
Sun Microsystems, Inc.
www.sun.com

JavaTest™ Architect’s Guide

JavaTest Harness

March 10, 2009
02-2009

Please
Recycle

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

Use is subject to license terms.

Sun, Sun Microsystems, the Sun logo, Java, Jini, JavaTest, JAR, JDK, Javadoc, Java ME, Java SE and Java Compatibility Test Tools are
trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

THIS PRODUCT IS COVERED AND CONTROLLED BY U.S. EXPORT CONTROL LAWS AND MAY BE SUBJECT TO THE
EXPORT OR IMPORT LAWS IN OTHER COUNTRIES. NUCLEAR, MISSILE, CHEMICAL BIOLOGICAL WEAPONS OR
NUCLEAR MARITIME END USES OR END USERS, WHETHER DIRECT OR INDIRECT, ARE STRICTLY PROHIBITED. EXPORT
OR REEXPORT TO COUNTRIES SUBJECT TO U.S. EMBARGO OR TO ENTITIES IDENTIFIED ON U.S. EXPORT EXCLUSION
LISTS, INCLUDING, BUT NOT LIMITED TO, THE DENIED PERSONS AND SPECIALLY DESIGNATED NATIONALS LISTS IS
STRICTLY PROHIBITED.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit
dans ce document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets
américains listés à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de
brevet en attente aux États - Unis et dans les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’
AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC.

Droits du gouvernement des États-Unis - Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis
aux termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

L’utilisation est soumise aux termes de licence.

Sun, Sun Microsystems, le logo Sun, Java, Jini, JavaTest, JAR, JDK, Javadoc, Java ME, Java SE et Java Compatibility Test Tools sont des
marques de fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales, aux États-Unis et dans d’autres
pays.

UNIX est une marque déposée aux États-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en
vigueur dans d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des
armes nucléaires,des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les
listes d’exclusion d’exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre
de ne pas participer, d’une façon directe ou indirecte, aux exportations de des produits ou des services qui sont régis par la législation
américaine sur le contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Contents

Preface xvii

1. Introduction 1

Examples 2

Part I The Basics

2. JavaTest Tutorial 5

Start the JavaTest Harness 6

Quick Start Wizard 7

Configure the Test Information 8

Run Tests 10

Browse the Results 12

The Folder Pane 12

The Test Pane 14

Exclude the Failed Test 16

Generate a Report 17

Summary 18

3. Overview 19

Remote Execution 22
iii

4. Creating a Test Suite 25

Create a Test Suite Directory 26

Create the testsuite.jtt File 26

Copy javatest.jar 27

Set Up the classes Directory 27

Create a Test 28

Run the Test Suite 31

Odds and Ends 31

Top-Level Test Suite Directory 32

The Test Suite JAR File 33

Class Paths 34

5. Writing Tests 37

The Test Execution Model 37

The Test Interface 38

Class Paths 39

Test Status 40

Test Description Entries 41

Keywords 42

Multiple Tests in a Single Test File 43

Subtyping MultiTest 44

Organizing Tests Within Your Test Suite 44

Source Files 45

Class Files 45

Error Messages 46

6. Creating a Configuration Interview 47

Designing Your Configuration 47

What is a Configuration? 47
iv JavaTest Architect’s Guide • March 10, 2009

Test Script Information 48

Test Description Entries 48

Which Tests to Run 49

Designing Your Interview 49

Command Strings 50

Example 1 50

Example 2 52

Test Environment Variables 53

Writing Your Interview 53

Interview Classes 54

The Current Interview Path 55

Determining the Next Question 55

Error Checking 56

Exporting the Test Environment 56

Question Types 57

Designing Your Questions 60

Landing Point Questions 60

Sub-Interviews 60

Putting it all Together 62

Providing the Prolog 65

Providing the Environment Group 66

Providing the Resource File for the Interview 66

Providing the More Info Help for the Interview 66

Creating Question Text and More Info 67

Writing Style 67

Creating Question Text and Keys 69

Creating More Info 70

Set Up the More Info System 70
Contents v

For Each Question in Your Interview 72

Customizing Standard Question More Info 73

Creating the JAR File 73

Part II Advanced Topics

7. Compiling Test Suites 77

8. The TestSuite Object 81

The testsuite.jtt File 81

Overriding Default Methods 85

9. Test Finder 87

Tag Test Finder 87

HTML Test Finder 89

Binary Test Finder 90

BinaryTestWriter 91

BinaryTestFinder 92

10. Test Scripts 95

Design Decisions 95

Simple Test Scripts 95

More Flexible Test Scripts 97

Writing Custom Commands 99

Test Result 100

11. Service Management 103

Description 103

Services-Related Work Flow 105

Implementation 106

Implementation of ServiceReader Interface 107
vi JavaTest Architect’s Guide • March 10, 2009

Implementation of Service Interface 108

Service Properties 109

Service Management Architecture 111

Mechanism to Instantiate Service, Connector, and ServiceExecutor
Interfaces 114

Separate Services Start Up 114

12. Running JUnit Tests 117

The Retrofit Process 117

Prerequisites for Converting Tests 118

▼ Procedure for Converting Tests 118

Technical Details 120

Support Classes 120

JUnitSuperTestFinder 121

JUnitAnnotationTestFinder 122

JUnitBareMultiTest 123

JUnitAnnotationMultiTest 123

Implementation Notes 123

Areas for Improvement 124

References 124

13. Customization 127

Customizing the Splash Screen 127

Example of splash.properties File 128

Notes About the Implementation 128

A. Standard Commands 129

ActiveAgentCommand 130

Usage 130

Arguments 130
Contents vii

Description 131

Examples 132

See Also 132

ExecStdTestSameJVMCmd 133

Usage 133

Arguments 133

Description 134

Examples 134

See Also 134

ExecStdTestOtherJVMCmd 135

Usage 135

Arguments 135

Description 136

Examples 136

See Also 136

JavaCompileCommand 137

Usage 137

Arguments 137

Description 137

Examples 138

See Also 138

PassiveAgentCommand 139

Usage 139

Arguments 139

Description 140

Examples 141

See Also 141

ProcessCommand 142
viii JavaTest Architect’s Guide • March 10, 2009

Usage 142

Arguments 142

Description 142

Examples 143

See Also 143

SerialAgentCommand 144

Usage 144

Arguments 144

Description 145

Examples 146

See Also 146

B. Formats and Specifications 147

Test URL Specification 147

Test Paths 148

Exclude List File Format 149

Syntax 149

Test URL and Test Cases 150

BugIDs 151

Keywords 151

Synopsis 151

Comments and Header Information 151

C. What Technical Writers Should Know About Configuration Interviews 153

Question Text 154

More Info 155

Formatting Styles 156

Usage and Conventions 157

Glossary 159
Contents ix

Index 165
x JavaTest Architect’s Guide • March 10, 2009

Figures

FIGURE 2-1 JavaTest Harness and Tests Running on Same System 6

FIGURE 2-2 The JavaTest Harness with Quick Start Wizard 7

FIGURE 2-3 JavaTest Configuration Editor 8

FIGURE 2-4 Expanded Test Tree 11

FIGURE 2-5 The Folder Pane 13

FIGURE 2-6 The Test Pane 14

FIGURE 2-7 Test Messages 15

FIGURE 2-8 Logged Error Messages 16

FIGURE 3-1 Test Suite Components 21

FIGURE 6-1 Interview Question Group First/Next Question Methods 64

FIGURE 6-2 Skipping the Keywords Standard Question 65

FIGURE 6-3 The JavaTest Configuration Editor: Question and More Info Panes 67

FIGURE 6-4 Question without More Info Help 68

FIGURE 6-5 Question with More Info Help 68

FIGURE 9-1 Test Description Table 90

FIGURE 11-1 Service Management Architecture 112

FIGURE 11-2 Separate Service Start-Up 115

FIGURE C-1 The JavaTest Configuration Editor: Question and More Info Panes 154
xi

xii JavaTest Architect’s Guide • March 10, 2009

Tables

TABLE 2-1 Interview Questions and Answers 9

TABLE 2-2 Folder/Test Colors and Their Meaning 11

TABLE 2-3 Test Pane Tabs 14

TABLE 3-1 Summary of JavaTest Harness Operation 21

TABLE 4-1 Default Test Description Entries 29

TABLE 4-2 Additional Configuration Interview Question and Answer 31

TABLE 4-3 Top-Level Test Suite Files and Directories 32

TABLE 5-1 Exit Status Values 40

TABLE 5-2 Default Test Description Entries 42

TABLE 6-1 Commonly Used Test Commands 50

TABLE 6-2 Test Environment Variables 53

TABLE 6-3 Question Types 58

TABLE 6-4 Interview Question Groups 62

TABLE 7-1 System Properties Used in Compilation 77

TABLE 7-2 Compilation Command Components 78

TABLE 8-1 testsuite.jtt Properties 82

TABLE 9-1 BinaryTestWriter Command Components 91

TABLE 11-1 Service Manager Features 104

TABLE 12-1 JUnitSuperTestFinder Test Description Values 122

TABLE 12-2 JUnitAnnotationTestFinder Test Description Values 123
xiii

TABLE B-1 Exclude List Field Descriptions 149
xiv JavaTest Architect’s Guide • March 10, 2009

Code Examples

CODE EXAMPLE 4-1 testsuite.jtt File 26

CODE EXAMPLE 4-2 Simple Test Template 28

CODE EXAMPLE 4-3 Simple Test 29

CODE EXAMPLE 5-1 Simple Test Template 39

CODE EXAMPLE 5-2 Status Code Fragment 41

CODE EXAMPLE 5-3 Tag Test Description 42

CODE EXAMPLE 5-4 MultiTest Example 43

CODE EXAMPLE 6-1 Network Test Description 49

CODE EXAMPLE 6-2 Resource File Fragment 69

CODE EXAMPLE 6-3 Demo TCK HelpSet File 71

CODE EXAMPLE 6-4 Demo TCK Map File 72

CODE EXAMPLE 7-1 WIN32 Compilation Command 78

CODE EXAMPLE 8-1 Example testsuite.jtt File 85

CODE EXAMPLE 9-1 Tag Test Description 88

CODE EXAMPLE 9-2 Test Description Table Source 89

CODE EXAMPLE 10-1 Test Script Using Runtime.exec 96

CODE EXAMPLE 10-2 Test Script Using ProcessCommand 96

CODE EXAMPLE 10-3 Sample Test Script Code Fragment 97

CODE EXAMPLE 10-4 Command Interface 99

CODE EXAMPLE 10-5 JavaCompileCommand 99
xv

CODE EXAMPLE 11-1 XMLServicesReader Implementation 107

CODE EXAMPLE 11-2 com.sun.javatest.services.AntService Class 109

CODE EXAMPLE 13-1 splash.properties File Example 128

CODE EXAMPLE A-1 Using ActiveAgentCommand to Execute a ProcessCommand on an Active
Agent 132

CODE EXAMPLE A-2 Simple use of ExecStdTestSameJVMCmd 134

CODE EXAMPLE A-3 Using ExecStdTestSameJVMCmd Inside an Environment 134

CODE EXAMPLE A-4 Simple use of ExecStdTestOtherJVMCmd 136

CODE EXAMPLE A-5 Using ExecStdTestOtherJVMCmd Inside an Environment 136

CODE EXAMPLE A-6 Simple use of JavaCompileCommand 138

CODE EXAMPLE A-7 Using JavaCompileCommand Inside an Environment 138

CODE EXAMPLE A-8 Using JavaCompileCommand to Invoke Sun’s RMI compiler 138

CODE EXAMPLE A-9 Using PassiveAgentCommand to execute a ProcessCommand on a Passive
Agent 141

CODE EXAMPLE A-10 Simple use of ProcessCommand 143

CODE EXAMPLE A-11 Using ProcessCommand in an Environment 143

CODE EXAMPLE A-12 Using SerialAgentCommand to Execute a ProcessCommand on an Agent
Configured to Communicate Via a Serial Line 146

CODE EXAMPLE B-1 Valid Test URL Entries 150

CODE EXAMPLE B-2 Exclude File 152
xvi JavaTest Architect’s Guide • March 10, 2009

Preface

This manual is intended for test suite architects who design JavaTestTM harness test
suites. It assumes that you are familiar with the Java™ programming language and
with running Java programs on at least one platform implementation.

Before You Read This Book
It is highly recommended that you read the JavaTest online help, the Test Suite
Developer’s Guide, and TCK Project Planning and Development Guide, which are
available as part of the Java™ Compatibility Test Tools release. Note that for
convenience, the JavaTest online help is also available in PDF format.

How This Book Is Organized
This guide is divided into the following chapters and appendices:

Chapter 1 Introduction

Part I The Basics

Chapter 2 A tutorial that introduces the JavaTest GUI

Chapter 3 Describes the test suite components for which architects are
responsible

Chapter 4 Leads you through the process of creating a small working test suite
xvii

Chapter 5 Describes how to write tests that work well with the JavaTest
harness

Chapter 6 Describes how to create configuration interviews for test suites

Part II Advanced Topics

Chapter 7 Describes how to use the JavaTest harness to compile test suites

Chapter 8 Describes how test finders work and how to create a customized
version for your test suite

Chapter 9 Describes how test scripts work and how to create a customized
version for your test suite

Chapter 10 Describes how the test suite object works and how to create a
customized version for your test suite

Chapter 11 Describes the ServiceManager component provided by the
JavaTest harness and how test suite architects can use it to manage
services

Chapter 12 Describes how to retrofit existing JUnit 3.x or 4.x test suites to
enable them to run with the JavaTest harness

Chapter 13 Describes customizations that test suite architects can make in the
JavaTest harness

Appendix A Describes the standard commands available from the JavaTest
command library

Appendix B Describes the file formats and specifications used by the JavaTest
harness

Glossary Defines terms used in this book and other TCK documentation
xviii JavaTest Architect’s Guide • March 10, 2009

Typographic Conventions

Shell Prompts

TABLE P-1

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2

Shell Prompt

Bourne shell and Korn shell %

MSDOS C:\>
Preface xix

Related Documentation

Accessing Sun Documentation Online
The Java Developer Connectionsm web site enables you to access Java™ platform
technical documentation on the Web:

http://developer.java.sun.com/developer/infodocs/

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

docs@java.sun.com

TABLE P-3

Technology Title

JavaTest harness JavaTest online help (available both online and in PDF
format)

TCK development process TCK Project Planning and Development Guide

Java Compatibility Test Tools Test Suite Developer’s Guide
xx JavaTest Architect’s Guide • March 10, 2009

CHAPTER 1

Introduction

A Technology Compatibility Kit (TCK) is a test suite and a set of tools used to certify
that an implementation of a Java technology conforms both to the applicable Java
platform specifications and to the corresponding reference implementations — the
end result is a Java technology that is certified as compatible. The architect designs
test suites to exercise assertions described in the technology specifications. TCK test
suites may use the JavaTest harness for test execution and test suite management
tools.

As the test suite architect, it is your job to design the framework for the test suite,
and if necessary, create custom plug-in components required to implement the
design.

Each TCK that you design should be composed of the following:

Test suite: A collection of tests that fit within a common framework. The framework
is typically designed by the architect — the individual tests are designed to work
within the framework and are usually written by a team of test suite developers.

JavaTest harness: The test harness used to run the tests in the test suite. You (the
architect) may have to provide plug-in components that know how to identify and
execute the tests.

Configuration interview: To run the tests in a test suite, the JavaTest harness
requires site-specific information about the computing environment, such as the
location of the Java launcher, and the Java technology being tested. The JavaTest
harness provides the means to collect this information based on an interview that
you provide.

Documentation: A well documented TCK generally includes the following
information, provided by the architect:

■ Test Suite User’s Guide: Contains instructions about how to start and run the
tests and rules for certification. The Java™ Compatibility Test Tools (JCTT)
release contains a TCK User’s Guide Template that can serve as the basis for this
document.
1

■ Configuration editor “More Info” text: Provides explanation and examples for
each question in the configuration interview

Architects design test suites and the characteristics of the various tests, but are not
typically concerned with the specific details of individual tests. That is the task of
test suite developers (see the Test Suite Developer’s Guide). Architects design the
framework in which the individual tests fit.

This document describes the tasks associated with the TCK architect.

Examples
The examples directory contains example test suites that are used throughout this
book in tutorials and to illustrate how tests and test suites are constructed. Please
use these examples to supplement the discussions in this manual. The examples
directory contains the following:

...\examples\

javatest\

demoapi.jar API classes tested by the Demo TCK test suite
interviewDemo\ A self-documenting configuration interview demo

demotck The test suite used to run the interview demo
src The interview demo source files

simpleHTML\

demotck\ Demo test suite that uses HTML-based test descriptions
src\ Demo TCK configuration interview source files

simpleTags\

demotck\ Demo test suite that uses tag test descriptions
src\ Demo TCK configuration interview source files

sampleFiles\ Miscellaneous sample source files referred to
throughout this manual

Note – Unless otherwise indicated, all examples in this book use Microsoft
Windows style command prompts and file separators.
2 JavaTest Architect’s Guide • March 10, 2009

PART I The Basics

The chapters in this part of the JavaTest Architect’s Guide introduce the JavaTest
GUI, basic concepts, and provide enough information to create a basic test suite.

CHAPTER 2

JavaTest Tutorial

This tutorial introduces you to the JavaTest version GUI and some basic underlying
concepts. The tutorial instructions have you run a very simple test suite called Demo
TCK that is included in the examples directory. Demo TCK contains 17 tests that
test the functionality of some very simple demo APIs.

This tutorial describes how to:

1. Start the JavaTest harness

2. Use the Quick Start wizard

3. Configure test information

4. Run the test suite

5. Browse the test results

6. Exclude a failed test

The tutorial should be run using version 5.0 or later of the Java™ Platform, Standard
Edition (Java SE) on either the Solaris™ Operating System (Solaris OS) or the
Microsoft Windows (WIN32) operating system.

Note – Unless otherwise indicated, all examples in this book use Microsoft
Windows style command prompts and file separators.

To keep things simple, these instructions show you how to run both the JavaTest
harness and the tests on the same system in different Java virtual machines (JVM™
processes1). The following diagram illustrates this:

1. The terms “Java virtual machine” and “JVM” are sometimes used to mean “a virtual machine for the Java™
platform”.
5

FIGURE 2-1 JavaTest Harness and Tests Running on Same System2

Start the JavaTest Harness
1. Verify that the Java SE platform (version 1.5 or later) is in your path.

At a command prompt, enter:

C:\> java -version

2. Make jt_install\examples\javatest\simpleTags\demotck the current
directory.

The directory jt_install is the directory into which you installed the JavaTest
harness software.

3. Start the JavaTest harness.

At a command prompt enter:

2. It is also possible to run the JavaTest harness and the tests on separate systems using the JavaTest Agent.
6 JavaTest Architect’s Guide • March 10, 2009

C:\> java -jar lib\javatest.jar -newDesktop

Note – The -newDesktop option is used here to ensure that the JavaTest harness
starts up exactly as described in these instructions — under normal circumstances
you should not use this option because you will lose information that the harness
saved about your previous session. For information about JavaTest options, see the
JavaTest online help.

The JavaTest harness should start and display the Quick Start wizard window:

FIGURE 2-2 The JavaTest Harness with Quick Start Wizard

Quick Start Wizard
The Quick Start wizard leads you through the basic steps required to start running
the test suite.

1. Panel 1: Welcome to the JavaTest Harness

Choose “Start a new test run”, and click Next

2. Panel 2: Test Suite

Click the Next button (accept the default).
Chapter 2 JavaTest Tutorial 7

3. Panel 3: Configuration

Choose “Create a new configuration”, and click Next

4. Panel 4: Work Directory

The JavaTest harness uses the work directory to store information and to write
test results. Click the Browse button to activate a file chooser. Use the file chooser
to create a work directory — be sure to create the work directory in a convenient
location outside of the test suite directory (demotck). Click Next.

5. Panel 5: Almost Done ...

Click the Finish button to complete the Quick Start process. For these options, the
configuration editor window is started automatically.

Configure the Test Information
Because the “Start the configuration editor” checkbox was checked in the last panel
of the Quick Start wizard, the configuration editor starts automatically.

You use the configuration editor to configure the information required to run the test
suite. As shown below, the configuration editor consists of three panes and a menu
bar:

FIGURE 2-3 JavaTest Configuration Editor

The left pane lists the titles of the questions you have answered, are currently
answering, or that the editor deduces must be answered. The current question is
highlighted.
8 JavaTest Architect’s Guide • March 10, 2009

The center pane displays the interview questions. You answer the questions by using
controls such as text boxes, radio buttons, or combo boxes located below each
question. Whenever possible, the editor deduces answers from your system
configuration and includes them in text boxes, combo boxes, and radio buttons. You
can accept these answers or provide other answers.

The right pane displays important information about each question, such as:

■ Background information

■ Examples of answers

■ Additional information about choosing an answer

● Answer the questions in the configuration editor.

The following table presents the titles, answers, and information about each
question that you must answer in the interview. There are 13 questions in the
Demo TCK interview.

TABLE 2-1 Interview Questions and Answers

Question Title Answer Description

Welcome! Briefly describes the purpose and
function of the Demo TCK
Configuration Editor.

Configuration
Name

Demo_TCK Names the interview file.

Description tutorial Describes the configuration.

How to Run Tests • On this computer Runs both the JavaTest harness and
the tests on the same computer.

Java Virtual
Machine

The absolute path to the java
command on a WIN32 system.
For example:
jdk_inst_dir\bin\java.exe
or
jre_inst_dir\jre\java.exe

Click the Browse button to activate
a file chooser, or type the path
directly in the text box.

Test Verboseness • Medium Causes all executing tests to emit
standard information messages.

Parameters... Introduces the section of questions
that collect information about
which tests to run and how to run
them.

Specify Tests to
Run?

• No Runs all of the tests.
Chapter 2 JavaTest Tutorial 9

Run Tests
1. Set the view filter to Last Test Run.

Choose “Last Test Run” in the View Filter combo box located in the tool bar. This
changes your “view” of the test tree so that you only see the results of the current
test run. This is generally the view that most users prefer to begin with.

Note – Note that when you change to the Last Run filter before you do a test run,
the folders and tests in the tree turn to gray, indicating that they are filtered out. This
occurs because there are currently no results from a “last test run”.

2. Choose Run Tests > Start to start the test run.

The test suite should begin to run. You will see activity in the test tree panel that
indicates which tests are running. You can also watch the progress of the test run
in the progress monitor on the bottom-right portion of the JavaTest harness
window and the pie chart in the Summary tab.

Specify an Exclude
List?

• No Specifies that an exclude list is not
used for this test run.

Specify Status? • No Specifies that prior run status is
not used to filter the test run. Feel
free to try it on subsequent runs.

Concurrency 1 Specifies the default concurrency
setting (1).

Time Factor 1 Specifies the default standard time
out value for each test (1).

Congratulations! The configuration editor has
collected all of the information it
needs to run the tests.

Click the Done button to save the
interview. JavaTest interviews are
saved to files that end with the
.jti suffix. Use the file chooser to
specify a file in a convenient
location.

TABLE 2-1 Interview Questions and Answers

Question Title Answer Description
10 JavaTest Architect’s Guide • March 10, 2009

3. Expand the test tree folders to reveal the tests.

Click on different test folders to expand the test tree.

FIGURE 2-4 Expanded Test Tree

As tests complete, the tests and their folders change color to represent their state.
The following table briefly describes the colors and their meaning:

Folders reflect the state of the tests hierarchically beneath them. You know that the
entire test suite passed if the test suite root folder is green. See the JavaTest online
help for more information.

TABLE 2-2 Folder/Test Colors and Their Meaning

Color Description

green Passed

red Failed

blue Error — The test could not be run properly. Usually indicates a
configuration problem.

gray Filtered out — Due to a parameter setting (for example, it is on an
exclude list), the test is not selected to be run.

white Not run
Chapter 2 JavaTest Tutorial 11

Note – The test lists\DoublyLinkedList\InsertTest.java intentionally
contains errors and is supposed to fail as part of the tutorial. If any other tests fail,
check your answers to the configuration interview.

Browse the Results
Now that the test run is complete, you will use the Folder tabbed pane and Test
tabbed pane portion of the JavaTest harness to examine the results. You will also
examine the output of the test that failed.

Note – The Folder tabbed pane and the Test tabbed pane occupy the same portion
of the Test Manager window. The Folder tabbed pane is displayed when you choose
a folder entry in the test tree and the Test tabbed pane is displayed when you choose
a test entry in the test tree.

The Folder Pane
The Folder tabbed pane displays information about the tests in the selected folder.
12 JavaTest Architect’s Guide • March 10, 2009

FIGURE 2-5 The Folder Pane

1. Click on the top folder in the test tree (the test tree root).

2. Click on the Summary tab (shown by default).

Notice the statistics displayed in the Summary panel. It describes how many tests
in the test suite passed, failed, had errors, and were filtered out.

3. Click on any of the other folder icons in the test tree.

Notice that the Summary panel changes to reflect the statistics for tests
hierarchically beneath it.

4. Click on the test tree root folder again.

5. Click on the Passed tab.

This pane contains a list of the tests that passed during the test run.

6. Click on the Failed tab.

This pane contains a list of the tests that failed during the test run (only one test
in this case).

7. Double-click the lists\DoublyLinkedList\InsertTest.java test in the
Failed tab.

This automatically selects the test in the test tree and changes the display from the
Folder pane to the Test pane.

Note – To read more information about any of the panes, click on a tab to establish
focus, and press F1 to activate online help about that pane.
Chapter 2 JavaTest Tutorial 13

The Test Pane
The Test tabbed pane displays information about the selected test. The five tabs
provide information about the test and information about the results of its execution.

FIGURE 2-6 The Test Pane

1. Click on the different tabs and examine the information the panes contain.

The following table briefly describes each tabbed pane:

Note – To read more information about any of the panes, click on a tab to establish
focus, and press F1 to activate the online help about that pane.

TABLE 2-3 Test Pane Tabs

Tab Description

Test Run Messages Displays messages generated during the selected test’s execution

Test Run Details A table of values generated during the selected test’s execution

Configuration A table of the configuration values used during the selected test’s
execution

Files Displays the Java language source code and any other files related
to the selected test

Test Description A table of the test description values specified for the test
14 JavaTest Architect’s Guide • March 10, 2009

2. Click on the Test Run Messages tab.

This pane provides access to any messages generated by the JavaTest harness or
the test during execution. Notice that the various red icons indicate that the test
failed.

3. Click on the Execute/Messages entry in the left hand column.

The display on the right shows the command line used to run the test. Problems
can often be debugged by examining how the test was invoked. In this case it was
invoked correctly.

