
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://java.sun.com/docs/forms/sendusmail.html

Java™ Device Test Suite
Developer’s Guide

Version 2.4
Java ME Platform

May 2009

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Jini, Solaris, JavaTest, JRE, JDK, Javadoc and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. or its subsidiaries, in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l'adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
États - Unis et dans les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ÉCRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Droits du gouvernement des États-Unis – Logiciel Commercial. Les droits des utilisateur dugouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Sun, Sun Microsystems, le logo Sun, Java, Jini, Solaris, JavaTest, JRE, JDK, Javadoc et le logo Java Coffee Cup sont des marques de fabrique ou
des marques déposées enregistrées de Sun Microsystems, Inc.ou ses filiales, aux États-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Le logo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matière de
contrôle des exportations et peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des États-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations de des produits ou des services qui sont regi par la
legislation americaine sur le contrôle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE ÀLA QUALITE MARCHANDE, À L'APTITUDE À UNE UTILISATION PARTICULIERE OU À
L'ABSENCE DE CONTREFAÇON.

//www.sun.com/patents
http://www.sun.com/patents

Contents

Preface xvii

Part I Getting Started

1. Overview 1

Test Packs 1

Test Pack Types 2

Runtime Tests 3

Automated Tests 3

Interactive Tests 4

Network Tests 7

Distributed Tests 7

Benchmark Tests 9

Over-the-Air Tests 9

OTA Interactive Tests 10

OTA Semi-Automated Tests 12

2. Setting Up the Developer’s Kit 15

Acquire and Install the Prerequisite Software 15

Unzip and Configure the Developer’s Kit 17

Build and Install the Sample Test Packs 18
iii

3. Introducing the Developer’s Kit 21

Developer’s Kit Structure 21

devKitHome 22

tests/ 22

tests/common/ 23

tests/runtime/ 23

Editing and Building a Test Pack 24

Files Generated by the Build 25

Packaging a Test Pack 26

Part II Essentials

4. Test Class and Case Comment Blocks 29

Comment Block Overview 29

Test Class Comment Block Tags 35

Test Case Comment Block Tags 37

Tag Details 39

@card.property 40

@card.specialproperty 41

@card.requires 41

@card.attribute 43

5. Writing Online Documentation 45

Documenting a Test Pack 45

Documenting a Test Package 46

6. Writing the testsuite.info File 49

File Format and Syntax 49

Default Values 50

Scope 50
iv Java Device Test Suite Developer’s Guide • May 2009

Read-only Properties 51

Property Value Validation Attributes 51

Categories 52

Online Documentation for a Property 54

Path Names 54

${TS_DIR} Reserved Word 54

Required Properties 55

Optional Properties 56

7. The build.properties Files 59

8. Using Common Services 61

Obtaining a Property Value 61

Learning if a Case is Selected 61

Logging 62

9. Writing Runtime Tests 63

Writing an Automated Test 63

Writing an Interactive Test 64

Writing Network Tests 65

Writing the Client Part 65

Writing the Server Part 66

Writing Push Tests 67

Architecture of a Push Test 67

Writing the Client Package 69

Writing a Main MIDlet 69

Writing a Push MIDlet 70

Writing a Server 70

Using $IPFILTER 71
Contents v

10. Writing Benchmark Test Packages 73

Benchmark Test Directory Structure 73

Benchmark Test Types 74

Writing a System Load Test 74

Writing a Unit Rate Test 74

11. Developing an Over-the-Air Test Package 77

OTA Test Pack Development 77

Writing an OTA Test 78

Writing OTA Source Files 79

Security Certificates for a Test Class 79

Writing Application Files 80

Directory Structure 80

Application Logging 82

Additional Facilities for Interactive OTA Tests 82

Part III Advanced Topics

12. Checking Card Files 87

▼ Running the Card File Checker 87

13. Updating a Test Pack 89

Test Pack Identifiers 89

Test Pack Version Identifier 90

Test Rename File 90

Test Pack Property Rename File 91

14. Reconfigure Environment Settings for Special Test Pack Installation 93

▼ Reconfiguring the Environment 93

15. Defining New Security Permissions 95
vi Java Device Test Suite Developer’s Guide • May 2009

16. Properties and Parameter Expansion 99

Precedence 99

Parameter Expansion 100

Predefined Parameters for OTA Test Packs 101

17. Customizing the Test Pack Zip File 103

18. Multiple Test Packs in a Directory 105

19. Using TestPackInstallerMain for Faster Test Installation Cycles 107

Customizing the tpim Script 107

20. Test Pack Versioning Alternative 109

21. Build Targets 111

22. Tests and Device Features 113

Package and Feature Concepts 113

Package-based Selection and Reporting 113

Feature-based Selection and Reporting 115

Package and Feature Implementation 118

Package Design 118

Feature Design 118

Feature Definition File 119

23. Relevance Filtering 121

24. Classless Card Files 123

Naming, Scope, and Syntax 124

Properties 124

Attributes 125

Keywords 125
Contents vii

Required Files 126

Part IV Legacy

25. Writing Card Files Manually 129

Comment Lines 130

Test Case Definitions 131

Required File Definitions 131

Property Definitions 132

Class and Case Keyword Definitions 133

Special Property Definitions 134

Choosing Between Card File and testsuite.info Properties 134

26. Writing packages.list Files 135

27. Writing Evaluation Files 137

▼ Procedure for Editing an Evaluation File 137

Example Evaluation File Text 138

▼ Including Reference Images in an Evaluation File 139

An Evaluation File Rendered by the Harness 140

28. Writing Conditional Output 143

Part V Appendices

A. Adapting the WMA Test Emulator 147

Test Types 147

Implementing CBSServer 148

▼ Deploying the Implementation 148

B. Exclude Lists 151

C. Change Log 153
viii Java Device Test Suite Developer’s Guide • May 2009

New in Release 2.4 153

New in Release 2.3 154

New in Release 2.2 154

New in Release 2.1.2 155

New in Release 2.1.1 155

New in Release 2.1 156

Index 159
Contents ix

x Java Device Test Suite Developer’s Guide • May 2009

Figures

FIGURE 1-1 Runtime Automated Test Flow 3

FIGURE 1-2 Runtime Interactive Test Flow 5

FIGURE 1-3 Example Interactive Test Evaluation Dialog Box 6

FIGURE 1-4 Network Test Flow 7

FIGURE 1-5 Distributed Test Flow 8

FIGURE 1-6 OTA Interactive Test Flow 10

FIGURE 1-7 Sample OTA Provisioning Interactive Test Evaluation Dialog Box 11

FIGURE 1-8 OTA Semi-Automated Test Flow 12

FIGURE 2-1 Relay is Running Page 18

FIGURE 2-2 Administrator Harness with Developer Test Packs Installed 19

FIGURE 4-1 Files Generated from Comment Blocks 30

FIGURE 4-2 Typical Generated Test Case Documentation 32

FIGURE 4-3 Typical Generated Interactive Test Evaluation Instructions 33

FIGURE 4-4 doc Properties in Configure Test Window 40

FIGURE 5-1 Sample Test Pack Documentation 46

FIGURE 6-1 Configuration Editor 53

FIGURE 9-1 Automated Runtime Test Directory Contents 64

FIGURE 9-2 Interactive Runtime Test Directory Contents 64

FIGURE 9-3 Network Client Test Directory Contents 65

FIGURE 9-4 Connection-based Push Test Components and Interactions 68
xi

FIGURE 10-1 Benchmark Test Directory Contents 73

FIGURE 11-1 Test and Application File Correspondence 81

FIGURE 12-1 Card File Checker Output Screen - Windows 88

FIGURE 15-1 Example Permissions 95

FIGURE 18-1 Generic Work Directory Structure 105

FIGURE 22-1 Example Package Tree 114

FIGURE 22-2 Standard Report Summary 114

FIGURE 22-3 Standard Report Passed Tests 115

FIGURE 22-4 Standard Report Failed Tests 115

FIGURE 22-5 Example Feature Tree Display 116

FIGURE 22-6 Feature-based Report 117

FIGURE 27-1 Sample Interactive Test Evaluation Window 140

FIGURE 27-2 Example Test Evaluation Window With Reference Images 141
xii Java Device Test Suite Developer’s Guide • May 2009

Tables

TABLE 3-1 devKitHome Directory Contents 22

TABLE 3-2 devKitHome/tests/ Directory Contents 22

TABLE 3-3 devKitHome/tests/common/ Directory Contents 23

TABLE 3-4 devKitHome/tests/runtime/ Directory Contents 23

TABLE 3-5 Files Generated by the Build 25

TABLE 4-1 Test Class Block Comment Entries 35

TABLE 4-2 Test Case Block Comment Entries 37

TABLE 4-3 Severity Calculation from Functionality and Impact 43

TABLE 5-1 Types of Test Documentation 45

TABLE 21-1 Build Targets 111

TABLE A-1 CBSServer Implementation Guide 148
xiii

xiv Java Device Test Suite Developer’s Guide • May 2009

Code Examples

CODE EXAMPLE 4-1 Typical Test Case Block Comment 30

CODE EXAMPLE 4-2 Example Required File Values 41

CODE EXAMPLE 4-3 Parameter Expansion in @card.requires Example 42

CODE EXAMPLE 4-4 Example Severity Attributes 44

CODE EXAMPLE 6-1 Specifying Property Scopes 51

CODE EXAMPLE 6-2 A Read-only Property 51

CODE EXAMPLE 6-3 Specifying Property Attributes 52

CODE EXAMPLE 6-4 Specifying Default Scope Property Categories 53

CODE EXAMPLE 6-5 Specifying Advanced Scope Property Categories 53

CODE EXAMPLE 11-1 Sending a Log Message 82

CODE EXAMPLE 15-1 Format of policy.txt File 96

CODE EXAMPLE 15-2 Example policy.txt File 96

CODE EXAMPLE 15-3 Example permissions.properties File 97

CODE EXAMPLE 16-1 Multiply Defined Property 100

CODE EXAMPLE 16-2 Parameter Expansion Example 100

CODE EXAMPLE 22-1 Example Feature Definition File 119

CODE EXAMPLE 25-1 Simple Card File 130

CODE EXAMPLE 25-2 Example Required File Definitions 131

CODE EXAMPLE 27-1 Sample Interactive Test Evaluation File Text 138

CODE EXAMPLE 27-2 Example Reference Image Row 139
xv

CODE EXAMPLE 28-1 Conditions for Log Output 143

CODE EXAMPLE 28-2 Writing a Diagnostic Message 143

CODE EXAMPLE A-1 CBSServer Interface 148
xvi Java Device Test Suite Developer’s Guide • May 2009

Preface

The Java™ Device Test Suite Developer’s Guide describes how to develop test packs that
can integrate with the Java Device Test Suite.

Before You Read This Book
To fully use the information in this document, you must have moderate knowledge
of the online help and topics discussed in these books:

■ Java Device Test Suite Tester’s Guide

■ Java Device Test Suite Administration Guide

You must also have thorough knowledge of the specification and API of the
technology such as MIDP, CLDC, MMAPI, OTA, or WMA for which you are writing
tests.

In addition, a familiarity with the Ant build utility (see http://ant.apache.org/)
can be useful.

How This Book Is Organized
Part 1, “Getting Started” gives an overview of concepts and provides hands-on
experience building test packs included with this distribution.

Part 2, “Essentials” gets deeper into essential topics of test pack development.
xvii

http://ant.apache.org/

Part 3, “Advanced Topics” covers more advanced topics of test pack development,
concepts and procedures that are used in special cases.

Part 4, “Legacy” covers topics and procedures that are maintained for backwards
compatibility with previous versions of Java Device Test Suite.

Part 5, “Appendices” contains supplementary information about this release.

Using Operating System Commands
This document does not contain information on basic Solaris™ operating system or
Windows commands and procedures such as shutting down the system, booting the
system, and configuring devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris operating system documentation, which is at http://docs.sun.com

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized

Command-line variable;
replace with a real name or
value

Read Chapter 6 in the Developer’s
Guide.
These are called test packs.
You must be an administrator to do
this.

To delete a file, type rm filename.
xviii Java Device Test Suite Developer’s Guide • May 2009

http://docs.sun.com

Terminology Conventions
The Java Device Test Suite 2.0 introduces the term test pack to describe a container of
test packages. Previously, this container was known as a test suite. The term suite still
appears in some directory names, file names, and property names. This was done for
backward compatibility.

Shell Prompts

Related Documentation
The Java Device Test Suite documentation is divided among manuals and online
help. The online help is also provided in printable (PDF) format. For subjects that
relate to graphical user interface menus, displays, and controls, consult the online
help first. The manuals cover only subjects that are not related to graphical user
interface features.

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Application Title

Test Development This guide

Test Execution Online help
Java Device Test Suite Tester’s Guide
Java Device Test Suite Test Notes

Administration Online help (administrator harness edition)
Java Device Test Suite Administration Guide
Preface xix

Accessing Sun Documentation Online
The Sun Developer Network program web site enables you to access Java platform
technical documentation on the web at
http://java.sun.com/reference/docs/index.html.

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. Send us your comments at
http://java.sun.com/docs/forms/sendusmail.html.
xx Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/docs/forms/sendusmail.html
http://java.sun.com/reference/docs/index.html

PART I Getting Started

This part will help you quickly get started as a test developer for the Java Device
Test Suite. Concepts such as the major kinds of test are introduced. You will be
guided to obtain necessary software tools and how to set up your workstation
environment. You will given the simple instructions to build some basic test packs
that are included with the distribution. And you will be guided to create your first
test pack (one of the major kinds of test.)

Chapter 1 describes test pack types and introduces their development.

Chapter 2 describes how to set up the Developer’s Kit.

Chapter 3 describes a simple test pack’s files and shows you how to build, test, and
package it.

CHAPTER 1

Overview

This chapter introduces test pack development, including descriptions of the kinds
of test packs and tests you can write. The Java Device Test Suite Administration Guide
describes how to install a test pack that you have written.

The chapter covers the following subjects:

■ Test Packs

■ Test Pack Types

■ Runtime Tests

Automated Tests

Interactive Tests

Network Tests

Distributed Tests

■ Benchmark Tests

■ Over-the-Air Tests

Read this chapter for an introduction to essential concepts and terms. If you prefer to
begin with interactive examples, start by reading Chapter 2and Chapter 3 and then
return to this chapter.

Test Packs
The test pack is the fundamental unit of test development. It is a collection of tests
that evaluate a coherent set of device capabilities, that is, those which have a close
functional relationship. Often these tests are derived from a single specification. For
example, the MMAPI test pack that Sun supplies with the Java Device Test Suite
1

contains tests of facilities defined in the Mobile Media API specification (JSR 135). A
test pack is also the unit that you can install with the administrator edition of the
harness or by a designated Java Device Test Suite administrator.

Independent of its functional orientation, every test pack is one of three types:

■ Runtime – The tests in a runtime test pack verify the quality of services provided
by the test device. A runtime test has a Boolean result: It either passes or it fails.

■ Benchmark – The tests in a benchmark test pack measure the performance of
features that affect the device’s user experience. These include the speed with
which critical operations execute and the load they place on the device. A
benchmark test returns measurements for the user (tester) to evaluate. You must
segregate benchmark tests into separate test packs, because benchmark tests
produce different results than runtime and OTA tests.

■ Over-the-air (OTA) Provisioning – OTA tests exercise a device’s ability to
download and install applications, and to correctly authenticate and authorize
such applications. Developers specify parameters for this code and develop
MIDlets (applications) to associate with each test. Segregate OTA tests from
runtime and benchmark tests, because OTA tests interact differently with the
harness.

Because runtime, OTA, and benchmark tests must be separated into different test
packs, you must develop three test packs for a given specification if you want to test
performance, provisioning, and on-device functions.

Specify a test pack’s type in the test pack’s testsuite.info file (see Chapter 6).
The test pack type tells the harness how to run the tests in a test pack.

Test Pack Types
Each type of test pack can contain tests of one or more test types. The pack type
determines the possible test types. Tests of different types implement or extend
different APIs and behave differently when they run.

The descriptions in this section are for test devices whose Java technology-based
implementations can communicate with the harness. Users run tests differently on
so-called offline devices, which do not have working Java technology-based
communications methods. See the harness online help for more information on
offline device testing.
2 Java Device Test Suite Developer’s Guide • May 2009

Runtime Tests
The Java Device Test Suite supports these runtime test types:

■ Automated tests run entirely on the test device and require no user intervention
through the harness. However, some automated tests can require a user response
through the test device, for example, through device-specific security prompts.

■ Interactive tests run entirely on the test device but require user interaction to
manipulate the device, observe its response, and decide whether a device has
passed or failed the test. Interactive tests include online instructions.

■ Network tests consist of two parts. One part is an automated test that runs on the
test device. The other part runs on the Relay host and acts as a server. The host
part receives messages sent from the device-resident part, and can also send
messages to the device-resident part.

■ Push tests test or use the push registry defined by the MIDP 2.0 specification.
Some push tests are a special kind of network test that includes a MIDlet that is
awakened by a clock or incoming connection.

■ Distributed tests consist of three parts. One part is a test that runs on the test
device. The second part runs as a server on the Relay host. It communicates with
the test device part. The third part is the partner MIDlet, which runs on a second
device. The partner MIDlet sends and receives messages from the test device.

Automated Tests
Automated tests run without user intervention and automatically return passed or
failed status. FIGURE 1-1 shows how the user, the test device, and Java Device Test
Suite interact to run an automated test.

FIGURE 1-1 Runtime Automated Test Flow
Chapter 1 Overview 3

1. After the tester selects tests and presses the harness’s Start button, the harness
creates and sends the test bundle to the Relay. The Relay provides the harness
with the test bundle’s URL address. A test bundle contains a Java Device Test Suite
MicroAgent and one or more tests. The MicroAgent provides infrastructure for
the tests and communicates with the Relay. The Relay is an intermediary between
the harness and the test device that simplifies communication across firewalls.
The Relay also hosts the test server manager (TSM) and servers used by some
tests.

2. The harness displays the URL to the tester.

3. The tester discloses the test bundle URL to the test device and initiates the test
bundle download process on the device.

4. The test device requests the test bundle, downloads it from the Relay, and
launches the MicroAgent. (If the device supports the autotest protocol, it initiates
the bundle download automatically.) There are several ways to download
bundles, depending on the capabilities of the test device. The online help
describes test downloading in detail. The MicroAgent starts the test.

5. The test runs and returns a result of passed or failed to the MicroAgent. The
MicroAgent sends the result to the Relay, which sends it to the harness.

Interactive Tests
Interactive tests require the user to operate test device features and to decide if the
implementation passes or fails the test. FIGURE 1-2 shows how the user’s role
expands for interactive tests.

FIGURE 1-2 Runtime Interactive Test Flow
4 Java Device Test Suite Developer’s Guide • May 2009

1. As for an automated test, after the tester selects tests and presses the harness’s
Start button, the harness creates and sends the test bundle to the Relay. The Relay
provides the harness with the test bundle’s URL address.

2. The harness displays the URL to the tester.

3. The tester discloses the location of the test bundle (URL) to the test device and
initiates the test bundle download process on the device.

4. The device downloads the bundle and launches the MicroAgent. (If the device
supports the autotest protocol, it initiates the bundle download automatically.)
The MicroAgent starts the test in a new thread, tells the Relay to display the test
instructions, and begins polling the Relay for the test result.

5. The Relay tells the harness to display the test instructions.

6. The harness displays test instructions and evaluation buttons for the test. The test
developer has created these instructions in an HTML file. FIGURE 1-3 shows an
example of what the tester sees. The tester follows the instructions, manipulating
the device and observing its response.
Chapter 1 Overview 5

FIGURE 1-3 Example Interactive Test Evaluation Dialog Box

7. The tester clicks the Passed or Failed button, which sends a message to the
harness.

8. The harness forwards the result to the Relay, which forwards it to the MicroAgent
the next time the MicroAgent polls.

9. As in an automated test, the MicroAgent returns the result to the Relay, which
returns it to the harness.
6 Java Device Test Suite Developer’s Guide • May 2009

Network Tests
From a user’s perspective, a network test is identical to a runtime automated test.
From a developer’s perspective, a network test has a more complex implementation
than an ordinary automated test. A network test has two parts. One part, called the
client, is a runtime automated test. The other part, called the server, runs on the
Relay. It emulates a message sender, a message receiver, or both. Network tests by
definition can send and receive messages, such as HTTP messages or push
notifications.

