JavaTest™ Harness 4.4.1

Command-Line Interface User’s Guide

ORACLE

November 2011

Copyright ©2002, 2011, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX s a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may Erovide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to
or use of third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to
and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has
been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied,
reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license
agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

D wn 9

Adobe PostScript

Contents

Contents iii
Preface ix

Command-Line Interface 1
Features 1
Configuration Information 2
Legacy Environment Files and Parameter Files 2
Online Documentation 2
Before Starting the Harness 3

Installation and Runtime Security Guidelines 4

Command-Line Summary 7
About the Command-Line Examples 8
Formatting a Command 8
Command Options Format 9
Single String Arguments Format 9
Command File Format 9
Using Command Files 10
Creating a Command File 10

Examples of Using Command Files 11

Example Command File Contents 12
Command Line Using the Example Command File 12
Changing Values After the Example Command File is Set 13
Formatting Configuration Values for edit]TI or -set 14
Using Newlines Inside Strings 16
Extended Command-Line Examples 17
Example1 17
Example2 18
Example 3 18
Example4 19
Example5 19
Example 6 19
Example7 19
List of Available Commands 20

3. Setup Commands 21
Initial Setup Commands 22
Specifying a Configuration File With config 22
Detailed Example of config Command 23
Specifying a Work Directory With workdir or workdirectory 23
Use an Existing Work Directory 24
Create a New Work Directory 24
Replace an Existing Work Directory 25
Specifying a Test Suite With testsuite 26
Detailed Example of testsuite Command 27
Specifying a Test Suite, Work Directory or Configuration (open) 27
Setting Specific Values 28
Setting Specific Configuration Values 29

Override a Specific Value 29

JavaTest Harness Command-Line Interface User’s Guide ¢ November 2011

Import a Java Properties File 29
Set the Value of a Properties Question 29
Creating a Command String 30
Detailed Example of Setting Test Suite Specific Values 30
Setting Concurrency with concurrency 31
Detailed Example of concurrency Command 31
Specifying Exclude Lists With excludeList 32
Detailed Example of excludeList Command 32
Specifying Keywords With keywords 33
Detailed Example of keywords Command 33
Specifying Known Failures Lists With kfl 34
Selecting Tests With priorStatus 34
Detailed Example of priorStatus Command 35
Specifying Tests or Directories With tests 35
Example of tests Command 36
Setting Timeout With timeoutFactor 36
Detailed Example of timeFactor Command 37

Additional Setup Commands 37

Task Commands 39
Running Tests With runtests 39
Detailed Example of runtests Command 40
Monitoring Test Progress With verbose 40
Monitoring Options 41
Detailed Examples of Monitoring Commands 42
Using the batch Command 44
Detailed Example of batch Command 45
Using the observer Command 45

Writing Reports With writeReport 45

Contents

Using the -type Option 46

Using the -filter Option 46

Detailed Example of writeReport Command 47
Auditing Tests With audit 47

Detailed Example of audit Command 48

5. Desktop Options and Preferences 49
Startup Commands 49
Restore Tools State 50
Specifying Look and Feel 50
Specifying Status Colors 51

6. Information Commands 53
Command-Line Help 53
Displaying All Information 53
Displaying Topic Information 54
Display the List of Available Topics 54
Searching for Words and Phrases 55
Displaying Online Help 55

Displaying Harness Version Information With version 56

7. Legacy Commands 57

Using Deprecated Parameter Commands 57

8. Troubleshooting 59
Exit Codes 59
Harness Fails During Use 60
Problems Running Tests 60
Tests With Errors 60
Tests That Fail 60

vi JavaTest Harness Command-Line Interface User’s Guide ¢ November 2011

Problems Viewing Reports 61
Problems Writing Reports 61
Problems Moving Reports 61

9. Utilities 63
Monitoring Results With HTTP Server 63

HTML-Formatted Output 64
accessing HTTP Server HTML-Formatted Output 64
Displaying the HTTP Server Index Page 64
Displaying HTTP Server Harness Page 65
Displaying the HTTP Server Test Result Index Page 65
Displaying the Harness Environment Page 65
Displaying the Harness Interview Page 66
Using HTTP Server to Stop a Test Run 66

Plain Text Output 66
accessing Version Information 67
accessing Harness Information 67

Changing Configuration Values With Edit]TT 69

Edit]TTI Command Format 69
Changing Configuration Values 72
Generating a Log of All Updates 72
Previewing Without Change 73
Echoing Results of Edits 73
Showing Paths for Debugging 73
Changing Test Suites or Creating a New Interview 73
Changing the HTTP Port 74
Doing Escapes in a UNIX System Shell 75

10. Changing Configuration Values With Text Editors 77

Contents

vii

Moving Test Reports 78
Format of the EditLinks Command 78
Detailed Example of EditLinks Command 79

11. Glossary 81

viii JavaTest Harness Command-Line Interface User’s Guide ¢ November 2011

Preface

This manual describes how to use the command-line interface provided by the
JavaTest™ harness (the harness) to run tests of the test suite, browse results, write
reports, and audit test results.

The harness provides two User’s Guides, the Graphical User Interface User’s Guide and
the Command-Line Interface User’s Guide . If your test suite uses the JavaTest agent to
run tests, the JavaTest Agent Users’ Guide might also be included.

This User’s Guide is also provided by the harness in an online version. The online
version of the User’s Guide differs from the PDF in the following areas:

m In the online version, all of the harness User’s Guides are merged into a single
document.

m In the online version, the search function provides a list and ranking of all
matching text strings found in the complete harness documentation set.

m The online version can be opened from the command line in a stand alone viewer
without opening the GUIL

m In the online version, hypertext links and navigation bars are used instead of page
and section references.

Note — Displaying the online version of the User’s Guide does not require the
installation of any additional software (such as a web browser). The viewer is
provided by the harness.

Security Note

This section discusses potential security vulnerabilities in the harness deliverables.

The harness is a self-contained package and only requires the Java archive
(/1ib/javatest.jar) to execute.

You can reduce risk by restricting access to optional files or removing them
completely. “Optional Components” on page x lists portions of the distribution that
are not required. Please refer to all the product release notes for the most recent notes
about security.

Architects creating test suites should carefully select the set of files to include, and
should ensure that file permissions are restricted to essential access.

Optional Components

The harness includes the following optional components:

m Launch scripts are located in each platform’s /bin directory (for example,
javatest.ksh or javatest.bat.

Launch scripts are provided for convenience. If you keep the launch scripts, check
to ensure that they do not have administrative privileges.

m Documentation is located in the /doc directory.
m Examples or sample code (varies across distributions).

m A test suite might include additional files. Refer to your test suite’s documentation
to see which files are optional.

Remote Agent Risks

The harness includes the JavaTest agent, a remote execution framework. Using the
agent opens communication ports on your machine and on the agent machine,
therefore care is required to ensure that the machine is protected against malicious
attack.

For secure operation, both the host and the remote machine should be used in a
protected intranet on a physically isolated network.

Before You Read This Book

To fully use the information in this document, you must have a thorough knowledge
of the topics discussed in the documentation delivered with your test suite.

JavaTest Harness Command-Line Interface User’'s Guide ¢ November 2011

How This Book Is Organized

Chapter 1 describes the features of the command-line interface provided by the
JavaTest harness.

Chapter 2 describes the basic topics that the user should be familiar with before
using the command-line interface.

Chapter 3 provides a description of the types of commands and command formats
used in the command-line interface.

Chapter 4 describes the commands used to setup and modify a configuration used by
the harness.

Chapter 5 describes the commands used to perform tests from the command line.
Chapter 6 describes commands used to specify the properties of the GUL

Chapter 7 describes the information commands used display online information
without starting the harness.

Chapter 8 describes the legacy commands that the harness supports.
Chapter 9 describes the various special utilites provided by the harness.

Chapter 10 provides a basic troubleshooting guide.

Using System Commands

This document does not contain information on basic system commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

m Solaris Handbook for Sun Peripherals

m AnswerBook2™ software online documentation for the Solaris™ operating
environment

m Other software documentation that you received with your system

Preface xi

Typographic Conventions

This User’s Guide uses the following typographic conventions:

Typeface

Meaning

Examples

AaBbCcl23

AaBbCcl23

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

What you type, when
contrasted with on-screen
computer output

Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Edit your .login file.
Use 1s -a to list all files.
% You have mail.

% su
Password:

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

Examples in this User’s Guide contain the following shell prompts:

Shell

Prompt

C shell

C shell superuser

Bourne shell and Korn shell

Bourne shell and Korn shell superuser

machine_name$
machine_name#
$
#

xii JavaTest Harness Command-Line Interface User’'s Guide ¢ November 2011

Related Documentation

The following documentation provides additional detailed information about the
JavaTest harness:

Application Title

JavaTest harness GUI Graphical User Interface User’s Guide;
JavaTest harness agent JavaTest Agent User’s Guide
(optional)

Accessing Documentation Online

The Oracle Technology Network enables you to access Java ME technical
documentation on the Web:

http://download.oracle.com/javame/index.html

We Welcome Your Comments

We are interested in improving our documentation and we welcome your comments
and suggestions. Provide feedback at javamedocs_us@oracle.com.

Preface xiii

Xiv JavaTest Harness Command-Line Interface User’'s Guide ¢ November 2011

Command-Line Interface

The test harness provides two interfaces, a Graphical User Interface (GUI) and a
command-line interface.The command-line interface provides test harness
functionality for configuring and executing tests as well as creating reports without
using the GUI. This enables you to use the harness to run tests in build scripts and
other automated processes. See the Graphical User Interface User’s Guide for a
description of the harness GUI

Features

Features of the command-line interface include the following capabilities:

m Enables configurable testing - Users can run tests from the command line on a
variety of test platforms (such as servers, workstations, browsers, and small
devices) with a variety of test execution models (such as API compatibility tests,
language tests, compiler tests, and regression tests).

m Runs tests on small systems - Users can use an agent (a separate program that
works in conjunction with the harness) to run tests on systems that can’t run the
harness.

m Generates HTML reports - Users can generate HTML reports for the test run.
m Audits test runs - Users can audit a test run.

m Provides online User’s Guide - Users can launch a viewer that displays the
online version of the User’s Guide. The User’s Guide describes how to use the
harness to run test suites and evaluate test results. The viewer provides full-text
search and keyword search capabilities.

Chapter 1 Command-Line Interface

1

Configuration Information

The GUI Configuration Editor collects the required configuration information about
how tests are run on a specific test platform and saves that information in a
configuration file (. jti file). By using configuration files, the harness can run
programs on a variety of Java platforms. The harness writes the test results in the
work directory associated with that configuration and test suite. See the Glossary for
detailed descriptions of the terms . jti file, work directory, and configuration file. See
the Graphical User Interface User’s Guide for a description of the GUI Configuration
Editor.

Legacy Environment Files and Parameter Files

For backwards compatibility, older test suites can continue to use environment and
parameter files in the command line. See the Glossary for detailed descriptions of
the terms . jte file and . jtp file.

See the Graphical User Interface User’s Guide for a description of using a legacy
configuration file to create current configuration file.

Online Documentation

The harness provides extensive online documentation that is available from the
command line. To display the available command-line options, type the following at
a system prompt:

java -jar testsuite/1ib/javatest.jar -help

See Information Commands for detailed information about using special ~help
options to search for and display command-line information.

To display the online User’s Guide without starting the GUI, type the following at a
system prompt:

java -jar testsuite/1ib/javatest.jar -onlinehelp

Command-Line Interface User's Guide ¢ November 2011

Note — Include the path of the directory where the javatest.jar file is installed
(represented as testsuite/lib in the example). The javatest. jar file is usually
installed in the test suite 1ib directory when the harness is bundled with a test
suite.

Before Starting the Harness

Before you start the harness on a test system, you must have a valid test suite and
Java Development Kit 6.0 or higher installed on your test system. See your test suite
documentation for information about installing the test suite on your test system.
Refer to http: //www.oracle.com/products for information about installing the
current Java Development Kit on your test system.

You must also understand how your test group uses or intends to use the harness in
its test system. For example, consider the following questions:

Does your test group use the harness and one or more agents to run distributed
tests?

If you use an agent to run tests, you must also install the agent on the platform
being tested. If you intend to use the JavaTest agent, see JavaTest Agent User’s
Guide for detailed information about installing the harness agent on a test
platform. If you use a custom agent, refer to your test suite documentation for
detailed information about installing the agent.

Does your test group use configuration files and templates from a central
location, or does it use individual configuration files customized for each test
run?

If your group intends to use configuration files and templates from a central
location, the location must be configured for the harness to access the template
files.

Does your test group run the harness from a central location or from local
installations in the test system?

If your group uses a central location for the test system, you must be able to access
the test system at that location.

Chapter 1 Command-Line Interface 3

Installation and Runtime Security Guidelines

It is extremely important to note that the JavaTest installation and runtime system is
fundamentally a developer system that is not specifically designed to guard against
any malicious attacks from outside intruders. If sample code or tests you author
make a network call, you can expose the JavaTest operating environment during
execution. For this reason, it is critically important to observe the precautions
outlined in the following security guidelines when installing and running JavaTest.

The harness itself is self-contained in javatest. jar. The only external dependency
is jh. jar, which should be placed either on the classpath or in the same directory
as javatest. jar. If desired, the following optional parts of the binary distribution
can be deleted:

m The directories 1inux, solaris, and win32 each contain a subdirectory named
bin, which contains a script named javatest. All of these directories and files
are provided for convenience and can be deleted without harm. (If the javatest
launch script is deleted you can start the harness by pointing a JVM at the
javatest. jar file.)

m Examples in the examples/ directory.
m Documentation in the doc/ directory.

m lib/jt-junit.jar which is an optional binary component.

To maintain optimum network security, JavaTest can be installed and run in a
"closed" network operating environment, meaning JavaTest is not connected directly
to the Internet, or to a company Intranet environment that could introduce
unwanted exposure to malicious intrusion. This is the ideal secure operating
environment when it is possible.