FIGURE 2-7 Test Messages

4. Click on the out1 entry in the left-hand column.

The display on the right shows errors reported by the test. The messages indicate
that either the test or the API contain errors — in this case the test contains errors.
Chapter 2 JavaTest Tutorial 15

FIGURE 2-8 Logged Error Messages

Exclude the Failed Test
The JavaTest harness allows you to “exclude” tests from a test suite by specifying an
exclude list file. This section shows you how to use the quick set mode of the
configuration editor window to specify an exclude list that includes lists\
DoublyLinkedList\InsertTest.java. Tests that are excluded are not
executed during test runs, and though they are still displayed in the test tree, their
status is not reflected in the pass/fail status of the test suite.

1. Choose Configure > Change Configuration > Exclude List from the test manager
menu bar.

The configuration editor window opens directly to a panel that allows you to
specify an exclude list. This quick set mode allows you to quickly change values
that change frequently between test runs. These values are also referred to as
standard values. Note that standard values can also be changed using the
configuration editor window in question mode.

2. In the Exclude List pane, click Other.

This activates a tool with which you can specify a set of exclude lists.

3. Click the Add button on the upper right portion of the tool.

This invokes a file chooser with which you can specify an exclude list. The current
directory of the file chooser should be the directory in which you started the
JavaTest harness. If it is not, please navigate to that directory.

4. Double-click on the lib directory entry in the file chooser.
16 JavaTest Architect’s Guide • March 10, 2009

5. Choose the demo.jtx entry in the file chooser and click Select.

Notice that the exclude list (demo.jtx) is added to the Exclude Lists text box.

6. Click Done in the configuration editor.

7. Change the view filter to “Current Configuration”.

The Current Configuration filter shows which tests are selected and filtered out in
the configuration, in effect a filter that shows which tests will be run next, as
opposed to the Last Test Run filter which shows the tests that were run.

Notice that the icon for the for InsertTest.java entry in the Test tree changes
from red to gray. This indicates that the test has been filtered out and will not be
executed. Also notice that the Test Suite Root folder has changed from red to
green, indicating that all the currently selected tests have passed.

Generate a Report
You can use the JavaTest harness to generate an HTML report that describes the
results of the test run. All of the information contained in the report is available from
the GUI; however, the following steps describe how to generate and browse a report
that describes the test run done in the previous sections of this tutorial.

1. Choose Report > Create Report

The Create a New Report dialog box opens.

2. Specify the directory in which you want the report files to be written

If you wish to use a file chooser to specify the directory, click on the Browse
button.

3. Click the Create Report(s) button

The reports are generated and you are asked whether you want to view the
report.

4. Click Yes

The reports are displayed in the JavaTest report browser window. Scroll through
the report and follow the various links to view data about the test run.

Note – If you wish to print the report, you can open the report in your favorite web
browser and print it from there.
Chapter 2 JavaTest Tutorial 17

Summary
This tutorial touches only on the core functionality of the JavaTest harness GUI.
Please continue to explore additional functionality on your own. Also, please consult
the online help for information about all of the JavaTest features.
18 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 3

Overview

JavaTest test suites are comprised of a number of components, many of which you,
as the test suite architect, provide. This chapter introduces you to these components
and some underlying concepts that are discussed in much greater detail later in this
manual.

The most fundamental components of a test suite are the tests themselves. Tests are
typically Java programs that exercise aspects of an API or compiler. To work well
with the JavaTest harness, these files are organized in the file system hierarchically.
The JavaTest harness finds the tests and displays them in the JavaTest GUI test tree
based on this hierarchy.

Before the JavaTest harness can execute a test, it must know some fundamental
things about the test — for example, where to find the class file that implements the
test and what arguments the test takes. This information is contained in a test
description. The test description is a group of name/value pairs that can be embodied
in different ways — for example, as tag test descriptions and HTML test descriptions.
Tag test descriptions are inserted directly into the test source files using Javadoc™
style tags. HTML test descriptions are HTML tables contained in HTML files
separate from the test source and class files. The examples included with the
JavaTest Architect’s release demonstrate both types of test descriptions.

The JavaTest harness uses a specialized class called a test finder to locate tests, read
test descriptions, and pass test description values to the JavaTest harness. As the
architect, you specify a test finder that knows how to read the test descriptions you
have designed for your test suite. The JavaTest Architect’s release includes test
finders that know how to read tag and HTML test descriptions; you can use the
included test finders as-is, modify them, or create your own.

Once the test finder locates the test and reads the test description, it is up to the test
script to actually run the test. The test script is a Java class whose job is to interpret
the test description values, run the tests, and report the results back to the JavaTest
harness. As the test suite architect, you are responsible for providing the test script
that JavaTest uses. Test scripts can be very simple or complex, depending on the
19

requirements of your test suite. A number of test script examples are included with
the JavaTest Architect’s release that you can use as is, extend, or use as a template
for your test script.

In addition to the fundamental information about each test, the test script might also
require platform-specific information about each test to execute it. This information
is provided by the person running the tests, usually by completing a wizard-like
configuration interview designed by you. Platform-specific information includes
information such as the location of the JVM to be used when running the tests, the
names of remote computers, and other resources required to run the tests.

When test execution is complete, a test normally creates a Status object and passes
it back to the test script; the test script then stores the test results in the
TestResult object. Test status includes an integer that represents the status (pass,
fail, error, not run) and a short message that describes what happened — for
example, an error message. Test results include more detailed information about the
results of the test’s execution — for example, any additional messages produced by
the test.

When the JavaTest harness loads a test suite, the first thing it does is read a file
named testsuite.jtt located in the top-level directory of the test suite. The
testsuite.jtt file is a registry of information about the test suite that includes
the paths to the components described above and other static information about the
test suite. The JavaTest harness internalizes this information in a TestSuite object
that acts as a portal to all information about the test suite. Whenever the JavaTest
harness requires information about the test suite, it queries the TestSuite object.
As test suite architect, you create and maintain the testsuite.jtt file.

FIGURE 3-1 shows a graphical representation of the different test suite components:
20 JavaTest Architect’s Guide • March 10, 2009

FIGURE 3-1 Test Suite Components

The following table summarizes the sequence of steps the JavaTest harness uses to
run test suites and your responsibility for each step. These steps are described in
more detail in the following chapters.

TABLE 3-1 Summary of JavaTest Harness Operation

Events Architect’s Role

1. The user starts the JavaTest harness Optionally, create a wrapper command to
start the JavaTest harness in the right
location and with the correct arguments.

2. The JavaTest harness reads
testsuite.jtt to gather information
about the test suite including the names
and class paths for classes such as the
finder, test script, and configuration
interview. The JavaTest harness calls the
TestSuite class, which in turn creates the
TestSuite object. The JavaTest harness
passes information from testsuite.jtt
to the TestSuite class when it is created.

Determine what information is included in
testsuite.jtt and what information (if
any) is built directly into your test suite
class. The components you create, including
your test suite class are contained in a Java
archive (JAR) file installed in the test suite.
The path to the JAR file is specified in the
testsuite.jtt file.

Provide your test suite class

Components provided by
the test suite architect.

Components provided by
test developers.

JavaTest Harness

TestSuite

Test
Finder

Test
Script

Configuration
Interview

Test Descriptions

Tests
Chapter 3 Overview 21

Remote Execution
It is often convenient or necessary to run tests on a system other than the one
running the JavaTest harness. In this case, an agent must be used to run the tests on
the test platform and communicate with JavaTest harness. The JavaTest harness
provides a general purpose agent (JavaTest Agent), but test architects can also create
custom agents.

The JavaTest Agent is a lightweight program compatible with JDK 1.1 (does not
require the Java SE platform, or Swing). The JavaTest Agent uses a bidirectional
connection to communicate between the test platform and JavaTest—it supports
both the TCP/IP and RS-232 protocols. Other types of connections can be added

3. The JavaTest harness queries the
TestSuite object to determine which
test finder to use.

Provide your test finder class

4. The JavaTest harness starts the test finder.
The test finder reads test descriptions and
creates TestDescription objects. The
JavaTest GUI displays the test tree.

5. The user starts the test run. If the
configuration information is incomplete,
the JavaTest harness activates the
configuration editor.

Provide the configuration interview

6. The JavaTest harness asks the TestSuite
object to create a fresh copy of the test
script for each test. The test script runs tests
according to the information in the test
description and environment. When the test
is complete, the test script reports the test’s
exit status to the JavaTest harness.

Design the test execution model and create
the test script

7. The test suite updates the TestResult
object with the results of the test execution
and writes the test results to a file in the
work directory. Test results are described in
“Test Result” on page 100”.

8. The JavaTest harness updates the GUI
and/or displays information at the
command line.

TABLE 3-1 Summary of JavaTest Harness Operation (Continued)

Events Architect’s Role
22 JavaTest Architect’s Guide • March 10, 2009

through the JavaTest API, for example, infrared, parallel, USB, firewire connections
can be added and modelled on the existing system. If a test platform meets the
following requirements the JavaTest Agent will probably work well:

■ The device supports a communication layer that can last the duration of a test
(couple of minutes)

■ The agent code can be loaded into the device

If the test platform does not meet these requirements, the JavaTest API can be used
to create a custom agent. Agents have been created to run tests on devices such as
cell phones, PDAs, and pagers.
Chapter 3 Overview 23

24 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 4

Creating a Test Suite

This chapter leads you through the process of creating a very small working test
suite quickly and easily by following step-by-step instructions. To simplify the
process, conceptual information is generally not provided but is available in later
chapters.

The test suite you create here can serve as the basis for your entire test suite. If your
tests have no special requirements that the Standard Test Finder and Standard Test
Script cannot accommodate, you may be able to create your product test suite by
simply adding additional tests and creating a configuration interview to gather the
information required to execute your tests.

Notes:

■ The instructions in this chapter assume that you have completed the tutorial in
Chapter 2 and that you have read Chapter 3.

■ The instructions also assume that you are familiar with basic operating system
commands on your system.

■ In the examples, path names are given using the “\” file separator. If your
system uses a different file separator, please substitute it where appropriate.

This chapter describes how to:

1. Create a test suite directory

2. Create a testsuite.jtt file

3. Copy javatest.jar to the test suite lib directory

4. Add appropriate classes to the classes directory

5. Create a test

6. Run the test suite

Other issues of interest regarding test suite creation are discussed at the end of the
chapter.
25

Create a Test Suite Directory
Create the directory and sub-directories for your test suite.

1. Create the top-level test suite directory.

Create the directory somewhere convenient in your file system. This directory is
referred to as ts_dir for the remainder of this chapter.

2. Under ts_dir, create sub-directories named tests, lib, and classes.

Create the testsuite.jtt File
As described in Chapter 3, the JavaTest harness reads the testsuite.jtt file to
find out information about your test suite. The following steps describe how to
create the testsuite.jtt file for this test suite.

1. Make ts_dir the current directory.

2. Create the testsuite.jtt file.

Enter the following information into a text editor:

You can substitute your own string values for the name and id properties.

CODE EXAMPLE 4-1 testsuite.jtt File

Test Suite properties file for DemoTCK test suite
with tag-style tests
name=My Test Suite
id=1.0
finder=com.sun.javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.javatest.interview.SimpleInterviewParameters
26 JavaTest Architect’s Guide • March 10, 2009

Note – The classpath entry is not used here because the Standard Test Finder,
Standard Test Script, and Simple Interview classes are all contained within
javatest.jar which is automatically on the class path. If you create your own
components, you must include the classpath entry to point to the JAR file that
contains these classes. See Chapter 8 for more information about the
testsuite.jtt file.

Save the file as ts_dir\testsuite.jtt.

Copy javatest.jar
The test suite works best if there is a copy of the javatest.jar file in the lib
directory of the test suite; this enables the JavaTest harness to automatically locate
the test suite.

Copy javatest.jar from the jt_install\examples\javatest\simpleTags\
demotck\lib directory to ts_dir\lib.

Note – The javatest.jar file contains the SimpleInterview class that is used
with this test suite (com.sun.javatest.SimpleInterview.Parameters). As
your test suite becomes more complicated and customized, you may need to create a
custom interview. See Chapter 6 for more information.

Set Up the classes Directory
In order to execute, tests must have access to some of the classes contained in
javatest.jar. Extracting these classes eliminates the need for each test to have
javatest.jar on its class path. The the most convenient location to place these
classes is the ts_dir\classes directory.

1. Make ts_dir\classes the current directory.

2. Verify that the Java SE platform (version 1.5 or later) is in your path.

At a command prompt, enter:

C:\> java -version
Chapter 4 Creating a Test Suite 27

3. From javatest.jar, extract the classes required to run the tests.

Use the following command line:

jar -xvf ..\lib\javatest.jar com\sun\javatest\Test.class
com\sun\javatest\Status.class

Note – As your test suite become more complex, you may have to add additional
libraries to the classes directory.

Create a Test
The following instructions describe how to create a very simple test to add to your
test suite. For more detailed instructions about writing TCK tests, see the Test Suite
Developers Guide.

1. Make ts_dir\tests the current directory.

2. Enter the test code into your favorite text editor.

TABLE 4-1 contains a template you can use as the basis for writing simple tests:

CODE EXAMPLE 4-2 Simple Test Template

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/
public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();

 }
public Status run(String[] args, PrintWriter log1, PrintWriter

log2) {
Status result;
// your test code here ...
return result;

}
}

28 JavaTest Architect’s Guide • March 10, 2009

Note that the section delimited with the /** **/ characters is the test description
portion of the test that must be present for the JavaTest harness to locate and
recognize the test. The portions of the template that you customize are in bold font.
The following table describes the test description entries recognized by the Standard
Test Script:

You can create simple tests by replacing the comment:

// your test code here ...

with code that tests your API. Note that the test must return a Status object as a
result.

Note – You can find examples of simple tests at:
jt_install\examples\javatest\simpleTags\demotck\tests

CODE EXAMPLE 4-3 contains a very simple test you can use to get going. Be sure to
copy the entire file, including the test description delimited with the /** **/
characters.

TABLE 4-1 Default Test Description Entries

Test Description Entry Description

test Identifies the comment block as a test description and the containing
file as a test

executeClass Specifies the name of the test’s executable class file (assumed to be
located in the classes directory)

executeArgs Specifies arguments (if any) that the test accepts

sources Names the source files required to compile the test. This entry is
required if you use the JavaTest harness to compile your tests. See
Appendix 7 for more information. This tag is also used by the
JavaTest harness to display a test’s sources in the Files tab of the Test
pane.

keywords Specifies user-defined keywords that direct the JavaTest harness to
include or exclude tests from a test run.

CODE EXAMPLE 4-3 Simple Test

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;

/** @test
Chapter 4 Creating a Test Suite 29

3. Save the file as MyTest.java.

4. Compile MyTest.java.

Use the following command on WIN32 systems:

C:\> javac -d ..\classes -classpath ..\classes MyTest.java

Use the following command on Solaris or Linux systems:

% javac -d ../classes -classpath ../classes MyTest.java

MyTest.class is created in the ts_dir\classes directory. As you add more
and more tests you should organize them hierarchically in subdirectories.

Note – As you add more and more tests, you may want to use the JavaTest harness
to compile the tests. For more information, see Chapter 7.

Run the Test Suite
You are now ready to run the test suite.

 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
s.exit();

 }

public Status run(String[] args, PrintWriter log1, PrintWriter
log2) {

Status result;
if (1 + 1 == 2)

result = Status.passed(“OK”);
else

result = Status.failed(“Oops”);
return result;

}
}

CODE EXAMPLE 4-3 Simple Test
30 JavaTest Architect’s Guide • March 10, 2009

1. Make ts_dir the current directory.

2. Start the JavaTest harness.

At a command prompt enter:

c:\> java -jar lib\javatest.jar -newdesktop

Note – The -newdesktop option is used here to ensure that the JavaTest harness
starts up like it did in the tutorial — under normal circumstances you should not use
this option. For information about JavaTest options, see the online help.

3. Run the tests the same way you ran the tests in Chapter 2.

The configuration interview for this test suite contains a question not included in the
tutorial configuration interview. Use the following information to answer the
question:

Odds and Ends
This section takes a closer look at the components that make up a typical test suite
and how they are organized. In addition, the various class paths required to run the
JavaTest harness, the agent, and tests classes are discussed.

Note that much of the organization described here is optional; however, experience
has shown that it works well for most test suites.

TABLE 4-2 Additional Configuration Interview Question and Answer

Question Title Answer Description

Class Path ts_dir\classes The test uses library classes located in
the classes directory.

Click the Add button to activate a file
chooser. Select the classes directory
and click the Add File button.
Chapter 4 Creating a Test Suite 31

Top-Level Test Suite Directory
The top-level test suite directory generally contains the following files and
directories:

TABLE 4-3 Top-Level Test Suite Files and Directories

File/Directory Description

testsuite.jtt A text file that serves as a registry of information about the test suite.
This files includes the paths to plug-in components (for example, the
test finder, test script, or configuration interview) as well as other
static information about the test suite. The presence of this file
defines the top-level directory of the test suite; therefore it must be
located there. This file is described in detail in Chapter 8.

lib\javatest.jar Contains all of the classes required to execute the JavaTest harness
and library classes. The library classes can be used to simplify the
creation of tests. If javatest.jar is located in the same directory as
the testsuite.jtt file, or in the ts_dir\lib directory, the JavaTest
harness automatically locates the test suite and does not prompt the
user for the path to test suite directory.

Note that it is very important not to put javatest.jar on the test
suite class path. It is very large and scanning it for library classes at
every test invocation impacts the performance of your test suite. The
best option is to extract any referenced classes into the classes
directory as shown in Step 3 in “Set Up the classes Directory” on
page 27. Use of these library classes is described in Chapter 5.

tests\ Contains test source files and test descriptions. Tests should be
organized hierarchically the way you want them to be displayed in
the test tree.

If you use the HTML test finder rather than the tag test finder,
include the HTML test description files along with the test sources in
the tests directory. For a discussion of test finders, see Chapter 9.
32 JavaTest Architect’s Guide • March 10, 2009

The Test Suite JAR File
All of the components you create for the test suite should be delivered to the user in
a single JAR file installed in the lib directory of the test suite. The JAR file is added
to the class path in the testsuite.jtt file as described in Chapter 8. Experience
has shown that it is best to organized the JAR file with the following directory
structure:

com\
your_company\

your_product\
Interview class files, interview resource files, More Info help

For example, the JAR file for the demo TCK test suite:

jt_install\examples\javatest\simpleTags\demotck\
jtdemotck.jar

is organized like this:

com\
sun\

demotck\
Interview class files, interview resource files, More Info help

If you provide a large number of components, you can further organize them into
sub-packages:

classes\ The directory that contains all of the compiled test classes and library
classes required to run your tests. This directory is automatically
placed on the JavaTest harness class path.

lib\ An optional directory that contains any other files required by your
the test suite. These files might include:

jttestsuite.jar — If you create a custom interview, or customize any
of the JavaTest plug-in classes, you package the classes and interview
files in a custom JAR file. See “The Test Suite JAR File” below for
details.

test_suite_x.x.jtx — The exclude list is a mechanism used by test
suites to identify tests that should not be run.

doc\ An optional directory that contains documentation that describes
how to run the test suite and specifies the rules for certifying a
product.

TABLE 4-3 Top-Level Test Suite Files and Directories (Continued)

File/Directory Description
Chapter 4 Creating a Test Suite 33

com\
your_company\

your_product\
interview\
Interview class files, interview resource files, More Info help

lib\
Everything else (TestSuite, Script, Finder, etc.)

Class Paths
When you create a test suite, it is important to keep in mind the three potential class
paths that are involved: the JavaTest class path, the test class path, and the agent
class path. The following sections describe how you manage these.

JavaTest Class Path

This is the class path that the JavaTest harness uses to access its classes, libraries, and
your plug-in classes. The JavaTest class path can be set by means of:

■ The CLASSPATH environment variable

■ The -classpath option to the Java runtime

■ The -jar option to the Java runtime (this is the standard)

In addition, each test suite can use the classpath entry in the testsuite.jtt
file to extend the class path. The classpath entry is used to add custom plug-in
components and interviews that you create.

Agent Class Path

Often you must run tests on a system other than one on which the JavaTest harness
runs. In this case you use an agent (such as the JavaTest Agent) to run the tests on
that system. The agent class path is used by the agent to access its classes, libraries,
and any plug-in classes. The class path can be set by means of:

■ The CLASSPATH environment variable

■ The -classpath option to the Java runtime

■ The -jar option to the Java runtime

■ Some other platform-specific mechanism
34 JavaTest Architect’s Guide • March 10, 2009

Test Class Path

This is the class path used by the tests during execution. It is normally the
responsibility of the configuration interview and/or test script to set the class path
for each test in the test environment command entry (see “Command Strings” on
page 50). Test classes are normally located in the ts_dir\classes directory, you
normally include this on the test class path. You can also put any classes that your
tests require in ts_dir\classes and they will be found.

Note – If your platform requires that tests run in the same JVM as the agent, you
must include the classes required by the tests on the agent class path. In this case
your interview need not put a test class path in the test environment command
entry.
Chapter 4 Creating a Test Suite 35

36 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 5

Writing Tests

This chapter describes how to write tests that work well with the JavaTest harness.
Special attention is paid to the test execution model implemented by the Standard
Test Script which is designed to work well with test suites that test the compatibility
of Java APIs and should work well with most Java SE technology-based TCK test
suites.

Note that this discussion focuses on the mechanics of writing tests that work with
the JavaTest harness. For information about the “art” of writing compatibility tests,
see the Test Suite Developers Guide.

The example test suites included with the JavaTest Architect’s release contain
numerous test examples. See the following directories:

jt_install\examples\javatest\simpleTags\tests
jt_install\examples\javatest\simpleHTML\tests

You might find it helpful to refer to those tests as you read this chapter.

The Test Execution Model
The design and invocation of a test is a reflection of the test execution model that
you design for your test suite. The test execution model describes the steps involved
in executing the tests in your test suite and is implemented by the test script.

As you design your test suite you should think about how your tests are going to be
executed. Some typical questions you might ask:

■ Is each test invoked by executing a single class?

■ Do the tests require multiple steps, implemented by multiple class invocations?

■ Must test classes be started on different machines and in a specific order?
37

Most TCK test suites test specific aspects of an API. These types of tests lend
themselves to an execution model in which tests are run by invoking a single class
that exercises a method or group of methods. The JavaTest Architect’s release
includes the Standard Test Script (com.sun.javatest.lib.StdTestScript)
that implements this test execution model. The Standard Test Script is discussed in
more detail in Chapter 10.

If your test suite requires a more complex test execution model, you have to create a
test script to implement it. See Chapter 10 for information about creating a custom
test script.

Note – The test execution model implemented by the Standard Test Script includes
an optional compilation step. The Standard Test Script can be used to:
- Execute precompiled tests
- Compile the tests
- Compile and execute the tests

See Chapter 7 for more information about compiling tests with the JavaTest harness.

The Test Interface
If you plan to run your tests using the execution model embodied by the Standard
Test Script, the tests must implement the run method of the interface
com.sun.javatest.Test. The Test interface provides a very flexible
mechanism that is well suited for creating most tests. If the Test interface does not
suite your needs, you can write your own interface. You can find information about
creating your own interface in Chapter 10.

The Test interface run method takes an array of strings and two output streams
and returns a Status object. The array of strings is taken from the executeArgs
entry in the test description. The output streams are provided by the JavaTest
harness; any output written to the output streams is saved in the TestResult
object and is displayed in the Test Run Messages tab in the JavaTest GUI. The end
result of the test is a Status object — a combination of an integer code and a
message string (see “Test Status” on page 40).

The following code example shows a template for tests written to work with the
Standard Test Script; the areas you change are in bold font:
38 JavaTest Architect’s Guide • March 10, 2009

Note that the section delimited with the /** **/ characters is the test description
portion of the test which is described in more detail later in this chapter in “Test
Description Entries” on page 41. The Status object is described in “Test Status” on
page 40.

Class Paths
The com.sun.javatest.Test interface is delivered in javatest.jar;
however, you should extract it into your test suite’s classes directory so that it is
easily available to all of your test classes.

Note – To improve test performance, never add javatest.jar to test paths
anywhere in your test suite. If you use classes provided in javatest.jar, extract
them into your test suite’s classes directory.

CODE EXAMPLE 5-1 Simple Test Template

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest implements Test {
public static void main(String[] args) {

PrintWriter out = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, out, null);
s.exit();

 }

public Status run(String[] args, PrintWriter out1, PrintWriter
out2) {

Status result;
// your test code here ...
return result;

}
}

Chapter 5 Writing Tests 39

Test Status
The Status object is an integer/string pair that encodes the exit status of the test.
The JavaTest harness supports the following exit status values:

Note – The NOT_RUN status indicates that the test has not been run. This is a special
case and is reserved for internal JavaTest harness use only.

The integer portion of the Status object represents the exit status; the string
portion is a message that summarizes the outcome (for example, an error message).
Only the short integer portion is used by the JavaTest harness to determine the test
status. The message string provides information to the user running the test. The
message is passed to the test script which writes it into the test result file.

Note that the object is immutable once it is created — if the test script modifies the
message string it must take the Status object created by the test and recreate the
Status object including the new message string.

The JavaTest harness uses the information in the Status object in its GUI status
displays and reports.

There are two important methods in the Status API that your tests can use:
passed() and failed(). Both methods take a string as an argument and return a
Status object. The JavaTest harness displays these strings in the Test Run Message
tab in the JavaTest GUI and they can be an important source of information to users
running the tests. The following example shows how these methods are used:

TABLE 5-1 Exit Status Values

Status Meaning

PASSED A test passes when the functionality being tested behaves as
expected.

FAILED A test fails when the functionality being tested does not behave
as expected.

ERROR A test is considered to be in error when something (usually a
configuration problem) prevents the test from executing as
expected. Errors often indicate a systemic problem — a single
configuration problem can cause many tests to fail. For example,
if the path to the Java runtime is configured incorrectly, no tests
can run and all are in error.
40 JavaTest Architect’s Guide • March 10, 2009

The test entries in the reports generated by the JavaTest harness are grouped based
on the string arguments you supply to Status.passed and Status.failed. It’s
generally a good idea to keep all of the Status.passed messages short and
consistent so that similar tests are grouped together in reports. Status.failed
messages should generally be longer and more descriptive to help the user
determine why the test failed. Complete details should be written to the output
stream.

See the API documentation (doc\javatest\api) for the Status class.

Test Description Entries
All tests must have an associated test description that contains entries that identify it
as a test and provide the information required to run it. Test descriptions are located
and read by a test finder; the two standard test finders included with the JavaTest
harness read two styles of test description: tag test descriptions and HTML test
descriptions. It is your decision as test suite architect which style to use (you can
even create a custom style). Test finders are discussed in detail in Chapter 9. For
simplicity, only the tag style is shown in this chapter.

Test finders read all entries listed in the test description and add them to the
TestDescription object. The Standard Test Script looks for and uses the values
specified in the executeClass, executeArgs, and sources entries; the script
disregards any other entries. You can create your own custom script that recognizes
additional test description entries and validate those entries. See Chapter 10 for
more information.