FIGURE 1-4 Network Test Flow

The Java Device Test Suite Relay provides infrastructure for the server side of the
network tests. You write only the server code that is specific to your tests. The two
parts can optionally communicate through a control channel you supply and typically
implement with HTTP. For example, a client uses the control channel to tell the
server what kind of message to send or what kind of message to expect from the
client. Without a control channel, the server part does just one thing (for example,
invariably sends a particular message or expects to receive a particular message).

Distributed Tests
A distributed test (see FIGURE 1-5) tests the interaction between different devices.
Multiple devices are necessary because the method of communication, such as
Bluetooth or SMS, cannot be emulated by a test server running in the Relay.
Chapter 1 Overview 7

FIGURE 1-5 Distributed Test Flow

A distributed test has one developer-written part that interacts with two other parts
provided by Sun. The developer part (the test itself) is a runtime automated test that
runs on the test device. The test interacts with the Relay by sending control
messages that indirectly influence the partner MIDlet, which is provided by Sun.
The partner MIDlet runs on a partner device (another phone) and communicates
with the Relay and the test. A few tests use more than one partner device, for
example, to test sending an MMS message to multiple recipients.

The parts operate as follows.

1. The tester downloads the partner MIDlet into the partner device, launches it, and
configures it.

2. The partner MIDlet begins polling the Relay for work to do.

3. The test is downloaded to the test device in the usual way and begins to run.

4. The test sends a control message to the Relay which asks the partner MIDlet to
perform some work, such as sending a message or waiting for a message.

5. When it receives the next polling request from the partner MIDlet, the Relay
passes the test’s request to the partner MIDlet.
8 Java Device Test Suite Developer’s Guide • May 2009

6. The test and the partner MIDlet communicate to execute the work of the test.

7. The test returns a passed or failed result to the MicroAgent, which in turn returns
the result to the Relay, which passes it to the harness, which displays and saves
the result.

Benchmark Tests
From a user’s point of view, benchmark tests behave like automated runtime tests
(see “Automated Tests” on page 3). However, for an implementation to pass or fail a
benchmark test, the test must have a threshold against which the user evaluates the
test run. Users create the threshold by running the test against a reference device
and recording the result in a threshold file. The Java Device Test Suite Tester’s Guide
has instructions for creating threshold data, and the Java Device Test Suite
Administration Guide describes how to create a threshold file from that data. A
benchmark test returns one or more measurements to the harness. The harness
displays the measurements. If the test has a threshold, the harness also displays the
test’s pass or fail status.

Over-the-Air Tests
Over-the-air (OTA) provisioning tests verify that a test device’s Application
Management System (AMS) operates correctly and interacts correctly with the
provisioning emulator on the Relay. The provisioning emulator supplies
applications over the air to wireless devices.

An OTA provisioning test has two parts. One part is the OTA test management
Relay’s infrastructure. The other part is a MIDlet (application) that you write and the
user downloads from the provisioning server, located within the Relay, to the test
device. In fact, a test might have multiple MIDlets, but for simplicity only one is
considered here. The MIDlet can be merely a placeholder for an application that a
test device obtains from a real provisioning server. Or the MIDlet can perform
operations on the test device. For example, a MIDlet can verify that the test device
correctly grants it permission to use certain APIs.

Java Device Test Suite has two OTA provisioning test types: interactive and semi-
automated tests.
Chapter 1 Overview 9

OTA Interactive Tests
From a user’s perspective, an interactive OTA provisioning test is similar to a
runtime interactive test (see “Interactive Tests” on page 4). An interactive OTA
provisioning test might test the user-visible aspects of provisioning, for example,
downloading, installing, and removing a MIDlet. Or, after being installed and
launched by the user, the MIDlet might perform more elaborate tests. FIGURE 1-6
shows the interactions.

FIGURE 1-6 OTA Interactive Test Flow

1. The server manages the execution of the test according to developer-specified
properties. The user does not download OTA tests but does download MIDlets
associated with OTA tests. The harness coordinates with the server much as if the
server were the MicroAgent on a test device. After the user selects a test and
clicks the harness’s Start button, an interactive window displays that specifies the
URL; the tester then commands the device to download an application from the
specified URL. The server handles this application request.

2. The harness displays test instructions and evaluation buttons to the tester. These
are similar to runtime interactive test instructions (FIGURE 1-7 shows an example).
10 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 1-7 Sample OTA Provisioning Interactive Test Evaluation Dialog Box

3. Following the instructions, the tester directs the test device to download the
MIDlet whose URL is provided in the instructions.

4. The test device sends a request for the MIDlet to the Relay.

5. The Relay usually returns a Java Application Descriptor (JAD) file to the test
device. The test device uses the JAD file to download and install the MIDlet. The
Relay can also return a Java Archive (JAR) file, depending on the nature of the
test. The JAR file installs in the test device immediately.

6. The tester launches the MIDlet. If the MIDlet displays its own instructions on the
test device, the user follows them and evaluates the test device’s response. The
user presses the Passed or Failed button in the test instructions accordingly. The
results are then displayed in the harness and saved in the Relay.

OTA Semi-Automated Tests
Semi-automated OTA tests are similar to interactive OTA tests with the following
differences:
Chapter 1 Overview 11

■ The test device’s AMS sends a notification (defined by the OTA provisioning
specification) to the server to notify it of an action the device has taken.

■ The server examines the notification and determines whether the implementation
passed or failed the test.

FIGURE 1-8 shows how a user, a test device, and the Java Device Test Suite
components interact.

FIGURE 1-8 OTA Semi-Automated Test Flow

1. After the tester selects a semi-automated OTA provisioning test and presses the
harness’s Start button, the harness directs the server to start the test.

2. The harness displays the test’s test instructions. These are identical to interactive
OTA test instructions (see FIGURE 1-7) except that they do not have Passed and
Failed buttons. They have a Skip button that the tester can use if a test hangs.

3. The tester directs the test device to download, install, and launch the MIDlet
whose URL is given in the instructions.

4. Responding to the user’s manipulations, the test device send a request to the
Relay for a MIDlet.

5. The Relay returns a JAD file that describes the MIDlet. The test device uses the
JAD file to download and install the MIDlet.

6. The test device sends a notification to the server as required by the OTA
provisioning specification.
12 Java Device Test Suite Developer’s Guide • May 2009

7. The server compares the notification to an expected value (specified in a property)
and returns a passed or failed result to the harness.
Chapter 1 Overview 13

14 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 2

Setting Up the Developer’s Kit

This chapter describes the steps you need to take before writing a test pack. These
steps verify that your environment is set up so that tests can be built and tested. It
has these sections:

■ Acquire and Install the Prerequisite Software

■ Unzip and Configure the Developer’s Kit

■ Build and Install the Sample Test Packs

Acquire and Install the Prerequisite
Software
To develop a test pack, you must first acquire and install the following software:

■ Java Platform, Standard Edition (J2SE™ platform) JDK software. Note the
following:

■ The officially supported version is 1.6.0_3 (also known as JDK 6 Update 3). You
can use a later version. Sun recommends using the latest JDK software.

■ Download the JDK software from the Sun web site at
http://java.sun.com/javase/downloads/index.jsp.

■ Add the path to you installed JDK version to the PATH environment variable,
for example: C:\Program Files\jdk1.6_03\.

■ Verify the installation and version with this command:

> java -version

■ No matter which JDK version you use, the tests you build are compatible with
Java Device Test Suite harnesses whether they use 1.5 or 1.6 versions of the
Java runtime environment.
15

http://java.sun.com/javase/downloads/index.jsp

16
■ The Java Device Test Suite administrator bundle. The Java Device Test Suite
Administration Guide describes how to obtain, install, and verify the software.
Choose the Full Installation option. In this guide, installDir refers to directory
containing your private copy of the Java Device Test Suite Central Installation.
This directory contains the admin/ directory, ReleaseNotes.html, and other
files and directories. Its default name is similar to .../JDTS-CI/.

Note – To write and test a test pack, you must have a private copy of the full
administrator installation, including the Central Installation and the Sun Java
System Application Server. To prevent interference with testers and administrators,
do not use the production installation for test development. To avoid confusion
with the Central Installation that testers use to run tests, this guide refers to your
private Central Installation as the Developer Installation.

■ Ant 1.7.1 or later. Ant is a build utility written in the Java programming
language. For information, see http://ant.apache.org.

■ Add the path to the directory containing the installed Ant launch scripts to
the PATH environment variable, for example, C:\Program Files\apache-
ant-1.7.1\bin\.

■ Verify the installation and version with this command:

> ant -version

■ A MIDP implementation and preverifier for your development platform.
Building a test pack requires use of the platform-specific MIDP preverifier. If
you are developing tests for a MIDP 1.0 device, you need a MIDP 1.0
implementation. If you are developing tests for a MIDP 2.0 device, you need a
MIDP 2.0 implementation. The MIDP implementation and preverifier is
available in the Sun Java Wireless Toolkit for CLDC.

Note these operating system-specific requirements:

■ Windows platform developers – Download and install version 2.5 of the Sun
Java Wireless Toolkit for CLDC from
http://java.sun.com/products/sjwtoolkit/. This guide refers to the
installation directory as WTKInstallDir.

■ Solaris platform developers – Download and install version 2.1_01 of the
J2ME Wireless Toolkit from
http://java.sun.com/products/sjwtoolkit/download-2_1.html.
This guide refers to the installation directory as WTKInstallDir.

Version 2.1_01 of the Wireless Toolkit cannot be installed with JDK version
1.6.0_03, which is recommended for the Java Device Test Suite. Specify a JDK
version in the 1.4 or 1.5 series when you install the WTK on the Solaris
platform.
Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/products/sjwtoolkit/download-2_1.html.This
http://java.sun.com/products/sjwtoolkit/download-2_1.html.This
http://java.sun.com/products/sjwtoolkit/
http://ant.apache.org

To obtain the latest preverifier, also download and install on a Windows platform
version 2.5 of the Sun Java Wireless Toolkit for CLDC from
http://java.sun.com/products/sjwtoolkit/. This guide refers to the
installation directory as winWTKInstallDir. Copy
winWTKInstallDir/lib/jsr082.jar to WTKInstallDir/lib/.

Solaris platform developers can use JAR files created on the Windows platform
because they are platform independent.

Unzip and Configure the Developer’s
Kit
The developer’s kit is packed into installDir/admin/shared/devkit.zip. Prepare
it for use by following these steps:

1. Create a directory in which you want to develop your test pack.

This guide refers to the directory you create as devKitHome.

2. Unzip installDir/admin/shared/devkit.zip into devKitHome.

3. Open devKitHome/tests/common/build/environment.properties in a text
editor.

4. Verify that jdts.home is set to installDir. Change the value if necessary.

5. Solaris operating system users, skip to Step 7.

6. Windows operating system users:

a. Set client.platform.home to the directory containing the Wireless
Toolkit for CLDC, for example, c:/WTK25.

Note the forward slash path separator.

b. Skip to Step 8.

7. Solaris operating system users:

a. Set client.platform.home to WTKInstallDir, the directory containing the Wireless
Toolkit, for example, /home/lee/bin/WTK21.

b. Remove .exe from the end of the following line:

preverify.exec=${client.platform.home}/bin/preverify.exe

8. Save environment.properties.
Chapter 2 Setting Up the Developer’s Kit 17

http://java.sun.com/products/sjwtoolkit/

Build and Install the Sample Test Packs
Building and installing the sample test packs verifies that your developer’s kit
installation is ready for test pack development. Follow these steps:

1. If it is not running, start the Relay by starting the Sun Java System Application
Server.

The Java Device Test Suite Administration Guide describes how to start the Relay.

You can verify that the Relay is running by typing a URL like this into a web
browser: http://appServerHost:appServerPort/appContext/

For example: http://localhost:8080/JdtsServer/. You specified the
values of appServerHost, appServerPort, and appContext when you installed your
developer installation.

If the Relay is running, it displays a page similar to FIGURE 2-1. The version
number and other details might be different.

FIGURE 2-1 Relay is Running Page

2. In a terminal or command window, change to devKitHome/tests/.

3. Run this command:

ant -f demo.xml

The command can take several minutes to run. It produces hundreds of lines of
console output.

4. When the command completes, launch the graphical administrator harness and
verify that test tree shows the Developer test packs shown in FIGURE 2-2.
18 Java Device Test Suite Developer’s Guide • May 2009

http://localhost:8080/JdtsServer/
/
/
:
http://

FIGURE 2-2 Administrator Harness with Developer Test Packs Installed
Chapter 2 Setting Up the Developer’s Kit 19

20 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 3

Introducing the Developer’s Kit

Although writing tests is your responsibility, the Java Device Test Suite Developer’s
Kit contains components you can modify, or, in some cases, use as is. This chapter
introduces many of those components by examining, slightly modifying, and
building the sample runtime test pack included in the Developer’s Kit.

To follow this section, begin with a fresh copy of the unzipped Developer’s Kit (see
“Unzip and Configure the Developer’s Kit” on page 17). Do not run
devKitHome/tests/demo.xml in this copy of the Developer’s Kit.

This chapter has these sections:

■ Developer’s Kit Structure

■ Editing and Building a Test Pack

■ Files Generated by the Build

■ Packaging a Test Pack

Developer’s Kit Structure
This section introduces the directories and files in the Developer’s Kit, focusing on
those that implement the sample runtime test pack. The sample benchmark test pack
has a very similar structure. The distributed and OTA samples have additional
structures to support the more complicated execution models of their tests.
21

22
devKitHome
TABLE 3-1 shows the contents of the Developer’s Kit top level directory.

tests/

This directory contains three sample test packs, a set of common resources used by
all test packs, and the demo.xml file you used to build and install the sample test
packs in Chapter 2. Do not delete this directory.

TABLE 3-1 devKitHome Directory Contents

devKitHome

tests/ Build scripts and sample test packs

docs/ Javadoc™ tool documentation for test APIs

tpim.sh and tpim.cmd Scripts for faster test pack installation, see Chapter 19

version.id Developer’s Kit version identifier. Do not change this
file.

TABLE 3-2 devKitHome/tests/ Directory Contents

devKitHome/tests/

common/ Common resources, notably build scripts in build/

benchmark/ Sample benchmark test pack

runtime/ Sample runtime test pack

distributed/ Sample runtime distributed test pack

ota/ Sample over-the-air provisioning test pack
Java Device Test Suite Developer’s Guide • May 2009

tests/common/

Do not delete this directory or its contents. It holds common resources required to
build any kind of test pack.

tests/runtime/

This directory contains the sample runtime test pack. If you are writing a benchmark
or OTA test pack, you can delete this directory.

TABLE 3-3 devKitHome/tests/common/ Directory Contents

devKitHome/tests/common
/

src/ Common (test-independent) sources for distributed
test packs

lib/ Libraries for build

build/ Build scripts and configuration files common to all
test packs. .properties files specify default build
options.

TABLE 3-4 devKitHome/tests/runtime/ Directory Contents

devKitHome/tests/runtime
/

build/ Files that control the build for this test pack. Every
test pack must have these files. You can edit these
files to override default values specified in build/.
build.xml is the main Ant build file.

src/ Source and related files that implement the tests in
this test pack. Every test pack must have a directory
like this.

src/client/ Source and related files for test components that run
on test devices

src/server/ Source and related files for the server side of
network tests

src/server2/ Additional server sources (directory is named in
testsuite.info TestServerSourcesDir
property)
Chapter 3 Introducing the Developer’s Kit 23

Editing and Building a Test Pack
Exactly how you create a test pack is subject to variations, such as whether you
assemble the files from scratch or begin with a sample. This section introduces one
way to begin with the runtime sample test pack.

Note – A real test pack differs substantially from a sample or this trivial
modification. Notably, the directory structure in
devKitHome/tests/runtime/src/client/ and server/ will reflect your
company, not com/sun/. There are many options you can change to suit your needs
and preferences. Consult the sample files for examples.

1. Change to devKitHome/tests/common/build/.

1. Either edit environment.properties as you did in “Unzip and Configure the
Developer’s Kit” on page 17 or replace environment.properties with the
corresponding file from the other Developer’s Kit.

2. Optionally, delete devKitHome/tests/distributed/, benchmark/, and ota/.

You do not need these files in a runtime test pack.

3. Change to devKitHome/tests/runtime/.

4. In testsuite.info change the following lines:

a. Change the value of TestPackName to My Runtime.

b. Change the value of TestSuiteName to My Runtime TestSuite.

c. Change the value of TestSuiteID to com.sun.jdts.devkit.my.runtime.

5. In testpack.version.properties change 1.4 to ++1.0.

testserver_resources/ Sample server resources for network tests

testsuite.html Top level documentation for this test pack. Every test
pack must have a file like this. See “Documenting a
Test Pack” on page 45 for more information.

testsuite.info Global test suite properties. Every test pack must
have a file like this. See Chapter 6 for details.

testpack.version.prope
rties

Test pack version identifier. See Chapter 20 for
details.

TABLE 3-4 devKitHome/tests/runtime/ Directory Contents (Continued)
24 Java Device Test Suite Developer’s Guide • May 2009

6. Change to build/.

7. In build.properties, append these lines:

doc.copyright=\

\ Copyright 2007 My Company. All rights reserved. \n\

\ Use is subject to license terms.

8. Run one of these commands, depending on your platform:

> ant clean all install

% ant clean all install

The command displays several hundred messages, ending with BUILD
SUCCESSFUL and the elapsed time.

9. Launch or restart your administrator harness.

The new test pack My_Runtime appears in the test tree. It is ready for testing.

Files Generated by the Build
TABLE 3-5 summarizes the files that the build generates.

TABLE 3-5 Files Generated by the Build

devKitHome/tests/runtime
/

bin/ Class and other files that constitute the executable
test pack

resources/ Test pack properties for configuration and template
editors.

tmp-bin/ Temporary directory deleted by ant clean.

listings/ Catalog of the test pack components. Can be viewed
in a web browser.

test-doc/ Javadoc tool-style test documentation that is
displayed when a tester selects a package or test and
clicks the Documentation tab
Chapter 3 Introducing the Developer’s Kit 25

Packaging a Test Pack
When you have tested your tests, you must package them in a zip file so an
administrator can install them in the production Central Installation with the
Configure > Test Packs command. In the test pack’s build/ directory, use one of the
following commands, depending on your platform:

> ant pack

% ant pack

Give the resulting zip file to an administrator.
26 Java Device Test Suite Developer’s Guide • May 2009

PART II Essentials

This part takes you beyond the concepts overview and quick start examples to get
you deeper into essential topics of test pack development.

Chapter 4 details the guidelines for writing descriptive comment blocks ahead of
each test class and each test case in test pack source files.

Chapter 5 details the writing of online documentation that should be included with
the test packs you develop.

Chapter 6 details the testsuite.info file, a properties file that you should create
at the top of the test pack directory.

Chapter 7 introduces the build.properties files, which control optional features
of the build.

Chapter 8 describes the services provided by the singleton class Runner.

Chapter 9 describes how to create a runtime test pack.

Chapter 10 describes how to create a benchmark test pack.

Chapter 11 describes how to create an over-the-air (OTA) provisioning test pack.

.

CHAPTER 4

Test Class and Case Comment
Blocks

You must precede each test class and each test case with a descriptive comment
block. These blocks identify the classes and methods that represent test classes and
cases. They also give the build system and the harness information required to build
and bundle tests and to display configurable properties to testers. The comment
blocks are similar to Javadoc tool “doc comments” described at
http://java.sun.com/j2se/javadoc/writingdoccomments/

This chapter has the following sections:

■ Comment Block Overview

■ Tag Details

Comment Block Overview
When you build a test pack, the build system generates the files shown in FIGURE 4-1
from comment blocks you code for each test class and test case.
29

http://java.sun.com/j2se/javadoc/writingdoccomments/

30
FIGURE 4-1 Files Generated from Comment Blocks

The default build generates the following files:

■ Documentation files - HTML files created by the Javadoc tool. When a tester
clicks the Documentation tab, the graphical harness displays these files. There
are additional test pack and package documentation files which you create
separately as described in Chapter 5.

■ Card file - Test class and case information used by the harness, such as property
definitions and a list of related files that test cases require to run. The word
“card” has no significance.

You can alternatively create a card file manually, as described in Chapter 25. You
can turn off the autogeneration of card files with a build option.

You can verify the contents of a card file using the tool described in Chapter 12.

■ Evaluation File - For interactive tests only, an HTML file that contains tester
instructions for running and evaluating the test. You can alternatively create an
evaluation file manually, as described in Chapter 27.

CODE EXAMPLE 4-1 shows a typical test case comment block.

