
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A. 1-650-960-1300

JavaTestTM Agent User’s Guide

JavaTest Harness, 4.2

March 10, 2009

Please
Recycle

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

Use is subject to license terms.

Sun, Sun Microsystems, the Sun logo, Java, Jini, JavaTest, JAR, JDK, Javadoc, Java ME, Java SE and Java Compatibility Test Tools are
trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries, in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit
dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des
brevets américains listés à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les
applications de brevet en attente aux États - Unis et dans les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’
AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC.

Droits du gouvernement des États-Unis - Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont
soumis aux termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

L’utilisation est soumise aux termes de licence.

Sun, Sun Microsystems, le logo Sun, Java, Jini, JavaTest, JAR, JDK, Javadoc, Java ME, Java SE et Java Compatibility Test Tools sont des
marques de fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales, aux États-Unis et dans d’autres
pays.

UNIX est une marque déposée aux États-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en
vigueur dans d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires,des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les
listes d’exclusion d’exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un
ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations de des produits ou des services qui sont régis par la
législation américaine sur le contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement
interdites.

http://www.sun.com/patents

Contents

Preface 3

1. What is the JavaTest Harness Agent? 1

JavaTest Harness Agent Features 1

2. Installing Agent Classes on a Test System 2

Classes Required to Use the GUI 3

Classes Required to Use the Command Line 4

Classes Required to Use Applets 5

Choosing the Type of Agent 6

Creating a Map File 8

Starting a JavaTest Harness Agent 9

Agent Application 10

Agent Applet 10

Using the GUI 10

Starting an Agent Application 11

Classpaths 13

Application Classes 13

Agent Options 14

Starting an Agent Applet 14

Agent Applet Tag 15

Setting Parameters in the Applet Tag 16

Specifying Active Agent Options 17

Mode 17
Contents 1

Host 18

Port 18

Specifying Passive Agent Options 19

Mode 19

Port 19

Specifying Serial Agent Options 20

Mode 20

Port 21

Specifying Additional Agent Options 21

Options Used to Display Help 22

Options Used to Run and Monitor the Agent 22

3. Monitoring JavaTest Harness Agents 26

Agent Monitor Window 26

Agent Pool 27

Agents Currently In Use 28

Statistics Pane 29

History Pane 29

Selected Task Pane 31

4. Troubleshooting JavaTest Harness Agents 33

Troubleshooting Active Agents 33

Troubleshooting Passive Agents 34
2 JavaTest Agent User’s Guide • March 10, 2009

Preface

This manual describes how to use the JavaTest™ agent (the agent) in conjunction
with the JavaTest™ harness (the harness) to run tests of the test suite, write reports,
and audit test results. This User’s Guide is a PDF version of the agent online help.
It is provided in PDF format so that users can conveniently view and print the
contents of the online help without starting the harness.

There are minor differences between the online help and the PDF document
although the basic contents are the same. The following changes have been made in
the PDF document:

■ The contents are resequenced.

■ Additional contents are included.

■ Hypertext links from the online help are converted to page references embedded
in text.

■ Navigation links from the online help are removed.

The harness includes the following User’s Guides:

■ Graphical User Interface Users’ Guide
■ Command-Line Interface Users’ Guide
■ JavaTest Agent Users’ Guide

Before You Read This Book
To fully use the information in this document, you must have a thorough
knowledge of the topics discussed in the documentation delivered with your test
suite.
3

How This Book Is Organized
Chapter 1 describes the requirements for installing the agent on a test system.

Chapter 2 describes how the agent is used to run tests on a test system.

Chapter 3 describes how the agent is monitored during a test run.

Chapter 4 describes basic troubleshooting for problems in using the agent.

Using System Commands
This document does not contain information on basic system commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook2™ software online documentation for the Solaris™ operating
environment

■ Other software documentation that you received with your system
4 JavaTest Agent User’s Guide • March 10, 2009

Typographic Conventions
This User’s Guide uses the following typographic conventions:

Shell Prompts
Examples in this User’s Guide contain the following shell prompts:

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface 5

Related Documentation
The following documentation provides additional detailed information about the
JavaTest harness:

Accessing Sun Documentation Online
The Java Developer Connection™ program web site enables you to access Java™
platform technical documentation at http://java.sun.com/.

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. Provide feedback to Sun at
http://java.sun.com/docs/forms/sendusmail.html.

Application Title

JavaTest harness GUI Graphical User Interface User’s Guide

JavaTest harness
command-line interface

Command-Line Interface User’s Guide
6 JavaTest Agent User’s Guide • March 10, 2009

1

What is the JavaTest Harness
Agent?

An agent is a separate program that works in conjunction with the JavaTest harness
to run tests on a system other than the one that is running the JavaTest harness.

You can use custom agents or the JavaTest harness agent to run tests. The topics in
this guide describe how to configure and run the agent provided with the JavaTest
harness. If you are using a custom agent, refer to your test suite documentation for
a description of how to configure and run it.

JavaTest Harness Agent Features
Depending on your test suite, agents are typically used to run tests on small
devices that do not support online help.

The following table describes the features of the JavaTest harness agent.

TABLE 1 JavaTest Harness Agent Features

Feature Description

Multiple User
Interfaces

The JavaTest harness agent can be run from any one of the
following supported user interfaces:

• Agent GUI
• Command-Line Interface
• Applets

Configurable Modes The JavaTest harness agent can be run in active, passive, or serial
modes.

Monitoring The JavaTest harness agent and the tests that it is running can be
monitored in the Agent GUI.
Chapter 1 What is the JavaTest Harness Agent? 1

2

Installing Agent Classes on a Test
System

Before you can use the JavaTest Harness harness agent to run tests, you must load
the agent classes on your test system. You can load the agent classes by doing one
of the following:

■ Copy the javatest.jar file directly to the test system if adequate space is
available (approximately 5.7megs). The javatest.jar file contains all of the
required JavaTest Harness harness agent classes.

■ Extract the minimum set of classes from the javatest.jar file for the type of
agent user interface and copy them to the test system.

The following table provides links to the required classes for each type of agent
user interface.

TABLE 2 Agent User Interface Required Classes

Agent User
Interface Required Classes

Agent GUI See Classes Required to Use the GUI for a list of the minimum set of
classes required for using the GUI to run agents.