CODE EXAMPLE 5-2 Status Code Fragment

public Status run(String[] args, PrintWriter out1, PrintWriter
out2) {
Status result;

if (1 + 1 == 2)
result = Status.passed(“OK”);

else
result = Status.failed(“Simple addition performed

incorrectly”);
return result;
}

}

Chapter 5 Writing Tests 41

The following table describes the entries understood by the Standard Test Script:

The following code snippet shows how a tag test description appears in a test source
file:

Keywords
You can add keywords to test descriptions that provide a convenient means by
which users can choose to execute or exclude pre-selected groups of tests. The
person who runs the test suite can specify keyword expressions in the configuration
editor. When the test suite is run, the JavaTest harness evaluates the keyword
expressions and determines which tests to run based on the keywords specified in
the test description. See the JavaTest harness online help for information about
specifying keyword expressions.

TABLE 5-2 Default Test Description Entries

Test Description Entry Description

test Identifies the comment block as a test description. This entry is
required. There is no “test” entry in the TestDescription object.

executeClass Specifies the name of the test’s executable class file (assumed to be
located in the classes directory). This entry is required.

executeArgs Specifies the arguments (if any) that the test accepts. This entry is a
list of strings separated by white space. This entry is optional.

sources Specifies the names of the source files required to compile the test.
This entry is required if you use the JavaTest harness to compile your
tests. See Chapter 7 for more information. This tag is also used by the
JavaTest harness to display a test’s sources in the Files tab of the Test
pane. This entry is optional.

keywords Specifies keywords that the user can specify to direct the JavaTest
harness to include or exclude tests from a test run. Keyword values
consists of a list of words (letters and numbers only) separated by
white space. This entry is optional.

CODE EXAMPLE 5-3 Tag Test Description

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 * @executeArgs arg1 arg2
 * @keywords keyword1 keyword2
 **/
42 JavaTest Architect’s Guide • March 10, 2009

Multiple Tests in a Single Test File
If you find that you are writing lots of very small tests to test similar aspects of your
API, you can group these similar tests together as test cases in a single test file. Tests
that contain test cases should use the com.sun.javatest.lib.MultiTest class
rather than the com.sun.javatest.Test class. MultiTest extends
com.sun.javatest.Test to add this functionality. One of the major benefits of
using MultiTest to implement test cases, is the test cases can be addressed
individually in the test suite’s exclude list. Another advantage to using MultiTest is
that the test cases are run in the same JVM which is generally faster than starting a
new JVM for each test. The downside to using MultiTest is that tests are more
susceptible to errors introduced by memory leaks.

MultiTest is included with the JavaTest release as a standard library class.
MultiTest is a class that implements the com.sun.javatest.Test interface
and allows you to write individual test cases as methods with a specific signature.
These methods cannot take any parameters and must return a
com.sun.javatest.Status object as a result. Argument decoding must be done
once by a test for its test case methods. MultiTest uses reflection to determine the
complete set of methods that match the specific signature. MultiTest calls test case
methods individually, omitting any tests cases that are excluded. The individual
Status results from those methods are combined by MultiTest into an aggregate
Status object. The test result is presented as a summary of all the test cases in the
test.

The following example shows a very simple test that uses MultiTest to implement
test cases:

CODE EXAMPLE 5-4 MultiTest Example

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.Test;
import com.sun.javatest.lib.MultiTest;

/** @test
 * @executeClass MyTest
 * @sources MyTest.java
 **/

public class MyTest extends MultiTest {
public static void main(String[] args) {

PrintWriter err = new PrintWriter(System.err, true);
Test t = new MyTest();
Status s = t.run(args, null, err);
Chapter 5 Writing Tests 43

For more information about com.sun.javatest.lib.MultiTest, please refer
to the API documentation.

Subtyping MultiTest
If you create a number of tests that are similar you can create a super class to
implement functionality they have in common. You can also create this class as a
subtype of the MultiTest class rather than the Test interface so that you can take
advantage of the test case functionality it provides. Such subtypes are typically used
to perform common argument decoding and validation, or common set-up and tear-
down before each test or test case.

Organizing Tests Within Your Test Suite
This section describes some guidelines about how to organize your test source and
class files.

// Run calls the individual testXXX methods and
// returns an aggregate result.
s.exit();

 }
public Status testCase1() {

if (1 + 1 == 2)
return Status.passed("OK");

else
return Status.failed("1 + 1 did not make 2");

}
public Status testCase2() {

if (2 + 2 == 4)
return Status.passed("OK");

else
return Status.failed("2 + 2 did not make 4");

}
public Status testCase3() {

if (3 + 3 == 6)
return Status.passed("OK");

else
return Status.failed("3 + 3 did not make 6");

}
}

CODE EXAMPLE 5-4 MultiTest Example
44 JavaTest Architect’s Guide • March 10, 2009

Source Files
It is very important to ship the source files for tests in your test suite. Test users must
be able to look at the sources to help debug their test runs.

Test sources should be located with the files that contain their test descriptions. If
you use tag test descriptions, the test description is included as part of the source
file; however, if you use HTML test descriptions, they are contained in separate
HTML files that should be included in the same directories as their test source files.

The JavaTest harness assumes that tests are organized hierarchically in a tree
structure under the ts_dir/tests directory. The test hierarchy contained in the
tests directory is reflected in the test tree panel in the JavaTest GUI (technically, it
is a tree of the test descriptions). When you organize your tests directory, think
about how it will look in the test tree panel. In test suites that test APIs, the upper
part of the tree generally reflects the package structure of the product you are
testing. Farther down the tree, you can organize the tests based on the sub-packages
and classes being tested. The leaves of the tree might contain one test per method of
that class. In some cases it might make sense to organize the tree hierarchy based on
behavior; for example, you could group all event handling tests in one directory.

Class Files
Experience has shown that it is a good idea to place all of your test class files in the
ts_dir\classes directory rather than locating them with the source files in the
ts_dir\tests directory. Placing class files in the classes directory has the
following benefits:

■ It simplifies the specification of the test execution class path, especially on smaller
devices that can only specify a single class path for all the tests.

■ The standard configuration interview automatically places ts_dir\classes on
the test class path

■ It permits easier code sharing among tests

Note – In some cases the test platform may dictate where you can put your classes.
For example, if your test platform requires the use of an application manager, it may
require that your classes be placed in a specific location.
Chapter 5 Writing Tests 45

Error Messages
It is important that your tests provide error messages that test users can readily use
to debug problems in their test runs. One useful method is for your error messages
to compare expected behavior to the actual behavior. For example:

Addition test failed: expected a result of “2”; got “3”

Longer detailed messages should go to the test and/or test script diagnostic streams.
Use the Status object for shorter summary messages.
46 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 6

Creating a Configuration Interview

As you design your test suite, you must decide how to provide the JavaTest harness
with all of the information required to execute your tests. Some of this information is
static — it is known prior to runtime through the test description mechanism.
However, some information cannot be determined ahead of time and differs based
on the context in which the tests are run. This information is called the configuration
and is obtained from the user through a configuration interview that you design.
The configuration interview is presented to the user in the JavaTest configuration
editor and consists of a series of simple questions that the user answers. The
interview exports the answers in a format called a test environment that the JavaTest
harness understands.

This chapter describes how to create and package a configuration interview.

Designing Your Configuration
This section focuses on the design of the configuration information and how to
determine what information is necessary to run your tests suite.

What is a Configuration?
The configuration provides the JavaTest harness with the information it needs to
execute tests. This information falls in the following categories:

■ Information required by the script to execute the tests

■ Information required by tests. This information augments the test description and
usually consists of information that changes based on the test execution context
(for example, the platform or network).

■ Information that determines which tests to include or exclude from a test run
47

These categories are discussed in the following sections.

Test Script Information
A test script is responsible for running your tests. The test script knows the series of
steps required to execute each test. It typically relies on test commands to perform
each step and you design your configuration to provide the test commands (and
their arguments) that the test script uses to execute each test. Test commands are
Java classes that the test script instantiates to run tests.

As an example, the Standard Test Script uses a single step to execute tests; that step
is defined in the configuration entry called command.execute. The configuration
interview is responsible for setting the value of command.execute so that the
Standard Test Script uses the appropriate command and arguments. For example,
you can tell the Standard Test Script to use the ExecStdTestOtherJVMCmd
command which executes tests in a process on the same computer that runs the
JavaTest harness:

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd
args

If you intend to execute the tests differently; for example, on a different computer,
you would define command.execute differently in your configuration. For a list of
test commands included with the JavaTest release, see Appendix A. For information
about creating custom test commands, see Chapter 10.

Test Description Entries
In the previous chapters of this manual, you have seen that most test descriptions
are static; these entries consist of values that are known ahead of time and can be
specified directly. In some cases these arguments cannot be determined ahead of
time, especially test arguments (executeArgs). For example, tests that test
network APIs may require the names of hosts on the network to exercise the API. If
the test suite runs in different locations and on different networks, these values
cannot be known ahead of time by the test developer. The configuration interview is
expected to collect this information and make it available to the test.

A script may allow the test developer to specify variables in some test description
entries that are defined in the configuration; these variables are prefixed with the
“$” character. For example the Standard Test Script allows variables in the
executeArg entry; in the case of a network test, here is what the test description
might look like:
48 JavaTest Architect’s Guide • March 10, 2009

The arguments to the executeClass and sources entries are static — they are
known ahead of time and do not change based on the context in which the test runs.
The host names or IP addresses cannot be known ahead of time and are specified as
variables to which the JavaTest harness assigns values when the test is run. The test
suite’s configuration interview asks the user to specify the values of the hosts and
port numbers required to run the test; the values of $testHost and $testPort
are defined from those answers. The configuration interview creates entries in the
test environment as name/value pairs. For example:

testHost=129.42.1.50

testPort=8080

Which Tests to Run
The JavaTest harness provides a number of ways that the user can specify which
tests in the test suite to run. These standard values can be specified by the user in the
configuration editor window question mode or quick set mode. You can easily
include interview questions that gather this information at the end of the interview
for you and require no extra work on your part.

Designing Your Interview
The goal of the configuration interview is to create (or export) a test environment.
The test environment consists of one or more command templates that the test script
uses to execute tests and the set of name/value pairs that define values required to
run the tests.

The previous section described how to think about the kinds of configuration values
your test suite needs; this section focuses on how you collect configuration values
and translate them into test environment entries.

CODE EXAMPLE 6-1 Network Test Description

/** @test
 * @executeClass MyNetworkTest
 * @sources MyNetworkTest.java
 *@executeArgs -host $testHost -port $testPort
 **/
Chapter 6 Creating a Configuration Interview 49

Command Strings
The most complex test environment entries are almost always the command strings
the test script uses to execute the tests. A command string is a template that specifies
the command used by the test script to execute the test. A command string contains
symbolic values (variables) whose values are provided when the test is executed.

The complexity of these entries is determined by the versatility required by the test
suite. If the test suite is always run on the same computer, in the same network, the
command string is probably very easy to specify. In many cases the computing
environment varies considerably, in which case the command strings are built up
largely from answers that users provide in the configuration interview.

As previously described, test scripts depend on test commands to know how to
execute tests in specific ways. The JavaTest release contains a set of standard library
test commands that you can use to execute tests. The following table describes the
most commonly used test commands. These test commands are described in more
detail in Appendix A.

If your platform requires a custom agent in order to run tests, use the test command
designed for use with that agent.

Commands and command templates are described in more detail in Chapter 10.

The examples in this section show how to create command entries for the Standard
Test Script using two of these commands: ActiveAgentCommand and
ExecStdTestOtherJVMCmd.

Example 1
The Standard Test Script uses the value of the command entry command.execute
to execute tests. If the tests are executed on the same computer running the JavaTest
harness, a typical command entry for the Standard Test Script looks something like
the following:

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath $testSuiteRootDir\classes
$testExecuteClass $testExecuteArgs

TABLE 6-1 Commonly Used Test Commands

Test Command Description

ExecStdTestSameJVMCmd Executes a simple API test in the same JVM as the caller.
Typically used with the JavaTest Agent.

ActiveAgentCommand
PassiveAgentCommand

Execute a subcommand on a JavaTest Agent running in
active or passive mode
50 JavaTest Architect’s Guide • March 10, 2009

The portion of the entry to the left of the “=” is the name of the test environment
entry, the portion to the right is the command string.

Let’s examine the command string in detail:

com.sun.javatest.lib.ExecStdTestOtherJVMCmd

The first part of the command string is the name of the test command class
used to execute the test classes. In this example the command executes tests in
a process on the same computer that runs the JavaTest harness.

Interview implications:

Your configuration interview specifies the command to use to execute the tests.
If the API you are testing always runs in a known computing environment,
your interview might create this part of the entry without input from the user.
However, if the API being tested can be run in different ways, you must ask
the user which way they choose to run it and provide the appropriate test
command based on the user’s input.

Imagine an API that can be tested on the same computer running the JavaTest
harness, or on a different computer on the same network. In this case the
interview must determine which way the user intends to run the tests and
provide the appropriate command — ActiveAgentCommand or
ExecStdTestOtherJVMCmd.

-classpath ts_dir\classes

The class path required by the tests. Replace ts_dir with the path to your test
suite. To enhance performance, you should place all library classes required to
run the test classes in the classes directory.

See “Test Environment Variables” on page 53 for a list of available variables.

Interview implications:

You can determine the path to your test suite inside your interview. See
“Exporting the Test Environment” on page 56 for details. If the test classes
require no additional classes be on the class path other than the ones you
provide in the test suite’s classes directory, your interview can insert the
class path value directly into the entry without asking the user for input. If
additional class path entries may be required, your interview may include
questions that ask the user to provide additional entries that your interview
appends to the class path.

This environment entry that can get more complicated if the test suite may be
run using different versions of the Java runtime. Some Java runtime systems do
not use the -classpath option; for example, they might use a syntax such as
-cp or /cp. Additionally, some systems use the “:” character as the class path
separator and others use the “;” character. If this is the case, your interview
must include additional questions that determine the platform on which the
tests are run so that you can create the appropriate command entry.
Chapter 6 Creating a Configuration Interview 51

C:\JDK\bin\java.exe

The path to the Java runtime command used to execute the test classes.

Interview implications:

This path almost certainly differs from user to user, so almost any interview
must obtain this path from the user. The interview libraries include a question
type named “file” that is very useful for obtaining path names.

Although no additional options or arguments are shown in this example, many
Java runtimes or test suites require additional options and arguments. If your
tests require any additional options, you include them in additional portions of
the entry.

$testExecuteClass

A variable that represents the name of the test class. The test script obtains the
class name from the executeClass entry in the test description and provides
it at runtime.

Interview implications:

The interview adds the variable to the environment entry.

$testExecuteArgs

A variable that represents the arguments specified in the test description. The
test script obtains this value from the test description and provides it at
runtime.

Interview implications:

The interview adds the variable to the environment entry.

Example 2
For this example, imagine a test suite that runs in a limited environment — it always
runs on a remote system using the JavaTest Agent in passive mode. The command
entry looks like this:

command.execute=com.sun.javatest.lib.PassiveAgentCommand
-host myHost -port 501
com.sun.javatest.lib.ExecStdTestSameJVMCmd
$testExecuteClass $testExecuteArgs

Although this command is quite long, because of its limitations most of it is
boilerplate; the only values that your interview has to gather from the user are the
arguments to the -host and -port options (shown in bold).
52 JavaTest Architect’s Guide • March 10, 2009

Test Environment Variables
The following variables are available for use in test descriptions if you use the
Standard Test Script or a test script derived from it. If you create a custom test script,
it can provide additional values.

Writing Your Interview
The previous two sections focused on the design of your configuration and your
interview; this section focuses on writing the code to implement the interview.

This section takes a high-level view of the process of writing configuration
interviews; complete, working code examples are provided separately from this
manual. These examples are:

Demo TCK interview

The Demo TCK is a simple test suite created to demonstrate the basic
principles of writing and running test suites. The Demo TCK was featured in
Chapter 2. The source code and More Info files for the configuration interview
used in the Demo TCK test suite are included in the JavaTest Architect’s release
at the following location:

jt_install\examples\javatest\simpleTags\src

Demo Interview

The Demo Interview is a self-documenting JavaTest interview that
demonstrates all of the interview question types, and other important
interview techniques. A special viewer allows you to view the source of a
question as you run it. Follow these instructions to start the Demo Interview:

i. In a command window make the following your current directory:

TABLE 6-2 Test Environment Variables

Variable Name Definition

$testExecuteArgs The value for the executeArgs parameter from the test
description of the test being run

$testExecuteClass The value of the executeClass parameter from the test
description of the test being run

$testSource The value of the source parameter defined in the test
description of the test being run. Valid only when using the
JavaTest harness to compile a test suite. See Chapter 7.
Chapter 6 Creating a Configuration Interview 53

jt_install\examples\javatest\interviewDemo\demotck

ii. Start the Demo Interview test suite

At the command prompt enter:

C:\>java -jar lib\javatest.jar -newDesktop

The -newdesktop option is used here to ensure that the JavaTest harness
loads the correct test suite. For information about JavaTest options, see the
online help.

iii. Choose Configure > New Configuration to start the interview

Follow the directions in the interview. You can also browse the source for
the interview at:

jt_install\examples\javatest\interviewDemo\src

Interview Classes
Interviews are built from the following classes:

com.sun.javatest.InterviewParameters

The top-level class used to build JavaTest configuration interviews. This class is
a special subtype of com.sun.interview.Interview
that provides the API required by the JavaTest harness. You do not normally
use this class directly, see BasicInterviewParameters below.

com.sun.interview.Question (and its subtypes)

Questions are the primary constituent elements of interviews. Questions
provide text and appropriate controls and serve as a place to store the user’s
response.

com.sun.interview.Interview

The base interview class. This class is used directly to implement sub-
interviews (if any).

com.sun.javatest.interview.BasicInterviewParameters

A subtype of com.sun.javatest.InterviewParameters that provides
standard questions for all of the “standard” configuration values (for example,
which tests to execute). You usually subtype this interview and expand it to
obtain your specific test environment information. The
BasicInterviewParameters class is flexible, see “Putting it all Together”
on page 62 for details.

For more information about these classes, please refer to the API documentation
available in doc\javatest\api.
54 JavaTest Architect’s Guide • March 10, 2009

To create a configuration interview, you normally provide a subclass of the
BasicInterviewParameters class and add questions to the interview. This class
is responsible for collecting all test environment and standard value information and
providing it to the JavaTest harness.

Interviews can contain nested sub-interviews. The choice of whether to break
interviews into smaller sub-interviews is a design decision based on manageability
— generally interviews over 20 questions are candidates for this kind of hierarchical
organization. Interviews often contain a number of branches, and these branches are
also often good candidates for becoming sub-interviews. Sub-interviews directly
extend com.sun.interview.Interview.

The Current Interview Path
As mentioned in the previous section, interviews are often composed from sub-
interviews that branch off of the main interview. During the interview process,
branches of the interview can become inactive because the user changes the answer
to a question; the branch can become reactivated if the user later changes the answer
back. When a user completes a configuration interview, the answers to all questions
the user has ever answered are stored on disk in an interview data file with the
.jti extension. Because active and inactive questions are present in the interview
data file, whenever the JavaTest harness needs configuration information (for
example, to run tests or to display the environment) the JavaTest harness must
determine the current interview path.

To determine the current interview path, the JavaTest harness starts at the first
question and queries each question for the next question on the path, attempting to
reach the Final question (see TABLE 6-3 for a description of different question types).
If it does not reach the Final question, the interview is considered incomplete; the
test configuration cannot be exported and the test suite cannot be run until the
missing questions are answered. If the user attempts to run the test suite with an
incomplete interview, they are asked whether they want to complete the interview at
that time — if they do, the configuration editor is activated.

Determining the Next Question
Every question except the Final question must provide a getNext() method that
determines the next (successor) question. The successor question can be fixed
(constant) or determined based on the answer of a current question or on the
cumulative answers of multiple preceding questions. Questions can also provide no
successor question (by returning null). Lack of a successor question usually means
that the current question is unanswered or contains an error; in that case the
interview is incomplete.
Chapter 6 Creating a Configuration Interview 55

You may add questions to the interview that gather no configuration information,
they are only used to determine the next question in the interview. These are
typically Choice questions used to determine a branch point in the interview. For
example, you might include a question that asks the user whether they want to
execute the tests locally (on the computer running the JavaTest harness) or on a
remote computer using the JavaTest agent. Depending on the answer, you branch to
the questions that gather information about how to run the JavaTest Agent.

Error Checking
If the user provides an invalid answer to a question, the interview cannot proceed.
You use the boolean isValueValid() method to check the validity of an answer
before you proceed to the getNext() method. You can handle error conditions in two
ways: by returning null which causes the configuration editor to display the
“Invalid response” message in red at the bottom of the question pane, or by making
the successor question an Error question that causes the configuration editor to
display a pop-up window with an error message that you provide (see
ErrorQuestion in TABLE 6-3).

Generally, an “Invalid response” message is sufficient if the error is a simple one; for
example, if the user answers an integer question with a letter. However, for more
subtle errors (for example, if an answer conflicts with a previous answer), it is
necessary to provide more information to the user in a pop-up window.

Exporting the Test Environment
As previously mentioned, one of the goals of the interview is to produce a test
environment. The JavaTest harness uses the InterviewParameters class’s
getEnv() method to obtain the test environment.

If you extend BasicInterviewParameters to create your interview, it provides
an implementation of the getEnv() method that uses the values you export.

If, however, you extend InterviewParameters directly, you must provide a
getEnv() method that gathers answers from the main interview and any sub-
interviews and returns an TestEnvironment object. The best and simplest way to
implement the getEnv() method is to use the interview’s export() method,
which in turn calls the export() method of each question on the current interview
path that provides one. Note that an interview does not normally override/provide
export()— it is provided automatically. When it is time to export the test
environment, the getEnv() method calls export() to gather their test
environment information. These questions export their values into a Map object from
which you can construct a test environment. For detailed examples see the source
code examples in the jt_install\examples directory.
56 JavaTest Architect’s Guide • March 10, 2009

When exporting the test environment, you can use the getTestSuite() method
to get information about the test suite. This information (for example, the location of
the test suite) is often useful in building test environment entries.

It may be sufficient for a question to simply export its answer; however, it is not
uncommon for complex environment entries to be constructed from the answers of a
group of questions. In this more complex case, one controlling question is responsible
for querying the other questions for their answers, assembling the information into
the proper format, and exporting the assembled answer to the environment object.
Question groups should normally be located in the same sub-interview. If they are in
different sub-interviews, the questions must provide the controlling question with a
pointer to themselves. Note that the controlling question must always be on the
current interview path so that its export() method can be called. If the controlling
question is ahead of any of the questions it controls, it must be prepared to cope
with potentially unanswered questions (null).

Note – It is generally a very good idea for the controlling question to precede the
questions that collect a given value, because the question text can provide
information to the user about the series of questions coming up.

Question Types
The Question class is a base class that provides the different types of questions
that you use to build your interview. You need not concern yourself about the GUI
layout of a question; the configuration editor automatically determines the
presentation of each question based on the question’s type.

The following table lists all of the question types and shows (when applicable) how
they are represented in the configuration editor.
Chapter 6 Creating a Configuration Interview 57

TABLE 6-3 Question Types

Question Type Description GUI Example

ChoiceArray A set of independent
boolean choices

Set of named
checkboxes

Choice A set of alternative
choices

Combo box or radio
buttons, depending on
the number of choices

Error A pseudo question
used to present error
messages

Pop-up dialog box

File A single file Type-in field with
associated file chooser

FileList A set of files A list box with an
associated file chooser

Final 1. A pseudo question
that marks successful
completion of the
interview

Text only, no user
input

2. A pseudo question
that marks the end of a
sub-interview

For internal use only;
never displayed

Float A floating point value
(optional min./max.
values)

Either slider or type-in
field depending on the
range

InetAddress An IPv4 or IPv6
address

Either four integer
fields, each of value 0 -
255, or a type-in field
with a lookup button.

Int An integer value Either slider or type-in
field depending on the
range

Interview A pseudo question
used for sub-
interviews; see
interview.callInt
erview(...) in the API

For internal use only;
never displayed

IPv4

IPv6
58 JavaTest Architect’s Guide • March 10, 2009

List A list of complex
values built from a set
of questions.

A list box that displays
the current contents of
the list. The following
questions add or edit a
selected value in the
list. This sequence is
automatically
terminated by a
corresponding marker
question.

Null Expository text;
generally used to
introduce a set of
questions

Text only; no user
input

Properties Enables configuring
multiple key-value
pairs in a single
question.

String String information Type-in field that
optionally includes
suggested answers

StringList A list of strings A list box

Tree A tree selection A tree selection GUI
based on JTree

YesNo A convenience choice
question for Yes/No
answers

Radio buttons

TABLE 6-3 Question Types

Question Type Description GUI Example
Chapter 6 Creating a Configuration Interview 59

Designing Your Questions
Be sure to break down complex environment entries into simple values that can be
answered by a single question, then build up the entry from those values. For
example, if you are creating an environment entry that requires the name of a remote
host and its port address, it’s best not to ask for both pieces of information in a
single question, but to ask for each piece of information in a separate question.

For example, the following entry previously seen in “Example 1” on page 50:

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd
C:\JDK\bin\java.exe -classpath $testSuiteRootDir\classes
$testExecuteClass $testExecuteArgs

could be built up from a number of interview answers:

■ Questions to determine whether the user plans to run the test locally or on a
remote computer, and whether they plan to run the tests in the same JVM as the
JavaTest Agent

■ A question to determine the path of the Java runtime command

■ One or more questions to determine the class path

■ Questions that determine the path separator on the test platform

Landing Point Questions
You might find it convenient and useful to include questions that do not gather any
information, but rather provide space between sections of the interview or provide a
frame of reference to the user about where they are in the interview. You can use the
Null question type for this type of interview question. In some cases you can use
landing points as bridges between the main interview and sub-interviews.

Sub-Interviews
If your interview contains a large number of questions, you can break it up into sub-
interviews. To create a sub interview, create a subtype of an Interview class. For
example:

class MySubInterview extends Interview {

....

}

The constructor should take a reference to the parent interview as an argument, and
this reference should be passed to the superclass constructor. This identifies this
interview as a sub-interview of the parent interview. For example:
60 JavaTest Architect’s Guide • March 10, 2009

MySubInterview(MyParentInterview parent) {

super(parent, "myTag");

...

}

In the constructor, use the setFirstQuestion method to specify the first question
in the sub-interview. Subsequent questions are found in the normal way using the
getNext method. For example:

MySubInterview(Interview parent) {

super(parent, "myTag");

setFirstQuestion(qIntro);

}

By default, a sub-interview shares a resource file and More Info help files (see
“Creating More Info” on page 70) with its parent interview (another reason to pass
in that parent pointer). You can choose to use a different resource file and HelpSet if
you want, although that is not typical for simple or moderately complex interviews.
See the API specifications for setResourceBundle and setHelpSet for details.