CODE EXAMPLE 4-1 Typical Test Case Block Comment

/**
 * Interactive test that asks user to install more than one test MIDlet

* suite associated with this test case. In order to do that the developer needs
 * to define the <code>JADPath<N></code> and
 * <code>JARPath<N></code> properties, where

* <code>N</code> is decimal integer starting from 1 to infinity (without gaps).
* For instance, if you need a testcase to install 3 MIDlet suites, use N=1,2,

and 3.
Java Device Test Suite Developer’s Guide • May 2009

FIGURE 4-2 and FIGURE 4-3 show the (rendered) test case documentation and
evaluation file generated from the block comment shown in CODE EXAMPLE 4-1.

 * Each property contains the pointer to the appropriate test MIDlet.
 *
 * @testcase
 *
 * @precondition none
 *
 * @userInteraction
 *
 * Install <code>syspropviewer.jad</code> using the
 * provided URL
 * Select installed MIDlet and launch it
 * Install <code>choicegroup.jad</code> using the
 * provided URL
 * Select installed MIDlet and launch it.
 *
 * @postcondition The 2 MIDlet suites are installed
 * @passCriteria User is able to install both of the MIDlet suites and
 * launch them. The "SysPropertiesViewer" MIDlet should show a list of

* system properties describing your device. "ChoiceGroupDemo" application
 * should display different types of choice group UI.
 *
 * @card.property JADPath1=syspropviewer/syspropviewer.jad
 * @card.property JARPath1=syspropviewer/syspropviewer.jar
 * @card.property JADPath2=choicegroup/choicegroup.jad
 * @card.property JARPath2=choicegroup/choicegroup.jar
 */
void t02InstallMoreThanOneMIDletSuite();

CODE EXAMPLE 4-1 Typical Test Case Block Comment (Continued)
Chapter 4 Test Class and Case Comment Blocks 31

FIGURE 4-2 Typical Generated Test Case Documentation
32 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 4-3 Typical Generated Interactive Test Evaluation Instructions

Although there is some flexibility in formatting a comment block, observe the
following rules:

■ Each block begins with a line containing only /** and ends with a line containing
only */. The class or test case declaration associated with the comment block
follows the */.

■ Subsections of a comment block are introduced by tags, which have the form
@tagName. The supported tags are defined in TABLE 4-1 and TABLE 4-2. You can also
include standard Javadoc tool tags, such as @since, @throws. You can use
{@inheritDoc} in JavaDoc tool tags. Case is significant in tag names. Write
@userInteraction rather than @userinteraction.

■ The untagged lines preceding the first tag introduce the class or case. In Javadoc
tool terms, these lines are the “main description”

■ Each block must have an @testcase or an @testclass tag.

■ If the same tag appears in both the test class comment block and a test case
comment block, the precedence rules described in Chapter 16 apply.
Chapter 4 Test Class and Case Comment Blocks 33

■ All tags except @card.*, @testcase, and @testclass can be followed by lines
of simple (version 4.0.1) HTML to create formatted output such as bullet lists. The
lines following @userInteraction in CODE EXAMPLE 4-1 give an example.

■ @card.* tags have these rules:

■ They cannot contain HTML.

■ Lines terminated by a \ (backslash) character continue on the next line. On the
continuation line, the * (asterisk) character is ignored. For example:

* @card.property x=one \

*two

The value of x is one two.

■ You can use Java programming language properties file escape sequences. For
example: \\ (backslash), \uHHHH (Unicode character with hexadecimal value
HHHH). However, do not use \n (line break) in the value of a property. The
line break character might cause unexpected behavior. For property file details,
see http://java.sun.com/j2se/1.5.0/docs/api/java/util/

Properties.html#load(java.io.InputStream)
34 Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Test Class Comment Block Tags
TABLE 4-1 describes the Java Device Test Suite tags that can or must appear in a test
class comment block. The Instances column specifies how many instances of a tag
are permitted.

TABLE 4-1 Test Class Block Comment Entries

Entry
Test
Types Required? Instances Description

/**

* htmlLines
All Yes 1 htmlLines is the class description in the

generated test documentation. In Javadoc tool
terms, this is the “main description”.

* @testclass All For test
classes

1 Identifies next class definition as a test class.

* @assumption htmlLines All No 0, 1 A condition that is assumed to be true, but
cannot be changed, and, in some cases, even
checked by the tester. A typical assumption is
an interpretation of a related specification
statement. If an assumption does not appear to
be true, the test should be considered not
applicable to the device, which typically means
that the test fails if it is run. htmlLines is the
content of the corresponding section of the
generated test documentation and applies to all
cases in the class.

* @precondition
htmlLines

All No 0, 1 A condition that must be true just prior to the
execution of the test. If the precondition is not
met, the test may give a wrong result. The
precondition statement is checkable and
achievable: There should be a way to change
the environment and guarantee the
precondition to be fulfilled. This is typically the
tester's responsibility to ensure that the test
precondition is fulfilled. Typical precondition is
a reminder about some necessary configuration
settings. htmlLines is the content of the
corresponding section of the generated test
documentation and applies to all cases in the
class.
Chapter 4 Test Class and Case Comment Blocks 35

* @postcondition
htmlLines

All No 0, 1 A condition that must be true immediately
after successful execution of a test case.
“Successful” means no error, unexpected
exception, or VM_EXIT. htmlLines is the content
of the corresponding section of generated test
documentation and applies to all cases in class.

* @keyword keywordList All No 0, n Keyword(s) that testers can use to filter (subset
for execution) this test case or test class.
keywordList is a space-separated list of
keywords. Interactive tests must have this
entry: @keyword interactive.
To see the current list of keywords and their
definitions, launch the harness and create or
open a work directory. Choose Configure >
Edit Configuration or Configure > New
Configuration. In the Test Selection section of
the interview, answer Yes to Specify
Keywords? The More Info pane displays the
current list of keywords.

* @notes htmlLines All No 0, 1 Notes that provide test class information to the
tester. Quoting from a specification is one use
of this tag. If a note is not necessary, do not use
the tag.

* @card.property value All No 0, n Defines a property for all test cases in the class.
See “@card.property” on page 40 for details.

*
@card.specialproperty
value

All
except
OTA

No 0, n Adds a line to the JAD file in a test bundle that
contains this test. See
“@card.specialproperty” on page 41 for
details.

* @card.requires
[value] [*]

All No 0, n Ensures that a test bundle that contains this
test also contains all files the test needs to run.
See “@card.requires” on page 41 for details.

* @card.attribute
value

All No 0, 2 Defines the factors that determine the severity
of a test case failure. See “@card.attribute”
on page 43 for details. Two of these comments
are required (at the case or class level) if you
want to give testers the ability to select tests
and report results by failure severity, as they
can with Sun tests. The Java Device Test Suite
Tester’s Guide describes the severity concept.

TABLE 4-1 Test Class Block Comment Entries (Continued)

Entry
Test
Types Required? Instances Description
36 Java Device Test Suite Developer’s Guide • May 2009

Test Case Comment Block Tags
TABLE 4-2 describes the Java Device Test Suite tags that can or must appear in a test
case comment block. The Instances column specifies how many instances of a tag are
permitted.

TABLE 4-2 Test Case Block Comment Entries

Entry Test Types Required? Instances Description

/**

* htmlLines
All Yes 1 htmlLines is the class description in the

generated test documentation. For
interactive tests, value is the content of
Test Objectives in the evaluation file. In
Javadoc tool terms, this is the “main
description”.

* @testcase All For test cases 1 Identifies next method definition as a test
case.

* @assumption
htmlLines

All No 0, 1 A condition that is assumed to be true,
but cannot be changed and, in some
cases, even checked by the tester. A
typical assumption is an interpretation of
a related specification statement. If an
assumption does not appear to be true,
the test should be considered not
applicable to the device, which typically
means that the test fails if it is run.
htmlLines is the content of the
corresponding section of the generated
test documentation.

* @precondition
htmlLines

All No 0, 1 A condition that must be true just prior to
the execution of the test. If the
precondition is not met, the test may give
a wrong result. The precondition
statement is checkable and achievable:
there should be a way to change the
environment and guarantee the
precondition to be fulfilled. It is typically
the tester's responsibility to ensure that
the test precondition is fulfilled. A typical
precondition is a reminder about some
necessary configuration settings.
htmlLines is the content of the
corresponding section of the generated
test case documentation.
Chapter 4 Test Class and Case Comment Blocks 37

* @postcondition
htmlLines

All No 0, 1 A condition that must be true
immediately after successful execution of
a test case. “Successful” means no error,
no unexpected exception, and no
VM_EXIT. htmlLines is the content of the
corresponding section of generated test
documentation.

* @passCriteria
htmlLines

Runtime,
OTA

For
interactive

0, 1 Condition or conditions that must be met
for the test to pass. For interactive tests,
htmlLines is the content of Test Expected
Result section of the test evaluation
instructions.

* @userInteraction
htmlLines

Runtime
and OTA
interactive

For
interactive

0, 1 Instructions for tester to execute an
interactive test. htmlLines is the content of
the User Interaction section of the test
evaluation instructions.

* @referenceImages
URLs

Runtime
and OTA
interactive

No 0, 1 URLs is URL(s) of image(s) displayed in
evaluation instructions.

* @performanceMetric
value

Benchmark For
benchmark

0, 1 Use instead of @passCriteria. value
must be one of: UnitRate, SystemLoad.

* @keyword keywordList All No 0, n Keywords testers can use to filter (subset
for execution) this test case or test class.
keywordList is a space-separated list of
keywords. Interactive tests must have
@keyword interactive.
To see the current list of keywords and
their definitions, launch the harness and
create or open a work directory. Choose
Configure > Edit Configuration or
Configure > New Configuration. In the
Test Selection section of the interview,
answer Yes to Specify Keywords? The
More Info pane displays the current list
of keywords.

* @notes htmlLines All No 0, 1 Notes that provide test case information
to the tester. For interactive tests,
htmlLines is the content of the Comments
section of the evaluation file. Quoting a
specification or describing unusual test
behavior (“On some devices, the screen
blinks”) are typical uses of notes. If a note
is not necessary, do not use the tag.

TABLE 4-2 Test Case Block Comment Entries (Continued)

Entry Test Types Required? Instances Description
38 Java Device Test Suite Developer’s Guide • May 2009

For tags that can be used with both test classes and test cases, use the class tag to
specify values that apply to all cases in a class. Use the case tag to specify values that
apply to one case only. For example, suppose you specify the following:

* @testclass

* @keyword interactive

* ...

* @testcase

* @keyword onePartnerMIDlet

This means that all test cases in the class can be filtered with the interactive
keyword but only the specified test case can also be filtered with
onePartnerMIDlet.

Tag Details
Tags with more complex syntax or semantics are described in this section.

* @card.property
value

All No 0, n Defines a test case property. See
“@card.property” on page 40 for
details.

* @card.requires
[value] [*]

All No 0, n Ensures that a test bundle that contains
this test also contains all files the test
needs to run. See “@card.requires” on
page 41 for details.

* @card.attribute
value

All No 0, 2 Defines the factors that determine the
severity of a test case failure. See
“@card.attribute” on page 43 for
details. Two of these comments are
required (at the case or class level) if you
want to give testers the ability to select
tests and report results by failure severity,
as they can with Sun tests. The Java Device
Test Suite Tester’s Guide describes the
severity concept.

TABLE 4-2 Test Case Block Comment Entries (Continued)

Entry Test Types Required? Instances Description
Chapter 4 Test Class and Case Comment Blocks 39

@card.property

If a test class or case needs a user-visible property, name the property and specify its
default value with the following syntax:

* @card.property PropertyName=DefaultValue

For example:

* @card.property MaxDistance=12

Properties that apply to multiple classes can be defined globally at the test pack
level. Such properties are defined in the testsuite.info file at the top of the test
pack directory in the file system. A property defined at the test pack level can be
overridden by defining a property of the same name within the test class or case
comment blocks. See “Properties and Parameter Expansion” on page 99 for details.

The following test pack property attributes are also supported for test class and case
properties.

■ scope: To hide a property from users, specify the value hidden. The advanced
value is not supported for classes and cases.

■ readonly: To prevent user modification of the property’s default value, specify
the value true.

■ doc: Give a short description of the property, for example:

* @card.property PixelHeightNoLessThan.doc=minimum number of pixels
allowed for object height

FIGURE 4-4 shows an example of doc values that appear when a tester right-clicks a
test case in the harness test tree and chooses Configure Test. Read-only properties
are displayed in gray (for example, JADPath1 in FIGURE 4-4).

FIGURE 4-4 doc Properties in Configure Test Window

For the exact syntax of property attributes, refer to “Scope” on page 50, “Read-only
Properties” on page 51, and “Online Documentation for a Property” on page 54
40 Java Device Test Suite Developer’s Guide • May 2009

@card.specialproperty

Use a special property definition to direct the harness to add a line to the JAD file
that it creates for a test bundle containing this test. In effect, a special property
definition is a way to pass a parameter to an application management system (AMS),
sometimes called a Java application manager. The static parameter applies only to
the test bundle associated with the JAD file.

Use the following syntax to specify a line to be added to the JAD file:

* @card.specialproperty <jad>.n=LineToAdd

n is a number that distinguishes multiple @card.specialproperty entries in the
same source file. The harness interprets LineToAdd in this line as a name:value pair
taking the first colon symbol as the separator between the name and the value. The
harness copies the name:value pair to the JAD file. The test device AMS interprets
the name:value pair when it downloads the JAD file. It is the test developer’s
responsibility to ensure that name:value pair is meaningful to the AMS and follows
the JAD file syntax. The JAD file is defined in the MIDP specification.

For example, to add a line to a JAD file associated with a test bundle containing
MIDlet2:AlarmMidlet, include a line like this in the test class block comment:

* @card.specialproperty <jad>.1=MIDlet2:AlarmMidlet

Parameter expansion, described in “Properties and Parameter Expansion” on
page 99, also applies to special property definitions. The samples in
devKitRoot/tests/runtime/src/client/com/sun/samples/network/client
/push/ illustrate its use.

@card.requires

This tag specifies files that must be in the test bundle for one or more test cases in a
class to execute. Examples of required files include media files to play on the test
device and helper classes. CODE EXAMPLE 4-2 gives examples for a class and a case:

CODE EXAMPLE 4-2 Example Required File Values

* @testclass
* ...
* @card.requires Pic1.jpg
* @card.requires com/some/apackage/img/Pic2.jpg
* @card.requires *
* @card.requires com/some/apackage/Aclass.class *
Chapter 4 Test Class and Case Comment Blocks 41

Observe the following when writing path names for this tag:

■ The path name separator must be a forward slash (/) character.

■ If the path name contains a separator (for example, com/some/Foo.class or
img/Pic.png), the path is relative to the directory specified in the test pack
property TestClassesDir. For example, for runtime test packs, this directory is
typically bin/client/verified (relative to the test pack root).

■ If the path name does not contain a separator (as in the Pic1.jpg line in
CODE EXAMPLE 4-2), the file is in the same directory as the class of the file
containing the @card.requires tag.

■ The special file name of * directs the build to automatically find all class files
required by the class containing the card.requires comment.

■ Following the name of a required class, the * character means “include this file
and find the files required by the required file”.

■ You can specify class name explicitly as when a class is loaded using
Class#forName(String), for example.

■ If a test class refers to a constant field defined in another class, the class that
defines the constant may not be found by the card file generator. The reason is
“inlining” constant values by javac compiler. The test case testCase1 in
devKitHome/tests/runtime/src/com/sun/samples/Automated/SampleAu
tomatedTest.java demonstrates this effect. See the comments in the classes
IInlinedConstants.java and IReferencedConstants.java for more
detail.

■ Automatic searching applies to Java programming language .class files only.
Do not specify an asterisk (*) with non-class resources, such as images. For
example, the following is an error:

* @card.requires Pic1.png *

The path in an @card.requires entry can specify parameter expansion notationas
described in “Properties and Parameter Expansion” on page 99. CODE EXAMPLE 4-3
shows an example.

In this example, changing the value of req to b will include the file
com/some/samples/automated/b.html in test bundles.

* @testcase
* ...
* @card.requires Pic3.jpg

CODE EXAMPLE 4-3 Parameter Expansion in @card.requires Example

* @card.property req=a
* ...
* @card.requires com/some/samples/automated/${req}.html

CODE EXAMPLE 4-2 Example Required File Values (Continued)
42 Java Device Test Suite Developer’s Guide • May 2009

Note – Properties are not inherited. In particular, required file properties declared in
class X do not apply to X’s superclass or subclasses. Be sure to declare the files that
each class requires.

@card.attribute

Each test class and case can have a failure severity indicator, which is computed
from two factors, functionality and impact. TABLE 4-3 shows the three functionality and
impact codes and the failure severity values that the Java Device Test Suite computes
from them. The Java Device Test Suite Tester’s Guide gives more information on failure
severity.

Use the following guidelines to select a functionality value:

■ 1 - Primary: The associated Test Objectives are a mandatory requirement of the
implementation function tested by the test.

■ 2 - Secondary: Indicates a recommended practice of the implementation function
in accordance with Test Objectives. There may be valid reasons in particular
circumstances to ignore this recommendation of the implementation function.

■ 3 - Nonessential: Indicates that the Test Objectives are an optional requirement of
the implementation function tested by the test.

Use the following guidelines to select an impact value:

■ 1 - Critical: The tested device is effectively unusable as a result of the test failure.
The test failure causes critical impact on the operation of the
device/implementation. Critical impact should cover the case when
implementation does not work. The test failure renders the implementation
ineffective.

■ 2 - Significant: Device failure causes significant impact. A test failure identifies a
serious but predictable and manageable device failure.

■ 3 - Limited: Device failure causes only limited or insignificant impact on the
behavior and performance of the device/implementation.

TABLE 4-3 Severity Calculation from Functionality and Impact

Impact

Functionality 1 - Critical 2 - Significant 3 - Limited

1 - Primary 1 - Very High 2 - High 3 - Medium

2 - Secondary 2 - High 3 - Medium 4 - Low

3 - Nonessential 3 - Medium 4 - Low 5 - Very Low
Chapter 4 Test Class and Case Comment Blocks 43

You express functionality and impact in @card.attribute tags of the following
form:

* @card.attribute functionality=value
* @card.attribute impact=value

In both cases, value must be 1, 2, or 3. CODE EXAMPLE 4-4 shows an example. TABLE 4-3
shows that this case’s computed failure severity is 4 - Very Low.

CODE EXAMPLE 4-4 Example Severity Attributes

* @testcase
* ...
* @card.attribute functionality=2
* @card.attribute impact=3
44 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 5

Writing Online Documentation

This chapter describes the online documentation that you must include with the test
packs you develop.

A test pack has four levels of increasingly detailed online documents. TABLE 5-1
summarizes the document types. The graphical harness displays a document when a
tester selects a test pack, package, case, or class in the test tree and clicks the
Documentation tab.

Documenting a Test Pack
Users access test pack documentation from the harness Documentation tab.

TABLE 5-1 Types of Test Documentation

Test Documentation Description

Test pack The testsuite.html file gives an overview of the test pack. It is
described in “Documenting a Test Pack” on page 45.

Test package The package.html file describes the test classes or subpackages in
the same directory. It is described in “Documenting a Test Package”
on page 46.

Test class Javadoc tool comment blocks in the source code describe each test
class. By default, building a test pack generates HTML file from these
comments. These comments are described in Chapter 4.

Test case Javadoc tool comment blocks in the source code describe each test
case. By default, building a test pack generates HTML file from these
comments. These comments are described in Chapter 4.
45

Provide overview documentation of a test pack by creating a testsuite.html file
in the test pack’s top directory (the same directory that contains testsuite.info).
The Java Device Test Suite does not define the content of this file. Its form and
content are up to you. FIGURE 5-1 shows one example of test pack documentation.

FIGURE 5-1 Sample Test Pack Documentation

Documenting a Test Package
You must supply a package.html file in client functional directories. A non-
functional directory is one whose only purpose is to create a unique package name.
For example, com/ and sun/ in the built-in and sample test packs are non-
functional. The harness displays a package.html file when a tester selects a
package in the test tree and clicks the Documentation tab. By default, the build
system recursively scans your test pack’s directories and finds all package.html
files. If you require finer control, see Chapter 26.

Server directories are not required to have package.html files, but you can provide
them to comply with Java coding guidelines (see
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html).
The harness does not display server package.html files.

Use only simple HTML commands in package.html files. Do not use style sheets,
URL links, or browser-specific commands.

