S
2 Sun

microsystems

Java™ ME TCK Framework
Developers Guide

Version 1.2.1

Sun Microsystems, Inc.
WWWw.sun.com

Part No. 08-2008
August 2008

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights—Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JavaTest, JavaHelp, Java Community Process, JCP, Javadoc, JDK, and Java Developer
Connection are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The Display PostScript logo is a trademark or registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Droits de gouvernement des Etats - Unis logiciel commercial. Les droits des utilisateur du gouvernement des Etats-Unis sont soumis aux termes
de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JavaTest, JavaHelp, Java Community Process, JCP, Javadoc, JDK, et Java Developer
Connection sont des marques de fabrique ou des marques diposies de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Lelogo Display PostScript est une marque de fabrique ou une marque déposée de Adobe Systems, Incorporated.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un orére de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

(é% lease ‘(‘

Adobe PostScript

Contents

Preface xv

Introduction 1
Getting Started 1
Using the Framework 3
Development Environment 3
Target Environment 3
Connectivity Requirements 4
Resource Limitations 5
Framework Components 6
Framework Components on the Harness Side 6
Framework Components on the Device Side 7
Test Types 8
Automated Tests 8
Distributed Tests 9
Interactive Tests 11

OTA Tests 12

Installation 15

Prerequisites to Installing the Framework Bundle 15

Installing the Framework Bundle 16
v To Install the Framework Bundle 16

Installed Directories and Files 16

3. Writing a Simple Automated Test 19
Writing an Automated Test 19
v To Create a Simple Automated Test 20
Building an Updated Simple Test Suite 23
v To Build an Updated Test Suite 23
Testing an Updated Simple Test Suite 24
v To Test an Updated Test Suite 24

4. Constructing a Test Suite 27
Test Suite Structure 27
testsuite.jtt File 28
lib Directory 29
tests Directory 29
Test Class 30
Test Case 30
Test Description File 31
classes Directory 31
doc Directory 32
Creating and Using a Configuration Interview 32
Creating a Configuration Interview 33
v To Create a Configuration Interview Through the Interview Class 34
Plugging in a Custom Interview 44
v To Plug In a Custom Interview 44

Building a Test Suite 45

5. Writing Tests That Use Framework Resources 47

Java ME TCK Framework Developer's Guide * August 2008

Testing Devices With Automated Tests 47
Automated Test Execution 48
Testing Communications or Networking With Distributed Tests 49
Client Test Component 49
Remote Test Component 50
Test Description for Distributed Tests 50
Required Distributed Test Keyword 50
remote Attribute 50
remoteSource Attribute 51
executeArgs Attribute 51
Distributed Test Execution 52
Testing User Interfaces With Interactive Tests 54
Client Test Component 55
Remote Test Component 55
Test Description for Interactive Tests 55
Required Interactive Test Keywords 56
Interactive Test Execution 56
Example of an Interactive Test 58
Testing Application Provisioning With OTA Tests 59
Server Component of an OTA Test 59
Client Test Component of an OTA Test 59
Test Description for OTA Tests 60
Required OTA Test Keyword 60
executeClass Attribute 60
remote Attribute 61
OTA Test Description Examples 62
OTA Test Execution 64
Example of OTA Test 65

Contents

vi

Testing Security-Constrained Functionality With Security Tests 66
Types of Security Tests 66
Untrusted Tests 66
Trusted Tests 67
Double-duty Tests 67
Using Keywords to Mark Security Tests 67
Marking Untrusted Tests 67
Marking Trusted Tests 69
Using an Attribute to Mark Double-Duty Tests 69
Granting or Denying Security Permissions 70
Granting Security Permissions 70
Denying Security Permissions 72
Adding Resource Files in Tests 73
Enabling Test Selection 76
Factors and Mechanisms for Test Selection 76
selectIf Test Selection 77

v To Enable Test Selection with the selectIF Expression 77

6. Using the ME Framework Agent 83
Starting the Agent 83
Using TCP/IP Communication 84
Using UDP Communication 84
Using HTTP Communication 84
Using Serial Communication 85

Displaying Agent Command Line Parameters 86

A. Test API 89
Test 89

Status 90

Java ME TCK Framework Developer's Guide * August 2008

MultiTest 90
J2MEDistributedTest 91
CDCDistributedTest 91
J2SEDistributedTest 91
DistribInteractiveTest 91

OTATest 92

Framework Redistributables Directory 93
lib Directory 93
Core 95
CLDC and MIDP Execution 95
CLDC and MIDP Agents and Clients 95
Plug-ins 96
Communication 96
Messaging 97
CommService 97
CommClients 97
CommServers 97
Test Export Support Libraries 98
CDC Agents 98
src Directory 98
Java ME TCK Framework Server Classes and Interfaces 99
Agent Classes 99
Digital Signer 99
Preverification Script 100
Java ME Technology Version of Harness Classes 100
Basic Interview Classes Containing General Questions 100
Communication Channel 101

doc Directory 102

Contents

vii

C. Test Description Fields and Keywords 103
Test Description Fields 103
Keywords 106

Glossary 109

Index 119

viii Java ME TCK Framework Developer's Guide * August 2008

Figures

FIGURE 1-1 Framework Configuration for Standard Automated Tests 9
FIGURE 1-2 Framework Configuration for Distributed Tests 10
FIGURE 1-3 Framework Configuration for Interactive Tests 12
FIGURE 1-4 Framework Configuration for OTA Tests 13

FIGURE 5-1 Automated Test Execution 48

FIGURE 5-2 Distributed Test Execution 53

FIGURE 5-3 Interactive Test Execution 57

FIGURE 5-4 OTA Test Execution 64

Java ME TCK Framework Developer's Guide * August 2008

Tables

TABLE 1-1 Configurations and Supported Test Types 8
TABLE 6-1 ME Agent Command Line Parameters 86
TABLE C-1 Framework Test Description Fields 104

TABLE C-2 Framework Keywords 107

Xii Java ME TCK Framework Developer's Guide * August 2008

Code Examples

CODE EXAMPLE 4-1
CODE EXAMPLE 4-2
CODE EXAMPLE 5-1
CODE EXAMPLE 5-2
CODE EXAMPLE 5-3
CODE EXAMPLE 5-4
CODE EXAMPLE 5-5
CODE EXAMPLE 5-6
CODE EXAMPLE 5-7
CODE EXAMPLE 5-8
CODE EXAMPLE 5-9
CODE EXAMPLE 5-10
CODE EXAMPLE 5-11
CODE EXAMPLE 5-12
CODE EXAMPLE 5-13
CODE EXAMPLE 5-14
CODE EXAMPLE 5-15
CODE EXAMPLE 5-16
CODE EXAMPLE 5-17
CODE EXAMPLE 5-18

Simple Test Suite testsuite.jtt File 28
Simple Test Class 30

Required Distributed Test Keyword 50
remote Aftribute 51

remoteSource Attribute 51

executeArgs Attribute With Multiple Environment Variables 52

Required Interactive Test Keywords 56

Required OTA Test Keyword 60

executeClass Attribute Entry 60

remote Aftribute Entry 61

remote Attribute Entry for Trusted MIDlet 61
OTA Test Description File 62
Trusted OTA Test Description File 63
Server Test Component Example 65
untrusted Keyword Entry in the Test Description 67
Test Description for an untrusted Test 68
trusted Keyword Entry 69
DoubleDutySecurity Attribute 69
Test Description for a Double Duty Test 69

grant Attribute Entry and Security Permissions 71

xiii

CODE EXAMPLE 5-19 Test Description That Grants Permissions for a Security Test 71
CODE EXAMPLE 5-20 deny Attribute in the Test Description 72

CODE EXAMPLE 5-21 Test Description That Denies Permissions for a Security Test 73
CODE EXAMPLE 5-22 Test That Requires an Image Resource 74

CODE EXAMPLE 5-23 resources Attribute in the Test Description 74

CODE EXAMPLE 5-24 Test Description That Includes Resources 75

CODE EXAMPLE A-1 run Method 89

CODE EXAMPLE A-2 Definition of main 90

CODE EXAMPLE A-3 Test Case Method 90

Xiv Java ME TCK Framework Developer's Guide * August 2008

Preface

This guide describes how to use resources from the Java™ Platform, Micro Edition
Technology Configuration Kit Framework (Framework) to develop and configure
test suites and tests for Java Platform, Micro Edition (Java ME platform)
technologies.

Before You Read This Book

To fully use the information in this document, you must read and understand the
topics discussed in the following books:

m TCK Project Planning Guide

A high-level planning guide that describes a process for developing a Technology
Configuration Kit (TCK). A TCK is a suite of tests, tools, and documentation that
enable an implementor of a Java technology specification to determine if the
implementation is compliant with the specification. This guide is available from
the Java ME Technology APIs and Docs web site at
http://java.sun.com/javame/reference/apis.jsp.

m Java Technology Test Suite Development Guide

Describes how to design and write tests for any TCK. It also provides "how-to"
instructions that describe how to build a TCK and write the tests that become the
TCK’s test suite. This guide is available from the Java ME Technology APIs and
Docs web site at http://java.sun.com/javame/reference/apis.jsp.

m JavaTest Architect’s Guide

This guide provides a description of the process of creating test suites, and
configuration interviews that JavaTest™ harness (harness) can run. This guide is
available from the Java ME Technology APIs and Docs web site at
http://java.sun.com/javame/reference/apis. jsp.

XV

m Graphical User Interface User’s Guide

This guide provides a description of using the harness Graphical-User Interface
(GUI). This guide is available from the Java ME Technology APIs and Docs web
site at http://java.sun.com/javame/reference/apis. jsp.

m Command-Line Interface User’s Guide

This guide provides a description of using the harness command-line interface.
This guide is available from the Java ME Technology APIs and Docs web site at
http://java.sun.com/javame/reference/apis. jsp.

Intended Audience

This guide is intended for Java ME technology test suite developers and test writers
who are using the Java ME TCK Framework resources to create test suites.

Xvi

How This Book Is Organized

Chapter 1 introduces using the Framework resources to develop test suites for the
Java ME platform.

Chapter 2 describes the procedure for installing the Framework bundle on a
development system.

Chapter 3 describes the process of creating a simple automated test and updating a
test suite that uses Java ME TCK Framework resources.

Chapter 4 describes the process required to build test suites that use Framework
resources.

Chapter 5 describes the types of Java ME technology tests that can be written.

Chapter 6 describes the Java ME agent used in conjunction with the test harness to
run tests.

Appendix A describes the test Application Programming Interfaces (APIs) for
different types of test suites.

Appendix B describes the contents of the Java ME TCK Framework bundle.

Appendix C contains a summary of the Framework test description fields and
keywords.

Java ME TCK Framework Developer's Guide * August 2008

Glossary contains the definitions of words and phrases used in this book.

Platform Commands

This document does not contain information about basic platform commands and
procedures such as shutting down the system, booting the system, and configuring

devices. Refer to the following for this information:
m Software documentation that you received with your system

m Solaris™ Operating System documentation at http://docs.sun.com

Examples

Examples in this guide might contain the following shell prompts:

Shell Prompt

C shell machine-name%
C shell superuser machine-name#
Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Examples in this guide might also contain the ~ character at the end of a line to
break a long line of code into two or more lines. Users must type these lines as a
single line of code.

Preface

xvii

Typographic Conventions

This guide uses the following typographic conventions:

Typeface” Meaning Examples
AaBbCcl23 The names of commands, files, Edit your .login file.
and directories; on-screen Use 1s -a to list all files.

computer output
% You have mail.

AaBbCcl123 What you type, when % su
contrasted with on-screen Password:
computer output

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized. These are called class options.
Replace command-line
variables with real names or
values.

To delete a file, type rm filename.

* The settings on your browser might differ from these settings.

Related Documentation

When installed, the Framework includes a doc directory that contains both
Framework and harness documentation in PDF and HTML format.

The following documentation provides detailed information about the Java
programming language and the harness included with this release.

Application Title

JavaTest Harness JavaTest Harness User’s Guide: Graphical User Interface
JavaTest Harness User’s Guide: Command-Line Interface
JavaTest Architect’s Guide

Programming Reference The Java Programming Language

Programming Reference The Java Language Specification

xviii Java ME TCK Framework Developer’s Guide ¢ August 2008

Accessing Sun Documentation Online

The Java Developer Connection™ program web site enables you to access Java
platform technical documentation at http://java.sun.com/.

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. Provide feedback to Sun at
http://java.sun.com/docs/forms/sendusmail .html

Preface Xix

XX Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 1

Introduction

This chapter introduces using the Framework resources to develop test suites for the
Java ME platform, including descriptions of the kinds of tests that a test suite can
include. This chapter contains the following sections:

m Getting Started
m Using the Framework

m Test Types

Getting Started

For test developers who do not already have an understanding of the TCK and test
suite development process, it can take considerable time and effort to put the pieces
of the TCK puzzle in place. Consequently, test developers should read the TCK
Project Planning Guide and the Java Technology Test Suite Development Guide to
understand the principles involved in constructing TCKs and test suites before using
this guide. These documents provide the following fundamental information about
TCK and test suite development:

m For test developers who are creating a TCK, the TCK Project Planning Guide
provides general descriptions of the components required for a TCK, explanations
of the process of creating a TCK, descriptions of the resources required to create a
TCK, and a description of the planning process for a TCK development project.

m For test developers who are creating a test suite, the Java Technology Test Suite
Development Guide provides general descriptions of the methods used to create a
test suite with its tests and include an overview of test development techniques.

The chapters in this document are presented in a sequence that developers who
are new to the process of creating test suites can follow when creating their own
test suite.

Note — The TCK Project Planning Guide and the Java Technology Test Suite Development
Guide documents were originally developed as part of a product used by the Java
Community Process (JCP) Specification Leads. For that reason, these documents
refer to JCP procedures that might not apply to a test developer’s Framework
project.

After becoming familiar with TCK and test suite components and development
processes, test developers can begin using this Developer’s Guide to write tests and
create Java ME technology test suites that use Framework resources.

To help familiarize test developers new to the Framework with the process of
writing tests and building test suites, the chapters in this Developer’s Guide are
presented in the following sequence that begins with examples of simple tasks (such
as writing a simple test and updating a test suite) and progressively introduces the
more complex tasks of creating custom test suites, tests, and test configurations:

m Chapter 3 describes how to write a simple test that can be added to an existing
test suite (provided by the Framework) and run by the harness.

m Chapter 4 describes how to use Framework resources when constructing a custom
test suite and test configuration.

m Chapter 5 describes how to use Framework resources when writing different
types of tests.

In addition to the preceding chapters, the following appendices of this guide
provide additional information useful to test developers when creating custom tests
and test suites for Java ME technology implementations:

m Appendix A describes the test APIs for different types of tests.
m Appendix B describes the contents of the Framework redistributables directory.

m Appendix C provides a summary of Framework keywords and test description
fields.

Test developers can also refer to the JavaTest Architect’s Guide for more in-depth
explanations about creating test suites that run on the JavaTest harness. The JavaTest
Architect’s Guide is divided into two parts. Part I, The Basics, is useful for aspiring test
suite architects and includes basic topics such as a tutorial that introduces the
JavaTest GUI as well as descriptions of test suite components and basic processes of
creating test suites, tests, and configuration interviews that work with the JavaTest
harness. Part II, Advanced Topics, includes more in-depth information about
working with the JavaTest harness such as developing test scripts that run tests and
using JavaTest harness standard commands that configure an environment for
running test suites on specific test platforms.

Java ME TCK Framework Developer's Guide * August 2008

Using the Framework

The Framework is a bundled set of resources used by test suite developers and test
writers to create tests and test suites for Java ME technology implementations as
well as to provide a bridge between the device and the harness when users run tests.

Java ME technology tests and test suites are run on a device by the harness. Because
of Java ME technology connectivity requirements (see “Connectivity Requirements”
on page 4) and limited hardware resources test devices (see “Resource Limitations”
on page 5), test suite and test developers are presented with a number of challenges.
To help simplify test development, the Framework provides a set of components
(harness plug-ins and support classes) for developers. When running tests, the
Framework and its components act as a bridge between the harness (see
“Framework Components on the Harness Side” on page 6) and a test device (see
“Framework Components on the Device Side” on page 7).

The Framework resources for both the harness host and the test device enable
developers to reduce the complexity of test suite development while optimizing test
performance. Because Framework classes and resources are shared by multiple test
suites, they are fully developed, extensively tested, and stable. In addition to
reducing the complexity of Java ME test suite development, Framework classes and
resources can improve the reliability of the test suite.

Development Environment

The following tools and resources are the minimum software requirements for the
Framework development environment:

m JDK, version 5.0 or later
m JavaTest harness, version 3.2.2 or later

For TCK development, download the latest Java Compatibility Test Tools (Java CTT)
from the Java Community Process (JCP) program web site.

Target Environment

The Framework resources enable developers to package and deliver tests developed
for a device in an appropriate form for a particular platform implemented on a
device. The Java ME application environment includes both a configuration such as
Connected Limited Device Configuration (CLDC) or Connected Device

Chapter 1 Introduction 3

Configuration (CDC) and a profile such as Mobile Information Device Profile
(MIDP), Foundation Profile (FP), Personal Basis Profile (PBP), or Personal Profile
(PP).

m Configuration - CLDC and CDC are configurations that provides a basic set of
libraries and virtual-machine features that must be present in an implementation
of a Java ME environment.

