»
2 Sun

microsystems

Java™ Device Test Suite
Tester’'s Guide

Version 2.4
Java ME Platform

Sun Microsystems, Inc.
WWWw.sun.com

May 2009

Submit comments about this document by clicking the Feedback[+] link at: http://docs.sun.com

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Jini, Solaris, JavaTest, JRE, JDK, Javadoc and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. or its subsidiaries, in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
al'adresse suivante: http:/ /www. sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
Etats - Unis et dans les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Droits du gouvernement des Etats-Unis — Logiciel Commercial. Les droits des utilisateur dugouvernement des Etats-Unis sont soumis aux
termes de Ia licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut inclure des éléments développés par des tiers.

Sun, Sun Microsystems, le logo Sun, Java, Jini, Solaris, JavaTest, JRE, JDK, Javadoc et le logo Java Coffee Cup sont des marques de fabrique ou
des marques déposées enregistrées de Sun Microsystems, Inc.ou ses filiales, aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Lelogo Adobe est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiére de
contrdle des exportations et peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, Ia liste de personnes qui
font objet d'un orére de ne pas participer, d'une facon directe ou indirecte, aux exportations de des produits ou des services qui sont regi par Ia
legislation americaine sur Fe contrdle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement inter§ites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE ALA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

& 9

Adobe PostScript

//www.sun.com/patents
http://www.sun.com/patents

Contents

Preface «xiii

Overview 1
The Java Device Test Suite 1
Compatibility and Quality Testing 2
Architecture: Tester’s View 3
Tester Harness and Central Installation 4
Test Packs, Packages, Classes, and Cases 5
Device Features 7
Runtime Test Architecture 8
Benchmark Test Architecture 10
OTA Provisioning Test Architecture 10
Tester Harness 11
Documentation 13

Executables 14

Installing and Launching the Tester Harness 15
Installation Requirements 15
Installing the Tester Harness 16

v Running the Graphical Installer 16

¥ Running the Command Line Installer 18
Troubleshooting 20
Installing Multiple Harnesses 20
Launching the Tester Harness 20

v Launching in Graphical Mode 20

v Launching in Batch Mode 21

3. Updating the Tester Harness 23
Obtaining the Software 23
System Requirements 24
Updating the Installation 24
¥ Running the Graphical Updater 24
¥ Running the Command Line Updater 25
Verifying the Update 26

4. Connecting Test Devices 27
Test Device Requirements 27
Test Device Connection Options 28
Test Bundle Transfer 28
HTTP Bundle Transfer 28
Local Link Bundle Transfer 29
Test Result Disposition 30

Specifying the Transmission of Bundles and Results 30

5. Running a Test 33
Preparing for the Quick Tests 33
v Running the Test Harness and Setting Files 34
Running Automated Tests 37
Running an Interactive Test 45

Selecting Tests by Device Feature and Severity 54

iv Java Device Test Suite Tester's Guide ¢ May 2009

Creating Feature and Severity Reports 59

Interpreting Benchmark Statistics 65
Unit Rate Test Statistics 65
System Load Test Statistics 69
Pass or Fail Calculation 70
Tests that Measure System Load 70
Tests that Measure Unit Rate 71

Readiness Tests 73
Preparing 73
v Verifying Bundle Capacity 74
v Verifying Essential Facilities 76

v Verifying HTTP Communication 79

Test Failure Severity 83
Viewing Test Failure Severity 83
Selecting Tests by Severity 84
Organizing a Report by Severity 85
How Severity is Calculated 85
Pre-run Severity 87
Default Severity 87
Severity Override List 88
Post-run Severity 89

Test and Harness Ports 91

Subjectivity and Quality Testing 93
Interactive Tests 93
Display Differences 93

Anomalous Conditions 96

Contents

Benchmark Tests 96

Robustness Tests 96

C. Uninstalling 97
Uninstalling: Solaris Operating System 97

Uninstalling: Windows Environment 97

D. Filtering Tests with Exclude Lists 99
Creating an Exclude List 99
Comment Lines 100
Test Lines 100
Example 101
Associating an Exclude List with a Configuration or Template 101

v Specifying an Exclude List with the Configuration or Template Editor
102

¥ Specifying an Exclude List with the Quick Set Editor 102
E. Specifying HTTP Headers 103
F. Supported Technologies 105

Index 107

Java Device Test Suite Tester's Guide ¢ May 2009

Figures

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 1-4
FIGURE 1-5
FIGURE 1-6
FIGURE 1-7
FIGURE 1-8
FIGURE 2-1
FIGURE 2-2
FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 5-1
FIGURE 5-2
FIGURE 5-3
FIGURE 5-4
FIGURE 5-5
FIGURE 5-6
FIGURE 5-7

Java Device Test Suite Architecture: Tester’'s View 4
Test Pack Hierarchy 5

Sample Test Pack Hierarchy 6

Sample Feature Hierarchy 7

Feature Report Example 8

Java Device Test Suite Runtime Architecture 9

Java Device Test Suite Architecture: OTA Provisioning Tests
Test Manager User Interface 12

Relay is Running Web Page 17

Tester Harness Graphical User Interface 21

Test Bundle Transfer Options - HTTP 29

Test Bundle Transfer - Local Link 29

Test Result Disposition Options 30

Test Manager Window 34

Create Work Directory Dialog Box 35

List of Templates 36

New Instance of Test Manager 37

Tests to Run Panel of the Interview 38

Sample Automated Tests 39

Java Device Test Suite Preferences 40

11

vii

FIGURE 5-8

FIGURE 5-9

FIGURE 5-10
FIGURE 5-11
FIGURE 5-12
FIGURE 5-13
FIGURE 5-14
FIGURE 5-15
FIGURE 5-16
FIGURE 5-17
FIGURE 5-18
FIGURE 5-19
FIGURE 5-20
FIGURE 5-21
FIGURE 5-22
FIGURE 5-23
FIGURE 5-24
FIGURE 5-25
FIGURE 5-26
FIGURE 5-27
FIGURE 5-28
FIGURE 5-29
FIGURE 5-30
FIGURE 5-31
FIGURE 5-32
FIGURE 5-33
FIGURE 5-34
FIGURE 5-35
FIGURE 6-1

FIGURE 6-2

Emulator Preferences 41

Device Status Window 42

Application Transferred to Device 42

Device Display Screen Showing Number of Tests 43
Automated Test Results 44

Passed Test Notation in Test Tree 44

Tests to Run Panel of the Interview 46

Sample Interactive Test 46

Java Device Test Suite Preferences Dialog Box 48
Emulator Preferences 49

Device Status Window 50

Application Transferred to Device 50

Device Display Screen Showing Number of Tests 51
Device Display Screen Showing One Test Running 51
Test Evaluation Window 52

Failed Test Results 53

Failed Test Notation in Test Tree 53

Feature Tree 55

Test Case Documentation Example 55

Feature Tree with Tests 56

Severity Question 57

Test Evaluation Window 58

Test Severity Tab 59

Create a New Report Dialog Box 60

Report Browser First Page 61

Sample Feature Report 62

First Page of Multiple Reports 63

Report by Severity 64

Unit Rate Performance Statistics in Benchmark Results Tab 66

Example Benchmark Results Tab with Threshold 66

viii Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 6-3
FIGURE 6-4
FIGURE 6-5
FIGURE 6-6
FIGURE 7-1
FIGURE 7-2
FIGURE 7-3
FIGURE 7-4
FIGURE 8-1
FIGURE 8-2

Example Unit Rate Performance Graph 67

Example Passing Performance Graph 68

Example Failing Performance Graph 69

Example System Load Information in Test Run Details Tab 70
Size#test128K Instructions 75

Util#testUtil Instructions 77

testGet Instructions 80

testPost Instructions 81

Default Test Severity Tab 84

Sources of Severity Factors 87

Figures

ix

Java Device Test Suite Tester's Guide ¢ May 2009

Tables

TABLE 2-1
TABLE 8-1
TABLE A-1
TABLE B-1
TABLE F-1

Tester Harness Command Line Installer Properties 19
Severity Derivation from Functionality and Impact 85
Test and Harness IP Ports 91

Interpreting One Test on Different Devices 94

Java Device Test Suite Supported Technologies 105

Xi

Xii Java Device Test Suite Tester's Guide ¢ May 2009

Preface

The Java™ Device Test Suite Tester’s Guide provides the information needed to install
and use the test harness including the Test Manager, the graphical user interface of
the test harness for selecting, configuring, and running tests, and examining their
results.

How This Book Is Organized

Chapter 1 provides an overview of the concepts and components of the Java Device
Test Suite and the tester harness.

Chapter 2 describes how to install and launch the tester harness.
Chapter 3 describes how to update the tester harness.

Chapter 4 describes how to transfer test bundles from the harness to test devices and
how to transmit test results from test devices to the harness. This chapter also covers
test device requirements.

Chapter 5 describes how to start a test run by walking you through two examples,
running an automated runtime test and running an interactive runtime test.

Chapter 6 describes the benchmark test results displayed in the Test Manager.

Chapter 7 describes how to use the readiness test pack to verify that your test device
has the core capabilities required to run tests and that they are operational.

Appendix A documents the IP ports that tests and the harness use.

xiii

Appendix B introduces the issue of subjectivity in interpreting the results of quality
tests.

Appendix C describes how to uninstall a harness.
Appendix D describes how to filter tests with JavaTest harness exclude lists.

Appendix E describes how to modify HTTP response headers sent from the Relay to
the device to prevent test bundle caching.

Appendix F gives the specification and version numbers of technologies supported
by the Java Device Test Suite.

Using Operating System Commands

This document does not contain information on basic Solaris™ operating system or
Windows commands and procedures such as shutting down the system, booting the
system, and configuring devices. Refer to the following for this information:

m Software documentation that you received with your system

m Solaris operating system documentation, which is at http://docs. sun.com

Shell Prompts

Shell Prompt

C shell machine_name%
C shell superuser machine_name#
Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

xiv Java Device Test Suite Tester's Guide ¢ May 2009

http://docs.sun.com

Typographic Conventions

Typeface Meaning Examples
AaBbCcl123 The names of commands, files, Edit your .login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.
AaBbCc123 What you type, when % su
contrasted with on-screen Password:
computer output
AaBbCc123 Book titles, new words or Read Chapter 6 in the User’s Guide.

terms, words to be emphasized

Command-line variable;
replace with a real name or
value

These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Preface

XV

Related Documentation

The Java Device Test Suite documentation is divided among manuals and online
help. For subjects that relate to graphical user interface menus, displays, and
controls, consult the online help first. The manuals cover only subjects that are not
related to graphical user interface features.

Application Title

Test Development Java Device Test Suite Developer’s Guide

Test Execution Online help (test harness edition), Java Device Test Suite Test
Notes

Administration Online help (administrator harness edition), Java Device Test

Suite Administration Guide

Command Line (Batch) Online help, JavaTest Command Line Interface Guide
Operations

Accessing Sun Documentation Online

The Source for Java Developers web site enables you to access Java platform
technical documentation on the web at
http://java.sun.com/reference/docs/index.html

Xvi

Third-Party Web Sites

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Java Device Test Suite Tester's Guide * May 2009

http://java.sun.com/reference/docs/index.html

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments on the web at
http://java.sun.com/docs/forms/sendusmail .html

Preface xvii

http://java.sun.com/docs/forms/sendusmail.html

xviii Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 1

Overview

This chapter describes the main Java™ Device Test Suite concepts and components.
Additional overview topics can be found in the Java Device Test Suite Administrator’s
Guide and the Java Device Test Suite online help.

Readers who do not want to read this background material can skip this chapter.
The chapter covers the following subjects:

m The Java Device Test Suite

m Compatibility and Quality Testing

m Architecture: Tester’s View

m Tester Harness

The Java Device Test Suite

The Java Device Test Suite helps wireless network operators and device
manufacturers maximize product quality and minimize time to market. The Java
Device Test Suite is an extensible set of test packs, a shared management facility, and
a distributed test execution harness that assess the quality of any device that
implements a compatible combination of the following Java Platform, Micro Edition
(Java ME platform) technologies:

Advanced Multimedia Supplements (AMMS)
Connected Limited Device Configuration (CLDC)
Contactless Communication API

Content Handler API (CHAPI)

Java APIs for Object Exchange (OBEX) and Bluetooth
Java Technology for the Wireless Industry (JTWI)
Location API Optional Package

Mobile 3D Graphics API

Mobile Information Device Profile (MIDP)
Mobile Internationalization API

Mobile Media API (MMAPT)

Mobile Sensor API (MSAPI)

Mobile Service Architecture (MSA) security tests
OpenGL Embedded Subset (ES)

Payment API

Personal Digital Assistant (PDA) optional packages
Scalable Vector Graphics (SVG)

Security and Trust Services API (SATSA)
Session Initiation Protocol (SIP)

Web Services (JAXP and JAX-RPC Subset)
Wireless Messaging API (WMA)

XML API

For a detailed list of supported specifications and versions, see Appendix F.
The Java Device Test Suite also includes tests that do not relate to a particular
specification:

m Benchmark (performance) tests that compare the performance of a device to a
reference standard.

m Readiness tests that assess a device’s ability to run tests and discover the
application programming interfaces (APIs) that a device supports.

m Sample tests for the tutorial in Chapter 5.
m Tests for multitasking implementations.

The product’s total of about 11,000 tests can be extended with new tests written by
Sun or by others, including Java Device Test Suite users.

Compatibility and Quality Testing

When considering a device that implements Java technology, it is useful to
distinguish between compatibility testing and quality testing. Compatibility testing
exercises individual application programming interfaces (APIs) defined by a
specification, such as the MIDP 2.0 specification.

When passed valid arguments, a device method call returns a valid result, the
invoking test reports that the method implementation conforms to the specification.
Compatibility testing is an important first step in testing a product. Sun Technology
Compatibility Kits (TCKs) perform compatibility testing, and, ideally, are used in
conjunction with the Java Device Test Suite.

Java Device Test Suite Tester's Guide ¢ May 2009

A quality product requires additional tests before it can be confidently released to
run real applications in real-world conditions. The Java Device Test Suite
complements Sun TCKs by performing quality testing, which can be divided into
three main areas:

m Runtime testing imitates real applications and their interaction with external
components such as message senders and receivers. Runtime tests exercise
multiple APIs in realistic scenarios that include error conditions. Some runtime
tests, called negative tests, verify that an implementation correctly handles
invalid inputs, states, and usage. Other runtime tests, called robustness tests,
exercise multiple APIs in parallel to expose implementation weaknesses. To
summarize, devices that pass TCK tests have demonstrated that their
implementations comply with a specification.

m Benchmark testing can be used to compare a device’s actual performance with
performance goals. It measures factors such as system load and frame rate.

m Over-the-air (OTA) provisioning testing verifies the ability of a device to correctly
obtain and install applications over the air, to enforce security policies, and to
communicate properly with a provisioning server.

Architecture: Tester’s View

The Java Device Test Suite software consists of the components shown in FIGURE 1-1.

Chapter 1 Overview

3

FIGURE 1-1 Java Device Test Suite Architecture: Tester’s View

Test
Devices

Tester
Harness

Central
Installation

Test Packs

Templates

Documentation
Executables

Developer Kit Configurations

Directories

m The Central Installation is a set of directories that holds the key Java Device Test
Suite components. It is a sharable repository for resources including test packs,
templates, executables, and documentation. The Central Installation is not a
server. It is an ordinary directory. An administrator creates and maintains the
Central Installation as described in the Java Device Test Suite Administrator’s Guide.

m The Relay is a web application that coordinates with test devices as tests are run.
It supplies bundles of tests to devices, accepts test results from devices, emulates
an application provisioning server for over-the-air (OTA) tests, and manages the
server side of network tests. Tester input for interactive tests are also sent through
the Relay. Once installed and launched, the Relay manages itself.

m Tester harnesses are functional subsets of the administrator harness. Testers run
tests and create reports. Tester harnesses use Central Installation resources but
cannot create or update them. Testers use harnesses to create configurations,
which represent devices, and work directories, which store test results. The tester
harness online help and this document describe how to use the tester harness.

Tester Harness and Central Installation

Testers interact with the Central Installation indirectly. When you launch a harness,
the executable comes from the Central Installation. When you direct a harness to run
tests, use a keystore, or other shared resources, the harness obtains them from the
Central Installation.