Include any information in a package.html file that is helpful to testers or
administrators who select the package in the graphical user interface and click the
Documentation tab. For example, give an overview of the tests in the package to
help a tester or administrator decide if exploration of the package's contents is likely
46 Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

to be worthwhile. Try to answer this question: If you were a tester exploring this
package, what would you want to know? If you have no information for testers or
administrators, put “No documentation for this package” in the file.
Chapter 5 Writing Online Documentation 47

48 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 6

Writing the testsuite.info File

The testsuite.info file at the top of the test pack directory is a properties file. It
contains a list of properties and values. The harness uses some of these properties.
You can define additional properties that your tests require to run as desired.
“Obtaining a Property Value” on page 61 describes how to retrieve a property value
in a test. For each property, you can define its value, its visibility to the harness
users, and, if it is visible, assign attributes to the property value, and determine
where the property appears in the harness.

Note – Some examples in this chapter have comment lines rendered in italic type.
These describe the subsequent lines to the readers of this guide. Real files have
comments that are helpful to future developers.

File Format and Syntax
You can create testsuite.info with any text editor. A testsuite.info file can
contain any UTF-8 character.

The testsuite.info file consists of two kinds of lines:

■ name=value pairs, for example:

TestPackName=Sample Runtime Tests

■ Comments beginning with a pound sign character (#), for example:

Required entries

For advanced developers, a more detailed description of the testsuite.info file
syntax can be found at
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html.
49

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html

50
Note – An underscore replaces space characters in the directory name where the
test pack is installed on the Developer Installation,
(installDir/admin/shared/testpacks/). For example, a test pack with the
property TestSuiteName=AAA BBB CCC appears as
.../admin/shared/testpacks/AAA_BBB_CCC/.

Specify lines in any order. However, you must observe testsuite.info syntax
and semantic requirements exactly. No error messages inform you of mistakes. If
you make an error, a test, the tester edition harness, or the administrator edition
harness exhibits unexpected behavior.

To see example testsuite.info files, refer to the sample test packs in
devKitHome/tests/.

Default Values
An entry like MyPort=8086 specifies that 8086 is the default value for MyPort.
Specify a default value that is highly likely to work at your site or sites where a test
pack installation will take place. An administrator or user can override the value
you specify (subject to the property’s scope as described in “Scope” on page 50) but
your goal is to provide defaults that do not normally require an override.

Scope
A property’s scope defines its visibility to administrators and testers through the
harness. A property can have the following scopes:

■ advanced – Follows the default scope properties in the Configuration Editor’s
center pane. Use this scope for properties whose default values are directed at
users with an extensive understanding of the effect of a change.

■ hidden – The property is hidden and invisible to both administrators and
testers. It can, however, be read by a test. For more information, see “Obtaining
a Property Value” on page 61.

A property has an implicit default scope. The property default scope is visible and
its value is editable in the Java Device Test Suite Configuration Editor. You do not
need to specify the scope to apply the default. Use the default scope for properties
that a tester will more commonly access.

Note – Do not define a hidden property without a default value.
Java Device Test Suite Developer’s Guide • May 2009

Note – Do not give a property more than one scope or define a property more than
once.

The entries in CODE EXAMPLE 6-1 show how to specify property scopes.

Read-only Properties
To define a property that is visible to users but not editable, code it as shown in
CODE EXAMPLE 6-2.

Property Value Validation Attributes
The harness can validate a property value set by a tester against attributes you
define for the property. The attributes are listed in order of priority in case there is a
conflict, such as a type of boolean and max of 6. Conflicting lower-priority
attributes (in this example, max) are ignored.

■ .type – Ensures that the property value entered in the harness is of the correct
type. The attribute can be set to string, int, boolean, float, and file. The
string type is the default type and you do not need to specify it explicitly.

■ .min, .max – Ensures that the property value entered in the harness is within a
specific range. This attribute only applies to a property type attribute int or
float. If you do not add this attribute to a property, the corresponding
non-inclusive value is implicitly applied. For example, by default

CODE EXAMPLE 6-1 Specifying Property Scopes

default scope implied
MyInOutPort=8088

advanced scope
MyOutPort=8087
MyOutPort.scope=advanced

hidden scope
MyInPort=8086
MyInPort.scope=hidden

CODE EXAMPLE 6-2 A Read-only Property

DeployMode value is visible, but not editable
DeployMode=HTTP
DeployMode.readonly=true
Chapter 6 Writing the testsuite.info File 51

Integer.MAX_VALUE and Integer.MIN_VALUE are applied to an attribute
type=integer value, and Float.MAX_VALUE and Float.MIN_VALUE are
applied to an attribute with the value type=float.

■ .values – Ensures that the property value entered in the harness is selected from
a list you create with this attribute setting. The list appears as a drop-down box in
the harness. This attribute only applies to a property value of type string. If you
do not add this attribute to a property, the harness user can enter any value that
does not violate a previously listed attribute setting by default. The value appears
in a free text field within the harness.

The entries in CODE EXAMPLE 6-3 show how to specify property attributes.

Categories
The default or advanced scope property’s category determines where the harness
accesses and displays a property in the harness’s Configuration Editor. The
Configuration Editor’s left pane lists test packs (bold font entries). Each test pack
contains a list of categories. Testers choose a category and the properties assigned to
the category display in the center pane. Default scope properties appear at the top of
the pane. Advanced scope properties follow.

All test packs have a default category named General. Properties not explicitly
assigned to a category are assigned to General.

FIGURE 6-1 shows the Configuration Editor with a selected category in the left pane
and its assigned default and advanced properties in the center pane.

CODE EXAMPLE 6-3 Specifying Property Attributes

default scope implicit for all properties

TimeOut default value of 60000 can be reset within the predetermined rang
TimeOut=60000
TimeOut.type=int
TimeOut.min=3000
TimeOut.max=120000

AccLocation default value of North America can be changed by selecting a new location
#from a drop-down list. More info about the locations can be found at regionalLocal.html
AccLocation=North America
AccLocation.type=string
AccLocation.values=North America,South America,Europe,Asia,Africa
52 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 6-1 Configuration Editor

For more information about the Configuration Editor, see the Java Device Test Suite
online help.

CODE EXAMPLE 6-4 shows how to specify categories for default scope properties. You
can specify a text description for a category. If the category name includes a space
character, you must escape it with a back slash “\” as the example shows. If you do
not provide a text description, the category name is used. For example, FIGURE 6-1
has “Bluetooth General” for both the category name (blue band) and the category
description below it.

CODE EXAMPLE 6-5 shows how to specify categories for advanced scope properties.

CODE EXAMPLE 6-4 Specifying Default Scope Property Categories

implicitly goes in General category
MyInOutPort=8088

explicitly goes in Network Tests category
MyOutPort=8087
MyOutPort.category=Network Tests

optional description text for Network Tests category
Network\ Tests.CategoryDescr=Properties for Network Tests

CODE EXAMPLE 6-5 Specifying Advanced Scope Property Categories

#implicitly goes in General category
MyOutPort=8087
MyOutPort.scope=advanced
Chapter 6 Writing the testsuite.info File 53

There is no point to assigning a category to a property whose scope is hidden.

Online Documentation for a Property
You can supply a short description for a property that appears in the harness
Configuration Editor's More Info (right) pane next to the Description title (as shown
in FIGURE 6-1). To add the short description, follow the property definition with a
.doc line attribute, for example:

MyPort=8086

MyPort.doc=Specify an IP port that the test server can use.

Supply a .doc attribute entry for every property whose scope is not hidden.

Path Names
Many property values are path names. The path name separator is the slash (/)
character.

${TS_DIR} Reserved Word
The reserved word ${TS_DIR} can be used in path names (and must not be used for
anything else).

In a property you define, ${TS_DIR} refers to the root of the test pack’s directories
in the Relay file system. If your test pack includes tests that have client and server
parts, you can use ${TS_DIR} to give server parts access to test pack files that the
test pack installer copies to the Relay file system. For example, suppose a server part
needs a sample media file that you have created in
packWorkDir/test_data/samples/.

1. Set the predefined TestServerResources property to test_data/.

The test pack installer copies the directories named in TestServerResources to
the Relay file system.

explicitly goes in Network Tests category
MyOutPort=8087
MyOutPort.scope=advanced
MyOutPort.category=Network Tests

CODE EXAMPLE 6-5 Specifying Advanced Scope Property Categories (Continued)
54 Java Device Test Suite Developer’s Guide • May 2009

2. Define another property, for example, SamplesForServer, and set it to
${TS_DIR}/test_data/samples/.

3. Write the client part to retrieve SamplesForServer and pass its value to the
server when it (the client) calls Runner.launchServer().

When the client (running on the test device) asks for the value of
SamplesForServer, (see “Obtaining a Property Value” on page 61) it receives
the absolute path to test_data/ in the Relay file system.

4. Write the server part to use the value passed to it to find the samples/
directory.

“Writing Network Tests” on page 65 describes the details of client and server
interaction.

Note – The notation ${TS_DIR} supersedes $(TS_DIR). Although the old form is
supported for backwards compatibility and is used in some of the sample
testsuite.info files, you should use the new notation.

Required Properties
A testsuite.info file must include predefined properties that the harness uses to
load and display the test pack components. The following properties are required:

■ TestSuiteID – The test pack’s ID. The harness uses this property to identify test
packs. A new test pack’s TestSuiteID must be different from the TestSuiteIDs of all
installed test packs. If a to-be-installed test pack’s TestSuiteID matches the
TestSuiteID of an installed test pack, the test pack installer assumes that the
installed test pack is to be updated (see “Test Pack Identifiers” on page 89). It is
recommended to construct the TestSuiteID value in the style of dot-separated
namespace identifiers, such as com.mycompany.sip. Be sure the value does not
have leading or trailing space characters.

■ TestSuiteName – A Java Device Test Suite 1.4 legacy property. The test pack
installer uses the TestSuiteName property as the name of the directory
containing the test pack. A new test pack’s TestSuiteName must be different
from the TestSuiteNames of all installed test packs.

■ TestPackName – The name of the test pack. This is the name that the harness
displays after test pack installation. A new test pack’s TestPackName must be
different from the TestPackNames of all installed test packs. When installing a
test pack whose pack name contains spaces, the TestPackName replaces spaces
with underscores. For example, Sample Runtime Tests changes to
Sample_Runtime_Tests.
Chapter 6 Writing the testsuite.info File 55

■ TestSuiteType – The test pack type, Runtime, Performance, or OTA
(benchmark tests were formerly called performance tests and the name has been
retained for backwards compatibility).

■ TestClassesDir – The test pack binaries directory.

■ TestSourcesDir – The test pack source directory.

■ TestDocDir – The test pack documentation directory.

■ TestServerResources – The comma-separated list of test pack source
directories on the server side (required only where a server side exists).

The preceding properties must have a scope of hidden (see “Scope” on page 50).

Benchmark and OTA test packs require additional properties in testsuite.info.
For information about these additional properties, see the sample files.

Optional Properties
A testsuite.info file might include other predefined properties that the harness
uses to load and display the test pack components. The following properties are
optional:

■ TestServerSourcesDir – This property contains a colon-separated list of one
or more server-side source roots. The value was formerly hard coded as
src/server, which remains the default.

The root represents a directory several levels above the server-side Java source
files. The directory containing source files is determined by the path implicit in
the namespace of the package. For example, in the Developer’s Kit runtime
examples, the tests/runtime/testsuite.info file defines
TestServerSourcesDir to include the root src/server. The actual server-side
Java source (for example, the file GenericRequestThread.java) is found in
the directory

tests/runtime/src/server2/com/sun/samples/network/server/http/

The file GenericRequestThread.java includes the line

package com.sun.samples.network.server.http;

which shows how the namespace maps to the location of this source file in the file
system.

■ MIDletDir – This property is a pointer to the directory containing the JAD files
specifying the test MIDlets for an OTA test pack or the partner MIDlets in a
runtime test pack that has distributed tests. For an example of using this property,
see tests/ota/testsuite.info.
56 Java Device Test Suite Developer’s Guide • May 2009

■ MIDletSourcesDir – This property is a pointer to the directory containing the
sources for the test MIDlets for an OTA test pack. For an example of using this
property, see tests/ota/testsuite.info.

■ TestSuiteVersion – The test pack version identifier assists in test pack
management and is displayed by the harness’s Help -> About the Java Device
Test Suite. Form the version number from digits separated by periods, following
your organization’s conventions. For example, 1.2 or 1.2.2.

You can specify the test pack version in this property or in the file
testpack.version.properties, which is described in “Test Pack Versioning
Alternative” on page 109.

Note – Do not use both versioning mechanisms. TestSuiteVersion in
testsuite.info overrides testpack.version.properties.

While you are developing or modifying a test pack, you must prefix the version
number with the characters ++, for example:

TestSuiteVersion=++1.4

These characters ensure that when you launch the harness, it synchronizes
templates with the latest changes you have made in the test pack, for example,
new properties. When you have finished development, remove the ++ characters,
increment the TestSuiteVersion value by an amount of your choosing, and
run ant pack to create the installable test pack.

■ TSPermissions – If your test pack requires access to protected APIs (as defined
by the MIDP 2.0 security model), you must include the TSPermissions property
in testsuite.info. For the value of the property, name all permissions
required by all tests in a comma-separated list. For example (ignore line breaks):

TSPermissions=javax.microedition.io.Connector.http
,javax.microedition.io.Connector.sms,javax.microedition.apdu.sat,j
avax.microedition.payment.process

If you specify TSPermissions, you must include the permission
javax.microedition.io.Connector.http in the list. The MicroAgent in
each bundle uses the HTTP API to communicate with the Relay. If you do not
specify TSPermissions, the harness automatically requests
javax.microedition.io.Connector.http.

If you specify TSPermissions, hide it from administrators and testers with this
line:

TSPermissions.scope=hidden

The harness uses the TSPermissions property to reduce the number of
permission requests it includes in test bundles. The requested permissions in a
bundle are the intersection of the permissions selected in the configuration’s
Chapter 6 Writing the testsuite.info File 57

Security Permissions questions and the value of the TSPermissions property in
the test pack whose tests are in the bundle. In other words, the harness uses
TSPermissions properties to filter out irrelevant user-selected permissions.
58 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 7

The build.properties Files

When you build a test pack, the build is controlled by defaults specified in
devKitHome/tests/common/build/build.properties and overridden by
values you specify in
devKitHome/tests/yourTestPack/build/build.properties. Initially, there are
no overrides in your test pack’s build.properties file, so all defaults specified in
the common build.properties file are in effect.

The common build.properties file has comments that describe each property
and its values. The default values are likely to work well for you, but you should
override at least one of them. By default, generated files contain a Sun Microsystems
copyright. You should change this to copyright text appropriate for your
organization. For example:

doc.copyright=\

\ Copyright 2007 My Company. All rights reserved. \n\

\ Use is subject to license terms.
59

60
 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 8

Using Common Services

All tests can use services provided by the singleton class
com.sun.TestBeans.Agent.TestLoader.Runner. For a complete description of
this class, see devKitHome/docs/testapi/index.html.

The services are described in the following sections:

■ Obtaining a Property Value

■ Learning if a Case is Selected

■ Logging

Obtaining a Property Value
To obtain the value of a property defined in the testsuite.info file or a source
file, call Runner.getProperty(). For details, see the Test API documentation. For
examples of usage, see the sample tests.

If a given property is defined in multiple places, the precedence rules described in
Chapter 16 determine which value Runner.getProperty() returns.

Learning if a Case is Selected
To learn if a particular test case is to be run, call Runner.isSelected(), passing in
the name of the case. For details, see the Test API documentation. For examples of
usage, see the sample tests.
61

Logging
The Logger class provides multi-level log messaging, creating tagged log messages
that represent a hierarchy of importance. The least important level is TRACE, and the
most important level is FATAL. The importance tags in log messages enable the
MicroAgent to select the messages it returns to the Relay based on the importance
level set by the tester in the harness.

The Level and Logger classes define the logging facility. The Level class
documentation gives guidance for choosing the level appropriate for a message.

The following sample gives one syntax for setting log message levels:

devKitHome/tests/runtime/src/client/com/sun/samples/automated/Log
ging.java

Given a Logger named log, you can alternatively use the methods log.trace(),
log.debug(), and so on.

Other sample tests give examples of typical logging use.
62 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 9

Writing Runtime Tests

This chapter describes the basics of writing runtime tests. It contains the following
sections:

■ Writing an Automated Test

■ Writing an Interactive Test

■ Writing Network Tests

■ Writing Push Tests

Test pack development is an iterative, non-linear process that varies according to
your local practices and preferences. As you read the following sections, remember
that when developing tests you might perform some steps many times, and you
might perform the steps in a different sequence than they are described in this
chapter. You might also choose to build and test your developing test pack more
frequently than this chapter suggests. If you use a source code control system, you
might have to modify some instructions, such as “make the file writable.”

Writing an Automated Test
Although not required, it is a good practice to create test packages that contain only
automated test classes or only interactive test classes. This practice creates a smaller
and easier-to-navigate test tree when users create sessions that contain only
automated or only interactive tests, because entire packages are removed from the
tree. The sample tests in this chapter follow this practice (which also makes it easier
for you to find an automated or an interactive test example). However, you can
create test packages that contain both automated and interactive test classes.

The directory that corresponds to an automated test package contains the files
shown in FIGURE 9-1.
63

64
FIGURE 9-1 Automated Runtime Test Directory Contents

An automated test implements AutomatedTest, an interface that is documented
in devKitHome/docs/testapi/index.html. For a sample automated test, see
devKitHome/tests/runtime/src/client/com/sun/samples/automated/Sa
mpleAutomatedTest.java.

Writing an Interactive Test
The directory that corresponds to an interactive test package contains the files
shown in FIGURE 9-2. A test package can have any number of classes and a test class
can have any number of cases.

FIGURE 9-2 Interactive Runtime Test Directory Contents

An interactive test extends InteractiveTest, an abstract class documented in
devKitHome/docs/testapi/testapi/index.html. For a sample interactive
test, see
devKitHome/tests/runtime/src/client/com/sun/samples/interactive/
SampleInteractiveTest.java.
Java Device Test Suite Developer’s Guide • May 2009

Writing Network Tests
As described in “Network Tests” on page 7, network tests have a client part that
runs on the test device and a server part that runs on the Relay. These parts are
implemented in different directories.

Writing the Client Part
FIGURE 9-3 shows the directory and files that corresponds to a network client test
package.

FIGURE 9-3 Network Client Test Directory Contents

The following sections describe how to create one network client test package
containing one test class. Repeat the instructions to create additional packages. Use
subsets of the instructions to add classes, or required files, or both to a package. The
build process automatically updates the packages.list file.

A network client test implements AutomatedTest, an interface documented in
devKitHome/docs/testapi/testapi/index.html. For sample network client
tests, see the following:

■ devKitHome/tests/runtime/src/client/com/sun/samples/network/clie
nt/http/SampleHttpReadClient.java, a client that receives a single HTTP
message

■ devKitHome/tests/runtime/src/client/com/sun/samples/network/clie
nt/http/SampleHttpWriteClient.java, a client that sends a single HTTP
message

To launch its server part, a client calls Runner.launchServer(), passing the
server implementation class name and arguments that will be passed to the server’s
init() method. launchServer() sends an HTTP message to the Relay, which
loads the test server. You define the arguments, but one of them is typically the port
on which the server listens for messages from the client. The common way to
establish this port is to define it as a client property.
Chapter 9 Writing Runtime Tests 65

The launchServer() method returns an integer. If the return value is greater than
0, it is the server port number. If the returned value is 0 or a negative number it
indicates an error code returned by the server. For more information about the error
codes, see the following API documentation:

■ com.sun.midp.testmanager.AbstractTestServer.init(String[]
params)

■ com.sun.midp.testmanager.AbstractTestServer.TEST_SERVER_INIT_FA
ILED

■ com.sun.midp.testmanager.AbstractTestServer.TEST_SERVER_LOAD_FA
ILED

■ com.sun.TestBeans.Agent.TestLoader.Runner.launchServer(String
serverName, String[] serverParams)

Writing the Server Part
A server implementation extends AbstractTestServer, which is documented in
devKitHome/docs/test-server-apis/index.html. For examples of network
test servers, see the following:

■ devKitHome/tests/runtime/src/server/com/sun/samples/network/serv
er/http/SampleReadTestServer.java, a server that sends a single HTTP
message.