When coupled with one or more profiles, the configuration provides developers
with a stable Java platform for creating applications for consumer and embedded
devices. Each configuration supports optional packages that enable product
designers to balance the functionality needs of a design against its resource
constraints.

m Profile - A set of standard APIs that support a category of devices for a specific
configuration.

A specific profile is combined with a corresponding configuration to provide a
complete Java application environment for the target device class.

m Optional packages - A set of technology-specific APIs that extends the
functionality of a Java application environment.

Optional packages provide specific areas of functionality.

The ability to specify bundles enables test developers to match software and
hardware capabilities. They can use APIs that provide easy access to the components
that a device has, without the overhead of APIs designed for capabilities the device
doesn’t support.

Connectivity Requirements

Each Java technology has a unique set of connectivity requirements. When using the
Framework resources to develop test suites, developers should consider the
following connectivity requirements:

m CLDC (without MIDP) - No connectivity required by specification; however, the
Framework requires bi-directional communication.

m MIDP - HTTP is required.

m CDC - Datagram connection is optional in the specification.The Framework
requires bi-directional communication (Datagram, TCP/IP, HTTP, serial, or
custom communications are supported).

m FP on CDC - Full TCP/IP is optional in the specification. The Framework requires
bi-directional communication (Datagram, TCP/IP, HTTP, serial, or custom
communications are supported).

Java ME TCK Framework Developer's Guide * August 2008

Resource Limitations

Hardware resources on test devices are often limited. Resource constrained devices
can quit operation when excess native resources are requested. The Framework can
run tests on resource constrained target devices with limited available memory and
persistent storage. When developing test suites for the Java ME technology device,

the developer must be aware of device limitations such as the following and use the
appropriate Framework resources:

m Memory constraints of the device
m Minimum requirements listed in the appropriate specification for profiles

m Maximum number of connections (HTTP, SSL, or Socket TCP/IP) on the
networking subsystem that can be open at any one time

m Graphics and image subsystem limits

CLDC Target Device

The CLDC configuration provides a Java platform for network-connected devices
that have limited processing power, memory, and graphical capability (such as,
cellular phones, pagers, low-end personal organizers, and machine-to-machine
equipment). CLDC can also be deployed in home appliances, TV set-top boxes, and
point-of-sale terminals.

CLDC target devices typically have the following capabilities:

m A 16-bit or 32-bit processor with a minimum clock speed of 16 megahertz

m At least 160 kilobytes of non-volatile memory allocated for the CLDC libraries
and virtual machine

m At least 192 kilobytes of total memory available for the Java platform
m Low power consumption, often operating on battery power

m Connectivity to a network, often through an intermittent wireless connection with
limited bandwidth

CDC Target Device

The CDC configuration provides a Java platform for network-connected consumer
and embedded devices, including smart communicators, pagers, high-end PDAs,
and set-top boxes.

CDC target devices typically have the following capabilities:

m A 32-bit microprocessor or controller

m 2 megabytes of RAM available to the Java application environment

m 2.5 megabytes of ROM available to the Java application environment

Chapter 1 Introduction 5

Framework Components

The Framework provides a set of existing components that developers can include in
a test suite to create a bridge between a workstation or PC running the harness and
a device containing the application under test. As a bridge, Framework components
plug into the harness and the device.

Framework Components on the Harness Side

The following components are used for running CLDC, MIDP, and CDC tests in the
Distributed, OTA, and Automated test configurations with the harness:

Execution server - Used in CLDC and MIDP Distributed and Automated test
configurations.

The execution server contains no internal test-related logic. Its only function is to
forward data. It is as lightweight as possible.

Test provider - In addition to the execution server, a test provider acts as a server
to the execution server.

The execution server knows its test provider and calls its methods to pass the
data from the client to the test provider and vice versa.

OTA provisioning server - Used in the MIDP OTA test configuration.

The OTA provisioning server supplies applications over the air to wireless
devices.

Passive agent - Used in CLDC, MIDP, and CDC Distributed and OTA test
configurations.

An agent is a Java SE side component that works in conjunction with the harness
to run server-side parts of the tests on Java SE, on the same or different system
that is running the harness. Passive agents wait for a request from the harness
before running tests.

Server-side test - Used in CLDC, MIDP, and CDC Distributed and OTA test
configurations.

Messaging service - Used in CLDC, MIDP, and CDC Distributed test
configuration.

Interview classes and support classes - Used in CLDC, MIDP, and CDC to create
interviews.

Java ME TCK Framework Developer's Guide * August 2008

Framework Components on the Device Side

The device used to run tests might be a resource constrained device in which
available memory and persistent storage are limited. The Framework includes the
following components for running CLDC, MIDP, and CDC tests on a device in the
Automated, Distributed, and OTA test configurations:

m AMS - Used in CLDC and MIDP. Application management code required on the
target device to receive the bundle with the test execution agent and the tests
from the harness is called the Application Management Software (AMS).

In some contexts, AMS is referred to as Java Application Manager (JAM).

m Agent - Used in CLDC, MIDP, and CDC Automated and Distributed test
configurations.

An agent is a separate program that works in conjunction with the harness to run
tests on the device. Agents can be either active or passive.

m Active agents - Are used when the agent must initiate the connection to the
JavaTest harness.

Agents that use active communication enable users to run tests in parallel by
using multiple agents simultaneously and to specify the test machines at the
time the tests run. If the security restrictions of a test system prevent incoming
connections, you must use an active agent.

» Passive agents - Are used when the agent must wait for the JavaTest harness to
initiate the connection.

Because the JavaTest harness only initiates a connection to a passive agent
when it runs tests, passive communication requires that the test machine is
specified as part of the test configuration (not at the time the tests run) and
does not enable running tests in parallel. Passive agents must be started before
the harness attempts to run tests.

In CDC, the agent is started once, and when started, in a loop, it uses the
communication channel to the harness to download the test classes and to execute
them on the device, and then reports back the results. In CLDC and MIDP
configurations, the execution server supplies the test bundle (it includes the test
agent and the tests) and the device’s AMS fetches the bundle and then executes
the test agent which in turn executes the bundled tests and reports the results
back to the harness.

m Tests - Used in CLDC, MIDP, and CDC Automated, Distributed, and OTA test
configurations.

The source code and any accompanying information that exercise a particular
feature, or part of a feature, of a technology implementation to make sure that the
feature complies with the Java specification. A single test can contain multiple test
cases. Accompanying information can include test documentation, auxiliary data
files, or other resources required by the source code. Tests correspond to
assertions of the specification.

Chapter 1 Introduction 7

Test Types

The developer uses the Framework resources for and organizes the tests based on
the test type or testing function (for example, automated tests must be grouped
separately from interactive tests because they use different Framework resources).
TABLE 1-1 presents a simple matrix of the different test configurations and the types
of tests that the Framework resources support.

TABLE 1-1 Configurations and Supported Test Types

Configuration Automated Tests Distributed Tests Interactive Tests OTA Tests
CLDC Supported Unsupported Unsupported ~ Unsupported
(without MIDP)

MIDP Supported Supported Supported Supported
CDC Supported Supported Supported Unsupported

Automated Tests

Automated tests for CLDC, MIDP, and CDC configurations execute on the test
device without requiring user interaction. Automated tests can be queued up and
run by the test harness and their results recorded without the user being present.

The configuration for standard automated test execution is the most common and
the most simple of the tests that are run on the device. Automated tests are also the
most convenient and the fastest tests for a user to run, since they are fully
automated. The majority of tests in a test suite should be automated tests with other
types of tests used only when it’s impossible to write automated tests.

In CLDC and MIDP configurations, the harness (running on a PC or a workstation)
sends an application bundle containing the tests and an agent to the device where
they are unpacked by the application management software (AMS) built into the
device and run. In this configuration, user interaction is not required to run each
test.

FIGURE 1-1 illustrates the Framework configuration for running CLDC and MIDP
standard automated tests. For CDC, the agent is started, downloads the tests via the
communication channel, and executes them, without being restarted (a single agent
runs from the beginning to the end of the test run).

See Chapter 3 for an example of writing an automated test and “Testing Devices
With Automated Tests” on page 47 in Chapter 5 for information about automated
test execution.

Java ME TCK Framework Developer's Guide * August 2008

FIGURE 1-1 Framework Configuration for Standard Automated Tests

PC or Workstation Device

JavaTest Harness

* o getNextApp

@ Application Bundle AMS
(agent + tests)
>
9 getNextTest
Execution %
Server 0 Test Name
o Agent

6 sendTestResult

Tests I

Distributed Tests

Distributed tests are a special type of automated tests. Not only do they have a
device side test component, which is executed under the control of a test agent (as
with any regular automated tests), but they also have one or more remote
components on other devices or the Java SE platform side. The distributed test
components have names and communicate with each other by sending messages to
each other by way of a messaging service. The remote components of a distributed
test typically run on a harness host by using a passive agent in the same virtual
machine as the harness and provide some additional functionality needed by the
test. For example, a test verifies that an HTTPS connection can be made to the
remote host. The remote component that runs on the Java SE platform would be an
HTTPS server. The test on the device performs the following sequence of actions:

1. Sends a message requesting that the server start.
2. Connects to the server and verify that the connection is OK

3. Sends a message to stop the server

Chapter 1 Introduction 9

Distributed tests are typically slower (due to extra communication between remote
components) and more complex than simple automated tests and should be used
only when it’s not possible to write simple automated tests.

FIGURE 1-2 illustrates the Framework configuration for running CLDC and MIDP
distributed tests. Distributed tests are currently not supported in CLDC (without
MIDP). For CDC, the agent is started, downloads the tests via the communication
channel, and executes them, without being restarted (a single agent runs from the
beginning to the end of the test run). See “Testing Communications or Networking
With Distributed Tests” on page 49 in Chapter 5 for information about writing
distributed tests and distributed test execution.

10 Java ME TCK Framework Developer's Guide * August 2008

FIGURE 1-2 Framework Configuration for Distributed Tests

PC or Workstation Device

JavaTest Harness
o getNextApp

-
9 Application Bundle
(agent + tests)
Execution o AMS
Server e getNextTest
¢+
0 Test Name
Send Test ———
. Result —
Passive >
Agent
Agent
Server-Side
0
6 Check/Send
Messaging Message Tests
Service
0 Get Message

Interactive Tests

Interactive tests are the tests that require some form of user interaction and cannot
be executed without such interaction. From a design point of view, interactive tests
are a subtype of distributed test. As a subtype of distribute test, interactive tests
generally execute on the test device under the control of a component called an
agent. However, unlike distributed tests, interactive tests also require some form of
user interaction as a part of the test. Interactive tests might require that the user
change something with a device, which triggers event generation or require the user
to verify that a device plays sound or vibrates. But most typically, interactive tests
are used to validate user interface on the device.

Like distributed tests, interactive tests validate API functionality while the device is
connected to a remote host (the PC or workstation where the harness runs). In this
configuration, one part of the distributed test runs on the device and the other part
of the test runs on a remote host (the PC or workstation where the harness runs)
using a passive agent running on in the same VM as the harness.

Chapter 1 Introduction 11

12

Interactive tests are not supported in pure CLDC (without MIDP). FIGURE 1-3
illustrates the Framework configuration for MIDP interactive tests. For CDC, the
agent is started, downloads the tests via the communication channel, and executes
them, without being restarted (a single agent runs from the beginning to the end of
the test run).See “Testing User Interfaces With Interactive Tests” on page 54 in
Chapter 5 for information about writing interactive tests and interactive test
execution.

FIGURE 1-3 Framework Configuration for Interactive Tests
PC or Workstation Device

JavaTest Harness
o getNextApp

-
9 Application Bundle
(agent + tests)
P
Execution etNextTest
Server e J AMS
0 Test Name
m Send
. Test L
| Passive Result
Agent e Agent
Server-Side
=178
@ Check/Send
Messaging Message Tests
Service @ Get Message

@ Requested
Action

Request an Action
(if interactive)

Java ME TCK Framework Developer's Guide * August 2008

OTA Tests

OTA tests are MIDP-specific tests that verify the over-the-air (OTA) application
provisioning implementation. This includes obtaining, installing, and removing
applications (MIDlet suites), and enforcing security requirements. Each OTA test has
an associated MIDlet suite that you download from the provisioning server and
install and launch on the test device. Multiple instances of each can run in parallel,
sharing one OTA server.

OTA tests validate API functionality while the device is connected to a remote host
(the PC or workstation where the harness runs). In this configuration, one part of the
OTA test runs on the remote host (the PC or workstation where the harness runs)
using a passive agent and the other part of the test runs on the device. OTA tests
require user interaction as a part of each test.

FIGURE 1-4 illustrates the Framework configuration for running OTA tests. See
“Testing Application Provisioning With OTA Tests” on page 59 in Chapter 5 for
information about writing OTA tests and OTA test execution.

Chapter 1 Introduction 13

FIGURE 1-4 Framework Configuration for OTA Tests

Action

PC or Workstation Device
JavaTest Harness 9 Request to
Download Test
Application
<
OTA 0 Test Application AVIS
Server >
6 Send Test Result
T r==p
1
Server-Side_ | | _ 1
Test [1
! |
1
1 ! Test
I } N
Passive | Application
1
Agent " o Request an
1
1
1
1
\/

1
1
1
1
1
1
1
1
9 Action

14 Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 2

Installation

This release of the Framework contains binaries and source code bundled in a .zip
file. This chapter describes the procedure required to install the Framework bundle
on a development system.

This chapter contains the following sections:

m Prerequisites to Installing the Framework Bundle

m Installing the Framework Bundle

m Installed Directories and Files

Prerequisites to Installing the
Framework Bundle

The following tools and resources are the minimum software that should be installed
before installing the Framework bundle on a development system:

m Java Development Kit - The commercial version of Java Development Kit
(JDK™) version 5 (also known as JDK version 1.5) or later is required.

Download the JDK software from http://java.sun.com/javase/downloads
and install it according to the instructions on the web site.

m JavaTest harness - Version 3.2.2 or later is required.

For TCK development, download the latest Java Compatibility Test Tools (Java CTT)
from the Java Community Process (JCP) program web site.

15

Installing the Framework Bundle

The Java ME TCK Framework resources are packaged and provided to users as a zip
bundle. Two main tasks are performed when installing the development kit:

m Downloading the . zip file.

m Unzipping the Framework bundle.

V¥ To Install the Framework Bundle

Before installing the Framework bundle, verify that JDK version 5 or later is
installed on the development system. See “Prerequisites to Installing the
Framework Bundle” on page 15 for the download location and installation
instructions of the JDK.

1. Download the Framework .zip file to a directory on your system.

2. Unzip the bundle into an empty directory of your choice.

The directory that contains the unzipped Framework directories and files
becomes the Java ME TCK Framework root directory.

Installed Directories and Files

The Framework bundle installs the following files and directories containing the
binary files and source code:

m doc - Contains PDF and HTML versions of this Java ME TCK Framework
Developer’s Guide.

m redistributables/ - Contains the following directories:
m Jjavame_tck_framework_121/src - Contains the source files.

» javame_tck_framework_121/1ib - Contains compiled Java ME TCK
Framework classes prepackaged into Java Archive (JAR) files.

m javame_tck_framework_121/doc/javame_tck_ framework/api/-
Contains the Framework API documentation.

See Appendix B for a detailed description of the contents of the
redistributables directories.

m samples - Contains the following directories:

16 Java ME TCK Framework Developer's Guide * August 2008

» samples/binaries - Contains prebuilt SimplestTestSuite,
SimpleTestSuite, and AdvancedTestSuite sample test suites ready for
use.

» samples/sources - Contains sources and build files required to build the
SimplestTestSuite, SimpleTestSuite, and AdvancedTestSuite sample
test suites either as an integrated part of the main ME Framework build or as a
stand-alone project.

The SimplestTestSuite directory provides sources for the minimum set of
classes required to create a test suite that executes automated tests.

The SimpleTestSuite directory provides sources required to create a test
suite that executes automated and distrubuted tests in MIDP and CDC mode.
The examples in this guide use files contained in this directory.

The AdvancedTestSuite directory provides sources required to create a
typical conformance test suite.

» See “Building an Updated Simple Test Suite” on page 23 for a description of
the procedure used to build a standalone sample test suite. To build the sample
test suite as part of the ME Framework, use the ant samples command in the
procedure.

Note — Test developers use the sample code contained in
samples/sources/SimpleTestSuite when following the examples in this guide.

m ReleaseNotes-me_framework.html - Contains additional information about
the Java ME TCK Framework release.

m COPYRIGHT-me_framework.html - Contains the copyright notice for the
Framework.

m index.html - Contains descriptions of the Java ME TCK Framework bundles as
well as hyperlinks to user documentation provided by the Framework.

m document.css - Style sheet used by HTML files.

Chapter 2 Installation 17

18 Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 3

Writing a Simple Automated Test

Automated test execution is the most common and simple of the test configurations
that are run on the test device. User interaction is not required to run automated
tests. The following instructions describe how to create a simple automated test and
add it to an existing Framework supplied test suite.

This chapter contains the following sections presented in the sequence that a test
developer follows when writing a test that is added to an existing test suite:

m Writing an Automated Test

m Building an Updated Simple Test Suite

m Testing an Updated Simple Test Suite

Writing an Automated Test

This chapter provides the source code and instructions for creating a simple
automated test. General information about the process of creating tests can be
located in Chapters 5 and 6 of the Java Technology Test Suite Development Guide.