Command
Line

See Classes Required to Use the Command Line for a list of the
minimum set of classes required for using the command line to run agents.

Applets See Classes Required to Use Applets for a list of the minimum set of
classes required for using applets to run agents.
2 JavaTest Agent User’s Guide • March 10, 2009

Classes Required to Use the GUI
The following list contains the minimum set of classes required to run an agent by
using a GUI on your test system. You might require additional classes for some
tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.ProductInfo
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentFrame
com.sun.javatest.agent.AgentFrame$1
com.sun.javatest.agent.AgentFrame$2
com.sun.javatest.agent.AgentFrame$3
com.sun.javatest.agent.AgentFrame$Listener
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.InterruptableSocketConnection
com.sun.javatest.agent.InterruptableSocketConnection$1
com.sun.javatest.agent.InterruptableSocketConnection$Interrupta
Chapter 2 Installing Agent Classes on a Test System 3

bleInputStream
com.sun.javatest.agent.InterruptableSocketConnection$Interrupta
bleInputStream$InterruptableReader
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.ExitCount
com.sun.javatest.util.I18NResourceBundle
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

Classes Required to Use the Command Line
The following list contains the minimum set of classes required to run an agent
from a command line on your test system. You might require additional classes for
some tests run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentMain
com.sun.javatest.agent.AgentMain$BadArgs
com.sun.javatest.agent.AgentMain$ErrorObserver
com.sun.javatest.agent.AgentMain$Fault
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
com.sun.javatest.agent.Deprecated
4 JavaTest Agent User’s Guide • March 10, 2009

com.sun.javatest.agent.Map
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

Classes Required to Use Applets
The following list contains the minimum set of classes required to run an agent as
an applet on your test system. You might require additional classes for some tests
run in the same VM as the agent.

com.sun.javatest.Command
com.sun.javatest.JavaTestSecurityManager
com.sun.javatest.NewJavaTestSecurityManager
com.sun.javatest.ProductInfo
com.sun.javatest.Status
com.sun.javatest.Test
com.sun.javatest.agent.ActiveConnectionFactory
com.sun.javatest.agent.ActiveModeOptions
com.sun.javatest.agent.Agent
com.sun.javatest.agent.Agent$1
com.sun.javatest.agent.Agent$Notifier
com.sun.javatest.agent.Agent$Observer
com.sun.javatest.agent.Agent$Task
com.sun.javatest.agent.AgentApplet
com.sun.javatest.agent.AgentApplet$1
com.sun.javatest.agent.AgentPanel
com.sun.javatest.agent.AgentPanel$1
com.sun.javatest.agent.AgentPanel$AgentObserver
com.sun.javatest.agent.AgentPanel$ButtonPanel
com.sun.javatest.agent.AgentPanel$ErrorPanel
com.sun.javatest.agent.AgentPanel$HelpPanel
com.sun.javatest.agent.AgentPanel$HistoryList
com.sun.javatest.agent.AgentPanel$MapReader
com.sun.javatest.agent.AgentPanel$ParamPanel
com.sun.javatest.agent.AgentPanel$StatsPanel
com.sun.javatest.agent.AgentPanel$TaskPanel
com.sun.javatest.agent.AgentPanel$TaskState
com.sun.javatest.agent.AgentWriter
com.sun.javatest.agent.BadValue
com.sun.javatest.agent.Connection
com.sun.javatest.agent.ConnectionFactory
com.sun.javatest.agent.ConnectionFactory$Fault
Chapter 2 Installing Agent Classes on a Test System 5

com.sun.javatest.agent.Deck
com.sun.javatest.agent.Deprecated
com.sun.javatest.agent.Folder
com.sun.javatest.agent.Folder$1
com.sun.javatest.agent.Folder$Entry
com.sun.javatest.agent.Folder$Layout
com.sun.javatest.agent.Icon
com.sun.javatest.agent.InterruptableSocketConnection
com.sun.javatest.agent.InterruptableSocketConnection$1
com.sun.javatest.agent.InterruptableSocketConnection$Interrupta
bleInputStream
com.sun.javatest.agent.InterruptableSocketConnection$Interrupta
bleInputStream$InterruptableReader
com.sun.javatest.agent.Map
com.sun.javatest.agent.ModeOptions
com.sun.javatest.agent.PassiveConnectionFactory
com.sun.javatest.agent.PassiveModeOptions
com.sun.javatest.agent.Proxy
com.sun.javatest.agent.SerialPortModeOptions
com.sun.javatest.agent.SocketConnection
com.sun.javatest.agent.SocketConnection$1
com.sun.javatest.util.DynamicArray
com.sun.javatest.util.I18NResourceBundle
com.sun.javatest.util.MainAppletContext
com.sun.javatest.util.MainFrame
com.sun.javatest.util.StringArray
com.sun.javatest.util.Timer
com.sun.javatest.util.Timer$1
com.sun.javatest.util.Timer$Entry
com.sun.javatest.util.Timer$Timeable
com.sun.javatest.util.WriterStream

Choosing the Type of Agent
The JavaTest Harness harness agent is a lightweight program compatible with Java
Development Kit, version 1.1, that uses a bi-directional serial connection
supporting both TCP/IP and RS-232 protocols to communicate between the test
system and the JavaTest Harness harness.

You can use the agent provided by the JavaTest Harness harness if your test system
meets the following minimum requirements:

■ The device supports a communication layer that can last the duration of a test
(several minutes).

■ The device must be able to have the agent classes loaded on it.
6 JavaTest Agent User’s Guide • March 10, 2009

The type of agent that you use depends on the communication protocol used
between your test system and the JavaTest Harness harness and on the type of
initial connection made between the agent and the JavaTest Harness harness. The
following table describes the types of agent and the communication protocol.

TABLE 3 Types of Agent Modes

Mode Description

Active Use active mode (active agent) when you want the agent to initiate the
connection to the JavaTest Harness harness via TCP/IP.
Agents using active communication allow you perform the following
actions:
• Run tests in parallel using many agents at once
• Specify the test machines at the time you run the tests
Active agents are used for network connections and are recommended.
If the security restrictions of your test system prevent incoming
connections then you must use an active agent.
The JavaTest Harness harness must be running and agent pool listening
must be enabled before starting an active agent. Use Agent Monitor
window in the JavaTest Harness harness GUI to enable listening.
If listening is not enabled when the agent starts, it returns an error
message and waits until its timeout period ends before re-contacting
the JavaTest Harness harness.
Chapter 2 Installing Agent Classes on a Test System 7

Creating a Map File
Some tests require contextual information, such as the host name on which they are
executed, before they can run. Because network file systems might be mounted
differently on different systems, the path names used by the JavaTest Harness
harness might not be the same for the agent. The agent uses a map file to translate
these strings into values it can use to run tests.