JavaTest does not require an "Intranet" connection that supports network
connections to systems outside the JavaTest architecture to intra-company resources,
but, for example, some Java ME applications in a test suite might use an HTTP
connection. If JavaTest or applications launched from JavaTest are open to any
network access you must observe the following precautions to protect valuable
resources from malicious intrusion:

Install JavaTest behind a secure firewall that strictly limits unauthorized network
access to the Java ME SDK file system and services. Limit access privileges to
those that are required for JavaTest usage while allowing all the I-directional local
network communications that are necessary for JavaTest functionality. The
firewall configuration must support these requirements to run JavaTest while also
addressing them from a security standpoint.

Follow the principle of "least privilege" by assigning the minimum set of system
access permissions required for installation and execution of JavaTest.

Do not store any data sensitive information on the same file system that is hosting
JavaTest.

Command-Line Interface User's Guide ¢ November 2011

To maintain the maximum level of security, make sure the operating system
patches are up-to-date on the JavaTest host machine.

Chapter 1 Command-Line Interface 5

Command-Line Interface User's Guide ¢ November 2011

Command-Line Summary

You can use commands in the command line or as a part of a product build process
to configure the harness, run tests, write test reports, audit test results, and start the
GUI using specific configuration values.

The harness executes the commands from left to right in the sequence that they
appear in the command string. Include commands in the command string as though
you were writing a script. The harness does not restrict either the number of
commands or the groups of commands that you can use in a command string.

> javatest [Setup commands] [Task commands] [Desktop commands] [Information
commands]

The commands are included as a formatted set in the following sequence:

1. Setup commands - Required by task commands to set values used for the test run
and to set specific values used when performing other tasks. Setup commands
must precede the task or desktop commands. Setup commands can be used to set
specific values (without a task command) when starting the GUI.

2. Task commands - Required to run tests, to write reports, and to audit tests. Task
commands require one or more preceding setup commands.

3. Desktop commands - Use in place of the task commands to start the GUI with a
new desktop or to specify status colors used in the GUIL Setup commands are
optional when using Desktop commands.

4. Information Commands - Use information commands to display command-line
help, online help, or version information without starting the harness.
Information commands do not require any other commands on the command
line.

For additional information about using the command-line interface, see the
following topics:

m About Command-Line Examples

m Formatting a Command

Chapter2 Command-Line Summary 7

m Using Command Files

m Index of Available Commands

About the Command-Line Examples

This section provides many examples of command-line operations in the following
basic sequence:

> javatest [Setup commands] [Task commands]

In the examples, the following presentations are used:

m > represents the command prompt. For Unix systems, the command prompt can
be either a shell prompt, such as %, or a user defined value. For win32 systems,
the command prompt can be c: or another appropriate drive identifier.

m javatest represents the command or commands that your test suite would use to
start the harness.

See Setup Commands for commands and examples used to set up or change specific
values in a configuration.

See Task Commands for commands and examples used to perform tasks from the
command line.

Formatting a Command

You can use any one of the following formats to include commands on the command
line:

m Command Options Format

m Single String Arguments Format

m Command File Format

All formats are used to accomplish the same tasks. Use the format that you prefer or
that is easier to use. See Index of Available Commands for a complete listing of
available commands.

Command-Line Interface User's Guide ¢ November 2011

Command Options Format

In the command options format, commands are preceded by a dash (-), act as
options, and do not use command terminators. Enclose complex command
arguments in quotes. Use this format when long lists of commands are included in a
command line.

Example:

> javatest -open default . jti -runtests

Single String Arguments Format

If you are setting several command options, you might want to use the single string
arguments format. In the single string arguments format, one or more commands
and their arguments can be enclosed in quotes as a single string argument. Multiple
commands and arguments in the string are separated by semicolons.

Example:

> javatest "open default.jti; runtests"

Command File Format

If you are setting a series of commands and options, you can use the command file
format. Using a command file enables you to easily reuse the same configuration.

In the command file format, a file containing a series of commands and their
arguments is included in the command line by preceding the file name with the at
symbol (@).

Example:
> javatest @mycmd . jtb -runtests

Refer to Using Command Files for detailed information about using and creating
command files.

Chapter2 Command-Line Summary 9

10

Using Command Files

A command file is a text file that contains one or more commands used by the
harness from the command line or as a part of a product build process. You can
place combinations of configuration settings and commands in the command file
and use it to repeatedly perform the following actions:

m Perform test runs
m Write test reports
m Audit test results

The advantage of using the command file format is that it is easy to use a complex,
persistent, repeatable set of commands in a command line.

The commands used in a command file are a formatted set of commands, executed
in the sequence that they appear in the command string. Use the commands in the

command file as you would if you were writing a script. See Formatting a Command
for a description of the formats you can use.

The following topics provide additional detailed information:

m Creating a Command File

m Examples of Using Command Files

Creating a Command File

Use the single string arguments format style to write commands in a text file. See
Formatting a Command for detailed information.

Command-Line Interface User's Guide ¢ November 2011

Command files can contain blank lines and comments as well as lines with
commands and their arguments. The following table describes the contents of a

command file.

TABLE1 Command File Contents

File Contents

Comments

Commands

Command
Arguments

Description

Comments can begin anywhere on a line, are started by the pound symbol
(#), and stop at the end of the line.

Example:
#File contains commands

Commands are executed in the sequence that they appear in the file (for
example, setup commands must precede task commands). Commands
used in the file must be separated by a semicolon (;) or a new line symbol
(#). The # symbol acts as a new line character and can terminate a
command.
Examples:

open default.jti; #opens file

-set host mymachine

Arguments that contain white space must be placed inside quotes. Use a
backslash (\) to escape special characters such as quotes (" ") and
backslashes (\).

After writing the commands, use a descriptive name and the extension . jtb to save
the text file. Choose a file name that helps you identify the function of each

command file.

Examples of Using Command Files

In the following examples, a command file (mycommandfile . jtb) is used to override
the localHostNamevalue and the tests specified in the existing configuration.

The following three examples are provided:

m Example Command File Contents

m Command Line Using the Example Command File

m Changing Values After the Example Command File is Set

Chapter2 Command-Line Summary 11

12

Note — If you attempt to run these examples, you must replace mytestsuite . ts,
myworkdir .wd, and myconfig. jti with test suite, work directory, and . jti names
that exist on your system. You must also modify the contents of the example
command file for your configuration file and test suite. Win32 users must change /
file separators to \ to run these examples.

Example Command File Contents

The following lines are the contents of the example command file,
mycommandfile . j thb:

#File sets localHostName and tests
set jck.env.runtime.net.localHostName mymachine;
tests api/javax_swing api/java_awt

Note — The -set and -tests command forms are not used in the command file.
Command files only use the "Single String Arguments Format."

See Setting Specific Configuration Values for additional examples of using the
setcommand. See Specifying Tests to Run for additional examples of using the
tests command.

Note — See About the Command-Line Examples for a description of the use of >
javatest in the following example. See Command-Line Overview for a description of
the command line structure. See Formatting a Command for descriptions and
examples of the following command formats.

Command Line Using the Example Command File

In the following examples, a test suite (mytestsuite. ts), work directory
(myworkdir .wd), and configuration file (myconfig.jti) are opened, and the
command file (mycommandfile . jtb) is read and executed before running tests.

Command Options Format Example

> javatest —-open myconfig.jti @mycommandfile.jtb -runtests

Command-Line Interface User's Guide ¢ November 2011

Single String Arguments Format Example

> javatest "open myconfig.jti; @mycommandfile.jtb; runtests"

Changing Values After the Example Command File is Set

You can also change values after the command file is set:

Command Options Format Example

> javatest -open myconfig.jti @mycommandfile.jtb -excludeList
myexcludelist . jtx -runtests

Single String Arguments Format Example

> javatest "open myconfig.jti; @mycommandfile.jtb; excludeList
myexcludelist . jtx; runtests"

Chapter2 Command-Line Summary 13

Formatting Configuration Values for editJTI or
-set

The following table identifies and describes the types of questions supported by the
harness configuration interview. as well as provides a description of the format
required to set the value in the command line.

TABLE2 Types and Values of jti Questions

Question Type

Choice Question

File Question

File List Question

Floating Point
Question

Description

This question is used to get a selection from a finite list of possible values. For example,
in the question "Which protocol would you use," where the only possible responses are
TCP or UDP. These questions are usually displayed in the Configuration Editor and the
Template Editor as radio buttons where you can only select one button at a time.

The following is an example of the format used to set this configuration value in a
command line:

set My-testsuite. cipher 3DES

The value supplied is case sensitive. This type of question appears in the Configuration
Editor as a set of radio buttons or single-selection list of choices.

This question is used to represent a file path. It may be absolute or relative, depending on
the context of the question. See the question’s More Info for information about the
requirements. The value used is generally a platform specific path. The question may or
may not check to see that the value is valid before it is accepted.

The following are examples of the format used to set this configuration value in a
command line:
set My-testsuite.myfile c : \foo\bar . txt

set My-testsuite.myfile /tmp/bar . txt

If none of the file names have embedded spaces, you can use a space-separated list of file
names. If any of the file names in the list have embedded spaces, use a newline character
to terminate or separate all of the filenames.

This question is primarily used to enter fractional numbers, but can also accept whole
numbers. It might be used to collect values such as a timeout factor in seconds, where a
value similar to 1.5 might be entered. It usually appears as a type-in field in both the
Configuration Editor and the Template Editor. The question might be set to reject values
outside a specified range. See the More Info in the Configuration editor or the Template
Editor for guidelines regarding the values required for a specific question.

The following is an example of the format used to set this configuration value in a
command line:

set My-testsuite.delay 5.0

The value is evaluated using the current locale (for example, in European locales, enter
5,0).

14 Command-Line Interface User's Guide ¢ November 2011

TABLE2 Types and Values of jti Questions

Integer Question

IPAddress Question

Multi Choice
Question

Property Question

These questions are commonly used to get port numbers or to specify the number of
times to do an action. The answers are always restricted to whole numbers and might
have further restrictions that prevent you from using certain ranges of numbers (such as
negative numbers). You might also be restricted to using only a particular set of pre-
determined numbers. In the Configuration Editor and in the Template Editor, these
usually appear as plain type-in fields or may be a field which has up and down (spinner)
controls to select the number.

The following is an example of the format used to set this configuration value in a
command line:

set My-testsuite.port 5000

Localized values can be used. For example, 5,000 is acceptable in a US locale.

The standard textual representation of the IP Address, as defined by Internet Engineering
Task Force (IETF).

A typical IPv4 address string would be "192.168.1.1".

This question is used when a selection of choices from a finite set of possible values is
required from the user. In the Configuration Editor and Template Editor, this question
type resembles the Choice question in that it has a list of choices with checkboxes. The
difference between them is that in a Multi Choice question, you can select more than one
checkbox.

The values that you use in the set command must be separated by whitespace (newline,
space or tab) and must be the absolute new settings for the question. The values that you
use are absolute settings and cannot be based on the default or previous value. You must
enter the full list of values that you want to turn on (corresponding to the items checked
in the Configuration Editor or Template Editor representation).

This question enables you to change a grouped set of property values for a test suite. In
the Configuration Editor and Template Editor, this question type enables the user to view
multiple property settings and to change read-write values. The user can also copy both
key and values to the clipboard. Value types supported by this question include integer,
float, yes-no, file, and string. In the Configuration Editor and Template Editor, the
question can provide suggestions to users for the integer, float, file, and string value
types that it contains.

The following are examples of the format used to set this configuration value in a
command line:

set question-key property-name:new-value

set question-key=property-name:new-value

Each set statement for a Property Question value must contain the question key, the
property name, and a new value. The use of an equals sign or a space is determined by
the tool and the type of value that you are changing. You cannot change multiple values
within a single set statement.

Chapter2 Command-Line Summary 15

TABLE2 Types and Values of jti Questions

String Question

This question contains a generic field that enables you to enter a value. While this is
much less restrictive than the integer or the file question, there might be some restrictions
on the values that you can enter. In the most restrictive cases, you can only use values
that are predefined. The More Info displayed in the Configuration Editor and the
Template Editor might indicate what constitutes a legal value in this field. View the More
Info for detailed information about the values that you can enter in this field.

The following is an example of the format used to set this configuration value in a
command line:

set My-testsuite.url http://machine/item

String List Question This question is used when multiple discrete string values are required from the user. It

YesNo Question

is usually shown as a interface which allows you to enter a string then add it to a list. The
list of strings provided in the set command become the new absolute answer to the
question, not appended values. See Using Newlines Inside Strings.

This question is used when either a positive or a negative response is needed from the
user.

The following are examples of the format used to set this configuration value in a
command line:
set My-testsuite.needStatus Yes

set My-testsuite.needStatus No

The values are case sensitive and a lower-case value of yes or no is not acceptable.

Using Newlines Inside Strings

When setting values of configuration questions in the command line, the internal
command parser accepts newlines inside strings if they are preceded by a backslash.

Depending on the shell you use, it might or might not be possible to enter this
directly on the command line.

If you want to set values with embedded newlines, create a harness batch command
file, and put the set commands (and any other commands) in that file. In the batch
file, you can enter strings with embedded escaped newlines, as in the following
example:

switch on verbose mode for commands
verbose: commands

open a jti file

open /home/userl/tmp/idemo.llmar04.jti
set a list of files

set demo.file.simpleFileList /tmp/aaa\
/tmp/bbb\

/tmp/ccc

set a list of strings

16 Command-Line Interface User's Guide ¢ November 2011

set demo.stringList 111\
2222\
3333

On Solaris, using the Korn shell, you can simply put newline characters into strings.

Example:

SJAVA \

-jar image/lib/javatest.jar \
-verbose:commands \

-open /home/userl/tmp/idemo.llmar04.jti \
-set demo.file.simpleFilelList /tmp/aaa
/tmp /bbb

/tmp/ccc

Extended Command-Line Examples

This section provides extended examples of command-line operations.

To use the following examples on your system, you must use classpaths and
directory names appropriate for your system.

Example 1

java -jar lib/javatest.jar -verbose -testSuite /tmp/myts \
-workdir -create /tmp/myworkdir -config /tmp/my.jti \
-runtests -writereport /tmp/report

This combination of commands does the following, in this order:
1. Tells the harness to be verbose during test execution.