■ devKitHome/tests/runtime/src/server/com/sun/samples/network/serv
er/http/SampleWriteTestServer.java, a server that reads and verifies a
single HTTP message. This server uses BaseHTTPServer.java in the same
directory.

To obtain the value of a property defined in the testsuite.info file or in a test
class source file, use
AbstractTestServer.getResourceHelper().getProperty(). If a property is
defined in multiple places, the precedence rules described in Chapter 16 determine
which value getProperty() returns.

Writing Push Tests
A push test uses or tests a device’s implementation of the push technology defined
in the MIDP 2.0 (JSR 118) javax/microedition/io/PushRegistry API. Push
technology defines a way for a MIDlet to be awakened by an alarm from the device’s
clock or an incoming network connection. See the JSR 118 specification for details
and the World Wide Web for introductory articles.
66 Java Device Test Suite Developer’s Guide • May 2009

This section describes how to write connection-based push tests (hereinafter simply
called “push tests”). Push technology can also be useful in other kinds of tests. For
an example, see registerAlarm.java and AlarmMidlet.java in
devKitHome/tests/runtime/src/client/com/sun/samples/network/clien
t/pus/push/.

You must be familiar with “Writing Network Tests” on page 65 to use this section
successfully.

Architecture of a Push Test
Similar to a network test, a push test has client and server parts. However, the client
is composed of two MIDlets, called the main MIDlet and the push MIDlet. For
downloading, the main and push MIDlets are bundled together but they are separate
applications. These components and their interactions are shown in FIGURE 9-4.
Chapter 9 Writing Runtime Tests 67

FIGURE 9-4 Connection-based Push Test Components and Interactions

The components interact as follows:

1. The test MicroAgent (see “Automated Tests” on page 3) invokes the main MIDlet.

2. The main MIDlet is primarily an initializer. It directs the test server manager to
start the push test server, registers the push MIDlet if dynamic registration is
being tested, and returns WAIT_FOR_PUSH_RESULT. This return value causes the
main MIDlet to periodically check the Record Management Service store for a
value that indicates the push MIDlet has returned a result. If the Single Test
Timeout specified in the test run configuration expires, the main MIDlet returns
an Error - Timeout status. If the main MIDlet finds the value created by the push
MIDlet, it exits.

3. The test server manager starts the push test server.
68 Java Device Test Suite Developer’s Guide • May 2009

4. The test server opens a connection to the device.

5. The device’s application management system (which implements the push
registry) loads and launches the push MIDlet (and its MicroAgent), which has
been registered and associated with the server’s connection.

6. The push MIDlet’s MicroAgent invokes the push MIDlet.

7. If all steps have been successful, the push MIDlet notifies its MicroAgent that the
test has passed.

8. If, due to a failure, the push MIDlet is not launched, the main MIDlet wakes from
its sleep after the configuration’s Single Test Timeout value expires and notifies its
MicroAgent that the test has failed.

Writing the Client Package
A push client package is identical to a network client package, except that it also has
at least one pushMIDlet.java file. See FIGURE 9-3 for details.

Writing a Main MIDlet
A push test main MIDlet implements AutomatedTest, an interface whose
documentation is accessible from devKitRoot/docs/test-api/index.html. See
“Automated Runtime Test Directory Contents” on page 64 for a description of an
automated test class.

There are two example main MIDlets in
devKitRoot/tests/runtime/src/client/com/sun/samples/network/client
/push/:

■ BasicStatic.java - registers the push MIDlet statically by an entry in the test
bundle’s JAD file.

■ BasicDynamic.java - registers the push MIDlet dynamically by calling
pushRegistry.registerConnection().

The examples are otherwise logically identical.

A main MIDlet’s comment block (see Chapter 4) must contain the equivalent of the
following line to ensure that the push MIDlet (and all classes it requires) is included
in the same test bundle as the main MIDlet (ignore the line break):

* @card.requires
com/sun/samples/network/client/push/PushMIDlet.class *
Chapter 9 Writing Runtime Tests 69

A push test’s main MIDlet comment block must include a line that declares the push
MIDlet in the test bundle JAD file in accordance with the MIDP 2.0 specification. For
example:

* @card.specialproperty <jad>.1=MIDlet-2: \

*PushMIDlet,,com.sun.samples.network.client.push.PushMIDlet

For more information on @card.requires and @card.specialproperty, see
“@card.specialproperty” on page 41.

If the test registers the push MIDlet statically, the comment block must also include
a line that causes the registration information to be included in the JAD file in
accordance with the MIDP 2.0 specification. For example:

* @card.specialproperty <jad>.2=MIDlet-Push-1: socket://:5775, \

*com.sun.samples.network.client.push.PushMIDlet,\

$IPFILTER("0123456???")

If a main MIDlet has more than one push MIDlet, provide @card.requires and
@card.specialproperty comments for each push MIDlet.

Writing a Push MIDlet
A push MIDlet can be automated or interactive. For an example of an automated
push MIDlet, see
devKitRoot/tests/runtime/src/client/com/sun/samples/network/client
/push/PushMIDlet.java.

For an interactive example, see
devKitRoot/tests/runtime/src/client/com/sun/samples/network/client
/push/AlarmMidlet.java.

Writing a Server
A push server is identical to a network server described in “Writing the Server Part”
on page 66. For an example, see
devKitRoot/tests/runtime/src/server/com/sun/samples/network/server
/push/SamplePushTestServer.java.

This server has a simple “one-shot” logic. It does not have a “conversation” with the
main MIDlet. When the test server manager calls the server’s init() method, the
method creates a socket connection to the device, writes a 0 to the socket, and closes
the socket. If your server needs are as simple, you can re-use reuse this server. The
network examples have more elaborate server samples.
70 Java Device Test Suite Developer’s Guide • May 2009

Using $IPFILTER

The $IPFILTER is a macro that can be used in JAD file values specified with a
special property attribute. It is useful when the user needs to register a push MIDlet
statically. For example,

MIDlet-Push-1: socket://:5775, com.sun.samples.network.client.
 push.PushMIDlet, $IPFILTER("0123456???*")

In this example, the IP mask is specified using $IPFILTER. with expands depending
on the IP address of the relay (as it seen from the device) according to the rule
specified by the filter.

The syntax is

$IPFILTER("string")

where string is the filter. It is composed of the characters 0,1,2 ...,9,A, .. ,D,E,*,?

The Nth character of the result is the Kth character of he IP address, where K is
found in the Nth position of the filter or “*” or “?” respectively if “*” or “?* is found
in the Nth position of the filter. For example, if the second character of the filter is
“E”, the second position of the result is the Eth (last) character of the IP address. If
the second character of the filter is “?”, the second character of the result is “?”.

Note – The IP address is considered to be in 15-digit form (nnn.nnn.nnn.nnn, not
nn.n.nnn.nn). The digits of the IP address are numbered from 0 to E.

Example: Suppose IP=AAA.BBB.CCC.DDD is the IP address of the relay as seen from
the device. Each character of the IP address is used to calculate an arithmetic mean
with the corresponding character of the filter.

The special characters * (asterisk) and ? (question mark) stand for themselves.

Example: If the IP address of the relay is 129.159.125.101 and the filter is
$IPFILTER("0123456???*"), the resultant string is 129.159???*.

Example: Using the same IP address for the relay, the filter
$IPFILTER("EDCBA9876543210") expands to the string 101.521.951.921.
Chapter 9 Writing Runtime Tests 71

72 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 10

Writing Benchmark Test Packages

This chapter describes how to create a benchmark tests. It contains these sections:

■ Benchmark Test Directory Structure

■ Benchmark Test Types

■ Writing a System Load Test

■ Writing a Unit Rate Test

Benchmark Test Directory Structure
FIGURE 10-1 shows files in a directory that correspond to a benchmark test package. It
is identical to a runtime test directory.

FIGURE 10-1 Benchmark Test Directory Contents

Benchmark Test Types
Java Device Test Suite has two types of benchmark tests:
73

■ System Load Test – Determines an approximation of the percentage of processor
time a constant-time operation takes, for example, playing an audio file. The core
of a system load test case runs in parallel with a calibration thread that the
harness starts. Having previously run the calibration thread without competition
from the test, the harness computes how much less work the calibration thread
accomplishes when run in parallel with the test. If, for example, when run in
parallel with the test, the calibration thread achieves 40% of the work it achieved
when run alone, the test system load is 60%.

■ Unit Rate Test – Sampling over a fixed interval, determines how many
operations, such as redrawing a screen, a test can complete. The result is an array
of frame rates. The test notifies the harness every time it completes a unit of work.
The harness returns a parameter that tells the test to perform another iteration or
stop.

Writing a System Load Test
A system load test extends ComprehensiveBenchmarkTest, a class documented
in devKitHome/docs/testapi/testapi/index.html. For a sample system load
test, see
devKitHome/tests/benchmark/src/client/com/sun/samples/benchmark/t
estsystemload/MediaPlayerTest.java.

For realistic system load example, see
installDir/admin/shared/testpacks/Benchmark_TestSuite/src/client/co
m/sun/benchmark/scenarios/mediaPlayer/MediaPlayerTest.java.

Writing a Unit Rate Test
A unit rate test extends ComprehensiveBenchmarkTest, a class that is
documented in devKitHome/docs/testapi/testapi/index.html. For a sample
unit rate test, see
devKitHome/tests/benchmark/src/client/com/sun/samples/benchmark/t
estUnitRate/GraphicsTest.java.

For realistic unit rate examples, see the directories in
installDir/admin/shared/testpacks/Benchmark_TestSuite/src/client/co
m/sun/benchmark/scenarios/.

However, ignore the mediaPlayer directory because it contains a system load test.
74 Java Device Test Suite Developer’s Guide • May 2009

Chapter 10 Writing Benchmark Test Packages 75

76 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 11

Developing an Over-the-Air Test
Package

This chapter describes how to create an over-the-air (OTA) provisioning test
package. It contains the following sections:

■ OTA Test Pack Development

■ Writing an OTA Test

■ Writing Application Files

■ Additional Facilities for Interactive OTA Tests

Test pack development is an iterative, non-linear process that varies according to
local practices and preferences. As you read the following sections, remember that
when developing tests you might perform some steps many times, and you might
perform the steps in a different sequence than they are described in this chapter. You
might also choose to build and test your developing test pack more frequently than
this chapter suggests. If you use a source code control system, you might have to
modify some instructions, such as “make the file writable.”

OTA Test Pack Development
OTA test pack development is quite different from runtime or benchmark test pack
development. OTA test source files are essentially empty except for Javadoc tool
class and case documentation and other markup (see Chapter 4). The Java Device
Test Suite provides all OTA test code, which is driven by properties you specify. The
test code does not run on a test device. It runs on the Relay.

In OTA tests, the Relay acts as a provisioning server. It performs these services:

■ Upon test device request, sends HTML or WML with a link to a JAD file
specifying a MIDlet.
77

78
■ Upon test device request, sends the JAD file.

■ Upon test device request, sends JAR file.

■ Receives the installation status code sent by the test device after installation; for
semi-automated OTA tests: compares this code vs. expected one and forms the
result.

■ Receives the result sent by test MIDlet (this is another specific mechanism: the
installed MIDlet sends a result string to specific address on the relay, relay
compares this string against the expected, and returns the test result.)

■ Communicates with the test harness. It sends results, knows the current test ID
and its properties, sends commands to display the test description, and so forth.

Each test has at least one associated MIDlet that the user downloads to the test
device. You write these test MIDlets.

Program logic is different in OTA tests compared to other test types (where the test
logic runs predominately within the test device). In OTA tests, the program logic is
an interplay between the following.

1. The test MIDlet, installed successfully (or not) onto the test device, and executed
in the device.

2. The installation procedure. The tester reads test instructions and interacts with
the test device and the MIDlet.

3. The AMS, a part of the test device that manages the installation and launching
of the MIDlet. For example, the AMS sends an installation status report to the
relay after MIDlet installation.

To develop an OTA test pack, you must also know how to modify Ant build
scripts.

Note – Compared to earlier releases of JDTS, OTA test development is different
after JDTS version 2.0. However tests, written for earlier releases can run on a 2.0
harness with minor modifications. Follow the instructions in this chapter to
develop new OTA tests after JDTS version 2.0.

Writing an OTA Test
An OTA test has two sets of files:
Java Device Test Suite Developer’s Guide • May 2009

■ The test package files document the test, provide user instructions, and direct the
execution of the generic OTA servlet. These files must be created in a subdirectory
named by the testsuite.info file’s TestSourcesDir property. The sample
test files are in devKitHome/ota/src/client/.

■ The application files implement a MIDP application (MIDlet) that the user
downloads to the test device when running the test. These files must be created in
the directory named by the testsuite.info file’s MIDletSourcesDir
property. The sample application files are in devKitHome/ota/src/apps/.
Multiple tests can share the same test MIDlet.

See the property MIDletSourcesDir in the file
devKitHome/ota/testsuite.info for an example of good paths to MIDlet
source files. It is important to structure the paths to avoid namespace conflicts,
and this is reflected in the directory structure of the OTA examples.

You can create the file sets in any order. This section describes how to write the files
in a test package. “Writing Application Files” on page 80 describes how to write
application files.

Writing OTA Source Files
An OTA test source file is only a container for online test documentation and
properties. It has no executable statements. The OTA servlet and, for some tests, the
associated test MIDlet, do the work of the test. For a sample interactive test, see
devKitHome/tests/ota/src/client/com/sun/samples/interactive/Inter
active.java. Interactive and semi-automated test source files have the same
format.

Security Certificates for a Test Class
Tests that use protected APIs must be granted permission to call methods in those
interfaces. This is done by digital certificates in the test device which are associated
with protection domains.

OTA test developers must specify the protection domain for the users of applications
that use protected APIs. The available domains are specified in the MIDP
specification.

Use the following syntax in a source file comment (see “Test Class and Case
Comment Blocks” on page 29) to make a domain available to testers:

* @card.property SecurityDomain=DomainID

The SecurityDomain property value is the domain name (DomainID).
Chapter 11 Developing an Over-the-Air Test Package 79

The DomainID is one of four OTA pre-defined domains or a custom domain
(described later in this section):

■ Untrusted

■ Manufacturer

■ ThirdPartyTrusted

■ OperatorTrusted.

For example:

* @card.property SecurityDomain=ThirdPartyTrusted

The preceding example means the OTA MIDlet packs associated with this test case
are signed with a key setup user interface (using the Manage Keystores command
and corresponding Configuration Editor pane) for the specified protection domain,
so that the MIDlet suite are associated with this protection domain in the device
where the MIDlet is installed.

In addition to the pre-defined domains previously mentioned, you can create custom
domains. Custom domains map to specific certificates in their respective keystores.
Custom domains as well as the default domains must be made apparent to the tester.
The tester enters the domains in the harness Configuration Editor in the left pane
under Over The Air Test MIDlets. Custom domain names have the following
restrictions:

■ Valid character entries are Latin letters, decimal digits, hyphens (-), underscores
(_) or blank spaces ().

■ Custom names must not start or end with blank character space.

For more information about protection domains, certificates, and keystores, see the
Java Device Test Suite Test Notes and the administrator harness online help.

Writing Application Files
Every OTA test case has an associated application (MIDlet, technically a MIDlet
suite). The test case’s evaluation file typically instructs the user to download the
associated MIDlet to the test device.

Directory Structure
FIGURE 11-1 shows, on the left, a directory containing one test class that has two test
cases. On the right, the figure shows the application files you must create for this
example in which both test cases use the same application (MIDlet.java).
80 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 11-1 Test and Application File Correspondence

An application source file is a MIDlet, as defined by the MIDP 1.0 and 2.0
specifications. For an example used with an interactive OTA test, see
devKitHome/tests/ota/src/apps/samples/interactive/PropExample.jav
a. Multiple tests can use the same application if their source file comments name the
shared application’s JAD file and JAR file (which are created by the build script). If a
test requires its associated application to perform an operation on the test device,
make sure that the application displays information that tells the user to click Passed
or Failed in the evaluation window, and that the evaluation window instructs the
user to launch the application.

In the same directory as the application, create a build.xml file. This file is
application specific. See the samples in the subdirectories of
devKitHome/tests/ota/src/apps/samples/ for examples. By default, all MIDlet
JAD and JAR files are created in the directory specified by TestMIDletDir. You can
have a MIDlet’s JAD file and JAR file created in a subdirectory by specifying a value
for subDir in the following build.xml line:

<mkdir dir=”${MIDlet.dest.dir}/subDir”/>

Correspondingly, add subDir to all build.xml lines that contain
MIDlet.dest.dir.

The @card.property tags in the source file must name the same directory. Here is
a hypothetical example line from a build.xml file:

<mkdir dir=”${MIDlet.dest.dir}/mySubDir”/>

The corresponding source file lines are as follows:

* @card.property=JADPath1=mySubDir/TestMIDletJADFile.jad

* @card.property=JARPath1=mySubDir/TestMIDletJARFile.jar

In the same directory as the application, create a manifest file named manifest. The
MIDP 1.0 and MIDP 2.0 specifications define the manifest file format and contents.
See
devKitHome/tests/ota/src/apps/samples/interactive/color/manifest
for an example.

For MIDlets that use protected APIs, code the permission requests in the MIDlet JAD
file and JAR file manifest. To see how these files are built, inspect
devKitHome/tests/ota/src/apps/samples/signed/build.xml.
Chapter 11 Developing an Over-the-Air Test Package 81

Application Logging
An application can send timestamped log messages by HTTP. In the test results,
these messages are identical to those that runtime tests can create as described in
“Logging” on page 62. To generate a log message, add the following line to the
application’s JAD file:

logurl: ${URL_SIMPLE_LOG_RECEIVER}

CODE EXAMPLE 11-1 shows how to send a log message to the Relay. The class
JdtsLogLevel defines the available log level constants, such as TRACE and DEBUG.

Additional Facilities for Interactive OTA
Tests
The example in
devKitHome/tests/ota/src/client/com/sun/samples/interactive/Inter
active.java has test cases that illustrate several optional features of the interactive
OTA test infrastructure:

■ Basic MIDlet installation - t01BasicInstallation()

■ Multiple MIDlets - t02InstallMoreThanOneMIDletSuite()

■ JAR file without a JAD file - t03DownloadJarWithoutJad()

■ Dynamic JAD file attributes - t04SetJADPropertyValuesOnRuntime()

■ Per-test JAD file attributes - t05addSpecialJADAttribute()

■ Advanced facilities of property expansion mechanism -
t06multilayerPropertyExpansion()

■ Custom MIME types for JAD files and JAR files - t07SetCustomMimeType()

CODE EXAMPLE 11-1 Sending a Log Message

...
String logUrl = getAppProperty("logurl");
Connection c = Connector.open(logUrl+"&LogLevel="+myMessageLevel);
HttpConnection hc = (HttpConnection)c;
hc.setRequestMethod(HttpConnection.POST);
OutputStream os = hc.openOutputStream();
os.write(myLogMessage.getBytes("UTF-8"));
os.flush();
os.close();
...
82 Java Device Test Suite Developer’s Guide • May 2009

■ Static custom HTML/WML pages usage -
t08InstallFromCustomHtmlWmlPage()

■ Accessing the provisioning server URL from a MIDlet -
t09getAnotherMIDletSuiteURL()
Chapter 11 Developing an Over-the-Air Test Package 83

84 Java Device Test Suite Developer’s Guide • May 2009

PART III Advanced Topics

This part covers the more advanced topics of test pack development. These topics
do not necessarily apply to every development project. They cover concepts and
procedures that are used in special cases.

Chapter 12 describes how to use the Card File Checker tool to verify card files that
have been written manually.

Chapter 13 describes how to update a test pack as part of a test pack development
cyclical workflow.

Chapter 14 describes how to point the developer’s kit to a different Developer
Installation.

Chapter 15 describes how to add security permissions to templates and
configurations.

Chapter 16 describes property definition and parameter expansion.

Chapter 17 describes how to edit the file testpack.archive.properties to
control the installable zip file created by the pack build target from a test pack.

Chapter 18 describes how to set up a work directory to handle development of
multiple test packs.

Chapter 19 describes how to use a tpim script for faster test pack update cycles.

Chapter 20 describes an alternative procedure for specifying the test pack version
(the variable TestSuiteVersion), using the file
testpack.version.properties.

Chapter 21 describes the Ant build targets in the common build scripts.

Chapter 22 describes the optional feature definition file.

Chapter 23 describes how to optionally filter tests that are irrelevant for a device
based on the capabilities specified in a configuration.

Chapter 24 describes card files that can specify properties or required files for
multiple test classes stored in different directories.