1. Use a text editor to open a simple ASCII file and enter the following types of
lines:

■ Comment line Begins with the # symbol and provides information that is
not processed by the agent. Comment lines are optional.

Passive Use passive mode (passive agent) when you want the agent to wait for
the JavaTest Harness harness to initiate the connection via TCP/IP.
Because the JavaTest Harness harness only initiates a connection to a
passive agent when it runs tests, passive communication has the
following characteristics:
• Requires that you specify the test machine as part of the test
configuration, not at the time you run the tests
• Does not allow you to run tests in parallel
Passive agents are used for network connections and must be started
before the harness attempts to run tests. If the JavaTest Harness harness
issues a request before the passive agent is started, the harness waits for
an available agent until its timeout period ends. If the timeout period
ends before an agent is available, the JavaTest Harness harness reports
an error for the test.

Serial Use serial mode (serial agent) when you want the agent to use an RS-
232 serial connection. Serial agents wait for the JavaTest Harness
harness to initiate the connection. Infrared, parallel, USB, and firewire
connections can also be added through the JavaTest Harness harness
API by modeling the existing serial system.
Because the JavaTest Harness harness only initiates a connection to
serial agent when it runs tests, serial communication has the following
characteristics:
• Requires that you specify the test machine as part of the test
configuration, not at the time you run the tests
• Does not allow you to run tests in parallel

Other If your system does not meet the minimum requirements or if you have
unique performance requirements, you can use the JavaTest Harness
harness API to create a custom agent. Refer to your test suite
documentation for a description of how to configure and run it.

TABLE 3 Types of Agent Modes
8 JavaTest Agent User’s Guide • March 10, 2009

Example:
#Replace all /home/user1 with /user1

■ Translation line Contains the target and substitution strings. Enter the
string that is to be replaced followed by one or more spaces and the
replacement string. The agent replaces all occurrences of the first string with
the second.

Example:
/home/user1 /user1

Because the agent uses the map file to perform global string substitution on
all matching values received from the JavaTest Harness harness, you must be
as specific as possible when specifying strings in a translation line.

Refer to Troubleshooting JavaTest Harness harness agents for additional
information about determining the substitution strings required in a map file.

2. Save the map file in the test suite root directory.

You can use any name and extension. If you are unable to use the root directory,
you can use any writable directory on the test system. When starting an agent you
must specify which map file, if any, to use.

Example of a map file:

#This is a sample map file
#Replace all /home/user1 with /user1

/home/user1 /user1

#Replace all /home/user2/JavaTest Harness with /myhome/
JavaTest Harness
/home/user2/JavaTest Harness /myhome/JavaTest Harness

Starting a JavaTest Harness Agent
You can start an agent either as an application or as an applet. While the
application provides you with the option of using either a GUI or a command line
to configure and run the agent, the applet requires that you use a GUI. The
following table describes the agent interface support for application and applets.

TABLE 4 Supported Agent Interfaces

Interface Application Applet

GUI Supported Supported

Command Line Supported Not Supported
Chapter 2 Installing Agent Classes on a Test System 9

Agent Application
You can either use the application GUI or command line to configure and start an
agent if the test system provides AWT support.

If a test platform is unable to or does not provide AWT support, you must use the
command line to configure and start the agent. When using the command line to
directly configure and run an agent, the following conditions apply:

■ All agent options must be specified in the command line.
■ Agent performance cannot be monitored during a test run.
■ Agent properties cannot be modified without killing the agent and starting a

new agent from the command line.

If you use the GUI to run the agent, the following conditions apply:

■ Agent options can be included in the command line or the GUI can be started
without specifying agent options.

■ Agent performance is monitored during a test run.
■ Agent can be configured or reconfigured after the GUI starts.

The GUI used by the application is the same as that used by the applet. Refer to
Using the GUI for a description of the tabbed panes.

Agent Applet
You can use either an applet or an application to run the agent on any test system
that supports a web browser. However, you must use the applet when testing Java
virtual machines that run in web browsers.

The GUI used by the applet is the same as that used by the application. Refer to
Using the GUI for a description of the tabbed panes.

When using the applet, you can perform the following actions:

■ Include parameters in the applet tag or start the GUI without specifying any
parameters

■ Configure or reconfigure the agent after the GUI starts
■ Monitor agent performance during a test run.

Using the GUI
The GUI contains four tabbed panes and three buttons used to configure, control,
and monitor the agent.
10 JavaTest Agent User’s Guide • March 10, 2009

The parameters tabbed pane allows you to configure, start, and stop the agent.

The statistics tabbed pane displays detailed information about the tests that the
agent is running.

The history and selected task tabbed panes allow you to monitor tasks performed
by the agent.

The Start and Stop buttons control the agent.

The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java"
platform.

Starting an Agent Application
Before you can start an agent application, the required classes must be installed on
your test system. Refer to Installing Agent Classes on Test Systems for the location
and list of classes required to start the agent directly from the command line or
using the application GUI. Complete the following actions to start an agent
application:

1. Start the JavaTest Harness harness GUI.

2. Open the Configuration Editor window and configure the JavaTest Harness
harness to use an agent. In most cases, the window displays detailed
instructions about configuring the JavaTest Harness harness to run tests using
an agent.

3. If you are starting an active agent, open the Agent Monitor window and enable
agent pool listening. Refer to Agent Monitor Window.
Chapter 2 Installing Agent Classes on a Test System 11

Note – If the agent pool is not listening when an active agent starts, the agent
cannot contact the harness. The agent returns an error message and then waits until
its timeout period ends before recontacting the JavaTest Harness harness.

4. Use the following example to enter the appropriate agent command at the
command prompt:

java -cp classpath [application class] [options]

■ The -cp option sets the classpath required to run the agent. Use the ; or :
separator appropriate for your test system when more than one class path is
included in the command string. Refer to Class Paths for detailed
descriptions of the classes that your agent requires.