Java Device Test Suite Tester's Guide ¢ May 2009

Test Packs, Packages, Classes, and Cases

A test pack is a collection of tests that are functionally related and have common
setup requirements. Functionally related means that the tests exercise a cluster of
test device functions, for example, the MIDP 2.0 runtime APIs. Common setup
requirements means that all the tests in the pack either require the same setup (such
as starting a partner device that cooperates with the test device) or the same user
interaction (such as inspecting test device behavior), or both. Developers create test
packs as described in the Java Device Test Suite Developer’s Guide.

A test pack has the hierarchical structure shown in FIGURE 1-2:

FIGURE 1-2 Test Pack Hierarchy

(N\

Test Pack

Test Classes

A test pack contains at least one test package. A test package can contain a nested
test package or a test class. A test class contains at least one test case.

FIGURE 1-3 shows how the harness displays an example test pack in which the test
cases in one test class are expanded (exposed to view). The harness does not visually
distinguish packs, packages, classes, and cases, except by their position in the
hierarchy. Test packs have no ancestors. Test cases have no descendents. The parents
of test cases are test classes. Everything else is a test package.

Chapter 1 Overview 5

FIGURE 1-3 Sample Test Pack Hierarchy

& M SATSA_(JSR_177) —— Test Pack

e =M com
¢ 3 sun

¢ [EM satsa Containing Test Packages

¢— =1 apdu Test Class
o- M close /—Test Cases

B CloseChannel#closeChannel
CloseTwice#closeTwice

o [23 exchange

o— [getatr

o= open

o— = pin

o— ™ sat

Em crypto

o-
o— =) interactive
o-

i o— [pki
o= Scalable_Vector_Graphics_(JSR_226)

FIGURE 1-3 shows the SATSA_(JSR_177) test pack. The test pack contains the apdu
test package, which contains the close test class, which contains the test cases
CloseChannel#closeChannel and CloseTwice#closeTwice.

Test packages subdivide a test packs name space. Test packages can be nested, and
they often are. For example, there are six packages visibly nested in the
com.sun.satsa package in FIGURE 1-3.

A test class is the unit of code that test developers create. A test class contains one or
more test cases.

A test case, informally called a test, is the code in a test class that exercises one or
more test device functions and passes, fails, or returns benchmark metrics. The Java
Device Test Suite Developer’s Guide describes test classes and test cases in detail.

Your interaction with the Java Device Test Suite software, and the interaction of the
software components themselves, varies according to the kinds of tests that you run.

Java Device Test Suite Tester's Guide ¢ May 2009

Device Features

FIGURE 1-4 shows some of the same SATSA tests shown in FIGURE 1-3. Instead of a test
pack hierarchy, the tests are arranged in a device feature hierarchy. This hierarchy
emphasizes capabilities that might be supported by a given test device. For some
users, particularly those who work for mobile network operators, this hierarchy is
easier to use because it maps better to the description of a device provided by a
manufacturer. Java Device Test Suite testers and administrators can use either
hierarchy to select tests to run and to view results in a report. The main harness test
tree (shown on the left in FIGURE 1-8) always displays the package hierarchy. In either
view, the test cases that run are the same. The two hierarchies organize the tests
differently.

FIGURE 1-4 Sample Feature Hierarchy

Fundamental Feature¢ [] SATSA (ISR 177
Major Feature o []APDU
Level Feature o [] Connection Closing
[closechannecloseChannel
[closeRemoved#closeRemaved
[closeTwice#closeTwice
[I0ExceptionRemaoved®ioExceptionRemaved
o-[] Data Exchange
o-[] Getting Channel ATR
o []APDU Cannection Opening
[] channels#channels
] MegalasrgumenttillegalArgument
[] openstream#apenStream
[] Parameters#tparameters
[Properstproperty
[securitmtsecurity
o= [] PIM Methods
o=] 5AT
o=] JCRNI
o=] PKI
o= [CRYPTO

Test Cases

The tutorial in Chapter 5 covers both methods of test selection.

In addition to optionally selecting tests by device feature, after a test run, you can
create a report that is organized by device feature. FIGURE 1-5 is an example. The
online help describes how to create a feature-based report.

Chapter 1 Overview 7

FIGURE 1-5 Feature Report Example

FEATURES PASSED FAILED TOTAL
Total

- G e

Mobile 2D Graphics (ISR 184)
- {30) g

Java AP for render, e

[} X 318
ith
B 3 288
Feormetry
Means for constructing 30 geometry of objects]] 19
Scene Graph
Aty b group 3D abjects and operale on groups of shjects 6 1o 3 55
Hierarchy
Functionality of nodes D D 1 3
warld
Root node functionality of the scene graph D D S
Carnera
Ability to use different types of camera projections in 30
4 s 2 2 8
Background
Ability b use background in 30 scenes and for clearing
the viewport 0 0 4
Light Source
D scene: light affects the final appearance the
e scene i 0 8
Sprite3l
Usage af Spr N fl e 3
Mezhes
Defining 30 objects on the basis of low-level geometry (] il 14

Runtime Test Architecture

Runtime tests execute on the test device under the control of a Java Device Test Suite
component called an agent. The agent is usually included in the test bundles that
users download and install in devices being tested. It is also possible to install an
agent in some test devices’ read-only memory. A fest bundle is a collection of tests
packaged as a MIDlet suite, a unit that a test device’s application management
system (AMS) must be able to download, install, and execute. Specifications, such as
MIDP and MMAPI, define the device-resident APIs that runtime tests test.

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 1-6 summarizes the user and component interactions for runtime tests, and
“Tester Harness” on page 11 provides details. Runtime tests that involve networking
use additional Java Device Test Suite components to send and receive test messages.
These are not shown in FIGURE 1-6:

FIGURE 1-6 Java Device Test Suite Runtime Architecture

1
Test
Automated Bundles
Test Rlesults

AMS

Test
Device(s)

Tester
Harness

Central
Installation

Test MIDlet

Test Packs (Interactive
Templates Tests)
Documentation

Harness
Storage

Executables

Interactive Test
Results

I Work Directories I
Configurations
Reports

From the user’s point of view, there are two kinds of runtime tests, automated and
interactive. An automated runtime test determines its result (passed or failed) and
returns the result to the agent, which returns it to the harness via the Relay. An
interactive runtime test relies on you to determine if the test passed or failed. When
an interactive test begins to run, the harness displays instructions for you to operate
the device and inspect the device’s response (for example, what it displays). The
instruction window includes Passed and Failed buttons. If the device behaves as the
test instructions say it should, you click the Passed button. Otherwise, you click the
Failed button.

Because interactive tests require your presence and automated tests do not, it is often
convenient to run these tests separately. The tester harness has a selector that lets
you do just that. You can choose to run only automated, only interactive, or both
kinds of tests in a given test run. You can merge the results produced in multiple
runs into a single report. You can view a report in a web browser or export its data
to a spreadsheet or database application for analysis and presentation.

Chapter 1 Overview 9

10

To reduce the time required to execute large numbers of tests, the architecture
supports two styles of parallel testing, which are not shown in FIGURE 1-6.

m One user can simultaneously run different test subsets on multiple instances on
one device, for example, on three instances of a hypothetical model 52 Parallel
testing by one user produces an integrated set of results, as if it had been run on
a single device.

m Multiple users can test different devices or multiple instances of the harness. You
can merge the results produced by multiple testing instances.

The Java Device Test Suite offers a variant of the architecture shown in FIGURE 1-6,
called offline mode. The intent of offline mode is to allow some testing to be done on
devices that are not developed enough to support full testing. For most devices, the
agent uses HTTP to return automated test results to the harness. In offline mode, the
agent writes test results to the device display when the last test in a bundle has been
completed. Tests that rely on the presence of Java methods that implement HTTP
cannot be run in offline mode.

Benchmark Test Architecture

From a tester’s perspective, benchmark tests are nearly identical to runtime tests.
Benchmark tests return performance measurements called metrics, that the tests
compute and the harness displays. Benchmark tests can also pass or fail. The pass or
fail decision is made by comparing the test device’s performance with the
performance of a reference device on the same test. The reference device’s
performance constitutes a threshold that the test device must meet or exceed for the
test to pass.

OTA Provisioning Test Architecture

OTA provisioning tests verify the quality of a device’s over-the-air application
provisioning implementation. This includes obtaining, installing, and removing
applications (MIDlet suites), and enforcing security requirements.

Unlike runtime and benchmark tests, OTA provisioning tests do not run on the test
device. They run on an emulated provisioning server that is implemented as a
servlet. Each OTA test has an associated application (a MIDlet suite) that you
download from the provisioning server and install and launch on the test device.
FIGURE 1-7 summarizes the roles of the user and the provisioning server in OTA
provisioning testing. For simplicity, FIGURE 1-7 shows a single test device and a
single harness. In reality, multiple instances of each can run in parallel, sharing one
provisioning server.

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 1-7 Java Device Test Suite Architecture: OTA Provisioning Tests

<

Relay \) |
and Tests < : Test
Semi-automated OTA MIDlets
Test Results Messlages *
AMS
Central Tester
Installation Harness
Test MIDlet
Test Packs Te§t
Templates Device
Documentation
Executables Harness

Storage

Interactive Test Interactive Test
Instructions Results

I Work Directories I
Configurations
Reports

There are two kinds of OTA provisioning tests: semi-automated and interactive. For
both kinds of tests, the harness displays instructions for you to download the
associated application to the test device. A semi-automated OTA provisioning test
decides if it passes or fails based on the content of status information returned to it
by the test device. An interactive OTA provisioning test’s instructions have Passed
and Failed buttons and instructions for determining if the downloaded application
has performed correctly. You compare the device’s behavior to the expected outcome
described in the instructions and click the Passed or Failed button as appropriate.

Tester Harness

Testers primarily interact with the Java Device Test Suite harness. FIGURE 1-8 shows
the harness’s graphical interface, the Test Manager. The harness can also be run in
batch (command line) mode.

Chapter 1 Overview 11

12

FIGURE 1-8 Test Manager User Interface

File Configure RunTests Report View Tools Windows Help
View Filter: Status of |All Tests : EditFitter...| | =) :=| [D ?
o [Z] MIDP_(JSR_37_and_JSF~| ‘Folder: Mobile_3D_Graphics_(JSR_184)/com/sun/m3; i
o [=] MIDP_1.0_(JSR_37)_OT; ¥ passed | B Failed I Error I Not Run | Filtered Out
o [=] MMAPI_and_ABB_(JSR_ Summary I Dol
o 0 Mobile_3D_Graphics_(Jg
¢ Ecom
¢ Esun
¢ Em3g
¢ B functional ||
o [animat]
L g Zzg;:r Selected Folder: mesh
o [camer Selected View Filter: &1l Tests
Unfiltered view of the test suite and results in the work directory.
o [compo| =
e [Hfog i
o= [graphi - Passed 2
o =] group | Failed 1
o [image B Error 0
o Cllight _I Not Run 0
s Bl |
o [materi . &
¢ W Fittered Out 0
B oo oo R
B Ba
@ Ba
o [marph
o [node
o [polygo
o [rayinte
o~ [skinne =l K I i I b
< i | >q| There are some failed tests in this folder.
Work Directory: 24B18 Configuration: 24B18.jti Template: all.jtm
Finished fest run, Elapsed Time ~ lo0:00:53 @
r Java Device Test Suite |

In a typical testing session, the first step is to open or create a work directory. A work
directory is associated with a specific template. It contains a configuration file that is
based on the template. When a test is run, the harness creates test result files that
store information about the test run. The harness then stores these files in the work
directory.

When you create a work directory, you select a template. Administrators create
templates with the Java Device Test Suite Administrator harness. A template is the
archetype of a configuration. Both specify tests to be run and configuration values. A
template typically corresponds to a test device. A configuration typically
corresponds to a subset of tests for a device. For example, two testers might divide
the testing of a device by creating two configurations from the same template, each
configuration specifying half of the tests to be run on the device. However, there are
no limitations on how you use templates and configurations. The more that an
administrator preconfigures a template, the less information that you need to supply
in a configuration that is based on that template. A work directory’s template is
permanent, but you can switch a work directory’s current configuration as you wish,
for example, to run a different subset of tests. When you open a work directory, its
configuration, if it has one, is loaded at the same time.

Java Device Test Suite Tester's Guide ¢ May 2009

When you have a work directory and a configuration that represents the tests you
want to run, you can start the test device and click the Start button on the harness to
begin testing.

m For automated runtime and benchmark tests, depending on how your test device
communicates with the harness, you might do nothing until the test run
completes, or you might manually direct the downloading of test bundles to the
test device. Once downloaded, automated runtime and benchmark tests can run
without user intervention if the test device is set to automatically grant
permission for tests to use protected interfaces.

m For interactive runtime tests, test instructions appear in a harness window. You
compare the test device’s actual test response to the expected response described
in the instructions, and click the instruction window’s Passed or Failed button.

m For OTA provisioning tests, test instructions appear in a harness window. They
name a MIDlet (application) to download to the test device from the provisioning
server and then launch. Some OTA provisioning tests ask you to observe the
device’s behavior and indicate if the test has passed or failed.

As a test run proceeds, the harness updates its summary results, which show the
numbers of passed and failed tests. While a run is in progress or after it ends, you
can inspect individual test results and diagnostic logs. The harness records each
test’s most recent pass or fail status. You can elect to rerun only the tests that failed
in the previous run.

Testing a device might require multiple runs, for example, if there are configuration
problems or the test device software is updated. These runs might be separated by
several days. With a work directory, you can load the same configuration file and
run the tests again if needed or edit the configuration to change certain test values or
to run only those tests that previously failed.

You can save information about a test run by creating a report. Also, because
running all of the tests for a device can be quite time consuming, it is common
practice to divide the tests among multiple users, who run their tests in separate
sessions. You can merge reports produced in multiple testing sessions run by a
single tester or by multiple testers into a single report that gives an integrated view
of the device’s test status.

Documentation

The tester and administrator harnesses have extensive online help, which you
should consult first when you have a question about using the tester harness. The
Central Installation holds the following additional documentation, accessible from
InstallDir / index . html:

m This guide and corresponding guides for administrators and developers.

Chapter 1 Overview 13

m HTML documentation that describes each test pack, package, and class. You can
view the online documentation with the harness or a web browser.

m A guide for using the command line interface (also available in the help).

Executables

The Central Installation holds the Java Device Test Suite executables, which the
administrator and tester launch scripts share. The Relay executable is normally
installed on a host located in the demilitarized zone between the organization’s
inner and outer firewalls.

14 Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 2

Installing and Launching the Tester
Harness

This chapter describes how to install and launch the tester harness. This chapter has
the following sections:

Installation Requirements
Installing the Tester Harness
Troubleshooting

Installing Multiple Harnesses

Launching the Tester Harness

Installation Requirements

Before you install the tester harness, have the following software already installed:

One of the following operating systems:
= Solaris 10 operating system for the SPARC® processor
= Windows XP with Service Pack 2

A Java Runtime Environment (JRE™) software version 6 Update 3 (also known as
1.6.0_03) or greater

Sun recommends using the latest JRE software. JRE version 6 Update 3 is the
officially supported version.

You can download the JRE software at
http://java.sun.com/javase/downloads/index.jsp

(Recommended) Sun Java Wireless Toolkit 2.5 for CLDC

You can download the Wireless Toolkit at
http://java.sun.com/products/sjwtoolkit/download-2_5.html

15

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/products/sjwtoolkit/download-2_5.html

m Solaris operating system hosts: The POSIX version of the df command.

In a default Solaris operating system installation, the command is

/usr/xpgd/bin/df, and the installer looks for it there. If this directory does not
exist or does not contain df, you must prepend the POSIX df command’s location
to your PATH so the installer finds it before any other version of df. If necessary,
you can obtain the POSIX df command from the Solaris installation CD or DVD.

Use the following guidelines for hardware requirements:

m Disk space - The tester harness installation uses about 20 megabytes of disk space.
Reports, especially XML reports, are the major variable consumer of disk space.
100 megabytes per report is good for estimating, assuming you are running all
tests. You need less space to run test subsets.

m Memory - Allow about 500 megabytes for the harness, another 100 megabytes for
the Sun Java Wireless Toolkit for CLDC.

Installing the Tester Harness

These instructions assume that the Relay and the Central Installation are already
installed and that the Java Application Server is running. See the Java Device Test
Suite Administration Guide for information on installing the application server.

Note — Testers must install their own copy of the harness. Testers executing the
harness must have write permission for the installed files.

You can install the tester harness graphically or with a command line script.