CHAPTER 12

Checking Card Files

In Java Device Test Suite releases prior to version 2.1, card files were authored
directly by the test developer. Beginning with version 2.1, card files are (by default)
generated automatically from comments you embed in the source code. For more
information, refer to Chapter 4.

This chapter describes how to use the Card File Checker tool to verify the required
file entries of manually coded or generated card files.

After building the test pack, use the Card File Checker to verify that the required
files that appear in the card file corresponds with the required files that appear in the
bytecode of the test classes. For information about marking up your Java source files
to create a card file, see Chapter 4. For information about directly editing a card file,
refer to Chapter 25.

The Card File Checker is not fool proof, however, sometimes it does present you
with cause for investigation.

▼ Running the Card File Checker
1. Change directory to your test pack’s build/ directory.

2. Enter one of the following command:

ant run.cardfilechecker

The command generates the following standard output:

■ A line for each card file including the card file location.

■ An indented line for each test in the package including its test class name.

■ If a cause is detected, a third indented line appears stating a requirement file is
missing (undocumented) or redundant.

FIGURE 12-1 shows Card File Checker output from the example runtime test pack.
87

88
FIGURE 12-1 Card File Checker Output Screen - Windows

Note – A test can execute properly with a redundant requirement. However, a
missing requirement can cause a test to fail with unpredictable results.
Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 13

Updating a Test Pack

This chapter describes how to update a test pack. Test packs are usually updated as
part of a test pack development cyclical workflow. The most common reasons to
update a test pack are as follows:

■ Add a test

■ Delete a Test

■ Fix a bug

■ Rename a test

■ Rename a test pack property

This appendix is divided into the following sections:

■ Test Pack Identifiers

■ Test Pack Version Identifier

■ Test Rename File

■ Test Pack Property Rename File

Test Pack Identifiers
When you update a test pack, observe the following rules for changing test pack
identifiers in the testsuite.info file.

■ Be sure not to change the value of TestSuiteID. The test pack installer uses this
value to determine which test pack to replace.

■ If you change TestSuiteName, the installer installs the update into a new
directory as a new test pack and marks the test pack in the old directory that has
the same TestSuiteID. When a user subsequently launches the harness, the
89

90
harness warns that the marked test pack should be uninstalled. If you do not
change TestSuiteName, the installer replaces the installed test pack of the
same TestSuiteID and TestSuiteName.

■ Changing TestPackName does not affect test pack installation.

TestPack Version Identifier
When you begin to revise a test pack, prefix the version number with the characters
++ as described in “Optional Properties” on page 56 (version number is specified in
testsuite.info) or “Test Pack Versioning Alternative” on page 109 (version
number is in testpack.version.properties).

When you are ready to deploy the test pack, remove the ++ characters and
increment the version number as described in “Optional Properties” on page 56
(version number is specified in testsuite.info) or “Test Pack Versioning
Alternative” on page 109 (version number is in
testpack.version.properties)

Test Rename File
If you rename one or more tests in a test pack, you must include a test rename file
in the revised test pack. The rename files are .properties files. For a complete
syntax description of the file, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/

Properties.html#load(java.io.InputStream).

A rename file maps old test names to new test names. The harness uses the rename
file to contend with old test names (created when the name was current) that are
found in Java Device Test Suite version 2.0 templates or in Java Device Test Suite
version 1.4 profiles.

Each revision of a test pack that includes renamed tests must have its own rename
file. Create rename files in the packWorkDir/testpackName/renames/ directory. A
rename file name has the following syntax:

jdts_testnames_oldVersion_newVersion.list

An example of a rename file name can be jdts_testnames_1.1_1.2.list. The
identifier packVersion1.1 is the oldVersion and the identifier packVersion1.2
is the newVersion. The version identifiers are from the TestSuiteVersion
property.
Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

A rename file is a text file containing one line per renamed test. Each line has the
following syntax:

fullyQualifiedOldName=fullyQualifiedNewName

An example of a renamed test line is com.myco.mypk.funct.read.read1=
com.myco.mypk.funct.readFile.read1. In this example the
fullyQualifiedOldName is com.myco.mypk.funct.read.read1 and the
fullyQualifiedNewName is com.myco.mypk.funct.readFile.read1.

Test Pack Property Rename File
You can rename test pack properties (those defined in testsuite.info), but you
cannot rename test class or test case properties. When you rename a test pack
property, you introduce a new name for the property and associate it with the test
pack version you are creating. The property is not renamed in templates that were
created with earlier versions of the test pack.

The harness uses a rename file that you supply to map the alternative names and
versions. For example, consider the following scenario of two test pack updates:

■ In the first version of a test pack, you define the property Alpha and give it a
default value of 1.

■ In the second version, you rename Alpha to Beta.

■ In the third version, you change Beta’s default value from 1 to 2.

Properties in templates include the name and version of the test pack for which they
were created. When an administrator installs version 3 of the test pack, the harness
finds templates that name the test pack and version 1 and changes the default value
of Alpha 1 to 2. It finds templates that name the test pack and version 2 and changes
the default value of Beta from 1 to 2. Templates created after the installation of
version 3 use the property name Beta and the default value 2. In addition, a version
2 or version 3 test that retrieves the value of Beta when running with a template that
defines Alpha, receives the value of Alpha.

To rename a test pack property, follow these steps:

1. If it does not exist, create a text file named
packWorkDir/renames/propertiesrenamings.properties.
Chapter 13 Updating a Test Pack 91

2. Add one line to the file for each renamed property, using this format:

{TestPackVersion}OldPropertyName=NewPropertyName

TestPackVersion is the value of TestSuiteVersion that you give the test pack
when you deploy it as described in “Test Pack Version Identifier” on page 90. It is
the version number in which the new name is first effective.

For example, suppose the currently deployed version of the test pack is 1.8 and
you are creating version 1.8.1 . The following example renames a property
beginning with test pack version 1.8.1:

{1.8.1}ImageCropWidth=ImageCropWidthNew

In the version 1.8.1 testsuite.info, be sure that ImageCropWidth does not
exist and that ImageCropWidthNew does exist.
92 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 14

Reconfigure Environment Settings
for Special Test Pack Installation

You can reconfigure environment settings that were set during Java Device Test Suite
installation to point the developer’s kit to a different Developer Installation.

▼ Reconfiguring the Environment
1. Open installDir/admin/shared/lib/devkit/conf/system.properties.

2. Change the property value of JdtsServer.hostname to host:port, where
host:port is the application server address as seen by the harness.

This creates JdtsServer.hostname=host:port.

The port default value is 8080. An example of a JdtsServer.hostname value is
JdtsServer.hostname=111.222.333.444:8080.

3. Save and close the file.
93

94
 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 15

Defining New Security Permissions

Runtime and benchmark tests that use protected APIs (as defined by the MIDP 2.0
security model) must obtain permission to use those APIs. Administrators or testers
select the permissions in templates or configurations and the harness adds the
permission requests to test bundles.

Note – For OTA test packs, you code permission requests for a MIDlet in its JAD file
and manifest file.

FIGURE 15-1 shows how the template and configuration editors display permission
categories (groups) in the left pane and, in the right pane, a check box for each
permission in the category. In this example, three permissions are associated with
the category Location. Test pack documentation tells users what permissions to
select.

FIGURE 15-1 Example Permissions
95

96
The Security Permissions section of a template or configuration lists the
permissions that are known to the Java Device Test Suite. If your runtime or
benchmark test pack requires unknown permissions, you define the new
permissions in two files in your test pack’s root directory (the directory containing
testsuite.info).

■ policy.txt defines the permission names and their category.

■ permissions.properties defines text to be displayed for the category.
Technically, this file is optional, but the default values supplied in its absence are
not user friendly.

Note – Defining new permissions as described in this chapter is distinct from
specifying the permissions a test pack needs in the testsuite.info
TSPermissions property.

When an administrator installs your test pack, your permissions appear in new
templates and configurations.

CODE EXAMPLE 15-1 shows the policy.txt file format.

Lines that begin with a pound sign (#) are interpreted as comments.
permissionGroup gives the permissions an identifier that entries in
permissions.properties can reference. permission1 through permissionN are
fully qualified permission names that are to be displayed in permissionGroup’s page.

CODE EXAMPLE 15-2 show a policy.txt file that defines the permissions shown in
FIGURE 15-1.

CODE EXAMPLE 15-1 Format of policy.txt File

This is a comment line
alias: permissionGroup
permission1,
...
permissionN

CODE EXAMPLE 15-2 Example policy.txt File

alias: LocationPermissions
javax.microedition.location.Location,
javax.microedition.location.ProximityListener
javax.microedition.location.Orientation
Java Device Test Suite Developer’s Guide • May 2009

To specify a category name and descriptive text for a set of permissions, create a
permissions.properties file and in it name the corresponding permissionGroup
in a smry and text entry. Continuing with the example shown in
CODE EXAMPLE 15-2, CODE EXAMPLE 15-3 shows the smry and text items that are
displayed in FIGURE 15-1.

CODE EXAMPLE 15-3 Example permissions.properties File

LocationPermissions.smry=Location
LocationPermissions.text=Please set the permissions of Location category.
Chapter 15 Defining New Security Permissions 97

98 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 16

Properties and Parameter
Expansion

This chapter describes properties in an abstract way, independent of the notation
used to specify them in source file comments (see Chapter 4), card files (see
Chapter 25), or a test pack’s testsuite.info file (see Chapter 6).

It also describes parameter expansion, which is similar to the like-named mechanism
provided by shell programming languages such as BASH. Parameter expansion can
be used with property definitions. @card.requires comments, and, in OTA test
packs, with strings in HTML, WML, and JAD files. Briefly, a string whose value is
coded as ${NAME} is replaced by the run-time value of the property NAME.

This chapter has these sections:

■ Precedence

■ Parameter Expansion

■ Predefined Parameters for OTA Test Packs

Precedence
If you define the same property name in a source file or card file or
testsuite.info file, the property takes its default value from the most local
definition. Thus, if defined in a case and a class, the value is taken from the
definition in test case, not from the test class. If defined in a class and in
testsuite.info, the value is taken from the class. In other words, a property
value comes from testsuite.info only if it is overridden nowhere else. A
property value specified by a user in a template, configuration, or the test tree’s
Configure Test pop-up overrides the default value.
99

100
CODE EXAMPLE 16-1 is a fragment that shows the property MaxDistance defined in
a class and a case of that class.

In this example, assuming that the tester has not set the value of MaxDistance, the
first test case has the value 100 because its default has precedence over the class
default. The second test case has the value 10 from the test class’s definition of
MaxDistance.

Parameter Expansion
You can code default property values symbolically by naming other properties. At
runtime, the system expands the symbolic values into actual values.
CODE EXAMPLE 16-2 shows the expansion of the value of ${MaxDistance}.

Note – Symbolic property values displayed to testers and administrators are not
expanded. Continuing with CODE EXAMPLE 16-2, the default value displayed in the
Configure Test pop-up window is ${MaxDistance}.

CODE EXAMPLE 16-1 Multiply Defined Property

* @testclass
* @card.property MaxDistance=10
...

* @testcase
* @card.property MaxDistance=100
...

* @testcase
* (MaxDistance not defined)

CODE EXAMPLE 16-2 Parameter Expansion Example

* @testclass
* @card.property MaxDistance=10
...

* @testcase
* @card.property anotherDistance=${MaxDistance}
* AnotherDistance value is 10 from class definition of MaxDistance
Java Device Test Suite Developer’s Guide • May 2009

In an OTA test pack, you use the ${...} notation to can define parameters in the
HTML, WML, and JAD files associated with test MIDlets. To enable expansion of
such parameters, you must enable the OTA version of property expansion by setting
the PropertyExpansionProcessing property to 2.0. To enable it for a test pack,
add the following lines to the testsuite.info file:

PropertyExpansionProcessing=2.0

PropertyExpansionProcessing.scope=hidden

You can also set PropertyExpansionProcessing in a source or card file. It is an
ordinary property subject to the OTA precedence rules. Accordingly, you can enable
or disable expansion class by class or case by case.

To see the effect of PropertyExpansionProcessing, consider this example:

■ The property myURL has the value http://theRelay/a.b.c

■ A line in an HTML file is coded
... the URL is ${myURL}

■ If PropertyExpansionProcessing=2.0, at run time the HTML line is
... the URL is http://theRelay/a.b.c

■ If PropertyExpansionProcessing is not 2.0, the HTML line at run time is
... the URL is ${myURL}

Multi-level expansion is supported, that is, nested ${...} values are permitted. For
example, if the property ac has the value x and b=c, then the value ${a${b}} is
expanded to x.

For a more realistic example of OTA parameter expansion, see the test case
t06multilayerPropertyExpansion in
devKitHome/tests/ota/src/client/com/sun/samples.interactive/Inter
active.java. In this example, PropertyExpansionProcessing is set to 2.0 in the
testsuite.info file.

Predefined Parameters for OTA Test
Packs
For OTA test packs, you can use the following predefined parameters to set the
values of properties in source, card, and testsuite.info files. You can use them
to set the values of parameters in HTML, WML, and JAD files if
PropertyExpansionProcessing=2.0.

■ ${URL_MIDLET_INSTALL_NOTIFY} – Expands to the URL of the servlet waiting
for installation notification request.
Chapter 16 Properties and Parameter Expansion 101

■ ${URL_MIDLET_DELETE_NOTIFY} – Expands to the URL of the servlet waiting
for deletion notification request.

■ ${URL_STATUS_REPORT} – Expands to the URL of the servlet expecting the test
result report.

■ ${URL_JAR_NN} – Expands to the URL of the resource defined by the
JARPathNN test case property.

■ ${URL_JAD_NN} – Expands to the URL of the resource defined by JADPathNN
test case property.

■ ${URL_TEST} – Expands to the full primary URL of the test case that displays in
the interactive test description window.

■ ${OTA_EXEC_MODE} – Expands to OTA execution mode (possible values are
html, wml, and jad).

Do not define a property that has the same name as a predefined parameter.
102 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 17

Customizing the Test Pack Zip File

The pack build target creates an installable zip file from a test pack. The
packWorkDir/build/testpack.archive.properties file controls the zip file
generation. You can edit this file to:

■ Exclude files, such as artifacts of your source code control system

■ Include additional files, such as a license file

■ Change the name of the zip file
103

104
 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 18

Multiple Test Packs in a Directory

For simplicity, this guide states that test pack implementation directories have a
single subdirectory called runtime/, benchmark/, or ota/. This convention
restricts a work directory to a single test pack of a given type. However, an
implementation directory can contain multiple test packs as FIGURE 18-1 shows.

FIGURE 18-1 Generic Work Directory Structure
105

106 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 19

Using TestPackInstallerMain
for Faster Test Installation Cycles

A script (called the tpim script) is provided for both Windows and Solaris operating
systems to invoke the class
com.sun.jdts.tpinstaller.TestPackInstallerMain:

■ devKitHome/tpim.cmd

■ devKitHome/tpim.sh.

The tpim script is a utility shell script to be used as a command-line tool to perform
advanced installation tasks such as installing or uninstalling only the server part of
a test pack. To see a usage message with a list of supported commands and options,
run tpim without parameters.

The following example (for the Solaris operating system) demonstrates how to
install or update the server part of the sample runtime test pack with a tpim script.

% cd devKitHome
% ./tpim.sh -install.testpack.dev ./tests/runtime/

Customizing the tpim Script
The standard tpim script that is packaged with the Developer’s Kit might need
modification to run with your environment. For example, if you upgrade your
version of the Java Runtime Environment, you need to edit the script file and change
the line that defines the variable JAVA_EXEC:

JAVA_EXEC="C:\Program Files\Java\jre1.6.0_05\bin\java.exe"
107

108 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 20

Test Pack Versioning Alternative

You must specify a test pack’s version in either the testsuite.info
TestSuiteVersion property (see “Optional Properties” on page 56) or in the
TestSuiteVersion property in testpack.version.properties, located in the
same directory as testsuite.info. The sample and production test packs specify
their versions in testpack.version.properties files.

Note – If you choose the testpack.version.properties alternative, do not
specify TestSuiteVersion in testsuite.info because it takes precedence.

Here is an example entry in testpack.version.properties:

TestSuiteVersion=1.4.1

Form the version number from digits separated by periods, following your
organization’s conventions.

While you are developing or modifying a test pack, prefix the version number with
the characters ++, for example:

TestSuiteVersion=++1.4.1

These characters ensure that when you launch the harness, it synchronizes templates
with the latest changes you have made in the test pack, for example, new properties.
When you have finished development, remove the ++ characters, and increment the
TestSuiteVersion value in one of the following ways:

■ Manually with a text editor

■ By running ant inc.testpack.version, which adds 1 to the low-order digit

After incrementing the version number, run ant pack to create the installable test
pack.
109

110
 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 21

Build Targets

TABLE 21-1 lists the Developer’s Kit Ant build targets.

TABLE 21-1 Build Targets

Target Description

clean Deletes previously generated files.

all Generates all files according to options specified in
build.properties. Does not install.

pack Creates an installable zip file of the test pack.

install Invokes pack, installs test pack components in Developer
Installation and Relay.

install.srv Installs only Relay (server) components (to save time).

inc.testpack.version Increments the TestSuiteVersion value in
testpack.version.properties. Build with this target, or
increment the TestSuiteVersion value manually when you
have finished development.
Note - This target does not increment TestSuiteVersion in
testsuite.info.

run.cardfilechecker Checks validity of required file statements in manually coded
and generated card files.
111

112 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 22

Tests and Device Features

This chapter describes the optional feature definition file which, if present in your
test pack, gives users a way to select tests according to their relevance to features
present on a device. To benefit from this chapter, you must understand XML and the
XMLSchema language. The chapter covers these topics:

■ Package and Feature Concepts

■ Package and Feature Implementation

Package and Feature Concepts
A test pack’s tests have a package structure and optionally have a feature structure.
Java Device Test Suite users can can use these structures to select tests and inspect
results in reports.

Package-based Selection and Reporting
FIGURE 22-1 shows part of a configuration’s package tree, which users can use to
select tests. This tree is called the package tree, though it also contains classes and
test cases. The test tree in the main harness window is also a package-based tree.
113

FIGURE 22-1 Example Package Tree

The standard test report is also package-based, though the package names are
“flattened” into long strings. This report is organized in a hierarchy whose top levels
are shown in FIGURE 22-2, FIGURE 22-3, and FIGURE 22-4.

FIGURE 22-2 Standard Report Summary
114 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 22-3 Standard Report Passed Tests

FIGURE 22-4 Standard Report Failed Tests

Feature-based Selection and Reporting
The alternative selection mechanism is feature, sub-feature, and test name using the
feature tree shown in FIGURE 22-5.
Chapter 22 Tests and Device Features 115

FIGURE 22-5 Example Feature Tree Display

Both the package tree (FIGURE 22-1) and the feature tree (FIGURE 22-5) contain the
same tests, but the tests are organized differently. The package tree is more of a
developer’s structure. The feature tree is more of a user’s structure.

When a test pack has a feature definition file, test results can be reported by feature
as shown in FIGURE 22-6. The feature-based report makes it easy to see what features
have problems and which features have not been tested.
116 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 22-6 Feature-based Report

For exercises demonstrating both selection and reporting options, see the Java Device
Test Suite Tester’s Guide.
Chapter 22 Tests and Device Features 117

Package and Feature Implementation
When your test pack is installed, it is added to the package tree. If your test pack has
the optional feature definition file, that file’s contents are added to the feature tree
and test results appear in feature-based reports.

Package Design
You can design a test pack’s package and class structure for your own convenience.
For example, your package structure can model the structure of the specification you
are writing tests for. The package structure is expressed in your test pack’s
directories and class files.

Feature Design
What constitutes a feature (and its optional sub-features) is your decision. When
defining features, adopt a test user’s (administrator’s or tester’s) point of view:

■ Help the user assess the consequence of a test failure, that is, what area of device
functionality (what feature) is compromised by the failure of a particular test. For
example, FIGURE 22-6 shows that the test device has a problem displaying text.

■ Help the user decide what tests are pertinent for a given device, that is, which
tests to run. Consider the functional clusters that different devices, or models of
the same device family, are likely to implement. For example, a portion of a
multimedia feature tree might look like this:

Audio Playback MP3

Via File Connection

Via HTTP

Via Input Stream

Via RTSP

Audio Playback WAV

...

Video Capture

...