■ [application class] sets the class used to run the agent application. Refer to
Application Classes for a list and description of the classes used to start an
agent application.

■ [options] can be included in the command line to specify the agent
parameters. Refer to Agent Options for a list and description of the
parameters that you can use to configure and start an agent.

Example:
java -cp /lib/javatest.jar
com.sun.javatest.agent.AgentFrame

Note – You must include the path of the javatest.jar file (represented as /
lib/javatest.jar in the example). The javatest.jar file is usually installed
in the test suite lib directory when the JavaTest Harness harness is bundled with
a test suite.

5. If you are using the application GUI to run the agent, use the Parameters tabbed
pane to verify the agent settings and start the agent.

The following topics provide detailed information about agent parameter settings:

■ Specifying Active Agent Options Parameter settings required to run an active
agent.

■ Specifying Passive Agent Options P arameter settings required to run a
passive agent.

■ Specifying Serial Agent Options Parameter settings required to run a serial
agent.

■

12 JavaTest Agent User’s Guide • March 10, 2009

Classpaths

The following table describes the classpaths that are required in the command line.

The most common error made when setting up a test platform to use an agent is
entering the wrong classpaths in the command string. Configuring your test
platform to use the simplest classpaths increases the reliability of the test run.

Application Classes

An application class is required in the command line to run the agent. The
following table describes the two application classes.

TABLE 5 Required Class Paths

Classes Description

Agent The location of the agent classes installed on your test system.
The agent classes are either located in the javatest.jar file
or in the directory containing the minimum set of classes
required to run the agent from the GUI.
Some test suites include additional .jar files containing classes
needed for an agent to run tests. These .jar files must also be
included in the command string. Refer to Installing Agent
Classes on a Test System for a description of how agent
classes can be installed.

Test Test classes are located in the classes directory of the test suite.

TABLE 6 Required Application Class

Mode Application Class

No GUI com.sun.javatest.agent.AgentMain options
Used when the agent GUI is not wanted or not available. In this mode,
all options must be fully specified on the command line. The agent
automatically starts when the Return key is pressed. Refer to Agent
Options for the options that are included on the command line.

With GUI com.sun.javatest.agent.AgentFrame options
Used to start the agent GUI. In this mode, options might either be given
on the command line or in the agent GUI. The agent GUI is used to start
and stop the agent. Refer to Agent Options for the options that are
included on the command line.
Chapter 2 Installing Agent Classes on a Test System 13

Agent Options

The following table describes the two types of options used in the command line.

Starting an Agent Applet
Before you can start an agent applet, the required classes must be installed on your
test system. Refer to Installing Agent Classes on Test Systems for the location and
list of classes required to start the agent applet.

1. If an HTML page containing the required applet is not available, create it in
your test suite root directory.

Refer to Agent Applet Tag for a detailed description of an applet tag.

2. Use a web browser to open an HTML page containing the agent applet tag.

The applet tag must be compatible with your browser’s VM.

3. Use the Parameters tabbed pane to configure and run the agent.

See the following topics for additional information:
■ Specifying Active Agent Options Parameter settings required to run an active

agent.

TABLE 7 Type of Agent Options

Type of Option Description

Agent parameters Set the parameters for the type of agent that you are using. See the
following topics for additional information:
• Specifying Active Agent Options The parameter settings
required to run an active agent.
• Specifying Passive Agent Options The parameter settings
required to run a passive agent.
• Specifying Serial Agent Options The parameter settings
required to run a serial agent.
If you are using the command-line application class
(com.sun.javatest.agent.AgentMain) to directly configure
and run the agent, you must include all options in the command
line that are used to run the agent.
If you are using the GUI application class
(com.sun.javatest.agent.AgentFrame) you can either set
the agent options in the command line or in the GUI before
running the agent.

Additional
parameters

Display help, run the agent, or configure other agent properties.
Refer to Specifying Additional Agent Options for a description
of the additional parameters that can be set.
14 JavaTest Agent User’s Guide • March 10, 2009

4. Specifying Passive Agent Options Parameter settings required to run a
passive agent.

5. Specifying Serial Agent Options Parameter settings required to run a serial
agent.

Agent Applet Tag

Because some browsers use built-in VMs to run applets, you must use a compatible
applet or object tag. Refer to your VM documentation for a description of the tags
required to run applets on your browser. The following example calls the agent
applet and sets the parameters of the applet GUI. It might not be compatible with
your browser VM.

Agent parameters and run options can also be set in the applet tag. Refer to Setting
Parameters in the Applet Tag.

Example agent applet tag:

<APPLET/
code=applet-class-path/
archive=JavaTest Harness harness-classes/
width=display-width/
height=display-height/
>
Applets have not been enabled
on your browser. You must enable
applets on your browser to display
the applet GUI used to run the agent.
</APPLET>

The following table describes the tags used in the applet.

TABLE 8 Applet Tags and Descriptions

Tag Description

code The agent applet class installed on your test system.
Example:
code=com.sun.javatest.agent.AgentApplet
Chapter 2 Installing Agent Classes on a Test System 15

Setting Parameters in the Applet Tag

Parameters can also be set in the applet tag. Parameters in the applet tag are
included as <param name/value> pair tags.

Example agent applet tag:

<APPLET
code=applet-class-path
archive=JavaTest Harness harness-classes
width=display-width
height=display-height
>

...
<param name=parameter-name value=parameter-value>
Applets have not been enabled on your browser.
You must enable applets on your browser to display
the applet GUI used to run the agent.
</APPLET>

The following two types of parameters can be included in the applet tag:

■ Agent Parameters Specifies the agent type. Can be set either in the applet tag
or in the GUI. Anytime the agent is not running, you can also use the
Parameters tabbed pane to change the agent parameters. See the following
topics for additional information:

■ Specifying Active Agent Options Parameter settings required to run an active
agent.

archive The URL of the classes required to run the agent applet on your test system.
The classes are either located in the javatest.jar file or in a directory
containing the minimum set of classes required to run the agent applet.
In the following example, the classes are contained in the javatest.jar
file located in the same directory as the HTML page. Refer to Installing
Agent Classes on a Test System for a description of how the agent applet
classes can be installed.
Example:
archive=javatest.jar

width Sets the width of the GUI. An initial value of 600 is suggested. However, you
might need to adjust the value based on your screen size and resolution.
Example:
width=600

height Sets the height of the applet. An initial value of 600 is suggested. However,
you might need to adjust the value based on your screen size and resolution.
Example:
height=600

TABLE 8 Applet Tags and Descriptions
16 JavaTest Agent User’s Guide • March 10, 2009

■ Specifying Passive Agent Options Parameter settings required to run a
passive agent.