V¥ Running the Graphical Installer

To interactively install the tester harness with the graphical user interface, follow
these steps:

1. Ensure that the Relay is running by entering
http: //relayHost : relayPort /appContext in a web browser.

An administrator can give you the values of relayHost, relayPort, and appContext. If
the Relay is running, the browser displays a page similar to FIGURE 2-1. The
version number and other information might be different.

16 Java Device Test Suite Tester's Guide ¢ May 2009

/
:
http://

FIGURE 2-1 Relay is Running Web Page

JDTS Relay 2.4 _b11 is running

Configuration Information:

Relay Mode: Shared

Persistent Storage Root: Ci)dtsServerStorageRoot24B11Pro
Relay Host Name or IP Address as accessible from (IP or Host)

device:

Relay Port as accessible from device: 2020

Test Server Port Range: any

Partner Midlets for Test Packs are available here

There are no sessions currently running

. Launch the Java Device Test Suite (tester) installer.

m Windows operating system hosts: Double click jdts_tester-version-rr-
build_windows-date . exe.

m Solaris operating system hosts:

i. Make the installer file executable.

The installer file is jdts_tester-version-rr-build_solaris-date.bin.

ii. Run this command:
% sh jdts_tester-version-rr-build_solaris-date.bin

The value of version depends on the version of the installer. The value of build and
date depend on when the software was built.

3.
4.

Click Next.

Accept the license agreement, then click Next.

. Specify jdts_installDir as the Central Repository, then click Next.

. Specify the installation directory of the Java Runtime Environment software,
then click Next.

. Specify the directory where you want to install the tester harness, then click
Next.
For example, yourHomeDir/Test.

Do not specify any directory whose name contains a space (" ") character.

. Select the location where you want to install the product icons (shortcuts), the

click Next.

n

This screen only appears in the Windows installer. If you install two instances of
the same version of the tester harness, the second instance’s shortcut replaces the

first.

Chapter 2 Installing and Launching the Tester Harness

17

18

9. Review the installation summary information, then click Next to install the
tester harness.

If any field contains the wrong value, click Previous to go back to the page and
provide the correct information.

10. When the installation has finished, click Done to exit the installer.

After installation, open the harness’s index.html file (example:
yourHomeDir/Test/index.html) in a web browser to see a linked overview of the
Java Device Test Suite documentation.

Note — Graphical user interface commands are described in the Java Device Test
Suite online help. To learn about these commands, launch the harness as described
in “Launching in Graphical Mode” on page 20, then choose Help > Online Help.

Running the Command Line Installer

You can automate the installation of a tester harness by writing a script that invokes
the installer. Invocation examples (ignore line breaks):

m Windows environment:

> jdts_tester-version-rr-build_windows-date.exe -f tester.properties

m Solaris operating system:

% sh jdts_tester-version-rr-build_solaris-date.bin -f
tester.properties

The value of version depends on the version of the installer. The value of build and
date depend on when the software was built.

Note — Command line installation does no error checking. A mistake can produce
an aborted or incorrect installation. To minimize the chance for error, you can install
with the graphical interface first (see “Running the Graphical Installer” on page 16),
write down the property values that you enter, and verify the installation.

Before installing, ensure that the Relay is running by entering

http: //relayHost : relayPort /appContext in a web browser. An administrator can give
you the values of relayHost, relayPort, and appContext. If the Relay is running, the
browser displays a page similar to FIGURE 2-1.

You create the text file tester.properties, which specifies where to install the
harness, and so on. The file name can be anything .properties. This file has the
general syntax of a Java programming language properties file. For a technical

Java Device Test Suite Tester's Guide ¢ May 2009

/
:
http://

description of this syntax, see

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.htm
l#load(java.io.inputStream). Be sure that no line has a trailing space (blank)

character. TABLE 2-1 defines the required properties.

TABLE 2-1 Tester Harness Command Line Installer Properties

Property Value
INSTALLER_UI Must be silent.
CENTRAL_REP Absolute path to the Central Installation, the

shared directory created by an administrator that
contains ReleaseNotes.html and other files.

JDK_FOLDER Absolute path to a Java Runtime Environment
directory. See “Installation Requirements” on
page 15 for the required version.

USER_INSTALL_DIR Absolute path to the directory that is to contain the
tester harness.

INSTALLER_JAVA_DOT_HOME Same as JDK_FOLDER.

Here is an example tester.properties file for the Windows environment:

INSTALLER_UI=silent

CENTRAL_REP=c\ : \\JDTS-CI

JDK_FOLDER=C\ :\\Java\\jrel.6.0_03
USER_INSTALL_DIR=c\:\\JDTS_Tester
INSTALL_DRIVE_ROOT=c\:\\
INSTALLER_JAVA_DOT_HOME=C\:\\Java\\jrel.6.0_03

Here is an example tester.properties file for the Solaris operating system:

INSTALLER_UI=silent

CENTRAL_REP=/home/userName/JDTS-CI
JDK_FOLDER=/usr/jdk/1.6.0_03
USER_INSTALL_DIR=/home/userName/JDTS_Tester
INSTALL_DRIVE_ROOT=/
INSTALLER_JAVA_DOT_HOME=/home/userName/bin/Java/jrel.6.0_03

Note — If you uninstall a harness that was installed from the command line, the
harness is uninstalled “silently,” that is, without a graphical user interface.

Chapter 2 Installing and Launching the Tester Harness

19

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.inputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.inputStream)

Troubleshooting

A command line installation does not provide visual feedback, console messages, or
an error code. You can monitor its progress with an operating system tool that shows
the status of processes.

The installation is complete when the file

USER_INSTALL_DIR /JDTSversion_ConsoleInstallLog. log has been created.
Open this file with a text editor and search for messages containing the string
“FATAL”. If there are no such messages, installation was successful. The “FATAL”
messages describe the details of the problems encountered, if any.

Installing Multiple Harnesses

You can install as many tester harnesses as you need on the same workstation.
Ensure that each harness is installed in a different directory. For each instance of the
harness, follow the procedures in “Installing the Tester Harness” on page 16. If you
want shortcuts to multiple harnesses, direct the installer to create them in different
folders.

20

Launching the Tester Harness

You can launch the harness in graphical or batch mode. In the examples, assume that
the tester harness is installed in yourHomeDir/Test/.

V¥ Launching in Graphical Mode

To start the tester harness, follow these steps:

® In a terminal window:
m For the Solaris operating system (C shell):
% sh yourHomeDir/Test/run.sh
m For Windows:

> yourHomeDir\Test\run.bat

Java Device Test Suite Tester's Guide ¢ May 2009

In Windows, you can alternatively double-click yourHomeDir\Test\run.bat.
or use a shortcut you specified in the installer.

The Tester version of the harness graphical user interface appears:

FIGURE 2-2 Tester Harness Graphical User Interface

File Configure RunTests Report \View Tools Windows

View Filter: Status of [All Tests Edit Filter... II‘

= Test Suite Root §§ Nothing selected
Test Run Messages rTest Severity rBencllmark Results | Relevance Criteria
Test Description r Documentation r Files Test Run Details

See the online help for a description of the graphical user interface.

V¥ Launching in Batch Mode

To launch the tester harness in batch mode, follow one of these steps, depending on
your operating system:
® In a terminal window:

m For the Solaris operating system:

% sh yourHomeDir/Test/run.sh -batch [Set-up Commands] [Task
Commands]

m For Windows:
> yourHomeDir/Test/run.bat -batch [Set-up Commands] [Task Commands]

Set-up Commands and Task Commands are described in the JavaTest User’s Guide:
Command Line Interface.

Chapter 2 Installing and Launching the Tester Harness 21

22 Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 3

Updating the Tester Harness

This chapter describes how to how to update the tester harness. The Central
Installation must be updated before you update the tester harnesses. Check with
your administrator to find out if the Central Installation has been updated.

The chapter contains these sections:

m Obtaining the Software

m System Requirements

m Updating the Installation

m Verifying the Update

Obtaining the Software

Download the Java Device Test Suite updaters from the Java Device Test Suite
licensee web site at https://javapartner.sun.com. Download one or both sets
of updater files:

m Solaris operating system:

jdts_tester-version-update-build_solaris-date.bin (tester harness
updater)

m Windows operating system:

jdts_tester-version-update-build_windows-date.exe (tester harness
updater)

The value of version is the version of the Java Device Test Suite that running the
updater creates. The value of build and date depend on when the software was built.

23

https://javapartner.sun.com

System Requirements

The updaters have the same resource requirements as the installers, described in
“Installation Requirements” on page 15.

24

Updating the Installation

You can update a tester harness installation interactively with a graphical user
interface or with a command line script.

V¥ Running the Graphical Updater

1. Ensure that the central installation is updated before you begin the tester
harness update.

Check with your administrator to be sure the central installation is updated.

2. Ensure that the Relay is running.

Verify by entering this URL in a web browser:
http: //relayHost : relayPort /appContext

For example: http://localhost:8080/JdtsServer. An administrator can
give you the values for relayHost, relayPort, and appContext.

The Relay displays a page similar to FIGURE 2-1 if it is running.

3. Ensure that no tester harness is running.

You must arrange for all harnesses to be shut down while the tester updater runs.

4. Launch the tester updater:
m Windows operating system hosts:
Double click jdts_tester-version-update-build_windows-date . exe.
m Solaris operating system hosts:
Enter the following command at the prompt:
% sh jdts_tester-version-update-build_solaris-date.bin

Depending on processor, disk, and network speed, the updater can take a few
minutes to initialize before it displays its first screen.

5. Accept the license agreement and click Next to continue.

Java Device Test Suite Tester's Guide ¢ May 2009

http://localhost:8080/JdtsServer
/
:
http://

. Specify the current installation location for the tester harness, and click Next to

continue.

Click Choose to navigate to the installation directory.

. Specify a directory containing a Java Runtime Environment software version.

You can choose a JRE software version that is newer than the version you have
been using. “Installation Requirements” on page 15 describes the supported
versions.

. Review the Update Summary information and click Install.

. Click Finish when the update process completes.

Running the Command Line Updater

You can automate the update of a tester harness by writing a script that invokes the
updater. Invocation examples (ignore line breaks):

Windows environment:

> jdts_tester-version-update-build_windows-date.exe -f
tester.properties

Solaris operating system:

% sh jdts_tester-version-update-build_solaris-date.bin -£
tester.properties

The value of version depends on the version of the updater. The values of build and
date depend on when the updater was built.

tester.properties is a text file you create. It can be named
anything . properties. However, the full path name of the .properties file must
not contain a space.

The .properties file must contain the following lines:

INSTALLER_UI=silent

CONSOLE_DIR=pathTolnstallDir

CHOSEN_INSTALL_FEATURE_NUM=1

CHOSEN_INSTALL_FEATURE_LIST=Update

CHOSEN_INSTALL_SET=Update

CHOSEN_INSTALL_BUNDLE_LIST=Update

CHOSEN_INSTALL_FEATURE_1l=Update

Chapter 3 Updating the Tester Harness 25

MY_JAVA_HOME2=pathTo]RE

pathTolnstallDir is the absolute path to the directory containing the tester harness that
is to be updated.

pathToJRE is the absolute path to a directory containing a Java Runtime Environment
version described in “Installation Requirements” on page 15. You can specify a JRE
software version that is newer than the version you specified when you installed the
tester harness.

m Windows environment example:

CONSOLE_DIR=c\:\\JDTS_Tester

u o

Notice that the path characters “:” and “\” must be preceded by “\”.

m Solaris operating system example:
CONSOLE_DIR=/home/userName/JDTS_Tester

Before updating, verify that the Relay is running by entering this URL in a web
browser: http: //relayHost : relayPort /appContext

For example: http://localhost:8080/JdtsServer. An administrator can give
you the values for relayHost, relayPort, and appContext.

A command line update does not provide visual feedback, console messages, or an
error code. You can monitor its progress with an operating system tool that shows
the status of processes.

The update is complete when the file
CONSOLE_DIR/JDTSwversion_ConsoleInstallLog.log has been created. Open
this file with a text editor and search for messages containing the string “FATAL”. If
there are no such messages, installation was successful. The “FATAL” messages
describe the details of the problems encountered, if any.

26

Verifying the Update

You can verify the update by launching the tester harness and choosing Help >
About the Java Device Test Suite. The display shows Version version RR, where
version is equivalent to the version in the updater file name (see “Obtaining the
Software” on page 23). For example (your version number might be different):

m Updater file name version: 2_4
m Help > About the Java Device Test Suite: JDTS Version 2.4

Java Device Test Suite Tester's Guide ¢ May 2009

http://localhost:8080/JdtsServer
/
:
http://

CHAPTER 4

Connecting Test Devices

For runtime and benchmark tests, there are several ways to connect the test device to
the harness so that tests can flow to the device and test results can flow to the
harness. This chapter describes the options and the details of test device-harness
communication in the following sections:

m Test Device Requirements

m Test Device Connection Options

m Specifying the Transmission of Bundles and Results

The material in this chapter does not apply to over-the-air provisioning (OTA) tests.
Those tests are structured very differently and have no options for communication.
In particular, the means of bundle transfer and result disposition described in this

chapter has no effect on the execution of OTA tests. See “OTA Provisioning Test
Architecture” on page 10 for information.

Test Device Requirements

Test devices must meet these requirements:

m Heap space. At least 128KB of heap space is required. Some tests require more
space.

m MIDlet suite size: A test device must be able to download and install MIDlet
suites (test bundles) of at least 80Kbytes in size. Most tests are larger but can fit in
128Kbyte bundles. A few tests are as large as 1,300Kbytes.

27

Test Device Connection Options

In addition to the device requirements, a test device must support at least one of the
connection options described in this section. The connection options support the
transfer of tests and results:

m Tests must be transferred from the Relay to a test device so they can run on the
device.

m Test results must be transferred from the test device to the Relay so they can be
incorporated in reports and displayed in the harness. If the device cannot transfer
results, they can be displayed on the device.

Test Bundle Transfer

When you direct the harness to run tests, the harness packs groups of tests into
MIDP MIDIlet suites, which are called test bundles. To run the tests in a bundle, the
bundle must be transferred to the test device, installed, and launched. The bundles
can be transferred by HTTP or over a local link, such as a serial cable. You specify
your choice in the Tests and Bundles section of a template or configuration. The
operations for installing and launching a bundle are device dependent.

HTTP Bundle Transfer

When test bundles are transferred by HTTP, the harness repeatedly creates test
bundles and sends them to the Relay. You then download a bundle from the Relay,
install it and launch it, which causes the tests to run.

The Relay can transfer test bundles over a TCP/IP connection that supports HTTP
version 1.0 or 1.1. The device itself does not need to support HTTP over TCP/IP if
bridge hardware or software between the test device and the Relay can act as an
HTTP client on behalf of the device. A WAP gateway is one example of such a
bridge. FIGURE 4-1 illustrates HTTP test bundle downloading with and without a
bridge.

28 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 4-1 Test Bundle Transfer Options - HTTP

HTTP/TCP/IP

Device-Specific
J__II.I;PLTE E“_P Protocol
e - . RN S
Test Test Test
undles Bundles Device

Local Link Bundle Transfer

The alternative to HTTP bundle transfer is to use a local link, such as serial, infrared,
or Bluetooth. This option requires cooperating software on the harness host or
another host. In the Configuration Editor, specify a directory into which the harness

stores the test bundles. Direct the software to download the test bundles from the
directory to the test device. FIGURE 4-2 illustrates test bundle transfer by a local link.

FIGURE 4-2 Test Bundle Transfer - Local Link

<
Test Bundles
Bundles Directory
—
Download Test Test
Software Bundles Device

Test Result Disposition

For test results to be transferred from a test device to a harness, the test device’s Java
software or a gateway interposed between the device and the Relay, must support
HTTP version 1.0 or 1.1 over TCP/IP. If the test device or gateway does not support
HTTP, test results are not sent to the harness. Instead, test results can be displayed
on the device. FIGURE 4-3 illustrates the possible test result disposition options:

Chapter 4 Connecting Test Devices 29

FIGURE 4-3 Test Result Disposition Options

HTTP/TCP/IP

Test
Device

Device-Specific
Protocol
=~

HTTP/TCP/IP

Test
Device
Y

Test Test
Results Device

Specifying the Transmission of Bundles
and Results

In the Configuration Editor, specify how tests are downloaded to the test device and
how test results are handled. You can choose from the following test bundle transfer
and result disposition options:

30 Java Device Test Suite Tester's Guide ¢ May 2009

m Option A. Manually download each test bundle over an HTTP connection.
Return the test results to the harness using HTTP.