At the end of the interview, have the last question return an instance of a
FinalQuestion. This FinalQuestion is only a marker and does not have any
question text, More Info, or a getNext method. For example:

Question qXXX = {

Question getNext() {

return qEnd;

}

};

Question qEnd = new FinalQuestion(this);

For the parent interview to use a sub-interview, it must first create an instance of the
sub-interview. This should be created once and stored in a field of the interview. For
example:

Interview iMySubInterview = new SubInterview(this);

To call the sub-interview, use callInterview in a getNext method. The
callInterview method takes two parameters — a reference to the interview to be
called, and a follow-on question to be called when all the questions in the sub-
interview have been asked. When the JavaTest harness sees the FinalQuestion
at the end of a sub-interview, it goes back to where the interview was called and
automatically uses the follow-on question that was specified there. For example:

Question getNext() {

return callInterview(iMySubInterview, qFollowOnQuestion)

}

Chapter 6 Creating a Configuration Interview 61

Flow Charts

Experience has shown that commercial flow charting tools can be very helpful if the
interview becomes large and complicated. These tools can help you track the logical
flow of the interview and keep track of sub-interviews.

Putting it all Together
To write a configuration interview, you must provide a class that implements the
abstract class InterviewParameters. This class provides the JavaTest harness
access to both the environment values and to the standard values. Standard values are
configuration values used by the JavaTest harness to determine:

■ Which tests in the test suite to run

■ How to run them

To simplify this task, the JavaTest harness provides an implementation called
BasicInterviewParameters that does a lot of the work for you. This class
provides a standard prolog, questions for all the standard values, and a standard
epilog. All you have to do is to implement the methods and questions for your test
environment. However, you can also customize the other parts of the interview if
you wish to.

The questions in BasicInterviewParameters are divided into the following
groups:

TABLE 6-4 Interview Question Groups

Group Description

prolog Identifies the interview and provides helpful information to the user
about the interview such as how many questions the average
interview consists of and how to proceed. Optionally, provides
questions about the environment name and description.

environment The questions you write to gather information for the test
environment

tests Allows users to specify sub-branches of test trees as a way of limiting
which tests are executed during a test run

keywords Allows uses to filter tests based on keyword values. Test suites can
associate keywords with tests so that the keywords can be used as a
basis for including and excluding tests from test runs.

prior status Allows users to include and exclude tests based on their outcome in
a prior test run. Test can be excluded and included based on the
following status values: passed, failed, not run, error (test could not
be run).
62 JavaTest Architect’s Guide • March 10, 2009

The groups of questions are presented in the order shown. Each group provides a
method that identifies the first question in its group. The last question in the group
uses another method to determine the next question. By default, the next question is
the first question of the following group.

FIGURE 6-1 shows the “first” and “next” questions for each group of questions.

concurrency Allows users to run tests concurrently on multi-processor computers

timeout factor A value that is multiplied against a test’s default timeout if a larger
timeout is needed. The default timeout is 10 minutes.

epilog Informs the user that they have completed the interview. May also
provide information about how to run tests.

TABLE 6-4 Interview Question Groups

Group Description
Chapter 6 Creating a Configuration Interview 63

FIGURE 6-1 Interview Question Group First/Next Question Methods

In most cases you only need to concern yourself with the environment group. For all
the other groups, BasicInterviewParameters provides standard questions. If
you find that you must customize the standard questions, you can replace the
questions for a group by redefining getXxxFirstQuestion() to get your custom
questions. In this case, you must also override the methods that provide access to
these configuration values. See the API for more details.

(Determined by setFirstQuestion(XXX))

getPrologSuccsessorQuestion()

getEnvFirstQuestion()

getEnvSuccessorQuestion()

getTestsFirstQuestion()

getTestsSuccessorQuestion()

getKeywordsFirstQuestion()

getKeywordsSuccessorQuestion()

getPriorStatusFirstQuestion()

getPriorStatusSuccessorQuestion()

getConcurrencyFirstQuestion()

getconcurrencySuccessorQuestion()

getTimeoutFactorFirstQuestion()

getTimeoutFactorSuccessorQuestion()

getEpilogFirstQuestion()

(End of Interview)

Prolog

Environment

Tests

Keywords

Prior Status

Concurrency

Timeout Factor

Epilog
64 JavaTest Architect’s Guide • March 10, 2009

If you find that any of the standard questions do not apply to your test suite, you
can override the getXxxFirstQuestion() question of any group you wish to
skip so that it directly returns that group’s getXxxSuccessorQuestion(). This
circumvents the code that executes the group’s questions and jumps directly to the
next group. For example, if your test suite does not use keywords, you can override
the getKeywordsFirstQuestion() method and implement it so that it returns
getKeywordsSuccessorQuestion() as shown in the following diagram.

FIGURE 6-2 Skipping the Keywords Standard Question

Providing the Prolog
The standard prolog always contains a standard welcome question; it also contains
optional environment name and description questions. By default, the name and
description questions are not displayed. You can enable the name and description
questions by calling the setNameAndDescriptionInPrologEnabled method
in your interview.

If the standard prolog questions do not meet your needs, you can override the
prolog with one of your own. Specify your prolog by means of the standard
setFirstQuestion() method of the interview. At the end of your prolog you
must call the getPrologSuccessorQuestion() method to determine the first
question of the next group.

getTestsFirstQuestion()

getTestsSuccessorQuestion()

getKeywordsFirstQuestion()

getKeywordsSuccessorQuestion()

getPriorStatusFirstQuestion()

getPriorStatusSuccessorQuestion()

Tests

Keywords

Prior Status
Chapter 6 Creating a Configuration Interview 65

Providing the Environment Group
This section describes the basic tasks necessary to write the environment portion of
the interview. Unless your test suite requires you to make changes to the standard
questions (prolog, standard values, epilog), the steps in this section describe what is
required for you to produce your interview.

Put the group of questions that gather information for your test environment in your
interview class. Remember to implement the getEnvFirstQuestion method to
identify the first question of the group.

You must link the last question in the environment group to the rest of the interview
(the standard values and epilog). In the getNext() method of the last question of
your environment group, use getEnvSuccessorQuestion() to determine the
next question in the interview — BasicInterviewParameters provides the rest
of the interview.

Finally, you must implement the getEnv() method. The getEnv() method
returns a TestEnvironment created from the responses to the questions. The
easiest way is to call the interview’s export method. The interview’s export
method calls the export methods for the questions on the current interview path.
These questions export their values into a Map object from which you can construct
a test environment. For detailed examples see the source code examples in the
jt_install\examples directory.

Providing the Resource File for the Interview
In the constructor for your interview class, call:

setResourceBundle(bundle_name);

For example:

setResourceBundle("i18n");

This uses a file called i18n.properties (or a localized variant) in the same
directory as the interview class. See “Creating Question Text and More Info” on
page 67 below for more information.

Providing the More Info Help for the Interview
In the constructor for your interview class, call:

setHelpSet(moreInfo_helpset_name);

For example:
66 JavaTest Architect’s Guide • March 10, 2009

setHelpSet("moreInfo\demotck.hs");

This uses a HelpSet called demotck.hs (or a localized variant) in the moreInfo
directory located in the directory that contains the interview class. See “Creating
Question Text and More Info” on page 67 below for more information.

Creating Question Text and More Info
As you saw when you ran the tutorial in Chapter 2, the configuration interview is
presented to the user in the configuration editor. The question text and answer
controls are presented in the Question pane, and information that helps the user
answer the question is presented in the More Info pane.

FIGURE 6-3 The JavaTest Configuration Editor: Question and More Info Panes

The following sections focus on the text portions of the interview — the question
text and the More Info help.

Writing Style
The style that you use for writing question text is very important. Experience has
shown that it is very important to make the question text as clear, concise, and
unambiguous as you can. Always try to use imperative statements, direct questions,
and short explanations. If possible, have a proficient writer edit the questions to
ensure readability and consistency.
Chapter 6 Creating a Configuration Interview 67

Only put question text in the question pane. Information that helps the user answer
the questions, including examples, should be provided in the More Info pane. The
following figure shows a question where examples and other helpful information are
included in the question pane with the question text:

FIGURE 6-4 Question without More Info Help

The following example shows how this question can be improved by reorganizing
and slightly rewriting the question text and moving the examples and extra
information to the More Info pane:

FIGURE 6-5 Question with More Info Help

There are a number of advantages to using the More Info pane to provide examples
and other explanatory information:

Browse

Specify the path of the Java Virtual
Machine you wish to use to execute the
tests.

For example:

jdk_install_dir\bin\java
jdk_install_dir\jre\java

Type the path in the text box, or click
Browse to invoke a file chooser to make
your selection.

This is the path of the Java runtime
system you wish to run your tests. For
example:

jdk_install_dir\bin\java
jdk_install_dir\jre\java

Type the path in the text box, or click
Browse to invoke a file chooser to make
your selection.Browse

Specify the path of the Java Virtual
Machine you wish to use to execute the
tests.
68 JavaTest Architect’s Guide • March 10, 2009

■ It allows you to keep the questions simpler. As users become familiar with the
interview, they may no longer need the additional information to answer the
questions. Displaying the extra information to the More Info pane moves it out of
the way.

■ The HTML-based More Info pane offers richer formatting, including: images,
fonts, and tables

■ The More Info pane can be scrolled to enable longer discussions and examples

Creating Question Text and Keys
Every interview question has its own unique key. The key is based on a name
assigned by you and should uniquely identify the question with the interview.
Normally, keys are of the form:

interview_class_name.question_name

You specify the question_name when you create the question, the interview_class_name
is automatically added for you.

Question keys are used to identify question titles and text in resource files. The title
of the interview and the title and text for every question in the interview is located
in a Java resource file. The file contains the following types of elements:

■ The title of the full interview

■ A title for each question of the form: question_key.smry

■ The text for each question of the form: question_key.text

■ Additional entries for choice items that must be localized

For every interview question you create you must add corresponding .smry and
.text entries into the resource file.

The following example shows a fragment of the Demo TCK configuration interview
resource file:

You can find the full Demo TCK configuration interview resource file in:

CODE EXAMPLE 6-2 Resource File Fragment

title=Demo Interview Configuration Editor
AgentInterview.mapArgs.smry=Agent Map File
AgentInterview.mapArgs.text=Will you use a map file when you run
the JavaTest Agent?
DemoInterview.name.smry=Configuration Name
DemoInterview.name.text=Please provide a short identifier to name
the configuration you are creating here.
Chapter 6 Creating a Configuration Interview 69

jt_install\examples\javatest\simpleTags\src\i18n.properties

The JavaTest harness uses the standard rules for accessing resource files. You can
provide alternate versions for other locales by creating additional files in the same
directory as i18n.properties with names of the form:
i18n_locale.properties. See the Java SE platform resource file specification for
more details.

Creating More Info
The JavaTest configuration editor enables architects and technical writers to present
supplemental information for every question in the interview in the More Info pane.
This information may include background information about the question, and
examples and suggestions about how to answer them.

The More Info pane is implemented using an embedded JavaHelp window. The
JavaHelp viewer supports HTML 3.2 with some additional extensions. For
information about the JavaHelp technology, see:

http://java.sun.com/products/javahelp

Note – The JavaHelp libraries required to display More Info help are included in
javatest.jar and should not be included separately.

The following procedures describe how to set up the More Info system for your
interview and how to add More Info topics as you add questions to the interview.

Set Up the More Info System
Create the directories and files used by the More Info system:

1. Create a top-level directory called moreInfo

The moreInfo directory should be located in the same directory as your
interview class file(s).

2. Create directories named default and images in the moreInfo directory

The default directory contains the default localization. If your test suite is ever
localized, the other locales can be added beside the default directory. The
images directory contains any images you may use in the More Info help.
70 JavaTest Architect’s Guide • March 10, 2009

3. Copy the Demo TCK HelpSet file to your moreInfo directory and rename it
appropriately (retaining the .hs extension)

The HelpSet file is the XML file that the JavaHelp libraries look for to find all of
the help information that defines the HelpSet. Rename it to reflect the name of
your test suite. When you write your interview you specify the path to your
HelpSet file.

The path to the Demo TCK HelpSet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\demotck.hs

4. Edit the HelpSet file

The Demo TCK HelpSet file looks like:

Edit the contents of the <title> tag to reflect the name of your test suite.

5. Copy the Demo TCK map file to the default directory

The JavaHelp map file is an XML file that contains a <mapID> entry for every
More Info topic. The JavaHelp system uses it to assign an ID to every HTML file.

6. Copy the Demo TCK style sheet to the default directory

Use the CSS, level 1 style sheet from the Demo TCK example for your More Info
topics. Feel free to change it to suite your needs.

The path to the Demo TCK style sheet file is:

jt_install\examples\javatest\simpleTags\src\moreInfo\default\
moreInfo.css

CODE EXAMPLE 6-3 Demo TCK HelpSet File

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE helpset
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version
1.0//EN"
 "http://java.sun.com/products/javahelp/helpset_1_0.dtd">
<helpset version="1.0">
<!-- title -->
 <title>DemoTCK Configuration Interview - Help</title>
<!-- maps -->
 <maps>
 <mapref location="default/map.xml"/>
 </maps>
</helpset>
Chapter 6 Creating a Configuration Interview 71

For Each Question in Your Interview
For every question in your interview, you should create an HTML topic file and add
an entry for that topic in the map file. The following steps describe how to do both:

1. Create an HTML More Info topic file in the default directory

Copy one of the Demo TCK More Info files from:

jt_install\examples\javatest\simpleTags\src\moreInfo\default

and use it as a template. Be sure to include the <link> tag that references the
style sheet.

Experience has shown that it is helpful for the architect to create “stub” files for
every question in the interview. These files are later completed by a technical
writer and can provide information that the writer can use.

2. Create a map entry for the More Info topic

Every More Info topic file must have a corresponding <mapID> entry in the
map.xml file. The JavaHelp system uses the IDs created in these files. The
target attribute defines the ID, and the url attribute defines the path to HTML
topic file (relative to the map file). The following example shows the map file for
the Demo TCK test suite that you copied to your interview in a previous step.

Replace the target and url attributes to match your More Info topics. Remove
any extra entries and add new entries as required.

CODE EXAMPLE 6-4 Demo TCK Map File

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<!DOCTYPE map
 PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
 "http://java.sun.com/products/javahelp/map_1_0.dtd">
<map version="1.0">
<!-- More Info IDs -->
<mapID target="DemoTCKParameters.cmd Type" url="cmdType.html" />
<mapID target="DemoTCKParameters.testVerboseLevel" url=

"testVerboseLevel.html" />
<mapID target="DemoTCKParameters.desc" url="desc.html" />
<mapID target="DemoTCKParameters.envEnd" url="envEnd.html" />
<mapID target="DemoTCKParameters.epilog" url="epilog.html" />
<mapID target="DemoTCKParameters.jvm" url="jvm.html" />
<mapID target="DemoTCKParameters.name" url="name.html" />
<mapID target="DemoTCKParameters.prolog" url="prolog.html" />

</map>
72 JavaTest Architect’s Guide • March 10, 2009

Customizing Standard Question More Info
The JavaTest package includes default versions of the More Info HTML topics that
describe the standard interview questions in both Question mode and Quick Set
mode. However, should you wish to customize the content for some or all of these
questions, you can override the defaults with files of your own. The following steps
describe how to substitute your More Info topics for one of the standard interview
questions:

1. Determine the More Info ID for the question

You will override the More Info ID in your interview HelpSet. To do so, you have
to determine the ID name of the standard question.

a. Open the configuration editor window to the question you wish to override

Make sure that you establish cursor focus in the question pane.

b. Press Alt-Shift-D

This opens the Configuration Editor Details Browser. The More Info ID is listed
in the “id” field.

2. Create a map entry in your map file as described in the previous section with
the same name as the More Info ID you found in step 1.

For example:

<mapID target="TestsInterview.needTests" url="my_needTests.html" />

Note that the URL must contain the path to a file you create and must be included
in your interview HelpSet.

3. Create your custom version of the HTML More Info topic

Be sure that you create it at the location you specified in the map file URL field.

Creating the JAR File
After you have created your interview, you must package it into a JAR file for
inclusion with your test suite. If you include other custom components with your
test suite, they can be packaged together with the interview. See “The Test Suite JAR
File” on page 33 for more information. You can also use the following file as an
example:

jt_install\examples\javatest\simpleTags\demotck\lib\jtdemotck.jar

After you create the JAR file, put it in the test suite’s lib directory and add it to the
classpath entry in the testsuite.jtt file.
Chapter 6 Creating a Configuration Interview 73

74 JavaTest Architect’s Guide • March 10, 2009

PART II Advanced Topics

The chapters in this part of the JavaTest Architect’s Guide describe advanced
features of the JavaTest harness that allow you to customize your test suite.

CHAPTER 7

Compiling Test Suites

Depending on how you design your test suite, you may be able to use the JavaTest
harness to compile your tests when building your test suite. The instructions below
describe how to compile tests if your test suite uses the Simple Interview and
Standard Test Script (StdTestScript) as described in Chapter 5. To use the
JavaTest harness to compile your tests you must:

■ Specify the source files required to compile them in the tests’ test descriptions

■ Set two system properties on the JavaTest command line

The following table describes the system properties used in compilation:

These properties are set on the JavaTest command line using the -D option, usually
when running the JavaTest harness in batch mode in a shell script or batch command
(see the JavaTest online help for details about batch mode).

You can use the following command lines as templates for compiling the simple test
suite you create in Chapter 4:

TABLE 7-1 System Properties Used in Compilation

System Property Description

SimpleInterviewParameters.mode Specifies the operating mode used by this
configuration. The valid values are:
• certify - (default) Executes test suite

classes (assumes that tests are already
compiled)

• precompile - Compiles the tests
• developer - Compiles the tests and runs

them

command.compile.java Specifies the command that the JavaTest
harness uses to compile the tests.
77

Note – Line breaks are added here to improve readability; your command line
should be a single line that contains no line breaks.

The following table describes the parts of the command:

CODE EXAMPLE 7-1 WIN32 Compilation Command

java-DSimpleInterviewParameters.mode=precompile
-Dcommand.compile.java=’com.sun.javatest.lib.ProcessCommand
javac -d $testSuiteRootDir\classes
-classpath $testSuiteRootDir\classes
$testSource’ -jar javatest.jar -batch -testsuite ts_dir
-workdir -overwrite work_dir -report report_dir

Unix Compilation Command
java-DSimpleInterviewParameters.mode=precompile
-Dcommand.compile.java=’com.sun.javatest.lib.ProcessCommand
javac -d $testSuiteRootDir/classes
-classpath $testSuiteRootDir/classes
$testSource’ -jar javatest.jar -batch -testsuite ts_dir
-workdir -overwrite work_dir -report report_dir

TABLE 7-2 Compilation Command Components

Component Description

com.sun.javatest.lib.ProcessCommand The library command used to run processes
(in this case the Java compiler) on the same
machine as the one the JavaTest harness is
running. See Appendix A for more
information about this and other library
commands.

$testSuiteRootDir The JavaTest variable that represents the root
directory of the test suite. This value is
provided by the JavaTest harness when the
command is executed. This value is taken
from the path you specify to the
-testsuite option.

$testSource The JavaTest variable that represents the test
source file to compile. This value is provided
by the JavaTest harness.

-batch Specifies that the JavaTest harness be
executed in “batch” mode. When run in
batch mode the JavaTest GUI is not started.
See the JavaTest online help for more
information.
78 JavaTest Architect’s Guide • March 10, 2009

-testsuite The fully qualified path name of the top-
level test suite directory.

-workdir -overwrite work_dir Specifies the name of the work directory to
use for the compilation. The -overwrite
option causes the JavaTest harness to first
delete (if it exists) and create the specified
work directory. It’s generally a good idea to
create fresh results each time you recompile.

-report report_dir Specifies the name of the directory where
reports are to be written. It is best to specify
report_dir as a simple file name (no “\”
or “/” characters; this causes the reports to
be written in work_dir\reports\report_dir.

TABLE 7-2 Compilation Command Components (Continued)
Chapter 7 Compiling Test Suites 79

80 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 8

The TestSuite Object

The JavaTest harness uses the TestSuite object as a portal to information about
the test suite; whenever the JavaTest harness requires information about the test
suite, it queries the TestSuite object. JavaTest reads the testsuite.jtt file to
determine the class name and class path for the test suite; JavaTest then uses those
properties to instantiate the TestSuite object. By default, the TestSuite object
also gets a number of other standard properties from the testsuite.jtt file. As
test suite architect, you create and maintain your TestSuite class and the
testsuite.jtt file.

The testsuite.jtt File
The testsuite.jtt file is located in the top-level directory of the test suite and is
a registry of information about the test suite that includes the paths to various
JavaTest components as well as other static information about the test suite. The
testsuite.jtt file generally contains at least two entries that tell the JavaTest
harness how to start the TestSuite class:

■ A testsuite entry that specifies the name of the TestSuite class and any
arguments the class requires

■ A classpath entry that specifies the class path on which the main TestSuite
class can be found (typically, a JAR file that contains test suite-specific
components). This entry is required if the TestSuite class or any other classes
the TestSuite refers to are not located within javatest.jar.

The testsuite.jtt file usually contains other entries that specify information
about the test suite; the JavaTest harness reads the file and passes the information to
the TestSuite class when it starts. The following table describes the standard
properties used by the TestSuite and may be specified in the testsuite.jtt
file:
81

TABLE 8-1 testsuite.jtt Properties

Property Description

additionalDocs An optional list of resource names that identify JavaHelp™ helpsets for
documents to be added to the JavaTest Help menu. The content of the
helpsets must be provided on the test suite classpath (see classpath
above).

Example: additionalDocs=jck.hs releasenotes.hs

classpath Extends the class path beyond javatest.jar. The class path is used
to locate JavaTest plug-in classes (script, finder, interview) in JAR files,
Zip files, or directories. You must separate entries with white space;
relative paths are relative to the test suite root directory. If not given,
classes must be located on the main JavaTest class path (not
recommended). Always use “/” as the file separator.

Default: Nothing in addition to javatest.jar

Example: classpath=lib/jtdemotck.jar

env.tsRoot A specialized entry to allow a legacy (prior to JavaTest version 3.0) test
suite to override the values of $testSuiteRoot and
$testSuiteRootDir that get set in the environment used to run tests.
Most test suites should not need to set this property.

finder The name of the test finder class and arguments (if any). This property is
used by the default implementation of TestSuite.createTestFinder
to determine the test finder to be used to locate tests. This property
should be of the form “classname args“, where classname identifies the
name of the test finder class itself; any arguments are passed to the test
finder’s init method.

Example: testsuite=com.sun.javatest.finder.TagTestFinder

The default implementation of TestSuite.createTestFinder uses
the following logic to determine the test finder:

• If a testsuite.jtd file is found in the test suite tests/ directory,
or in the location specified in the testsuite.jtd entry of the
testsuite.jtt file, the test finder is assumed to be
com.sun.javatest.finder.BinaryTestFinder (which reads the
testsuite.jtd file)

• If a finder entry is found in the testsuite.jtt file, it is used to
determine the test finder

• If neither of the preceding are found, the default is to use
com.sun.javatest.lib.HTMLTestFinder

See the description of the testsuite.jtd entry below.
82 JavaTest Architect’s Guide • March 10, 2009

id A unique identifier composed of letters, digits, underscore, minus, and
hyphen used to identify a specific version of a test suite. The JavaTest
harness uses this property to ensure that component versions are
compatible. By convention, the name is composed of the following parts:
technologyNameTCK_version.

Example: id=DemoTCK_tags_1.0

initial.jtx The path to the exclude list shipped with the test suite. If the path is
relative, it is evaluated relative to test suite root directory. Always use
“/” as the file separator. The recommended location for this file is in the
test suite lib/ directory.

Example: initial.jtx=lib/my_testsuite.jtx

interview The name of the interview class and arguments (if any). The default
implementation of TestSuite.createInterview uses this
property to determine the interview to use to obtain configuration
information required to run the tests. The property should be of the form
“classname args“, where classname identifies the name of the interview
class itself; any arguments are passed to the interview’s init method.

Example: interview=com.sun.demotck.DemoInterview

keywords The list of valid keywords for this test suite.

If the entry is present and contains a list of keywords, the keywords are
added to the configuration editor keywords combo box.

If the entry is omitted, it is taken to mean “unspecified” — in which case
the user can use the configuration editor to specify keywords, but the
configuration editor keywords combo box is disabled.

If the entry is present but empty, it is taken to mean “none” — in which
case the configuration editor does not present the keyword questions and
tabs to the user.

latest.jtx Specifies the location (as a URL) where the latest exclude list can be
obtained. The http: and file: protocols are supported; authentication
access is not yet supported.

Example: latest.jtx=http://my_company.com/support/exclude

logo Specifies the location on the class path of an image to be used as the test
suite logo. The path is evaluated relative to the test suite root directory.
This logo is displayed in the JavaTest Quick Start wizard.

name The name of the test suite. This property is a string of up to 80 characters.
By convention the name is composed of the following parts:

technology_name TCK version| Test Suite [(additional text)]

Example: name=DemoTCK 1.0 Test Suite (Tag Tests)

TABLE 8-1 testsuite.jtt Properties

Property Description
Chapter 8 The TestSuite Object 83

Note – The testsuite.jtt file is a Java property file and follows all the standard
rules for Java property files defined in java.util.Properties.

script The name of the test script class and arguments (if any). This property is
used by the default implementation of TestSuite.createScript to
determine the script to run the tests. The value should be of the form
“classname args”, where classname identifies the name of the Script class
itself; any arguments are passed to the Script’s init method.
If this property is not specified, the default implementation of
TestSuite.createScript reverts to the behavior defined for the
JavaTest harness, version 2. Relying on this behavior is not
recommended.

Example: script=com.sun.javatest.lib.StdTestScript

serviceReader Enables service management for the test suite. See Chapter 11 for
detailed information about the service management feature.

testCount The number of tests in the test suite. This property gives the JavaTest
GUI a hint as to how many tests are in the test suite.

Example: testCount=450

tests By default, the JavaTest harness looks for test source files and test
descriptions in the tests/ directory in the test suite root directory. If
you locate your test sources and test descriptions in a different directory,
you must specify it using this property.

Example: tests=apitests

testsuite Optional class name for a custom TestSuite class. The value should be
of the form “classname args”, where classname identifies the name of the
TestSuite class itself; any arguments are passed to the TestSuite
init method. The TestSuite class is used to access virtually all
information about the test suite. Defaults to
com.sun.javatest.TestSuite, which provides default behavior in
concert with the testsuite.jtt file.

Default: testsuite=com.sun.javatest.TestSuite

testsuite.jtd Can be used to override the default location of the BinaryTestFinder data
file.

By default the TestSuite class looks for a file named testsuite.jtd in
the directory specified by the “tests” property in testsuite.jtt. To
override the default, specify the name and location of the
BinaryTestFinder data file relative to the top-level directory of the
product (location of the testsuite.jtt file).

