selected Task Pane Contents

Field Description

client Displays the network address (host and port) of the source of the task
request. The host is normally identified by its host name, but if
JavaTest Harness harness cannot determine the host name, the IP
address of the host is displayed instead.

request Displays the tag that was supplied with the request in order to
identify itself.

class Displays the name of the class that was specified in the request. This
is the class that is loaded and run in fulfillment of the request.

args Displays the arguments that were specified in the request. These
arguments are passed to the class that is executed.

result If and when the task is completed, this field contains the outcome of
the task, as indicated by a JavaTest Harness harness Status object.
Chapter 3 Monitoring JavaTest Harness Agents 39

40 JavaTest Agent User’s Guide • November 2011

4

Troubleshooting JavaTest Harness
Agents

Because active agents initiate the connection with the JavaTest Harness harness
while passive agents wait for a request from the JavaTest Harness harness,
troubleshooting is different for each type of agent. The following topics provide
guidelines for troubleshooting each type of agent:

■ Active Agents

■ Passive Agents

Troubleshooting Active Agents
Active agents initiate the connection with the JavaTest Harness harness. You must
set up the JavaTest Harness harness agent pool so that the connection is made before
running tests.

Errors in configuring, synchronizing, or implementing the connection between the
agent and the JavaTest Harness harness are the most probable causes of failure.

Use the Agent Monitor window, the JavaTest Harness harness Test Manager
window, the agent GUI, and the following list of actions as a guide when
troubleshooting problems running active agents.

1. In the Agent Monitor window, verify that the agent is listed in the agent pool. If
the agent is not listed in the agent pool perform the following actions:

i. Verify that the Listening check box is selected.

ii. Verify that the agent is configured to contact the correct active host and that
the port value of the harness matches the port value used by the agent.
Chapter 4 Troubleshooting JavaTest Harness Agents 41

iii. Check the physical connection between the JavaTest Harness harness
platform and the test platform.

2. Verify that the agent moves to Agents Currently in Use when tests are running. If
the agent does not move to Agents Currently in Use when tests are running
perform the following actions:

i. Use the Configuration Editor in the Test Manager window to verify that the
harness is configured to use agents when running tests. See the JavaTest
Harness User’s Guide: Graphical User Interface for detailed description of the
Configuration Editor and the Test Manager window.

ii. If you are running the tests using multiple Java Virtual Machines, use the
Configuration Editor window to verify that the path you provided in the
Java Launcher question is the path of the launcher for the agent running
tests.

3. If tests are failing or have errors, check the error messages displayed in the Test
Manager window. If the error indicates that tests are failing because of missing
classes perform the following actions:

i. Verify that the class paths used to start the agent are correct.

ii. Use the Configuration Editor window to verify that the harness is correctly
configured to use the agent on the test system.

iii. Run the agent using the -trace option to verify that the paths in the
stream messages for the test are correct. If the paths are not correct for the
test system, create a map file for the agent to use in translating host specific
values into values that the agent can use. See "Creating a Map File

iv. If a map file was used to run the test, use the Test Run Messages pane to
verify that the -mapArgs command is present in the stream messages. If the
-mapArgs command is not present, verify that both the agent and the
harness are configured to use the map file. Use the Configuration Editor
window to verify that the harness is configured to use the agent map file.

Troubleshooting Passive Agents
Because passive agents must wait for a request from the JavaTest Harness harness
before running tests, the port that the passive agent uses must be the same as that
used by the JavaTest Harness harness to send requests.

Errors in configuring, synchronizing, or implementing the connection between the
agent and the JavaTest Harness harness are the most probable causes of failure.
42 JavaTest Agent User’s Guide • November 2011

Use the Agent Monitor window, the JavaTest Harness harness Test Manager
window, the agent GUI, and the following list of actions as a guide when
troubleshooting problems running passive agents:

1. Verify that the agent was started before the JavaTest Harness harness started the
test run. If not, repeat the test run.

2. Verify that the port value used when starting the agent matches the port value
used by the JavaTest Harness harness to send requests.

3. Check the physical connection between the JavaTest Harness harness platform
and the test platform.

4. Use the Configuration Editor in the Test Manager window to verify that the
harness is configured to use agents when running tests. See the JavaTest Harness
User’s Guide: Graphical User Interface for detailed description of the Configuration
Editor and the Test Manager window.

5. If you are running the tests using multiple Java Virtual Machines, use the
Configuration Editor window to verify that the path you provided in the Java
Launcher question is the path of the launcher for the agent running tests.

6. If tests are failing or have errors, check the error messages displayed in the Test
Manager window. If the error indicates that tests are failing because of missing
classes, perform the following actions:

i. Verify that the class paths used to start the agent are correct.

ii. Use the Configuration Editor window to verify that the harness is correctly
configured to use the agent on the test system.

iii. Run the agent using the -trace option to verify that the paths in the
stream messages for the test are correct. If the paths are not correct for the
test system, creae a map file for the agent to use in translating host-specific
values into values that the agent can use. See Creating a Map File

iv. If a map file was used to run the test, use the Test Run Messages pane to
verify that the -mapArgs command is present in the stream messages. If the
-mapArgs command is not present, verify that both the agent and the
harness are configured to use the map file. Use the Configuration Editor
window to verify that the harness is configured to use the agent map file.
Chapter 4 Troubleshooting JavaTest Harness Agents 43

44 JavaTest Agent User’s Guide • November 2011

5

Glossary

A
Active Agent An agent that initiates a connection to the JavaTest Harness harness.