You can select this value if both of the following conditions are true:

s Bundle Download. You can direct the test device to download, install, and
launch a MIDlet suite (a test bundle) from a web server, possibly with
assistance from an intermediating bridge, such as a WAP gateway.

» Result Disposition. The test device has working Java methods for HTTP
communication that the agent can use to send results to the harness. The
results can also pass through a bridge.

m Option B. Manually download each test bundle over an HTTP connection. Hold
and display the test results on the test device.

This option is for test devices whose Java methods for HTTP communication are
absent or do not work correctly. The device must still be able to download
MIDlets using HTTP, which is possible if the device’s native HTTP
implementation is working.

m Option C. Manually download each test bundle from a directory on the harness,
using a local link such as a serial line. Return the test results to the harness using
HTTP.

Select this value if both of the following conditions are true:

s Bundle Download. You can direct the test device, or associated software, to
download, install, and launch a MIDlet suite from a harness directory. The
MIDlet file transfer can be conducted over a serial line, a Bluetooth connection,
an infrared connection, or similar.

» Result Disposition. The test device has working Java methods for HTTP
communication that the agent can use to send results to the harness.

m Option D. Manually download each test bundle from a directory on the harness,
using a local link such as a serial line. Hold and display the test results on the test
device.

This option is for devices whose Java methods for HTTP communication are
absent or do not work correctly.

m Option E. Have the test device implement the harness’s autotest protocol, in
which the test device repeatedly and automatically downloads, installs, launches,
and removes test bundles until all tests have been run. Test results are returned to
the harness using HTTP. This option is only available if the device supports the
autotest protocol.

If your test device supports more than one of the options consider these factors
when making your choice:

Chapter 4 Connecting Test Devices 31

32

If the test device’s HTTP connection is over the air, options C and D might
transfer bundles faster. However, the reverse might be true if the HTTP
connection is over a local network, such as Ethernet or Wi-Fi.

When bundles are transferred using a local link and the last test run completes,
you must press the Stop button so the harness is no longer waiting for more
bundles to be transferred to the test device and is no longer in a run test mode.

One option might be easier to use, and possibly faster, because it requires fewer
test device interactions (such as key presses) to download, install, and launch a
test bundle. For example, the local link download software might require fewer
keystrokes than downloading over the air.

If option D is used, you must manually stop the test run when test execution
completes or if a problem occurs during test execution. Press the Stop button to
stop the test run.

The autotest protocol is easy to use because the device obtains, installs, launches,
and removes test bundles. However, it is usually available only on emulators or
specially manufactured versions of test devices.

The options where results are held on the device are the most inconvenient to use.
Select one only if none of the “Send” options work with the test device. The
options where results are held on the device do not return results to the harness,
require you to manually display interactive test instructions, and only support a
subset of tests.

Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 5

Running a Test

This chapter walks you through an interactive mini-tutorial involving two types of
tests, automated and interactive. The purpose of the tutorial is to give you an
overview of running tests using the Java Device Test Suite.

Running the tests can take approximately a half-hour. Working through the sample
tests, you select, configure, and run tests. Later, you view the test results and reports
that you generate.

This chapter has the following sections:

m Preparing for the Quick Tests

m Running Automated Tests

m Running an Interactive Test

m Selecting Tests by Device Feature and Severity

m Creating Feature and Severity Reports

Preparing for the Quick Tests

If are you are running the Solaris operating system, choose a test device that
supports the HTTP protocol.

If you are running Windows, use the Wireless Toolkit emulator (if you choose to use
a test device, be sure it supports the HTTP protocol). Use Wireless Toolkit version 2.5
to run these test sets. You can obtain the Wireless Toolkit emulators from
http://java.sun.com/products/j2mewtoolkit/index.html.

33

http://java.sun.com/products/j2mewtoolkit/index.htm

V¥ Running the Test Harness and Setting Files

To be sure that your experience of the sample test runs matches the steps given in
the following sections, follow these preliminary steps:

1. Launch the harness to open the Test Manager window:

If you have run the harness before, the initial display might look different.

FIGURE 5-1 Test Manager Window

[=] Test Suite Root

‘Work Directory: None

File Configure RunTests Report \View Tools Windows Help
View Filter: Status of [All Tests w (| Edit Filter... II‘
:Nothing selected
Test Run Messages rTes1 Severity rBenchmark Results | Relevance Criteria
Test Description r Documentation r Files Test Run Details r Configuration |
Configuration: None Template: None
|Elapsed Time ~ [00:00:00 @,

Java Device Test Suite |

The left pane displays the test tree, which contains the Test Suite Root node and
the right pane displays information relevant to the selected item in the test tree.
See the online help for a description of the graphical user interface components.

. Create a directory to contain the work directories and the configuration files

that you use for the quick tour.

You can use the default location or you can create a work directory in a location
that you prefer. For the purposes of this exercise, use the default location.

34 Java Device Test Suite Tester's Guide ¢ May 2009

a. Choose File > Create Work Directory to create a work directory to use for the
first sample test.

The Create Work Directory dialog box opens:

FIGURE 52 Create Work Directory Dialog Box

Work Directory Hame: |
Save in: COMDTS20_Consalebwk_dir Browse...
Select Template
Path: CAMDTS2Madmimsharediresourcesitemplates Browse...
File Mame | Mame | Description
3|
™ builtin

["] Launch Configuration Editor

Cancel

b. Enter a name for this work directory in the text field.

For instance, you can name it Sample_wd for this example.

Chapter 5 Running a Test 35

c. Select a template.

The default location of the templates directory,

jdts_installDir /admin/shared/resources/templates is already provided.
If the templates are stored in another location for your situation, click Browse
and use the File Chooser to select the templates directory.

For the purposes of this tutorial, double click builtin in the templates
directory.

When creating a work directory, you are asked to specify a template. The
builtin templates provided with the Java Device Test Suite are not intended for
use other than for demonstration tests. Do not use these templates when
performing actual work. Updates to builtin templates do not propagate, which
means that your configuration is not updated when its template is updated.

Your administrator is responsible for creating the templates you normally use
for test runs. Updates to templates created by your administrator are
propagated to configurations. For production work, use the templates
provided by your administrator.

When you select builtin, the dialog box lists the available templates:

FIGURE 5-3 List of Templates

Work Directory Name: [gm51e_yy

Sawve in: CATestWD Browse...
Select Template
Path: haredibl.)\ adminsharediresourcesitemplatesibuilting | Browse...
File Mame | Mame | Description

|

all.jtm all includes alltestpacks £
Jhwi jtrm Jhwi JTW hased. includes o,
midp1 0.jtm midp10 MIDF 1.0 relevant testp...
msa.jtm msa includes alltestpacks £
mzalil.jtm msa includes alltestpacks £
msa_suhsetjtm MSA includes alltestpacks £
readiness jtm readiness includes Automatic Re...
sample jtm Sample includes Sample testp...

[] Launch Configuration Editor

| Create || Cancel |

d. Select the sample. jtm template and click Create.
A list of test packs is displayed in the test tree:

36 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-4 New Instance of Test Manager

File Configure RunTests Report \View Tools Windows Help

View Filter: Status of [All Tests w (| Edit Filter... II‘

= Test Suite Root :[Test Suite: Java Device Test Suite
o [Sample_Runtime y | Do tation | Passed [Failed |"Error | NotRun | Filtered Out

Selected Folder: Entire "Java Device Test Suite” test suite.
Selected View Filter: All Tests
Unfiltered view of the test suite and results in the wark directary.

-l Passed

W Failed

W Error

I Not Run
Sub-Total

W Fittered Out

IDIMDDD

Some tests in this folder have nat been run.
‘Work Directory: ple_wd Configuration: None Template: le.jtm
|Elapsed Time ~ [00:00:00 @,

ll Java Device Test Suite

For templates that refer to a large number of test packs, it can take about a
minute for the harness to load them.

The work directory is created. At this point you can proceed to the section,
“Running Automated Tests” on page 37 or to the section, “Running an Interactive
Test” on page 45 to configure and run the tests.

Running Automated Tests

Automated tests run without your intervention. They determine if the test device
passed or failed. The harness captures results returned by the tests, summarizing
them automatically.

1. Create a configuration for the sample test run.

Chapter 5 Running a Test 37

38

g

. Choose Configure > New Configuration.

The Configuration Editor opens. The Configuration Editor presents a series of
questions in an interview format. You only need to answer those questions that
are relevant to your specific test.

. Click Next and enter a name to identify this configuration.

For example, you could call it samplel.

Click Next and enter a brief description of the configuration.

. Click Next until you get to the Specify Tests to Run question in the

interview.

. Select Yes for Specify Tests to Run and click Next.

Select Directly by test or package name and click Next.

The Tests to Run panel of the interview is displayed.

Expand the Sample_Runtime node in the Tests to Run panel.

FIGURE 5-5 Tests to Run Panel of the Interview

Tests to Run =

Specify the sections of the test suite you wish to run.

=

¢ [J Sample_Runtime

3 samples
SampleAutomatedTesiestCasel
SampleAutomatedTesttestCase2
[SampleinteractiveTe sitte stCaset |

-

| € Back || Next & || Last 2l | | Done |

You see the following test cases:

SampleAutomatedTest#testCasel
SampleAutomatedTest#testCase2

SamplelnteractiveTest#testCasel

2. Click SampleAutomatedTest#testCasel.

3. Shift + click to extend the selection to SampleAutomatedTest#testCase2 in the
Tests to Run panel:

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE5-6 Sample Automated Tests

Tests to Run

[»

Specify the sections of the test suite you wish to run.

—
¢ 3 Sample_Runtime
¢ 9 samples
@ISampIeAutomatedTeshﬁestCasm |

SampleAutomatedTestestCase2
SamplelnteractiveTesttestCaszel

-

If you select samples, all the test cases in samples are selected. Selecting a
high-level node selects all items under that node.

You can use Ctrl + click to make discontiguous selections.

Note - Clicking a node unselects all previously selected nodes. Inadvertently
clicking a node can undo a time-consuming selection task.

10.

. Click Next until you get to the Autotest Support question.

. Select No in the Autotest Support question and click Next.

Not all devices support the autotest protocol. In this example, you specify in the
next series of questions how to send the test bundle to the device and how to
send results back to the harness from the device.

. Select By HTTP for the means of transferring the test bundle from the harness

to the device, then click Next.

. For Next Bundle Auto-Request, select Yes if the device supports the MIDP 2.0

specification, then click Next.

This option automatically downloads test bundles.

. Select Yes to have test results sent by HTTP from the device to the harness.

. Click Done.

A Save Configuration File dialog box appears.

Enter a name for the configuration file, such as Sample, in the Save dialog box,
then click Save File.

Configurations have a . jti extension, which is automatically added to the name
you enter.

Chapter 5 Running a Test 39

11.

12.

13.

Determine if you want to run tests on your device or on the Wireless Toolkit
emulator.

To run tests on the emulator, open the Run Tests menu and make sure Run on
Emulator is checked.

If you want to run tests on your own device, uncheck Run on Emulator.
Follow Step 12 through Step 17 if you are running tests on the emulators;
otherwise, skip to step Step 18.

(Emulator users only) Choose File > Preferences.

The JavaTest Preferences dialog box opens.

If you use the emulator, you must choose an emulator version and set its location.

(Emulator users only) Select Java Device Test Suite.

From the drop-down list, choose WTK 2.5 for version 2.5 of the Wireless Toolkit
emulator:

FIGURE 5-7 Java Device Test Suite Preferences

D Appearance
o= 9 Test Manager

o= [Jlava Device Test Suite

Java Device Test Suite

Emulator

Use Emulator: |WTK_2.5 |V| | Set Location... | | Preferences... Configure Commands...

Location: C:WTK2.5.2

Tester Information

Tester Name: |tester |

System: |te ster systemn |

Organization: |te ster organization |

| OK || Cancel || Help |

14.

15.

(Emulator users only) Click Set Location and select the install directory for the
Wireless Toolkit version.

Click Apply after the location is set.

(Emulator users only) click Preferences, select Storage, and set the Storage Root
Directory to jdts and the Heap Size to 4000:

Leave the Storage size field empty.

40 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-8 Emulator Preferences

Cateqgary

_ 4 Default Emulatar

----- Metwork Configuration
----- Performance

""" Tonitor Storage size g kE

Storage root directory | jdts

_____ vy Heap Size ;| 4000 kB

----- Security
----- Bluetooth/OBEY
----- Location

16.
17.

18.

19.

20.

Click OK in the dialog box.
Click OK in the JavaTest Preferences dialog box to close it.

Choose View > Filter > Current Configuration.

Current Configuration enables you to see Summary and status information
specifically on the tests selected for the current test run. The All Tests setting
shows current totals and status icons for all the tests in the test pack, regardless of
the configuration settings.

Start the test device if you are not using the emulator.

Click the Start button [" .

The Device Status window opens:

Chapter 5 Running a Test 41

42

FIGURE 5-9 Device Status Window

‘1}" +— Launch emulator button

7 U Device ID: 0 State: Waiting for device

Bundle #1 is availahle at the following LIRL:
hitp/i (1P Address) 808050disServerjadifoettexdtApp jad

The Launch Emulator button is disabled if Run on Emulator is not selected in the
Run Tests menu.The bundle URL might be different for your installation.

21. Click the Launch Emulator button in the Device Status window.
In a second or two, the display screen on the device (or emulator) shows the

application is loaded and ready to be launched:

FIGURE 5-10 Application Transferred to Device

Launch

22. Launch the application (this action is device-dependent).

If you are asked for permission to use air time, answer Yes. The device display
screen shows that the test bundle contains one test.

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-11 Device Display Screen Showing Number of Tests

[Tt
Bundle content

||Eunce: JoTSAppication

Total tests: 1

Remaining tests: 1

Cancel Run
—

23. Run the test (this action is device-dependent).

24. Choose Yes if you are asked if it is okay to use airtime.

For a moment, you can see information in the emulator’s display screen that the
test is running.

25. When the test completes, close the emulator window.

26. Click the Launch Emulator button (FIGURE 5-9) again, and run the second test as
you did the first.

When the second test completes, the emulator exits and the harness Summary
tabbed pane shows an overview of the test run:

Chapter 5 Running a Test 43

FIGURE 5-12 Automated Test Results

File Configure RunTests Report \View Tools Windows Help
View Filter: Status of |Current Configuration | v | | Edit Filter... II‘
Test Suite Root :Test Suite: Java Device Test Suite
o [A Sample_Runtime [Summary | Documentation |” [4 Passed | Failed | Error |" [] NotRun | [Filtered Out
Selected Folder: Entire "Java Device Test Suite” test suite.
Selected View Filter: Current Configuration
Filter based on the current test manager configuration settings.
-l Passed 2
W Failed 0
W Error 0
1 Not Run 0
M Fittered Out 1
I
2|All tests passed in this folder,
‘Work Directory: ple_wd Configuration: ple.jti Template: le.jtm
Finished test run. Elapsed Time w 00:03:30 @g
Java Device Test Suite |

Expand the Sample_Runtime node in the test tree to see that the two tests are now
marked as passed:

FIGURE 5-13 Passed Test Notation in Test Tree

¢ [Sample_Runtime
% [samples
SamplesutomatedTestestCasel
SamplefutomatedTestestCase2
] SamplelnteractiveTestestCasel

To see information for a specific test, select the test case in the test tree then click a
tabbed pane. See the online help for a description of the information shown in the
tabbed panes.

44 Java Device Test Suite Tester's Guide ¢ May 2009

Running an Interactive Test

Interactive tests involve some action on the tester’s part. A Test Evaluation window
appears with instructions for you to perform. For this sample test, you simply
decide whether the tests pass or fail. For more information on the Test Evaluation
window, see the online help.

Note — If you have previously run tests using an emulator, clear the generated files
in the Wireless Toolkit install_dir/appdb/jdts directory before proceeding with the

test.

To run an interactive test, follow these steps:

1. Create a configuration for the sample test run.

a.

Choose Configure > New Configuration.

The Configuration Editor opens. The Configuration Editor presents a series of
questions in an interview format. You only need to answer those questions that
are relevant to your specific test.

. Click Next and enter a name to identify this configuration.

For example, you could call it samplel.

Click Next and enter a brief description of the configuration.

. Click Next until you get to the Specify Tests to Run question in the

interview.

. Select Yes for Specify Tests to Run and click Next.

Select Directly for How to Specify Tests and click Next.