Opents the test suite /tmp/myts.

Creates a work directory named / tmp/myworkdir.

Uses my . jti as the configuration settings.

Executes the tests (as specified by the configuration).

SANER A T N

Writes a report to /tmp/report/ after test execution.

Chapter2 Command-Line Summary

17

18

Example 2

java -jar lib/javatest.jar -startHttp -testsuite /tmp/myts \
-workdirectory /tmp/myworkdir -config /tmp/my.jti \
-runtests -writereport /tmp/report -set foo.bar 4096 \
-runtests -writereport /tmp/reportl

This combination of commands does the following, in this order:
1. Tells the harness to start the internal HTTP server.

. Opens the test suite /tmp/myts.

. Uses a work directory named /tmp/myworkdir.

. Uses my . jti as the configuration settings.

. Executes the tests (as specified by the configuration).

. Writes a report to /tmp/report/ after test execution.

. Changes a configuration value (not written to JTI file).

. Runs tests again.

O 0 N o U o= W DN

. Writes a new report in /tmp/reportl.

Example 3

java -cp lib/javatest.jar:lib/comm.jar \
com.sun.javatest.tool.Main \

-Especial.value=lib/special.txt \

-agentPoolPort 1944 -startAgentPool "testsuite /tmp/myts ; \
workdir /tmp/myworkdir ; config myconfig.jti ; runtests"

This combination mixes two styles of command line arguments (quoted and dash-
style). It invokes the harness by class name, rather than executing the Java Archive
(JAR) file (-jar). An extra item is added to the VM’s classpath. The following
commands are given to the harness:

1. Sets a particular value in the testing environment.
. Specifies the agent pool port and starts the agent pool.
. Loads the test suite /tmp/myts.

. Opens the work directory /tmp /myworkdir.

g s~ W N

. Uses the configuration in myconfig.jti.

Command-Line Interface User's Guide ¢ November 2011

6. Runs the tests.

Example 4

java -jar lib/javatest.jar -configfoo.jti -runtests

This command example relies on information in the JTI file to perform the run.
Specifically, it tries to use the work directory and test suite locations specified in the
JTI file. If either of those are invalid or missing, the harness reports an error.
Otherwise, if the configuration in the JTI is complete, the tests are run.

Example 5

java -jar lib/javatest.jar -configfoo.jti -verbose \
-set test.vall 2007 -runtests

This is the same as Example 4 with the exception that it turns on verbose mode and
changes the answer of one of the questions in the configuration.

Example 6

java -jar lib/javatest.jar -configfoo.jti \
-priorStatus fail,error -timeoutFactor 0.1 \

-set test.needColor Yes \

-set test.colorl orange -tests api/java_util -runtests

This example extends Example 4 by setting various Standard Values and the answer
to particular configuration questions.

Example 7

java -jar lib/javatest.jar -testsuite /tmp/foo.jti myts \
-workdirectory /tmp/mywd -config /tmp/myconfig.jti

This example stars the GUIL This combination of commands does the following, in
this order:

1. Opens the specified test suite.

2. Opens the work directory given (assuming it is a work directory).

Chapter2 Command-Line Summary 19

3. Opens the configuration file given.

4. Starts the GUI since no execution action is given.

20

List of Available Commands

The following table describes all of the commands available in command mode.

TABLE3 Summary of Available Commands

Command
concurrency
env

envFile or
envFiles

excludeList
keywords
kfl

open

params

priorStatus

set

tests
testSuite
timeoutFactor

workDir or
workDirectory

runTests
audit

writeReport

Description
Specifies the number of tests that are run concurrently.
Specifies a test environment in an environment file.

Specifies an environment file (. jte) containing test environments.

Specifies an exclude list file.

Restricts the set of tests to be run based on keywords.
Specifies one or more known failure list (. k£1) files.

Opens a test suite, work directory, or a configuration . jti file.
This command is deprecated.

Selects the tests included in a test run based on their outcome on a
prior test run.

Overrides a specified value in a configuration (. jt1) file.

Creates a list of test directories and/or tests to run.

Specifies the test suite.

Increases the amount of time the harness waits for a test to complete

Opens an exiting work directory, creates a new work directory, or
replaces an existing work directory with a new work directory.

Runs tests in command mode.
Audits test results in command mode.

Writes test reports in command mode.

Command-Line Interface User's Guide ¢ November 2011

Setup Commands

Before you can perform a task from the command line, you must first use setup
commands to specify a configuration.

After setting up a configuration, you can then modify the values in the configuration
for your specific requirements. These changed values override but do not change
values in the configuration file. You can use configuration templates from a central
resource to run tests on different test platforms and configurations.

Note — See About the Command-Line Examples for a description of use of > javatest
in the following example.

The setup commands are used in the following sequence in the command line:

> javatest [initial-setup-commands] [set-specific-values] [additional-setup-commands]
[task-commands]

Setting specific values and additional setup commands are optional.

The task command at the end of the example is also optional. If a task command is
not included, the harness uses the specified configuration and any changes set on
the command line to open the GUL

For additional information about using setup commands see the following topics:

m Initial Setup Commands

m Setting Specific Values

m Additional Setup Commands

Chapter 3 Setup Commands 21

22

Initial Setup Commands

Before you can perform tasks from the command line, you must first set up a
configuration for the harness to use. You can set up a configuration by performing at
least one of the following:

1. Specify an existing configuration (. jt1i) file. You are not required to specify
either a test suite or a work directory.

2. Specify an existing work directory and a configuration file. You are not required
to specify a test suite.

3. Open a test suite, create an empty work directory, and specify a configuration file.

After setting up a configuration, you can then change specific values for your
specific requirements. See Setting Specific Values for the commands used to modify
the values in the configuration.

You can include commands in any combination on the command line provided the
initial set-up commands are specified before any other commands in the command
line.

You can use any of the following commands to set up a configuration for the harness
to use when performing tasks:

m config - Specifies an existing configuration file. See Specifying a Configuration
File With config for a detailed description of this command.

m workDirectory or workDir - Specifies an existing work directory or to create a
new work directory. See Specifying a Work Directory With workDir for a
detailed description of this command.

m testSuite - Used to specify a test suite. See Specifying a Test Suite With
testSuite for a detailed description of this command.

m open - Specifies a test suite, work directory, configuration file, or parameter file.
See Specifying a Test Suite, Work Directory or Configuration With open for a
detailed description of this command.

Specifying a Configuration File With config

To specify the configuration file the harness uses to run tests, use the config
command.

> javatest ... -config path/filename ... [task-command] ...

Command-Line Interface User's Guide ¢ November 2011

See About the Command-Line Examples for a description of > javatest in the
example.

The configuration file might contain default values for the test suite (which contains
the tests to be run) and the work directory (where the results are placed).

Test suite and work directory values in the configuration file can be overridden with
the testsuite and workdirectory commands. If the configuration file is a
template and does not contain default values for the test suite and work directory,
those values must be specified explicitly with the testsuite and workdirectory
commands.

See Command-Line Overview for a description of the command line structure.

Detailed Example of config Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest -config myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specitying a Work Directory With workdir or
workdirectory

Each work directory is associated with a test suite and stores its test result files in a
cache. You can use the work directory command to:

m Use an Existing Work Directory

m Create a New Work Directory

m Replace an Existing Work Directory

See Shortcuts to Initialize a Configuration for information about specifying a work
directory in the command line.

Chapter 3 Setup Commands 23

24

Use an Existing Work Directory

To use an existing work directory for the test run, include either the workdir or
workdirectory command in the command line:

> javatest ... -workdir path/filename ... [task-command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a description of the command line structure.

See Formatting a Command for descriptions and examples of the following
command formats.

Create a New Work Directory

To create a new work directory for the test run, use the -create command option:

> javatest ... -workdir -create path/filename [configuration-command] ... [task-
command] ...

See About the Command-Line Examples for a description of use of > javatest in the
example. See Command-Line Overview for a description of the command line
structure.

The new work directory must not previously exist. You can also use an existing
work directory as a template to create a new work directory for the test run. To use
an existing work directory as a template, put the template in the command line
before the create command.

When creating the command string, include the commands in the following
sequence:

1. (Optional) Include the commands required to specify the test suite.

See Specifying a Test Suite With testSuite for detailed information about the
command.

2. (Optional) Include the -workdir path/filename command required to specify an
existing work directory.

3. Include the workdir or workdirectory -create path/filename command.
4. Include the commands required to specify a configuration file.

See Specifying a Configuration File With config for detailed information about the
command.

Command-Line Interface User's Guide ¢ November 2011

5. (Optional) Include the commands required to set specific values.

See Setting Specific Values for detailed information about the available commands.

1. (Optional) Include the runtests command.

The results of the test run are written to the new work directory. See Running Tests
With runtests for detailed information about the command.

Detailed Example of Creating a New Work Directory

In the following example, myworkdir .wd and myconfig . jti represent file names that
might exist on your system.

Command Options Format Example:

> javatest —workdir myworkdir .wd -create testrun.wd -config
myconfig.jti -runtests

When the tests are run, the harness uses the work directory (testrun .wd) created by
the command line, even if the configuration file (myconfig.jti) was created using
another work directory.

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Replace an Existing Work Directory

When you replace an existing work directory with a new work directory, the harness
performs the following tasks:

m Deletes the existing work directory and its contents.

m Creates the new work directory using the same name (if the old directory was
successfully deleted).

To replace an existing work directory with a new work directory, use the -
overwrite command option.

> javatest ... -workdir -overwrite path/filename ... [task-command] ...

or

> javatest ... -workdir -create -overwrite path/filename ... [task-command] ...

The -create command option is optional when the -overwrite command is
used.

Chapter 3 Setup Commands 25

26

See About the Command-Line Examples for a description of use of > javatest in the
examples.

See Command-Line Overview for a description of the command-line structure.

Detailed Example of Replacing an Existing Work Directory

In the following example, myconfig. jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest -workdir -overwrite testrun.wd -config myconfig.jti -
runtests

The harness uses the work directory testrun.wd created by the command line when
the tests are run, even if myconfig.jti was created using another work directory.

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying a Test Suite With testsuite

To specify the test suite, use the testsuite command:

> javatest ... -testsuite path/filename [work-directory-command] [configuration-
command] ... [task-command] ...

See About the Command-Line Examples for a description of the use of > javatest.

See Command-Line Overview for a description of the command line structure.

When you want to specify a test suite, include the commands in the following
sequence:

1. Include the command required to specify the test suite (testsuite path/filename).
2. Include the commands required to set up a configuration.

See Set-up Commands for detailed description of the available commands.

3. (Optional) Include a task command such as the runtests command.

See Task Commands for a description of the available commands.

Command-Line Interface User's Guide ¢ November 2011

Detailed Example of testsuite Command

In the following example, mytestsuite, myworkdir .wd, and myconfig . jt i represent file
names that might exist on your system.

Command Options Format Example:

> javatest -testsuite mytestsuite -workdir myworkdir.wd -config
myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying a Test Suite, Work Directory or
Configuration (open)

To specify a test suite, work directory, or a configuration . jt1i file, use the open
command:

... open path/filename ...

Note — See About the Command-Line Examples for a description of the use of >
javatest in the following example. See Command-Line Overview for a description of
the command line structure. See Formatting a Command for descriptions and
examples of the following command formats.

Command Options Example:

> javatest ... -open path/filename ... [task command] ...

Single String Arguments Example:
> javatest ... ; open path/filename ; ... [task command] ...

Command File Example:
> javatest @mycmd . jtb ... [task command] ...

In addition to any other commands, for this example the mycmd . j tb command
file must contain the command:
"open path/filename;"

Refer to Using Command Files for detailed information about creating and using
command files.

Chapter 3 Setup Commands 27

28

Setting Specific Values

After you set a configuration (see Initial Set-up Commands), you can specify
individual values for a test run that override those in the configuration file.

Note — Values that you specify in the command string override but do not change
the values specified in the configuration file.

You can use the following commands to specify individual values for a test run:

set - Sets any value in a configuration file. See Setting Test Suite Specific Values

With set for a detailed description of this command.

concurrency - Changes the concurrency value set in the configuration file. See
Setting Concurrency With concurrency for a detailed description of this
command.

excludeList - Specifies or changes the exclude list set in the configuration file.
See Specifying Exclude List Files With excludeList for a detailed description of
this command.

keywords - Specifies or changes the keyword values set in the configuration file.
See Specifying Keywords With keywords for a detailed description of this
command.

kfl - Specifies one or more known failure lists (KFLs), as reflected in the known
failure analysis (part of the HTML report type). See Specifying Keywords with
kfl.

priorStatus - Specifies or changes prior status values set in the configuration
file. See Selecting Tests With priorStatus for a detailed description of this
command.

tests - Specifies or changes the tests specified in the configuration file. See
Specifying Tests or Directories With tests for a detailed description of this
command.

timeoutFactor - Specifies or changes the test timeout value specified in the
configuration file. See Setting Timeout With timeoutFactor for a detailed
description of this command.

Command-Line Interface User's Guide ¢ November 2011

Setting Specific Configuration Values

You can use the set command to override a specific value in a configuration file,
import a Java platform properties file (Java properties file) containing the values of
multiple configuration questions, and set the value of a Properties Question in a
configuration file.

Override a Specific Value

Use the set command to override a specific value in the current configuration
(.jti) file.
> javatest ... [initial-setup commands] ... -set question-tag-name ... [task-command] ...

See About the Command-Line Examples for a description of use of > javatest in the
example.

See Command-Line Overview for a description of the command line structure.

Import a Java Properties File

You can also use -set -file input-file-name or -set -£ input-file-name to import
a Java properties file containing the values of multiple configuration questions. A
hand-edited configuration file can be used as an input file.

> javatest ... [initial-setup-commands] ... -set -file input-file-name ... [task-
command] ...

The harness uses the values in the input file to override the values in the
configuration. Any values in the input file that are not used in the configuration are
ignored.

Values changed by the setcommand are only used for the session and override but
do not change the configuration file. To change a configuration file, use the
Configuration Editor provided by the harness GUI.