■ Specifying Serial Agent Options Parameter settings required to run a serial
agent.

■ Additional Parameters Specifies how an agent is run.

See Specifying Additional Agent Options for additional information.

Specifying Active Agent Options
Active agents can be configured and run from the application command-line, the
application or applet GUI, or the applet tag. Refer to Starting a JavaTest Harness
harness agent for a description of the different features and functions that each
provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters either in the command line, the GUI Parameter pane,
or the applet tag:

■ Mode
■ Host
■ Port

Mode

The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. An active agent initiates
the connection to the JavaTest Harness harness using TCP/IP communications
protocol.

To specify an active agent mode, use the appropriate setting or option from the
following table.

TABLE 9 Specify Agent Mode Options and Settings

Interface Option or Setting

Default Active

Command
line

-active

Applet tag <param name=mode value=active>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 17

Host

The host option identifies the system running the JavaTest Harness harness.
Because an active agent initiates the connection to the JavaTest Harness harness,
the location of the system running the JavaTest Harness harness must be set before
it can run.

To specify the system running the JavaTest Harness harness, use the appropriate
setting or option from the following table.

Port

The port option specifies the port used by the active agent to communicate with the
JavaTest Harness harness. The agent and JavaTest Harness harness must use the
same port. If the ports are not the same, the agent cannot communicate with the
JavaTest Harness harness. The default value for active agents is 1907.

To specify a port other than 1907, use the appropriate setting or option from the
following table.

TABLE 10 Active Agent Host Option or Setting

Interface Option or Setting

Default None

Command
line

-activeHost host-name

Applet tag <param name=activeHost value=host-name>

GUI
Parameter
pane

TABLE 11 Active Agent Port Option or Setting

Interface Option or Setting

Default 1907

Command
line

-activePort port-number

Applet tag <param name=activePort value=port-number>

GUI
Parameter
pane
18 JavaTest Agent User’s Guide • March 10, 2009

Specifying Passive Agent Options
Passive agents can be configured and run from the application command line, the
application or applet GUI, or the applet tag. Refer to Starting a JavaTest Harness
harness agent for a description of the different features and functions that each
provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters either in the command line, the GUI Parameter pane,
or the applet tag:

■ Mode
■ Port

Mode

The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. A passive agent waits
for the JavaTest Harness harness to initiate the connection using TCP/IP
communications protocol.

To specify a passive agent, use the appropriate setting or option from the following
table.

Port

The port option specifies the port that the passive agent uses to listen for the
JavaTest Harness harness. The JavaTest Harness harness and agent must use the
same port. If the ports are not the same, the JavaTest Harness harness cannot
communicate with the agent. The default value for passive agents is 1908.

TABLE 12 Passive Agent Mode Option or Setting

Interface Option or Setting

Default Active

Command
line

-passive

Applet tag <param name=mode value=passive>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 19

To specify a port other than 1908, use the appropriate setting or option from the
following table.

Specifying Serial Agent Options
Serial agents can be configured and run from a command-line, GUI, or applet tag.
Refer to Starting a JavaTest Harness harness agent for a description of the different
features and functions that each provides.

Depending on how you choose to start the agent, you must set the following
minimum set of parameters from the command line, GUI Parameter pane, or
applet tag:

■ Mode
■ Port

Mode

The type of agent mode that you use determines how the agent communicates with
the JavaTest Harness harness and the protocol that is used. A serial agent waits for
the JavaTest Harness harness to initiate the connection via an RS-232 serial
connection or a connection added through the JavaTest Harness harness API that
models the serial system.

TABLE 13 Passive Agent Port Option or Setting

Interface Option or Setting

Default 1908

Command
line

-passivePort port-number

Applet tag <param name=activePort value=port-number>

GUI
Parameter
Pane
20 JavaTest Agent User’s Guide • March 10, 2009

To specify a serial agent, use the appropriate setting or option from the following
table.

Port

Specifies the com port that the serial agent uses to listen for the JavaTest Harness
harness. The JavaTest Harness harness and agent must use the same port. If the
ports are not the same, the JavaTest Harness harness cannot communicate with the
agent.

To specify a port, use the appropriate setting or option from the following table.

Specifying Additional Agent Options
The following topics describe the additional options for using an agent:

■ Options Used to Display Help
■ Options Used to Run and Monitor the Agent

TABLE 14 Serial Agent Mode Option or Setting

Interface Option or Setting

Default Active

Command
line

-serial

Applet tag <param name=mode value=serial>

GUI
Parameter
pane

TABLE 15 Serial Agent com Port Option or Setting

Interface Option or Setting

Command
line

-serialPort port-number

Applet tag <param name=serialPort value=port-number>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 21

Options Used to Display Help

The help option only displays command-line help for the agent regardless of the
application class used in the command line. To start an agent application or applet
after displaying command-line help, perform the steps in Starting a JavaTest
Harness Agent.

The following table contains options that are only used on the command line to
display help.

You must include the path of the javatest.jar file (represented as /lib/
javatest.jar in the example). The javatest.jar file is usually installed in the
test suite lib directory when the JavaTest Harness harness is bundled with a test
suite.

Options Used to Run and Monitor the Agent

The following options can be set in the application command line, the application
or applet GUI, or the applet tag:

■ Specify a Map File
■ Set Concurrency
■ Set Number of Tasks in the History Tabbed Pane
■ AutoStart the Agent
■ Set Tracing

Specify a Map File

The map option specifies that the agent use a map file to translate host specific
values. Refer to Create a Map File for additional information about map files.

TABLE 16 Command-Line Options to Display Help

Option Function

-help or -usage Displays command-line help.
Example:
java -cp /lib/javatest.jar
com.sun.javatest.agent.AgentMain -help
22 JavaTest Agent User’s Guide • March 10, 2009

To specify a map file, use the appropriate setting or option from the following
table.