If a test device does not play WAV files, for example, this structure makes it easy
to unselect the WAV tests.
118 Java Device Test Suite Developer’s Guide • May 2009

Feature Definition File
You define features and their associated tests in a feature definition file named
packWorkDir/metadata/features.xml. The Developer’s Kit sample tests include
examples.

CODE EXAMPLE 22-1 shows a hypothetical feature definition file that defines the
following hierarchy of features:

Bluetooth

SPP

Receive Attribute

Remove Service

L2CAP

Receive Attribute

Remove Service

In this example, the features happen to correspond closely to the test pack’s package
structure, but that is a coincidence. A feature can be composed of any set of tests.

CODE EXAMPLE 22-1 Example Feature Definition File

<?xml version="1.0" encoding="UTF-8"?>
<features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="testpack_features.xsd">
 <feature-hierarchy >
 <feature name="Bluetooth">
 <description>Bluetooth communication capabilities</description>
 <feature name="SPP">
 <description>Serial port profile (SPP)</description>
 <feature name="Receive Attribute">

<description>Receiving attribute on client side</description>
 <test name=
"com.sun.jsr082.bluetooth.functional.connection.SPP.receiveInitAttribute" />
 </feature>
 <feature name="Remove Service">
 <description>Removing service from SDDB</description>
 <test name=
"com.sun.jsr082.bluetooth.functional.connection.SPP.removeService" />
 </feature>
 </feature>
 <feature name="L2CAP">
 <description>Logical Link Control and Adaptation
Protocol</description>
 <feature name="Receive Attribute">

<description>Receiving attribute on client side</description>
Chapter 22 Tests and Device Features 119

A feature definition file must conform to the XML schema defined by
devKitHome/tests/common/lib/testpack_features.xsd. You can use this
schema file to validate your feature definition file in an XML editor. When you build
a test pack, the build script validates your feature definition file against the schema
and verifies that every test mentioned in a feature definition exists and that every
test is mapped to one feature.

 <test name=
"com.sun.jsr082.bluetooth.functional.connection.L2CAP.receiveInitAttribute" />
 </feature>
 <feature name="Remove Service">
 <description>Removing service from SDDB</description>
 <test name=
"com.sun.jsr082.bluetooth.functional.connection.L2CAP.removeService" />
 </feature>
 </feature>
 </feature>
 </feature-hierarchy>
</features>

CODE EXAMPLE 22-1 Example Feature Definition File
120 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 23

Relevance Filtering

If a harness’s Preferences specifies that relevance filtering is enabled, when the tester
closes the configuration editor, the harness calls an optional test pack method for
each test case. This method inspects the configuration and returns null if the test is
relevant or a list of reasons describing why the test is irrelevant. If you do not
implement the method, all tests in your test pack are relevant.

An irrelevant test is one that is pointless to run for either of two reasons:

■ One or more properties in the configuration, which essentially represents the
capabilities of the test device, makes a test irrelevant. For example, a property
representing the presence of an optional device capability is set to false.

■ The test uses an API that requires a permission that the configuration does not
request.

The test pack developer writes the relevance criteria code for each test, or accepts the
default implementation, which checks configuration permissions. As with other
configuration filters, such as keywords and status, the harness does not run a test
that fails to “pass” its relevance filter, potentially reducing the time required to
execute a test run.

To implement relevance filtering, you extend the abstract class
TestDependencyProvider. Consult the test-api Javadoc tool documentation for
details. For examples, see any Sun test pack, such as
installDir/admin/shared/testpacks/Location_(JSR_179)_TestSuite/src/depen
dencyprovider/com/sun/jdts/lapi/dependencyprovider/LapiDependencyProv
ider.java.ThekeyTestDependencyProvidermethodis:isRelevant(TestId): .
The harness calls this method for each test case.

There are example relevance filter implementations in
devKitInstallDir/tests/runtime/src/client/com/sun/samples/automated/
DependencyDemo/.
121

122 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 24

Classless Card Files

To define test-related data, such as properties and required files, for the test classes
defined in one directory, you use the special source file comments described in “Test
Class and Case Comment Blocks” on page 29. To make such test-related information
applicable to a collection of classes whose .java files reside in different directories,
you can define the information in a card file located in a common parent directory
that directly contains no classes. Declaring data that applies to a family of classes in
a card file minimizes coding and can simplify maintenance, for example, when the
name of a required file changes.

Note – Although you can also define card files at the class level, source file
comments are recommended instead. See “Writing Card Files Manually” on
page 129 for details.
Do not accidentally create a classless card file in a directory that contains test classes.
By default, your card file is replaced by one generated from the source file
comments.

Topics in this chapter:

■ Naming, Scope, and Syntax

■ Properties

■ Attributes

■ Keywords

■ Required Files
123

124
Naming, Scope, and Syntax
Card files are optional. When present, with one exception, a card file must be
named package.card, where package is the name of the package associated with the
same directory. For example, consider the package
com.hypotheticaltestco.uitests. The card file in the directory named
packWorkDir/src/client/com/sometestco/uitests/ must be named
uitests.card.

The exception is a card file in a directory associated with no package, such as
packWorkDir/src/client/com/sometestco/. Such a card file must be named
default.card.

The definitions in a card file apply recursively to classes defined in all
subdirectories, unless overridden by a definition in a subordinate directory’s card
file or a comment in a class source file. See “Precedence” on page 99 for details.

In general syntax, a card file is a Java programming language properties file. For a
technical description of property file syntax, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/

Properties.html#load(java.io.InputStream)

However, there are two differences:

■ A card file property can have multiple values. For example, the following
multiple assignment is meaningful in a card file:

.requires=/x

.requires=/y

In a card file, .requires has two values, /x and /y.

■ In a card file, the \n escape sequence is not supported in a property value. \n
can be specified in other card file entries, such as a doc attribute that you want
to display on multiple lines.

Properties
You can define a property in a card file with the following syntax:

.property PropertyName=DefaultValue

For example:

.property MaxDistance=12
Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

You can add the property attributes scope, readonly, and doc as described in
“@card.property” on page 40.

Attributes
You can specify the values used to compute the default severity of test failures as in
the following examples:

.attribute functionality=value

.attribute impact=value

See “@card.attribute” on page 43 for details.

Keywords
You can specify keywords that testers can use to filter (subset for execution) tests in
subdirectories. The syntax is:

.keyword=keywordList

keywordList is a space-separated list of keywords. For example:

.keyword=interactive security

To see the current list of keywords and their definitions, launch the harness and create or open
a work directory. Choose Configure > Edit Configuration or Configure > New Configuration.
In the Test Selection section of the interview, answer Yes to Specify Keywords? The More Info
pane displays the current list of keywords.

Note – The precedence rules do not apply to keyword definitions. For a given test
case, the keyword definitions in its source file and applicable (higher-level) card files
are cumulative. The test case is tagged with all such keywords.
Chapter 24 Classless Card Files 125

Required Files
If tests in different subdirectories require files to run, such as media samples or
libraries, you can define them in an common ancestor card file. Specify ordinary
required files similar to this example:

.requires=resources/my_resource1

.requires=resources/my_resource2

By the rules in “Naming, Scope, and Syntax” on page 124, this example is logically
equivalent to the following, which cannot be expressed in a standard properties file:

.requires=/my_resource1,my_resource2

Path names in .requires entries are relative to packWorkDir.

For required zip or JAR files, use .ziprequires, for example:

.ziprequires=lib/my-lib.zip

.ziprequires=lib/my-lib2.jar

Note – The precedence rules do not apply to required file definitions. For a given
test case, the required file definitions in its source file and in the card files of higher
level directories are cumulative.
126 Java Device Test Suite Developer’s Guide • May 2009

PART IV Legacy

This part will help you maintain tests developed in earlier versions of the Java
Device Test Suite. Due to the evolution of this product, a number of functions have
changed. Some legacy test pack projects might require the use of earlier procedures
or tools, which are maintained in the product for backwards compatibility.

Chapter 25 describes how to directly edit a card file rather than having the build
system automatically generate the card file.

Chapter 26 describes how to write a packages.list file.

Chapter 27 describes how to directly edit an evaluation file rather than having the
build system automatically generate it.

Chapter 28 describes writing conditional logging output.

CHAPTER 25

Writing Card Files Manually

In Java Device Test Suite releases prior to version 2.1, card files were authored
directly by the test developer. Beginning with version 2.1, card files are, by default,
generated automatically from markup you embed in comment blocks in the source
code. For more information, refer to Chapter 4.

Note – If you create card files manually in a directory that contains test classes, you
must add this line to your test pack’s build.properties file:
generate.card.files=false
If you fail to override the default value of true, automatically generated card files
overwrite the ones you create manually. If you write card files only in directories
that have no test classes, as described in “Classless Card Files” on page 123, your
card files are preserved regardless of the value of generate.card.files.

A tool exists for checking the contents and consistency of card files, regardless of
whether they were generated or authored directly. For more information, refer to
Chapter 12.

This chapter describes how to directly edit a card file. It contains the following
sections:

■ Comment Lines

■ Test Case Definitions

■ Required File Definitions

■ Property Definitions

■ Choosing Between Card File and testsuite.info Properties

While the testsuite.info file describes a test pack as a whole, card files describe
the contents of directories that contain test classes. The word “card” has no special
significance. Every directory that contains one or more test classes must have a card
file that names the test classes, the test cases they contain, related files they access,
and properties they use.
129

130
The card file naming structure is containingDir.card, where containingDir is the
unqualified name of the directory containing the card file. For example, a directory
named uitests must have the card file uitests.card.

In general syntax, a card file is a Java programming language properties file. For a
technical description of property file syntax, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/

Properties.html#load(java.io.InputStream)

However, there are two differences:

■ A card file property can have multiple values. For example, the following
multiple assignment is meaningful in a card file:

Class.requires=/x

Class.requires=/y

In a card file, Class.requires has two values, /x and /y.

■ In a card file, the \n escape sequence is not supported for property values.

You can write card file lines in any order. However, be sure to observe the syntax
and requirements noted in the following sections. The harness does not check for
invalid entries. An error can cause unexpected behavior by the harness or a test.

CODE EXAMPLE 25-1 shows a simple card file for a directory containing two test
classes, SampleAutomatedTest1.java and SampleAutomatedTest2.java,
and a class used by SampleAutomatedTest1.java, RequiredClass.java.

Comment Lines
A comment line begins with a pound sign (#), for example:

CODE EXAMPLE 25-1 Simple Card File

Specify the test cases in a test class
SampleAutomatedTest1=TestCase1,TestCase2

Specify a file needed by a test case in this class
SampleAutomatedTest1.requires=RequiredClass.class

Specify a property used by a test case, and its default value
SampleAutomatedTest1.property=TestProp=test

Specify the test case in a second test class
SampleAutomatedTest2=TestCase1
Java Device Test Suite Developer’s Guide • May 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

This is a comment.

The harness ignores comment lines.

Test Case Definitions
A card file must contain one line for each test class in the directory. The line names
the test class and its test cases, separated by commas, for example:

Test class (SpriteTest.java) with a single test case (Rotate)

SpriteTest=Rotate

Test class with two test cases

CollisionTest=SpritePixel,ImageBounds

Note – Do not separate test case names with space characters. Such a space causes
the build to fail.

In this guide, a test class named in a card file is referred to as TestClassName, and a
test case named in a card file is referred to as testCaseName. In the previous
examples, SpriteTest and CollisionTest are TestClassNames and Rotate,
SpritePixel, and ImageBounds are testCaseNames.

Required File Definitions
If a test case requires another file (for example, a helper class or a file containing an
image or a sound), name the file (or files) as shown in CODE EXAMPLE 25-2.

In this example, SpriteTest is the test class name.

Observe the following requirements when writing path names:

■ The path name separator must be a slash (/) character.

CODE EXAMPLE 25-2 Example Required File Definitions

SpriteTest.requires=com/sun/midp/images/sprite1.png
SpriteTest.requires=EncErr_Streams.class
Chapter 25 Writing Card Files Manually 131

■ If the path name contains a separator (as in the first line in the
CODE EXAMPLE 25-2), the path is relative to the directory specified in the test pack
property TestClassesDir. For example, for runtime test packs, this directory is
typically bin/client/verified (relative to the test pack root).

■ If the path name does not contain a separator (as in the second line in
CODE EXAMPLE 25-2), the file is in the same directory as the card file.

Note – Properties are not inherited. In particular, required file properties declared in
class X do not apply to X’s superclass or subclasses. Be sure to declare the files that
each class requires.

After a build, you can use the Card File Checker utility to verify that all of the
required files are recorded with a .requires property. For more information, see
Chapter 12.

Property Definitions
If a test class or case needs a user-editable property, name the property and specify
its default value with the following syntax:

TestClassName.property=PropertyName=DefaultValue

For example:

SpriteTest.property=MaxDistance=12

To add a user-editable property to a case, use the following syntax:

TestClassName.testCaseName.property=PropertyName=DefaultValue

For example:

MaterialBasic.setGetShininess.property=MaxDistance=12

You can use the same property name for different test classes or cases that are in the
same card file, but if you do so, you are defining different properties. The following
example defines two properties that have the same name.

SpriteTest.property=MaxDistance=12

ImageTest.property=MaxDistance=20
132 Java Device Test Suite Developer’s Guide • May 2009

In this example, if SpriteTest retrieves MaxDistance with
Runner.getProperty() as described in “Obtaining a Property Value” on page 61,
it receives the value 12 (assuming the user has not changed the default value). If
ImageTest retrieves MaxDistance, it receives the value 20.

A user can inspect or override a default test case property value from the tester
edition of the harness. To inspect or override a default test case property value, right
click the test case in the harness tree and choose Configure Test.

Note – If a test class extends a superclass, and the superclass needs a property that
is undefined in testsuite.info, specify the property for the test class (the
subclass). For example, if test class X extends class Y, and class Y uses property
MaxSize, make this card file entry:
X.property=MaxSize=value.

Class and Case Keyword Definitions
Use a keyword property definition to provide the harness with a list of keywords to
filter (subset) test cases. Select a keyword based on its descriptive relevance to the
test class or test case from the perspective of the tester. To see the current list of
keywords and their definitions, launch the harness and create or open a work
directory. Open an interview from the harness menu bar by means of Configure >
Edit Configuration or Configure > New Configuration. In the Test Selection section
of the interview, answer Yes to Specify Keywords? The More Info pane displays the
current list of keywords.

Use the keyword specifier in the card file to specify the keyword for an individual
test case or all of the test cases in a test class. A test case can have more than one
keyword. Multiple keywords are separated by spaces.

Use one of the following syntaxes in a card file to add keywords:

■ TestClassName.keyword=keyword1 keyword2

In this case, all test cases under TestClassName are marked with the list of
mentioned keywords.

■ TestClassName.testCaseName.keyword=keyword1 keyword2 keyword3

In this case, only individual TestClassName.testCaseName test case are marked
with the list of mentioned keywords.

Note – All interactive tests must have the keyword interactive.
Chapter 25 Writing Card Files Manually 133

Note – Avoid adding incorrectly named keywords, as this is not checked at any
step.

Special Property Definitions
Use a special property definition to direct the harness to add a line to the JAD file
that it creates for each test bundle. In effect, a special property definition is a way to
pass a static parameter to an application management system (AMS), sometimes
called a Java application manager. The static parameter only applies to the test
bundle associated with the JAD file.

Use the following syntax in a card file to add a line to the JAD file:

ClassName.specialproperty=<jad>.n=LineToAdd

n is a number that distinguishes multiple specialproperty entries in the same card
file. The harness does not interpret LineToAdd but simply copies it to the JAD file.
The test device AMS interprets LineToAdd when it downloads the JAD file. It is the
test developer’s responsibility to ensure that LineToAdd is meaningful to the AMS
and follows the JAD file syntax. The JAD file is defined in the MIDP 1.0 specification.

For example, to add a line to a JAD file associated with a test bundle containing,
MIDlet2:AlarmMidlet include a line like this in the card file:

SpriteTest.specialproperty=<jad>.1=MIDlet2:AlarmMidlet

Choosing Between Card File and
testsuite.info Properties
Define a property for a test case to use in either the testsuite.info file or a card
file. Consider the following to make your choice:

■ If test cases in multiple test classes use a property, it is easier to define it in the
testsuite.info file, which makes it accessible to all test cases in the test pack.

■ If a property must be accessible to administrators, define it in the
testsuite.info file.

■ If a property only needs to be accessible to users, and is only used by one or more
test cases in one test class, define the property in the card file.
134 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 26

Writing packages.list Files

Each test pack must have a packages.list file in its build/ directory. The
packages.list file names the directories that contain package.html files. By
default, the build system creates the packages.list file for you. You can
alternatively create it with a text editor.

The packages.list file is used in these two ways:

■ It defines the packages for which the build system generates documentation.

■ It defines the packages for which the build system generates .card and .html
files. See Chapter 4 for more information.

To create the packages.list file manually, observe the following guidelines:

■ The file has the format of a Java programming language properties file.

■ The file contains a single property DOC_PACKAGE, whose value is a list of space-
separated package names.

■ In the test pack’s build.properties file, set
generate.packages.list.file to false.
135

136
 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 27

Writing Evaluation Files

For each test case in an interactive or OTA test class, an evaluation file is required,
which instructs the user on manipulating and observing the device and deciding if
the test results indicate success. (For an OTA test class, the evaluation file also
instructs the user to download a MIDlet to the test device.)

Starting with version 2.1 of Java Device Test Suite, evaluation files are, by default,
generated automatically from markup you embed in comment blocks in the source
code. Refer to Chapter 4 for details.

Note – If you choose to create evaluation files manually, add this line to your test
pack’s build.properties file:
generate.evaluation.files=false

This chapter is intended for legacy situations in which the evaluation files should be
directly written.

▼ Procedure for Editing an Evaluation File
1. Locate the file

devKitHome/tests/runtime/src/client/com/sun/samples/interactive
/SampleInteractiveTest.example1.html.

2. Change the file name to TestClassName.testCaseName.html.

Refer to “Test Case Definitions” on page 131 for the meaning of TestClassName and
testCaseName.

3. Edit the file as follows:

a. Replace the Sun copyright lines with text that conforms to your
organization’s copyright policy.
137

138
b. Enter the test name that you want to display in the window title bar
between the title tags (such as <title>My Interactive Test</title>)

c. Change SampleInteractiveTest.TestCase1 to
TestClassName.testCaseName.

Refer to “Test Case Definitions” on page 131 for the meaning of TestClassName
and testCaseName.

d. Change Specify the objectives of the testcase to your test case
objectives.

e. Change Instruct the user on any interaction that is required
to your interaction instructions.

f. Change Specify the expected behaviour to the behavior the device
will exhibit.

g. Change Any additional comments to your comments or a space.

4. Save and close the file.

Example Evaluation File Text

CODE EXAMPLE 27-1 Sample Interactive Test Evaluation File Text

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!--
 @(#)SampleInteractiveTest.TestCase1.html

 Copyright 2007 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
-->

<html>
<head><title></title></head>
<body>

<table summary="Test Description" border=2>
 <tr>
 <td>Test Name</td>
 <td>SampleInteractiveTest.TestCase1</td>
 </tr>

 <tr>
 <td>Test Objectives</td>
Java Device Test Suite Developer’s Guide • May 2009

▼ Including Reference Images in an Evaluation
File
FIGURE 27-2 shows an example of an evaluation window with references images.

1. Copy the image files to the package directory or a subdirectory, such as
images/ or jpg/.

2. Add a Reference Images row to the bottom of the table in
TestClassName.testCaseName.html.

CODE EXAMPLE 27-2 shows an example.

 <td>Specify the objectives of the testcase.</td>
 </tr>

 <tr>
 <td>User Interaction</td>
 <td>Instruct the user on any interaction that is required.</td>
 </tr>

 <tr>
 <td>Test Expected Result</td>
 <td>Specify the expected behavior.</td>
 </tr>

 <tr>
 <td>Comments</td>
 <td>Any additional comments if needed.</td>
 </tr>
</table>

</body>
</html>

CODE EXAMPLE 27-2 Example Reference Image Row

 <tr>
 <td>Reference Images</td>
 <td>
 Ref1
 Ref2
 </td>
 </tr>

CODE EXAMPLE 27-1 Sample Interactive Test Evaluation File Text (Continued)
Chapter 27 Writing Evaluation Files 139

3. Add instructions to the Comments row to help users compare the reference
images to the images displayed by test devices.

FIGURE 27-2 gives an example.

4. (Optional) Refer to the images in the User Interaction section of the test
evaluation file.

5. Ensure that the reference image’s file extension appears in the test pack’s
common/build/build.properties file.

The default extensions, such as .html and .gif, are listed after
client.res.pattern.