The Tests to Run panel of the interview is displayed.

. Expand the Sample_Runtime node in the Test to Run panel.

Chapter 5 Running a Test 45

FIGURE 5-14 Tests to Run Panel of the Interview

Tests to Run =

Specify the sections of the test suite you wish to run.

=
¢ 3 Sample_Runtime
¢ 3 samples
SampleAutomatedTesiestCasel
SampleAutomatedTesttestCase2
[SampleinteractiveTe sitte stCaset |

-

| € Back || Next & || Last 3] | | Done |

2. In the test tree, expand the Sample_Runtime node until you see the following
test cases:

m SampleAutomatedTest#testCasel
m SampleAutomatedTest#testCase2

m SamplelnteractiveTest#testCasel

3. Click SamplelnteractiveTest#testCasel to select it in the Tests to Run panel:

FIGURE 5-15 Sample Interactive Test

Tests to Run

Specify the sections of the test suite you wish to run.

(|
¢ 3 Sample_Runtime
¢ 9 samples
SampleAutomatedTesiestCasel
SampleAutomatedTesttestCase?
[SampleinteractiveTe sitte stCaset |

- |

| € Back || Next & || Last 3] | | Done |

If you select samples, all the test cases in samples are selected. Selecting a
high-level node selects all items under that node.

46 Java Device Test Suite Tester's Guide ¢ May 2009

Note — Clicking a node unselects all non-subordinate nodes. Inadvertently clicking
a node can nullify a time-consuming selection.

10.

11.

12.

13.

14.

. Click Next until you get to the Autotest Support question.

. Select No in the Autotest Support question and click Next.

Not all devices support the autotest protocol. In this example, you specify in the
next series of questions how to send the test bundle to the device and how to
send results back to the harness from the device.

. Select By HTTP for the means of transferring the test bundle from the harness

to the device and click Next.

. Select Yes for Next Bundle Auto-Request if the device supports the MIDP 2.0

specification, then click Next.

This option automatically downloads test bundles.

. Select Yes to have test results sent by HTTP from the device to the harness and

click Next.

. Select One test per bundle.

The test is placed in a single test bundle.
Click Done.

A Save Configuration File dialog box appears.

Enter a name for the configuration file, such as Sample, in the Save dialog box,
then click Save File.

Determine if you want to run tests on your device or on the Wireless Toolkit
emulator.

To run tests on the emulator, open the Run Tests menu and make sure Run on
Emulator is checked.

If you want to run tests on your own device, click Run on Emulator to uncheck it.
Follow Step 12 through Step 18 if you are running tests on the emulators;
otherwise, skip to Step 18.

(Emulator users only) Choose File > Preferences.

The JavaTest Device Test Suite Preferences dialog box opens.

If you use the emulator, you must choose an emulator version and set its location.

(Emulator users only) Select Java Device Test Suite.

From the drop-down list, choose WTK 2.5 for version 2.5 of the Wireless Toolkit
emulator.

Chapter 5 Running a Test 47

FIGURE 5-16 Java Device Test Suite Preferences Dialog Box

[} Appearance Java Device Test Suite
o [Test Manager

o [Jlava Device Test Suite Emulator

Use Emulator: |WTK_2.5 |V| | Set Location... | | Preferences... Configure Commands...

Location: C:WTK2.5.2

| New... |

| Remove |

Tester Information

Tester Name: |tester |

3 |te ster system |

Organization: |te ster organization |

| OK || Cancel || Help |

15. (Emulator users only) Click Set Location and select the install directory for the
Wireless Toolkit version.

Click Apply after the location is set.

16. (Emulator users only) click Preferences and set the Storage Root Directory to
jdts and the Heap Size to 4000:

Leave the Storage size field empty..

48 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-17 Emulator Preferences

Cateqgary

_ 4 Default Emulatar

----- Metwork Configuration
----- Performance

""" Tonitor Storage size g kE

Storage root directory | jdts

Heap Size ;| 4000 kB

----- Security
----- Bluetooth/OBEY
----- Location

17.

18.

19.

20.

21.

Click OK in the dialog box.
Click OK in the JavaTest Preferences dialog box to close it.

Choose View > Filter > Current Configuration.

Current Configuration enables you to see Summary and status information
specifically on the tests selected for the current test run. The All Tests setting
shows current totals and status icons for all the tests in the test pack, regardless of
the actual configuration settings.

Start the test device if you are not using the emulator.

Click the Start button [" .

The Device Status window opens:

Chapter 5 Running a Test 49

50

FIGURE 5-18 Device Status Window

‘1}" +— Launch emulator button

7 U Device ID: 0 State: Waiting for device

Bundle #1 is availahle at the following LIRL:
hitp/i (1P Address) 808050disServerjadifoettexdtApp jad

The Run Emulator button is disabled if Run on Emulator is not selected in the
Run Tests menu.The bundle URL might be different for your installation.

22. (Emulator users only) Click Run Emulator in the Device Status window:

In a second or two, the display screen on the device (or emulator) shows the
application is loaded and ready to be launched:

FIGURE 5-19 Application Transferred to Device

Launch

23. Launch the application (this action is device-dependent).

If you are asked for permission to use air time, grant it. The device display screen
shows that one bundle is loaded and a test is ready to run.

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-20 Device Display Screen Showing Number of Tests

Faunll)|
Bundle content

Bundle: JOTSApplication

Bundle number: -1386652339

Total tests: 1

Remaining tests: 1

Cancel Run

24. Run the tests (this action is device-dependent).

25. Choose Yes if asked if it is okay to use airtime.

The device screen display shows one test has run:

FIGURE 5-21 Device Display Screen Showing One Test Running

F il D
Testing progress info

Processing test Mo 1 of 1 tests

Test caze: TestCasel

Test clazs: samples SamplelnteractiveTest

Test IC:
Sample_Rurtime/samples/SamplelnteractiveTestd
TestCaszel

A test evaluation window similar to FIGURE 5-22 soon appears. In a real interactive
test, this window instructs you to interact with or inspect the test device for some
appearance or behavior, and then click the Passed button if the device behaves
correctly or the Failed button if it does not. You can also record a comment
typically to note the reason for the failure. testCasel, however, does nothing to
the test device, and, therefore, has placeholder instructions.

Chapter 5 Running a Test 51

FIGURE 5-22 Test Evaluation Window

Test Name SamplelnteractiveTest. testCasel
Test Objectives Specify the objectives of the testcase.
User Interaction Instruct the user on any interaction that is required.

Test Expected Result | Specify the expected behavior.

Cominents Ay additional comments if needed.

4]

Functionality: [Nonessential |V| Impact: |Limited |V| Severity: 5 - Very Low

| Passed || Failed |

26. In the Comments pane, enter “Failed for demonstration”, then click Failed.

The test run ends and the number of failed tests is shown in the Summary tabbed
pane:

52 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-23 Failed Test Results

File Configure RunTests Report \View Tools Windows Help
View Filter: Status of |Current Configuration | | | Edit Filter... II‘
[Test Suite Root :Test Suite: Java Device Test Suite
¢ [l Sarmple_Runtime l’ Summary rDocumemaﬁon rPasse(I rFaiIe(I rError r [5 Not Run r [Fittered Out
T msamples
D SampleAutomate
D SampleAutomate
@ Samplelnteractive’
Selected Folder: Entire "Java Device Test Suite” test suite.
Selected View Filter: Current Configuration
Filter based on the current test manager configuration settings.
-l Passed 0
W Failed 1
W Error 0
1 Not Run 0
W Fittered Out 2
I
4] I I | ¥] 5| There are some failed tests in this folder.
‘Work Directory: ple_wd Configuration: ple.jti Template: le.jtm
|Finished testrun. Elapsed Time w 00:03:10 @§
Java Device Test Suite |

Expand the Sample_Runtime node in the test tree, if necessary, to see that the
interactive test is now marked as failed:

FIGURE 5-24 Failed Test Notation in Test Tree

(0 Test Suite Root]
¢ [E8 Sample_Runtime
¢ [E samples
D SamplefAutomatedTesestCaszel
D SampleAutomatedTes@estCase?
E SamplelnteractiveTesiestCasel

The automated tests are shown as Filtered Out because they are not selected in the
configuration’s Tests To Run question.

You have completed the walk through of running basic tests in the Java Device Test
Suite. To see information about the test runs, click on the tabs in the test information
display pane.

Chapter 5 Running a Test 53

54

Selecting Tests by Device Feature and
Severity

In the Java Device Test Suite, there are several ways to specify the tests that run. You
can use them separately or in combination. In the previous exercises, you selected
tests directly by name. In this exercise you select them by a combination of device
feature and test failure severity. For a description of device features, refer to “Device
Features” on page 7. For a description of test failure severity, refer to “Test Failure
Severity” on page 83.

1. In the harness test tree, select Test Suite Root, right-click, and choose Clear
Results.

This operation sets the status of all tests to Not Run.

2. In the harness, choose Configure > Edit Configuration.

The Configuration Editor appears.

3. Select the Test Selection: How to Specify Tests question.

If you do not see the question, select Test Selection: Specify Tests to Run, and click
Yes.

4. Select “Directly by feature name”, then click Next >.

The Features to Run question appears.

5. Click Feature Tree.
The feature tree appears, similar to FIGURE 5-25.

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-25 Feature Tree

Test names:) Hide ' Long (@ Short Tests selected: 1

¢ [E] Features and Tests :| Documentation

o= [H] Sample Runtime

Select feature or test in the tree to view documentation.

Find: Next Previous [_| Match case

| OK | | Cancel |

6. Select Sample Runtime.

A description of the Sample Runtime feature appears on the right. When you
select a test case, its documentation appears on the right. FIGURE 5-26 shows an
example.

FIGURE 5-26 Test Case Documentation Example

Documentation

testCasel
public hoolean testCasel (java.lang.3tring caseNzme)

Sample testcase detnonstrating the use of a required class. This iz a
exatnple of a testease which requires another class (class is required for the
test cotnpilation and execution)

Preconditions:
Mone

Pass Criteria:
RequiredClass. run tnethod is accessed and refurns expected walue. [+

Chapter 5 Running a Test 55

7. Click the turner next to Sample Runtime to expose its features Automated Tests
and Interactive Tests.

Because these are artificial sample tests, the feature names are not representative.

8. Click the turner next to Automated Tests to expose its features or test cases.

FIGURE 5-27 Feature Tree with Tests

Test names:) Hide) Long @ Short Tests selected: 1
¢ [B] Features and Tests ‘| Documentation
¢ [FlBample Runtima §§ This test pack allows to run few simple testeases to verify basic runtime

¢ [Automated Tests
[samplesutomatedTestttestCasel
[samplesutomatedTesttestCase2
o= [¢] Interactive Tests

functionality of the systern and to study basics oftest execution.

Find: [] Match case

| OK | | Cancel |

Notice that the test case names (such as SampleAutomatedTest#testCasel) are the
same as those in the Tests to Run tree (FIGURE 5-14). You can select tests in either
tree or both.

9. Uncheck the box next to Automated Tests, then check the box next to
SampleAutomatedTest#testCase2.

Feature selection is “sticky”. There is no need to use the Ctrl or Shift key to select
multiple features. Selecting a feature selects its sub-features and tests. The total
number of tests you have selected is shown in the upper right.

10. Click OK to close the feature tree.

11. In the configuration editor, select the Specify Test Severity question, select Yes,
then click Next >.

The Severity question appears, similar to FIGURE 5-28.

56 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-28 Severity Question

|Eile Bookmarks Search \View

1 P N H
|We|come.. = Severity
Configuration Mame

Description
Test Selection :
Specify Tests to Run? —:
Haow to Specify Tests i
Features to Run
Specify an Exclude List?

Selectthe severity values of the tests you wish to run.

Specify Keywards? S
Specify Status? Slallly
Specify Test Severity? - Medium
Severity

Specify Severity Override List? 2Ly

|Tests and Bundles

JAD File Praperties
Autotest Suppoart B
Tests Per Bundle —:

feleliti L LG Cile i

- Wery Low
Undefined

Configuration complete! | € Back || Next & || Last 3] | | Done |

12. Uncheck all boxes except 5 - Very Low.

The sample tests have this severity value. For more information on severities, see
“Test Failure Severity” on page 83. You can see a test case’s severity by selecting it
in the harness test tree and clicking the Test Severity tab.

Note — The answers to the questions in the Test Selection section act as a series of
filters that are AND-ed together. A test runs only if it passes all filters. For example,
suppose a test in the Interactive Tests feature you left selected in Step 9 had a
severity of 1 - Very High. This test will not run because it does not pass the Severity
filter as it is currently configured (to pass only tests whose severity is 5 - Very Low).
Similarly, no test in the Automated Tests feature will run because that feature was
unselected in Step 9.

13. Click Done.

14. Start the test run as you did in “Running Automated Tests” on page 37 or
“Running an Interactive Test” on page 45.

When the interactive test begins to run, the evaluation window appears, similar
to FIGURE 5-29.

Chapter 5 Running a Test 57

FIGURE 5-29 Test Evaluation Window

Test Name SamplelnteractiveTest. testCasel
Test Objectives Specify the objectives of the testcase.
User Interaction Instruct the user on any interaction that is required.
Test Expected Result | Specify the expected behavior.
Cominents Ay additional comments if needed.
- "
Functionality: [Nonessential |V| Impact: |Limited |V| Severity: 5 - Very Low
| Passed | | Failed |

15. Choose Secondary in the Functionality drop-down.
Severity changes from 5 - Very Low to 4 - Low. You can change the severity of
interactive and tests as they run. The change you have made indicates that you
rank this test’s functionality as more important than the test designer did.
Accordingly, its failure severity rises.

16. Click Failed.
The test run ends.

17. In the harness test tree, select SamplelnteractiveTest#testCasel and click the
Test Severity tab.
FIGURE 5-30 shows that your action changed the test severity from 5 to 4.

58 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-30 Test Severity Tab

Test: ple_Runtime;/: pl activeTest#testCase1
Configuration r Test Run Messages r Test Severity r Relevance Criteria |
Test Description r Documentation r Files r Test Run Details
Severity Functionality Impact

Current 4-Low Secondary Limited

Fre-run
Default a - Wery Low Monessential Limited
Severity List

Fostrun
Interactive 4 - Lo Secandary Limited
Wi Exit -
Orverride - |v| | |v|

Comments

Faled

You can change the severity of any test after it has run by selecting new values in

the Functionality or Impact drop-downs. Post-run severity changes are erased if
the test is run again.

Creating Feature and Severity Reports

After a test run, the Java Device Test Suite can generate several different kinds of

reports. In this section, you create a feature report and a severity report. To create a
feature report, follow these steps.

1. In the harness, choose Report > Create Report.

The Create a New Report dialog box appears, similar to FIGURE 5-31.

Chapter 5 Running a Test 59

FIGURE 5-31 Create a New Report Dialog Box

Report Directory: |C:UDTS-ConsoI924B1 1Pro'Reports | - | Browse...

Report Results for: |All Tests =

Reporting Options

Java Device Test Suite Festure-based report in HTML format. This report can be time

1 HTML Report
D - P consuming to generate because there is one HTML file per test caze. Use the Report

[] 2 Plain Text Report Results fitker to select the fewest test cases.
[] 3 XML Report ST
[]4 JDTS HTML Report Show Feature Descriptions

5 DTS Feature-based HTML Report | Report, created with this option turned on, will contain the festure based tree where
D 6 JDTS 1.4 XML Report each particular feature in the report has the description.

[[]7 JDTS 1.4 Plain Text Report

Tree Depth |1 0 |

The maximum depth of the festure bazed tree.

Backup Options

Instead of overwriting existing repart files, you may choose to automatically backup previously generated reparts.
[_] Backup old reports
Mumber of times to backup (1-9):

| Create Report(s) | | Cancel | | Help |

2. In the Report Directory area, browse to or type the name of a directory to
contain report files, for example, C: \JDTSSampleReports.

3. In the Report Results for drop-down, select All Tests.

You can use the Report Results filter to specify a subset of features, such as those
selected by the current configuration.

4. Click the box next to 5 JDTS Feature-based HTML Report.
5. Click Create Report(s).

6. When the View Report dialog box appears, click Yes.

You can also view reports with a web browser. The report browser appears,
similar to FIGURE 5-32.

60 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 5-32 Report Browser First Page

File Help

File:index.html Ad b

Java Device Test Suite

Drate of report © 26 June 2008 16:31:41

JDTE Feature-bazed HTIVL Feport
Jawa Device Test Suite Feature-based report in HTWL fortnat. This report can be time consuming to generate
because there is one HTML file per test case. Use the Report Results filter to select the fewest test cases.