When creating an automated test, test developers must consider the following
factors:

m Automated tests must extend com.sun. tck.cldc.lib.MultiTest, a base
class for tests with multiple sub test cases.

This example is valid for CLDC, MIDP, and CDC automated tests. For tests that
are to be executed only on a CDC stack and never executed on CLDC/MIDP, the
base class is javasoft.sge.javatest.lib.MultiTest.

m Developers must add individual test case methods to the derived test class to
create a useful test class.

19

20

m Each test case method must take no arguments, and must return a Status object
that represents the outcome of the test case. The Status can be either
Status.passed(String) or Status.failed(String).

m Developers must update the runTestCases () method to add the test cases that
are executed.

This is a CLDC-MIDP specific method (the abstract method is defined in
CLDC-specific MultiTest). For CDC-specific Multitest, this method is not
required because reflection is available on CDC stacks.

m Fach test in a test suite has a corresponding test description that is typically
contained in an HTML file. The test description file contains all information
required to run the test, such as the source file to use (source), the class to
execute (executeClass), and how the test is executed (keyword).

V¥ To Create a Simple Automated Test

The following steps demonstrate how to create an automated test class suitable for
CLDC, MIDP, and CDC (Test3.java), to create its test description file
(index.html), and to update the test class dependencies file (testClasses.1lst).

The test class, Test3.java, is a simple automated test class. This sample uses files
from the SimpleTestSuite located at samples/sources/SimpleTestSuite/
(not the SimpleTestSuite or the AdvancedTestSuite).

This test class does not test a particular API. Instead, it is used to demonstrate the
following aspects of creating a test class:

m The format of an automated test class

m How a test case method is implemented

m How a test case is selected in the runTestCases () method

m How each test case returns a Status object

m How to use ref to output reference information for debugging purpose

A text editor or an integrated development environment (IDE) of your choice is the
only tool required to develop a test.

1. Enter the following test code into a text editor or IDE of your choice.

package sample.pkg3;

import com.sun.tck.cldc.lib.MultiTest;
import com.sun.tck.cldc.lib.Status;

/**

* Sample test with simple test cases.

Java ME TCK Framework Developer's Guide * August 2008

*x/
public class Test3 extends MultiTest {

protected void runTestCases () {
if (isSelected("helloWorld")) {
addStatus (helloWorld()) ;

public Status helloWorld() {
String messagel = new String("Hello World !");
String message2 = new String("Hello World !");
ref.println("messagel: "+messagel) ;
ref.println("message2: "+messagel) ;
if (!message2.equals (messagel)) {

return Status.failed("Failed: see ref for details");

}

return Status.passed("OK");

2. Save this file in the Simple Test Suite source as
SimpleTestSuite/tests/pkg3/Test3.java.

The pkg3 folder does not exist in SimpleTestSuite/tests and can be created
by the test developer when saving Test3.java. Sources for the tests should be
placed inside the tests directory of the test suite and organized by package.

3. Enter the following HTML code into a text editor or IDE of your choice.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Test Specifications and Descriptions for Test3</TITLE>

</HEAD>

<BODY>

<H1>Test Specifications and Descriptions for Test3</H1l>

<HR>

<TABLE BORDER=1 SUMMARY="JavaTest Test Description" CLASS=TestDescription>
<THEAD><TR><TH SCOPE="col">Item</TH><TH SCOPE="col">Value</TH></TR></THEAD>
<TR>

<TD SCOPE="row"> title </TD>

<TD> Hello World ! test</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test3.java </TD>

</TR>

Chapter 3 Writing a Simple Automated Test 21

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg3.Test3 </TD>

</TR>

<TR>

<TD SCOPE="row"> keywords </TD>
<TD>runtime positive </TD>

</TR>

</TABLE>

</BODY>

</HTML>

Note — The contents of this test description file correspond to the Test3. java test
class.

4. Save this file in the Simple Test Suite source as
SimpleTestSuite/tests/pkg3/index.html.

The index.html must be contained in the same directory as its test class (in this
case, Test3.java).

5. Update the test class dependency file (testClasses.1st) in the build
directory (SimpleTestSuite/build) by adding the following line that
identifies the new test and its class.

| sample/pkg3/index.html#Test3 sample/pkg3/Test3.class

The test class dependency file (testClasses. lst) provides information to the
Framework test bundling infrastructure regarding which classes should be
bundled for each test. This information is used in CLDC and MIDP, but ignored in
CDC.

Note — In Framework version 1.2, the test bundling mechanism was improved so
that in simple cases such as this (the complete test is in a single file without using
other test classes) updating the testClasses.1st file is not required.

Additional Action

After creating the new test class, creating the test description file, and updating the
test class dependency file, you must build (see “Building an Updated Simple Test
Suite” on page 23) and test the updated test suite (see “Testing an Updated Simple
Test Suite” on page 24) before making the test suite available to users.

22 Java ME TCK Framework Developer's Guide * August 2008

Building an Updated Simple Test Suite

After completing the procedures contained in “Writing an Automated Test” on page
19, you must run the build to assemble the updated test suite.

To Build an Updated Test Suite

The following steps demonstrate how to build an updated test suite after adding a
test.

Before building the updated test suite, your development environment must meet
the minimum requirements described in “Development Environment” on page 3.

You must also have the following tools installed to build the updated Simple Test
Suite:

m Ant 1.6.5

m Java ME TCK Framework, version 1.2.1

m JavaTest harness, version 3.2.2

m WTK (Wireless Toolkit), version 2.5 or 2.5.1

1. Uncomment and modify the four required properties in

SimpleTestSuite/build/build.properties file, in accordance with your
environment.

The following is an example of changes for a Windows environment.

ME_FRAMEWORK_LIB_DIR=D:\\javame_tck_ framework_121\\1lib
WIRELESS_TOOLKIT=D:\\WTK25
JTHARNESS_JAR=D:\\javatest-3.2.2\\1lib\\javatest.jar
JAVAHELP_JAR=D:\\javatest-3.2.2\\1lib\\javatest.jar

If using Linux to build a test suite, refer to the system requirements section of the
appropriate WTK documentation for required configuration information.

Note — When the commercial version of the JavaTest harness is used,
JAVAHELP_JAR should point to the commercial version of the javatest. jar file.
There is no need to download the JavaHelp binaries, since they are present inside
the javatest.jar file.

2. Use a terminal window or console to make the build directory your current
directory.

Chapter 3 Writing a Simple Automated Test 23

3. Enter the ant command to invoke the ant build script.

The build creates a SimpleTestSuite-build directory containing the test suite.

Additional Action

After creating the updated test suite, you must test it (see “Testing an Updated
Simple Test Suite” on page 24) before making the test suite available to users.

Testing an Updated Simple Test Suite

After completing the procedures contained in “Building an Updated Simple Test
Suite” on page 23, you must test the updated test suite by executing it with the
JavaTest harness.

V¥ To Test an Updated Test Suite

The following steps demonstrate how to test an updated test suite. General
information about testing can be located in Chapter 7 of the Java Technology Test Suite
Development Guide.

Before executing the test suite, your development environment must meet the
minimum requirements described in “Development Environment” on page 3. You
must also have the following tools installed to test the updated Simple Test Suite:

m Java ME TCK Framework 1.2.1
m JavaTest harness 3.2.2
m Wireless Toolkit (WTK) version 2.5

Note — The following commands are shown using Microsoft Windows system
prompts and syntax.

1. Make the Simple Test Suite root directory your current directory.

2. Start the JavaTest harness by using the following command.

| java -jar lib\javatest.jar -newDesktop

The JavaTest harness displays either the Welcome to JavaTest dialog box or the
Quick Start wizard. See the JavaTest harness documentation for detailed
information about using the JavaTest harness.

24 Java ME TCK Framework Developer's Guide * August 2008

3. Use the Configuration Editor to provide configuration information required to
run the updated test suite.

4. After you complete the interview, choose Run Test > Start on the Test Manager
main menu to start the test suite.

5. Use the following command to start the WTK.

c: \WTK InstallDir\bin\emulator *
-Xautotest:http://$JAVATEST_HOST% : $JAVATEST _PORT%/test/getNextApp.jad

If you answered the interview questions correctly, all of the tests run successfully.

Chapter 3 Writing a Simple Automated Test 25

26 Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 4

Constructing a Test Suite

This chapter describes the organization and construction of a Java ME technology
test suite that uses Framework resources. Additional information about constructing
test suites for use with the JavaTest harness can be located in Chapters 4 and 8 of the
JavaTest Architect’s Guide.

This chapter contains the following sections:

m Test Suite Structure

m Creating and Using a Configuration Interview

m Building a Test Suite

Test Suite Structure

Test suites are the main unit of test development and deployment. A test suite is a
self-contained collection of tests designed to test a major feature or a major subset of
an API or a profile. When architects and developers define the contents and
structure of a test suite, they should group tests that use the same test setup to
interact with the test device. Grouping tests in this way enables users to run all tests
in the test suite without changing the test setup.

For example, tests for a profile might be divided into two types. One type of test
exercises the technology’s API implemented on the test device. The other type of test
exercises the technology implementation’s interaction with an Over the Air (OTA)
server. Because the test setup for these two kinds of tests is substantially different,
the architect and developer might group these tests into two independently run test
subsets to make them easier for the user to configure and run.

The top-level test suite directory generally contains the following files and
directories:

m testsuite.jtt file

27

1ib directory
tests directory
classes directory

doc directory

testsuite.jtt File

The testsuite.jtt file is located in the root directory of the test suite. It provides
a registry of information about the test suite and defines test suite properties. The
harness uses these properties to instantiate a TestSuite object that acts as a portal
to all information about the test suite. Whenever the harness requires information
about the test suite, it queries the TestSuite object.

The testsuite.jtt file generally contains the following entries that tell the
JavaTest harness how to start the TestSuite class. It might also contain other
entries. See the JavaTest Architect’s Guide for detailed information about the standard
properties used by the TestSuite that can be specified in the testsuite. jtt file.

name - The name of the test suite.

id - A unique identifier composed of letters, digits, underscore, minus, and
hyphen used to identify a specific version of a test suite.

tests (optional) - By default, the JavaTest harness looks for test source files and
test descriptions in the tests/ directory in the test suite root directory.

classpath - Entry that specifies the class path on which the main TestSuite
class can be found (typically, a JAR file that contains test suite-specific
components).

This entry is required if the TestSuite class or any other classes the TestSuite
refers to are not located within javatest.jar.

testsuite - Entry that specifies the name of the test suite class and any
arguments that the class requires.

The following is the testsuite.jtt file used by the Simple Test Suite that comes
with the Framework.

CODE EXAMPLE 4-1

Simple Test Suite testsuite.jtt File

name=Simple Test Suite
id=Sample_TestSuite_1

tests=tests

classpath=1ib/j2mefw_jt.jar lib/sample_jt.jar lib/interviewlib.jar
testsuite=sample.suite.SampleTestSuite

28 Java ME TCK Framework Developer's Guide * August 2008

The testsuite.jtt file is located under the root directory of the Simple Test Suite.
You can also find it under the build/ directory of the Simple Test Suite source.

lib Directory

The 1ib directory usually contains the javatest.jar file that provides all of the
classes required to execute the harness, all of the JAR files under the 1ib directory of
the Java ME TCK Framework, and the library classes. The test suite developer can
use the library classes to simplify the creation of tests. With javatest.jar in the
1ib directory, the harness automatically locates the test suite and does not prompt
the user for the path to test suite directory.

This directory also contains additional resource files required by the test suite. These
files might include the following:

m testsuite.jar - If a custom interview or if customized harness plug-in classes
are used, package the classes and interview files in a custom testsuite. jar file
and place it in the 1ib directory.

In the Simple Test Suite example, this file is named sample_jt.jar and located
under the SimpleTestSuite/1ib directory.

m testsuite.jtx - The exclude list (testsuite. jtx) file identifies the tests in a
test suite that are not required to be run.

Tests are not excluded in the Simple Test Suite, so it does not contain a
testsuite.jtx file.

The exclude list file usually has the following format:
Test-URL[Test-Cases] BugID Keyword

The following is an example of two lines from an exclude list file.

api/java_awt/EventQueue/index.html#Invoke [EventQueue2006] 6406330 test
api/java_awt/Adjustable/index.html#SetGetValue 4682598 spec_jdk

tests Directory

The tests directory contains test sources and test descriptions grouped by the test
developer according to a specific design principle. Tests might be grouped in a test
directory in the following cases:

m All tests that examine the same component or functionality

m All tests that have a configuration in common

Chapter 4 Constructing a Test Suite 29

30

Organize the tests hierarchically the way you want them displayed in the test tree.
The Test Manager in the harness displays the test hierarchy, enabling users to select
and run specific groups of tests from the GUI

Test Class

A test class or test source is a Java technology class that either implements the test
interface or extends the test class. A test class can rely on inner, sub, or independent
classes and contains one or more test cases. Users must add individual test case
methods to the derived test class to create a useful test class.

See Chapter 5 for information required to write different types of tests for the
Framework.

Test Case

A test case represents a single test and is the smallest test entity. If a test class defines
only one test case, the test class is equivalent to the test case. Each test case must
return a Status object that represents the outcome of the test case.

The following example shows a very simple test class which contains several test
cases.

CODE EXAMPLE 42 Simple Test Class

public class MyTest extends MultiTest {

protected void runTestCases () {
if (isSelected("testCasel")) {
addStatus (testCasel());
}
if (isSelected("testCase2")) {
addStatus (testCase2());

public Status testCasel() {
if (1 + 1 == 2)
return Status.passed("OK") ;
else
return Status.failed("1l + 1 did not make 2");

public Status testCase2() {
if (2 + 2 == 4)

Java ME TCK Framework Developer's Guide * August 2008

CODE EXAMPLE 42 Simple Test Class (Continued)

return Status.passed("OK");
else
return Status.failed("2 + 2 did not make 4");

Additional examples (Testl.java and Test2.java) can be found in the following
Simple Test Suite directories:

m SimpleTestSuite/tests/sample/pkgl/
m SimpleTestSuite/tests/sample/pkg2/

Test Description File

Each subdirectory that contains one or more test classes must also contain a
corresponding test description. The test description is contained in HTML format.

The test description file generally contains the following fields:

m title - A descriptive string that identifies what the test does.
The title appears in reports and in the harness status window.

m source - List of source files of the test.

When the test sources are listed in this field, they can be accessed and viewed
from the harness GUL

m executeClass- Specifies the name of the test’s executable class file.
It is assumed to be located in the classes directory.
m keywords - String tokens that can be associated with a given test.

They describe attributes or characteristics of the test (for example, how to execute
the test, and whether it is a positive or negative test). Keywords are often used to
select or deselect tests from a test run. The most common keywords are runtime
and positive. See Chapter 5 for a description of the specific keywords required
for the different types of tests that can compose a test suite.

See Appendix C for a summary list of the Framework test description fields and
keywords.

classes Directory

The classes directory contains all of the compiled test classes and library classes
required to run the tests.

Chapter 4 Constructing a Test Suite 31

The classes directory generally contains the following sub-directories:
m classes/preverified - The preverified test classes.

m classes/shared/testClasses.1lst - The test class dependency file
(testClasses. lst) that provides information to the Framework test bundling
infrastructure regarding which classes should be bundled for each test.

This information is used in CLDC and MIDP, but ignored in CDC.

doc Directory

The doc directory contains test suite-specific documentation such as User Guides
that describe how to run the test suite.

32

Creating and Using a Configuration
Interview

All nontrivial test suites require additional information about the tests in order for
the test harness to execute them. This additional information, referred to as the test
configuration, is obtained from the user through a test suite specific-configuration
interview written by the test developer. Additional information about creating
configuration interviews for use with the JavaTest harness can be located in Chapter
6 of the JavaTest Architect’s Guide.

The configuration interview consists of a series of questions about the test
configuration or specific target implementation, which the user must answer before
running tests. The Configuration Editor displays the configuration interview in the
harness and exports the user’s answers in a test environment object from which the
harness and the Framework can access and obtain the data.

For example, if a test must get the hostName and the portNumber during the test
run, the following configuration conditions must be satisfied for the test to run:

m The test description file (see “Test Description File” on page 31) must include an
appropriate executeArgs argument.

The following is an example of how executeArgs might be specified in the test
description file.

<tr>
<td scope="row"> executeArgs </td>
<td> -host StestHost -port S$testPort </td>
</tr>

Java ME TCK Framework Developer's Guide * August 2008

In the test description file, $testHost and $testPort are test environment
variables and are replaced by actual values obtained from the test environment.

m The test suite configuration interview must include a corresponding and
appropriate question asking the user to specify the values of the host and port
number.

The configuration interview creates entries in the test environment from user
answers as name-value pairs. The value of $testHost and $testPort are
defined in the configuration from those user answers. Users can display the test
environment from within the harness by choosing Configure > Show Test
Environment from the Test Manager menu bar.

The following is an example of name-value pairs that the configuration interview
might create in a configuration file from user answers.

testHost=129.42.1.50
testPort=8080

Creating a Configuration Interview

There are two ways of creating a configuration interview for an ME Framework
based test suite:

m The simpler but less customizeable approach is to use the
com.sun.tck.j2me.interview.BasicTckInterview class.