Set the Value of a Properties Question

In configuration (. jti) files that use the Properties Question type, you can use the
setcommand to override but not change the values of Properties Questions. This
question type requires at least three values for any setting (question key, property
name, the new value).

> javatest ... [initial-set-up-commands] ... -set question-tag-name property:value ...
[task-command)] ...

Chapter 3 Setup Commands 29

30

The question-tag-name and property identify the location in the Properties Question to
be changed while value specifies the new value for that property. If the new value is
rejected by the question, the appropriate action is taken by the harness (exit with
error). The error message will specify that question-tag-name rejected the value
for the property.

Creating a Command String

When creating a command string to set specific values in a configuration, include
the commands in the following sequence:

1. Include the commands required to set up a configuration.

See Setup Commands for detailed description of the available commands.

2. Include the command required to specify configuration values (set question-tag-
name value).

3. (Optional) Include the runtests command.

See Running Tests With runtests for a detailed description of the command.

To use the setcommand, you must identify the question-tag-name associated with the
value in the configuration file that you are changing. In the command line, following
the setcommand, enter the question-tag-name and its new value:

A value can only be changed if its tag-name exists in the initialized configuration file.
If the configuration does not include the tag-name you must use the Configuration
Editor in the harness GUI to include the question and value in the configuration file.

See Obtaining the Question tag-name for detailed information about the tag-name for
the question. See Formatting Configuration Values for edit]TI or -set for detailed
information about formatting the values. See Detailed Examples for examples of
using the set command and the tag-name.

Detailed Example of Setting Test Suite Specific Values

In the following example, myconfig.jti represents a file name that might exist on
your system.

Command Options Example:

> javatest -config myconfig.jti -set jckdate.gmtOffset 8 -runtests

See Formatting a Command for descriptions and examples of other command
formats.

Command-Line Interface User's Guide ¢ November 2011

Setting Concurrency with
concurrency

If you are running the tests on a multi-processor computer, you can use concurrency
to speed your test runs. Use the concurrency command to specify the number of
tests to run concurrently:

> javatest ... [initial-set-up commands] ... -concurrency number ... [task-command]

See About the Command-Line Examples for a description of the use of > javatest in
the example.

Unless your test suite restricts concurrency, the maximum number of threads
specified by the concurrency command is 50. See your test suite documentation
for additional information about using concurrency values greater than 1.

When creating a command string to specify the number of tests to run concurrently,
include the commands in the following sequence:

1. Set up a configuration

2. Specify the concurrency value (concurrency number)
3. Include the runtests command (optional).

See Command-Line Overview for a description of the command line structure.

Detailed Example of concurrency Command

In the following example, myconfig.jti represents a file name that might exist on
your system and value represents a numeric value from 1 to 50 that you might use.

Command Options Format Example:

> javatest -config myconfig.jti -concurrency value -runtests

See Formatting a Command for descriptions and examples of other command
formats.

Chapter 3 Setup Commands 31

32

Specifying Exclude Lists With
excludelist

Test suites can supply exclude list files which contain the list of tests that the harness
is not required to run. Exclude list files conventionally use a . jtx extension. Once
you have set up a configuration, you can use an excludeList command to specify
the exclude list for your test run:

> javatest ... [initial-setup-commands] ... ~excludeList path/filenamel path/filename?2
... [task-command]

For example, to specify multiple path/filename arguments , issue the ~excludeList
command once followed by multiple path/filename arguments separated by spaces.
For example:

> javatest ... [initial-setup-commands] ... -excludeList aaaa.jtx bbb.jtx
C:\myconfig\cc.jtx ... [taskcommand]

Note, because a space is a separator, file path arguments cannot contain spaces (for
example, C: \Program Files\myconfig\foobar will not work).

See About the Command-Line Examples for a description of the use of > javatest.

See Command-Line Overview for a detailed description of the command-line
structure.

The exclude list that you specify in the command line overrides any exclude list
specified in the configuration file without changing the configuration file. To specify
an exclude list, include the commands in the following sequence:

1. Include the commands required to set up a configuration.See Setup Commands
for a description of the commands.

2. Include the commands to specify an exclude list (excludeList path/filename).

3. (Optional) Include a task command (such as runtests).

See Task Commands for the commands that you can include.

Detailed Example of excludeList Command

In the following example, myconfig.jti and myexcludelist . j tx represent file names
that might exist on your system.

Command-Line Interface User's Guide ¢ November 2011

Command Options Format Example:

> javatest -config myconfig.jti -excludeList myexcludelist.jtx -
runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying Keywords With keywords

The test suite may provide keywords that you can use on the command line to
restrict the set of tests to be run. Use the keyword command to specify the
keywords used to filter the tests that are run.

> javatest ... [initial-setup-commands] ... ~-keywords expression ... [task-command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the following example.

See Command-Line Overview for a detailed description of the command line
structure.

Refer to the test suite documentation for a list of supported keyword expressions
and logical operators.

When creating a command string that specifies keywords, include the commands in
the following sequence:

1. Include the commands required to set up a configuration.

See Set-up Commands for a description of the commands.

2. Include the commands to specify keywords used (keywords expression).
3. (Optional) Include a task command (such as runtests).

See Task Commands for the commands that you can include.

Detailed Example of keywords Command

In the following example, myconfig.jti and myexcludelist . jtx represent file names
that might exist on your system.

Command Options Format Example:

Chapter 3 Setup Commands 33

> javatest -config myconfig.jti -keywords interactive -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying Known Failures Lists With
kKfl

The ability to specify a known failures list is enabled in the configuration editor
interview, as described in Creating Reports in the Graphical User Interface User’s
Guide. In the user interface, if the value for "Specify a Known Failures List?" is Yes
and you have specified KFLs, they become the default values, and are used when
you create reports using Reports > Create New Report or using the -writeReports
HTML report type.

The -kf1 option enables you to change the default list of KFL files from the
command line..

You can call the KFL file(s) as follows. Multiple files are separated by spaces:

java -jar ... -kfl foo.kfl bar.kfl path/foobar.kfl -runtests

Note — Note, because a space is a separator, file path arguments cannot contain
spaces (for example, C: \Program Files\myconfig\foobar will not work).

See Command-Line Overview for a detailed description of the command line
structure. See Formatting a Command for descriptions and examples of other
command formats that you can use.

Selecting Tests With priorStatus

Tests can be selected for a test run based on their prior test status. Use the
priorStatus command to run tests based on their results from a previous test run:

34 Command-Line Interface User's Guide ¢ November 2011

> javatest ... [initial-set-up commands] ... -priorStatus fail, error .. [task-
command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

The status-arguments that can be used are pass, fail, error, and notRun. If you use
more than one argument, each argument must be separated by a comma.

When creating a command string to specify the prior test status, include the
commands in the following sequence:

1. Set up a configuration.

2. Specify the prior test status (priorStatus status-arguments).

3. Include a Task Command such as runtests (optional).

See Command-Line Overview for a detailed description of the command-line
structure.

Detailed Example of priorStatus Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest -config myconfig.jti -priorStatus fail,error -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying Tests or Directories With tests

You can specify one or more individual tests or directories of tests for the harness to
run. The harness walks the test tree starting with the sub-branches or tests you
specify (or both) and executes all tests that it finds, excluding tests that are filtered
out.

You can use the tests command to specify one or more individual tests or
directories of tests:

tests path/filename

Chapter 3 Setup Commands 35

36

See Command-Line Overview for a description of the command line structure.
When creating a command string, include the commands in the following sequence:
1. Include the commands required to set up a configuration.

See Setup Commands for detailed description of the available commands.

2. Include the commands required to specify tests or directories of tests (tests
path/filename).

3. (Optional) Include a task command such as the runtests command.

See Task Commands for a description of the available commands.

Example of tests Command

In the following example, path/filename represents a file name that might exist on
your system.

Command Options Format Example:

> javatest ... [initial-setup-commands] ... -tests path/filename ... [task-command] ...

See Formatting a Command for descriptions and examples of other command
formats that you can use.

See About the Command-Line Examples for a description of the use of > javatest in
the example.

Setting Timeout With timeoutFactor

Each test in a test suite has a timeout limit. The harness waits for a test to complete
for the duration of that limit before moving on to the next test. You can use the
timeoutFactor command to change the timeout limit:

> javatest ... [initial-setup-commands] ... -timeoutFactor number ... [task-command]

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a detailed description of the command-line
structure.

Command-Line Interface User's Guide ¢ November 2011

Each test’s timeout limit is multiplied by the time factor value. For example, if you
specify a value of 2.0, the timeout limit for tests with a 10 basic time limit becomes
20 minutes. See Formatting a Command for descriptions of the command formats.
Note that the format of the value input for the timeout factor is dependant on the

locale.

When creating a command string to change the timeout limit, include the commands
in the following sequence:

1. Include the commands required to set up a configuration.

See Setup Commands for detailed description of the available commands.

2. Include the commands required to specify the timeout limit (t imeoutFactor
number).

3. (Optional) Include the runtests command.

See Running Tests With runtests for a detailed description of the command.

Detailed Example of timeFactor Command

In the following example, myconfig.jti and myexcludelist . j tx represent file names
that might exist on your system.

Command Options Format Example:

> javatest -config myconfig.jti -timeoutFactor 2.0 -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Additional Setup Commands

In most cases, you use the command line to perform functions that are also available
through the GUIL However, you can also use the command line to specify how the
harness starts.

When starting the harness, you can include additional commands in the command
line to:

m Include all system properties in test execution environments.

m Set an environment variable that you want inherited in every test environment.

Chapter 3 Setup Commands 37

m Set the agent pool port number.

m Set the agent pool timeout.

m Start the active agent pool.

The harness uses a new desktop when you include GUI commands in the command

line.

The following table describes the commands used in the command line to specify
how the harness starts.

TABLE4 JavaTest Harness Commands

Command
-EsysProps

-Ename=value

-agentPoolPort port

-agentPoolTimeout #seconds

-startAgentPool

Function
Includes all system properties in test execution environments.

Sets an environment variable that is inherited in every test environment
created.

The -Ename=value command tunnels in values from the external shell. The
method used in previous versions of the harness to tunnel in values from the
external shell is now deprecated.

Set the agent pool port number.

Use this command only when you are configuring the harness and the agent
to use a port other than 1907.

Set the agent pool timeout.

Sets the number of seconds that the harness waits between tests for an
available agent before reporting the test result as an error. The default value
of 180 seconds is usually sufficient. You can also set this value in the GUI if
you are not running the harness from the command line.

Start the active agent pool.

If you use an active agent and run the harness from the command line, you
must add -startAgentPoolto the command string to start the agent pool.

38 Command-Line Interface User's Guide ¢ November 2011

Task Commands

In the command line, after setting up a configuration, you can include commands to
perform tasks such as run tests, write reports, and audit tests. See Set-up Commands
for detailed information about setting up a configuration.

Information about the following task commands can be found in the following
topics:

m Running Tests With runtests

m Writing Reports

m Auditing Tests

Running Tests With runtests

Use the runtests command to run the tests specified in the configuration.

> javatest [monitor-option] [setup-commands] ... -runtests ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a detailed description of the command-line
structure.

You can also use the runtests command as part of a sophisticated command
sequence that resembles and functions as a script. You can include command files
and multiple commands in the same command string to programmatically perform
repeated, multiple test runs of different configurations without starting the harness
GUL

Chapter 4 Task Commands 39

See Using Command Files for detailed information about creating and using
command files.

A monitor-option can be set in the command line to display test progress information
during the test run. See Monitor Test Progress Option for detailed information about
setting this option.

When creating the command string to run one or more tests, include the commands
in the following sequence:

1. (Optional) Include the command required to monitor a test run.

See Monitoring Test Progress With verbose for detailed information about the
command.

2. Include the commands required to set up a configuration.

See Setup Commands for detailed description of the available commands.

3. Include the runtests command.

Detailed Example of runtests Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options format example:
> javatest -config myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

40

Monitoring Test Progress With verbose

Including the verbose command and optional monitoring options in a run
command allows the user to monitor test progress from the command line. This
command uses stdout to display the specified levels of monitoring test run
progress. This monitoring function is not available in the GULIf you use the
verbose command and options, set it as the first flag in the command line. Because
it takes effect at the point in the command line where it appears, if the verbose
command does not preceed the other commands, commands executed before it
appears on the command line are not be shown.

Command-Line Interface User's Guide ¢ November 2011

Monitoring Options

The monitoring options are specified in the command line as a comma-separated list
following the -verbose option. A colon (:) is used to separate the -verbose
command from the options. Ordering and capitalization within the list are ignored.
Whitespace within the list is prohibited.

If you do not specify a level, the progress option is automatically used.

> javatest -verbose: monitor-option [setup-commands] ... -runtests ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Examples of Monitoring Output for detailed examples of the command line.

The following table describes monitoring options specified in the command line.

TABLE5 Monitoring Options

Option Description

command Traces the individual harness commands as they are executed. If this option is used, it should be set

s first in the command line. Traced harness commands include options given on the command line,
commands given in command strings, and commands given in command files.

no-date Does not prefix entries with the data and time stamp. Normally, each logical line of output prints the
month, day, hour, minute and second.

non- Prints non-passing (error, fail) test names and their status string. The status string includes the status

pass (error, fail) and the reason for the failure or error.

max Outputs the maximum possible amount of output. This includes all the options which are
individually available. If this option is present, only the no-date and quiet flags have any
additional effect.

quiet Suppresses any output from the verbose system. It might be useful to temporarily deactivate
monitoring while debugging, without removing other levels coded into a script. -
verbose:stop, progress, quiet results in no output, as does -
verbose:quiet, stop, progress. This option takes precedence over all other options. It does not
suppress the pass, fail, and error statistics printed at the end of the test run.

start Prints the test name when it goes into the harness’ engine for execution. Note: On some test suites,
this might only indicate that the test has been handed to the plug-in framework, not that it is
actually executing.

stop Prints the test name and status string (see non-pass) when a test result is received by the harness.

progres Prints a progress summary, which indicates pass, fail, error, and not-run numbers. If any of the max,

s non-pass, stop, or stop options were specified, each summary migh be printed on its own line.