7. Click JDTS Feature-based HTML Report.

The report browser displays the report summary page similar to FIGURE 5-33. The
features in the Sample Runtime test pack do not have typical names.

Chapter 5 Running a Test 61

62

FIGURE 5-33 Sample Feature Report

File Help

File:jdts_features_htmlreport.html j

Test Report Summary

Date: 2008-05-09T11:26:48-07:00

Envir SampleConfig

Comments For Quick Tour
Template Sample
System tester systemn
Tester Name tester

Drganization tester organization

FEATURES PASSED FAILED NOT RUN TOTAL

e functionality of the

Crterated boe Tanea Device Tect Suite

A feature report is organized by device feature. Graphical bars visually indicate
the percentage of passed, failed, and not run tests in each feature. To minimize the
size of the report, features that have no Passed or Failed tests are not displayed,
and their Not Run totals are added to their parent feature. To see report details,
click an underscored number.

8. Close the report browser.
To create a severity report, follow these steps:

1. In the harness, choose Report > Create Report.

The Create a New Report dialog box, similar to FIGURE 5-31, appears.
2. Check JDTS HTML Report.

3. In the Options tab, check Consider Tests Severities.

Java Device Test Suite Tester's Guide ¢ May 2009

4. Click Create Report(s).

5. When the View Report dialog box appears, click Yes.
The first page of the report appears, similar to FIGURE 5-34.

FIGURE 5-34 First Page of Multiple Reports

File Help

File:index.ntml | > Al

Java Device Test Suite

Drate of report 26 June 2008 16:42:50

JDTE Feature-bazed HTIVL Feport
Jawa Device Test Suite Feature-based report in HTWL fortnat. This report can be time consuming to generate
because there is one HTML file per test case. Use the Report Results filter to select the fewest test cases.

JDTS HTIWL Report
Jawra Device Test Suite report in HTIML format. This report can be titme consutning to generate because there is one
HTML file per test case. Use the Report Results filter to select the fewest test cases.

6. Click JDTS HTML Report.
The report organized by severity appears, similar to FIGURE 5-35.

Chapter 5 Running a Test 63

FIGURE 5-35 Report by Severity

File

File:jdts_htmlreport.html

Test Report Summary

Date: 2008-05-09T11:35:52-07:00

Envir t SarmpleConfig

Comments For Quick Tour
Template Sarmple
System tester systemn
Tester Name tester

Drganization tester organization

Tests By Status and Severity
Severity All 1- Very High 2 - High 32 - Medium 4 - Low 5 - Very Low Undefined

PASSED 1 [u] [u] [u] [u] i [u]
FAILED 1 [u] [u] [u] i [u] [u]
Total 2

Crterated b Tanea Device Tect Suite

To explore the report details, click an underscored number.

64 Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 6

Interpreting Benchmark Statistics

The test manager information pane displays benchmark information in the
Benchmark Results tabbed pane. Different types of tests return different statistics.
Test runs that have corresponding threshold values show the values produced by
both the test device and the reference device (as possibly edited by an
administrator).

This chapter describes benchmark results in the following sections:
m Unit Rate Test Statistics
m System Load Test Statistics

For information on running benchmark tests and the Benchmark Results tabbed
pane, see the online help.

Unit Rate Test Statistics

Most benchmark tests measure Unit Rate. A Unit Rate test measures the rate at
which an important and ongoing unit of work, such as displaying a frame of
animation, is completed. A Unit Rate test runs for one minute. Every 100
milliseconds, it records the number of operations completed in the last 100
milliseconds. The result is an array of 600 samples, one for each of the 100-
millisecond intervals in one minute.

FIGURE 6-1 shows an example of Unit Rate results when a test is run in a session
whose profile has no corresponding threshold value. In this example, the Unit Rate
is animation frames per second.

65

FIGURE 6-1 Unit Rate Performance Statistics in Benchmark Results Tab

Test: Benchmarkit 1 hmarkiscenariosj2meRocks/J2MERocksTest#testServiceRepaints
f Test Description r Files rCOnﬁguration r Test Run Details r Test Run Messages r Benchmark Results

hetric Measurement
2 Animation Framesfsecond

0 Animation Framesfsecond

6.23 Animation Framesfsecond

0 Animation Framesfsecond

40 seconds

Average

Standard Deviatio
Lowest Rate
Longest Time of Rate=0

The test returns the array to the harness. Ignoring the first 150 samples, which are
subject to warm-up effects such as optimization and class loading, the harness
computes and displays the following for the remaining 450 samples:

m Average
m Median
m Standard Deviation

m Lowest Rate, which is the average work done in the half second with the least
work completed

m Longest Time of Rate=0, which is the longest number of seconds in which the test
did not complete at least one unit of work

When a threshold file exists for the same test, the Benchmark Results tab shows both
the test result and the threshold value (the result produced by the reference device,
possibly as edited by an administrator). FIGURE 6-2 shows an example.

FIGURE 6-2 Example Benchmark Results Tab with Threshold

Test: Benchmarkit 1 hmarkiscenariosj2meRocks/J2MERocksTest#testServiceRepaints
f Test Description r Files rCOnﬁguration r Test Run Details r Test Run Messages r Benchmark Results

hetric Measurement Threshold

Average

2.2 Animation Frames/second

2.07 Animation Framesfsecond

0 Animation Framesfsecond

0 Animation Framesfsecond

Standard Deviatiol

.64 Animation Framesfsecond

6.43 Animation Framesfsecond

Lowest Rate

0 Animation Framesfsecond

0 Animation Framesfsecond

Longest Time of Rate=0

40 seconds

40 seconds

Click the View Graph button below the statistics table to display the test’s second-

by-second performance. FIGURE 6-3 shows an example.

66

Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 6-3

Example Unit Rate Performance Graph

70 _
65 |

60 |

Unit Rate Graph
Test J2ZMERocksTesttestSenviceRepaints

\ Test

10 14 20 24 a0 35 40

seconds

Close

The graphs of Unit Rate tests for an implementation that passes or fails (based on
existing threshold values) compare the performance of the test device to the
threshold. FIGURE 6-4 is an example of a passing test’s performance graph. The graph
does not explicitly show why the implementation passed, but gives insight into its
second-by-second performance compared to the performance of the reference device
(as possibly adjusted by an administrator) on which the threshold is based. You can
see that the test device’s performance (Test line) is generally above the threshold. For
an explanation of the pass or fail calculation, see “Pass or Fail Calculation” on

page 70.

Chapter 6 Interpreting Benchmark Statistics 67

FIGURE 6-4 Example Passing Performance Graph

Unit Rate Comparison Graph
Test J2ZMERocksTesttestSenviceRepaints
Reszult: Passed. Compared versus threshold

70

[at]

\ Test

. Thrashald

||||||||||||||||%||||||||||||||||||||||||||||
1] 5 10 14 20 28 30 35 40

seconds

Close

FIGURE 6-5 shows an example graph from an implementation that failed. Notice that
the test device’s performance (Test line) is generally lower than the threshold line.

68 Java Device Test Suite Tester's Guide ¢ May 2009

FIGURE 6-5 Example Failing Performance Graph

Unit Rate Comparison Graph
Test J2ZMERocksTesttestSimpleSyncRepaints
Result: Failed. Compared versus threshold

70 _

65 |

\ Test

. Thrashald

|||;|||||||||||1|||||||'||||||:|||||| TTT T TTIT
1] 5 10 14 20 28 30 35 40

seconds

Close

System Load Test Statistics

System Load tests measure an artificial representation of the load they place on the
test device. Lower values are better. If a System Load test has a threshold value, the
Test Run Details tab shows both the value returned by the test device and the value
returned by the reference device (as possibly edited by an administrator). FIGURE 6-6
shows an example measurement. System Load tests do not have performance
graphs.

Chapter 6 Interpreting Benchmark Statistics 69

FIGURE 6-6 Example System Load Information in Test Run Details Tab

Test: Benchmarkit 1 hmarkiscenarios/'mediaPlayer MediaPlayer Test#testAudioVideo
f Test Description r Files rCOnﬁguration r Test Run Details r Test Run Messages r Benchmark Results |

Detail properties about test run

Name alue

BenchmarkStatistics Sysload-Average=55

ThreshaoldMame sysload_threshold

ThresholdStatistics Sysload-Average=57

ThresholdTirme 1159831037543

deviceHeader.accept textthtml, imagefif, imagefipen, * g=.2, %% =2
deviceHeader.connection keep-alive

deviceHeader.host 127.0.0.1:8080

deviceHeaderuser-agent Javall . 4.2_01

testcasePropery.audiol fcomizunibenchmarkirsrcfaudiofbark way
testcaseProperty.audioz fcomizunibenchmarkirsrcfaudiofpattern.mid
testcaseProperty.videot fcomizunibenchmarkirsrefimagfanimatedo] gif

A System Load test measures how much of the device’s ability to do concurrent
work remains while the test is running. A System Load test compares the work
accomplished by a test-independent thread first running by itself and then in
competition with the test. The object is to determine how much the test degrades the
performance of the independent thread. The test performs time-constant operations
such as playing a video file. Because the video frames must be displayed at a
protocol-determined rate, the test performs the same number of operations per unit
of time whether it runs on a fast device or a slow one. System Load tests
automatically run multiple times and return the average System Load. The harness
displays this average.

Pass or Fail Calculation
If a benchmark test has a corresponding threshold (in the work directory), the

harness uses it to determine if the test passes or fails. The calculation is different for
System Load and Unit Rate tests.

Tests that Measure System Load

If the test’s System Load value is less than or equal to the threshold value plus a
small buffer, the test passes. Otherwise it fails.

70 Java Device Test Suite Tester's Guide ¢ May 2009

Tests that Measure Unit Rate

The Unit Rate pass or fail calculation compares the sample arrays produced by the
test device and the reference device (as possibly modified by an administrator). The
calculation has two phases. In both phases, the first 150 (of 600) samples in the

arrays are ignored because they are subject to warm-up effects such as optimization.

In the first phase, the harness attempts to determine if the test device is in fact the
reference device. Running a reference device against itself should produce a passing
result, even if the arrays are not identical. This phase compares the average and
variance of the two arrays. If they are both close, the test passes.

The second phase is only executed for a test device that the harness judges is not the
reference device. In this phase, the harness uses a statistical technique called the Sign
Test to determine if the test sample is significantly worse (in the statistical sense)
than the threshold array. If the test sample is significantly worse, the test fails.
Otherwise, it passes.

Chapter 6 Interpreting Benchmark Statistics 71

72 Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 7

Readiness Tests

If you have trouble running tests, use the readiness tests to verify that the device has
the core capabilities required to run tests and that they are operational. Readiness
tests take a “lowest common denominator” approach to downloading test bundles,
concentrating on over-the-air (OTA) transfer, which all test devices must be able to
perform. Some devices might also be able to download tests over a local link, such
as a serial cable, or TCP/IP. These options, which can be faster or easier to use than
OTA, are described in Chapter 4.

Preparing

Before you can run the readiness tests, you must know how to download (OTA),
install, and remove MIDlet suites, and how to launch MIDlets on the test device. A
test bundle is a MIDlet suite. For OTA tests, the MIDlet suite contains only one test.
The agent that manages the test is the MIDlet. In particular, you must know if the
test device downloads MIDlet suites over the air in one of the following ways:

m By a link to the MIDlet suite’s Java Application Descriptor (JAD) file in an HTML
page that you display with the device’s web browser

m By a link to the MIDlet suite’s JAD file in a WML web page that you display with
the device’s web browser

m By the JAD file name you enter into the device

To learn more about the concepts and terms of the Java Device Test Suite, see the
online help in addition to the rest of this guide.

Note — Run the tests one at a time as described in the instructions.

73

74

V¥ Verifying Bundle Capacity

A test device that can download MIDlet suites (test bundles) that are up to 128
kilobytes in size can run most tests. The smallest tests fit in bundles of about 75KB.
A few MMAPI tests require bundles as large as 1300KB. 128KB is a good base and
enables multiple small tests to be packed into a single bundle, which reduces traffic
between the test device and the Relay. The test128K test verifies that a test device
can download and install a 128KB bundle.

1.

10.

Determine if the device supports CLDC version 1.0 or 1.1 and MIDP version 1.0
or 2.0.

. Launch the harness.
. Close the current test suite.

. Choose File > Open > Open Test Suite and select a test suite from the browser

dialog box.

. Choose File > Create Work Directory.

Provide a name for the work directory and set the path of the directory.

. For the purposes of this test, select the

jdts_installDir /admin/shared/resources/templates/builtin/readiness
.jtm template.

When creating a work directory, you are asked to specify a template. The builtin
templates provided with the Java Device Test Suite are not intended for use other
than for demonstration tests. Do not use these templates when performing actual
work. Updates to builtin templates do not propagate, which means that your
configuration is not updated when its template is updated.

Your administrator is responsible for creating the templates you normally use for
test runs. Updates to templates created by your administrator are propagated to
configurations. For production work, use the templates provided by your
administrator.

. Choose Configure > New Configuration.

Enter a name and a brief description of the configuration and click Next to
proceed to the Tests Selection section.

. Specify Yes to run only selected tests in the Specify Tests to Run question in

the Configuration Editor.

. Select Directly to specify the test from the test tree.

Expand the Readiness test suite in the test tree to see the test cases under the
readiness test node.

Java Device Test Suite Tester's Guide ¢ May 2009

11.

12.

13.

14.

Select Size#test128K.

Continue answering the questions in the Configuration Editor as needed. Skip the
individual test pack questions until you get to the Readiness section (be sure you
go to the Readiness panel, not the Automatic Readiness section).

In the General panel of the Readiness section, specify the number of clients
that download the JAD file simultaneously.

The default value is two. Three clients is an average number. Do not specify any
less than two. Click Next to proceed to the Headers panel.

In the Headers panel, specify which versions of CLDC and MIDP the device
supports and click Done.

Click the Start button to begin testing.

Instructions for downloading and running the test, similar to FIGURE 7-1, appear.

FIGURE 7-1 Size#test128K Instructions

Test Name Size test] 28K

Check if a 128K archive file could be load to a device successfully
During this test a user could find how java application archives could be
loaded to the device, and set MaximmjarSize property.

Test
Ohjectives

Preconditions |Refer to package documentation for details on how to configure tests.

NOTE: The <Test URL>= is provided at the bottomn of this window.

User
Interaction
[nstall 128K, jar. jad descriptor from <Test URL> URL
Bun 128K Application Size MIDlet
126K Application Size MIDlet appears in an application lst
Expected after a successful installation
Result # The MIDlet displays Application of 128K size was successfllly
locded tessage
Comments none

4]

Chapter 7 Readiness Tests 75

76

15.
16.

17.

18.

19.

20.

21.

22,

Launch the test device.

If the test device supports bookmarks, create a bookmark for the URL shown in
the Test URL field.

The Test URL you see is probably different from the one shown in FIGURE 7-1.

Download the URL shown in the Test URL field.

How you download URLs is device dependent. The readiness tests use the same
URL so0 you can use one bookmark to download every test.

Install 128K. jar. jad file.

The test device asks for confirmation to install the MIDlet suite. Install it. How
you install MIDlet suites is device dependent.

The device downloads 128K. jar.jad if it can. If the device indicates that it
cannot download 128K. jar. jad, there is no point to continuing with the
Readiness tests.

If the test device asks if you want to continue the installation even though the
application is not signed, click Continue.

Launch 64K Application Size test.

How you launch MIDlets is device dependent.

The device displays: Application of a 128K size was successfully
loaded.

Exit the MIDlet and remove 128K Application Size test.

How you exit and remove a MIDlet is device dependent.

Click either the Passed or Failed button at the bottom of the test instructions.

It does not matter if you click the Passed or Failed button. The test run terminates.

V¥ Verifying Essential Facilities

For tests to run, the following facilities must be operational on the test device:

Loading classes
User interface
Reading a resource as a stream

Reading and writing the record management store (RMS)

The testUtil test verifies these facilities.

To run testUtil, follow these steps (which assume you have just finished successfully
running Size#test64K test):

Java Device Test Suite Tester's Guide ¢ May 2009

1. Select Configure > Edit Configuration.
. Click next until you get to the Tests to Run panel.

. In the test tree, navigate to the Sizef#ftest64K test under the Readiness node.