The repository contains an example test suite (SimpleTestSuite) that uses this
approach. In this example, the TestSuite object creates an interview by means of
the Builder Pattern. The sample also demonstrates how to add additional
questions to a custom sub-interview. See “To Create a Configuration Interview
Through the Interview Class” on page 34.

m A more complex but more flexible approach (used by many complex Java ME
TCKs) creates a custom test suite interview by extending the
com.sun.tck.j2me.interview.MidpTckBaseInterview class.

To extend com.sun. tck. j2me.interview.MidpTckBaseInterview, you
must write questions (such as name and description) as well as override some
base methods. The samples directory contains an example test suite
(AdvancedTestSuite) that uses this approach.

Note — To get up and running quickly, start with the first approach and switch to
the second approach when your test suite requires a more advanced configuration.
In most cases, the first approach is sufficient to configure and run a test suite.

Chapter 4 Constructing a Test Suite 33

34

After creating an interview, you must plug your testsuite. jtt file, TestSuite
class, and Interview class into the JavaTest harness to run the tests. See “To Plug In a
Custom Interview” on page 44.

To Create a Configuration Interview Through the
Interview Class

The following procedure uses the Test2. java test class as an example to
demonstrate how to accomplish the following tasks:

m Create a configuration interview through the interview class

m Export an environment variable

m Specify the environment value by using context or executeArgs

m Decode the argument into the test class
SimpleTestSuite/tests/sample/pkg2/Test2.java is a simple test class

created to demonstrate the basic principle of writing a test that uses a configuration
interview.

In addition to the procedures provided in this section, refer to Chapter 6 of the
JavaTest Architect’s Guide for additional information regarding creating configuration
interviews.

1. Define the environment variable required by the test.

In the example (Test2. java), the test case SampleStringValue () checks if the
sampleValue that is passed in equals Hello.

The harness requires the sampleValue environment variable to run the test.
Because the value for sampleValue cannot be known ahead of time, it must be
provided in the configuration interview by the user.

The decodeArg (String[], int)method decodes the argument and passes the
value to the samplevValue environment variable. The harness uses the
-stringValue argument in accordance with the executeArgs argument entry
in the test description file.

Java ME TCK Framework Developer's Guide * August 2008

2. Specify the environment value using the test description entry.

The test description file (index.html) can use either the executeArgs or
context to identify the environment variables required by the test. In our
example, the environment variable is called sample.string.value.

The following is an example of using the executeArgs argument (also see
SimpleTestSuite/tests/sample/pkg2/index.html).

<tr>

<td scope="row"> executeArgs </td>
<td> -stringValue $sample.string.value </td>
</tr>

As an alternative, you can use the context field. If you use the context field in
the test description, the argument in the decodeArgs (String, int) method
must be changed accordingly with -sample.string.value used as the
argument.

The following is an example of using the context field.

<tr>

<td scope="row"> context </td>
<td> sample.string.value </td>

</tr>

3. Write the configuration interview class.

The Framework provides a basic configuration interview that defines parameters
common for all Java ME technology test suites. If your test suite requires
additional parameters, you must create a sub-interview and link it to the
Framework interview.

In the sampleInterview example, the test requires an additional parameter. The
following steps describe how to create the sub-interview that adds the additional
parameter to the configuration.

a. Create a class (SampleInterview) that is a subtype of the Interview class.

The following code creates the SampleInterview class.

public class SampleInterview extends Interview ({

}

Chapter 4 Constructing a Test Suite 35

36

b. Identify the new interview (SampleInterview) as a sub-interview of the
parent interview.
In the new sub-interview class, the constructor must take a reference to the
parent interview as an argument and pass this reference to the superclass
constructor. This identifies the interview as a sub-interview of the parent
interview.

The following code identifies SampleInterview as a sub-interview of
MidpTckBaseInterview.

public class SampleInterview extends Interview {

public SampleInterview (MidpTckBaseInterview parent)
throws Fault {
super (parent, "sample");

c. (Optional) Identify the resource file and helpset file used by the
sub-interview.
By default, a sub-interview shares a resource file and More Info help files with
its parent interview. However, you can choose to use a different resource file
and helpset file.

The following code in the SampleInterview example specifies a different
resource file and helpset file.

public class SampleInterview extends Interview ({
public SampleInterview (MidpTckBaseInterview parent)
throws Fault {
super (parent, "sample");
setResourceBundle ("il8n") ;
setHelpSet ("help/sampleInterview") ;

In the example, "118n" is the properties file updated in Step 4, and
sampleInterview is the More Info helpset file updated in Step 5.

d. Use the setFirstQuestion method in the constructor to specify the first
question in the sub-interview.

The following setFirstQuestion code in the SampleInterview example
specifies the first question.

public class SampleInterview extends Interview ({
public SampleInterview (MidpTckBaseInterview parent)
throws Fault {
super (parent, "sample");

Java ME TCK Framework Developer's Guide * August 2008

setResourceBundle ("118n") ;
setHelpSet ("help/sampleInterview") ;
setFirstQuestion(first) ;

e. Specify the question type.

The Question class is a base class that provides the different types of
questions required to build the sub-interview. In the example, the question gets
string information. Therefore, the example must use the StringQuestion

type.
The following code in the SampleInterview example specifies the
StringQuestion type.

| StringQuestion first = new StringQuestion(this, "hello")

In the example, hello is a unique id that identifies the specific question name.
This name is used in the properties and map files.

f. Implement exporting the configuration value to the test environment.

One of the goals of the interview is to export the configuration value to the test
environment. Each question has an export () method that is used for this
purpose.

The following code in the SampleInterview example exports the value to the
test environment.

StringQuestion first = new StringQuestion(this, "hello") {
public void export (Map map) {
map.put ("sample.string.value", String.valueOf (value));

}

An alternative is to use the setExporter () method to export the value. The
following code is an example of using the setExporter () method.

first = new StringQuestion(this, "hello");
first.setExporter (
Exporters.getStringValueExporter ("sample.string.value")) ;

g. Implement error checking for the question answer.

If the user provides an invalid answer to a question, the interview cannot
proceed. For most questions, error conditions are handled by returning null,
which causes the Configuration Editor to display an invalid response message
in red at the bottom of the question pane. Alternatively, if the Framework’s
interview extension library is used, it’s possible to implement validation

Chapter 4 Constructing a Test Suite 37

38

without subclassing the question via Question.setValidator (). For
detailed information, see the com. sun. tck.j2me.interview.1lib package
API documentation.

The following code in the SampleInterview example implements error
checking.

StringQuestion first = new StringQuestion(this, "hello") {

public boolean isValuevalid() ({
return value != null && value != "";

}

public void export (Map map) {
map.put ("sample.string.value", String.valueOf (value));

. Use the getNext () method to determine the next question in the

sub-interview.

Every question except the Final question must provide a getNext () method
that determines the next (successor) question or null. Alternatively, if the
Framework’s interview extension library is used, it’s possible to link questions
without subclassing via Question.setPathResolver () or
Question.linkTo () methods. For detailed information, see the

com.sun. tck.j2me.interview. 1lib package APl documentation.

The following code in the SampleInterview example specifies the next
configuration question.

Question gXXX = {

Question getNext () {
return gNextQuestion;

i. Repeat Step e through Step h until all configuration questions are added to

the sub-interview.

Java ME TCK Framework Developer's Guide * August 2008

j- Use the FinalQuestion marker to identify the last question in the
sub-interview.

At the end of the sub-interview, have the last question return an instance of
FinalQuestion. FinalQuestion is only a marker and does not have
question text, More Info, or a getNext method.

The following code in the SampleInterview example identifies the final
question in the sub-interview.

Question gXXX = {
Question getNext () {
return gEnd;

Y
Question gEnd = new FinalQuestion(this);

The following SampleInterview. java class is used for the example in the
Simple Test Suite. It puts everything together that was described in Step a
through Step j.

public class SampleInterview extends Interview ({
public SampleInterview (MidpTckBaseInterview parent) throws Fault {

super (parent, "sample");
setResourceBundle ("i18n") ;
setHelpSet ("help/sampleInterview") ;
first = new StringQuestion(this, "hello");
first.setExporter (
Exporters.getStringValueExporter ("sample.string.value")) ;
first.linkTo (end) ;
setFirstQuestion(firstQuestion) ;

private StringQuestion first;
private final FinalQuestion end = new FinalQuestion(this, "end");

You can also view the SampleInterview. java file in the following location:

SimpleTestSuite/src/sample/suite

Chapter 4 Constructing a Test Suite 39

40

4. Update the interview .properties (resource) file.

All question text is located in the interview . properties file associated with the
interview class files and is identified by a unique question key.

The question key is based on a name assigned by the test developer and must
uniquely identify the question with the interview. Question keys are created in
the following form:

interview-class-name.question-name
The interview .properties file contains the following types of elements:
m The title of the full interview
m A title for each question
Question titles take the following form:
question-key.smry = title-text
m The text for each question
Question text takes the following form:
question-key.text = question-text
m Additional entries for choice items that are localized

For every interview question that you create, you must add corresponding . smry
and . text entries in the interview .properties file. You can either update the
existing file or create a new one.

In the example, the interview class is named SampleInterview and the question
name is hello. For the example, the following entries must be in the interview
.properties file.

SampleInterview.hello.smry = Sample Config Property
SampleInterview.hello.text = Enter "Hello" here and the *©
test will verify the wvalue.

To view the complete contents of the file, see the i18n.properties file in the
following Simple Test Suite source location:

SimpleTestSuite/src/sample/suite

. Set up the More Info system.

The JavaHelp™ system libraries required to display More Info in the
Configuration Editor are included in the javatest.jar. However, you must
configure the More Info system to include corresponding More Info topics for the
questions in the interview. The following steps describe how to set up the More
Info system.

Java ME TCK Framework Developer's Guide * August 2008

a. Create a help directory under the directory where the interview classes are
located.

For this example, use the following location:

SimpleTestSuite/src/sample/suite/help

b. Create a helpset file (sampleInterview.hs) under the help directory.

The helpset file specifies the location of the map file for the More Info system.
The following example shows the contents of the sampleInterview.hs
helpset file used in the Simple Test Suite.

<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet
Version 1.0//EN" "http://java.sun.com/products/javahelp/helpset_1_0.dtd">
<helpset version="1.0">

<!-- title -->

<title>Simple Test Suite Configuration Interview - Help</title>

<!-- maps -->

<maps>

<mapref location="default/sampleInterview.jhm"/>

</maps>

</helpset>

In the preceding helpset example, sampleInterview. jhmis the map file
specified for the More Info system.

You can also view the samplelnterview.hs file in the following location:

SimpleTestSuite/src/sample/suite/help

c. Create a default directory under the help directory.
For the SampleTestSuite example, use the following location:

SimpleTestSuite/src/sample/suite/help/default

Chapter 4 Constructing a Test Suite 41

d. Create a map file (sampleInterview. jhm) in the default directory.

The JavaHelp system uses IDs from a map file to identify both the location and
the HTML files that it loads for the More Info system. Each More Info file must
have a corresponding entry in the map file of the form

<mapID target="name” url="location/filename.html”/> .

The following example shows the contents of the map file used in the Simple
Test Suite.

<!DOCTYPE map PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map
Version 1.0//EN" "http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">

<!-- SampleInterview -->

<mapID target="SampleInterview.hello"
url="SampleInterview/sampleStringValue.html" />
</map>

The target attribute defines a unique ID for the topic file. The url attribute
defines the path to and name of the HTML topic file (relative to the map file).
The .html files in the map file example are the More Info files.

You can also view the samplelnterview.jhm map file in the following location:

SimpleTestSuite/src/sample/suite/help/default

42 Java ME TCK Framework Developer's Guide * August 2008

e. Create the More Info topic files.

The More Info topic files are provided in HTML format and displayed in the
Configuration Editor’s More Info pane. Refer to the JavaTest Architect’s Guide
for the procedure for creating More Info topic files. The following is an
example of a More Info file.

<html>

<head>

<title>

SampleInterview.hello

</title>

<LINK REL="stylesheet" TYPE="text/css" HREF="../wizard.css" TITLE=
"Style">

</head>

<body>

The test suite architect can provide "More Info" here, explaining
the question in more detail.

</body>

</html>

Additional examples of More Info files can be found in the following directory.

SimpleTestSuite/src/sample/suite/help/default/SampleInterview |

7.

. Create a JAR file containing the configuration interview.

After creating the interview, you must package it into a JAR file for inclusion with
the test suite. If you include other custom components with your test suite, they
can be packaged with the interview. This is usually done in the build.

If you successfully ran the build as described in Chapter 3, “Building an Updated
Simple Test Suite” on page 23, an example of this JAR file is in the 1ib directory.
In the example, the JAR file is named
SimpleTestSuite-build/lib/sample_jt.jar.

Add the JAR file to the classpath entry of the testsuite.jtt file.

See Also

Before you can use a custom interview to run tests, it must be plugged into the
JavaTest harness. See “To Plug In a Custom Interview” on page 44.

To build a test suite containing the configuration interview and associated tests, see
“Building a Test Suite” on page 45.

Chapter 4 Constructing a Test Suite 43

Plugging in a Custom Interview

Before you can use a custom interview to run tests it must be correctly plugged into
the JavaTest harness.

V¥ To Plug In a Custom Interview

This procedure describes how to plug a custom Interview class into the JavaTest
harness.

Before plugging a custom Interview class into the JavaTest harness, you must
create a custom TestSuite class (com.sun.javatest.TestSuite should be
among its parents).

1. Set the classpath entry in the testsuite. jtt file to specify the location of
the test suite class.

The testsuite. jtt file is a main marker or configuration file for every JavaTest
harness based test suite (including all ME Framework test suites). It resides in the
root of the test suite. In the testsuite. jtt file there is a testsuite entry that
specifies the test suite class used to construct everything else.

The following example is the classpath entry in the testsuite.jtt file used

by the Simple Test Suite (see “testsuite.jtt File” on page 28):

classpath=1ib/j2mefw_jt.jar lib/sample_jt.jar lib/interviewlib.jar
2. Set the testsuite entry in the testsuite.jtt file to specify the name of the

test suite class.

The following example is the testsuite entry in the testsuite.jtt file used

by the Simple Test Suite (see “testsuite.jtt File” on page 28):

testsuite=sample.suite.SampleTestSuite

3. Modify the source for your test suite class to specify which interview to use.

Override the createInterview () method (inherited from the base class,
com.sun.javatest.TestSuite) and specify your interview class.

An alternative approach to specifying the interview would be to include an
interview entry in the testsuite. jtt file. However, not all test suites look
into this entry. Some test suites might use the createInterview() method and
not look into the testsuite.jtt file for an interview entry.

Additional Action

Now, you have your testsuite. jtt file, TestSuite class, and Interview class
plugged into the JavaTest harness.

44 Java ME TCK Framework Developer's Guide * August 2008

The only thing that remains is how to write the interview for ME Framework based
test suites, which classes to extend, etc.

Building a Test Suite

Refer to Chapter 3, “Building an Updated Simple Test Suite” on page 23 for the
procedure to build a Java ME technology test suite by using Framework resources.

Note — If using Linux to build a test suite, refer to the system requirements section
of the appropriate WTK documentation for required configuration information.

Chapter 4 Constructing a Test Suite 45

46 Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 5

Writing Tests That Use Framework
Resources

This chapter describes how to write different types of Java ME technology tests that
use Java ME TCK Framework resources and to set special properties required by the
tests. General information about the process of creating tests can be located in
Chapters 5 and 6 of the Java Technology Test Suite Development Guide. Additional
information about writing tests for use with the JavaTest harness can be located in
Chapters 3 of the JavaTest Architect’s Guide.

This chapter contains the following sections:

m Testing Devices With Automated Tests

m Testing Communications or Networking With Distributed Tests

m Testing User Interfaces With Interactive Tests

m Testing Application Provisioning With OTA Tests

m Testing Security-Constrained Functionality With Security Tests

m Adding Resource Files in Tests

m Enabling Test Selection

Testing Devices With Automated Tests

Automated tests are the most common and the most simple of the tests that are run
on the device. In this configuration, the harness (running on a PC or a workstation)
sends an application bundle containing the tests and an agent to the device where
they are unpacked by the Application Management Software (AMS) built into the
device and run. In this configuration, user interaction is not required to run each
test.

47

See Chapter 3 for a detailed description, procedure, and example of writing
automated tests. In addition, SimplestTestSuite, SimpleTestSuite, and
AdvancedTestSuite directories contain examples of automated tests.

Automated Test Execution

FIGURE 5-1 and the associated text are for CLDC and MIDP execution mode. In the
diagram, arrows indicate the direction of dataflow between the device and the
workstation. The numbered items indicate the sequence and the content of the
dataflow.

FIGURE 5-1 Automated Test Execution
PC or Workstation Device

JavaTest Harness

* o getNextApp

@ Application Bundle AMS
(agent + tests)
>
e getNextTest
Execution %
Server 0 Test Name
> Agent

6 sendTestResult

Tests

|
:

1. getNextApp - The AMS issues a getNextApp command to the execution server
on the workstation.

The AMS implementation is device specific and must be provided by the licensee.

2. Application Bundle - The execution server sends an application bundle to the
AMS.

The AMS downloads and executes the application bundle on the device. Test
bundles are created by the Framework.