If not, the summary will be updated on the current line. The progress information is
printed /updated each time a test result is reported to the harness.

Chapter 4 Task Commands 41

42

Detailed Examples of Monitoring Commands

The following are seven examples of monitoring commands and their resulting
command line output:

m An example of the default monitoring output:

> java -jar lib/javatest.jar -verbose -open foo.jti -runtests
14:21:31 Sept 14 - Harness starting test run with configuration
"foo".
14:24:33 Sept 14 - Pass: 12 Fail: 0 Error: 1 Not-Run: 33
14:24:30 Sept 14 - Finished executing all tests, wait for cleanup...
14:26:31 Sept 14 - Harness finished test run.

m An example of the start monitoring output:

> java -jar lib/javatest.jar -verbose:start -open foo.jti -runtests

14:21:31 Sept 14 - Harness starting test run with configuration
"foo".

14:24:39 Sept 14 - Running foo/bar/index#idl

14:24:30 Sept 14 - Test run stopped, due to failures, errors, user
request. Wait for cleanup...

14:26:31 Sept 14 - Harness finished test run.

m An example of the start and stop monitoring output:

> java -jar lib/javatest.jar -verbose:start,stop -open foo.jti -
runtests

14:21:31 Sept 14 - Harness starting test run with configuration
"foo".

14:24:31 Sept 14 - Running foo/bar/index#idl

14:24:32 Sept 14 - Finished foo/bar/index#idl Fail. Invalid index
did not throw exception.

14:26:33 Sept 14 - Running foo/bar/index#id2

14:27:34 Sept 14 - Finished foo/bar/index#id2 Pass.

14:28:35 Sept 14 - Running foo/bar/index#id3

14:29:36 Sept 14 - Finished foo/bar/index#id3 Error. Cannot invoke
JVM.

14:30:30 Sept 14 - Finished executing all tests, wait for cleanup...

14:30:31 Sept 14 - Harness finished test run.

m An example of the no-date, start, and stop monitoring output:

> java -jar lib/javatest.jar -verbose:no-date,start,stop -open
foo.jti -runtests

Command-Line Interface User's Guide ¢ November 2011

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Running foo/bar/index#id3

Finished foo/bar/index#id3 Error. Cannot invoke JVM.

Test run stopped, due to failures, errors, user request. Wait for
cleanup. ..

Harness finished test run.

m An example of the non-pass monitoring output:

> java -jar lib/javatest.jar -verbose:non-pass -open foo.jti -
runtests

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Test run stopped, due to failures, errors, user request. Wait for
cleanup. ..

Harness finished test run.

m An example of the progress and non-pass monitoring output:

> java -jar lib/javatest.jar -verbose:progress,non-pass -open foo.jti
-runtests

14:23:39 Sept 14 - Harness starting test run with configuration
"foo".

14:24:39 Sept 14 - Pass: 12 Fail: 0 Error: 0 Not-Run: 33

14:25:32 Sept 14 - Finished foo/bar/index#idl Fail. Invalid index
did not throw exception.

14:26:39 Sept 14 - Pass: 12 Fail: 1 Error: 0 Not-Run: 32

14:27:39 Sept 14 - Pass: 12 Fail: 1 Error: 0 Not-Run: 32

14:30:36 Sept 14 - Finished foo/bar/index#id3 Error. Cannot invoke
JVM.

14:32:39 Sept 14 - Pass: 12 Fail: 1 Error: 1 Not-Run: 31

14:33:01 Sept 14 - Test run stopped, due to failures, errors, user
request. Wait for cleanup...

14:33:10 Sept 14 - Harness finished test run.

m An example of the no-date and max monitoring output:

Chapter 4 Task Commands 43

> java -jar lib/javatest.jar -verbose:no-date,max -open foo.jti -
runtests

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Pass: 0 Fail: 1 Error: 0 Not-Run: 33

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Pass: 1 Fail: 1 Error: 0 Not-Run: 32

Test run stopped, due to failures, errors, user request. Wait for
cleanup. ..

Harness finished test run.

44

Using the batch Command

The batch command is a legacy command that is used to run tests from the
command line or as part of a build process. If a task command is not included in the
command line, the harness begins running tests automatically. The runTests
command supercedes the batch command.

The batch command is also used in the command line to close the harness when all
commands are processed. If the batchcommand is used, the harness GUI will not
start unless explicitly started by another commands in the command string.

If the GUI is started in batch mode (such as including the monitorAgent
command), after all commands are executed the harness displays a dialog that
enables the user to cancel the automatic shutdown and to use the harness GUI in
normal mode.

In its legacy format, the batch command was required to precede the other
commands. In the present format, the batch command can be specified in any
location on the command line.

> javatest ... -batch ... [setup-commands] ... [task-command] ...

See About the Command-Line Examples for a description of use of > harness in the
example.

See Command-Line Overview for a description of the command-line structure.

Command-Line Interface User's Guide ¢ November 2011

Detailed Example of batch Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest -batch -config myconfig.jti

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Using the observer Command

The observer command is an advanced command that allows you to register
com.sun.javatest.Harness.Observer for monitoring a test run. For example,
an observer can monitor the progress of each test run and implement custom
behavior such as sending an email message if a test in a test run fails. See the API
documentation for details or contact the harness team for help in using an observer.

Writing Reports With writeReport

Use the -writeReport command with the -type and -filter options in the
command line as a separate command or as part of a series of task commands (such
as run tests and audit test results). Use a web browser to view the reports.

Because the harness executes commands in their command-line sequence, you must
identify the work directory before the -writeReport command and provide the
report directory as an option at the end of the command:

> javatest ... -workdir my-work-dir -writeReport -type
report-type - £ilter report-filter my-report-dir

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a detailed description of the command line
structure.

Chapter 4 Task Commands 45

46

Using the -type Option

Include the -type option and a report-type argument in the command line to
specify the format of the generated report. There is a direct relationship between the
names of the directories in the report directories and the report type names used in
the command, as shown in the following table:

TABLE6 accessing Online Information from the GUI

Report Type
HTML Report html
Plain Text Report txt
XML Report xml
COF Report cof

When the -type option is not used, the harness uses the default report types last
used in the GUI, or html and txt if a type was not previously set in the GUL

The harness provides a set of standard format types (html, txt, xml and cof) that
you can use. In addition to the standard arguments, your test suite might provide
additional custom formats. If you are unsure of the additional formats provided by
your test suite, select Report > Create New Report from the GUI to display the list of
available report formats.

For more on the standard report formats, see Creating Reports in the Graphical User
Interface User’s Guide.

Using the -filter Option

When the -filter option is not used, the harness uses the default setting of
currentConfig. Include the -filter and a filter option (lastRun,
currentConfig, or allTests) in the command line to specify the filter used to
select the test results that are reported.

Use the lastRun filter option (corresponds to Last Test Run in the GUI) to select test
results status for all folders and tests included in the last test run even if you have
exited the harness since the last test run.

Command-Line Interface User's Guide ¢ November 2011

Use the currentConfig filter option (corresponds to Current Configuration in the
GUI) to select the folders and test results status specified by the current
configuration.

Use the allTests filter option (corresponds to All Tests in the GUI) to select test
results status for all tests in the work directory, including any tests that were
excluded from the last test run.

Detailed Example of writeReport Command

In the following example, my-work-dir represents a work directory name that might
exist on your system, and two known failure lists are specified.

Command Options Format Example:

> javatest -workdirectory myworkdirectory -config foo.jti -kfl foo.kfl -
writeReport -type html -filter allTests myReportDir

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Auditing Tests With audit

You can audit test results by including -audit as a separate command or as part of
a series of task commands (such as to run tests and write test reports). The results of
the audit are sent to the terminal.

Because the harness executes commands in their command-line sequence, you must
identify the work directory before the -audit command.

> javatest ... -workdirectory mywork-directory —audit

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a description of the command line structure.

Chapter 4 Task Commands 47

Detailed Example of audit Command

In the following example, mywork-directory represents a work directory name that
might exist on your system.

Command Options Format Example:

> javatest —-workdirectory mywork-directory -audit

See Formatting a Command for descriptions and examples of other command
formats that you can use.

48 Command-Line Interface User's Guide ¢ November 2011

Desktop Options and Preferences

In most cases, command-line options perform functions that are also available
through the GUI. However, there are several situations in which using command-
line options to specify how the harness starts are uniquely useful or necessary.

When starting the harness you can use options in the command line to perform the
following tasks:

m Use a new desktop when starting the harness GUI.

m Restore tools state when starting the harness GUI.

m Specify a look and feel when starting the harness GUI.

m Change the status colors when starting the harness GUL

Startup Commands

When starting the harness, include -newDesktop in the command string to start the
harness GUI without using a previous desktop. The harness ignores any previous
desktop information and opens the Quick Start wizard.

Note: Some test suites do not implement the optional Quick Start wizard. It won't
be available if the test suite architect disabled it.

Note — The harness uses a new desktop when you include GUI options in the
command line. Using this option preserves any preferences set for the desktop. Use
the following example to start the harness with a new Desktop.

> javatest ~-newDesktop

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 5 Desktop Options and Preferences 49

Restore Tools State

Specify -resume to restore the last-saved tools state. Tools settings will be restored,
even if the preference Check Restore Tools State on Start was disabled from the user
interface.

50

Specifying Look and Feel

The -1af option selects the look and feel for a JavaTest session. This option affects
the GUI only. It has no effect if the harness is used solely as a command line tool.

The look and feel option -1af requires one of the following arguments:

m default: Use the harness default. The Java look and feel options are nimbus or
metal. Images in the help and documentation depict these styles.

m nimbus: The modern Java look and feel. This is the harness default if it is
available in the runtime.
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/otherFeatu
res/nimbus_laf.html

m metal: The legacy Java look and feel used through version 4.4 of the harness.
http://download.oracle.com/javase/6/docs/api/javax/swing/plaf/metal /Meta
ILookAndFeel.html

m sys or system: Use the system-default look and feel that matches your desktop
style (nimbus or metal). To achieve the best results from some features of your
operating system, such as high contrast color schemes, large fonts and other
accessiblity related functions, it might be necessary to select the system look and
feel.

A sample command would be:
> javatest -1laf metal
To use the native look and feel specify the system option. For example:

> java -jar javatest.jar -laf system

Command-Line Interface User's Guide ¢ November 2011

Specifying Status Colors

The harness enables you to specify the status colors used in the GUI. This property
is set on the command line as a system property when starting the harness GUIL
Status colors set this way are added to the user preferences and restored in
subsequent sessions.

The user can specify each status color by declaring system properties in the
following format:

-Djavatest.color.passed=color-value ...
-Djavatest.color. failed=color-value ...
-Djavatest.color.error=color-value ...

-Djavatest.color.notrun=color-value ...

-Djavatest.color. filter=color-value ...

The color-value used must be an RGB value parsable by the java.awt.Color class
(octal, decimal, or hex).

The value portion of the color property must be explicitly defined. The value portion
of the property accepts hex values, prefixed by either a pound character (#) or a
zero-X (0x).

Values can also be specified in octal, in which case the value begins with a leading
zero and must be two or more digits.

The following are possible formats for setting color integers:
#ffaa66 (hex)
Oxffaab66 (hex)
0111177 (octal)

This is a detailed example of specifying a status color. You might have to escape the
pound character for the command to work on your platform.

> java -Djavatest.color.passed=#00FF00 -jar
[jt_dir/lib/]ljavatest.jar

Chapter 5 Desktop Options and Preferences 51

52 Command-Line Interface User's Guide ¢ November 2011

Information Commands

The harness command-line interface enables you to display command-line help,
online help, or version information without starting the harness.

> javatest [Information Command]

Including an information command at the end of the command line causes the
harness to display harness information without starting the GUIL

The following topics provide detailed information about the commands that can be
used to display harness information:

m Displaying Harness Command-Line Help

m Displaying Harness Online Help

m Display Harness Version Information

Command-Line Help

The harness allows you to display the command-line interface in the following
forms:

m All information
m Topic information

m Word search information

Displaying All Information

To display all of the information in command-line help, include -help all at the
end of the command line.

Chapter 6 Information Commands 53

> javatest -help all

See About the Command-Line Examples for a description of the use of > javatest.

Displaying Topic Information

To display only the command-line help for specific topics, include -help and the
name of the topic at the end of the command line.

> javatest ~help topic name

See About the Command-Line Examples for a description of the use of > harness.

The following table lists the available command-line help topics.

TABLE7 Options Used to Display Command-Line Information

Topic Function

Desktop Displays information about the command-line options for
starting the harness graphical user interface.

harness Agent Displays information about the command-line options for the
harness Agent.

Batch Mode Displays information about the command-line options for
running tests in batch mode.

Configuration Displays information about the command-line options for setting
up and changing a configuration.

Environment Displays information about the command-line options for
adding values into harness environments.

HTTP server Displays information about the command-line options for the
harness HTTP server.

Options Displays information about the command-line options accepted
on the command line.

Files Displays information about the types of files accepted as
command-line arguments.

Display the List of Available Topics

To display the list of help topics provided by command-line help, include -help, -
usage, or -? at the end of the command line.

> javatest -help

54 Command-Line Interface User's Guide ¢ November 2011

See About the Command-Line Examples for a description of the use of > harness.

Searching for Words and Phrases

The harness allows you to search the full command-line help for a specific word or
phrase and then displays only the information containing that word or phrase.

To display command-line help information containing a specific word or phrase,
include -help and the word or phrase at the end of the command line.

> javatest ~help word or phrase

See About the Command-Line Examples for a description of the use of > javatest.

Example: > javatest ~-help audit test

The console displays the following output:

Audit Options for auditing test results
-audit [-showEnvValues] [-showMultipleEnvValues]
Audit the test results defined
in the current configuration
-showAudit Show the Audit Manager window

For complete details and examples, see the online help. You can access help directly
from the command line with -onlineHelp word, or you can start the JavaTest
Harness and use the Help menu.

Displaying Online Help

Without opening the GUI, the harness enables you to display the complete online
help. To display the online help, include the ~onlinehelp command at the end of
the command line.