= W N

. Select the Util#testUtil test.

The Size#test64K test becomes unselected.
5. Click Done in the Configuration Editor.
6. Click Start.

Instructions for downloading and running the test, similar to FIGURE 7-2, appear.

FIGURE 7-2 Util#testUtil Instructions

Chapter 7 Readiness Tests 77

78

Test Evaluation: Readiness/com/sun/jdts/readiness/Util#te

=10l x|

Test Name Util. testUtil
Check if different utilities which are are mandatory for the TestBeans agent
Test implementation work correctly Utilities include reading resource as strearn,
Ohjectives dynarnic class loading, basic vl and rms functioning, Fach of these utilities
is a must for TestBeans agent to run.
Preconditions | Fefer to package documentation for details on how to configure tests.
NOTE: The <Test URL>= is provided at the bottomn of this window.
[nstall ueil. jad descriptor from <Test URL> URL
Run Ueil MIDlet
when in Ueil Iidlet,
User
Interaction O in main menu screen select run 4 tests
O verify that info screen is displayed with results of tests
execution described helow
O if needed, dismiss iy screen to return to main meny
& if needed, select run 4 fests in main menu to re-rin test
O if needed, select history log in main menu to obtain results for
all previously executed tests
The info screen displays
All tests done:
ted _“
g::.:lt PAZZED: Classloading
PASSED: FM3 read/write
PAZZED: Resource reading
PAS3ED: UI
Comments none
Test URL: hitpz/i (IP Address) :8080., ver/otahtmii1iota.html

7. Launch

the test device.

8. Download the URL named in the Test URL field.

The URL you see is probably different from that shown in FIGURE 7-2. How you

download URLs is device dependent.

9. Install the util.jad file.

How you install MIDlet suites is device dependent.

Java Device Test Suite Tester's Guide ¢ May 2009

10. If the test device asks if you want to continue the installation even though the
application is not signed, click Continue.

The device downloads Util.

11. Launch Util.
How you launch MIDlets is device dependent.
The device displays a menu containing:
run 4 tests
info
history log
12. Select run 4 tests.
The device should display:
All tests done:
PASSED: Classloading
PASSED: RMS read/write

PASSED: Resource reading
PASSED: UI

If the device does not display the above lines, there is no point continuing with
the Readiness tests.

13. Click the Done soft button or select the Done command in a device-dependent
way.

14. Exit the MIDlet and remove Util.

How you exit and remove a MIDlet is device dependent.

15. Click either the Passed or Failed button at the bottom of the test instructions.

It does not matter if you click the Passed or Failed button. The test run terminates.

\ 4 Verifying HTTP Communication

If you want the test device to return test results to the harness, and you want the
harness to automatically display interactive test instructions, the test device must
support HTTP communication with Java methods. Supporting HTTP at a lower level
is sufficient for downloading tests, but it is not sufficient for returning test results.
The testGet and testPost tests verify that the test device’s Java methods for HTTP are
working.

Run these tests as follows. The instructions assume that you have successfully run
testUtil.

1. Select Configure > Edit Configuration.

Chapter 7 Readiness Tests 79

80

N

. Click next until you get to the Tests to Run panel.

]

. In the test tree, navigate to the Util#testUtil test under the Readiness node.

'~

. Select Http#testGet and Http#testPost.
The Size#test64K test becomes unselected.

5. Click Done in the Configuration Editor.
6. Click Start.

Instructions for downloading and running the test, similar to FIGURE 7-3, appear.

FIGURE 7-3 testGet Instructions

Test Evaluation: Readinesscomfsunfjdts/readiness/Http#tes _|EI|1|

[»

Test Name Http testGet

Check if a dewice could successfully send a GET request wia HTTP,
and receive a correct response This iz a tust to use -Send
deployment modes.

Test
Ohjectives

Fefer to package documentation for details on how to configure tests.
Preconditions || Set JarSize property with required response size.
Set -gend deployment mode (Bundles-Results attribute).

NOTE: The <Test URL>= is provided at the bottomn of this window.

User
Interaction # Install net jad from «<Test URL> URL, if it iz not already
installed

Select Heep MID1et suite

Run Get MIDlet
Expected . .
Resuli # The MIDlet displays GET succeed string
Comments none =

1

Test URL: http:i/ (P Address) 8080,

g

4]

7. Launch the device.

8. Download the URL displayed next to Test URL.

The URL you see is probably different from the one shown in FIGURE 7-3. How
you download URLs is device dependent.

Java Device Test Suite Tester's Guide ¢ May 2009

10.

11.

12.

13.

14.

15.

16.

. Install the net . jad file.

How you install MIDlet suites is device dependent.

If the test device asks if you want to continue the installation even though the

application is not signed, click Continue.

The device downloads the net . jad file.

Launch the Http MIDlet.
How you launch MIDlets is device dependent.

If the test device asks permission to use air time, grant it.
The device downloads the Http MIDlet.

Launch the Get test.

How you launch applications is device dependent.

If the test device asks permission to use air time, grant it.

If the test passes, the device displays:

GET succeed

If it does not pass, the device displays an error message.

Exit the MIDlet.

How you exit an application is device dependent.

Click either the Passed or Failed button at the bottom of the test instructions.

It does not matter if you click the Passed or Failed button.

The harness displays the instructions for testPost, similar to FIGURE 7-4.

FIGURE 7-4 testPost Instructions

Chapter 7 Readiness Tests

81

Test Evaluation: Readiness/com/sun/jdts/readiness/Http#te _|EI|1|

[»

Test Name Http testPost

Check if a device could successfully send a Post request wia HTTF,
and receive a correct response This iz a tust to use -Send
deployment modes.

Test
Ohjectives

Fefer to package documentation for details on how to configure tests.
Preconditions || Set JarSize property with required response size.
Set -gend deployment mode (Bundles-Results attribute).

NOTE: The <Test URL>= is provided at the bottomn of this window.

User
Interaction # Install net jad from «<Test URL> URL, if it iz not already
installed

Select Heep MID1et suite

Run Post MIDlet
Expected . .
Resuli # The MIDlet displays Fost succeed string
Comments none |

Test URL: hitpz// {IP Address) :8080., ver/otahtmii1iota.html

4]

Launch Http again.

17

How you launch an application is device dependent.

18. Select and launch Post.

b

How you launch an application is device dependent.

19. If the test device asks permission to use air time, grant it.

.

If the test succeeds, the device displays:

POST succeed.

If the test fails, the device displays an error message.

20. Exit and remove Http.

How you exit and remove an application is device dependent.

21. Click either the Passed or Failed button at the bottom of the test instructions.

It does not matter if you click the Passed or Failed button.

82 Java Device Test Suite Tester's Guide ¢ May 2009

CHAPTER 8

Test Failure Severity

The failure of some tests is more important than others. For example, a test that
probes an obscure feature is less important than one that tests a feature used by
almost every application. Beginning in Java Device Test Suite version 2.2, all tests
written by Sun are tagged with a severity value ranging from 1 (very high severity)
through 5 (very low severity). Non-Sun test developers can tag their tests in the
same way, as described in the Java Device Test Suite Developer’s Guide.

You can select tests by severity (to save time by running the most important tests),
you can view severity values in the harness, and you can organize reports by
severity to focus on the most important failures. You can also override default
severity values. This chapter describes test failure severity features in the following
sections:

m Viewing Test Failure Severity
m Selecting Tests by Severity
m Organizing a Report by Severity

m How Severity is Calculated

Viewing Test Failure Severity

To see a test’s failure severity, select the test in the harness test tree and click the Test
Severity tab. FIGURE 8-1 shows an example for a test that has not been run (current
severity equals default severity). The harness computes severity from the values of
functionality and impact. “How Severity is Calculated” on page 85 describes the
calculation.

83

FIGURE 8-1 Default Test Severity Tab

Test: Mobile_3D_Graphics_(JSR_184)ic | 3gfunctionalbackgr in #setGetMod:
Test Run Details ri onfiguration rTest Run lvlessages r Test Severity |
Test Description r Documentation r Files
Severity Functionality Impact

Current 2 - High Primary Significant
Fre-run

Default 2 - High Frimary Significant

Severity List -
Fostrun

Interactive

Wi Exit

Override - | | | | |
Comments

A test can have a different severity after it has been run, as described in “How
Severity is Calculated” on page 85. For an illustrative Test Severity tab, refer to
FIGURE 5-30.

Selecting Tests by Severity

In a configuration or template (if you are an administrator), you can select tests to
run by their pre-run failure severity (see “Pre-run Severity” on page 87). You can, for
example, minimize the number of tests you run by filtering out low-severity tests. In
the Test Selection section of the interview, answer these questions as follows:

m Specify Test Severity: Yes
m Severity: Check the boxes representing the severity values you want to run, for
example, 1, 2, and 3. By default, all severity values are selected.

“Selecting Tests by Device Feature and Severity” on page 54 has an exercise for
selecting tests by Severity.

84 Java Device Test Suite Tester's Guide ¢ May 2009

Selection by severity is a filter, like selection by keyword. A test runs if it passes all
filters. Therefore, you can use severity in combination with keywords, status, and so
on. For example, you can select failed network tests that have a severity of 1 or 2.

Organizing a Report by Severity

When you select JDTS HTML Report in the Reports > Create Report dialog, you can
select Consider Tests Severities. If you check (tick) this box, the report is organized
by test severity, so you can easily focus on the failures that are most severe.

FIGURE 5-35 shows a report with severity data. “Creating Feature and Severity
Reports” on page 59 has an exercise for creating a report with severity data.

XML reports automatically include severity data. The online help describes report
generation options.

How Severity is Calculated

The harness calculates a tests’s severity from two factors, called functionality and
impact. Each factor has a numeric value of 1-3, with 1 indicating the highest
importance. TABLE 8-1 shows how the harness derives severity from each
combination of functionality and impact.

TABLE 8-1 Severity Derivation from Functionality and Impact

Severity Functionality Impact
1 (very high) 1 (primary) 1 (critical)
2 (high) 2 (secondary) 1 (critical)
1 (primary) 2 (significant)
3 (medium) 2 (secondary) 2 (significant)
3 (non-essential) 1 (critical)
1 (primary) 3 (limited)
4 (low) 3 (non-essential) 2 (significant)

Chapter 8 Test Failure Severity 85

TABLE 8-1 Severity Derivation from Functionality and Impact (Continued)

Severity Functionality Impact
2 (secondary) 3 (limited)
5 (very low) 3 (non-essential) 3 (limited)

To see the developer guidelines for assigning functionality and impact values, refer
to the Java Device Test Suite Developer’s Guide.

There are multiple sources of these factors, a default and several optional overrides
(see FIGURE 8-2). The harness displays the final value, current severity, and the
contributing sources, in the Test Severity tab.

FIGURE 8-2 Sources of Severity Factors

Current
- J_ i |
|
| Severity Tab
L T ——
| i |
|
Erased by | VM_Exit
Next Run
| i |
| Evaluation Interactive
| Window Tests
- i |

Override List

1

Persistent

Default

86 Java Device Test Suite Tester's Guide ¢ May 2009

Pre-run Severity

Each test has a default severity, calculated from functionality and impact values
specified by the test developer. The default values can optionally be overridden by
an entry in a severity override list. Pre-run impact and functionality values persist
across test runs.

Default Severity

Test developers assign functionality and impact values to each of their tests. These
values determine a test’s default severity.

Severity Override List

You can override a test’s default severity in an override list file and then specifying
the file in a template (if you are an administrator) or a configuration. Specify the
fully qualified name of the override list file in the Test Selection > Severity List
interview question.

A severity override list can contain blank lines, comment lines (# in first position),
and test lines. A test line has the following format:

testName Impact Functionality

The line components are:

m testName is a test pack name plus optional package names, optional class name,
and optional case name. To obtain fully qualified test case names, do one of the
following;:

m Select the test names in the graphical interface’s Passed, Failed, Error, or Not
Run tabs, right-click, and choose Copy > Names as multiple lines. Then paste
into a text editor.

» Alternatively, after running the tests, create a plain text report and copy the
fully qualified names from it.

m Impact is the impact of a failure, represented as a value in the set [1,2,3]. TABLE 8-1
gives the meaning of these values.

m Functionality is the importance of the function tested, represented as a value in the
the set [1,2,3]. TABLE 8-1 gives the meaning of these values.

Here are some examples with explanatory comment lines:

Override one test case

Bluetooth_ (JSR_82) /com/sun/jsr082/bluetooth/functional /push/service
/UpdateTests#testServiceRegistrationException 1 2

Chapter 8 Test Failure Severity 87

88

#Override all cases in a class
MMAPI_and_ABB_ (JSR_135) /com/sun/mmapi_10/functional/video/playback/
thirdgp/ThirdGenPlayerHTTP 2 3

Override all tests in a package
MMAPI_and_ABB_ (JSR_135) /com/sun/mmapi_10/functional/video 3 1

Override all tests in a test pack
OpenGL_ES_ (JSR_239) 3 2

Post-run Severity

A test’s pre-run severity can be overridden during or after the test run in three ways.

m Interactive tests: Interactive test evaluation windows include drop-down controls
that you can use to set a test’s impact and functionality.

m Virtual machine exit: A test that returns a status of Error - VM_EXxit automatically
receives a severity value of 1. VM_Exit means that the Pass/Fail status of the test
is indeterminate, as might happen if the tester restarts the test device.

m Test Severity tab. After a test has run, you can set its impact and function in the
Test Severity tab. The values you specify override all others.

Post-run changes do not persist across test runs. The next time the test runs, it begins
with its pre-run severity. It ends with that severity unless the test VM_Exits or you
manually override impact or functionality in the test evaluation window or the Test
Severity tab.

Java Device Test Suite Tester's Guide ¢ May 2009

Chapter 8 Test Failure Severity 89

90 Java Device Test Suite Tester's Guide ¢ May 2009

APPENDIX A

Test and Harness Ports

TABLE A-1 lists the IP ports that tests and the harness use.

TABLE A-1 Test and Harness IP Ports

Port

Used By

Property

Notes

4645-
4695

4774-
4824

8080

9919

Network test servers

Datagram connection
servers

harness

WMA tests

MIDP - testPort

MIDP - datagramServerPort

Console - ServerPort

WMA Tests - UUTPortNumber

A network test server tries to open
4645. If that fails, it increments the
port number by 1 and tries again.
After 50 such failures, the server
tries to open any port. If that fails,
the test is failed and the Test Server
Monitor displays a message that no
ports are available.

The UDP ports used within
datagram tests.

The port on which the Java Device
Test Suite server listens for
connections between the tester
harness and test devices.

For sending and receiving sms/cbs
messages

91

92 Java Device Test Suite Tester's Guide ¢ May 2009

APPENDIX B

Subijectivity and Quality Testing

Subjectivity is unavoidable in quality testing. Unlike compatibility testing, there is
usually no formal quality specification against which test device quality can be
measured. Each testing organization needs to establish its own quality guidelines to
minimize subjectivity, bearing in mind customer satisfaction, testing and support
costs, competitive devices, and other factors. Although the development of such
guidelines is beyond the scope of this guide, usability testing is one tool that
deserves serious consideration.

The remainder of this appendix gives examples of subjectivity in different kinds of
tests:

m Interactive Tests

m Benchmark Tests

m Robustness Tests

Interactive Tests

Some interactive test results require subjective judgment to designate them as passed
or failed. Two major categories are differences in device display and differences in
device responses to anomalous conditions.

Display Differences

Devices with different display capabilities can produce different results for the same
test. For example, TABLE B-1 shows the reference image for
com.sun.m3g.functional.image2d.Conversions.alphaAndRGBa and the displays of
five devices that are identical except for the number of colors or grays they display.
Notice the use of the word “probably” in the assessments of device performance on

93

94

this test.

TABLE B-1 Interpreting One Test on Different Devices

Test Device Display Description

Reference image. “Running Runtime Tests” in the
online help describes test evaluation windows and
reference images

Test device has 4096 colors. This display is
essentially identical to the reference image. It is
obvious that this device passes the test.

Test device has 4096 grays. This test could be
considered to have passed result. Users would
probably understand an image in an application
that uses the tested feature.

Java Device Test Suite Tester's Guide ¢ May 2009

TABLE B-1 Interpreting One Test on Different Devices (Continued)

Test Device Display Description

Test device has 16 grays. This test could be
considered to have passed result. Users would
probably understand an image in an application
that uses the tested feature.

Test device has eight grays. This test could be
considered to have a failed result because it differs
markedly from the reference image.