48 Java ME TCK Framework Developer's Guide * August 2008

3. getNextTest - The agent issues a getNextTest request to the execution server.

4. Test Name - The execution server returns the name of the next test in the
application bundle that the agent should run.

While the tests from the application bundle are loaded onto the device by the
AMS, the execution server establishes the sequence in which the tests in the
bundle are run.

5. sendTestResult - The agent returns the test results to the execution server.

Items 3, 4, and 5 repeat until all tests in the application bundle are run. When all
tests in the application bundle are run, the AMS requests the next application bundle
(items 1 and 2) and the sequence is repeated until all tests and all test bundles in the
test suite are run.

Testing Communications or Networking
With Distributed Tests

Distributed tests are a special type of automated tests. Not only do they have a
device side test component, which is executed under the control of a test agent (as
with any regular automated tests), but they also have one or more remote
components on other devices or the Java SE platform side. The distributed test
components have names and communicate with each other by sending messages to
each other by way of a messaging service. The remote components of a distributed
test typically run on a harness host by using a passive agent in the same virtual
machine as the harness and provide some additional functionality needed by the
test. For example, a test verifies that an HTTPS connection can be made to the
remote host. The remote component that runs on the Java SE platform would be an
HTTPS server.

To develop distributed tests, the test writer must write classes for both the client and
remote test components as well as create an appropriate test description file. The
SimpleTestSuite directory contains examples of distributed tests.

Client Test Component

In the MIDP case, the client test component of the distributed test must extend the
com.sun.tck.j2me.services.messagingService.J2MEDistributedTest
class. In the CDC case, the client test component of the distributed test must extend
the com.sun.tck.j2me.services.messagingService.CDCDistributedTest
class.

Chapter 5 Writing Tests That Use Framework Resources 49

50

These are the base classes for distributed tests for the Java ME technology
component of the test. Each component of the distributed test has a unique name
used for identification during message exchange.

The client test component must use the send and handleMessage methods in the
J2MEDistributedTest class to send and receive messages to or from the other
named components of the distributed test.

Remote Test Component

The remote test component of the distributed test must extend the
com.sun.tck.j2me.services.messagingService.J2SEDistributedTest
class and, to send messages to the client component of the distributed test, invoke
the send method in the DistributedTest.

Test Description for Distributed Tests

The test description file for the distributed test must contain the distributed
keyword and the remote attribute. The test description might also include
additional attributes such as the remoteSource and executeArgs attributes.

Required Distributed Test Keyword

The distributed keyword identifies the type of test to the harness and enables test
selection by the user. If more than one keyword is specified, the names must be
separated by white space. The following is an example of the distributed
keyword entry that must be added to the test description file.

CODE EXAMPLE 5-1 Required Distributed Test Keyword

<TR>
<TD SCOPE="row"> keywords </TD>
<TD> distributed </TD>

</TR>

remote Attribute

The remote attribute contains the execution command for the remote test
components of the distributed test group. The values for these attributes are
exported from the configuration interview and defined in the test environment file.

Java ME TCK Framework Developer's Guide * August 2008

The following is an example of the remote attribute entry that must be added to the
test description file.

CODE EXAMPLE 5-2 remote Attribute

<TR>

<TD> remote</TD>

<TD> networkAgent: sample.pkg.SampleDistributedTest
-msgSwitch S$testMsgSwitch</TD>

</TR>

In the example, the remote attribute execution command is composed of the
following values:

m sample.pkg.SampleDistributedTest is the fully qualified name of the
remote test class.

m $testMsgSwitch is an environment variable used by the Framework to start the
remote test component.

remoteSource Attribute

The remoteSource attribute contains the name of the remote test class of the
distributed test group. If more than one remote test source file is specified in the test
description, the names must be separated by white space.

The following is an example of the remoteSource attribute entry in which the
remote test class is SampleDistributedTest . java.

CODE EXAMPLE 5-3 remoteSource Attribute

<TR>

<TD> remoteSource </TD>

<TD> SampleDistributedTest.java </TD>
</TR>

executeArgs Attribute

The executeArgs attribute contains the environment variables that are passed to
the test classes or client test component being executed. The values for these
attributes are exported from the configuration interview and defined in the test
environment. When more than one environment variable is specified in the test
description, the names and values must be separated by white space.

Chapter 5 Writing Tests That Use Framework Resources 51

52

The following is an example of the executeArgs attribute entry in which the
$testMsgSwitch and $timeOut environment variables are specified.

CODE EXAMPLE 5-4 executeArgs Attribute With Multiple Environment Variables

<TR>

<TD> executeArgs

<TD> -msgSwitch S$testMsgSwitch -timeout $timeOut
</TR>

Distributed Test Execution

FIGURE 5-2 and the associated text are for MIDP execution mode. In the diagram,
arrows indicate the direction of dataflow between the device and the workstation.
The numbered items indicate the sequence and the content of the dataflow.

FIGURE 5-2 Distributed Test Execution
PC or Workstation Device

JavaTest Harness
o getNextApp

-
9 Application Bundle
(agent + tests)
Execution o AMS
Server 9 getNextTest
-
o Test Name
Send Test i
. Result —
Passive >
Agent
Agent
Server-Side
0
6 Check/Send :
M
Messaging essage Tests
Service 6 Get Message

Java ME TCK Framework Developer's Guide * August 2008

1. getNextApp - The AMS issues a getNextApp command to the execution server
on the workstation.

The AMS implementation is device specific and must be provided by the licensee.

2. Application Bundle - The execution server sends an application bundle to the
AMS.

The AMS downloads and executes the application bundle on the device. Test
bundles are created by the Framework.

3. getNextTest - The agent issues a getNextTest request to the execution server.

4. Test Name - The execution server returns the name of the next test in the
application bundle that the AMS should run.

While the tests from the application bundle are loaded onto the device by the
AMS, the execution server establishes the sequence in which the tests in the
bundle are run.

5. Check or Send Message- The test sends either a message or a check message
request to the Framework messaging service on the harness.

6. Get Message - The Framework messaging service on the harness sends the test a
get message command.

7. Check or Send Message - The server-side test sends either a message or a check
message request to the Framework messaging service on the harness.

8. Get Message - The Framework messaging service on the harness sends the
server-side test a get message command.

9. sendTestResult - The agent returns the test result to the execution server.

The agent repeats items 3, 4, and 9 until all tests in the application bundle are run.
When all tests in the application bundle are run, the AMS requests the next
application bundle (items 1 and 2) and the sequence is repeated until all tests and all
test bundles in the test suite are run.

Testing User Interfaces With Interactive
Tests

Interactive tests are the tests that require some form of user interaction and cannot
be executed without such interaction. From a design point of view, interactive tests
are a subtype of distributed test. As a subtype of distributed test, interactive tests
generally execute on the test device under the control of a component called an
agent. However, unlike distributed tests, interactive tests also require some form of

Chapter 5 Writing Tests That Use Framework Resources 53

54

user interaction as a part of the test. Interactive tests might require that the user
change something with a device, which triggers event generation or require the user
to verify that a device plays sound or vibrates. But most typically, interactive tests
are used to validate user interface on the device.

The Framework supports the following three types of interactive modes:
m Yes-No - The user must determine the outcome of the test.

m Done - The user must perform specific actions and confirm the completion, but
cannot affect the outcome of the test.

m Information-only - The visual component is presented to the users, but no user
action is required (this is the default mode).

To develop interactive tests, the test writer must write classes for both the client and
the remote test components of the interactive test as well as create an appropriate
test description file. The AdvancedTestSuite directory contains examples of
interactive tests.

Client Test Component

The client test component of the interactive test must extend the
MidDistribInteractiveTest class. This is the base class for distributed
interactive tests and extends the

com.sun. tck.j2me.services.messagingService.J2MEDistributedTest
class. The MidDistribInteractiveTest class provides all of the common
interfaces required by distributed interactive tests (such as setFormTitle,
waitForMessage, messageReceived, addStatus, and cleanUp).

The client test component must call the send and handleMessage methods in the
MidDistribInteractiveTest class to send and receive messages to or from the
other components of the interactive test group.

The following directory contains an example of a client test component
(MidDistribInteractiveTest.java):

AdvancedTestSuite/src/share/classes/com/sun/tck/midp/lib/

Remote Test Component

The remote test component of the interactive test must extend the
com.sun.tck.midp.lib.DistribInteractiveTest class. The
DistribInteractiveTest class is the base class for the Java Platform, Standard
Edition (Java SE platform) technology component of the interactive test. It is a

Java ME TCK Framework Developer's Guide * August 2008

subclass of the J2SEDistributedTest class that requires user action before a test
result is determined. The remote test component must invoke the send method to
exchange messages from the client test components.

A remote test component usually contains the information that is displayed by the
harness (such as the test instruction, expected image, or the pass-fail messages for
the test cases).

Test Description for Interactive Tests

Like distributed tests, the test description file for the interactive test must contain the
distributed keyword and the remote attribute. In addition, interactive test
description files must also contain the interactive keyword.

See “remote Attribute” on page 50 for a description and example of the remote
attribute.

The test description might also include the remoteSource and executeArgs
attributes. See “remoteSource Attribute” on page 51 and “executeArgs
Attribute” on page 51 for a description and example of these attribute entries.

Required Interactive Test Keywords

The following is an example of the keywords that must be added to the test
description file for an interactive test. Both the distributed keyword and the
interactive keyword are required. When additional keywords are specified, the
names must be separated by white space.

CODE EXAMPLE 5-5 Required Interactive Test Keywords

<TR>

<TD SCOPE="row"> keywords </TD>
<TD> distributed interactive </TD>
</TR>

Interactive Test Execution

FIGURE 5-3 and the associated text are for MIDP execution mode. In the diagram,
arrows indicate the direction of dataflow between the device, the workstation, and
the tester. The numbered items indicate the sequence and content of the dataflow.

Chapter 5 Writing Tests That Use Framework Resources 55

56

FIGURE 5-3 Interactive Test Execution

PC or Workstation Device

JavaTest Harness
o getNextApp

9 Application Bundle
(agent + tests)
>
Execution etNextTest
Server 0 J AMS
0 Test Name
m Send
. Test -
Passive Result
Agent —— Agent
Server-Side
@ cCheck/send
Messaging Message Tests
Service @ Get Message
1

Q Request an Action

@ Requested

(if interactive) Action

1. getNextApp - The AMS issues a getNextApp command to the execution server

on the workstation.

The AMS implementation is device specific and must be provided by the licensee.

. Application Bundle - The execution server sends an application bundle to the

AMS.

The AMS downloads and executes the application bundle on the device. Test
bundles are created by the Framework.

3. getNextTest - The agent issues a getNextTest request to the execution server.

Java ME TCK Framework Developer's Guide * August 2008

10.

11.

Test Name - The execution server returns the name of the next test in the
application bundle that the AMS should run.

While the tests from the application bundle are loaded onto the device by the
AMS, the execution server establishes the sequence in which the tests in the
bundle are run.

Check or Send Message - The test sends either a message or a check message
request to the Framework messaging service on the harness.

Get Message - The Framework messaging service on the harness sends the test a
get message command.

Check or Send Message - The server-side test sends either a message or a check
message request to the Framework messaging service on the harness.

Get Message - The Framework messaging service on the harness sends the
server-side test a get message command.

Request an Action- The Framework messaging service sends a message request
to the user that requires an action on a test.

Action - The user performs the action on the test requested by the messaging
service.

sendTestResult - The agent returns the test results to the harness.

The agent repeats items 3, 4, and 5 until all tests in the application bundle are run.
When all tests in the application bundle are run, the AMS requests the next
application bundle (items 1 and 2) and the sequence is repeated until all tests and all
test bundles in the test suite are run.

Example of an Interactive Test

Examples of interactive tests can be viewed (and executed) in the
AdvancedTestSuite directory of the Framework bundle.

Chapter 5 Writing Tests That Use Framework Resources 57

58

Testing Application Provisioning With
OTA Tests

Over-the-air (OTA) tests are MIDP-specific tests that verify an OTA application
provisioning implementation. This includes obtaining, installing, and removing
applications (MIDlet suites), and enforcing security requirements. Each OTA test
has an associated application (a MIDlet suite) that is downloaded from the
provisioning server and is installed and launched on the test device.

When developing an OTA test, a test writer must write classes for both the server
and client test components as well as create an appropriate test description file.

Server Component of an OTA Test

The server component of the OTA tests must extend the
com.sun.tck.midp.lib.0TATest class. This is the base class for OTA tests and
provides convenience methods that install, execute, and remove applications called
MIDlet suites.

There are different kinds of OTA tests with each kind of OTA test having one or
more of the following functional requirements:

m Requires the successful installation of the MIDlet suite

m Requires that the MIDlet suite installation fail

m Executes the MIDlet suite

m Does not execute the MIDlet suite

After the execution of the OTA test, the installed MIDlet suite must be removed. The
server component of the typical OTA test invokes the install, run and remove

methods to install, execute, and remove the MIDlet suite. See “Example of OTA
Test” on page 65 for an example of a server component.

Client Test Component of an OTA Test

The client test component, called the MIDlet suite, contains the actual test case. The
MIDlet suite must be in the format of a JAR file or a Java Application Descriptor
(JAD,) file so that it can be downloaded from the provisioning server and installed
and launched on the test device. The creation of the JAR file or JAD file is usually

Java ME TCK Framework Developer's Guide * August 2008

done at the build time. If the test writer creates a JAR file or a JAD file with special
information about the MIDlet suite as part of the bundle, the test writer must also
create a manifest file (.mf).

Test Description for OTA Tests

The test description file for OTA tests must contain the ota keyword, the
executeClass attribute, and the remote attribute. The test description might also
include other attributes such as the remoteSource and executeArgs attributes.
See “OTA Test Description Examples” on page 62 for examples of complete test
description files.

Required OTA Test Keyword

The ota keyword identifies the type of test to the harness and enables test selection
by the user. If more than one keyword is specified, the names must be separated by
white space. The following is an example of the ota keyword entry that must be
added to the test description file.

CODE EXAMPLE 5-6 Required OTA Test Keyword

<TR>

<TD> keywords</TD>
<TD> ota </TD>

</TR>

executeClass Attribute

The executeClass attribute specifies the client test class, while the remote
attribute specifies the execution command for the server test component. The
following is an example of the executeClass attribute entry that must be added to
the test description file.

CODE EXAMPLE 5-7 executeClass Attribute Entry

<TR>

<TD> executeClass</TD>

<TD> sample.pkg.0OTA.Test_MIDlet</TD>
</TR>

Chapter 5 Writing Tests That Use Framework Resources 59

60

remote Attribute
The remote attribute specifies the execution command for the server test

component. The following is an example of the remote attribute entry that must be
added to the test description file.

CODE EXAMPLE 5-8 remote Attribute Entry

<TR>

<TD> remote</TD>

<TD> networkAgent: sample.pkg.OTA.OTATestl -httpServerPort
ShttpServerPort -testDir StestDir -OTAHandlerClass
SOTAHandlerClass

-OTAHandlerArgs S$OTAHandlerArgs</TD>

</TR>

In the remote attribute, sample.pkg.OTA.O0TATestl is the test class of the server
component and all other arguments (-httpServerPort $httpServerPort
-testDir StestDir -OTAHandlerClass $SOTAHandlerClass
-OTAHandlerArgs $OTAHandlerArgs) are required for OTA tests

If the test is written for a trusted MIDlet, the argument, -signer=$jks.signer
"-signerArgs=$jks.signer.args", must also be included in the remote
attribute. This argument is used by the Framework to sign the MIDlet.

The following is an example of the remote attribute entry added to the test
description file for an OTA test that is written for a trusted MIDlet.

CODE EXAMPLE 5-9 remote Attribute Entry for Trusted MIDlet

<TR>

<TD> remote</TD>

<TD> networkAgent: sample.pkg.OTA.OTATestl -httpServerPort
ShttpServerPort -testDir S$testDir -OTAHandlerClass
SOTAHandlerClass

-OTAHandlerArgs S$OTAHandlerArgs -signer=$jks.signer
"-signerArgs=$jks.signer.args"</TD>

<TR>

Java ME TCK Framework Developer's Guide * August 2008

OTA Test Description Examples

The following is an example of a basic OTA test description file.

CODE EXAMPLE 5-10 OTA Test Description File

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>

<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 CLASS=TestDescription>

<TR>

<TD> title</TD>

<TD> Over-the-Air Test</TD>

</TR>

<TR>

<TD> source</TD>

<TD> <A HREF=
"midlet/Test_MIDlet.java">midlet/Test_MIDlet.java</TD>
</TR>

<TR>

<TD> executeClass</TD>

<TD> sample.pkg.OTA.Test_MIDlet</TD>

</TR>

<TR>

<TD> keywords</TD>

<TD> runtime positive ota </TD>

<TR>

<TD> remote</TD>

<TD> networkAgent: sample.pkg.OTA.OTATestl -httpServerPort
ShttpServerPort -testDir S$testDir -OTAHandlerClass
SOTAHandlerClass

-OTAHandlerArgs S$OTAHandlerArgs</TD>

<TR>

<TD> remoteSource</TD>

<TD> O0TATestl.java</TD>
</TABLE>

</BODY>
</HTML>

Chapter 5 Writing Tests That Use Framework Resources

62

The following is an example of a test description for a trusted OTA test. See
“remote Attribute” on page 61 for a description of the values that must be set in the
remote attribute for a trusted OTA test.