Example: testsuite.jtd=tests/testsuite.jtd

TABLE 8-1 testsuite.jtt Properties

Property Description
84 JavaTest Architect’s Guide • March 10, 2009

The following example shows the testsuite.jtt file that is included with the tag
example test suite.

Overriding Default Methods
Although by default these properties are obtained from the testsuite.jtt file,
you can override this behavior in your TestSuite class. By overriding the methods
that get these properties, you can specify your own properties directly in the
TestSuite class and/or manipulate the properties from testsuite.jtt as you
wish. This is generally not necessary, but it is an option. Some reasons why you
might choose to do this:

■ To hide or protect some of the properties

■ To determine some of these properties programmatically at runtime

To customize the TestSuite class, you must extend the base
com.sun.javatest.TestSuite class. For details about which methods you may
choose to override, see the TestSuite API documentation.

CODE EXAMPLE 8-1 Example testsuite.jtt File

Test Suite properties file for DemoTCK test suite with
tag-style tests

name=DemoTCK 1.0 Test Suite (Tag Tests)
id=DemoTCK_tags_1.0
classpath=lib/jtdemotck.jar
finder=com.sun.javatest.finder.TagTestFinder
script=com.sun.javatest.lib.StdTestScript
interview=com.sun.demotck.DemoTCKParameters
Chapter 8 The TestSuite Object 85

86 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 9

Test Finder

After the TestSuite object is created, the JavaTest harness starts the test finder for
the test suite. The TestFinder class creates the object responsible for finding and
reading test descriptions — information required to execute a test is provided in its
test description. At a basic level, the TestFinder class does the following:

1. Given an object (for example, a file) that contains a test description, the test finder
uses the read() method to read the object. The read() method in turn calls the
scan() method that must be provided by the test finder. The scan() method
scans the file object for a test description or any references to other files that must
be read (for example, if the file object is a directory).

2. The test finder creates one TestDescription object per test from the
information it reads from the test description.

3. The getTests() method returns any test description information that it finds,
and the getFiles() method returns a list of any other files that it must read to
locate other tests.

Because test descriptions can be embodied in a wide variety of formats, you can
extend the base TestFinder class, customizing the read() method to meet the
test suite’s needs. The JavaTest Architect’s release provides library classes that you
can use directly; however, these classes do not provide much error checking. You can
conveniently subtype a library class to provide additional validity checking.

Tag Test Finder
Another example of a test finder is the TagTestFinder — which also extends the
TestFinder class. This class is also provided so that you can further extend and
customize it to your own needs.

The TagTestFinder looks for test description information in specially commented
tags in Java programs and shell scripts. The TagTestFinder recursively scans test
directories looking for files with the .java extension and extracts test description
87

information embedded directly in the test source files using specialized tags. These
tags are located with Java language comments and begin with the @ character. The
following figure shows an example of a file that contains tag test description entries.

This format has the advantage of being very convenient for the test developer.

Examples of tag test descriptions can be found in jt_install\examples\javatest\
simpleTags\demotck\tests.

CODE EXAMPLE 9-1 Tag Test Description

/* @test
* @bug 4105080
* @summary Activation retry during a remote method call
 * to an activatable object can cause infinite recursion in
 * some situations.
* @author John Brown
*
* @bug 4164971

 * @summary Allow non-public activatable class and/or
 * constructor Main test class has a non-public
 * constructor to ensure functionality is in
 * place
 *
 * @library ../../../testlibrary
* @build TestLibrary RMID
* @build ActivateMe CheckActivateRef_Stub CheckActivateRef
* @run main/othervm/policy=security.policy/timeout=240

 */

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

public class CheckActivateRef
extends Activatable
implements ActivateMe, Runnable

{

private CheckActivateRef(ActivationID id, MarshalledObject obj)
throws ActivationException, RemoteException
{
super(id, 0);
}

[...]
88 JavaTest Architect’s Guide • March 10, 2009

HTML Test Finder
An example of a test finder that reads HTML test descriptions is the
JCKTestFinder — a subtype of the HTMLTestFinder class that provides
additional error checking. The JCKTestFinder is described in some detail here to
demonstrate how a test finder works. HTMLTestFinder is provided with the
JavaTest harness so that you can further extend it and customize it to your own
needs.

Test suites that use the HTMLTestFinder class use HTML-based test descriptions
to provide the information required to execute their tests. Distributed throughout
the directories that contain the tests are HTML test description files that contain one or
more test description tables. Each HTML test description table contains information
about a single test (for example, its name in the class path). Every test must be
represented by its own unique test description table; however, test description files
can contain multiple test description tables. Test description tables are always
assigned the HTML class “TestDescription” using the class attribute:

<TABLE BORDER=”1” class=”TestDescription”>

The following HTML source produces the test description table that follows:

CODE EXAMPLE 9-2 Test Description Table Source

<table border=”1” class=”TestDescription”>
<tr>
<td>title</td>
<td>Checkbox Tests</td>
</tr>
<tr>
<td>source</td>
<td>CheckboxTest.java</td>
</tr>
<tr>
<td>executeClass</td>
<td>javasoft.sqe.tests.api.java.awt.Checkbox.CheckboxTests<
/td>
</tr>
<tr>
<td>executeArgs</td>
<td>-TestCaseID ALL</td>
</tr>
<tr>
<td>keywords</td>
<td>runtime positive</td>
</tr>
</table>
Chapter 9 Test Finder 89

The JCKTestFinder test finder locates the HTML test description files by
recursively scanning directories to look for files with the .html suffix, ignoring any
other types of files. It reads the test description table, ignoring all information in the
file except the content of the basic table tags.

If you include multiple test description tables in a single test description file, each
test description table must be preceded by an <A NAME> HTML tag that provides a
unique identifier for each test description table.

Note – Test description files should also contain comments and text that describe
the test.

The HTMLTestFinder class can also check the validity of test description values.
For example, the HTMLTestFinder can be run with flags that cause error messages
to be printed if any of the test description fields are invalid. When you extend
HTMLTestFinder, you can add your own validity checks.

The benefit of this format is that it makes it easy and convenient for users to browse
test descriptions using the JavaTest harness GUI or a web browser. The trade-offs are
that more work is required of the test developers to create and maintain the HTML
files, and parsing these separate files has an impact on performance.

Examples of HTML test descriptions can be found in jt_install\examples\
javatest\simpleHTML\demotck\tests.

Binary Test Finder
BinaryTestFinder was created to improve the startup performance of large test
suites. It is capable of reading test description information from a highly optimized
format created from any type of native test description.

The optimized format (filename.jtd) is created using a companion program called
BinaryTestWriter. BinaryTestWriter uses a native test finder such as HTMLTestFinder,
or TagTestFinder to find and read native test descriptions (for example, HTML files
or source tags) and then creates a single, optimized file that contains the test

FIGURE 9-1 Test Description Table

title Checkbox Tests

source CheckboxTest.java

executeClass javasoft.sqe.tests.api.java.awt.Checkbox.CheckboxTest

executeArgs -TestCaseID ALL

keywords runtime positive
90 JavaTest Architect’s Guide • March 10, 2009

description information for all the tests in the test suite. If one is available for the test
suite, the test suite uses the BinaryTestFinder to read test descriptions from that
optimized file. Use of the BinaryTestFinder is highly recommended for larger test
suites — it greatly reduces the time required to populate the JavaTest harness test
tree.

BinaryTestWriter
BinaryTestWriter is a standalone utility that creates compressed file that contains a a
set of binary test descriptions. It uses a test finder that you specify to locate the test
descriptions for your test suite, and writes a compact representation of those test
descriptions to a file that can be read by BinaryTestFinder (described in the next
section).

BinaryTestWriter is run from the command line as follows:

java -cp javatest.jar com.sun.javatest.finder.BinaryTestWriter
arguments test-suite[tests]

The following table describes the parts of the command:

TABLE 9-1 BinaryTestWriter Command Components

Component Description

-cp javatest.jar Puts javatest.jar on the class path

arguments -finder finderClass [finderArgs] -end

Specifies the test finder to use to locate the test descriptions in
the specified test suite.

finderClass: The name of the plug-in class for the desired test
finder. The class must be on the class path used to run
BinaryTestWriter.

finderArgs: Any optional arguments passed to the test finder’s
init method.

-o output-file

Specifies where the set of compressed test descriptions is
written. The output file always contains the .jtd suffix and is
typically named testsuite.jtd. The testsuite.jtd file is
usually placed in the test suite tests/ directory.

-end

Defines the end of the finder specification

test-suite The path to the directory in the test suite that contains the test
descriptions (typically, the tests/ directory)

tests An optional list of directories in which to search for test
descriptions (typically, directories under tests/)
Chapter 9 Test Finder 91

Note – The finderClass, finderArgs, test-suite arguments are specified here exactly as
they are when you run the JavaTest harness without using BinaryTestWriter.

BinaryTestFinder
BinaryTestFinder is a standard JavaTest test finder that knows how to read test
descriptions stored in the file written by BinaryTestWriter. The full name of the class
is:

com.sun.javatest.finder.BinaryTestFinder

The BinaryTestFinder class is provided in the standard javatest.jar file.
You can use it through the standard string interface, or directly via the API. For
details about the API, see the Javadoc™ documentation.

There are two ways you can use BinaryTestFinder:

■ If you use the standard TestSuite class, you can place testsuite.jtd in the
test suite tests\ directory. If the file is found there it is used, otherwise the
uncompressed files in this directory are used.

■ Specify the finder explicitly in the testsuite.jtt file:

finder=com.sun.javatest.finder.BinaryTestFinder -binary testsuite.jtd

This method requires that testsuite.jtd be present when the test suite is run.
If it is not present, the tests are not run and an error condition exists. You can use
the testsuite.jtd property in the testsuite.jtt file to specify the
location of the testsuite.jtd file. You must remember to run
BinaryTestWriter before running the test suite.

■ Override the createTestFinder method for the TestSuite class you
provide for your test suite. This method allows you to dynamically determine
whether to use BinaryTestFinder. The TestSuite class can check for the existence of
the binary test description file (testsuite.jtd) before running tests; if the .jtd file
is not found, it can choose to use an alternate finder.

Examples

The following example shows the command line used to start the basic non-
customized TestFinder class:

java -cp lib/javatest.jar com.sun.javatest.finder.BinaryTestWriter

-finder com.sun.javatest.lib.HTMLTestFinder -dirWalk -end

top_level_testsuite_dir/tests
92 JavaTest Architect’s Guide • March 10, 2009

This example shows the command line for starting a customized TestFinder class
(MyTestFinder). The finder class takes -dirWalk and -specialMode as
arguments. Note that the JAR file that contains the custom finder class (in this case
lib/mytck.jar) is added to the class path.

java -cp lib/javatest.jar:lib/mytck.jar

com.sun.javatest.finder.BinaryTestWriter -finder

com.sun.mytck.lib.MyTestFinder -dirWalk -specialMode 2 -end
top_level_testsuite_dir/tests
Chapter 9 Test Finder 93

94 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 10

Test Scripts

The test script is responsible for running a test, recording all the details in a
TestResult object, and returning the test’s status (pass, fail, error) to the JavaTest
harness. The test script must understand how to interpret the test description
information returned to it by the test finder. The test script breaks down the
execution of the test into a series of logical steps based on information from the test
description and the test execution model. The test script can run the test itself or
delegate all or part of that responsibility to commands. A fresh, new copy of the test
script is created for each test. This design allows you to create test scripts for
different test suites that use the same commands, much like shell and batch scripts
are composed from different operating system commands.

Design Decisions
One of the most significant design decisions that you make is how the test script
executes tests. The mechanism that you design can be very simple but inflexible, or
it can be more complex and much more flexible.

Simple Test Scripts
Simple and less flexible test scripts construct test command lines directly from the
test description and the test environment.

At the most simplistic level, scripts can execute tests using Runtime.exec. For
example using the JDK:
95

In this case the test script is responsible for collecting the test’s exit status.

The JavaTest harness provides a number of library commands that the script can use
to execute system commands in different execution environments; these are
described in Appendix A. One example is the library command named
com.sun.javatest.lib.ProcessCommand. ProcessCommand executes a
system command in a separate process on the same machine running the test script.
For example:

The result of the command is a Status object based upon the exit code of the
process. The exit code is analyzed by the test script and factored into the final test
result. For example, if a script is executing a test by means of a series of commands
and one of them fails unexpectedly, the execution may stop at that point.

CODE EXAMPLE 10-1 Test Script Using Runtime.exec

Runtime r = Runtime.getRuntime();
String[] cmd = {"java", "MyTest"};
String[] env = {"CLASSPATH", testsDir + "/classes"};
Process p = r.exec(cmd, env);
// read output from test using
// p.getInputStream() and p.getErrorStream()
// (best done with a separate thread for each stream)
int rc = p.waitFor();
Status s = (rc == 0 ? Status.passed("OK") :
Status.failed("process exited with return code " + rc);

// s contains result status from executing command

CODE EXAMPLE 10-2 Test Script Using ProcessCommand

String[] args = {"CLASSPATH=" + testsDir + "/classes", "java",
"MyTest"};
PrintWriter out1 = ... // create error message stream
PrintWriter out2 = ... // create output message stream
Command cmd = new ProcessCommand();
Status s = cmd.run(args, out1, out2);
// output from command will be written automatically to
// the out1 and out2 streams
// s contains result status from executing command
96 JavaTest Architect’s Guide • March 10, 2009

More Flexible Test Scripts
More sophisticated and flexible test scripts use command templates to create custom
commands. Command templates are designed by you and are created by the
configuration interview from configuration information and test description
information (see Chapter 6). Command templates can be created with some
components of the template specified in the form of variables that the test script
resolves when it uses the command to run a test. A configuration interview may
provide several different templates; the script chooses among them as required for
each individual test.

For example, a configuration interview might create a custom command template
named command.testExecute that can be used to run all of the tests in a test
suite.

command.testExecute=com.sun.javatest.lib.ProcessCommand
C:\JDK\bin\java.exe CLASSPATH=$testSuiteRootDir\classes
$testExecuteClass $testExecuteArgs

The test script sets the value of the variables ($testExecuteClass and
$testExecuteArgs) for each test. To review the parts of the template see “Example
1” on page 50.

The use of variables allows you to create flexible commands that can be used with
all of the tests in the test suite. The following test script fragment shows how a test
script invokes the testExecute command1 whenever it runs a test. Note that the
test script uses its invokeCommand() method to execute commands:

1. When the command is invoked, the “command.” prefix is not used.

CODE EXAMPLE 10-3 Sample Test Script Code Fragment

import com.sun.javatest.*;

class MyScript extends Script {
 public Status run(String[] args, TestDescription td,
TestEnvironment env) {

...

// Extract values from the test description
String executeClass = td.getParameter("executeClass");
String executeArgs = td.getParameter("executeArgs");

...

// Set variables in the template
env.put("testExecuteClass", executeClass);
Chapter 10 Test Scripts 97

In this example, the test script executes a single command for each test — the test
scripts can also execute complex, multi-part tests that may involve multiple
command invocations. The following examples describes some common multi-part
test scenarios.

Example 1

Compiler tests generally require a multi-part test script. To test the Java compiler
two stages are required:

1. The compiler compiles test files

2. The output from that compilation is run to ensure that it executes as expected

Example 2

Distributed tests are required to start a process on a remote system with which the
test interacts. This requires a multi-part test that:

1. Sets up the remote system

2. Runs the primary test class that interacts with the remote system

The JavaTest harness is shipped with the source to a sample test script
(StdTestScript.java) that you can refer to in the jt_install\examples\
javatest\sampleFiles directory.

See the Script API documentation for information about the Script class.

env.put("testExecuteArgs", executeArgs);
// Invoke the command
Status s = invokeCommand("testExecute");

...

return s;
 }
}

CODE EXAMPLE 10-3 (Continued)Sample Test Script Code Fragment
98 JavaTest Architect’s Guide • March 10, 2009

Writing Custom Commands
Commands are the means by which the JavaTest harness invokes platform or test
components to perform a step of the test execution model embodied in a test script.
The JavaTest harness provides standard commands that are suitable for most uses,
including test systems that can execute programs in a separate address space, and
test systems that provide a single Java virtual machine.

If none of the standard commands are suitable, you can write a new one tailored to
the test suite’s specific requirements. One scenario that requires a custom command
is when the test suite uses a single JVM, and the test invokes a program that does
not have a standard interface that can be used by one of the standard commands. In
this case, you can write a very simple converter command that connects the interface
expected by the JavaTest harness with the interface provided by the program.

The class for a command is similar (apart from the name) to the standard Test
interface. The full class name is com.sun.javatest.Command.

The args argument is constructed in and passed down from the script that invokes
the command. Output written to the out1 stream and out2 stream is recorded in
the appropriate test result file.

CODE EXAMPLE 10-5 is an example of a command that invokes a compiler in the same
JVM as the JavaTest harness, using an API for the compiler. The example uses the
JDK compiler which is usually invoked directly from the command line; however, in
this case an undocumented API is used. The details of how to create the
PrintStream outStream from the PrintWriter out are omitted here for
simplicity; the main point is to illustrate how easy it can be to write a wrapper class
that passes arguments through to a non-standard API, and converts the results into
the format that the JavaTest harness requires.

See the source code for JavaCompileCommand in the jt_install\examples\
javatest\sampleFiles directory for a complete, commented example.

CODE EXAMPLE 10-4 Command Interface

abstract class Command {
Status run(String[] args, PrintWriter out1, PrintWriter out2)

...
}

CODE EXAMPLE 10-5 JavaCompileCommand

public class JavaCompileCommand implements Command
{
public Status run (String[] args, PrintWriter out1,PrintWriter out2)
{

Chapter 10 Test Scripts 99

For information on the standard commands provided with JavaTest see
Appendix A”.

Test Result
To store test results, the JavaTest harness creates and maintains a TestResult
object for each test. The test script stores information in a TestResult object while
it executes a test. This information is presented to users in the JavaTest GUI and is
useful when troubleshooting test runs. The more information the test script
provides, the easier it is for the user to understand what occurred when the test was
run.

The TestResult object contains the following elements:

Test description The test description used for the test

Configuration The portions of the environment used to run the test.
This information is displayed to the user in the
Configuration tab of the JavaTest GUI.

Test run details Information about the test run. For example, start time,
end time, operating system, test name. This information
is displayed to the user in the Test Run Details tab of the
JavaTest GUI.

Note: The test script has access to this field and can
write additional information using the TestResult API.

Test run messages Test output messages. This section is written by the
Script class’s invokeCommand() method. This
section contains at least two subsections, one for
messages from the test script and one for each part of
the test (if it is a multi-part test). This information is
displayed to the user in the Test Run Message tab of the
JavaTest GUI.

PrintStream outStream = ... // create stream from out
sun.tools.javac.Main compiler = new sun.tools.javac.Main(outStream,

“javac”);
boolean ok = compiler.compile(args);
return (ok ? Status.passed(“Compilation OK”) :

Status.failed(“Compilation failed”));
}

}

CODE EXAMPLE 10-5 JavaCompileCommand (Continued)
100 JavaTest Architect’s Guide • March 10, 2009

When a test completes execution, the JavaTest harness writes the results to the file
testname.jtr in the work directory. Test result files are created in directory
hierarchies analogous to the hierarchies in which the tests are organized.

See the API documentation for the TestResult class.
Chapter 10 Test Scripts 101

102 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 11

Service Management

This chapter describes the ServiceManager (com.sun.javatest.services)
component provided by the JavaTest harness and how test suite architects can use it
to manage services that a test suite might require for test execution.

This chapter contains the following sections:

■ Description

■ Services-Related Work Flow

■ Implementation

■ Service Management Architecture

Description
A service is any unique component related to a test suite that is required for test
execution and must be started in separate process or thread (such as RMI daemon or
ORB service) before the test suite is run. Some TCKs might require many services.
The ServiceManager component enables users to configure the services required
to run tests.

Each test suite optionally specifies and describes a set of services that it requires to
run tests. During the test suite load process, the TestSuite instantiates objects that
implement the Service interface and uploads those objects to the
ServiceManager component.

The ServiceManager component manages all aspects of the service life cycle. From
information given by the test suite and the JavaTest harness, it determines which
services are required and when they should be started. From test execution events, it
also determines which services should be stopped.
103

The ServiceManager is available either when running the JavaTest harness or as a
separate service without running the JavaTest harness.

TABLE 11-1 Service Manager Features

Features Description

Automatically start and stop services Can start and stop services automatically.

Mapping services on tests or test suites Mapping services on individual tests or a set of
tests, not on the whole test suite, enables the
ServiceManager to start/stop services for group of
tests.
For example, if a user is not running CORBA tests,
the Service Manager will not try to start CORBA
services. Consequently the user should not have to
configure CORBA services.

Manually start a service In case of remote test execution, users need the
ability to determine (manually or automatically) if
a service should be started or not.

Services are thread safe Services work safely in case of parallel test
execution.

Process management - when to start
services

Provides an ability to start services in two modes:
1. As needed - Start service only when the first test

or group of tests that needs the service is about
to run.

2. Up front - Start all needed services up front so
that any errors starting services can be detected
before the actual test run.

Process management - when to stop
services

Needed services stay up, once started, until the
end of the run or until it can be shown they are no
longer be required. Test execution finish, time out,
and end of test run are points to stop related
services.

Performance The test suite does not run noticeably slower with
this mechanism enabled.

Usability - configuration file The user only provides or edits a single
configuration file for all the services, not a file for
each service. The file is optional. If the user doesn’t
provide a file, the test suite should assume that
any required services will be started manually.

Services dependencies Dependencies between different services are
supported.
For example, one service must be started or
stopped before other services.
104 JavaTest Architect’s Guide • March 10, 2009

Services-Related Work Flow
Services-related work flow of harness execution is supported in both GUI and batch
mode test execution. The work flow consists of the following:

1. The ServiceManager and Service instances are instantiated after the test suite
is loaded inside harness.

2. When the JavaTest harness object (Harness) starts a test run, information that the
Harness has about the tests and groups of tests that should be run is provided to
the ServiceManager.

3. The ServiceManager filters out services that are unnecessary for the test run
based on information from the Harness and information from deployed services
regarding which test paths for which the service should be started.

The services-related workflow is performed before starting a test run in the main
Harness execution thread. During this process one of the following actions is
taken based on the information that the harness has about the tests and groups of
tests that should be run:

■ Start services as needed.

After being notified by the Harness that a test has started, the
ServiceManager determines if a particular service should be started for
running the next test. This enables "lazy" service start up, which may be useful
for performance reasons.

■ Start all required services now.

Before running any tests, the ServiceManager starts all required services.

■ Start services manually.

Service management is turned off for the test run. The Harness assumes that
the user will manually start all required services.

Note – When running in GUI mode, the ServiceManager functionality is enabled
after the user presses the Run button which blocks the Harness execution thread
until it determines how services will be started. In batch mode, the
ServiceManager is functionality is enabled by using an option in the command
line.

4. The ServiceManager stops services either as it determines that a service is not
required (all tests that require this service are completed) or at the end of test run.

Stopping services after the test run finished is preferred.
Chapter 11 Service Management 105

Implementation
Because the ServiceManager component must serve different requirements, its
service support design is as flexible as possible.To achieve this flexibility, the design
uses abstract concepts of service, service description, service execution and service
parameters. Some functionality, such as remote service management when services
are instantiated and run on a remote host, has not been implemented. However the
capability to implement the functionality is supported in the architecture. Additional
functionality could be implemented by the test suite and set through the API, as is
currently done in the JavaTest harness for other components.

Note – Services support is optional, so that test suites, which do not need services
support, are not required to implement additional components.

The JavaTest harness provides useful default implementations of the following
interfaces:

■ Service - Interface describing a service.

Service objects should be instantiated by ServiceReader. The particular
implementation class should be specified so that the ServiceReader can access
it. A default implementation, AntService (see “Implementation of Service
Interface” on page 108) is provided by the JavaTest harness. Such a service is the
Ant target in provided ant xml file. The benefit of such a service representation is
that the service can easily be started without running the JavaTest harness.

■ ServiceReader - Interface responsible for reading service definitions and
parameters.

The implementation should be provided by the test suite. A default
implementation, XMLServiceReader (see “Implementation of ServiceReader
Interface” on page 107), is provided by the JavaTest harness. This implementation
reads Service type definitions and start parameters of each particular instance,
as well as maps test paths to service instances from a single XML document.

■ ServiceConnector and ServiceExecutor - ServiceConnector is
responsible for the connection between harness representative (Service
interface) and ServiceExecutor is responsible for responsible for running
service in case of remote execution.

Each executor type is related to a respective service type, such as AntService
and AntServiceExecutor (see “Implementation of Service Interface” on
page 108). Connector doesn’t depend on the Service and ServiceExecutor
type. Connector has a unified interface and any Connector implementation
should work with any Service - ServiceExecutor pair. The JavaTest harness
106 JavaTest Architect’s Guide • March 10, 2009

only provides a pseudo local connector that redirects requests to a
ServiceExecutor working in the same VM. The following are available types
of ServiceExecutor:

■ ThreadServiceExecutor - Executes any service described by Runnable
object in a separate thread.

■ ProcessServiceExecutor - Executes in a separate process by
Runnable.exec().

■ AntServiceExecutor - Extends ProcessServiceExecutor to execute ant
tasks using Ant.

Implementation of ServiceReader Interface
To make the process of acquiring information about services and instantiating
components more flexible, a test suite should provide a special component that
implements the ServiceReader interface. The ServiceReader interface reads
information regarding service descriptions and tests-to-services mappings during
test suite load, instantiates Service objects, and pushes the collected information
into them.

The JavaTest harness provides a default implementation (XMLServicesReader) of
the ServicesReader interface. XMLServicesReader looks for information inside
one XML file. CODE EXAMPLE 11-1 provides a description of the contents and format
of this file.

CODE EXAMPLE 11-1 XMLServicesReader Implementation

<Services>
<property file=”local.properties”/>
<property name=”port” value=”8080”/>
<property name=”testsuite” value=”${root}/tests”/>
...................................
<service id=”rmid_1” class=”com.foo.bar.RMIDService” description=”This is first
variant of service to start rmid daemon”>
<arg name=”arg1” value=”5000”/>
<arg name=”arg2” value=”${testsuite}”/>
</service>
<service id="rmid_2" class="com.foo.bar.RMIDService" description=”This is second
variant of service to start rmid daemon”>
</service>
<service id=”msg_service” class=”com.foo.bar2.MessagingService” description=
”messaging service”>
<arg name=”timeout” value=”1000”/>
</service>
..................................
<testpath path=”api/java_rmi”>
Chapter 11 Service Management 107

The format of the XMLServicesReader file consists of three sections:

■ Properties - The first section of the file specifies the properties.