> javatest —onlinehelp

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 6 Information Commands 55

Displaying Harness Version Information
With version

To display the version, location, and build information of the installed copy of the
harness, include the -version command at the end of the command line.

> javatest -version

See About the Command-Line Examples for a description of the use of > javatest.

56 Command-Line Interface User's Guide ¢ November 2011

Legacy Commands

The command-line interface supports the commands used in previous versions of
the harness. In most cases, using the current commands is preferred, however, if you
are running a test suite that uses a parameter file you can continue to use options in
the command line to specify parameter values. These commands are deprecated and
might be removed from future versions of the harness.

See Using Parameter Commands for a detailed description of these Legacy
Commands.

Using Deprecated Parameter
Commands

If you are running a test suite that does not use a parameter file, use the current
commands instead of the -params command and option.

If you are running a test suite that uses a parameter file (. jtp), you can specify
different parameter values by including -params and the appropriate parameter
command in the command line.

> javatest ... -params [command] [value] [task-commands] ...

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 7 Legacy Commands 57

The following table describes the parameter commands.

TABLE 8

Parameter Commands

Command

-t testsuite
or
-testsuite festsuite

-keywords keyword-expr

-status status-expr

-excludeList exclude-list-file

-envFile environment-file

-env environment

-concurrency number

-timeoutFactor number

- report-directory
or
-report report-directory

-w work-directory
or
-workDir workDirectory

Description

Specifies the test suite.

Restricts the set of tests to be run based on keywords associated with tests in
the test suite.

Includes or excludes tests from a test run based on their status from a
previous test run. Valid status expressions are error, failed, not run, and
passed.

Specifies an exclude list file. Exclude list files contain a list of tests that are not
to be run. Exclude list files conventionally use the . jtx extension and are
normally supplied with a test suite.

Specifies an environment file that contains information used by the harness to
run tests in your computing environment. You can specify an environment
file for the harness to use when running tests.

Specifies a test environment from an environment file.

Specifies the number of tests run concurrently. If you are running the tests on
a multi-processor computer, concurrency can speed your test runs.

Increases the timeout limit by specifying a value in the time factor option.
The timeout limit is the amount of time that the harness waits for a test to
complete before moving on to the next test. Each test’s timeout limit is
multiplied by the time factor value.

For example, if you specify a value of 2, the timeout limit for tests with a 10
basic time limit becomes 20 minutes.

Specifies the directory where the harness writes test report files. If this path is
not specified, the reports are written to a directory named report in the
directory from which you started the harness.

Specifies a work directory for the test run. Each work directory is associated
with a test suite and stores its test result files in a cache.

58 Command-Line Interface User's Guide ¢ November 2011

Troubleshooting

The harness provides information in the following topics that you can use to
troubleshoot problems:

m Exit Codes

m Harness Fails During Use

m Problems Running Tests

m Problems Writing Reports

m Problems Moving Reports

Exit Codes

When the harness exits, it displays an exit code that you can use to determine the
exit state. The following table contains a detailed description of the exit codes.

TABLE9 JavaTest Harness Exit Codes

Exit

Code Description

0 If tests were executed, all tests had passed results.

1 One or more tests were executed and had failed results.
2 One or more tests were executed and had errors.

3 A problem exists with the command-line arguments.

4 Harness internal error exists.

Chapter 8 Troubleshooting

59

Harness Fails During Use

If the harness fails, you can use the harness. trace file in your work directory to
troubleshoot the problem. The harness. trace file is a plain-text file that contains
a log of harness activities during the test run. It is written in the work directory, is
incrementally updated, and is intended primarily as a log of harness activity.

60

Problems Running Tests

The goal of a test run is for all tests in the test suite that are not filtered out to have
passing results.

If the root test suite folder contains tests with errors or failing results, you must
troubleshoot and correct the cause to successfully complete the test run. See
Troubleshooting With the GUI in the Graphical User Interface User’s Guide for
information about the resources that the harness provides for troubleshooting.

Tests With Errors

Tests with errors are tests that could not be executed by the harness. These errors
usually occur because the test environment is not properly configured. Use the GUI
Test tabbed panes and configuration editor window to help determine the change
required in the configuration. See Troubleshooting With the GUI in the Graphical
User Interface User’s Guide for information about the resources that the harness
provides for troubleshooting.

Tests That Fail

Tests that fail are tests that were executed but had failing results. The test or the
implementation may have errors.

Command-Line Interface User's Guide ¢ November 2011

Use the GUI Test Manager tabbed panes to identify and correct a test failure. See
Troubleshooting With the GUI in the Graphical User Interface User’s Guide for
information about the resources that the harness provides for troubleshooting.

Problems Viewing Reports

The harness does not automatically generate reports of test results after a test run.
You must generate test reports either from the command line or from the GUIL

Problems Writing Reports

You use filters to write test reports for a specific set of test criteria. Verify that you
are using the appropriate filter to generate reports of test results. See Creating
Reports in the Graphical User Interface User’s Guide.

Problems Moving Reports

Test reports contain relative and fixed links to other files that may be broken when
you move reports to other directories.

You must update these links when moving reports to other directories. The harness
provides an EditLinks utility that updates the links in the reports for you when
moving reports.

Chapter 8 Troubleshooting 61

62 Command-Line Interface User's Guide ¢ November 2011

Utilities

The harness allows you to use additional utilities to remotely monitor and control a
test run, browse result (. jtr) files without starting the harness, browse exclude list
files without starting the harness, change responses in a configuration file without
starting the harness, and move test reports.

Information about using utilities to perform tasks can be found in the following
topics:

m Monitoring Results With HTTP Server

m Browsing . jtr Result Files

m Browsing Exclude List Files

m Changing Configuration Values With EditJTI

m Changing Configuration Values With Text Editors

m Moving Test Reports

Monitoring Results With HTTP Server

The harness provides a web server that you can use to remotely monitor and control
a test run. The HTTP Server provides the following two types of output:

m HTML-Formatted Output for users to remotely monitor batch mode test runs in a
web browser.

m Plain Text Output for use by automated testing frameworks.

Chapter 9 Utilities 63

64

HTML-Formatted Output

The HTML-formatted output is provided as human-readable pages (these pages are
subject to change in future releases of the harness), enabling users to remotely
monitor batch mode test runs in a web browser and stop test runs that are not
executing as expected. The following topics describe the HTML formatted output:

m Server Index Page

m Server Harness Page

m Server Test Result Index Page

m Harness Environment Page

m Harness Interview Page

m Stop a Test Run

accessing HTTP Server HTML-Formatted Output

1. Use the following command on the command line to activate the web server.
> javatest -startHttp -runTests [options]

See About the Command-Line Examples for a description of the use of > javatest.

2. Copy the URL reported to the console.

Example:

JavaTest Harness HTTPd - Success, active on port 1903
JT Harness HTTPd server available at
http://129.145.162.75:1903/

3. Launch a web browser and enter or paste the URL in the browser URL field.

Example:
http://129.145.162.75:1903/

Displaying the HTTP Server Index Page

The root of the web server provides an index page that only lists the handlers
registered with the internal web server; not all available URLs on the server. You can
also display the HTTP Server Index page by including /index.htmlat the end of
the URL in the browser URL field.

Example:
http://129.145.162.75:1903/index.html

Each harness has its own handler, identified by a unique number as the second
component of the URL.

Command-Line Interface User's Guide ¢ November 2011

Displaying HTTP Server Harness Page

When the harness is running tests, the harness page displays the following
information:

m Name and location of the current test suite.

m Location of the work directory.

m Link to view the environment information provided to the harness and used in
the current test run. Displays an HTML-formatted view of the current
environment.

m Link to view the configuration interview used by the harness in the current test
run. Displays a formatted view of the interview settings.

m Link to view the current test results. Displays the Test Result Index page.

In addition to the list of registered handlers, the page also prints the UTC/GMT date
on which that page was generated (subject to the system clock on the machine which
harness is running) and provides the harness version number and build date.

You can display the HTTP Server Harness page by choosing its link on the index
page or by including /harness at the end of the URL in the browser URL field.

Example:
http://129.145.162.75:1903 /harness

Displaying the HTTP Server Test Result Index Page

The Test Result Index page displays the following information:
m Work directory

m Total number of tests in the test suite

The total number of tests is also a link to view the current test results. The test
results are displayed in a two-column table, by test name and status message.

You can display the Test Result Index page by choosing its link on the harness page.

Displaying the Harness Environment Page

The Harness Environment page displays the environment information provided to
the harness and used in the current test run. The environment information is
displayed in an HTML table and provides a view of the current settings.

You can display the Harness Environment page by choosing its link on the harness
page or by including /harness/env at the end of the URL in the browser URL
field.

Chapter 9 Utilities 65

66

Example:
http://129.145.162.75:1903 /harness/env

Displaying the Harness Interview Page

The Harness Interview page displays the configuration interview provided to the
harness and used in the current test run.

You can display the Harness Interview page by choosing its link on the harness page
or by including /harness/interviewat the end of the URL in the browser URL
field.

Example:
http://129.145.162.75:1903 /harness/interview

Using HTTP Server to Stop a Test Run

If you want to remotely terminate a test run, include /harness/stopat the end of
the URL in the browser URL field.

Example:
http://129.145.162.75:1903 /harness/stop

To stop the test run, you must click the STOP button on the page displayed in the
browser.

Plain Text Output

The HTTP server provides plain text output that can be used for automated
monitoring of the harness during test runs. The plain text output does not include
HTTP headings or HTML formatting and is intended for use by automated testing
frameworks, not for viewing in web browsers. Consequently, future releases of the
harness will attempt to maintain the content formatting and URLs of this output.

The following two types of harness information can be accessed by automated
testing frameworks:

m Version Information

m Harness Information

Command-Line Interface User's Guide ¢ November 2011

accessing Version Information

The HTTP Server Version page displays version information about the JavaTest
Harness harness. You can display the HTTP Server Version page by choosing its link
on the index page or by including /version at the end of the URL in the browser
URL field.

Example:
http://129.145.162.75:1903 /version

A dump of the version information is provided.

Example:
<name> Harness <version> Built on August 14, 2007

accessing Harness Information

The following strings access specific information about the harness:
m /harness/text/config

Currently provides, in java.util.Properties format, the test suite name
location and work directory of the current harness configuration values.

Example:
testsuite.path=/export/scratch/myTest

testsuite.name=myTest

workdir=/export/scratch/wdscl3a

m /harness/text/tests

Provides in java.util.Properties format the initial tests used for the current
test run.

Example:
urlO=api/java_lang
urll=api/java_util

m /harness/text/stats

Provides, in java.util.Properties format, the current count of test results in
each state (pass, fail, error, not run). Whitespace is not present in the output:

Example:
Passed.=0
Failed.=151
Error.=54
Not_run.=1

Chapter 9 Utilities 67

68

For performance reasons, the Not_run number usually equals the concurrency
setting in batch mode and matches the "not run" number shown in the GUI when

in GUI mode (Current Configuration view filter).
harness/text/results

Provides alternating lines of test name, test status.

Example:
lang/FP/fpl005/fpl100506ml/fpl00506ml.html

Error. context undefined for hardware.xFP_ExponentRanges
lang/FP/fpl005/fpl00506m2/fpl00506m2.html

Error. context undefined for hardware.xFP_ExponentRanges
vm/classfmt/atr/atrnew003/atrnew00301ml/atrnew00301ml.html
Failed. unexpected exit code: exit code 1
vm/classfmt/atr/atrnew003/atrnew00302ml/atrnew00302ml.html
Failed. unexpected exit code: exit code 1
vmm/classfmt/atr/atrnew003/atrnew00303ml/atrnew00303ml.html
Failed. unexpected exit code: exit code 1

/harness/text/state

Indicates whether harness is currently running. It will return one of the following:

running=true
running=false

/harness/text/env

Provides, in java.util.Properties format, the current environment settings
for the test run.

Example:
command. testExecute=com.sun.jck.lib.ExecJCKTestOtherJVMCmd

/work/jdkl.3.1/bin/java -classpath StestSuiteRootDir/classes
-Djava.security.policy=$testSuiteRootDir/lib/jck.policy

StestExecuteClass S$testExecuteArgs

context.nativeCodeSupported=true

description=bar

jniTestArgs=-loadLibraryAllowed

nativeCodeSupported=true

platform.expectOutOfMemory=true

Command-Line Interface User's Guide ¢ November 2011

Changing Configuration Values With
EditJTI

The harness provides the EditJTI utility for you to use in changing the values in a
configuration file from the command line. You can also make changes in a
configuration by specifying the appropriate set command (see Command-Line
Summary for detailed information).

While you can use EditJTI to change the order of commands in a configuration
file, the dependencies between questions can introduce errors into the configuration.
Use the Configuration Editor in the harness GUI when making major changes in a
configuration.

If your changes to a configuration introduce errors, you can use the harness GUI
Configuration Editor to troubleshoot and repair the configuration.

EditJTI Command Format

The Ed1tJTI command loads a configuration (. jti) file, and applies a series of
changes specified on the command line. See Formatting Configuration Values for
edit]TI or -set for detailed information about formatting the values.

You can save the changes in the original configuration file or save the changes in a
new configuration file. You can also use EAitJTI to generate an HTML log of the
questions and responses as well as write a quick summary of the questions and
responses to the console. The EditJTT utility provides a preview mode.
Configuration files are normally backed up before being overwritten.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI [OPTIONS]
[EDIT-COMMANDS] original-configuration-file

OPTIONS
The following are the available options:
-help, -usage or /?
Displays a summary of the command line options.

-classpath classpath or -cp classpath

Chapter 9 Utilities 69

70

Overrides the default classpath used to load the classes for the configuration
interview. The default is determined from the work directory and test suite
specified in the configuration file. The new location is specified by this
option.

-log log-file or -1 log-file

Generates an HTML log containing the questions and responses from the
configuration file. The log is generated after edits are applied.

-out out-file or -o out-file

Specifies where to write the configuration file after the edits (if any) are
applied. The default setting is to overwrite the input file if the interview is
edited.

-path or -p

Generates a summary to the console output stream of the sequence of
questions and responses from the configuration file. The summary is
generated after edits are applied.