CODE EXAMPLE 5-11 Trusted OTA Test Description File

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>

<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 CLASS=TestDescription>

<TR>

<TD> title</TD>

<TD> Over-the-Air Test for trusted midlet</TD>

</TR>

<TR>

<TD> source</TD>

<TD> <A HREF=
"midlet/Test_MIDlet.java">midlet/Test_MIDlet.java</TD>
</TR>

<TR>

<TD> executeClass</TD>

<TD> sample.pkg.OTA.Test_MIDlet</TD>

</TR>

<TR>

<TD> keywords</TD>

<TD> runtime positive trusted ota </TD>

<TR>

<TD> remote</TD>

<TD> networkAgent: sample.pkg.OTA.OTATestl -httpServerPort
ShttpServerPort -testDir StestDir -OTAHandlerClass
SOTAHandlerClass

-OTAHandlerArgs S$OTAHandlerArgs -signer=$jks.signer
"-signerArgs=S$jks.signer.args"</TD>

<TR>

<TD> remoteSource</TD>

<TD> OTATestl.java</TD>
</TABLE>

</BODY>
</HTML>

Java ME TCK Framework Developer's Guide * August 2008

OTA Test Execution

In FIGURE 5-4, arrows indicate the direction of dataflow between the device and the
workstation. The numbered items indicate the sequence and the content of the
dataflow.

FIGURE 5-4 OTA Test Execution

PC or Workstation Device
JavaTest Harness Request to
Download Test
Application
=
OTA o Test Application AMS
Server >
6 Send Test Result
-+ r==p
1
Server-Side_ | | _ 1
Test [1
I I
I 1
1 ! Test
" } o
Passive | Application
1
Agent | o Request an
I Action
1
1
1
\/

1
1
1
1
1
1
1
1
9 Action

1. Request an Action - The server-side test requests an action from the test operator.
2. Action - The test operator action is sent to the AMS.

3. Request to Download Test Application - The AMS sends the OTA server a
request for a download of a test application.

4. Test Application - The OTA server sends the AMS a test application.

Chapter 5 Writing Tests That Use Framework Resources 63

The AMS downloads and executes the test application on the device.

5. Send Test Result - The test application sends the test results to the OTA server.

Example of OTA Test

The following is an example of an OTA server component. In the example, the
source of the MIDIet suite is named Test_MIDlet.java and the JAD file is
Test_MIDlet.jad. The JAD file contains the manifest file and the
Test_MIDlet.class.

CODE EXAMPLE 5-12 Server Test Component Example

public class OTATestl extends OTATest {
public static final String NAME = "Test_MIDlet";
public static final String testCaseID = "OTA_Sample";
public Status OTA_Sample() {

Attributes attr = new Attributes();

attr.putvValue ("reportURL", address + "/TestResult/");
attr.putValue("testCaseID", testCaselD);

String jadURL = address + "/" + NAME + ".jad";
log.println("Installing " + NAME + ".jad\n");

Status s = installWithNotification(attr, NAME, null);

if (s == null || !s.isPassed()) {
log.println("Could not install the application.");
return s;

}

try {

log.println("Running " + NAME + ".jar" + "\n");
String[] cmt = new String[]{"Some comments"};

String gn = "Some Questions";

s = handler.run(jadURL, NAME, cmt, gn);

if (s == null || !s.isPassed()) {
log.println("Could not run midlet suite");
return s;

}

64 Java ME TCK Framework Developer's Guide * August 2008

CODE EXAMPLE 5-12 Server Test Component Example (Continued)

return otaServer.getStatus (testCaselD);
} finally {
if (!handler.removeAll (null) .isPassed()) {
ref.println("Could not remove midlet suites");

}

Testing Security-Constrained
Functionality With Security Tests

This section addresses writing different types of security tests, using keywords and
attributes to mark different types of security tests, and using attributes in the test
description to grant or deny the security permissions for the tests.

Types of Security Tests

Security related tests can be grouped into the following types:
s Untrusted

m Trusted

m Double-duty

Untrusted Tests

Untrusted tests verify API implementation behavior for unsigned MIDlet Suites.
Untrusted tests verify that the assertions related to untrusted MIDlet suites are
properly implemented.

All untrusted MID]et suites can run in a restricted environment where access to
protected APIs or functions is either not allowed, or allowed only with explicit user
permission. Untrusted tests must not be run in trusted security mode. See “Marking
Untrusted Tests” on page 67 for a description of how to use keywords to mark
untrusted tests.

Chapter 5 Writing Tests That Use Framework Resources 65

66

Trusted Tests

Trusted tests verify API implementation behavior for signed MIDlet suites. In most
cases, these tests verify that specification assertions related to signed MIDlet suites
are properly implemented.

Trusted MIDlet suites can be permitted to access APIs that are considered sensitive
or to which access is restricted without any user action. The required permissions
are granted without any explicit user action. Trusted tests must not be run in
untrusted security mode. See “Marking Trusted Tests” on page 69 for a description
of how to use keywords to mark trusted tests.

Double-duty Tests

Double-duty tests verify API implementation behavior that depends on security
factors. For example, tests for a security sensitive API that require specific
permissions to be granted or denied. Double-duty tests must be run in both the
trusted and untrusted security mode. See “Using an Attribute to Mark Double-Duty
Tests” on page 69 for a description of how to use the DoubleDutySecurity
attribute to mark double-duty tests.

Using Keywords to Mark Security Tests

When developing security tests, tests writer should use an appropriate keyword in
the test description to mark the type of test. The keyword enables users to select or
exclude tests from a test run based on the security mode.

Marking Untrusted Tests

When developing untrusted tests, the test writers should include the untrusted
keyword in the test description. With the untrusted keyword included in the test
description, the untrusted test is selected and executed during a test run in
untrusted security mode. Tests marked with the trusted keyword are not selected
and executed in the untrusted security mode.

The following is an example of an untrusted keyword entry added to a test
description file.

CODE EXAMPLE 5-13 untrusted Keyword Entry in the Test Description

<TR>

Java ME TCK Framework Developer's Guide * August 2008

CODE EXAMPLE 5-13 untrusted Keyword Entry in the Test Description (Continued)

<TD SCOPE="row"> keywords </TD>
<TD>untrusted</TD>
</TR>

If other keywords (such as positive) are used, they would be included in the same
line as the untrusted keyword. The following is an example of a test description

file that uses runtime, positive, and untrusted keywords.

CODE EXAMPLE 5-14 Test Description for an untrusted Test

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 SUMMARY="JavaTest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Ttem</TH><TH SCOPE=
"col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> checking untrusted test</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test.java </TD>
</TR>

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg.Test</TD>

</TR>

<TR>

<TD SCOPE="row"> keywords </TD>
<TD>runtime positive untrusted</TD>

</TR>

</TABLE>

</BODY>
</HTML

Chapter 5 Writing Tests That Use Framework Resources

67

Marking Trusted Tests

When developing trusted tests, the test writers should use the trusted keyword in
the test description to mark these tests. With the trusted keyword, all the trusted
tests are selected and executed during the trusted security mode. Tests that have the
untrusted keyword are not selected and executed in the trusted security mode.

The following is an example of adding a trusted keyword entry to a test
description file.

CODE EXAMPLE 5-15 trusted Keyword Entry

<TR>

<TD SCOPE="row"> keywords </TD>
<TD>trusted</TD>

</TR>

When other keywords (such as positive) are used, they are included in the same
line as the trusted keyword and separated by white space.

Using an Attribute to Mark Double-Duty Tests

When developing double-duty tests, test writers should use the
DoubleDutySecurity attribute with the value set to yes in the test description to
mark these tests. Tests that have a DoubleDutySecurity attribute with a value of
yes in their test description file are selected and executed in both the trusted and the
untrusted security modes.

The following is an example of a DoubleDutySecurity attribute with a value of
yes added to a test description file.

CODE EXAMPLE 5-16 DoubleDutySecurity Attribute

<TR>

<TD SCOPE="row"> DoubleDutySecurity </TD>
<TD> yes </TD>

</TR>

The following is an example of a test description file for a double-duty test.

CODE EXAMPLE 5-17 Test Description for a Double Duty Test

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>

68 Java ME TCK Framework Developer's Guide * August 2008

CODE EXAMPLE 5-17 Test Description for a Double Duty Test (Continued)

<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 SUMMARY="JavaTest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Item</TH><TH SCOPE=
"col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> checking double duty test</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test.java </TD>
</TR>

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg.Test</TD>

</TR>

<TR>

<TD SCOPE="row"> DoubleDutySecurity </TD>
<TD> yes </TD>

</TR>

</TABLE>

</BODY>
</HTML

Granting or Denying Security Permissions

A security test might require that certain permissions be granted (or denied) for the
test to pass. The test is run or not run according to the permissions that a test writer
grants or denies.

Granting Security Permissions

When writing security tests, a test writer can specify the permissions that the
security policy must grant in the protection domain for the test application to
execute and pass. A test writer can specify the required security permissions by
including a grant attribute in the test description. If the security policy doesn’t
grant the specified permissions, the test must be filtered out of the test run.

Chapter 5 Writing Tests That Use Framework Resources 69

For example, a test application is written based on the assumption that following
permissions are granted:

m javax.microedition.io.Connector.file.read

m javax.microedition.io.Connector.file.write

The following is an example of a grant attribute and permissions added to a test
description file.

CODE EXAMPLE 5-18 grant Attribute Entry and Security Permissions

<TR>

<TD SCOPE="row"> grant </TD>

<TD> javax.microedition.io.Connector.file.read
javax.microedition.io.Connector.file.write </TD>
</TR>

The value of the grant attribute is a list of space-separated permissions (in the
example, javax.microedition.io.Connector.file.read and
javax.microedition.io.Connector.file.write) that must be granted by the
security policy for this test application to execute and pass. If these permissions are
not granted for the test application, the test application must be filtered out.

The following is an example of a test description file that includes the grant
attribute and permissions.

CODE EXAMPLE 5-19 Test Description That Grants Permissions for a Security Test

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 SUMMARY="Javatest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Ttem</TH><TH SCOPE=
"col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> checking grant permission</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test.java </TD>
</TR>

<TR>

70 Java ME TCK Framework Developer's Guide * August 2008

CODE EXAMPLE 5-19 Test Description That Grants Permissions for a Security Test

<TD SCOPE="row"> executeClass </TD>

<TD> sample.pkg.Test</TD>

</TR>

<TR>

<TD SCOPE="row"> grant </TD>

<TD> javax.microedition.io.Connector.file.read
javax.microedition.io.Connector.file.write </TD>
</TR>

</TABLE>
</BODY>
</HTML>

Denying Security Permissions

When writing security tests, a test writer can specify the permissions that the
security policy must not grant in the protection domain for this test application to
execute and pass. Test writers can specify the denied security permissions by
including a deny attribute in the test description. If the security policy grants the
specified permissions, the test must be filtered out of the test run.

For example, suppose a test application is written to expect that a security exception
is thrown because the javax.microedition.io.Connector.file.read
permission is not granted. If the security policy grants the
javax.microedition.io.Connector.file.read permission to the test
application, the test must be filtered out and not run.

The following is an example of the deny attribute and permission added to a test
description file.

CODE EXAMPLE 5-20 deny Attribute in the Test Description

<TR>

<TD SCOPE="row"> deny </TD>

<TD> javax.microedition.io.Connector.file.read </TD>
</TR>

The value of the deny attribute is a list of space-separated permissions that must be
denied by the security policy for this test application to execute and pass. If the
permissions are granted in the protection domain for the test application, the test
application must be filtered out and not run.

Chapter 5 Writing Tests That Use Framework Resources 71

The following is an example of a test description file that includes the deny attribute
and permissions.

CODE EXAMPLE 5-21 Test Description That Denies Permissions for a Security Test

<TITLE>Test Specifications and Descriptions for Test</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 SUMMARY="Javatest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Ttem</TH><TH SCOPE=
"col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> checking deny permission</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test.java </TD>
</TR>

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg.Test</TD>

</TR>

<TR>

<TD SCOPE="row"> deny </TD>

<TD> javax.microedition.io.Connector.file.read </TD>
</TR>

</TABLE>
</BODY>
</HTML>

72

Adding Resource Files in Tests

Test writers must sometimes develop tests that require extra resource files (such as
image, data, or class files) for the test execution. When writing tests for CLDC and
MIDP-based implementations, test writers can use the resources entry in the test
description file to specify the location of the resource files.

Java ME TCK Framework Developer's Guide * August 2008

During test execution, the test execution framework bundles the resource files
(specified in the test description) and the test class files (listed in the
testClasses.lst) into a test JAR file.

For example, the following test requires a Duke.png to create the Image object for
successful execution.

CODE EXAMPLE 5-22 Test That Requires an Image Resource

Public class Test2 {
public Status testImage() {

Image imgI = null;

String imageDir = "/shared/sample/pkg3/";
try {
imgI = Image.createImage (imageDir+"Duke.png") ;

} catch (IOException e) {

}
if (imgI == null) {
return Status.failed("Failed: no image is created.");
}
return Status.passed("OKAY") ;

For this test example, the following is a resources entry that might be added to the
test description file.

CODE EXAMPLE 5-23 resources Attribute in the Test Description

<TR>

<TD SCOPE="row"> resources </TD>
<TD>shared/sample/pkg3/Duke.png</TD>
</TR>

In the resources entry, the value of the resource
(shared/sample/pkg3/Duke.png) is the qualified name of the resource file. If
multiple resources are added to the test description file, separate them with white
space. If the resource file is a class file, the file name must include the .class
extension.

During build time, the Duke . png image file is copied into the specified destination
directory (. ./shared/sample/pkg3/Duke.png). During test execution, the
execution framework checks the testClasses.1st file and the test URL. During

Chapter 5 Writing Tests That Use Framework Resources 73

74

the test execution, the framework bundles the resource files specified in the
resource entry (. ./shared/sample/pkg3/Duke.png) and the class files listed
in testClasses.1st into a test JAR file.

The following is an example of a test description file containing a resources entry,
directory, and file name.

CODE EXAMPLE 5-24 Test Description That Includes Resources

<HTML><HEAD>
<TITLE>Test Specifications and Descriptions for Test2</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Test2</H1>
<HR>

<TABLE BORDER=1 SUMMARY="Javatest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Ttem</TH><TH
SCOPE="col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> Checking image creation</TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test2.java </TD>
</TR>

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg3.Test2 </TD>

</TR>

<TR>

<TD SCOPE="row"> keywords </TD>
<TD>runtime positive </TD>

<TR>

<TD SCOPE="row"> resources </TD>
<TD>shared/sample/pkg3/Duke.png</TD>

</TR>

</TABLE>

</BODY>

</HTML>

Java ME TCK Framework Developer's Guide * August 2008

Enabling Test Selection

Test selection in a test run is of value to a user when a test suite includes tests for
optional features that were not implemented. Because the assumption of tests is that
the target implementation must support these features, the implementation fails
tests that are not be applicable to it. This section describes how a developer can
enable the filtering of the tests (test selection) in a test suite.

Factors and Mechanisms for Test Selection

The following factors affect how tests are selected for a test run and describe several
mechanisms that exist for users to enable test selection.

m Keywords - A standard test selection mechanism provided by the harness that
enables a user to filter tests based on specific descriptive keywords assigned by a
developer to a test.

This mechanism is convenient for logical test grouping. The following are
examples of test filtering using keywords in the test description file.

n Type (distributed, interactive, or OTA)

See “Required Distributed Test Keyword” on page 50, “Required Interactive
Test Keywords” on page 56, and “Required OTA Test Keyword” on page 60.

» Security mode (trusted or untrusted)

See “Using Keywords to Mark Security Tests” on page 67.
» Custom keywords specified by the user

See Appendix C for a list of the Framework keywords.

m Prior test status - A built-in mechanism in the harness that enables a user to filter
tests based on the previous runs.

The test developer is not required to perform any action to enable this filtering
mechanism. Filtering is normally set by the user through the Prior Status question
in the standard configuration interview.

m Exclude list - Excludes certain test cases from the certification test run.

The exclude list (testsuite. jtx) file identifies the tests in a test suite that
should not be run. The exclude list is located in the test suite 1ib directory. Test
developers use the following format to add tests to the exclude list:

Test-URL[Test-Cases] BugID Keyword

See Chapter 4 for additional information about the exclude list.

Chapter 5 Writing Tests That Use Framework Resources 75

76

m selectIf expression in test description - This mechanism provides a flexible
way for developers to make individual tests selectable
(com.sun.tck.j2me.javatest.ExprFilter) by including a selectIf
expression in test description.

The test developer can include a selectIf expression in the test description file
for a test. Each selectIf field contains a Boolean expression that is evaluated by
the filter. The test is selected by the harness for a test run if the value is true. See
“selectIf Test Selection” on page 77.

m Grant or deny mechanism - This mechanism enables users to select tests based on
the security requirements (com. sun.tck.midp.policy.PermissionFilter)
specified by the test developer.

Tests are selected if all the permissions listed by the developer in the grant or
deny test description field are granted or denied. See “Granting or Denying
Security Permissions” on page 70.

m Custom test suite-specific filters - Developers can extend the test suite with
custom test suite-specific filters. The JavaTest Architect’s Guide describes creating
custom filters.

selectIf Test Selection

The following procedures describe how developers can use the selectIf
expression to enable filtering tests that are not applicable for an implementation.