You can load property values from a file or specify them separately. Properties
that do not have explicitly-set values are called parameters. Parameter values are
resolved later by Service or ParamResolver classes. In the code example, root
and testsuite properties are parameters. The Service interface should
provide operations to get and set parameters and arguments. Service properties
are described in “Service Properties” on page 109.

■ Services - The first section of the file describes the services.

Services are described by using a tag. Each service specification tag contains a
unique string ID that enables the user to refer to this service in the test map
section, a Service interface implementation class, and description text.

■ Test Map - The third section of the file provides a map from test paths to services.

Based on this information, ServiceManager determines, which services should
be started/stopped and when. It consists of a regular expression with path-to-
tests pattern and tags with references to services. One test path can refer to many
services. Different test paths can refer to the same services. In case both such test
paths are selected for test run, only one instance of a service will be started.

Implementation of Service Interface
The JavaTest harness provides a default implementation (AntService) of the
Service interface that not only provides a description but also provides a definition
and execution. The default implementation uses Ant. Each service is presented as an

<service refid="ant"/>
<service refid="rmid_1">
</testpath>
<testpath path=”api/foo_bar”>
<service refid="rmid_2"/>
<service refid="msg_service"/>
</testpath>
.....................................
</Services>

CODE EXAMPLE 11-1 XMLServicesReader Implementation (Continued)
108 JavaTest Architect’s Guide • March 10, 2009

Ant target in a valid Ant file. In the service description XML file, a special service
class (com.sun.javatest.services.AntService) describes the Ant-based
service. CODE EXAMPLE 11-2:

■ ant.bin - Specifies path to ANT execution script.

■ ant.targets - Specifies targets to execute

■ ant.workdir - Specifies the directory from which to start ant.

This is set to java.lang.ProcessBuilder using its directory() method.

■ ant.env.JAVA_HOME - The environment entry with which the process starts.

Set to ProcessBuilder through its environment() method.

■ "option1" and "option2" - All other arguments inside the AntService are
interpreted as ant start options.

No special naming conventions are needed for them.

■ Ant-based services are the only service implementations provided by JavaTest
harness. JavaTest harness provides AntService, which implements the Service
interface, and AntServiceExecutor, which implements the ServiceExecutor
interface.

Service Properties
All possible parameters, commands, and arguments, could be described as string
key-value pairs. Such pairs should be passed to the Service object by the
ServiceReader, who creates the Service objects. Each particular Service type
may interpret them and pass through a connector to the ServiceExecutor.

However, not all key-value pairs or values may be known when the test suite is
created. For example, some host names and port numbers may be known only when
answering an Interview question before a test run. To resolve this issue, values in
service descriptions are parametrized. That means, that some key-value pairs will

CODE EXAMPLE 11-2 com.sun.javatest.services.AntService Class

<servicedef id=”any_uniq_id _you_want”
class=”com.sun.javatest.services.AntService”>
<arg name=”ant.bin” value=”~/apache-ant/bin/ant”/>
<arg name=”ant.targets” value=”rmid-target run-tests”/>
<arg name="ant.workdir" value="directory_to_start_ant_from"/>
<arg name="ant.env.JAVA_HOME" value="path to JDK"/>
<arg name=”option1” value=”-buildfile ${lib}/build.xml”/>
<arg name="option2" value="-verbose"/>
</service>
Chapter 11 Service Management 109

have variable values with references to other keys, and are resolved when additional
non-variable sets of properties are passed from somewhere outside (such as after
interview completion).

The ServiceManager has a public API used to access to each Service and its
ServiceProperties object. The non-variable set of properties may be passed at
any time. However, a more convenient approach is to resolve variable properties
using values obtained from the interview. These values are also key-value pairs and
are stored in a special object, TestEnvironment. Harness passes this object to
resolve service properties before every test run. Consequently, refer to interview
question’s tags to resolve variable values by interview.

A special ServiceProperties class performs this behavior. Its instance is the main
part of each Service object. ServiceReader should instantiate a
ServiceProperties object, fill it with information available from the service
description file and pass it to the corresponding Service object. Should the test
suite use the standard XMLServiceReader, the test suite developer shouldn’t care
about this.

Each key-value pair from the ServiceReader must use the format:

string=[string | ${string}]*

If a key has no value, it becomes a variable.

${string} represents a reference to another key. If its value has at least one
reference inside it, it also becomes variable.

Example:

key1=

key2=value2

key3=value31_${key1}_value32_${key2}_value33

Later if we pass key1=value1, the expression is resolved as:

key1=value1

key2=value2

key3=value31_value1_value32_value2_value33

As described in “Implementation of ServiceReader Interface” on page 107, some
properties are common to several objects and some are individually specified for
each Service object. That is the reason why there are two namespaces for property
names. One namespace is a common namespace, and the other is an individual
namespace. The common namespace is shared between all Services.
Consequently, a property, specified inside each particular Service, may refer to
common properties. If a name of a property specified for an individual Service is
contained in a common namespace, the individual property overwrites the common
property.
110 JavaTest Architect’s Guide • March 10, 2009

Individual namespaces are not shared between Service objects. A property from
one individual namespace cannot refer to a property from another individual
namespace. If a property attempts to do this, the reference is interpreted as
unknown.

When it prepare a command, a Service objects asks its ServiceProperties
object to resolve its arguments. The ServiceProperties object returns a Map
containing only the resolved individual properties (not the common properties).
Resolved common properties may be achieved, using another method. Such division
enables the Service class implementation to be simplified. It treats its individual
arguments by using its own name conventions. Common properties are used to
resolve individual properties or for other goals.

Service Management Architecture
The architecture of the Service Management feature of the JavaTest harness consists
of five components:

■ ServiceManager

■ Service

■ ServiceExecutor

■ Connector

■ ParamResolver

FIGURE 11-1 illustrates the relationship between these components.
Chapter 11 Service Management 111

FIGURE 11-1 Service Management Architecture

Service Management architecture

1. ServiceManager - Instantiated for each test suite instance.

The same test suite, opened two times in different tabs, is interpreted as two
different test suites and will have different ServiceManager objects.
ServiceManager objects accomplish the following functions:

■ Are notified of all Harness events.

■ Manage a set of services.

■ Provide methods to achieve service’s state, info and data to the JavaTest
harness and test suite.

JavaTest Harness

ServiceManager

Connector

Service #1Service #1

Service

Description

Service
Process/
Thread

Service
Executor

Param
Resolver

Connector

Service
Process/
Thread

Service
Executor

Param
Resolver

Agent

Service #2 Service #3
112 JavaTest Architect’s Guide • March 10, 2009

■ Provide methods for external configuration by JavaTest and test suite.

■ Start and stop services

■ Count which services and when should be started and stopped.

2. Service - Root service interface.

Service interface has two main goals:

■ Contains service information, execution parameters, and test mapping.

■ Provides start, stop, other operating methods, are invoked by
ServiceManager, and are delegated through Connector to
ServiceExecutor

3. ServiceExecutor - Root interface for the service executor.

Method invocations from Service go through Connector and are executed by
ServiceExecutor. The Service and ServiceExecutor implementation types
have a 1:n relationship. Consequently, each Service implementation can have
different ServiceExecutors for different situations (such as local and remote
execution). ServiceExecutor implementations can execute a service as separate
process, as a thread, or in any other required manner. Service and
ServiceExecutor types must be coordinated to perform message exchange
correctly.

4. Connector - Interface that determines common connection methods between
Service and ServiceExecutor, such as sendMessage or getOutputStream
methods.

Particular implementation should not be related with concrete Service and
ServiceExecutor realizations. Connector is harness-side component, and we have
no any interface for agent side part, because on those side such component (and
it’s incoming events) manages ServiceExecutor. Agent-side component is not
under any management, so there is no need for it to have API.

5. ParamResolver - Component, related with ServiceExecutor. Connector,
that sends commands to a service and provides the parameters for this command
execution.

The parameters are decoded by ParamResolver and passed to
ServiceExecutor. For example, if a connector sends “$host_name” param, it
should be resolved by the ParamResolver. Implementations of ParamResolver
should be interoperable with ServiceExecutor. How and what to resolve
depends on the implementations of both components.

Service execution is divided into 3 components (Service, Connector,
ServiceExecutor), because it must be able to implement remote services start-up
and execution by any test suite. It is not possible to implement this feature directly
in the JavaTest harness and its agent, as requirements from different customers vary.
Chapter 11 Service Management 113

Mechanism to Instantiate Service, Connector,
and ServiceExecutor Interfaces
The Connector and ServiceExecutor may differ because configuration settings
(such as local or remote execution) and the specific implementors are known only at
the beginning of a test run. The ServiceManager should have a public API to
enable any object (such as a test suite) to specify non-default Connectors for each
service.

The Service interface has a method that returns an instance of the default
ServiceExecutor, which will be used should service be run in the same VM as the
JavaTest harness. This executor interoperates with the pseudo LocalConnector,
which directly delegates requests to this executor by invoking it’s methods. If a test
suite wants to execute a service in another way, before starting test run, it should set
another Connector for this Service (through the ServiceManager by using the
Service’s ID). This Connector may be directly associated with a ServiceExecutor
(as LocalConnector does it), or it can be a network connector, and send messages
to a remote agent.

Separate Services Start Up
To simplify service start-up (in case there is no remote environment or you don’t
want to use the JavaTest harness to run the Service management feature), a separate
entry point is available inside the JavaTest harness, such as ServicesMain, that
performs the following operations:

1. Takes the test suite path as input.

2. Instantiates all found Services, ServiceExecutors, and local Connectors.

3. Invokes the Service.start methods.

Services are unmanageable in this case and must be stopped by shutdown hook.
FIGURE 11-2 illustrates the sequence of performing a separate services start-up.
114 JavaTest Architect’s Guide • March 10, 2009

FIGURE 11-2 Separate Service Start-Up

diagram of separate services start up

ServicesMainServicesMain

ServicesReader

Service1
LocalConnector

Service1
Local

Executor

Test Suite

Service1.start()
Chapter 11 Service Management 115

116 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 12

Running JUnit Tests

This chapter explains how to retrofit existing JUnit 3.x or 4.x test suites to enable
them to run with the JavaTest harness. This information can also help you author
new JUnit tests that run under the harness.

JUnit is a simple framework for writing and running automated tests. Written by
Erich Gamma and Kent Beck in 1997, JUnit exposed test driven development
practices from the Smalltalk world into the Java programming community. JUnit is
now an open-source project at SourceForge.net.

The JUnit framework provides a fast, simple interface for creating a set of tests and
executing them by a common method (for example, using Ant or a shell script). The
framework places very few restrictions on what the tester must do to write a test
class. The core JUnit distribution has few facilities for GUI interaction or reporting,
and it has no robust interface for configuration.

The procedure described here enables JUnit tests to be run under the JavaTest
harness. The JavaTest harness provides a robust GUI interface, many reporting
options, and an opportunity to build a robust configuration system for the tests. The
harness can be configured to allow customization of the GUI, report types, result
presentation, and more. These services might be useful for users who want to wrap
more powerful facilities around their existing test infrastructure.

The Retrofit Process
This section describes the process of retrofitting JUnit tests so that they run on the
JavaTest harness.
117

Prerequisites for Converting Tests
To undertake a conversion process, you must be familiar with some of the inner
workings of the JUnit test suite you are converting. Specifically, you need to know:

■ How the JUnit tests can be distinguished from other tests.

■ The version of JUnit that works with the test suite (3.x or 4.x).

■ Where the tests are stored. For example, are they in a single directory tree?

■ The libraries or supporting processes required to run the tests.

■ The configuration settings or files necessary to run the tests.

Tests written to work with JUnit 3.x are typically identified as being a subclass of
junit.framework.TestCase. To find JUnit 3.x tests, use the
com.sun.javatest.junit.JUnitSuperTestFinder class (located in the
jt-junit.jar archive) to scan the test classes. Each class that is a subclass of
junit.framework.TestCase is designated as a recognized test.

JUnit 4.x style tests do not use a specific superclass, rather, they tag classes with the
org.junit.Test annotation. The JavaTest harness library jt-junit.jar
provides the class com.sun.javatest.junit.JUnitAnnotationTestFinder to
find 4.x style tests. It operates much like the JUnitSuperTestFinder class, but
looks for different criteria.

See “JUnitSuperTestFinder” on page 121 and “JUnitAnnotationTestFinder” on
page 122 for more details.

▼ Procedure for Converting Tests
This procedure describes how to set up files, property settings, and configuration
settings before running a JUnit test.

1. Create a testsuite.jtt file in root of the product directory.

For example, if the product unpacks into directory foo/, the testsuite.jtt file
should be in that directory. It does not necessarily need to be co-located with the
tests.

The .jtt file is a properties formatted file, with key=value pairs on each line.
Setting the name and id keys is mandatory. The name is a short descriptive name
for your test suite, the id is an internal key used identify this test suite.

2. Select your method for scanning for tests by specifying a TestFinder class.

The line for specifying the TestFinder class looks like this:
118 JavaTest Architect’s Guide • March 10, 2009

finder = com.sun.javatest.junit.JUnitSuperTestFinder -superclass
junit.framework.TestCase

See “JUnitSuperTestFinder” on page 121 and “JUnitAnnotationTestFinder” on
page 122 for further information.

3. Select your TestSuite class, using
com.sun.javatest.junit.JUnitTestSuite if you do not subclass it.

Use a fully qualified class name. This class must be available on the system class
path, preferably on the class path defined in your .jtt file. For example:

testsuite = com.sun.javatest.junit.JUnitTestSuite

4. Specify the interview.

If you don’t have your own interview, use the line below as the default. This class
must be available on the system class path, preferably on the class path setting in
your .jtt file. For example:

interview = com.sun.javatest.junit.JUnitBaseInterview

5. Provide a tests setting.

The tests location is important because it is forwarded to the TestFinder class
you specified in Step 2. This location is often relative to the location of the
testsuite.jtt file as described in Step 1. Use forward slashes to make the path
platform independent. Do not use absolute paths or relative paths to places above
testsuite.jtt. One of the following lines might serve as an example:

■ If you are scanning .java files, they might be located below the tests/
directory.

tests = tests

■ If you are scanning class files, they might be located below the classes/
directory:

tests = classes

See “JUnitSuperTestFinder” on page 121 and “JUnitAnnotationTestFinder” on
page 122 for further information.

6. Make sure that the paths to any classes you specify in the testsuite.jtt file
are assigned to the classpath key in the testsuite.jtt file.

This how the harness locates the classes. For example, if you specify:

interview = com.sun.javatest.junit.JUnitBaseInterview

be sure to add the path to the JAR file that contains that class to the classpath
key as shown here:

classpath = lib/jt-junit.jar lib/jt-myts.jar
Chapter 12 Running JUnit Tests 119

7. Try running the harness to see if it finds your tests.

You have to decide how to arrange your (JAR) files and resolve paths. The general
form is:

> cd mytestsuite/

> java -jar lib/javatest.jar -ts .

This starts the harness and forces it to load the test suite located in the current
directory (represented by “.”). The testsuite.jtt file must be located in the “.”
directory.

When the main window comes up, you should see a tree populated with the tests
you intended. Check the counters on the main panel to view a summary of the
tests that were found. You can check the View > Properties menu item to verify
that the plug-in classes are loaded as you expect.

Technical Details
This section describes the two main sets of classes that provide JUnit support. The
first is the JUnitTestFinder (a subclass of com.sun.javatest.TestFinder).
Variations of the JUnitTestFinder, JUnitSuperTestFinder and
JUnitAnnotationTestFinder classes roughly correspond to JUnit 3.x and 4.x
support. The difference is explained below.

The second supporting component is the JUnitMultiTest class that is responsible
for executing the tests.

Support Classes
The following additional “glue” classes are provided to connect everything:
JUnitTestSuite, JUnitBaseInterview, and JUnitTestRunner. Each
supporting class is explained below.

■ The JUnitTestSuite class is a very simple class that instructs the harness to use
the JUnitTestRunner to execute tests. If this method is not present, the
DefaultTestRunner is used. This is the traditional way to execute tests
requiring a Script class. Because the TestRunner class is present, there is full
control over how the tests are executed. For example, the harness can determine
how many tests are run simultaneously and how they are launched (for example,
using exec). By extending this class, you have access to override other aspects of
the harness. See the TestRunner API for more information. Note that many of
120 JavaTest Architect’s Guide • March 10, 2009

the settings that this document describes in the testsuite.jtt file can be hard
coded into the TestSuite subclass. The TestSuite base class provides the
functionality to instantiate the settings in the testsuite.jtt.

■ The JUnitBaseInterview class is a skeleton interview class that does not
require any input from the user. If your JUnit tests do not require a setting from
the user, do not modify it. Try one of the following methods to get values from
the user:

■ Read a configuration file from a pre-determined location, perhaps a location
relative to the test suite root (TestSuite.getRootDir()).

■ Ask the user for the values directly using the com.sun.interview API. This
is the primary means by which the harness is designed to get values from the
user. In either case, the value(s) must end up in the Map provided in
Interview.export(Map). The Map is the set of values that the other classes
must have access to, namely the JUnitTestRunner and classes it creates
(JUnitMultiTest). Read Chapter 6 for more information.

■ The JUnitTestRunner class is responsible for dispatching tests. It has access,
via an Iterator, to the entire list of tests to be executed during a test run.
Because a test is represented by a TestDescription, you must customize your
test finder to add any settings that you will want later (in this class). The default
implementation executes the test using JUnitBareMultiTest if the
TestDescription property junit.finderscantype is set to superclass. If
it is not set to superclass, it uses the JUnitAnnotationMultiTestclass. You
may want to change this behavior, use your own JUnitMultiTest class, or a
subclass of one of these.

JUnitSuperTestFinder
This class looks for a superclass that identifies the class as a JUnit test. By default it
searches the ancestors of each class for junit.framework.TestCase. Because a
test suite might require further derivations of junit.framework.TestCase to
support its particular needs, you can use the -superclass option to specify a more
specific class.

For example, consider the following class structure:

java.lang.Object

 junit.framework.TestCase

 foo.BetterTestCase

 product.Test0002a

Test0002a is a subclass of BetterTestCase, and so forth.
Chapter 12 Running JUnit Tests 121

■ If given Test0002a, JUnitSuperFinder ascends the inheritance chain until it
reaches either a matching superclass or java.lang.Object. It searches for the
TestCase class by default, so when given Test0002a, it ascends two levels,
finds java.lang.Object, and returns Test0002a to the harness as a test.

■ If this test finder is given java.util.ArrayList, it ascends until it reaches
java.lang.Object, at which point it decides that the class is not a test and
moves on.

To change the superclass for which you are scanning, supply the -superclass
argument and specify a class name. You can supply this argument multiple times to
scan for multiple superclasses. For example, in the testsuite.jtt file you might
specify the following:

finder = com.sun.javatest.junit.JUnitSuperTestFinder -superclass
foo.BetterTestCase -superclass foo.CustomTestCase

Although it does not execute tests, the test finder attempts to pick out test methods
by looking for public methods that begin with the string “test”. It then lists these
in a space-separated list, without the parameters (just the method name). The list
might contain duplicates because the full signature is not evaluated. Semantics for
this TestDescription value are loosely defined at this point. Public comment is
welcome (submit your comments to the JT harness interest forum at
https://jtharness.dev.java.net/).

This superclass finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in TABLE 12-1.

JUnitAnnotationTestFinder
This annotation test finder scans classes for the org.junit.Test annotation. It
uses the same scanning strategy as JUnitSuperTestFinder.

This annotation finder generates the TestDescription
(com.sun.javatest.TestDescription) values shown in TABLE 12-2.

TABLE 12-1 JUnitSuperTestFinder Test Description Values

Key Value(s)

keywords junit, junit3

junit.finderscantype superclass

junit.testmethods (list of identified test methods)
122 JavaTest Architect’s Guide • March 10, 2009

JUnitBareMultiTest
This is the execution class for JUnit 3.x style tests. Execution is accomplished using
the class name supplied by the test finder (through the TestDescription) which is
used to execute that class’s TestCase.runBare() method. This might not be
sufficient for all test suites. Output from stdout and stderr are captured. The test
passes if no exceptions are thrown and fails if there are any Throwable results.

JUnitAnnotationMultiTest
This is the execution class for JUnit 4.x style tests. It takes the class that was
identified by the test finder and executes it using the JUnit library
TestResult.Section parts. Also, because execution is turned over to JUnit, it
does not report any of its own debugging output during execution. (In the future, it
would be useful to take more advantage of the Result API and any observer APIs
that are available.)

Implementation Notes
The use of the junit3 and junit4 keywords might be a generalization, since it
really represents how the class was found. A test suite might mix use of version 3
and 4 features, meaning it is not necessarily completely 4.x compliant. Nonetheless,
perhaps being able to run 3.x style tests out of a mixed set (see
com.sun.javatest.finder.ChameleonTestFinder) can be useful. Do not
forget that the junit keyword is also added so that JUnit tests can be selected from
among non-JUnit tests.

Two of the most likely changes you should make is to modify the test finder or
modify how to execute the test. To change the test finder, simply subclass
JUnitTestFinder, provide it on the class path in testsuite.jtt and change the
finder setting in testsuite.jtt.

TABLE 12-2 JUnitAnnotationTestFinder Test Description Values

Key Value(s)

keywords junit, junit4

junit.finderscantype annotation

junit.testmethods (list of identified test methods)
Chapter 12 Running JUnit Tests 123

To change the method for executing a test, you must change how it is dispatched in
JUnitTestRunner. To change that, you must subclass JUnitTestRunner and
provide it on the testsuite.jtt class path. You must also subclass
JUnitTestSuite and change its setting in testsuite.jtt (see “Areas for
Improvement” on page 124).

Areas for Improvement
This section lists implementation features that might benefit from user feedback and
further development. You can provide this on the JT harness web site
(https://jtharness.dev.java.net/). The JT harness is the open source
version of the JavaTest harness. Improvements made there can find their way into
JavaTest harness.

■ The use of class path is currently not convenient. The general design of the
harness is that the setting in testsuite.jtt affects the tests, rather than the
system class path that the harness uses. This area can be more refined.

■ Some additional base implementations of the interview class would be useful. In
particular, providing one that reads a properties file and dumps it directly into
the Map of Interview.export(Map) would provide a “quick and dirty” way
for people to configure their test suites. Perhaps the location of the file can be
written as a setting in testsuite.jtt.

Note – Users should generally not be instructed to alter testsuite.jtt. These
settings are designed to be static. Information the user provides should be gathered
through the interview system. As an architect, you should configure the
testsuite.jtt file for general use during the retrofit process. Once the conversion
is completed, the file should remain relatively untouched.

■ It might be useful to hard code the Interview class and accept an override in the
testsuite.jtt file, rather than forcing the developer to specify it in the file as
documented above. This also applies to the JUnitTestRunner (or just the
TestRunner class) in the implementation of JUnitTestSuite.

References
■ JT Harness project (open source version of the JavaTest harness)

(https://jtharness.dev.java.net/)

■ JUnit project

(http://SourceForge.net/projects/junit)
124 JavaTest Architect’s Guide • March 10, 2009

■ JUnit 3.X home page

(http://junit.sourceforge.net/junit3.8.1/index.html)

■ JUnit 4.X home page

(http://junit.sourceforge.net/)

■ API documentation

(http://junit.sourceforge.net/javadoc_40/index.html)

■ JUnit Cookbook

(http://junit.sourceforge.net/doc/cookbook/cookbook.htm)
Chapter 12 Running JUnit Tests 125

126 JavaTest Architect’s Guide • March 10, 2009

CHAPTER 13

Customization

This chapter describes customizations that can be made in the JavaTest harness
appearance and function. Customizations not documented in this guide are
described in the appropriate javadoc (API) documentation.

Customizing the Splash Screen
Instead of using the default JavaTest harness splash screen, architects can insert a
custom test suite splash screen for users.

To use a custom splash screen, test suite architects must accomplish the following
actions:

■ Insert a splash.properties file that specifies the custom splash image in the
test suite lib/ directory (below javatest.jtt).

See “Example of splash.properties File” on page 128 for an example of the content
and format of a splash.properties file.

■ Insert the splash image file in a location relative to the splash.properties file.

Acceptable image formats for the splash screen are GIF, JPEG and PNG.

Once the splash.properties and the splash image files are integrated in the test
suite lib/ directory, the JavaTest harness will display the custom splash screen
instead of the default when starting.

In the current implementation, the JavaTest harness displays the custom splash
screen when users start the harness with -ts or -testsuite flags to specify the
specific test suite. In the future additional flags might be used to start the harness
with the custom splash screen.
127

Example of splash.properties File
The following is an example of the required format of the splash.properties file. In
this example, the custom image name is splashMyProduct.gif.

Notes About the Implementation
Because the splash screen must be capable of being internationalized, the
testsuite.jtt file is not used to directly specify the splash screen. This capability
of being internationalized requires that it should go through the standard
ResourceBundle searching. The standard ResourceBundle searching is facilitated by
using the splash.properties file. Other options for specifying the custom splash
screen were not utilized because they increase the startup overhead of the harness
by requiring that it perform additional file operations.

CODE EXAMPLE 13-1 splash.properties File Example

comment
splash.icon=splashMyProduct.gif
128 JavaTest Architect’s Guide • March 10, 2009

APPENDIX A

Standard Commands

The JavaTest harness provides a number of standard commands that you can use to
configure an environment to run a test suite on your test platform. These commands
all extend the standard JavaTest Command class.

With these standard commands, you can configure the JavaTest harness for a wide
variety of test platforms. If, however, you find that you cannot create an
environment for your test platform using these commands, you may need to write
your own: see “Writing Custom Commands” on page 99 for more details.

The standard commands are as follows:

■ ActiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in active mode

■ ExecStdTestSameJVMCmd: A command to execute a simple API test in the same
JVM in which the JavaTest harness or the JavaTest Agent is running

■ ExecStdTestOtherJVMCmd: A command to execute a simple API test in a JVM
that is separate from the JVM in which the JavaTest harness or the JavaTest Agent
is running

■ JavaCompileCommand: An example command that demonstrates how to invoke
a Java application via a wrapper class

■ PassiveAgentCommand: A command to execute a subcommand on a JavaTest
Agent running in passive mode

■ ProcessCommand: A command to execute a system command in a separate
process

■ SerialAgentCommand: A command to execute a subcommand on a JavaTest
Agent, communicating via a serial line

Note – Examples in this appendix use Unix style commands and file separators.
129

ActiveAgentCommand
A command to execute a command in a separate JVM, typically on a remote
machine, by delegating it to a JavaTest Agent which has been configured to run in
active mode. This means it contacts the JavaTest harness to determine what it should
do.

The JavaTest active agent pool must be started before you start running tests that use
this command. The active agent pool holds the requests from the active agents until
they are required. You can start the active agent pool from the JavaTest GUI or
command line.

Usage
com.sun.javatest.agent.ActiveAgentCommand [options]
command-class [command-arguments]

Arguments

options

-classpath path

This option allows you to specify a classpath on the system running the JavaTest
harness from which to load the command class and any classes it invokes. The classes
are automatically loaded into the agent as needed. If the class path is not specified,
the classes are loaded from the agent’s class path.