Set Concurrency

To run tests concurrently, set the maximum number of simultaneous requests
handled by the agent. Each request requires a separate connection to the JavaTest
Harness harness and a separate thread inside the agent. The request might also
require a separate process on the test system running the agent. The default setting
is one.

To run concurrent tests, use the appropriate setting or option from the following
table.

TABLE 17 Map File Options

Interface Option or Setting

Default None (empty)

Command
line

-map map-file

Applet tag <param name=map value=map-file-url>

GUI
Parameter
pane

TABLE 18 Run Concurrent Tests Option

Interface Option or Setting

Default One

Command
line

-concurrency number-of-tests

Applet tag <param name=concurrency value=number-of-tests>

GUI
Parameter
pane
Chapter 2 Installing Agent Classes on a Test System 23

Set Number of Tasks in the History Tabbed Pane

The history option specifies the maximum number of tasks displayed in the history
tabbed pane. Refer to History Tabbed Pane for a description of the history tabbed
pane and how it is used to monitor an agent.

To set the tasks displayed in the history tabbed pane, use the appropriate setting or
option from the following table.

AutoStart the Agent

Th start option is only used with the application GUI class or as a parameter in the
applet tag. When used, the start option automatically starts the agent after all
command line options are validated and the GUI is displayed. The agent must be
completely configured in the command line or applet tag. When the -start option
is not used, click the Start button in the agent GUI to start testing.

To autostart the agent when the GUI is displayed, use the appropriate setting or
option from the following table.

TABLE 19 History Tabbed Pane Options

Interface Option or Setting

Default One

Command
line

-history number-of-items

Applet tag <param name=history value=number-of-items>

GUI Not supported

TABLE 20 AutoStart Agent Options

Interface Option or Setting

Default False

Command
line

-start

Applet tag <param name=start value=true>

GUI
24 JavaTest Agent User’s Guide • March 10, 2009

Set Tracing

The trace option sends detailed information about agent activity to the system
output stream.

To start tracing when the agent is run, use the appropriate setting or option from
the following table.

TABLE 21 Set Tracing Options

Interface Option or Setting

Default False

Command
line

-trace

Applet tag <param name=trace value=true>

GUI Not Supported
Chapter 2 Installing Agent Classes on a Test System 25

3

Monitoring JavaTest Harness
Agents

You can monitor JavaTest Harness harness agents in one of the following ways:

■ View all agents in a test system that are running tests. Refer to Agent Monitor
Window for detailed information about opening and using the Agent Monitor
window to view all agents in a test system that are running tests.

■ Monitor specific information about an agent and the tests that it runs. To display
information about the agent, you must use the tabbed panes in the application
or applet GUI. See the following topics for detailed information about the GUI:

■ Statistics Pane Displays the current status of the tests that the agent is
running.

■ History Pane Displays a list of tasks performed by the agent.
■ Selected Task Pane Displays details about a specific task or test chosen in the

history tabbed pane.

Agent Monitor Window
Open the Agent Monitor window by using the JavaTest Harness harness GUI Test
Manager to choose Window -> Open -> Agent Monitor. See the JavaTest Harness
User’s Guide: Graphical User Interface for detailed description of the Test Manager
window.

The Agent Monitor window contains two sections, Agent Pool and Agents
Currently In Use.
26 JavaTest Agent User’s Guide • March 10, 2009

Agent Pool

Agent Pool lists the active agents that are available to run tests. When active agents
connect to the JavaTest Harness harness, they are added to the agent pool. When
the JavaTest Harness harness requires an active agent to run a test, it moves the
agent from Agent Pool to Agents Currently In Use until the test is completed.

The following table lists and describes the contents of the Agent Pool GUI.

TABLE 22 Agent Pool GUI Contents

Field Description
Chapter 3 Monitoring JavaTest Harness Agents 27

Agents Currently In Use

Agents Currently In Use lists all agents currently used by the JavaTest Harness
harness to run tests. When agents are not running tests they are removed from the
list (active agents re-register with the agent pool). Click on an agent in the list to
display detailed information about the agent and the test it is running. The detailed
information is displayed in the text fields at the bottom and can be used to
troubleshoot problems using an agent to run tests.

The following table lists and describes the contents of the Agents Currently In Use
GUI.

Listening Click the check box to enable listening for active agents. If listening
is not enabled when an agent starts, the agent issues a message
that it cannot connect to the JavaTest Harness harness and then
waits for its timeout period to end before attempting to recontact
the harness.

Port Port 1907 is the default port used by active agents. If your agent
uses a different port, you must either change the value used by the
agent or change this value to match the agent.

Timeout When the agent pool is empty, the timeout value sets the number
of seconds that the JavaTest Harness harness waits between tests
for an available agent before reporting the test result as an error. If
you run tests with one agent, a latent period might occur between
the time when the agent completes the test and when it returns to
the agent pool. The timeout value must be greater than the agent’s
latent period. The default value of 180 seconds is usually sufficient.

TABLE 23 Agents Currently In Use GUI Contents

Field Description

Address Network address of the agent

Tag Test executed by the agent

Request Function executed by the agent

Execute Class executed by the agent

Args Arguments passed to the class executed by the agent

Localize Args Checked if the agent uses a map file

TABLE 22 Agent Pool GUI Contents
28 JavaTest Agent User’s Guide • March 10, 2009

Statistics Pane
The statistics tabbed pane in the agent GUI displays the cumulative statistics for
the tests in the test suite.

The following table describes the contents of the statistics tabbed pane.

History Pane
The agent GUI uses the history tabbed pane to enable monitoring and
troubleshooting agent activity by displaying a dynamic list of tasks that an agent is
currently executing and tasks that an agent recently completed. The number of
tasks maintained in this list is not configurable.

TABLE 24 Statistics Pane Contents

Field Description

currently
active

Number of tests being run by the agent

passed Number of tests run by the agent that had passing results

failed Number of tests run by the agent that had failing results

error Number of tests run by the agent that had errors

not run Number of tests not run by the agent and not filtered out by the
JavaTest Harness harness

exceptions Number of tests filtered out of the test run by the JavaTest Harness
harness
Chapter 3 Monitoring JavaTest Harness Agents 29

To view the details about a specific task, click on it in the list. The GUI displays the
selected task tabbed pane contained details about the task.

Refer to Selected Task Pane for a detailed description of the task information that is
displayed.