If necessary, override this section in your test pack’s build/build.properties
file.

An Evaluation File Rendered by the
Harness
FIGURE 27-1 shows an evaluation window rendered by the harness using the HTML
source file from CODE EXAMPLE 27-1.

FIGURE 27-1 Sample Interactive Test Evaluation Window
140 Java Device Test Suite Developer’s Guide • May 2009

FIGURE 27-2 Example Test Evaluation Window With Reference Images
Chapter 27 Writing Evaluation Files 141

142 Java Device Test Suite Developer’s Guide • May 2009

CHAPTER 28

Writing Conditional Output

New test packs should use the Logger API (see “Logging” on page 62) to write log
file output. This chapter describes the legacy logging facility in the context of Java
Device Test Suite version 2.2 or later.

The Runner.verbose() method conditionally writes a string to the harness test
log, depending on the verboseLevel argument passed to it and the value of the
harness’s Run Tests > Log Messages menu item. CODE EXAMPLE 28-1 shows the
combinations that result in output.

In general, use Runner.DEBUG to document normal operations. The exception is
messages noting the start of a test case, which uses Runner.VERBOSE. Use
Runner.VERBOSE for test failure messages and messages providing information
about failures.

CODE EXAMPLE 28-2 shows an example that produces output if the tester has has set
Run Tests > Log Messages to Debug or lower.

CODE EXAMPLE 28-1 Conditions for Log Output

Flag Argument Conditions When Written

Runner.VERBOSE Run Tests > Log Messages > Verbose or lower

Runner.DEBUG Run Tests > Log Messages > Debug or lower

CODE EXAMPLE 28-2 Writing a Diagnostic Message

Runner.verbose("The enumeration has " + renum.numRecords() +
 " records", Runner.DEBUG);
143

144 Java Device Test Suite Developer’s Guide • May 2009

PART V Appendices

This part contains supplementary information about this release.

Appendix A describes how to adapt the WMA test emulator to run Cell Broadcast
Short Message Service (CBS) tests.

Appendix B describes the use of exclude lists to prevent specified tests from being
run.

Appendix C summarizes the files in the distribution that have changed with this 2.4
release.

APPENDIX A

Adapting the WMA Test Emulator

This appendix describes how to adapt the emulator side of the Java Device Test Suite
Wireless Messaging API (WMA) tests to your test device. This adaptation is required
to run Cell Broadcast Short Message Service (CBS) tests.

Note – This appendix has nothing to do with Java Device Test Suite test
development. It describes software that must be developed to run WMA CBS tests. It
is included in this guide because writing this code is a developer task.

The appendix consists of these sections:

■ Test Types

■ Implementing CBSServer

■ Deploying the Implementation

Test Types
Some of the WMA tests are network tests (see “Writing Network Tests” on page 65).
These tests have two parts. The device part exercises WMA interfaces on the test
device. The emulator part coordinates with the device-resident part, sending,
receiving, and analyzing test messages as needed.

For CBS tests, the emulator part is called a CBS Server. It is called to send a valid CBS
message to the test device.
147

Implementing CBSServer
CODE EXAMPLE A-1 shows the CBSServer interface.

TABLE A-1 specifies the semantics of a CBSServer implementation.

▼ Deploying the Implementation
1. Compile the implementation.

The following shows one simple way to compile. Other ways might also be valid.

% javac -d DestDir File

■ DestDir is the directory where the compiled class is placed.

■ File is the file to compile.

CODE EXAMPLE A-1 CBSServer Interface

package com.sun.wma.api.server;

public interface CBSServer {
public void send (String type, int segNum, String address);
public void init ();
public void die ();

}

TABLE A-1 CBSServer Implementation Guide

Method/Parameter Description

send() Sends a CBS message through the mobile network.

type “gsm7” “ucs2” or “binary” represent three encoding
types defined by the WMA specification.

segNum Number of message segments as defined by Appendix A of
the WMA specification.

address CBS address for the message. See Appendix B of the WMA
specification for examples.

init() CBS server initializes itself, if necessary.

die() CBS server terminates any active operations and clean up
resources.
148 Java Device Test Suite Developer’s Guide • May 2009

2. Put the compiled files into a JAR file.

For example:

% jar cvf CBSImplJar CBSImplClass

■ CBSImplJar is the name of the JAR file you are creating.

■ CBSImplClass is the name of the class file created in Step 1.

You can use more than one JAR file.

3. Use the administrator edition of the harness to create a section containing the
WMA test pack.

The online help describes how to create and configure a template.

4. Connect the test device to the harness host.

The Java Device Test Suite Tester’s Guide describes how to connect test devices and
how to launch and use the harness.

5. Launch a harness.

6. Open the Configuration Editor and go to the WMA section created in Step 3, and
select the WMA test pack.

7. Answer the corresponding questions to set the following properties for the CBS
Server of the WMA test pack in the template.

a. Set ServerImplJarLocation to the absolute path name of the JAR file or
files created in Step 2.

Where the ServerImplJarLocation property value contains more than one
JAR file path, the paths must be semicolon separated.

b. Set CBSServerImpl to the full class name (including package name) of the
CBSServer implementation class.

8. In the harness, open the Test Server Monitor to see diagnostic messages from
the WMA test emulator.

9. Click the Start button.
Appendix A Adapting the WMA Test Emulator 149

150 Java Device Test Suite Developer’s Guide • May 2009

APPENDIX B

Exclude Lists

If your test pack has tests that you do not want testers to run, you can ask
administrators or testers to name the tests in an exclude list file, and to specify that
file in templates or configurations. Testers can see excluded tests but cannot run
them.

The relevant interview items are Specify an Exclude List and Specify Exclude List
Files. The Java Device Test Suite Tester’s Guide describes the exclude list file format.
You can supply the file yourself, or give the data needed to create the file to
administrators or testers.
151

152 Java Device Test Suite Developer’s Guide • May 2009

APPENDIX C

Change Log

This appendix describes the main changes to the Developer’s Kit and the Developer’s
Guide for this release and recent past releases.

New in Release 2.4
This section summarizes how the 2.4 Developer’s Kit and Developer’s Guide differ
from their immediate predecessors.

■ @card.requires comments in source files can use parameter expansion to
specify path name components symbolically. CODE EXAMPLE 4-3 gives an example.

■ @card.requires can be specified for test cases as well as classes.

■ The new @card.ziprequires card file entry specifies a required zip or JAR file.
See “Required Files” on page 126.

■ The server part of a network test can obtain property values. See “Writing the
Server Part” on page 66.

■ In this guide, an erroneous note that said that testsuite.info properties cannot
refer symbolicially (${propertyName}) to other property values has been removed.
The following usage is legal in a testsuite.info file:

A=1

C=${A}

■ OTA applications (MIDlets) can send log messages to the harness. See
“Application Logging” on page 82 for details.

■ Test servers (see “Writing Network Tests” on page 65) that use keystores must be
modified due to a change in the interface ResourceHelper. See
devKitHome/docs/test-server-
api/com/sun/midp/testmanager/ResourceHelper.html for details
including an example.
153

■ devKitHome/docs/ contains the Test Design Policies document that Sun engineers
use when writing tests.

■ In source file comment blocks, lines can be continued and non-ASCII characters
can be specified. See “Comment Block Overview” on page 29 for details.

New in Release 2.3
This section summarizes how the 2.3 Developer’s Kit and Developer’s Guide differ
from their immediate predecessors.

■ The use of policy.txt and permissions.properties to define new
permissions has been clarified. See “Defining New Security Permissions” on
page 95.

■ Ant 1.7.1 is required.

■ A new chapter, “Tests and Device Features” on page 113, describes the optional
feature definition file.

New in Release 2.2
This section summarizes how the 2.2 Developer’s Kit and Developer’s Guide differ
from their immediate predecessors.

■ Samples illustrate the multi-level Logger API for generating log messages. A new
class, Level, has been added to the test API.

■ The description of the scope, readonly, and doc attributes that can be specified
for test class and case properties has been corrected. See “@card.property” on
page 40.

■ Property expansion has been unified in runtime, benchmark, and OTA tests. All
behave as OTA tests did in previous recent releases: A value in a case definition
overrides a value in a class definition, and a value in a class definition overrides a
value in a testsuite.info definition. In other words, if a user does not specify
a property value, Runner.getProperty() always returns the most local default
value. “Properties and Parameter Expansion” on page 99 gives the details.

■ Property expansion applies to special properties.

■ filter is deprecated in property descriptions. Use keyword instead.

■ @precondition is not required in test class or case comment blocks.
154 Java Device Test Suite Developer’s Guide • May 2009

■ Theformerlyrequiredtestsuite.infopropertySupportedFrameworkshasbeen
removed from this guide because it is no longer used.

■ JDK version 1.5 is no longer supported. Use JDK version 1.6.0_03.

■ The chapter “Converting 1.4 Test Suites to 2.0 Test Packs” has been removed
because Java Device Test Suite version 1.4 is no longer supported.

■ You can rename test pack properties while preserving compatibility with
templates that use the old name. See “Test Pack Property Rename File” on page 91
for details.

■ Two methods, close() and flush() have been added to the Logger API.

■ The role of test pack identifiers in the testsuite.info file, such as
TestSuiteName, has been clarified for new and updated test packs. See “Required
Properties” on page 55 and “Test Pack Identifiers” on page 89.

■ Test classes and cases can be assigned functionality and impact codes, from which
the Java Device Test Suite calculates and reports the severity of a test failure. See
“@card.attribute” on page 43 for details. Sample tests have been updated with
these codes.

■ The interaction of push test components has been corrected, see “Architecture of a
Push Test” on page 67.

■ The descriptions of test pack versioning have been corrected and clarified. See
“Optional Properties” on page 56 , “Test Pack Versioning Alternative” on
page 109, and “Test Pack Version Identifier” on page 90.

■ The role of the optional policy.txt file for defining new permissions has been
clarified. See “Defining New Security Permissions” on page 95.

■ The use of the optional TSPermissions testsuite.info property has been
clarified and corrected. See “Optional Properties” on page 56.

■ A new appendix “Exclude Lists” on page 151 describes how exclude lists can
disable execution of buggy or incomplete tests.

New in Release 2.1.2
No change in this release.

New in Release 2.1.1
This section summarizes how the 2.1.1 Developer’s Kit differs from its predecessor.
Appendix C Change Log 155

■ Advanced property values can be defined with markup in comment blocks for test
cases and cases, not just in the testsuite.info file for test packs.

■ The conceptual diagrams in Chapter 1 of this manual showing the test types have
been updated.

■ The version of the test pack can now be incremented by building with the ant
target inc.testpack.version. For more information, see the property
TestSuiteVersion under “Required Properties” on page 55.

■ Sample test classes in the DevKit now demonstrate advanced property attributes
such as .type, .min, .max, .values, and .readonly. This is now documented
in Chapter 4 of the Developer’s Guide.

■ Some environment variables have been renamed:

me.home is now called client.platform.home

me.lib is now called client.platform.lib

■ The string “jtwi” has been eliminated from build files.

New in Release 2.1
This section summarizes how the 2.1 Developer’s Kit differs from its predecessor.

■ The Developer’s Guide has been reorganized to separate material that is of interest
to particular sets of readers, such as advanced and legacy topics.

■ By default, card files and interactive test evaluation files are automatically
generated from comments embedded in source files. See Chapter 4.

■ By default, the packages.list file is generated automatically.

■ In the sample distributed test documentation, the terms UUT (unit under test) and
UE (execution unit) have been changed to TD (test device) and PD (partner
device) for better consistency with product terminology. Test function is not
affected.

■ The officially supported Java Developer’s Kit is version 1.6.0_03. By default, tests
are compiled to run with 1.5 JRE software.

■ The $IPFILTER macro is provided for static push MIDlet registration. See “Using
$IPFILTER” on page 71.

■ The following new sample illustrates the use of log trace levels:
devKitHome/tests/runtime/src/client/com/sun/samples/automated/L
ogging.java.

■ A new chapter in this guide explains property value precedence and parameter
expansion. See Chapter 16.
156 Java Device Test Suite Developer’s Guide • May 2009

■ ${TS_DIR} refers only to the Relay file system root. Formerly, it could also refer to
the test pack root in the Developer Installation.

■ You can customize the text displayed for new permissions questions. See
Chapter 15 for details.

■ You can specify text for configuration and template editors to display as a
category name and description. See “Categories” on page 52.

■ You can specify the location of server source files in a testsuite.info file with
the new TestServerSourcesDir property. The value was formerly hard coded
as src/server, which remains the default. The runtime sample includes a usage
example.

■ The structure of the MIDlet source files in the OTA sample test pack has been
changed.

■ You can specify the location of MIDlet files with the new testsuite.info
MIDletDir and MIDletSourcesDir properties. The sample distributed and
OTA test packs have usage examples.

■ By default, the build creates a “catalog” of test pack components in the
listings/ directory in the test pack root. You can disable generation by setting
build.test.list=false in the test pack’s build.properties file. The
listings.dir property specifies the output directory.
Appendix C Change Log 157

158 Java Device Test Suite Developer’s Guide • May 2009

Index
Symbols
$(TS_DIR), 55
${TS_DIR}, 54
.min, .max, 51
.type, 51
.value, 52
@notes, 36
@passCriteria, 38

A
Ant, required version, 16
attributes, in multiclass card files, 125
automated test

data and control flow, 3
defined, 2, 3
directory contents, 63
writing a package, 63

B
benchmark test

directory contents, 73
runtime behavior, 9

benchmark test pack
defined, 2

build file
for automated test, 81

C
Card File Checker utility, 87
card files

comments, 130

introduction, 129
keyword property definitions, 133
property definitions, 40, 132
special property definitions, 41, 134
test case definitions, 131

category of property, 52
CBS tests, 147
CBSServer interface, 148

D
DEBUG, 143
distributed test

defined, 3
description of, 7

F
feature and package implementation, 118
feature definition file, 119
feature schema file, 120
feature-based selection and reporting, 115
filtering, relevance, 121

G
getProperty(), 61

H
hidden scope, 50

I
installDir, defined, 16
interactive test (OTA)
159

application file directory contents, 80
application files, 81
data and control flow, 10
manifest file, 81

interactive test (Runtime)
data and control flow, 4
defined, 3
directory contents, 64
evaluation file, 137

isSelected(), 61

J
J2SE, required version, 15
JAD file

for interactive (OTA) test application, 81
modifying with special properties, 41, 133, 134

JAR file, required, 126

K
keywords, in multiclass card files, 125

M
manifest file

for interactive (OTA) test, 81
MicroAgent, 4
MIDlet, role in OTA tests, 9
MIDletDir property, 56, 57
multiclass card files

introduction, 123

N
network test

client directory contents, 65
defined, 3
description of, 7
runtime behavior, 7
writing, 65

notification, role in semi-automated OTA tests, 13

O
online documentation

overview, 45
package, 46
test pack, 46

OTA
Security Certificates, 79

OTA test pack
defined, 2

OTA test, description of, 9

P
package.html, 46
package-based test selection and reporting, 113
packages.list file, 135
path names in properties, 54
properties, in multiclass card files, 124
property scope, 50
property value, getting a, 61
property, online documentation, 54
push test

defined, 3

R
relevance filtering, 121
rename file, 90
required files

in legacy card files, 131
in multiclass card files, 126

runtime test pack
defined, 2

S
scope, 50

of required properties, 56
semi-automated OTA test

description of, 12
runtime behavior, 12

system load test, 74

T
test case

which is selected, 61
test pack

defined, 1
documenting, 46
multiple in same work directory, 105
types of, 2

test, types of, 2
TestClassesDir property, 56
TestDependencyProvider, 121
TestDocDir property, 56
160 Java Device Test Suite Developer’s Guide • May 2009

testpack.archive.properties file, 103
TestPackInstallerMain class, 107
TestPackName property, 55
TestServerResources, 56
TestServerSourcesDir property, 56
TestSourcesDir property, 56
testsuite.html, 46
testsuite.info

default values, 50
file format and syntax, 49
introduction, 49

TestSuiteID property, 55
TestSuiteName property, 55
TestSuiteType property, 56
TestSuiteVersion property, 57
tpim script, 107

U
unit rate test, 74

V
VERBOSE, 143
verbose(), 143

Z
zip file generation, 103
zip file, required, 126
Index 161

162 Java Device Test Suite Developer’s Guide • May 2009

	Java™ Device Test Suite Developer’s Guide
	Contents
	Figures
	Tables
	Code Examples
	Preface
	I Getting Started
	Overview
	Test Packs
	Test Pack Types
	Runtime Tests
	Automated Tests
	Interactive Tests
	Network Tests

	Distributed Tests
	Benchmark Tests
	Over-the-Air Tests
	OTA Interactive Tests
	OTA Semi-Automated Tests

	Setting Up the Developer’s Kit
	Acquire and Install the Prerequisite Software
	Unzip and Configure the Developer’s Kit
	Build and Install the Sample Test Packs

	Introducing the Developer’s Kit
	Developer’s Kit Structure
	devKitHome
	tests/
	tests/common/
	tests/runtime/

	Editing and Building a Test Pack
	Files Generated by the Build
	Packaging a Test Pack

	II Essentials
	Test Class and Case Comment Blocks
	Comment Block Overview
	Test Class Comment Block Tags
	Test Case Comment Block Tags
	Tag Details
	@card.property
	@card.specialproperty
	@card.requires
	@card.attribute

	Writing Online Documentation
	Documenting a Test Pack
	Documenting a Test Package

	Writing the testsuite.info File
	File Format and Syntax
	Default Values
	Scope
	Read-only Properties
	Property Value Validation Attributes
	Categories
	Online Documentation for a Property
	Path Names
	${TS_DIR} Reserved Word

	Required Properties
	Optional Properties

	The build.properties Files
	Using Common Services
	Obtaining a Property Value
	Learning if a Case is Selected
	Logging

	Writing Runtime Tests
	Writing an Automated Test
	Writing an Interactive Test
	Writing Network Tests
	Writing the Client Part
	Writing the Server Part

	Writing Push Tests
	Architecture of a Push Test
	Writing the Client Package
	Writing a Main MIDlet
	Writing a Push MIDlet

	Writing a Server
	Using $IPFILTER

	Writing Benchmark Test Packages
	Benchmark Test Directory Structure
	Benchmark Test Types
	Writing a System Load Test
	Writing a Unit Rate Test

	Developing an Over-the-Air Test Package
	OTA Test Pack Development
	Writing an OTA Test
	Writing OTA Source Files
	Security Certificates for a Test Class

	Writing Application Files
	Directory Structure
	Application Logging

	Additional Facilities for Interactive OTA Tests

	III Advanced Topics
	Checking Card Files
	Running the Card File Checker

	Updating a Test Pack
	Test Pack Identifiers
	Test Pack Version Identifier
	Test Rename File
	Test Pack Property Rename File

	Reconfigure Environment Settings for Special Test Pack Installation
	Reconfiguring the Environment

	Defining New Security Permissions
	Properties and Parameter Expansion
	Precedence
	Parameter Expansion
	Predefined Parameters for OTA Test Packs

	Customizing the Test Pack Zip File
	Multiple Test Packs in a Directory
	Using TestPackInstallerMain for Faster Test Installation Cycles
	Customizing the tpim Script

	Test Pack Versioning Alternative
	Build Targets
	Tests and Device Features
	Package and Feature Concepts
	Package-based Selection and Reporting
	Feature-based Selection and Reporting

	Package and Feature Implementation
	Package Design
	Feature Design
	Feature Definition File

	Relevance Filtering
	Classless Card Files
	Naming, Scope, and Syntax
	Properties
	Attributes
	Keywords
	Required Files

	IV Legacy
	Writing Card Files Manually
	Comment Lines
	Test Case Definitions
	Required File Definitions
	Property Definitions
	Class and Case Keyword Definitions
	Special Property Definitions

	Choosing Between Card File and testsuite.info Properties

	Writing packages.list Files
	Writing Evaluation Files
	Procedure for Editing an Evaluation File
	Example Evaluation File Text
	Including Reference Images in an Evaluation File

	An Evaluation File Rendered by the Harness

	Writing Conditional Output

	V Appendices
	Adapting the WMA Test Emulator
	Test Types
	Implementing CBSServer
	Deploying the Implementation

	Exclude Lists
	Change Log
	New in Release 2.4
	New in Release 2.3
	New in Release 2.2
	New in Release 2.1.2
	New in Release 2.1.1
	New in Release 2.1

	Index