–mapArgs

The command to be executed might contain values that are specific to the host
running the JavaTest harness and that might not be appropriate for the host that
actually runs the command. If this option is given, the agent uses a local mapping
file to translate specified string values into replacement values. This is typically used
to map filenames from the view on one host to the view on another. See the JavaTest
online help for more information.

–tag tag
130 JavaTest Architect’s Guide • March 10, 2009

This option allows the user to specify a string that is used to identify the request on
the agent. If not specified, the default value, command-class, is used. It is suggested
that the URL of the test should be used as the value for this option. A configuration
can use the symbolic name $testURL, which is substituted when the command is
executed.

command class

The name of a command class to be executed by the agent. If the -classpath option is
not used, the class should be on the classpath of the agent, and should be
appropriate for the agent, depending on the security restrictions in effect. For
example, an agent running as an application might be able to run a
ProcessCommand, but an agent running as an applet might not. The class should
implement the interface com.sun.javatest.Command.

command arguments

The arguments to be passed to the run method of an instance of the command class
running on the agent. The arguments can be translated to agent-specific values if the
–mapArgs option is given.

Description
ActiveAgentCommand is a facility to execute a command on a JavaTest Agent that
has been configured to run in active mode. A JavaTest Agent provides the ability to
run tests in a context that might not be able to support the JavaTest harness. This
could be because the tests are to be run on a machine with limited resources (such as
memory), or in a security-restricted environment (such as a browser), or on a newly
developed platform on which it is not possible to run Sun Microsystem’s JDK.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a
Solaris platform might be mounted as a network drive like H: on a Windows NT
platform. When an agent is initialized, it may be given information on how to
translate strings from one domain to another. On a per-command basis, the agent
can be instructed to translate a command according to the translation tables it is
given.

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.
Appendix A Standard Commands 131

Any output written by the command when it is executed by the agent appears as the
output of the ActiveAgentCommand command itself. If the command is
successfully executed by the agent (i.e. the Command object is successfully created
and the run method invoked), the result of ActiveAgentCommand is the result of
the command executed by the agent. Otherwise, an appropriate error status is
returned.

Examples
This example is based on CODE EXAMPLE A-10 and shows how a command can be
made to execute on another machine simply by prefixing it with
ActiveAgentCommand and any arguments that ActiveAgentCommand requires.

See Also
All the other standard commands in this appendix. Subject to security restrictions
on the agent, they can all be executed remotely by means of
ActiveAgentCommand.

ExecStdTestSameJVMCmd
A command that executes a standard test in the same JVM in which JavaTest Agent
is running.

Usage
com.sun.javatest.lib.ExecStdTestSameJVMCmd [options]
test_class [test_args]

CODE EXAMPLE A-1 Using ActiveAgentCommand to Execute a ProcessCommand
on an Active Agent

compile.java=com.sun.javatest.agent.ActiveAgentCommand \
com.sun.javatest.lib.ProcessCommand \
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.3/solaris/bin/javac –d /home/jjg/classes HelloTest.java
132 JavaTest Architect’s Guide • March 10, 2009

Arguments

options

–loadDir directory

Creates a ClassLoader that loads any necessary classes from the specified
directory. The ClassLoader is garbage collected once ExecStdTestSameJVMCmd
has completed. If you do not specify -loadDir, the system class loader is used.
Using a separate ClassLoader for each test reduces the chance that one test
interferes with another. Also, using a separate ClassLoader allows the command
to unload test classes after the test is executed, which could be critical in memory
constrained environments.

On some systems, the security manager restricts the ability to create a
ClassLoader. If you use this option and cannot create a ClassLoader, the
command throws a SecurityException.

test class

Specifies the name of the test class to execute. This class must be a subtype of
com.sun.javatest.Test. To specify a class in the test description currently
being processed by the JavaTest harness, use the $executeClass substitution
variable.

test args

Specifies a list of arguments to be passed to the run method of the class being
executed. To specify arguments in the test description currently being processed by
the JavaTest harness, use the $executeArgs substitution variable.

Description
ExecStdTestSameJVMCmd is a JavaTest command that executes a standard test in
the same JVM in which the JavaTest Agent is running. The class must be a subtype
of com.sun.javatest.Test.

ExecStdTestSameJVMCmd creates a new instance of the class, calls its run
method, and passed the class args. If the class is successfully created and invoked,
the result of ExecStdTestSameJVMCmd is equal to the result of the run method of
the object.
Appendix A Standard Commands 133

Examples

See Also
ExecStdTestOtherJVMCmd

ExecStdTestOtherJVMCmd
A variant of ProcessCommand that executes a standard test using a subcommand
in a separate process.

Usage
com.sun.javatest.lib.ExecStdTestOtherJVMCmd [options]
[shell variables] subcommand [args]

Arguments

options

–v

Used for verbose mode. When ExecStdTestOtherJVMCmd is in verbose mode,
additional output information is sent to the TestResult object.

CODE EXAMPLE A-2 Simple use of ExecStdTestSameJVMCmd

com.sun.javatest.lib.ExecStdTestSameJVMCmd HelloTest

CODE EXAMPLE A-3 Using ExecStdTestSameJVMCmd Inside an Environment

command.execute=com.sun.javatest.lib.ExecStdTestSameJVMCmd \
$testExecuteClass $testExecuteArgs
134 JavaTest Architect’s Guide • March 10, 2009

shell variables

Specifies one or more shell environment values that are required by the sub-
command. Shell environment variables are written as: name=value.

subcommand

Specifies the name of a program that is executed.

args

Specifies the arguments that are passed to the subcommand.

Description
ExecStdTestOtherJVMCmd is a JavaTest command that executes a test with a
subcommand in a separate process (using a separate runtime). You would normally
use this command to invoke a JVM to run the test class as in

Examples of subcommands are the compiler for the Java programming language
(javac) and the JVM (java). Normally, a test exits by creating a Status object and
then invoking its exit method. This command also returns a Status object, which
is equal to the object returned by the test.

Examples

CODE EXAMPLE A-4 Simple use of ExecStdTestOtherJVMCmd

com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.4/solaris/bin/java HelloTest

CODE EXAMPLE A-5 Using ExecStdTestOtherJVMCmd Inside an Environment

command.execute=com.sun.javatest.lib.ExecStdTestOtherJVMCmd \
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.4/solaris/bin/java $testExecuteClass

$testExecuteArgs
Appendix A Standard Commands 135

See Also
ExecStdTestSameJVMCmd

ProcessCommand

JavaCompileCommand
Invokes a compiler in the same JVM in which the JavaTest harness or the JavaTest
Agent is running.

Usage
com.sun.javatest.lib.JavaCompileCommand
[–compiler compiler-spec] [args]

Arguments

options

–compiler compiler-spec

If the –compiler option is given, compiler-spec specifies the class name for the
compiler, optionally preceded by a name for the compiler followed by a “:”. If no
compiler name is given before the class name, the default name is “java” followed
by a space and then the class name. If the –compiler option is not given, the
default value for compiler-spec is javac:sun.tools.javac.Main.

args

Specifies the arguments to the compiler’s compile method. If you use the default
compiler, javac, the arguments are exactly the same as those you would use for
javac. In this case, you should refer to documentation for the JDK for more details.
Otherwise, refer to the documentation for the compiler you specify.
136 JavaTest Architect’s Guide • March 10, 2009

Description
This command is primarily an example that shows how any application written in
the Java programming language can be interfaced to the JavaTest harness by writing
a wrapper command. By default, the application in this example is the JDK compiler,
javac, but any class implementing the same signature can be invoked. javac is
normally run from the command line, per its specification, but it does have an
undocumented interface API, that is sufficiently typical to be used as the basis for
this example.

The compiler is assumed to have a constructor and compile method matching the
following signature:
public class COMPILER {

public COMPILER(java.io.OutputStream out, String name);
boolean compile(String[] args);

}

When JavaCompileCommand is used, an instance of the compiler is created. The
constructor is passed a stream to which to write any messages, and the name of the
compiler to be used in those messages. Then, the compile method is called with
any args passed to JavaCompileCommand. If the compile method returns true,
the result is a status of “passed”; if it returns false, the result is “failed”. If any
problems arise, the result is “error”.

The source code for this example is provided in the examples directory. It is the file
JavaCompileCommand.java in the directory
src/share/classes/com/sun/javatest/lib/ under the main JavaTest
installation directory.

Examples

CODE EXAMPLE A-6 Simple use of JavaCompileCommand

com.sun.javatest.lib.JavaCompileCommand HelloWorld.java

CODE EXAMPLE A-7 Using JavaCompileCommand Inside an Environment

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
–d $testClassDir $testSource
Appendix A Standard Commands 137

See Also
ProcessCommand

PassiveAgentCommand
A command to execute a command on a remote machine by delegating it to a
JavaTest Agent that is configured to run in passive mode.

Usage
com.sun.javatest.agent.PassiveAgentCommand [options]
command-class [command-arguments]

Arguments

options

-classpath path

This option lets you to specify a classpath on the system running the JavaTest harness
from which to load the command class and any classes it invokes. The classes are
automatically loaded into the agent as needed. Otherwise, classes are loaded using
the agent’s class path.

–host host-name

Specifies the host on which to run the command. A passive JavaTest Agent must be
running on this host to execute the command. The option must be given; there is no
default.

–mapArgs

CODE EXAMPLE A-8 Using JavaCompileCommand to Invoke Sun’s RMI compiler

command.compile.java=com.sun.javatest.lib.JavaCompileCommand \
–compiler rmic:sun.rmi.rmic.Main \
–d $testClassDir $testSource
138 JavaTest Architect’s Guide • March 10, 2009

The command to be executed might contain values that are specific to the host
running the JavaTest harness and that might not be appropriate for the host that
actually runs the command. If this option is given, the agent uses a local mapping
file to translate specified string values into replacement values. This is typically used
to map filenames from the view on one host to the view on another. See the JavaTest
online help for more information.

–port port-number

This option specifies the port to which to connect when requesting an agent to run a
command. The default value, 1908, is used if no value is explicitly given.

–tag tag

This option lets the user specify a string that identifies the request on the agent. If
not specified, the default value, command-class, is used. It is suggested that the URL
of the test be used as the value for this option. A configuration can use the symbolic
name $testURL, which is substituted when the command is executed.

command class

The name of a command class to be executed by the agent. The class should be on
the classpath of the agent and be appropriate for the agent, depending on the
security restrictions imposed on the agent. For example, an agent running as an
application might be able to run a ProcessCommand, but an agent running as an
applet might not. The class should implement the standard interface
com.sun.javatest.Command.

command arguments

The arguments to be passed to the run method of an instance of the command class
running on the agent. The arguments might be translated to agent-specific values if
the –mapArgs option is given.

Description
PassiveAgentCommand is a facility to execute a command on a JavaTest Agent
that has been configured to run in passive mode. A JavaTest Agent provides the
ability to run tests in a context that might not be able to support the entire JavaTest
harness. Factors that require use of the JavaTest Agent include limited resources
(such as memory), or in a security-restricted environment (such as a browser), or on
a newly developed platform on which is not possible to run Sun Microsystem’s JDK.
Appendix A Standard Commands 139

The host and port options identify an agent to be used to execute the command. The
JavaTest harness attempts to contact an agent on that system that is running and
waiting for requests.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a
Solaris platform can be mounted as a network drive like H: on a Windows NT
platform. When an agent is initialized, it may be given information on how to
translate strings from one domain to another. On a per-command basis, the agent
can be instructed to translate a command according to the translation tables it is
given.

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.

Any output written by the command when it is executed by the agent appears as the
output of the PassiveAgentCommand command itself. If the command is
successfully executed by the agent (i.e. the Command object is successfully created
and the run method invoked) then the result of PassiveAgentCommand is the
result of the command executed by the agent. Otherwise, an appropriate error status
is returned.

Examples
These examples are based on and show how a command can be made to execute on
another machine simply by prefixing it with PassiveAgentCommand and any
arguments that pasiveAgentCommand requires.

See Also
All the other standard commands in this appendix. Subject to security restrictions
on the agent, they can all be executed remotely by means of
PassiveAgentCommand.

CODE EXAMPLE A-9 Using PassiveAgentCommand to execute a ProcessCommand
on a Passive Agent

compile.java=\
com.sun.javatest.agent.PassiveAgentCommand –host calloway \
com.sun.javatest.lib.ProcessCommand \
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.3/solaris/bin/javac –d /home/jjg/classes

HelloTest.java
140 JavaTest Architect’s Guide • March 10, 2009

ProcessCommand

Usage
com.sun.javatest.lib.ProcessCommand [options] [env variables]
command [command-arguments]

Arguments

options

–v

Verbose mode: tracing information is output to the log.

env variables

This is a list of named values to be passed as environment variables to the command
to be executed. Each named value should be written as name=value.

command

This is the name of the command to be executed in a separate process.

command arguments

This is a list of arguments to be passed to the command to be executed.

Description
ProcessCommand executes a system command in a separate process with the
specified set of environment variables and arguments.

The result of the command is a Status object based upon the exit code of the
process. An exit code of zero is interpreted as Status.PASSED; all other exit codes
are interpreted as Status.FAILED. There are variants of ProcessCommand that
Appendix A Standard Commands 141

provide different interpretations of the exit code. These variants can be used in more
specialized circumstances, such as running tests that use exit codes like 95, 96, and
97.

ProcessCommand copies the standard output stream of the process to the out2
command stream, and the standard error stream of the process to the out1 command
stream.

Examples

See Also
ExecStdTestOtherJVMCmd

SerialAgentCommand
A command to execute a command on a remote machine, by delegating it to a
JavaTest Agent that has been configured to communicate via a serial RS232 line.

Usage
com.sun.javatest.agent.SerialAgentCommand [options]
command-class [command-arguments]

CODE EXAMPLE A-10 Simple use of ProcessCommand

com.sun.javatest.lib.ProcessCommand \
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.3/solaris/bin/javac –d /home/jjg/classes \
HelloTest.java

CODE EXAMPLE A-11 Using ProcessCommand in an Environment

compile.java=com.sun.javatest.lib.ProcessCommand
CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.3/solaris/bin/javac –d /home/jjg/classes

$testSource
142 JavaTest Architect’s Guide • March 10, 2009

Arguments

options

-classpath path

This option lets you specify a classpath on the system running the JavaTest harness from
which to load the command class and any classes it invokes. The classes are
automatically loaded into the agent as needed.

–mapArgs

The command to be executed might contain values that are specific to the host
running the JavaTest harness and that might not be appropriate for the host that
actually runs the command. If this option is given, the agent uses a local mapping
file to translate specified string values into replacement values. This is typically used
to map filenames from the view on one host to the view on another. See the JavaTest
online help for more information.

–port port-name

This option specifies the name of the serial port on the system running the JavaTest
harness to be used to communicate with a JavaTest Agent that has also been
configured to communicate via a serial line. The set of possible names is determined
dynamically, and is dependent on the underlying implementation of the
javax.comm API. On Solaris, the names are typically ttya, ttyb; on a PC, the
names are typically COM1, COM2, COM3 and COM4.

–tag tag

This option lets the user specify a string to be used to identify the request on the
agent. If not specified, the default value, command-class, is used. It is suggested that
the URL of the test be used as the value for this option. In an environment file, this
is available as the symbolic name “$testURL”.

command class

The name of a command class to be executed by the agent. The class should be on
the class path of the agent, and should be appropriate for the agent, depending on
the security restrictions imposed on the agent. For example, an agent running as an
application might be able to run a ProcessCommand, but an agent running as an
applet might not.
Appendix A Standard Commands 143

command arguments

The arguments to be passed to the run method of an instance of the command class
running on the agent. The arguments can be translated to agent-specific values if the
–mapArgs option is given.

Description
SerialAgentCommand is a facility to execute a command on a JavaTest Agent that
has been configured to communicate via a serial line. A JavaTest Agent lets you run
tests in a context that might not be able to support all of the JavaTest harness. This
might be because the tests are to be run on a machine with limited resources (such as
memory), or in a security-restricted environment (such as a browser), or on a newly
developed platform on which is not possible to run Sun Microsystem’s JDK.

The port option identifies a serial port on the system running the JavaTest harness,
which should be connected to a serial port on the system running the JavaTest
Agent. The serial line is accessed via the javax.comm optional package. This is not
part of the standard JDK, and must be added to your class path when you start the
JavaTest harness.

Commands often contain host-specific arguments, such as filenames or directories.
Although the files and directories might be accessible from the agent host (and in
general, should be), the paths might be different. For example, /usr/local on a
Solaris platform could be mounted as a network drive like H: on a Windows NT
platform. When an agent is initialized, it may be given information on how to
translate strings from one domain to another. On a per-command basis, the agent
can be instructed to translate a command according to the translation tables it is
given.

The command to be executed on an agent can be identified with a tag for tracing and
debugging purposes. If none is specified, a default identification is used.

Any output written by the command when it is executed by the agent appears as the
output of the SerialAgentCommand command itself. If the command is
successfully executed by the agent (i.e. the Command object is successfully created
and the run method invoked), then the result of SerialAgentCommand is the
result of the command executed by the agent. Otherwise, an appropriate error status
is returned.

Examples
These examples are based on and show how a command can be made to execute on
another machine simply by prefixing it with SerialAgentCommand and any
arguments that SerialAgentCommand requires.
144 JavaTest Architect’s Guide • March 10, 2009

See Also
All the other standard commands in this appendix. Subject to security restrictions
on the agent, they can all be executed remotely by means of
SerialAgentCommand.

CODE EXAMPLE A-12 Using SerialAgentCommand to Execute a ProcessCommand
on an Agent Configured to Communicate Via a Serial Line

compile.java=\
com.sun.javatest.agent.SerialAgentCommand –port ttya \
com.sun.javatest.lib.ProcessCommand CLASSPATH=/home/jjg/classes \
/usr/local/jdk1.3/solaris/bin/javac –d /home/jjg/classes HelloTest.java
Appendix A Standard Commands 145

146 JavaTest Architect’s Guide • March 10, 2009

APPENDIX B

Formats and Specifications

This appendix describes file formats and specifications that test architects should
know about.

Test URL Specification
This specification describes how test files must be named to work properly with the
JavaTest harness.

The JavaTest harness converts the native path names of tests to an internal format
called a test URL. When the JavaTest harness converts a path name to a test URL, it:

■ Makes the path relative to the root of the test suite

■ Converts the path separator to a forward slash

A test URL consists of three components:

■ The folder/directory path name (relative to the test suite tests directory)

■ The name of the file that contains the test description

■ An optional test identifier can be appended to designate a test description table
within a test description file

For example:

api/javatest/TestSuite.html#getName

The JavaTest harness evaluates test URLs without regard to case; however, it does
preserve case when possible to increase readability for the user.

The path names you create can contain only the following characters:

■ ISO Latin 1 characters A-Z and a-z

■ Digits 0-9
147

■ Underscore character “_”

■ Dash character “-”

■ Period character “.” (deprecated)

■ Open and close parentheses (deprecated)

Test URLs must never contain whitespace characters.

Deprecated characters are included for backward compatibility; please do not use
them as they might become unsupported in future releases. Whenever possible, use
short names to make best use of screen real estate.

Note – When the result file (.jtr) is created, the text after the last period is
omitted.

The test identifier may only contain the following characters:

■ ISO Latin 1 characters A-Z and a-z

■ Digits 0-9

■ Underscore character “_”

Test Paths
An test path can be used by a user to specify a particular subset of tests in the test
suite hierarchy; for example, in the Tests tab of the JavaTest configuration editor
(Standard Values view).

Initial URLs specify a set of tests in the following ways:

■ A folder that contains one or more tests

■ A file that contains one or more tests

■ A single, complete test URL

The test path conforms to the rules specified in the previous section, but is not
required to resolve the complete URL. If the test path is an incomplete test URL (for
example, a folder), the JavaTest harness generates a list of the tests’ URLs contained
hierarchically beneath it.
148 JavaTest Architect’s Guide • March 10, 2009

Exclude List File Format
Test suites use the exclude list mechanism to identify tests that should not be run.
The JavaTest harness consults the exclude list when it selects tests to run, and does
not run the tests on the list. Excluded tests normally appear as filtered out in the
JavaTest test tree.

When the JavaTest harness is used with TCK test suites, the exclude list mechanism
is used to determine the correct set of tests that must be executed for certification.
The exclude list mechanism is a mechanism for “removing” broken or invalid tests
in the field without having to ship a new test suite.

Syntax
The exclude list is a four-column table that uses ISO Latin 1 (ISO 8859-1) character
encoding. Lines that are completely empty or contain only whitespace (space, tab,
newline) are allowed. Comment lines begin with the “#” character. Each line has the
following format:

Test_URL[Test_Cases] BugID_List Keywords Synopsis

For example:

api/index.html#attributes[Char2067] 4758373 reference,test Bug is intermittent

TABLE B-1 Exclude List Field Descriptions

Field Description

Test_URL[Test_Cases] The URL of the test to be excluded. This field can specify an entire
test or can use the Test_Cases parameter to specify a subset of its
test cases. The test cases field is optional and the brackets must not
be present if the field is empty.

BugID_List A comma-separated (no spaces) list of bug identifiers associated
with the excluded test.

Keywords A comma-separated (no spaces) list of keywords that can be used to
classify exclusions. The particular values are project specific.

Synopsis A short comment that describes the reason the test is excluded. This
optional field is recommended because it helps track entries on the
exclude list.
Appendix B Formats and Specifications 149

Each field is separated by spaces and/or tabs. A line break terminates the entry.
There is no way to indicate that the entry continues on the next line. Comments can
appear on any line of the file, see the rules below.

Although it is not recommended, you can omit the synopsis, keywords, or
bugID_List field; however, the entry is only valid if everything to the right of the
omitted field is also omitted. For example, you cannot omit a bugID and include a
keyword; but you can include a bugID and omit the keywords and synopsis.

Test URL and Test Cases
Entries must not specify overlapping test cases. For example, you cannot exclude an
entire test and then exclude a test case inside that test. These two entries can never
appear in the same file:

api/java_lang/Character/index.html#attributesFullRange

api/java_lang/Character/index.html#attributesFullRange[Character206
7]

The URL must specify a specific test or test case. Entire subsections of the test suite
cannot be excluded with a single entry. Continuing with the API example, if a test
suite is rooted at the ts_dir\tests directory and the index.html file contains
many test descriptions, all of the following test URLs are invalid:

api

api/java_lang/

api/java_lang/Character

api/java_lang/Character/index.html

tests/api/java_lang/xyz

java_lang/xyz

You can exclude individual test cases within a test description by appending a list of
those tests cases at the end of the test URL. The list of test cases must be enclosed
within square brackets. The list of test cases is separated by commas with no internal
whitespace. There is no whitespace between the end of the test URL and the opening
square brackets. The following figure shows valid test URL entries:

CODE EXAMPLE B-1 Valid Test URL Entries

vm/instr/ifnull/ifnull003/ifnull00303m1/ifnull00303m1.html
api/java_beans/beancontext/BeanContextMembershipEvent/index.html#Constructor
api/java_lang/Character/index.html#attributesFullRange[Character2067]
api/SystemFlavorMap/index.html#method[SystemFlavorMap0001,SystemFlavorMap0004]
150 JavaTest Architect’s Guide • March 10, 2009

For information about constructing valid test URLs, see “Test URL Specification” on
page 147.

BugIDs
The list of bug IDs is separated by commas, and contains no whitespace characters.
Items in the BugID_List are entries that correspond to a bug in a bug tracking
system. Letters, integers, dashes and underscore characters are valid.

Keywords
It is recommended that keyword entries be no longer than 20 characters long.
Keyword entries must start with a letter and can contain letters, numbers, and the
underscore character. The list of keywords is separated by commas, without any
whitespace characters.

Synopsis
Any description or notes about a particular entry. There are no special restrictions on
the content of this field. It is recommended that the field contain no more than 100
characters.

Comments and Header Information
Comments always extend from column zero of a line to end of the line. To be a
comment line, the character in column zero must be “#”; two consecutive “#”
characters at the beginning of a line are allowed, but the use of three or more is
reserved.

Optional (but recommended) header lines can be added to your exclude list file to
improve readability. Header lines always begin with “###” and can be used to
designate titles, and revision histories. The format is:

header_type heading content...

The case-sensitive header type specification is separated from the “###” prefix by
white space characters, the heading content is separated from the header type
specification by more whitespace characters. These values should appear only once
in any exclude list file, and it is recommended that they be placed at the top of the
file. Currently, the only supported header type is “title”. The title describes the
exclude list and must be terminated with a newline.

The following is an example of a valid exclude list:
Appendix B Formats and Specifications 151

CODE EXAMPLE B-2 Exclude File

title My example exclude list
revised Mon Jul 23 18:15:04 PDT 2001
api/java_lang/runtimetest.java
this is a comment line
api/index.html#attributes[Char2067] 1234567 reference,test
Invalid assumption
this is another comment line
api/mytest.java#1 1234568,987654321 spec
152 JavaTest Architect’s Guide • March 10, 2009

APPENDIX C

What Technical Writers Should
Know About Configuration
Interviews

Technical writers can greatly contribute to the quality of a JavaTest configuration
interview — think of the text in a configuration interview as being equivalent to an
application’s user interface; the better the text, the easier the test suite is to run.
There are two areas where a writer’s contribution is extremely important:

■ The careful construction and phrasing of the question text

■ Providing extra help and examples in the More Info pane
153

FIGURE C-1 The JavaTest Configuration Editor: Question and More Info Panes

Question Text
Interview questions should be written as concisely, consistently, and clearly as
possible. Any amplification, clarification, or examples should be included in the More
Info pane.

Not all questions are really questions; some “questions” are written as statements that
instruct the user to specify, choose, or select an item of information.

To see an example interview, run the JavaTest tutorial in Chapter 2. The tutorial uses
the Demo TCK that is part of the JavaTest Architect’s release.

Question text is kept in a Java properties file associated with the interview class files;
you get the path to the properties file from the interview developer. Every interview
question is identified by a unique key. The key is based on a name assigned by the
developer and should uniquely identify the question with the interview. Keys are of
the form:

interview_class_name.question_name

The following is a snippet from the Demo TCK interview properties file:

title=Demo Interview Configuration Editor
.
.
DemoTCKParameters.cmdType.smry=How to Run Tests

DemoTCKParameters.cmdType.text=Do you wish to run the tests on
this computer (using a separate JVM), or to run them on another
computer using a JavaTest Agent?
154 JavaTest Architect’s Guide • March 10, 2009

DemoTCKParameters.cmdType.agent=Using a JavaTest Agent

DemoTCKParameters.cmdType.otherVM=On this computer

DemoTCKParameters.data.smry=Test Configuration Values...

DemoTCKParameters.data.text=The following questions determine
the local settings of some parameters required by some of the
tests.