-preview or -n

Does not write out any files, but instead, preview what would happen if this
option were not specified.

-testsuite test-suite or -ts test-suite

Overrides the default location used to load the classes for the configuration
interview. The default is determined from the work directory and test suite
specified in the configuration file. The new location is determined from the
specified test suite.

-verbose or -v

Verbose mode. As the edit commands are executed, details of the changes
are written to the console output stream.

COMMANDS
Two different types of commands are supported.

tag-name=value

Sets the value for the question whose tag is tag-name to value. It is an error if
the question is not found. The question must be on the current path of
questions being asked by the interview. To determine the current path, use
the -pathoption. See Obtaining the Question tag-name.

/search-string / replace-string /

Scans the path of questions being asked by the interview, looking for
responses that match (contain) the search string. In such answers, replace
search-string by replace-string. Note that changing the response to a question
may change the subsequent questions that are asked. It is an error if no such

Command-Line Interface User's Guide ¢ November 2011

questions are found.
If you use /in the search string, you use some other character (instead of /)
as a delimiter.
For example:

| search-string | replace-string |
Regular expressions are not currently supported in search-string, but may be
supported in a future release.

Depending on the shell in use, quote the commands to protect characters in them
from interpretation by the shell.

RETURN CODE

The following table describes the return codes generated when a program exits.

TABLE 10 Exit Return Codes

Code Description

0 The operations were successful. the
configuration file is complete and ready to
use.

1 The operations were successful, but the

configuration file is incomplete and is not yet
ready to use for a test run.

2 A problem exists with the command-line
arguments.

3 An error occurred while trying to perform the
copy.

SYSTEM PROPERTIES
Two system properties are recognized.
EditJTI.maxIndent

Used when generating the output for the -path option, this property
specifies the maximum length of tag name after which the output will be
line-wrapped before writing the corresponding value. The default value is
32.

EditJTI.numBackups

Specifies how many levels of backup to keep when overwriting a
configuration file. The default is 2. A value of 0 disables backups.

The following topics provide detailed information about using EditJTI to perform
tasks:

¥ Changing Configuration Values

Chapter 9 Utilities 71

72

k Generating a Log of Updates

k Preview without Change

k Echo Results of Changes

¥ Show Paths for Debugging

¥ Change Test Suites or Create a New Interview

¥ Change the HTTP Port

k Doing Escapes in a UNIX Shell

Changing Configuration Values

When using EditJTI to change the values in a configuration, you can use either of
the following command formats:

m Use tag=value for direct replacement of values. You must know the tag-name for
the question that sets the value.

m Use /old pattern/new pattern/ to replace all occurrences (strings) of an old pattern to
a new pattern. This format replaces all occurrences in the file.

When using the /old pattern/new pattern/ format, the separator can be any character.
However, the string should be enclosed in quotes to avoid shell problems.

"|/java/jdk/1.3/|/java/jck/1.4/|"

Note — To run the following examples of changing configuration values, you must
replace myoriginal . jti with a . jti file name that exists on your system. Win32
users must also replace the / file separators with \ file separators to run these
examples.

Example:
java -cp [jt_dir/lib/]javatest.jar com.sun.javatest.EditJTI -o
mynew.jti "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Generating a Log of All Updates

You can use the -1 option to generate a log of all updates to the . jti file which can
be used later.

Command-Line Interface User's Guide ¢ November 2011

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EJditJTI -o
mynew.jti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/]|"
myoriginal . jti

Previewing Without Change
You can use the -n option to preview but not perform updates to the jti file.

Example:

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditJTI -n -o
mynew.jti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/]|"
myoriginal . jti

Echoing Results of Edits

You can include the -v option to echo results of your edit.

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EditJTI -n -
v —omynewl.jti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/|"
myoriginal . jti

Showing Paths for Debugging

The -p option can be used to show the path during debugging. Using -p options in
the command string displays how the path is changed by your edit.

Example:

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditJTI -n -o
mynew.jti -1 myeditlog.html -p

"|/java/jdk/1.3/|/java/jck/1.4/ | "myoriginal . Jti

Changing Test Suites or Creating a New Interview
The following example uses the -ts option to create an empty interview derived

from the test suite (mytestsuite. ts). Use the -ts option only for very simple test
suites.

Chapter 9 Utilities 73

74

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EJditJTI -o
mynew.jti -1 myeditlog.html -ts mytestsuite.ts
"|/java/jdk/1.3/|/java/jck/1.4/ | " myoriginal . jti

If a change is made that is not in the current interview path, the interview will be
invalid and the tests cannot be run.

Do not use EAitJTI to change the interview path, but only the values on the
existing path. If you are in doubt about the current interview path, open the
configuration editor window in the harness GUI and use it to change the values. The
configuration editor window displays the current interview path for that question
name-value pair.

Changing the HTTP Port

You can use EAitJTI to change the HTTP port and either overwrite the original
configuration file or create a new configuration file.

Note — To run the following examples, you must use a . jti file that exists on your
system and include httpPort in your current interview path. If your current
interview path does not include httpPort you will not be able to change its value
from the command line. To view the current interview path, open your .jti file in
the Configuration Editor. See Obtaining the Question tag-name for detailed
information about the tag-name for the question.

Change the HTTP Port and Overwrite Original Configuration File

The following example changes the HTTP port used when running tests and
overwrites original configuration file (myoriginal . jti in this example).

java -cp [jt-dir /1ib/] javatest.jar com.sun.javatest.EditJTI
httpPort=8081 myoriginal . jti

Change the HTTP Port and Create a New Configuration File

The following example changes the HTTP port used when running tests and writes
the changed configuration to a new configuration file (myoutput . jti in this
example). The original configuration file (myoriginal . jti in this example) remains
unchanged.

java -cp [jt-dir /1ib/] javatest.jar com.sun.javatest.EditJTI -o
myoutput.jti httpPort=8081 myoriginal . jti

Command-Line Interface User's Guide ¢ November 2011

Doing Escapes in a UNIX System Shell

The following example uses the syntax for doing escapes in a UNIX system shell.
Changes to the original configuration file (myoriginal . jti in this example) are
written to a new configuration file (my-newconfig.jt1i in this example).

In the following example, myoriginal . jti represents a configuration file name that
might exist on your system. Win32 users must also replace the UNIX system file
separators (\) with Windows file separators (/) to run these examples.

To change a value in the command line, use the tag-name for the question that sets
the value. See Obtaining the Question tag-name for detailed information about
viewing the tag-name for the question.

java -cp [jt-dir/1ib/] javatest.jar com.sun.javatest.EditJTI

-o my-newconfig.jti test.serialport.midPort=/dev/term/a
test.connection.httpsCert="\"CN=<Somebody>, OU=<People>, O=
<Organisation>, L=<Location>, ST=<State>, C=US\""myoriginal.jti

Chapter 9 Utilities 75

76 Command-Line Interface User's Guide ¢ November 2011

10

Changing Configuration Values
With Text Editors

The harness enables you to use a text editor from within a script (such as sed) to
change responses in a configuration file and then launch the harness to run tests.

The configuration file is a standard harness properties file in which double
backslashes and escaped new lines are required. If you edit this file in a text editor,
you must also remove the checksum for harness to accept it when running tests.

Checksums are used by the harness to ensure that a configuration used to run tests
is complete. By removing the checksum, you risk introducing errors in the
configuration used to run tests.

Test your changes in the Configuration Editor before applying them in a text editor.
The Configuration Editor checks the value and displays the correct set of related
questions. See Configuring a Test Run in the harness User’s Guide: Graphical User
Interface for detailed information about the Configuration Editor.

The relationship between the questions in a configuration depends on the test suite
and the interdependence of the questions. A change in the value of one question
might change subsequent, related configuration questions and values. If your
response changes the set of required configuration values, the Configuration Editor
displays the incomplete configuration and provides you with a new set of required
configuration questions.

After you have tested your changes and are satisfied with the results, you can use
the text editor to apply them to the configuration. Remove the checksum from the
configuration file before using the changed configuration to run tests.

Chapter 10 Changing Configuration Values With Text Editors 77

78

Moving Test Reports

Test reports contain relative and fixed links to files that break when they are moved.
To prevent this, the harness provides an EditLinks command-line utility in the
main harness JAR file, javatest. jar, for you to use when moving test reports.

The EditLinks utility checks all files with names ending in .html for HTML links
beginning with file names you specified in the EditLinks command. These links
are rewritten using the corresponding replacement name from the EditLinks
command and are copied to the new location. EditLinks copies all other files to
the new location without change.

Format of the EditLinks Command

Example:
java -classpath [jt_dir/1ib/] javatest.jar
com.sun.javatest.EditLinks OPTIONS file...

OPTIONS
The available OPTIONS are as follows:
-e oldPrefix newPrefix

Any links that begin with the string oldPrefix are rewritten to begin with
newPrefix. Note that only the target of the link is rewritten, and not the
presentation text. The edit is effectively transparent when the file is viewed
in a browser. Multiple -e options can be given. When editing a file, the
options are checked in the order they are given.

For example, if the argument

-e /work/ /java/jck-dev/scratch/12Jun00/jck-1lab3/

is used on a file that contains the segment

<a href=
"/work/api/java_lang/results.jtr">/work/api/java_lang/re
sults.jtr

, the following text shown in bold will match.

<a href=
"/work/api/java_lang/results.jtr">/work/api/java_lang/results.jtr
The resulting new file will contain the following text:

<a href="/java/jck-dev/scratch/12Jun00/jck-
lab3/api/java_lang/results.jtr">/work/api/java_lang/resu
lts.jtr

-ignore file

Command-Line Interface User's Guide ¢ November 2011

When scanning directories, ignore any entries named file. Multiple -ignore
may be given.

For example, -ignore SCCS causes any directories named SCCS to be
ignored.

-o file
Specifies the output file or directory. The output may only be a file if the

input is a single file; otherwise, the output should be a directory into which
the edited copies of the input files will be placed.

file...

Specifies the input files to be edited. If any of the specified files are
directories, they will be recursively copied to the output directory and any
HTML files within them updated.

RETURN CODE

The following table describes the return codes that the program displays when it
exits.

TABLE 11 Exit Return Codes

Code Description

0 The copy was successful.

1 A problem exists with the command-line arguments.
2 A problem exists with the command-line arguments.
3 An error occurred while performing the copy.

Detailed Example of EditLinks Command

In the following example, test12-dir.wd and myworkdir.wd represent file names that
might exist on your system. Win32 users must also replace the UNIX system file
separators with Windows file separators (/) to run these examples.

java -cp [jt-dir/1ib/] javatest.jar com.sun.javatest.EditLinks -e
/work/ /java/jck-dev/scratch/12Jun00/jck-lab3/ -o testl2_dir.wd
myworkdir.wd

Chapter 10 Changing Configuration Values With Text Editors 79

80 Command-Line Interface User's Guide ¢ November 2011

11

Glossary

.jtb Files
.jte Files
.jti Files
.jtp Files

.jtr File
. jtx Files

.k£1 Files

Audit

B

Batch Mode

See command file.

See environment files.

See configuration file.

See parameter files.

See test result files.
See exclude list.

See Known Failures List File.

The JT harness includes an audit tool that you can use to analyze the test
results in a work directory. The audit tool verifies that all tests in a test suite
ran correctly and identifies any audit categories of a test run that had errors.

You can use the GUI or the command-line interface to audit a test run.

You can use either the -batch mode option or the current -run command to
run tests from the command line or as part of a build process. Unless you are
running tests from the command line and are using the GUI to monitor the test
run, the -batch mode option is no longer required.

Chapter 11 Glossary 81

82

Class

Command File

Configuration

The prototype for an object in an object-oriented language. A class might also
be considered a set of objects that share a common structure and behavior. The
structure of a class is determined by the class variables that represent the state
of an object of that class and the behavior is given by a set of methods
associated with the class.

You can place routinely used configuration settings in a command file and
include it in a command line. The command file is an ASCII file containing a
lengthy series of commands and their arguments used in the command-line
interface to modify specific configuration values before running tests.

You can use command files to configure and run tests, write test reports, and
audit test results either from the command line or as a part of a product build
process. Using a command file allows you to repeatedly use a configuration
without retyping the commands each time a test run is performed.

It is recommended that a descriptive name and the extension . jtb are used to
help identify the function of each command file.

Information about the computing environment required to execute a test suite.

In the GUI, you can use the Configuration Editor to collect or modify
configuration information or to load an existing configuration. See
Configuration Editor. The Configuration Editor collects the following two
types of data in a configuration file:

m Test environment

Standard Values

In the command-line interface, you can perform the following tasks:

m Use the EA1tJTI utility to modify configuration information (see EditJTI).

m Set specific configuration values in the command line when starting the harness.

Configuration File

Contains all of the information collected by the configuration editor about the
test platform.

The harness derives the configuration values required to execute the test suite
from environment entries in a configuration file (.jt1i).

Use the Configuration Editor or Edit]TI to change configuration values in a
.jti file.

You can also set specific values in the command line.

Command-Line Interface User's Guide ¢ November 2011

Configuration Value

Current
Configuration

D

E

EditJ TI

Environment

Environment Entry

Environment Files

A value specified by the user for the purpose of configuring a test run.

Configuration values are derived from environment entries in a
configuration file (. jti) and used by test suite specific plugin code to execute
and run tests.

Use the Configuration Editor or EditJTI to change the configuration values
in the . jti file. You can also set specific configuration values in the command
line.

For legacy test suites the configuration value is read from an environment file
(.jte). Current test suites do not use or support the environment file.

The configuration containing the test environment and standard values
currently loaded in the test manager or specified in the command line for use
in running tests and displaying test status.

The JT harness provides an Edit]JTI utility that you can use from the command
line to edit the values entered in a configuration file without opening the
JavaTest Harness GUI The EditJTT utility is the batch command equivalent of
the JavaTest Harness Configuration Editor.

See Test Environment.

A name-value pair derived from a configuration file and used by test suite
specific plugin code to execute and run tests. These name-value pairs provide
information (configuration values) about how to run tests of a test suite on a
particular platform.