V¥ To Enable Test Selection with the selectIF Expression
The selectIf entry in the test description file contains a Boolean expression which

is evaluated by a test filter. If the Boolean expression evaluates to false, the test is not
run. If the expression evaluates to true, the test is run.

Java ME TCK Framework Developer's Guide * August 2008

1. Add a selectIf entry to the test description file for a test class that users
might be required to filter out of a test run.

The following is an example of a selectIF entry added to a test description file.

<TR>

<TD SCOPE="row"> selectIf </TD>
<TD> isFeatureSupported </TD>

</TR>

In the example, isFeatureSupported is an environment variable. Most
environment variables can be used as Boolean expressions to filter out tests from
a test run. Usually, the value of an environment variable is target implementation
specific and must be provided by the user through the configuration interview.

Step 2 describes the procedure for writing an interview question that collects this
information from the user.

The following example is a complete test description file that includes a
selectIf entry.

<TITLE>Test Specifications and Descriptions</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Test</H1>
<HR>

<TABLE BORDER=1 SUMMARY="JavaTest Test Description" CLASS=
TestDescription>

<THEAD><TR><TH SCOPE="col">Item</TH><TH SCOPE=
"col">Value</TH></TR></THEAD>

<TR>

<TD SCOPE="row"> title </TD>

<TD> Checking constructors </TD>

</TR>

<TR>

<TD SCOPE="row"> source </TD>

<TD> Test.java </TD>
</TR>

<TR>

<TD SCOPE="row"> executeClass </TD>
<TD> sample.pkg.Test </TD>

</TR>

<TR>

<TD SCOPE="row"> keywords </TD>
<TD>runtime positive </TD>

</TR>

<TR>

Chapter 5 Writing Tests That Use Framework Resources 77

<TD SCOPE="row"> selectIf </TD>
<TD> isFeatureSupported </TD>

</TR>

</TABLE>

</BODY>
</HTML>

78 Java ME TCK Framework Developer's Guide * August 2008

2. Write an interview question that obtains the value of the environment variable
from the user.

To obtain the value of environment variables from users, test developers must
write an interview class and create the required interview questions. If an
interview class already exists in the test source, the developer can either add new
questions to the existing interview or create a new sub-interview class containing
the required questions and link it to the existing interview class.

For this example, we will assume that we have an existing interview class
(SampleInterview. java) in the Simple Test Suite source and that we are
adding a new question about whether the target implementation supports a
specific feature.

For an example of linking a new interview class to an existing interview, see
Chapter 4 “Creating and Using a Configuration Interview” on page 32.

The following is an example of question code that can be added to an interview.

// The added question:Does the implementation support the feature?
private YesNoQuestion gFeatureSupport = new YesNoQuestion(this,
"featureSupport") {
public void clear () {
setValue (YesNoQuestion.NO) ;

protected void export (Map data) {
boolean b = (value == YES);
data.put ("isFeatureSupported", String.valueOf (b)) ;

In the question code, the isFeatureSupported environment variable name
must be consistent with the name used in Step 1 for selectIf (in the test
description file). Also in the question code, featureSupport is the unique
question name that becomes part of the question key created in Step 3 for use in
both the map and the properties files.

The following example is a complete configuration interview
(sampleInterview. java) that contains the added question code.

public class SampleInterview extends Interview ({
/**
* @param parent
* @throws Fault
*/
public SampleInterview (MidpTckBaseInterview parent)
throws Fault {
super (parent, "sample");
init () ;
}

private void init() throws Fault {

Chapter 5 Writing Tests That Use Framework Resources 79

setResourceBundle ("118n") ;
setHelpSet ("help/sampleInterview") ;

first = new StringQuestion(this, "hello");
first.setExporter (

Exporters.getStringValueExporter ("sample.string.value"));
first.linkTo (gFeatureSupport) ;
setFirstQuestion(first);

// This is the added question: Does the implementation support the feature ?
private YesNoQuestion gFeatureSupport = new YesNoQuestion(this,
"featureSupport") {
public void clear() {
setValue (YesNoQuestion.NO) ;

protected void export (Map data) {
boolean b = (value == YES);
data.put ("isFeatureSupported", String.valueOf (b)) ;

protected Question getNext () {
return end;
Y

private StringQuestion first;
private final FinalQuestion end = new FinalQuestion(this, "end");

3. Add interview question .smry and .text entries to the .properties file.

For each added interview question, the developer must create corresponding
.smry and . text entries in the resource file (.properties). The following is an
example of the . smry and . text entries added for the new question.

SampleInterview. featureSupport.smry = Feature Support
SampleInterview. featureSupport.text = Does your system support the feature

The .smry and . text entries contain elements used to perform the following
functions:

m SampleInterview.featureSupport is a unique question key that the
Configuration Editor uses to identify the required question and its
corresponding More Info topic.

Question keys are created in the following form:

80 Java ME TCK Framework Developer's Guide * August 2008

interview-class-name.question-name

m The . smry entry specifies the question title (in the example, Feature
Support) that the Configuration Editor displays to the user.

m The . text entry specifies the question text (in the example, Does your
system support the feature that ... ?)thatthe Configuration
Editor displays to the user.

4. Create a More Info topic file for the question.

The More Info system of the Configuration Editor displays topic files for each
question. Each file provides detailed information that the user needs when
answering its associated interview question. Refer to Chapter 6 in the JavaTest
Architect’s Guide for additional information about creating More Info topic files.

Examples of More Info topic files can be found in the following
SampleTestSuite location.

| AdvancedTestSuite/sampletck/src/sample/suite/help/default/Samplelnterview/ |

5. Update the map file.
After the topic file is created, the map file must be updated.

If the topic file for the new question is named featureSupport.html, the test
developer must add the following line to the sampleInterview. jhm file.

<mapID target="SampleInterview.featureSupported"
url="SampleInterview/featureSupport.html" />

Note — The sampleInterview.jhm map file is located in the
AdvancedTestSuite/sampletck/src/sample/suite/help/default/
directory.

6. Create the JAR file.

After creating the interview, you must package it into a JAR file for inclusion with
the test suite during the build time.

If you successfully ran the build as described in Chapter 3, “Building an Updated
Simple Test Suite” on page 23, you have an example of this JAR file under the 1ib
directory. In the example, the JAR file is named
AdvancedTestSuite/lib/sample_jt.jar.

7. Add the JAR file to the classpath entry of the testsuite.jtt file.

Additional Action

The test suite containing the configuration interview and associated tests can now be
built. See “Building a Test Suite” on page 45, in Chapter 4.

Chapter 5 Writing Tests That Use Framework Resources 81

82 Java ME TCK Framework Developer's Guide * August 2008

CHAPTER 6

Using the ME Framework Agent

This chapter describes how to use the ME Framework Agent (agent). The agent is a
small Java technology application used in conjunction with the harness to run tests
on a Java platform on which it is not possible or desirable to run the main harness.
The agent runs on the test platform and responds to requests from the harness,
which runs on a separate platform.

The ME Framework 1.2.1 contains a rewritten agent subsystem that does not use the
standard JavaTest harness Agent Monitor. It has a different set of command-line
parameters from those described in the JavaTest harness documentation as well as a
different set of JAR files and application main classes when compared to those in
Framework version 1.1.2.

Starting the Agent

The agent resides in the main_agent. jar file and is started from a command line.
When starting an agent, the communication type specified for the agent must
correspond to the communication type specified in the configuration interview. If
you specify a communication type for the agent that differs from the type set in the
configuration interview, you must change the communication type in the
configuration interview to correspond with the agent before running tests.

The Framework provides built-in support for socket (TCP/IP), datagram (UDP),
HTTP, and serial (RS-232) communication types. Custom communication types
provided by users can also be specified.

83

84

Using TCP/IP Communication

The simplest configuration for starting an agent is to specify a connection over
TCP/IP with the default port number unchanged in the configuration interview. The
following is an example of the command used to start the agent that uses the
TCP/IP communication type:

java -cp main_agent.jar com.sun.tck.j2me.agent.AgentMain -tcp \
-activeHost JTHARNESS-HOST-NAME -trace
In the example, the following settings and options are used:

m JTHARNESS-HOST-NAME represents the name of the host on which the JavaTest
harness is running.

m The -trace option displays the test progress and any errors that are reported.
m The -tcp option specifies that the agent use the socket communication type
(TCP/1IP).

See “Displaying Agent Command Line Parameters” on page 86 for additional agent
parameters and functionality

Using UDP Communication

To start an agent that uses the datagram communication type (UDP), replace the
-tcp option in the previous example with -udp.

Note — To run tests with the agent, you must also change the communication type in
the configuration interview to UDP.

The following is an example of the command used to start the agent that uses the
datagram communication type:

java -cp main_agent.jar com.sun.tck.j2me.agent.AgentMain -udp \
-activeHost JTHARNESS-HOST-NAME -trace

See “Displaying Agent Command Line Parameters” on page 86 for additional agent
parameters and functionality.

Using HITP Communication

A more complex configuration for starting an agent is to specify a connection HTTP.
To start agent that uses the HTTP communication, additional options are required in
the command.

Java ME TCK Framework Developer's Guide * August 2008

Note — To run tests with the agent, you must also change the communication type in
the configuration interview to HTTP.

The following is an example of the command used to start an agent that uses the
HTTP communication type:

java -cp main_agent.jar:midp_commClient.jar \
com.sun. tck.j2me.agent.AgentMain \
-serverAddress \
http://JTHARNESS-HOST-NAME : [THARNESS-PORT \
-commImplClass \
com.sun.tck.j2me.services.commService.clients.MidHTTPCommClient
-trace

See “Displaying Agent Command Line Parameters” on page 86 for additional agent
parameters and functionality.

Using Serial Communication

Serial communication between the harness and the agent requires use of the the
Comm API (http://java.sun.com/products/javacomm/) on the JavaTest
harness side and Generic Connection Framework from Java ME
(javax.microedition.io package) on the agent side.

To enable serial support for communication between JavaTest harness and agent
make sure the Comm API is properly configured and the harness is started with
Comm API supported. Also make sure the implementation supports the comm:
protocol in the context of javax.microedition. io.

To start an agent with serial communication, use the GenericCommClient. The
connection string must be constructed as defined in the CommConnection class of
CDC version 1.1. Parity and stop bits are configured through the string baud rate.
Default values are implementation dependent.

GenericCommClient has two optional parameters, -1imitPacketSize and
-verbose. These parameters can be provided as -commArgs arguments. The value
of -limitPacketSize limits the number of bytes sent at one time by the device to
harness side. The default value is 4096 bytes.

The -verbose option is very useful for troubleshooting problems with serial
connection. In this mode, all communication between the agent and the JavaTest
harness is displayed in the console.

The following is an example of the command used to start an agent that uses the
serial communication type:

Chapter 6 Using the ME Framework Agent 85

java -cp main_agent.jar:generic_commClient.jar \
com.sun.tck.j2me.agent.AgentMain \

-trace \

-serverAddress "comm:com0;baudrate=19200" \

-commImplClass \

com. sun. tck.j2me. services.commService.clients.GenericCommClient\

-commArgs -verbose

See “Displaying Agent Command Line Parameters” on page 86 for additional agent

parameters and functionality.

86

Displaying Agent Command Line

Parameters

Use the following command to display the command line parameters:

java -cp main_agent.jar com.sun.tck.j2me.agent.AgentMain -help

The command prints information about the agent command line parameters.
TABLE 6-1 lists and describes the agent command line parameters.

TABLE6-1 ME Agent Command Line Parameters

Parameter

Description

-activeHost host

-activePort port

-commArgs argl ... argN

-commArgsStart argl ... argN -~commArgsEnd

-commImplClass class-name

-concurrency number

-dumpSystemProps

Specifies the host name for the standard
TCP or UDP clients. localhost is the
default value.

Specifies the port number for the standard
TCP or UDP clients. 8188 is the default
value.

Specifies the CommunicationClient
initialization parameters. They must be the
last parameters in the command line.

Specifies the CommunicationClient
initialization parameters.

Specifies the name of the
CommunicationClient implementation.

Sets the maximum number of simultaneous
connections.

Adds system properties to the registration
parameters.

Java ME TCK Framework Developer's Guide * August 2008

TABLE6-1 ME Agent Command Line Parameters (Continued)

Parameter

Description

-help

-map file-name

-Pkey=value
-serverAddress address

-tcp

-testClassesURL

-trace
-udp

-usage

Prints a list and description of command
line parameters.

Specifies a map file for translating the
arguments of incoming requests.

Defines the registration parameter.
Specifies the server address.

Specifies using of the standard TCP/IP
client.

Pointer to test classes in URL format. Can

refer to a remote source. Only a single URL

can be specified for each parameter. Use

multiple -testClassesURL parameters to

specify multiple sources for test classes.

Sets tracing of the agent execution.

Specifies using of the standard UDP client.

Prints a list and description of command
line parameters.

Chapter 6 Using the ME Framework Agent

87

88 Java ME TCK Framework Developer's Guide * August 2008

APPENDIX A

Test API

The following is the Java ME technology-specific API that every test developer must
know:

Test

Status

MultiTest
J2MEDistributedTest
J2SEDistributedTest
DistribInteractiveTest

OTATest

Test

Interface name: com.sun.tck.cldc.lib.Test

This is a Java ME technology version of the standard harness Test interface. This

interface is implemented by all Java ME technology tests. Each test must define the
run method as follows:

CODE EXAMPLE A-1 run Method

| public Status run(String[] args, PrintStream log, PrintStream ref)

89

A test must also define main as follows:

CODE EXAMPLE A-2 Definition of main

public static void main(String[] args) {

Test t = new <test-class-name> () ;

Status s = t.run(args, System.err, System.out):;
s.exit () ;

}

Defining main in this manner enables the test to also be run standalone,
independent of the harness.

Status

Class name: com.sun.tck.cldc.lib.Status

This is a Java ME technology version of the standard harness Status class. It
embodies the result of a test, a status-code, and a related message.

90

MultiTest

Class name: com.sun.tck.cldc.lib.MultiTest

This is a Java ME technology version of the standard harness MultiTest class. It
serves as a base class for tests with multiple sub test cases. This base class
implements the standard com.sun. tck.cldc.lib.Test features so that you can
provide the additional test cases with little concern about the boilerplate needed to
execute individual test case methods (such as update the runTestCases () method
to add check and invocation statement). MultiTest is designed as a base class used
during development of new test classes.

You must add individual test case methods to your derived test class to create a
useful test class. Each test case method must take no arguments. If you need to pass
an argument into a test method, design a wrapper test case to calculate the argument
values and then call the test method with the correct arguments. The test case
methods must follow the convention shown in CODE EXAMPLE A-3.

CODE EXAMPLE A-3 Test Case Method

| public Status methodName ()

Java ME TCK Framework Developer's Guide * August 2008

J2MEDistributedTest

Class name:
com.sun.tck.j2me.services.messagingService.J2MEDistributedTest

This is the base class for the Java ME technology component of the distributed test.
Each distributed test has a unique name used for identification during message
exchange. The send and handleMessage methods can be used to send and receive
messages to or from the other named components of the test.

CDCDistributedTest

Class name:
com.sun. tck.j2me.services.messagingService.CDCDistributedTest

This is the base class for the Java ME technology component of a distributed test that
targets CDC environments. Each distributed test has a unique name used for
identification during message exchange. The send and handleMessage methods
can be used to send and receive messages to or from other named components of the
test.

J2SEDistributedTest

Class name:
com.sun.tck.j2me.services.messagingService.J2SEDistributedTest

This is the base class for the Java SE technology component of the distributed test.
This is a Java SE technology counterpart for J2MEDistributedTest.

DistribInteractiveTest

Class name: com.sun.tck.midp.lib.DistribInteractiveTest

Appendix A Test API 91

This is the base class for the Java SE technology component of the interactive test. It
is a subclass of J2SEDistributedTest that requires user action before test result is
determined. Three different user interface types are supported:

m Yes-No - The user is required to determine the outcome of the test.

m Done - The user is required to perform certain actions and confirm the
completion, but cannot otherwise affect the outcome of the test.

m Information only - A visual component is presented to the user, but no user
action is required.

OTATest

Class name: com.sun.tck.midp.lib.0TATest

This is the base class for the Java SE technology component of an OTA test. It
provides various convenience methods which trigger installation, execution, or
removal of an application.

92 Java ME TCK Framework Developer's Guide * August 2008

APPENDIX B

Framework Redistributables
Directory

This appendix describes the contents of the redistributables directory provided by
the Java ME TCK Framework bundle. The contents of the redistributables directory
are organized in the following directory structure:

m 1ib Directory
m src Directory

m doc Directory

1ib Directory

The 1ib directory contains the Java ME TCK Framework JAR files and keystore files.
The files provided in the 1ib directory are not part of the Java ME TCK Framework
functional groupings. The following figure illustrates the dependencies between the
JAR files in this directory.