DemoTCKParameters.desc.smry=Description

DemoTCKParameters.desc.text=Please provide a short
description to identify the configuration you are creating
here.

.

.

The file contains the following types of elements:

■ The title of the full interview

■ A title for each question of the form: question_key.smry

■ The text for each question of the form: question_key.text

■ Additional entries for choice items that are localized

Note – Do not type carriage return or linefeed characters within entries in a Java
properties files. This causes an error when the interview is built. Use the “\n”
characters to specify line breaks in question text.

More Info
As a technical writer, you can really add value to a test suite in the configuration
interview More Info pane. The text displayed in the More Info pane is formatted using
HTML 3.2 tags and provides a reasonably rich environment for formatting text.
Although the text can be created using a WYSIWYG HTML editor, most More Info text
is short and simple and is easy to create manually using a text editor.

Typically, the developer who creates the configuration interview creates the basic More
Info system, seeding it with empty HTML files that you can fill in with text.

Experience has shown that it is best to create one HTML More Info file per interview
question. It is also a good idea to name the More Info HTML files after the property
names of the questions they describe. For example, in the snippet in the previous
section, you can see that the DemoTCKParameters interview contains a question
Appendix C What Technical Writers Should Know About Configuration Interviews 155

named cmdType — you should expect to see a corresponding More Info file named
cmdType.html.

Formatting Styles
Your More Info topics should link to the style sheet included in this package named
moreInfo.css.

The following tips can be helpful when formatting your More Info topics:

■ Use only HTML 3.2 tags because of limitations in the HTML viewer

■ Section 508 accessibility rules may apply

■ Do not create hypertext links to other More Info topics or other external
documents

■ Do not add any <p> tags between the <body> tag and the initial paragraph

■ Use the <i> tag for variables in command lines — use the tag for emphasis

■ All file names and code examples should be formatted in the fixed-width font
using the <code> or <pre> tags

■ The style sheet (moreInfo.css) contains a “tight” class that you can use with
 tags for lists in which you want less vertical space between list items. For
example:

■ <li class="tight">This item is closer to the previous list item

■ Indent path names and code examples using the <p class="code"> tag. The
code class indents the lines 8 pixels and has no top margin. For example, the
following HTML:

<p class="code">

<i>jdk_install_dir</i><code>/bin/java</code>

</p>

<p class="code">

<i>jdk_install_dir</i><code>/jre/java</code>

</p>

Produces the following output:

jdk_install_dir/bin/java

jdk_install_dir/jre/java
156 JavaTest Architect’s Guide • March 10, 2009

Usage and Conventions
The following list describes some conventions that have proven useful for writing
More Info text:

■ Use the present tense when possible. For example, instead of:

“The following questions will gather...”

use:

“The following questions gather...”

■ When reasonable, provide examples in both Unix and Microsoft Windows format
Appendix C What Technical Writers Should Know About Configuration Interviews 157

158 JavaTest Architect’s Guide • March 10, 2009

Glossary

The definitions in this glossary are intended for Java™ Compatibility Test Tools
(Java CTT) and Java Technology Compatibility Kits (TCK). Some of these terms may
have different definitions or connotations in other contexts. This is a generic glossary
covering Java CTT and TCKs, and therefore it may contain some terms that are not
relevant to the specific product described in this manual.

active agent A type of test agent that initiates a connection to the JavaTest harness. Active
test agents allow you to run tests in parallel using many agents at once and to
specify the test machines at the time you run the tests. Use the agent monitor
to view the list of registered active agents and synchronize active agents with
the JavaTest harness before running tests. See also test agent, passive agent, and
JavaTest agent.

agent monitor The JavaTest window that is used to synchronize active agents and to monitor
agent activity. The Agent Monitor window displays the agent pool and the
agents currently in use.

agents See test agent, active agent, passive agent, and JavaTest agent.

Application
Programming Interface

(API) An API defines calling conventions by which an application program accesses
the operating system and other services.

assertion A statement contained in a structured Java technology API specification to
specify some necessary aspect of the API. Assertions are statements of required
behavior, either positive or negative, that are made within the Java technology
specification.

assertion testing Compatibility testing based on testing assertions in a specification.

atomic operation An operation that either completes in its entirety (if the operation succeeds) or
no part of the operation completes at all (if the operation fails).
159

behavior-based
testing A set of test development methodologies that are based on the description,

behavior, or requirements of the system under test, not the structure of that
system. This is commonly known as “black-box” testing.

class The prototype for an object in an object-oriented language. A class may also be
considered a set of objects which share a common structure and behavior. The
structure of a class is determined by the class variables which represent the
state of an object of that class and the behavior is given by a set of methods
associated with the class. See also classes.

classes Classes are related in a class hierarchy. One class may be a specialization (a
“subclass”) of another (one of its “superclasses”), it may be composed of other
classes, or it may use other classes in a client-server relationship. See also class.

compatibility rules Compatibility rules define the criteria a Java technology implementation must
meet in order to be certified as “compatible” with the technology specification.
See also compatibility testing.

compatibility testing The process of testing an implementation to make sure it is compatible with
the corresponding Java technology specification. A suite of tests contained in a
Technology Compatibility Kit (TCK) is typically used to test that the
implementation meets and passes all of the compatibility rules of that
specification.

configuration Information about your computing environment required to execute a
Technology Compatibility Kit (TCK) test suite. The JavaTest harness version 3.x
uses a configuration interview to collect and store configuration information.
The JavaTest harness version 2.x uses environment files and parameter files to
obtain configuration data.

configuration editor The dialog box used JavaTest harness version 3.x to present the configuration
interview.

configuration
interview A series of questions displayed by JavaTest harness version 3.x to gather

information from the user about the computing environment in which the TCK
is being run. This information is used to produce a test environment that the
JavaTest harness uses to execute tests.

configuration value Information about your computing environment required to execute a TCK test
or tests. The JavaTest harness version 3.x uses a configuration interview to
collect configuration values. The JavaTest harness version 2.x uses environment
files and parameter files to obtain configuration data.

equivalence class
partitioning A test case development technique which entails breaking a large number of

test cases into smaller subsets with each subset representing an equivalent
category of test cases.
160 JavaTest Architect’s Guide • March 10, 2009

exclude list A list of TCK tests that a technology implementation is not required to pass in
order to certify compatibility. The JavaTest harness uses exclude list files
(*.jtx), to filter out of a test run those tests that do not have to be passed.
The exclude list provides a level playing field for all implementors by ensuring
that when a test is determined to be invalid, then no implementation is
required to pass it. Exclude lists are maintained by the Maintenance Lead (ML)
and are made available to all technology licensees. The ML may add tests to
the exclude list for the test suite as needed at any time. An updated exclude list
replaces any previous exclude lists for that test suite.

HTML test
description A test description that is embodied in an HTML table in a file separate from the

test source file.

implementation See technology implementation.

instantiation In object-oriented programming, means to produce a particular object from its
class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either
default values or those provided by the class’s constructor function.

Java Platform, Standard
Edition (Java SE) The Java SE platform is a set of specifications that defines the desktop runtime

environment required for the deployment of Java applications. Java SE
technology implementations are available for a variety of platforms, but most
notably Sun Solaris and Microsoft Windows.

Java Application
Manager (JAM) A native application used to download, store and execute Java applications.

Java Archive (JAR) A JAR is a platform-independent file format that combines many files into one.

Java Platform
Libraries The class libraries that are defined for each particular version of a Java

technology in its Java technology specification.

Java technology A Java technology is defined as a Java technology specification and its
reference implementation (RI). Examples of Java technologies are Java
Platform, Standard Edition (Java SE), the Connected Limited Device
Configuration (CLDC), and the Mobile Information Device Profile (MIDP).

Java technology
specification A written specification for some aspect of the Java technology.

JavaTest agent A test agent supplied with the JavaTest harness to run TCK tests on a Java
implementation where it is not possible or desirable to run the main JavaTest
harness. See also test agent, active agent, and passive agent.

JavaTest harness The JavaTest™ Harness is a test harness that has been developed by Sun to
manage test execution and result reporting for a Technology Compatibility Kit
(TCK). The harness configures, sequences, and runs test suites. The JavaTest
Glossary 161

harness is designed to provide flexible and customizable test execution. It
includes everything a test architect needs to design and implement tests for
Java technology specifications.

keywords Keywords are defined for a test suite by the test suite architect. Keywords are
used to direct the JavaTest harness to include or exclude tests from a test run.

Maintenance Lead
(ML) The person responsible for maintaining an existing Java technology

specification and related reference implementation (RI) and Technology
Compatibility Kit (TCK). The ML manages the TCK appeals process, exclude
list, and any revisions needed to the specification, TCK, or RI.

methods Procedures or routines associated with one or more classes, in object-oriented
languages.

MultiTest A JavaTest library class that enables tests to include multiple test cases. Each
test case can be addressed individually in a test suite exclude list.

namespace A set of names in which all names are unique.

object-oriented A category of programming languages and techniques based on the concept of
objects which are data structures encapsulated with a set of routines, called
methods, which operate on the data.

objects In object-oriented programming, objects are unique instances of a data
structure defined according to the template provided by its class. Each object
has its own values for the variables belonging to its class and can respond to
the messages (methods) defined by its class.

packages A namespace within the Java programming language. It can have classes and
interfaces. A package is the smallest unit within the Java programming
language.

passive agent A type of test agent that must wait for a request from the JavaTest harness
before they can run tests. The JavaTest harness initiates connections to passive
agents as needed. See also test agent, active agent, and JavaTest agent.

prior status A JavaTest filter used to restrict the set of tests in a test run based on the last
test result information stored in the test result files (.jtr).

reference
implementation (RI) The prototype or proof of concept implementation of a Java technology

specification. All new or revised specifications must include an RI. A
specification RI must pass all of the TCK tests for that specification.

signature file A text representation of the set of public features provided by an API that is
part of a finished TCK. It is used as a signature reference during the TCK
signature test for comparison to the technology implementation under test.
162 JavaTest Architect’s Guide • March 10, 2009

signature test A TCK signature test for a Java technology implementation checks that all the
necessary API members are present and that there are no extra members which
illegally extend the API. It compares the API being tested with a reference API
and confirms if the API being tested and the reference API are mutually binary
compatible.

specification See Java technology specification.

standard values A configuration value used by the JavaTest harness to determine which tests in
the test suite to run and how to run them. The user can change standard values
using either the Question mode or Quick Set mode in the configuration editor.

system configuration Refers to the combination of operating system platform, Java programming
language, and JavaTest harness tools and settings.

tag test description A test description that is embedded in the Java language source file of each test.

Technology
Compatibility Kit

(TCK) The suite of tests, tools, and documentation that allows an implementor of a
Java technology specification to determine if the implementation is compliant
with the specification.

technology
implementation Any binary representation of the form and function defined by a Java

technology specification.

technology
specification See Java technology specification.

test agent A test agent is a Java application that receives tests from the test harness, runs
them on the implementation being tested, and reports the results back to the
test harness. Test agents are normally only used when the TCK and
implementation being tested are running on different platforms. See also active
agent, passive agent, and JavaTest agent.

test The source code and any accompanying information that exercise a particular
feature, or part of a feature, of a technology implementation to make sure that
the feature complies with the Java technology specification’s compatibility
rules. A single test may contain multiple test cases. Accompanying information
may include test documentation, auxiliary data files, or other resources used
by the source code. Tests correspond to assertions of the specification.

test cases A small test that is run as part of a set of similar tests. Test cases are
implemented using the JavaTest MultiTest library class. A test case tests a
specification assertion, or a particular feature, or part of a feature, of an
assertion.

test command A class that knows how to execute test classes in different environments. Test
commands are used by the test script to execute tests.
Glossary 163

test command
template A generalized specification of a test command in a test environment. The test

command is specified in the test environment using variables so that it can
execute any test in the test suite regardless of its arguments.

test description Machine readable information that describes a test to the test harness so that it
can correctly process and run the related test. The actual form and type of test
description depends on the attributes of the test suite. A test description exists
for every test in the test suite and is read by the test finder. When using the
JavaTest harness, the test description is a set of test-suite-specific name/values
pairs in either HTML tables or Javadoc-style tags.

test environment A test environment consists of one or more test command template that the test
script uses to execute tests and set of name/value pairs that define test
description entries or other values required to run the tests.

test execution model The steps involved in executing the tests in a test suite. The test execution
model is implemented by the test script.

test finder When using the JavaTest harness, a nominated class, or set of classes, that read,
verify, and process the files that contain test description in a test suite. All test
descriptions that are located or found are handed off to the JavaTest harness
for further processing.

test harness The applications and tools that are used for test execution and test suite
management. The JavaTest harness is an example of a test harness.

test script A Java class whose job it is to interpret the test description values, run the tests,
and then report the results back to the JavaTest harness. The test script must
understand how to interpret the test description information returned to it by
the test finder.

test specification A human-readable description, in logical terms, of what a test does and the
expected results. Test descriptions are written for test users who need to know
in specific detail what a test does. The common practice is to write the test
specification in HTML format and store it in test suite’s test directory tree.

test suite A collection of tests, used in conjunction with the JavaTest harness to verify
compliance of the licensee’s implementation of Java technology specification.
All TCKs contain one or more test suites.

work directory A directory associated with a specific test suite and used by the JavaTest
harness to store files containing information about the test suite and its tests.
164 JavaTest Architect’s Guide • March 10, 2009

Index
Symbols
$testExecuteArgs, 53
$testExecuteClass, 53
$testSource, 53
$testURL, 131, 140, 145
.jtr files, 101
.jtt file, 27
.jtt file, 20, 26, 32, 81
.jtx files, 17, 161
@executeArgs test description entry, 29
@executeClass test description entry, 29
@sources test description entry, 29
@test test description entry, 29

A
active agent, 159
ActiveAgentCommand, 130
adding entries to the Help menu, 82
additionalDocs entry (testsuite.jtt), 82
agent (remote execution), 22
agent class path, 34
agent monitor, 159
agent see test agent
Alt-Shift-D, using to view question ID, 73
AntService, 106, 108
AntServiceExecutor, 106, 107
API see Application Programing Interface
Application Programming Interface, 159
architect, TCK, 2
assertion testing, 159

assertions, 159
atomic operation, 159

B
BasicInterviewParameters, 62
BasicInterviewParameters class, 54
batch mode, 78
-batch option, 78
behavior-based testing, 160
binary test finder, 90
black-box testing, 160

C
ChameleonTestFinder, 123
class files, test, 45
class path, 34, 39

agent, 34
JavaTest, 34
setting in testsuite.jtt, 82
test, 35

classes, 160
classes directory, 27
classes directory, 33
classpath entry in testsuite.jtt, 27
com.sun.interview.Interview, 54
com.sun.interview.Question, 54
com.sun.javatest.Command, 99
com.sun.javatest.interview.BasicInterv

iewParameters, 54
com.sun.javatest.InterviewParameters, 5

4

165

com.sun.javatest.lib
ExecStdTestSameJVMCmd, 133
JavaCompileCommand, 137
ProcessCommand, 142
SerialAgentCommand test suite, 144

com.sun.javatest.Status, 41
com.sun.javatest.TestResult, 101
command interface, 99
command strings, configuration interview, 50
commands, custom, 99
commands, standard (defined), 129
compatibility rules, 160
compatibility testing, 160
–compiler option, 137
compiling test suites with JavaTest, 77
components, JavaTest, 19

diagram, 21
configuration, 160
configuration editor, 1, 8, 160
configuration interview, 20, 47 to 73

classes, 54
command strings, 50
controlling question, 57
current interview path, 55
designing configuration, 47
designing interview, 49
designing questions, 60
error checking, 56
exporting, 56
final question, 55
flow charts, 62
getEnv() method, 66
getNext() method, 55
JAR file, 73
landing point questions, 60
More Info help, 66, 67, 70, 73
prolog, 65
question text, 67 to 70
questions, 57
resource file, 66, 69
standard values, 49, 62
sub-interviews, 60
test commands, 48
test description, 48
test environment, 49
test script, 48
tutorial, 9

writing your interview, 53
Connector, 106, 111
creating a test suite, 25
creating tests, 28
current interview path, 55
custom commands, 99
custom splash screen, 127

D
-D option, 77
default tags

@executeArgs, 42
@executeClass, 42
@sources, 42

Demo Interview, 53
Demo TCK, 5
Demo TCK configuration interview, 53
demoapi.jar, 2
descriptions, test, 164
doc directory, 33

E
env.tsRoot, 82
equivalence class partitioning, 160
error checking in configuration interviews, 56
error exit value, 40
error messages, 46
examples directory, 2
exclude list, 16

file format, 149
file syntax, 149

exclude lists, 161
ExecStdTestOtherJVMCmd, 135
ExecStdTestSameJVMCmd, 133
executing tests remotely, 22
export() method, 56
exporting test environment, 56

F
failed exit value, 40
failed method, 40
finder, test, 19

binary, 90
HTML, 89
166 JavaTest Architect’s Guide • March 10, 2009

tag, 87
first question (interview), 65
flow charts, 62
Folder pane, 12

G
generate a report, 17
getEnv() method, 56, 66
getNext() method, 55

H
Help menu, adding entries, 82
HelpSet file, 71
–host option, 139
HTML test description, 19
HTML test finder, 89

I
id keys, 118
implementation, 161
Instantiation, 161
Interview class, 54
interview. See configuration interview
InterviewParameters class, 54

J
J2SE see Java Platform Standard Edition
JAM see Java Application Manager
JAR see Java Archive
Java Application Manager (JAM), 161
Java Archive, 161
Java Platform Libraries, 161
Java Platform, Standard Edition, 161
Java SE, 161
Java technology, 161
Java technology specification, 161
JavaCompileCommand, 99, 137
JavaTest Agent, 22
JavaTest class path, 34
JavaTest components, 19

diagram, 21
JavaTest harness, 1
JavaTest tutorial, 5
javatest.jar, 32

JCKTestFinder, 90
JDKCompileCommand, 99
jt-junit.jar, 118
jtt file, 81
jtx files, 161
JUnit 3.x, 118
JUnit 4.x, 118
JUnit distribution, 117
JUnit framework, 117
junit keyword, 123
JUnit library, 123
JUnit test suite, 118
JUnit tests, 117
junit.finderscantype, 122, 123
junit.framework.TestCase, 118, 121
junit.testmethods, 122, 123
JUnitAnnotationMultiTest, 123
JUnitAnnotationTestFinder, 118, 120
JUnitBareMultiTest, 123
JUnitBaseInterview, 119, 120
JUnitMultiTest, 120
JUnitSuperTestFinder, 118, 120
JUnitTestFinder, 120
JUnitTestRunner, 120
JUnitTestSuite, 120

K
keywords, 42, 122, 123, 162

L
lib directory, 33

M
maintenance lead, 162
map file, More Info help, 72
–mapArgs, 130, 131, 139, 140, 144, 145
method, 162
ML see maintenance lead
More Info help, 66, 67, 70 to 73

HelpSet file, 71
map file, 72

MultiTest, 162
MultiTest class, 43
Index 167

N
namespace, 162
-newdesktop option (JavaTest), 7, 31
next question (interview), 64

O
object-oriented, 162
objects, 162
org.junit.Test, 118
Overriding default testsuite.jtt default

methods, 85

P
package, 162
packaging

test suite JAR file, 33
testsuite.jtt, 32

ParamResolver, 111
passed exit value, 40
passed() method, 40
PassiveAgentCommand, 139
–port, 139, 144
prior status, 162
ProcessCommand, 142
processCommand, 78
ProcessServiceExecutor, 107
prolog (configuration interview), 65

Q
Question class, 54
questions, configuration interview, 57

designing, 60
keys, 69
landing point questions, 60
text, 69

questions, interview
question text, 67 to 70

Quick Start wizard, 7

R
remote execution, 22
remote service management, 106
report directory, 79
report generation, 17
-report option, 79

resource file, configuration interview, 66
resource file, interview, 69
retrofitting JUnit tests, 117

S
sampleFiles directory, 2
script, test, 19, 99, 164

designing, 95 to 98
sequence of events (table), 31
SerialAgentCommand, 144
Service, 105
Service Management architecture, 111
Service properties, 109
service start-up, 114
service support, 106
Service.start methods, 114
ServiceConnector, 106
ServiceExecutor, 106, 111
ServiceManager, 103
ServiceProperties object, 110
ServiceReader, 106
setHelpSet method, 66
signature file, 162
signature test, 163
Smalltalk, 117
source files, test, 45
SourceForge.net, 117
specification see Java technology specification
specification, URL, 147
splash screen

custom, 127
splash.properties file, 127
standard commands (defined), 129
standard configuration values, 49
standard question More Info help (overriding), 73
Standard Test Script, 48
Status object, 20
sub-interviews, configuration interview, 60
summary of JavaTest events (table), 21
system configuration, 163

T
-tag, 130, 139, 144
tag test description, 19, 163
168 JavaTest Architect’s Guide • March 10, 2009

tag test finder, 87
TCK, 1
TCK see Technology Compatibility Kit
Technology Compatibility Kit, 163
technology see Java technology
test agent, 163
test cases, 163
test class files, 45
test class path, 35
test command templates, 164
test commands, 48, 163
test description, 19

configuration interview, 48
HTML, 19
tag, 19
variables, 48

test description default entries
@executeArgs, 29
@executeClass, 29
@sources, 29
@test, 29

test description file, 89
test descriptions, 164
test environment, 49, 66
test environment, exporting, 56
test execution mode, 164
test execution model, 37, 99
test finder, 19, 22, 164

binary, 90
HTML, 89
tag, 87

Test interface, 38
Test pane, 14
test script, 19, 99, 164

designing, 95 to 98
test source files, 45
test specification, 164
test status, 20, 40
test suite, 1
test suite JAR file, 33
test suite user’s guide, 1
test suite, creating, 25
test suites, 164
test URL specification, 147

test, creating, 28
TestEnvironment, 110
TestResult, 20
tests, 163
tests directory, 32
-testsuite, 127
TestSuite object, 20, 22
-testsuite option, 79
testsuite.jtt, 20, 26, 81
testsuite.jtt entries, 82

additionalDocs, 82
classpath, 82
finder, 82
id, 83
initial.jtx, 83
interview, 83
keywords, 83
latest.jtx, 83
logo, 83
name, 83
script, 84
testCount, 84
tests, 84
testsuite, 84

ThreadServiceExecutor, 107
-ts, 127
tutorial configuration answers, 9
tutorial, JavaTest, 5

U
URL specification, 147
user’s guide, test suite, 1

V
variables, test description, 48
variables, test environment

configuration environment
variables, 53

W
work directory, 8, 79, 164
-workdir option, 79
wrapper class, 99

X
XMLServiceReader, 106
Index 169

170 JavaTest Architect’s Guide • March 10, 2009

	Preface
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction
	Examples

	JavaTest Tutorial
	Start the JavaTest Harness
	Quick Start Wizard
	Configure the Test Information
	Run Tests
	Browse the Results
	The Folder Pane
	The Test Pane

	Exclude the Failed Test
	Generate a Report
	Summary

	Overview
	Remote Execution

	Creating a Test Suite
	Create a Test Suite Directory
	Create the testsuite.jtt File
	Copy javatest.jar
	Set Up the classes Directory
	Create a Test
	Run the Test Suite
	Odds and Ends
	Top-Level Test Suite Directory
	The Test Suite JAR File
	Class Paths
	JavaTest Class Path
	Agent Class Path
	Test Class Path

	Writing Tests
	The Test Execution Model
	The Test Interface
	Class Paths

	Test Status
	Test Description Entries
	Keywords

	Multiple Tests in a Single Test File
	Subtyping MultiTest

	Organizing Tests Within Your Test Suite
	Source Files
	Class Files

	Error Messages

	Creating a Configuration Interview
	Designing Your Configuration
	What is a Configuration?
	Test Script Information
	Test Description Entries
	Which Tests to Run

	Designing Your Interview
	Command Strings
	Example 1
	Example 2

	Test Environment Variables

	Writing Your Interview
	Interview Classes
	The Current Interview Path
	Determining the Next Question
	Error Checking
	Exporting the Test Environment
	Question Types
	Designing Your Questions
	Landing Point Questions
	Sub-Interviews
	Flow Charts

	Putting it all Together
	Providing the Prolog
	Providing the Environment Group
	Providing the Resource File for the Interview
	Providing the More Info Help for the Interview

	Creating Question Text and More Info
	Writing Style
	Creating Question Text and Keys
	Creating More Info
	Set Up the More Info System
	For Each Question in Your Interview
	Customizing Standard Question More Info

	Creating the JAR File

	Compiling Test Suites
	The TestSuite Object
	The testsuite.jtt File
	Overriding Default Methods

	Test Finder
	Tag Test Finder
	HTML Test Finder
	Binary Test Finder
	BinaryTestWriter
	BinaryTestFinder
	Examples

	Test Scripts
	Design Decisions
	Simple Test Scripts
	More Flexible Test Scripts
	Example 1
	Example 2

	Writing Custom Commands

	Test Result

	Service Management
	Description
	Services-Related Work Flow
	Implementation
	Implementation of ServiceReader Interface
	Implementation of Service Interface
	Service Properties

	Service Management Architecture
	Mechanism to Instantiate Service, Connector, and ServiceExecutor Interfaces
	Separate Services Start Up

	Running JUnit Tests
	The Retrofit Process
	Prerequisites for Converting Tests
	Procedure for Converting Tests

	Technical Details
	Support Classes
	JUnitSuperTestFinder
	JUnitAnnotationTestFinder
	JUnitBareMultiTest
	JUnitAnnotationMultiTest

	Implementation Notes

	Areas for Improvement
	References

	Customization
	Customizing the Splash Screen
	Example of splash.properties File
	Notes About the Implementation

	Standard Commands
	ActiveAgentCommand
	Usage
	Arguments
	options
	command class
	command arguments

	Description
	Examples
	See Also

	ExecStdTestSameJVMCmd
	Usage
	Arguments
	options
	test class
	test args

	Description
	Examples
	See Also

	ExecStdTestOtherJVMCmd
	Usage
	Arguments
	options
	shell variables
	subcommand
	args

	Description
	Examples
	See Also

	JavaCompileCommand
	Usage
	Arguments
	options
	args

	Description
	Examples
	See Also

	PassiveAgentCommand
	Usage
	Arguments
	options
	command class
	command arguments

	Description
	Examples
	See Also

	ProcessCommand
	Usage
	Arguments
	options
	env variables
	command
	command arguments

	Description
	Examples
	See Also

	SerialAgentCommand
	Usage
	Arguments
	options
	command class
	command arguments

	Description
	Examples
	See Also

	Formats and Specifications
	Test URL Specification
	Test Paths

	Exclude List File Format
	Syntax
	Test URL and Test Cases
	BugIDs
	Keywords
	Synopsis
	Comments and Header Information

	What Technical Writers Should Know About Configuration Interviews
	Question Text
	More Info
	Formatting Styles
	Usage and Conventions

	Glossary
	Index