For legacy test suites, the name-value pairs are read from an environment file
(.jte) and derived from the configuration file (.jti). Current test suites do
not use or support the environment file.

Contain one or more test environments used by legacy test suites. Environment
files are identified by the . jte extension in the file name. Current test suites
do not use or support the environment file.

Chapter 11 Glossary 83

84

Error

Exclude List

Fail

Filtered Out

Filters

The test is not filtered out and the JT harness could not execute it. There are no
test results for tests having errors. Errors usually occur because the test
environment is not properly configured.

In the GUI, the JT harness displays error icons for tests with errors and for
folders containing any tests with errors. Folders marked with error icons can
also contain tests and folders that are Failed, Not Run, Passed, and Filtered
out.

Exclude list files (*. j tx), supply a list of invalid tests to be filtered out of a test
run by the test harness. The exclude list provides a level playing field for all
implementors by ensuring that when a test is determined to be invalid, then no
implementation is required to pass it. Exclude lists are maintained by the
technology specification Maintenance Lead and are made available to all
technology licensees.

In the GUI, use the configuration editor to add or remove exclude lists from a
test run. In the command line, you can specify an exclude list in the command.

To view the contents of an exclude list, choose Configure -> Show Exclude List
from the Test Manager menu bar. Exclude lists can only be edited or modified
by the test suite Maintenance Lead.

Test results determined by the JT harness that do not meet passing criteria.

In the GUI, the JT harness displays Failed icons for tests that the test suite has
determined have failing results and for folders containing any tests with fail
results. Folders marked with Failed icons can also contain tests and folders that
are Not Run, Passed, and Filtered out.

Folders and their tests that are excluded from the test run by one or more test
run filters.

In the GUI, Filtered Out folders and tests are identified in the test tree by grey
E:folder and Dtest icons.

A facility in the JT harness that accepts or rejects tests based on a set of criteria.
There are two types of filters in the JT harness, view filters and run filters. View
filters are set in the Test Manager to display the results for specific folders and
tests and to create test reports. Run filters are set in the Configuration Editor
or are specified as commands in the command-line to specify which tests are
run.

Command-Line Interface User's Guide ¢ November 2011

G

H

HTTP Server

I

Interview File

JTI

K

Keywords

Known Failures List
Files

Software included in the JT harness that services HTTP requests used to
monitor a test run from a remote work station.

See configuration file.

Standard file extension for a configuration file. See configuration file.

Special values in a test description that describe how the test is executed.

Keywords are provided by the test suite for use in the Configuration Editor or
command line as a filter to exclude or include tests in a test run.

Known Failures List (KFL) files (*.kf1), list tests that are known to fail.

The purpose of this option is to enrich the reporting output so you can monitor
the status of certain tests across test runs. If a KFL is specified, the HTML
report includes a Known Failure Analysis section. This section provides
hypertext links to the tests listed in the KFL. Also, if bug IDs are specified in
the KFL the IDs are hypertext linked to a bug tracking system (specified as a
URL in File > Preferences > Test Manager > Reporting).

One or more KFLs can be specified as a parameter in the configuration editor.
KFLs can also be specified from the command line.

Chapter 11 Glossary 85

86

N

@)

Observer

P

Parameter Files

Pass

Port Number

Prior Status

An optional class instantiated from the command line to observe a test run.
The class implements a specific observer interface.

Legacy files used to configure how the harness runs legacy test suites on your
system. Parameter files use the file name extension . jtp.

Although parameter files are deprecated, the harness provides support for
those test suites that use parameter files. Current test suites do not use or
support the parameter files.

Test results determined by the JT harness to meet passing criteria.

The JT harness displays Passed icons for tests that the test suite has determined
have passing results and for folders containing only tests with passing results.

A number assigned to the JT harness that is used to link specific incoming data
to an appropriate service.

A filter used to restrict the set of tests in a test run based on the last test result
information stored in the test result files (. jtr) in the work directory.

Use the configuration editor or command line to enable the Prior Status filter
for a test run.

Command-Line Interface User's Guide ¢ November 2011

Q

R

Report Directory

S

Standard Values

System Properties

T

Test Case

Test Description

The directory in which the harness writes test reports.

The location of the report directory is set in the GUI or from the command line
by the user when generating test reports.

The Quick Set mode of the Configuration Editor displays the standard values
of a configuration.

Contains environment variables from your system that are required to run the
tests of a test suite.

Because the harness cannot directly access environment variables, you must
use command-line options to copy them into the harness system properties.

A subsection inside of a test. The terminology for a “test case’ varies among test
harnesses, but in this harness, a test is a larger entity than the test case. A test
contains zero or more test cases; a test with no test cases is simply a basic test
entity in this harness. The "test’ is the primary entity rendered in the main tree
display, summaries, etc. "Test cases’ are currently only recognized in limited
areas of the harness.

Machine readable information that describes a test to the JT harness so that it
can correctly process and run the related test. The actual form and type of test
description depends on the attributes of the test suite. When using the JT
harness, the test description is a set of test-suite-specific name-values pairs.

Each test in a test suite has a corresponding test description that is typically
contained in an HTML file.

Chapter 11 Glossary 87

88

Test Environment

Test Manager

Test Result Files

Test Run Filters

A collection of configuration values derived from environment entries in the
configuration file that provide information used by test suite specific plugin
code about how to execute and run each test on a particular platform.

When a test in a legacy test suite is run, the harness gives the script a test
environment containing environment entries from configuration data collected
by the configuration editor. See configuration.

For legacy test suites, the environment entries were read from an environment
file. Use of environment files is deprecated, but the harness continues to
provide support for test suites that use environment files. See environment

file.

Current test suites do not use or support environment files.

The JT harness window used to configure, run, monitor, and manage tests from
its panels, menus, and controls.

The Test Manager window is divided into two panes. It displays the folders
and tests of a test suite in the tree pane on the left and provides information
about the selected test or folder in the information panes on the right.

A new Test Manager window is used for each test suite that is opened.

Contains all of the information gathered by the JT harness during a test run.

The test result files (. jtr) are stored in a cache in the work directory
associated with the test suite.

You can view the test result files in a web browser configured to use the JT
harness ResultBrowser servlet.

Include or exclude tests in a test run. Tests are included or excluded from test
runs by the following means:

m Exclude lists

m Keywords
m Prior status

Test Script

Test run filters are set using the Configuration Editor or the command-line
interface.

A script used by the JT harness, responsible for running the tests and returning
the status (pass, fail, error) to the harness. The test script must interpret the test
description information returned to it by the test finder. The test script is a
plug-in provided by the test suite. In the GUI, the Test Manager Properties
dialog box lists the plug-ins that are provided by the test suite.

Command-Line Interface User's Guide ¢ November 2011

Test Suite A collection of tests, used in conjunction with the JT harness, to verify
compliance of the licensee’s implementation of the technology specifications.

A test suite must be associated with a work directory before the harness can
run its tests.

\Y%

W

Work Directory A directory associated with a specific test suite and used by the JT harness to
store files containing information about the test suite and its tests.

Until a test suite is associated with a work directory, the JT harness cannot run
tests.

Chapter 11 Glossary 89

90 Command-Line Interface User's Guide ¢ November 2011

Index

Symbols
jtp file, 57
jtx file, 58

Numerics
508, 50

A

ally, 50

accessibility, 50

agent, x

agent pool
setting port number, 38
setting timeout, 38
starting, 38

audit tests command, 47

B

batch command, 44

Cc

command
audit tests, 47
batch, 44
concurrency, 31
config, 22
excludeList, 31
keywords, 33
kfl, 34
laf, 50
observer, 45
open, 27

priorStatus, 34
runtests, 39
examples, 40
set, 28
examples, 30
status colors, 50
tests, 35
testSuite, 26
timeoutFactor, 36
writereport, 45
command file, 5,9
commands
EditLinks, 77
information, 51
initial set-up, 21
parameter, 57
setup, 20
task, 38
work directory, 23
workDir, 23
create, 24
overwrite, 25
workDirectory
create, 24
overwrite, 25
concurrency command, 31
config command, 22
configuration file
changing values in, 68
configuration values
setting, 28
create work directory, 24

91

E P

EditJTI command format, 68 parameter commands, 57
EditLinks command format, 77 parameter file, 57
environment variable prior test status, 34
setting, 38 priorStatus command, 34
example, runtests command, 40
examples R
creating a new work directory, 25 remote agent, x
replacing a work directory, 26 remotely monitor and control a test run, 63

set command, 30
Exclude List file, 58
exclude lists

replace existing work directory, 25
report type, 46

2 reports
specifying, 31 moving, 77
excludeList command, 31 writing, 45
E runtests command, 39
file S
Jtp, 552 section 508, 50
.c]:));man d 59 security note, ix
r set command, 28
H examples, 30
setting
HTTP Server, 63 agent pool port number, 38
I agent pool timeout, 38

environment variable, 38
system properties, 38
setting concurrency, 31
setting specific configuration values, 28

setup commands, 20

K additional, 37
keywords command, 33

increasing the timeout, 36
Information Commands, 51
initial set-up commands, 21

specify
KFL, 34 a work directory, 23
known failures list, 34 configuration file, 22
directories of tests, 35
L existing work directory, 23
look and feel command, 50 tests to run, 35
specifying exclude lists, 31
M starting agent pool, 38
monitor a test run, remote, 63 status colors command, 50
monitor test progress, 40 system properties
setting, 38
(0]
observer command, 45 T
open command, 27 Task Commands, 38

tests command, 35

92 JavaTest Harness Command-Line Interface User’s Guide ¢ November 2011

testSuite command, 26
timeoutFactor command, 36
troubleshooting, 58
exit codes, 59
reports
moving, 61
viewing, 61
writing, 61
running tests, 60
tests that fail, 60
tests with errors, 60
running the harness, 59

U
using keywords, 33
utilities

EditJTI, 68

\'}

verbose option, 40

w
web server, JT Harness, 63
work directory

create new, 24

replace existing, 25

specify, 23

specify existing, 23
writereport command, 45
writing reports, 45

Index 93

94 JavaTest Harness Command-Line Interface User’s Guide ¢ November 2011

	JavaTest™ Harness 4.4.1
	Contents
	Preface
	Security Note
	Optional Components
	Remote Agent Risks

	Before You Read This Book
	How This Book Is Organized
	Using System Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Documentation Online
	We Welcome Your Comments

	Command-Line Interface
	Features
	Configuration Information
	Legacy Environment Files and Parameter Files

	Online Documentation
	Before Starting the Harness
	Installation and Runtime Security Guidelines

	Command-Line Summary
	About the Command-Line Examples
	Formatting a Command
	Command Options Format
	Single String Arguments Format
	Command File Format

	Using Command Files
	Creating a Command File
	Examples of Using Command Files
	Example Command File Contents
	Command Line Using the Example Command File
	Changing Values After the Example Command File is Set

	Formatting Configuration Values for editJTI or -set
	Using Newlines Inside Strings

	Extended Command-Line Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	List of Available Commands

	Setup Commands
	Initial Setup Commands
	Specifying a Configuration File With config
	Detailed Example of config Command

	Specifying a Work Directory With workdir or workdirectory
	Use an Existing Work Directory
	Create a New Work Directory
	Replace an Existing Work Directory

	Specifying a Test Suite With testsuite
	Detailed Example of testsuite Command

	Specifying a Test Suite, Work Directory or Configuration (open)

	Setting Specific Values
	Setting Specific Configuration Values
	Override a Specific Value
	Import a Java Properties File
	Set the Value of a Properties Question
	Creating a Command String
	Detailed Example of Setting Test Suite Specific Values

	Setting Concurrency with concurrency
	Detailed Example of concurrency Command

	Specifying Exclude Lists With excludeList
	Detailed Example of excludeList Command

	Specifying Keywords With keywords
	Detailed Example of keywords Command

	Specifying Known Failures Lists With kfl
	Selecting Tests With priorStatus
	Detailed Example of priorStatus Command
	Specifying Tests or Directories With tests
	Example of tests Command

	Setting Timeout With timeoutFactor
	Detailed Example of timeFactor Command

	Additional Setup Commands

	Task Commands
	Running Tests With runtests
	Detailed Example of runtests Command

	Monitoring Test Progress With verbose
	Monitoring Options
	Detailed Examples of Monitoring Commands

	Using the batch Command
	Detailed Example of batch Command

	Using the observer Command
	Writing Reports With writeReport
	Using the -type Option
	Using the -filter Option
	Detailed Example of writeReport Command

	Auditing Tests With audit
	Detailed Example of audit Command

	Desktop Options and Preferences
	Startup Commands
	Restore Tools State
	Specifying Look and Feel
	Specifying Status Colors

	Information Commands
	Command-Line Help
	Displaying All Information
	Displaying Topic Information
	Display the List of Available Topics
	Searching for Words and Phrases

	Displaying Online Help
	Displaying Harness Version Information With version

	Legacy Commands
	Using Deprecated Parameter Commands

	Troubleshooting
	Exit Codes
	Harness Fails During Use
	Problems Running Tests
	Tests With Errors
	Tests That Fail

	Problems Viewing Reports
	Problems Writing Reports
	Problems Moving Reports

	Utilities
	Monitoring Results With HTTP Server
	HTML-Formatted Output
	accessing HTTP Server HTML-Formatted Output
	Displaying the HTTP Server Index Page
	Displaying HTTP Server Harness Page
	Displaying the HTTP Server Test Result Index Page
	Displaying the Harness Environment Page
	Displaying the Harness Interview Page
	Using HTTP Server to Stop a Test Run

	Plain Text Output
	accessing Version Information
	accessing Harness Information

	Changing Configuration Values With EditJTI
	EditJTI Command Format
	Changing Configuration Values
	Generating a Log of All Updates
	Previewing Without Change
	Echoing Results of Edits
	Showing Paths for Debugging
	Changing Test Suites or Creating a New Interview
	Changing the HTTP Port
	Doing Escapes in a UNIX System Shell

	Changing Configuration Values With Text Editors
	Moving Test Reports
	Format of the EditLinks Command
	Detailed Example of EditLinks Command

	Glossary
	Index