Each task in the list contains a code indicating its current state. The following table
describes the state codes displayed in the GUI.

If a task in the list displays a state from the following table, this indicates that the
JavaTest Harness harness agent has completed a request for JavaTest Harness
harness. These states correspond to the various possible outcomes of the task and

TABLE 25 Current State Codes

Current State Description

CONN host:port Shows that the JavaTest Harness harness agent has an open
connection to the JavaTest Harness harness, at the specified
network address, and that the JavaTest Harness harness agent is
waiting for a request to be sent over the connection. If the JavaTest
Harness harness agent is running in active mode, it waits until
JavaTest Harness harness sends the request. If the agent is running
in passive mode, this state usually appears temporarily because
JavaTest Harness harness normally initiates a connection and then
immediately sends the request. The host normally is identified by
its host name. If JavaTest Harness harness cannot determine the
host name, the IP address of the host is shown instead.

EXEC tag This state shows that the JavaTest Harness harness agent is
executing a task on behalf of JavaTest Harness harness. The tag is
an identification of the task supplied by JavaTest Harness harness
as part of the request.

IO tag This state shows that the JavaTest Harness harness agent was
executing a task on behalf of JavaTest Harness harness but that
some exception occurred while trying to send the results to the
JavaTest Harness harness.
30 JavaTest Agent User’s Guide • March 10, 2009

are the same as the outcomes that the JavaTest Harness harness gets when it runs
tests directly (without the assistance of the JavaTest Harness harness agent). The
following table describes the states that a task might have.

Selected Task Pane
The selected task tabbed pane in the agent GUI displays detailed information about
a task selected from the task list in the history pane.

Refer to History Pane for a description of the task list.

TABLE 26 JavaTest Harness Agent Completed Request States

State Description

PASS: Task completed successfully.

FAIL: Task indicated that it failed.

ERR: Task encountered some error before it could properly be executed.

!RUN: Task has inappropriately indicated that it has not been run. This
state must never occur.
Chapter 3 Monitoring JavaTest Harness Agents 31

The following table describes the contents of the selected task tabbed pane.

TABLE 27 Selected Task Pane Contents

Field Description

client Displays the network address (host and port) of the source of the
task request. The host is normally identified by its host name, but if
JavaTest Harness harness cannot determine the host name, the IP
address of the host is displayed instead.

request Displays the tag that was supplied with the request in order to
identify itself.

class Displays the name of the class that was specified in the request.
This is the class that is loaded and run in fulfillment of the request.

args Displays the arguments that were specified in the request. These
arguments are passed to the class that is executed.

result If and when the task is completed, this field contains the outcome
of the task, as indicated by a JavaTest Harness harness Status
object.
32 JavaTest Agent User’s Guide • March 10, 2009

4

Troubleshooting JavaTest Harness
Agents

Because active agents initiate the connection with the JavaTest Harness harness
while passive agents wait for a request from the JavaTest Harness harness,
troubleshooting is different for each type of agent. The following topics provide
guidelines for troubleshooting each type of agent:

■ Active Agents
■ Passive Agents

Troubleshooting Active Agents
Active agents initiate the connection with the JavaTest Harness harness. You must
set up the JavaTest Harness harness agent pool so that the connection is made
before running tests.

Errors in configuring, synchronizing, or implementing the connection between the
agent and the JavaTest Harness harness are the most probable causes of failure.

Use the Agent Monitor window, the JavaTest Harness harness Test Manager
window, the agent GUI, and the following list of actions as a guide when
troubleshooting problems running active agents.

1. In the Agent Monitor window, verify that the agent is listed in the agent pool. If
the agent is not listed in the agent pool perform the following actions:

i. Verify that the Listening check box is selected.

ii. Verify that the agent is configured to contact the correct active host and
that the port value of the harness matches the port value used by the
agent.

iii. Check the physical connection between the JavaTest Harness harness
platform and the test platform.
Chapter 4 Troubleshooting JavaTest Harness Agents 33

2. Verify that the agent moves to Agents Currently in Use when tests are running.
If the agent does not move to Agents Currently in Use when tests are running
perform the following actions:

i. Use the Configuration Editor in the Test Manager window to verify that
the harness is configured to use agents when running tests. See the JavaTest
Harness User’s Guide: Graphical User Interface for detailed description of the
Configuration Editor and the Test Manager window.

ii. If you are running the tests using multiple Java Virtual Machines, use the
Configuration Editor window to verify that the path you provided in the
Java Launcher question is the path of the launcher for the agent running
tests.

3. If tests are failing or have errors, check the error messages displayed in the Test
Manager window. If the error indicates that tests are failing because of missing
classes perform the following actions:

i. Verify that the class paths used to start the agent are correct.

ii. Use the Configuration Editor window to verify that the harness is correctly
configured to use the agent on the test system.

iii. Run the agent using the -trace option to verify that the paths in the
stream messages for the test are correct. If the paths are not correct for the
test system, create a map file for the agent to use in translating host
specific values into values that the agent can use.

iv. If a map file was used to run the test, use the Test Run Messages pane to
verify that the -mapArgs command is present in the stream messages. If
the -mapArgs command is not present, verify that both the agent and the
harness are configured to use the map file. Use the Configuration Editor
window to verify that the harness is configured to use the agent map file.

Troubleshooting Passive Agents
Because passive agents must wait for a request from the JavaTest Harness harness
before running tests, the port that the passive agent uses must be the same as that
used by the JavaTest Harness harness to send requests.

Errors in configuring, synchronizing, or implementing the connection between the
agent and the JavaTest Harness harness are the most probable causes of failure.

Use the Agent Monitor window, the JavaTest Harness harness Test Manager
window, the agent GUI, and the following list of actions as a guide when
troubleshooting problems running passive agents:

1. Verify that the agent was started before the JavaTest Harness harness started the
test run. If not, repeat the test run.
34 JavaTest Agent User’s Guide • March 10, 2009

2. Verify that the port value used when starting the agent matches the port value
used by the JavaTest Harness harness to send requests.

3. Check the physical connection between the JavaTest Harness harness platform
and the test platform.

4. Use the Configuration Editor in the Test Manager window to verify that the
harness is configured to use agents when running tests. See the JavaTest Harness
User’s Guide: Graphical User Interface for detailed description of the Configuration
Editor and the Test Manager window.