Active agents enable you to run tests in parallel using many agents at once and
to specify the test machines at the time you run the tests. Use the Agent
Monitor window to view the list of registered active agents and synchronize
active agents with the JavaTest Harness harness before running tests.

Agent A lightweight application that receives tests from the test harness, runs them
on the implementation being tested, and reports the results back to the test
harness. Normally, test agents are only used when the TCK and
implementation being tested are running on different platforms. When running
tests on a platform other than the one running the JavaTest Harness harness,
you must use an agent. The JavaTest Harness harness uses the following three
types of agents:

• Active agents

• Passive agents

• Serial agents

Agent Monitor The JavaTest Harness harness window used to synchronize active agents and
to monitor agent activity. The Agent Monitor window displays the agent pool
and the agents currently in use. To open the Agent Monitor window, choose
Tasks > Monitor Agent Activity from the menu bar.

Agent Pool A list in the Agent Monitor of the active agents that are connected with the
JavaTest Harness harness and available to run tests. Agents are removed from
the agent pool when they are running tests.
Chapter 5 Glossary 45

B

C

D

E

F

G

H

I

J

K

L

M

46 JavaTest Agent User’s Guide • November 2011

N

O

P
Parameters Values used to configure an agent. The agent parameters can be set at the time

the agent is started or, if the agent GUI is used, from the Parameters tab after
the agent GUI has started.

Passive Agent Agents that must wait for a request from the JavaTest Harness harness before
they can run tests.

The JavaTest Harness harness initiates connections to passive agents as needed.
Passive agents are simpler, but less flexible than active agents because you
must specify the test machine as part of the test configuration, not at the time
you run the tests. Passive agents do not allow you to run tests in parallel.

Q

R

S
Serial Agent Use serial mode (serial agent) when you want the agent to use an RS-232 serial

connection. Serial agents wait for the JavaTest Harness harness to initiate the
connection. Infrared, parallel, USB, and firewire connections can also be added
through the JavaTest Harness API by modeling the existing serial system.
Chapter 5 Glossary 47

T

U

V

W

X

Y

Z

48 JavaTest Agent User’s Guide • November 2011

Chapter 5 Glossary 49

50 JavaTest Agent User’s Guide • November 2011

Index
A
active agent, 22, 23, 24
active agents, 41
additional options, 27, 28, 29, 30
agent, 4
agent applet, 19, 20, 21
agent application, 15, 17, 18
agent classes, 3, 17
agent GUI, 35, 36, 38
Agent Monitor window, 33, 34, 35
agent pool, 34
agents currently used, 35
applet, 14
applet tag, 20, 21
application, 14
autoStart the agent, 30

C
choosing type of, 9
choosing type of agent, 9
creating, 12
creating a map file, 12

G
GUI, 15

H
help, 27
history tabbed pane, 36
history tabbed pane, agent GUI, 36

host, 23

I
installing, 3
installing agent classes, 3

J
JavaTest Harness agent, 9, 13, 14, 15
JavaTest Harness Agents, 31
JavaTest Harness agents, 39

M
map file, 12, 28
mode, 22, 24, 26
monitor, 31
monitor JavaTest Harness agents, 31

O
options, 18, 22, 23, 24, 26

P
passive agent, 24, 25
passive agents, 42
port, 24, 25, 27

R
remote agent, 4
required class paths, 17, 18
run and monitor the Agent, 28
1

S
security note, 3
serial agent, 26, 27
set concurrency, 29
set maximum number, 29
set tracing, 30
setting, 22, 23, 24, 25, 26, 27
setting parameters, 21
setting parameters in the applet tag, 21
start, 15, 17, 18
start an agent application, 15, 17, 18
starting, 13, 14, 19
starting a JavaTest Harness agent, 13, 14
starting an agent applet, 19, 20
statistics tabbed pane, 35
statistics tabbed pane, agent GUI, 35

T
task tabbed pane, 38
task tabbed pane, agent GUI, 38
tasks in history pane, 29
test classes, 17
troubleshooting, 39, 41, 42
troubleshooting active agents, 41
troubleshooting JavaTest Harness agents, 39
troubleshooting passive agents, 42

W
window, Agent Monitor, 33
2 JavaTest Agent User’s Guide • November 2011

	JavaTest™ Harness 4.4.1
	Contents
	Preface
	Security Note
	Optional Components
	Remote Agent Risks

	Before You Read This Book
	How This Book Is Organized
	Using System Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Documentation Online
	We Welcome Your Comments

	What is the JavaTest Harness Agent?
	JavaTest Harness Agent Features
	Installation and Runtime Security Guidelines

	Installing Agent Classes on a Test System
	Classes Required to Use the GUI
	Classes Required to Use the Command Line
	Classes Required to Use Applets
	Choosing the Type of Agent
	Creating a Map File
	Starting a JavaTest Harness Agent
	Agent Application
	Agent Applet
	Using the GUI
	Starting an Agent Application
	Classpaths
	Application Classes
	Agent Options

	Starting an Agent Applet
	Agent Applet Tag
	Setting Parameters in the Applet Tag

	Specifying Active Agent Options
	Mode
	Host
	Port

	Specifying Passive Agent Options
	Mode
	Port

	Specifying Serial Agent Options
	Mode
	Port

	Specifying Additional Agent Options
	Options Used to Display Help
	Options Used to Run and Monitor the Agent

	Monitoring JavaTest Harness Agents
	Agent Monitor Window
	Agent Pool
	Agents Currently In Use

	Statistics Pane
	History Pane
	Selected Task Pane

	Troubleshooting JavaTest Harness Agents
	Troubleshooting Active Agents
	Troubleshooting Passive Agents

	Glossary
	Index