Test device has two grays. This test could be
considered to have a failed result. Users would
most likely find a similar image displayed by an
application as incomprehensible.

Appendix B Subjectivity and Quality Testing 95

Anomalous Conditions

Test evaluation windows cannot describe how test devices behave in anomalous
conditions because there are no specifications for such behavior. Nor can all tests
indicate that they have started and finished. Displaying such information might
interfere with the test. Therefore, when an interactive test does not behave as
described in the test description window, you must use your knowledge of the
device and your role as a potential device user to decide if the test result is a pass or
fail.

For example, a test device might decide that a test is not authorized to use a
protected API. Accordingly, it could refuse to launch the test or test MIDlet.
Alternatively, it could launch the test or MIDlet but terminate it when it tries to use
the APL It could inform you of the problem in several ways or it could not inform
you at all.

Benchmark Tests

Subjectivity is an element in other tests as well. Benchmark tests automatically have
pass or fail results, but they do so based on a comparison to a reference device’s
performance. That reference device is probably chosen subjectively. The only
criterion for choosing it, as far as the Java Device Test Suite is concerned, is that the
reference device consistently exhibits “acceptable” performance.

96

Robustness Tests

Robustness tests are another example of inherent quality test subjectivity. A test
developer might decide that a robust implementation should perform 100 repetitions
of a code sequence without error. The developer’s decision is an informed one, but it
is also ultimately a subjective evaluation.

Java Device Test Suite Tester's Guide ¢ May 2009

APPENDIX C

Uninstalling

This appendix describes how to uninstall the tester harness in these sections:
m Uninstalling: Solaris Operating System
m Uninstalling: Windows Environment

For instructions on uninstalling the Central Installation, see the Java Device Test Suite
Administration Guide.

Uninstalling: Solaris Operating System

To uninstall the tester harness, follow these steps:

1. Change to the jdts_installDir/Uninstall JDTSversion Console directory.

jdts_installDir/ is the directory in which you installed the tester harness (see
“Installing the Tester Harness” on page 16). version is the installed harness version,
such as 2.4.

2. Run the uninstaller with this command:

% sh Uninstall_ JDTSversion_Console

Uninstalling: Windows Environment

To uninstall the tester harness, follow these steps:

1. Choose Start > Control Panel > Add or Remove Programs

97

2. Select JDTSversion Console in the Add or Remove Programs window.

version is the installed harness version, such as 2.4.

3. Click the Change/Remove button.

Follow the steps in the Uninstall wizard to remove the test harness.

98 Java Device Test Suite Tester's Guide ¢ May 2009

APPENDIX D

Filtering Tests with Exclude Lists

If you have one or more tests that should not be run on a device, you can filter them
with an exclude list that you create with a text editor and associate with a template
(if you are an administrator) or a configuration. An exclude list filter is like a
keyword filter. It does not remove or hide tests but prevents them from being added
to test bundles. If you set View Filter to Current Configuration, excluded tests are
colored gray.

Note — This feature might be modified in the future.

This appendix covers these subjects:
m Creating an Exclude List

m Associating an Exclude List with a Configuration or Template

Creating an Exclude List

An exclude list is a text file whose extension is . jtx. It must be located on a file
system that is accessible to harnesses whose templates and configurations refer to it.
Multiple templates or configurations can share an exclude list.

Note — Create exclude lists with care. Errors might not be reported or might cause
unpredictable behavior.

An exclude list can contain blank lines, comment lines, and test lines.

99

100

Comment Lines

Use comment lines to identify an exclude list, and to group and document test lines.
A comment line begins with a single “#” character.

Note — Do not write a comment beginning with “###”. This sequence is reserved for
possible future use.

Test Lines

Each test line in an exclude list file contains the fully qualified name of a package,
class, or test case. Excluding a package or class is shorthand for excluding its
contents (analogous to deleting a file system directory). Forward slashes are required
in test names.

Here are three examples with comment annotations (ignore line breaks):

Exclude a test case
CLDC_ (JSR_30_and_JSR_139) /com/sun/cldc/cldcl_0/functional/cpack/c04_
1/c0410201/test0410201#testcasel

Exclude all cases in a class
Scalable_Vector_Graphics_ (JSR_226) /com/sun/jsr226/functional/animati
on/ControlAnimation

Exclude all packages, classes, and cases in a package
Benchmark/com/sun/benchmark/scenarios

To obtain the fully qualified names of tests, do one of the following;:

m Select the test names in the graphical interface’s Passed, Failed, Error, or Not Run
tabs, right-click, and choose Copy > Names as multiple lines. Then paste into a
text editor.

m Alternatively, after running the tests, create a plain text report and copy the fully
qualified names from: it.

You can add up to three optional fields after the test name. Each field is separated by
spaces and/or tabs. A line break terminates the entry. There is no way to indicate
that an entry continues on the next line. The three optional fields are:

m BuglDs: A comma-separated (no spaces) list of bug identifiers associated with the
excluded test. Your organization chooses the bug identifiers, typically from your
bug tracking system. Letters, integers, dashes and underscore characters are valid
in BuglDs.

Java Device Test Suite Tester's Guide ¢ May 2009

m Keywords: A comma-separated (no spaces) list of keywords that can be used to
classify exclusions. The keywords are organization-specific and are unrelated to
the configuration and template keywords used to select tests. Keyword entries
must start with a letter and can contain letters, numbers, and the underscore
character. It is good practice to limit keyword names to 20 characters.

m Synopsis: The reason the test is excluded. It is good practice to limit synopses to
100 characters.

If you omit an optional field, you must also omit the fields to its right. For example,
if you do not specify keywords, you must not specify a synopsis. If you do specify
keywords, synopsis is optional, but BugIDs is required.

Example

CODE EXAMPLE D-1 shows a simple exclude list. Part of each test name (...) has been
omitted to fit the lines into the available space.

CODE EXAMPLE D-1 Simple Exclude List

Exclude list for handset Alpha, software version 2.0.2
Revised Mon Jul 23 18:15:04 PDT 2007

Test name only
AMMS. . ./camera/CameraControlTest#checkExposureModes

Two BugIDs, Keyword
CLDC. .. /TableLookupSwitch/CaseWithReturn 22720,22333 notSupported

BugID, Keyword, Synopsis
MIDP.../write 33655 spec Interpretation dispute

Associating an Exclude List with a
Configuration or Template

Direct the harness to use an exclude list by associating it with a configuration (or if
you are an administrator, with a template). A template or configuration can name
multiple exclude lists, in which case their effect is additive.

Appendix D Filtering Tests with Exclude Lists 101

102

V¥ Specifying an Exclude List with the

Configuration or Template Editor

1. Set Specify an Exclude List = Yes
2. Specify Exclude List Files, click Add.
3. Select the exclude list file.

You can remove an exclude list from a configuration or template by selecting it and
clicking Remove. Remove does not delete the file. Ignore the Up and Down buttons.

V¥V Specifying an Exclude List with the Quick Set

Editor

1. Choose Configure Edit Quick Set > Exclude List.
2. Select Other, click Add.
3. Select the exclude list file.

You can remove an exclude list from a configuration or template by selecting it and
clicking Remove. Remove does not delete the file. Ignore the Up and Down buttons.

Java Device Test Suite Tester's Guide ¢ May 2009

APPENDIX E

Specifying HTTP Headers

Note — The information in this appendix is for advanced users who want to tune test
bundle downloading to devices. To use these instructions successfully, you must
understand HTTP headers. An error in the configuration files described here can
have serious negative consequences.

For a tester, two files can influence the contents of the HTTP response headers
generated by the Relay when a test device requests a bundle:

m CentrallnstallDir /admin/shared/conf /httpheaders.properties: An
administrator can modify this file to change the default HTTP headers for all
harnesses.

m TesterHarnessInstallDir /conf /httpheaders.properties: A tester can create
this optional file to specify HTTP headers for a particular harness. This file, if
present, overrides CentrallnstallDir/admin/conf/httpheaders.properties.

The default CentrallnstallDir /admin/shared/conf/httpheaders.properties
file contains these lines:

Cache-Control=no-cache
Pragma=no-cache

These lines disable caching in many networks and devices. The second line is for
HTTP 1.0 devices. Disabling caching is important for downloading test bundles by a
URL bookmark. For tester convenience, the Relay gives every bundle the same URL,
namely

http://ipAddressPort /appContext/jad/harnessID /getNextApp. jad.

When a tester requests this URL with a bookmark, a caching facility in the network
or the test device can repeatedly return a test bundle that has already been run.
Disabling caching forces the device or network to obtain the correct bundle from the
Relay.

103

/getNextApp.jad
/jad/
/
http://

You can create or modify a harness-local ht tpheaders.properties file to disable
caching by your network or by a particular test device. You can also add lines to
perform additional network or device tuning.

104 Java Device Test Suite Tester's Guide * May 2009

APPENDIX F

Supported Technologies

TABLE F-1 lists the technologies and versions whose implementations can be tested

with the Java Device Test Suite.

TABLEF-1 Java Device Test Suite Supported Technologies

Technology

Versions and Specifications

Advanced Multimedia Supplements (AMMS)

Connected Limited Device Configuration (CLDC)

Contactless Communication API

Content Handler API (CHAPI)

Java APIs for Object Exchange (OBEX) and Bluetooth

Java Technology for the Wireless Industry (JTWI)
Location API Optional Package

Mobile 3D Graphics API

Mobile Information Device Profile (MIDP)

Mobile Internationalization API

Mobile Media API (MMAPI)

Mobile Sensor API (MSAPI)

Mobile Service Architecture (MSA) security tests
OpenGL Embedded Subset (ES)

Payment API

Personal Digital Assistant (PDA) optional packages
Scalable Vector Graphics (SVG)

1.0 - JSR 234

1.0 - JSR 30
1.1,1.1.1-JSR 139

1.0 - JSR 257
1.0-JSR 211
1.0,1.1,1.1.1 - JSR 82
1.0 - JSR 185

1.0 - JSR 179

1.0, 1.1 - JSR 184

1.0 - JSR 37
2.0,2.1-JSR 118

1.0 - JSR 238
1.0,1.1 - JSR 135
1.1 - JSR 256

1.0 - JSR 248

1.0 - JSR 239

1.1 - JSR 229
1.0-JSR 75

1.0 - JSR 226

105

TABLE F-1 Java Device Test Suite Supported Technologies (Continued)

Technology Versions and Specifications
Security and Trust Services API (SATSA) 1.0 - JSR 177
Session Initiation Protocol (SIP) 1.0, 1.1 - JSR 180
Web Services (JAXP and JAX-RPC Subset) 1.0 - JSR 172
Wireless Messaging API (WMA) 1.0, 1.1 - JSR 120
2.0 - JSR 205
XML API 1.0 - JSR 280

Note — The Java Device Test Suite supports respective clarifications for all JSRs that
are in MSA JSR 248.

When specification versions are proper subsets-supersets, one test pack covers the
versions with a different package for each version. The tests in the packages do not
overlap. For example, the tests in com.sun.wma2_0 do not include the tests in
com.sun.wmal_1. Therefore, to fully test a device that supports WMA 2.0, you must
run the tests in com.sun.wma, com.sun.wmal_1, and com.sun.wma?2_0.

When a newer specification is not a proper superset of an older one, the versions are
represented by different test packs. The MIDP 1.0 OTA and MIDP OTA test packs are
an example. The MIDP 1.0 OTA test pack contains all of the tests related to the MIDP
1.0 specification. The MIDP OTA test pack contains the MIDP 1.0 tests that are
compatible with MIDP 2.0 and MIDP 2.1 devices, plus the MIDP 2.0 and 2.1 tests.

106 Java Device Test Suite Test Notes * May 2009

Index

A

agent, description of, 8

B

Benchmark Results tab, 66
benchmark statistics, 65
benchmark testing, 3
benchmark tests

pass/fail calculation for System Load tests, 70

pass/fail calculation for Unit Rate tests, 71
results, 65
running, 10
benchmarks
unit rate results, 65

C

caching and test bundles, 103

Central Installation, advantages of, 4

CLDC, 105

compatibility testing, 2

Connected Limited Device Configuration, 105

D

devices

display differences, 93
downloading

Java Device Test Suite updaters, 23

H

hardware requirements, 16
headers, HTTP, 103

holding results, 30
HTTP headers, 103

interactive tests, 45
IP ports, 91

J

Java Device Test Suite updaters
downloading, 23

L

local link, bundle transfer using, 29

M
MIDlets
and OTA tests, 10

(o)

OTA provisioning testing, description of, 3
OTA provisioning tests

interactive, 11

semi-automated, 11

P

ports used by tests and tester harness, 91
provisioning server, description of, 10

Q

quality testing, 2

107

R

Readiness test suite, 73
Readiness tests
preparing to run, 73
verifying bundle capacity, 74
verifying essential facilities, 76
verifying HTTP communication, 79
requirements
hardware, 16
software, 15
runtime testing, description of, 3
runtime tests, description of, 8

S

software requirements, 15
subjectivity, 93
System Load test
function, 70
statistics, 69
system requirements
for installation, 15
for updating, 24

T

test bundles
setting transfer options, 30
transfer by HTTP, 28
transfer using local link, 29
transferring, 28

test devices
connecting to harness, 27
connection options, 28
requirements, 27

Test Manager
uninstalling, 97

test results disposition, 30

test suites
Readiness, 73

tester harness
launching in batch mode, 21
launching in graphical mode, 20

testing
anomalous conditions, 96
benchmark, 3
compatibility, 2
quality, 2,93

108 Java Device Test Suite Tester's Guide * May 2009

subjectivity, 93
tests
automated, 37
interactive, 45
runtime, description of, 8
troubleshooting, 20

U

uninstalling
Solaris operating system, 97
Windows environments, 97
Unit Rate
performance graph, 67
Unit Rate test
function, 65
statistics, 66
updating the tester harness, 23

with the command line user interface, 25

with the graphical user interface, 24

	Java™ Device Test Suite Tester’s Guide
	Contents
	Figures
	Tables
	Preface
	Overview
	The Java Device Test Suite
	Compatibility and Quality Testing
	Architecture: Tester’s View
	Tester Harness and Central Installation
	Test Packs, Packages, Classes, and Cases
	Device Features

	Runtime Test Architecture
	Benchmark Test Architecture
	OTA Provisioning Test Architecture

	Tester Harness
	Documentation
	Executables

	Installing and Launching the Tester Harness
	Installation Requirements
	Installing the Tester Harness
	Running the Graphical Installer
	Running the Command Line Installer

	Troubleshooting
	Installing Multiple Harnesses
	Launching the Tester Harness
	Launching in Graphical Mode
	Launching in Batch Mode

	Updating the Tester Harness
	Obtaining the Software
	System Requirements
	Updating the Installation
	Running the Graphical Updater
	Running the Command Line Updater

	Verifying the Update

	Connecting Test Devices
	Test Device Requirements
	Test Device Connection Options
	Test Bundle Transfer
	HTTP Bundle Transfer
	Local Link Bundle Transfer

	Test Result Disposition

	Specifying the Transmission of Bundles and Results

	Running a Test
	Preparing for the Quick Tests
	Running the Test Harness and Setting Files

	Running Automated Tests
	Running an Interactive Test
	Selecting Tests by Device Feature and Severity
	Creating Feature and Severity Reports

	Interpreting Benchmark Statistics
	Unit Rate Test Statistics
	System Load Test Statistics
	Pass or Fail Calculation
	Tests that Measure System Load
	Tests that Measure Unit Rate

	Readiness Tests
	Preparing
	Verifying Bundle Capacity
	Verifying Essential Facilities
	Verifying HTTP Communication

	Test Failure Severity
	Viewing Test Failure Severity
	Selecting Tests by Severity
	Organizing a Report by Severity
	How Severity is Calculated
	Pre-run Severity
	Default Severity
	Severity Override List

	Post-run Severity

	Test and Harness Ports
	Subjectivity and Quality Testing
	Interactive Tests
	Display Differences
	Anomalous Conditions

	Benchmark Tests
	Robustness Tests

	Uninstalling
	Uninstalling: Solaris Operating System
	Uninstalling: Windows Environment

	Filtering Tests with Exclude Lists
	Creating an Exclude List
	Comment Lines
	Test Lines
	Example

	Associating an Exclude List with a Configuration or Template
	Specifying an Exclude List with the Configuration or Template Editor
	Specifying an Exclude List with the Quick Set Editor

	Specifying HTTP Headers
	Supported Technologies
	Index