5. If you are running the tests using multiple Java Virtual Machines, use the
Configuration Editor window to verify that the path you provided in the Java
Launcher question is the path of the launcher for the agent running tests.

6. If tests are failing or have errors, check the error messages displayed in the Test
Manager window. If the error indicates that tests are failing because of missing
classes, perform the following actions:

i. Verify that the class paths used to start the agent are correct.

ii. Use the Configuration Editor window to verify that the harness is correctly
configured to use the agent on the test system.

iii. Run the agent using the -trace option to verify that the paths in the
stream messages for the test are correct. If the paths are not correct for the
test system, create a map file for the agent to use in translating host-
specific values into values that the agent can use.

iv. If a map file was used to run the test, use the Test Run Messages pane to
verify that the -mapArgs command is present in the stream messages. If
the -mapArgs command is not present, verify that both the agent and the
harness are configured to use the map file. Use the Configuration Editor
window to verify that the harness is configured to use the agent map file.
Chapter 4 Troubleshooting JavaTest Harness Agents 35

36 JavaTest Agent User’s Guide • March 10, 2009

Glossary

A
Active Agent

An agent that initiates a connection to the JavaTest Harness harness.

Active agents enable you to run tests in parallel using many agents at once
and to specify the test machines at the time you run the tests. Use the Agent
Monitor window to view the list of registered active agents and synchronize
active agents with the JavaTest Harness harness before running tests.

Agent

A lightweight application that receives tests from the test harness, runs them
on the implementation being tested, and reports the results back to the test
harness. Normally, test agents are only used when the TCK and
implementation being tested are running on different platforms. When
running tests on a platform other than the one running the JavaTest Harness
harness, you must use an agent. The JavaTest Harness harness uses the
following three types of agents:

■ Active agents
■ Passive agents
■ Serial agents

Agent Monitor

The JavaTest Harness harness window used to synchronize active agents and
to monitor agent activity. The Agent Monitor window displays the agent
pool and the agents currently in use. To open the Agent Monitor window,
choose Tasks -> Monitor Agent Activity from the menu bar.
Chapter 4 Glossary 37

Agent Pool

A list in the Agent Monitor of the active agents that are connected with the
JavaTest Harness harness and available to run tests. Agents are removed from
the agent pool when they are running tests.
38 JavaTest Agent User’s Guide • March 10, 2009

B

C

D

E

F

G

H

I

J

K

L

M

Chapter 4 Glossary 39

N

O

P
Parameters

Values used to configure an agent. The agent parameters can be set at the
time the agent is started or, if the agent GUI is used, from the Parameters tab
after the agent GUI has started.

Passive Agent

Agents that must wait for a request from the JavaTest Harness harness before
they can run tests.

The JavaTest Harness harness initiates connections to passive agents as
needed. Passive agents are simpler, but less flexible than active agents
because you must specify the test machine as part of the test configuration,
not at the time you run the tests. Passive agents do not allow you to run tests
in parallel.

Q

R

S
Serial Agent

Use serial mode (serial agent) when you want the agent to use an RS-232
serial connection. Serial agents wait for the JavaTest Harness harness to
initiate the connection. Infrared, parallel, USB, and firewire connections can
also be added through the JavaTest Harness API by modeling the existing
serial system.
40 JavaTest Agent User’s Guide • March 10, 2009

T

U

V

W

X

Y

Z

Chapter 4 Glossary 41

42 JavaTest Agent User’s Guide • March 10, 2009

1

Index

A
active agent, 17, 18
active agents, 33
additional options, 21, 22, 23, 24
agent applet, 14, 15, 16
agent application, 11, 12, 13
agent classes, 1, 13

agent GUI, 28, 29, 31
Agent Monitor window, 26, 27, 28
agent pool, 27
agents currently used, 28
applet, 10
applet tag, 15, 16
application, 10
autoStart the agent, 24

C
choosing type of, 6
choosing type of agent, 6
creating, 8
creating a map file, 8

G
GUI, 10

H
help, 21
history tabbed pane, 29
history tabbed pane, agent GUI, 29
host, 17

I
installing, 1
installing agent classes, 1

J
JavaTest Harness agent, 6, 9, 10
JavaTest Harness Agents, 25

JavaTest Harness agents, 32

M
map file, 8, 22
mode, 17, 19, 20
monitor, 25
monitor JavaTest Harness agents, 25

O
options, 13, 17, 18, 20

P
passive agent, 18, 19
passive agents, 34
port, 18, 19, 21

R
required class paths, 12, 13
run and monitor the Agent, 22

S
serial agent, 20, 21
set concurrency, 23
set maximum number, 23
set tracing, 24
setting, 17, 18, 19, 20, 21
setting parameters, 16
setting parameters in the applet tag, 16
start, 11, 12, 13
start an agent application, 11, 12, 13
starting, 9, 10, 14

2 JavaTest Agent User’s Guide • March 10, 2009

starting a JavaTest Harness agent, 9, 10
starting an agent applet, 14, 15
statistics tabbed pane, 28
statistics tabbed pane, agent GUI, 28

T
task tabbed pane, 31
task tabbed pane, agent GUI, 31
tasks in history pane, 23
test classes, 13
troubleshooting, 32, 33, 34
troubleshooting active agents, 33
troubleshooting JavaTest Harness agents, 32
troubleshooting passive agents, 34

W
window, Agent Monitor, 26

	JavaTestTM Agent User’s Guide
	Preface
	Before You Read This Book
	How This Book Is Organized
	Using System Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	What is the JavaTest Harness Agent?
	JavaTest Harness Agent Features

	Installing Agent Classes on a Test System
	Classes Required to Use the GUI
	Classes Required to Use the Command Line
	Classes Required to Use Applets
	Choosing the Type of Agent
	Creating a Map File
	Starting a JavaTest Harness Agent
	Agent Application
	Agent Applet
	Using the GUI
	Starting an Agent Application
	Starting an Agent Applet
	Specifying Active Agent Options
	Specifying Passive Agent Options
	Specifying Serial Agent Options
	Specifying Additional Agent Options

	Monitoring JavaTest Harness Agents
	Agent Monitor Window
	Statistics Pane
	History Pane
	Selected Task Pane

	Troubleshooting JavaTest Harness Agents
	Troubleshooting Active Agents
	Troubleshooting Passive Agents

	Glossary
	Index