93

CLDC and MIDP Execution Communication

midp_xprtcint.jar

midp_agent.jar midp_commClient.jar

midp_httpcint.jar midp_agent10.jar cldc_commClient.jar

cldc_xprtcint.jar

cldc_agent.jar datagram_commClient.jar

generic_commClient.jar

cldc_httpsrvr.jar

j2me_commClients.jar

midp_|

httpsrvr.jar

j2me_communication.jar

jkssigner.jar

j2me_messaging.jar

datagram_comServer.jar

tckbuild.jar

j2mefw_jt.jar

interviewlib.jar

j2me_httpCommServer.jar

serial_commServer.jar

CDC Agents

xlet_agent.jar applet_agent.jar

94 Java ME TCK Framework Developer's Guide * August 2008

m tckbuild.jar - Utility classes used by TCK build.

m j2me-tck-framework_ 121.txt - Java ME TCK Framework version marker
(this file has no content).

m midptck.ks - Standard keystore containing default certificates used for MIDP
application signing.

The keystore file is shipped as part of the Framework. The following information
is required to utilize it:

m Certificate Alias: dummyCA

» Keystore Password: keystorepwd

» Private Key Password: keypwd

The certificate is already integrated in the WTK.

Core

The following are core Java ME TCK Framework files provided in the 1ib directory:
m j2mefw_jt.Jjar - Harness plug-in code.
Most of the Java SE platform code to support ME TCKSs is in this file.

m interviewlib.jar - Helper library for interview creation.

CLDC and MIDP Execution

The Java ME TCK Framework provides the following two functional groupings of
CLDC and MIDP execution files:

m Agent and client . jar files

m Plug-in . jar files

CLDC and MIDP Agents and Clients

The following are CLDC and MIDP agent and client . jar files provided in the 1ib
directory:

m midp_xprtclnt.jar - Client for use in Test Export mode.

This client does not implement a communication channel with a remote machine.
m midp_httpclnt.jar - HTTP-based communication client for MIDP.
m cldc_httpclnt.jar - HTTP-based communication client for CLDC.

m client.jar - Client interface.

Appendix B Framework Redistributables Directory 95

This is the primary communication interface for the pluggable communication
protocol used by CLDC-based agents.

m midp_agent.jar - Standard harness agent for MIDP 2.x.

This agent works in conjunction with an HTTP-based communication client
(midp_httpclnt.jar)

Application model: MIDlet
Communication channel: HTTP
m midp_agentl0.jar - Standard harness agent for MIDP 1.0.

This agent works in conjunction with an HTTP-based communication client
(midp_httpclnt. jar). This agent does not support the MIDP 2.x security
model.

Application model: MIDlet
Communication channel: HTTP

m cldc_agent.jar - Standard harness agent for CLDC.
Application model: Main

Communication channel: pluggable.

Plug-ins

The following are the plug-in. jar files provided in the 1ib directory:

m cldc_httpsrvr.jar - Implementation of the server interface for the harness
plug-in.
This server works with the HTTP-based Client for CLDC.

m midp_httpsrvr.jar - Implementation of the server interface for the harness
plug-in.

This server works with the HTTP-based Client for MIDP.
m jkssigner.jar - X.509 signer for MIDP application JAR files.

Communication

The Java ME TCK Framework provides four functional groups of . jar files for use
in communications between agents and the test harness as well as for use with the
distibuted test framework (DTF). The Messaging group of . jar files is used for the
distributed testing framework (DTF), while the CommService, CommClients, and
CommServers functional groups are for use in communication between agent and
test harness as well as the DTF.

96 Java ME TCK Framework Developer's Guide * August 2008

Messaging

j2me_messaging. jar provides the Java ME technology messaging service classes.
These classes are the base classes for distributed tests.

CommService

The following are the CommService . jar files provided in the 1ib directory:
m j2me_commClients.jar - Distributed test communication client interface.

®m j2me_communication.jar - Service that provides communication between the
harness and the remote device.

CommClients

The following are the CommClients . jar files provided in the 1ib directory:

m midp_commClient.jar - Communication client interface implementation that
uses HTTP for communication.

m cldc_commClient. jar - Implementation of the Client interface for the CLDC
device.

This client uses HTTP for communication.

m datagram_commClient.jar - Communication client interface implementation
that uses datagrams for communication.

m generic_commClient.jar - Communication client interface implementation
that uses Generic Communication Framework for communication.

CommServers

The following are the CommServers . jar files provided in the 1ib directory:
m datagram comServer.jar - Datagram-based communication server.
m j2me_httpCommServer.jar - HTTP-based communication server.

m serial_commServer.jar - Serial-based communication server.

Appendix B Framework Redistributables Directory 97

Test Export Support Libraries

The following JAR files are automatically copied into the export directory when
exporting tests and are used from the exported Ant build script, build.xml:

m exportSigner.jar - Command line tool for signing JAD files when rebuilding
exported tests.

m provisioning_ server.jar - Simple HTTP server used for OTA provisioning
of exported tests.

CDC Agents

The following are CDC agent files provided in the 1ib directory:

m main_agent.jar - JavaTest agent for Foundation Profile, Personal Basis Profile,
and Personal Profile.

Application model: Main
Pluggable communication channel
m xlet_agent.jar - JavaTest agent for Personal Basis Profile and Personal Profile.
Application model: Xlet
Pluggable communication channel
m applet_agent.jar - JavaTest agent for Personal Profile.
Application model: Applet

Pluggable communication channel

98

src Directory

The src directory contains the Java ME TCK Framework test sources, test
descriptions, precompiled Java ME TCK Framework classes, and scripts for tests
precompilation. Java ME TCK Framework classes consist of server, agent, interview,
and communication channel source files.

Java ME TCK Framework Developer's Guide * August 2008

Java ME TCK Framework Server Classes and
Interfaces

The following are Java ME TCK Framework server classes and interfaces provided
in the src directory:

m com/sun/cldc/communication/midp/HttpConstants - HTTP code and
string constants.

m com/sun/cldc/communication/midp/SuiteSigner - Used to sign JAR files.

m com/sun/cldc/communication/midp/ContentHandler - Used to generate
the JAD file interface.

m com/sun/cldc/communication/midp/DefaultContentHandler - Content
handler generating default JAD file.

A custom content handler can be substituted if device-specific or
technology-specific JAD file attributes are needed.

m com/sun/cldc/communication/midp/BaseServer - Abstract class.

m com/sun/cldc/communication/midp/BaseHttpServer - Used as a basis for
HTTP connection tests.

m com/sun/cldc/communication/midp/HttpServer - Interface.

m com/sun/cldc/communication/midp/MIDHttpExecutionServer - Actual
server used for application delivery.

Agent Classes

The following are the agent classes and interfaces provided in the src directory:
m com/sun/cldc/communication/Client - Communication interface

m com/sun/cldc/communication/MultiClient - Communication interface
m com/sun/tck/midp/javatest/agent/MIDletAgent - Standard agent

m com/sun/tck/cldc/javatest/agent/CldcAgent- Standard agent

Digital Signer
com/sun/tck/midp/signer/JKSSigner implements SuiteSigner interface.

Developers can provide their own version if they are using their own non-standard
version of the SuiteSigner interface.

Appendix B Framework Redistributables Directory 99

100

Preverification Script

com/sun/tck/cldc/javatest/PreverificationScript is used to verify class
files when creating a test suite. All class files must be preverified. The preverification
script is used during development.

Java ME Technology Version of Harness Classes

The following are Java ME technology versions of the harness classes provided in
the src directory:

m com/sun/tck/cldc/lib/Status
m com/sun/tck/cldc/lib/MultiTest
m com/sun/tck/cldc/lib/Test

Basic Interview Classes Containing General
Questions

The following classes are used as an example of an interview. It is possible to build
on these classes if the test suite architect or developer is creating a simple test suite
and only adding a few questions. More complex test suites require additional
changes not reflected in the following interview classes:

m com/sun/tck/j2me/interview/distributedtest/DTFInterview
m com/sun/tck/midp/interview/ConnectionInterview

m com/sun/tck/midp/interview/MidpCldcTckInterview

m com/sun/tck/midp/interview/MidpTckBaseInterview

m com/sun/tck/midp/interview/MidpTckInterview

m com/sun/tck/midp/interview/OTAInterview

m com/sun/tck/midp/interview/SigtestInterview

m com/sun/tck/midp/interview/TrustedInterview

m com/sun/tck/midp/interview/VmAdvancedInterview

m com/sun/tck/midp/interview/VmInterview

Java ME TCK Framework Developer's Guide * August 2008

Communication Channel

The following classes execute on the server side. These classes are closely related to
the communication channel but their purpose is primarily in defining the way in
which files are bundled in the JAR file.

m com/sun/cldc/communication/Server - Interface.

m com/sun/cldc/communication/TestProvider - Generic interface for the test
bundler mechanism.

m com/sun/tck/cldc/javatest/TestBuilder - Class that packs test classes
and resources into . jar files.

m com/sun/tck/cldc/javatest/TestBundler - Bundler that knows how to
package several tests and the agent in a . jar file.

This class keeps track of all resources, conflicts, and . jar file size limits.

m com/sun/tck/cldc/javatest/util/ClassPathReader - Utility class used
to fetch class and resource files from the classpath.

m com/sun/tck/cldc/javatest/util/JarBuilder - JAR file builder.
This is a utility class that creates . jar files.

m com/sun/tck/cldc/communication/TestResultListener -
Implementation of the Communication Channel.

m com/sun/tck/cldc/communication/GenericTestBundle - Implementation
of the Communication Channel.

m com/sun/tck/cldc/communication/GenericTestProvider -
Implementation of the Communication Channel.

m com/sun/tck/cldc/communication/TestBundle - Implementation of the
Communication Channel.

m com/sun/tck/midp/javatest/MessageClient - Support for distributed tests
on MIDP.

This class provides an implementation of the harness distribution mechanism on
top of HTTP.

m com/sun/tck/midp/javatest/MidBundler - MIDP-specific extension that
builds on top of the generic CLDC mechanism.

m com/sun/tck/midp/javatest/MessageSwitch - Support for distributed tests
on MIDP.

This class provides an implementation of the harness distribution mechanism on
top of HTTP.

m com/sun/tck/midp/javatest/RemoteManager - Support for distributed tests
on MIDP.

This class provides an implementation of the harness distribution mechanism on
top of HTTP.

Appendix B Framework Redistributables Directory 101

102

com/sun/tck/midp/javatest/ExportFilter - Exports tests for offline
standalone execution.

com/sun/tck/midp/javatest/TestRegistry - Static class that keeps track of
the global properties of individual tests.

Tests are keyed by their unique IDs.

com/sun/tck/midp/javatest/MidBundle - MIDP-specific extension that
builds on top of the generic CLDC mechanism.

com/sun/tck/midp/javatest/MidMessageClient - Support for distributed
tests on MIDP.

This class provides an implementation of the harness distribution mechanism on
top of HTTP.

doc Directory

The doc directory contains the Java ME TCK Framework Release Notes and the Java
ME TCK Framework Developer’s Guide.

Java ME TCK Framework Developer's Guide * August 2008

APPENDIX C

Test Description Fields and
Keywords

This appendix describes the Framework supported fields and keywords for test
description files.

The JavaTest harness requires that each test is accompanied by machine readable
descriptive data in the form of test suite-specific name-value pairs contained in a test
description file. The JavaTest harness uses the contents of the test description file to
configure and run tests.

See the Java Technology Test Suite Development Guide for detailed information
about creating test description files.

Test Description Fields

The test description file provides the harness with critical information required to
run the specified test. Test description files contain fields that supply the following
information to the harness:

m Source files that belong to the test
m Class or executable to run

m Information to determine how to run the test

103

TABLE C-1 lists the test description fields supported by the Framework and describes
how their values are used by the harness when the tests are run.

TABLE C-1 Framework Test Description Fields

Field Description

title A descriptive string that identifies what the test does. The
title appears in reports and in the harness status window.

source For compiler tests, contains the names of the files that are
compiled during the test run.

For runtime tests, contains the names of the files previously

compiled to create the test’s class files. Precompiled class files

are included with the test suite. Source files are included for
reference only. Source files are often . java files, but can also
be .jasm or .jcod files.

* .jasmis a low-level bytecode assembler that assembles
class files containing sets of bytecodes that are unusual or
invalid for use in runtime tests.

® .jcodis a class-level assembler that builds classes with
unusual or invalid structure for use in runtime tests.

These tools are used to generate class files that cannot be
reliably generated by a Java programming language compiler.
For most XML parser tests in the test suite-runtime, the
source field contains the names of the files that are
processed during the test run. These files are XML schema
sources and XML documents usually having file name
extensions of .xsd and .xml respectively. Such tests share a
single precompiled class, TestRun, that invokes the XML
parser under test through the Java technology API and passes
the source file names to the parser for processing.

The test model is similar to compiler testing because the
sources used in the tests contain valid and invalid use of
various constructs of corresponding languages.

keywords String tokens that can be associated with a given test. They
describe attributes or characteristics of the test (for example,
how to execute the test, and whether it is a positive or
negative test). Keywords are often used to select or deselect
tests from a test run. See “Keywords” on page 106.

executeClass The main test class that the harness loads and runs. This class
might in turn load other classes when the test is run.

104 Java ME TCK Framework Developer's Guide ¢ August 2008

TABLE C-1 Framework Test Description Fields (Continued)

Field Description

executeArgs An array of strings that are passed to the test classes being
executed. The arguments might be fixed but often involve
symbolic values that are substituted from the test
environment (variables defined elsewhere in the test
environment). The result of substituting values can be seen in
the resulting . jtr files.
These arguments form the basis for the set of arguments that
are passed into the tests defined in the executeClass field.

The default value of any variable not defined in the test
environment is an empty string.

executeLocks Used in CDC mode.

timeout A value specified in seconds used to override the default
ten-minute timeout used with all test suite tests.

context Specifies configuration values required by the test. When a
test requires information about the technology under test
(context) to determine the expected results, this information is
identified in the context field of the test description table. The
harness checks to be sure that all values specified in the
context field are defined in the test environment before it
attempts to execute the test. If any of the values are not set,
the test is not executed and the test is considered to be in
error. See the Java Technology Test Suite Development Guide for
detailed information about setting context sensitive properties
for a test.

grant Space-separated list of MIDP permission names. Specifies
MIDP permissions that must be granted for this test
application. If tests are run as trusted MIDlets, these
permissions are included in the MIDlet-Permissions
attribute for the test MIDlet. If tests are run as untrusted
MIDlets, the tests are filtered out if the security policy does
not have all of these permissions granted in the untrusted
domain.

deny Space-separated list of MIDP permission names. Specifies
MIDP permissions that must be denied for this test
application. If tests are run as trusted MIDlets, these
permissions are not included in the MIDlet-Permissions
attribute for the test MIDlet. If tests are run as untrusted
MIDlets, the test can be filtered out if the security policy has
all of these permissions granted in the untrusted domain.

Appendix C Test Description Fields and Keywords 105

TABLE C-1 Framework Test Description Fields (Continued)

Field Description

selectIf Specifies a condition that must be satisfied for the test to be
executed. This field is constructed using environment values,
Java programming language literals, and the full set of
Boolean operators:
+ -5/, <> <=>=& 1,1, 1=, ==).
Example:
integerValue>=4 & display=="my_computer:0”
If the Boolean expression evaluates to false, the test is not run.
If the expression evaluates to true, the test is run. If any of the
values are not defined in the test environment, the harness
considers the test to be in error.

remote Contains information required to run distributed network
tests.
resources Contains the location of the resource files that are needed by

the test class. The resources files can be image, data, or
class files. Separate multiple resources with white space.

remoteSource Contains the source name of the remote test class of this
distributed test group. Separate multiple remote source files
with white space.

Jad-addon Adds a content of a file to the test bundle JAD file.
Manifest-addon Adds a content of a file to the test bundle’s manifest.
cdcSecurityPermMapper

suitableForPlatform

DoubleDutySecurity

Keywords

Keywords are tokens associated with specific tests. Keywords have the following
functions:

m Convey information to the harness about how to execute the tests

m Serve as a basis for including and excluding tests during test runs

Users specify keyword expressions in the harness Configuration Editor to filter tests
during test runs.

106 Java ME TCK Framework Developer’'s Guide ¢ August 2008

Keywords are specified by the test developer in the keywords field of the test
description. Test suites can provide additional custom keywords. TABLE C-2 identifies
the Framework keywords and describes the function of their values in the test

description file.

TABLE C-2 Framework Keywords

Keyword Description

interactive Identifies tests that require human interaction.

negative The component under test must terminate with (and detect) an error. An
operation performed by a negative test on the component under test must
not succeed.

OTA Identifies OTA tests.

positive The component under test must terminate normally. An operation
performed by the test on the component under test must succeed.

runtime Identifies tests used with runtime products.

single Affects the test bundler (tests are bundled one by one).

trusted Identifies tests which must be run in a trusted (operator, manufacturer,
and trusted third party) security domain.

untrusted Identifies tests which must be run in an untrusted (unidentified third

party) security domain.

Appendix C Test Description Fields and Keywords

107

108 Java ME TCK Framework Developer's Guide ¢ August 2008

Glossary

The definitions in this glossary are intended for Java Compatibility Test Tools (Java
CTT) and Java Technology Compatibility Kits (TCK). Some of these terms might
have different definitions or connotations in other contexts. This is a generic glossary
covering all of Sun’s CTTs and TCKSs, and therefore, it might contain some terms that
are not relevant to the specific product described in this manual.

active agent

active applet instance

agent monitor

agents

all values

API member

API member tests

appeals process

A test agent configured to initiate a connection to the JavaTest harness. Active
test agents enable you to run tests in parallel using many agents at once and to
specify the test machines at the time you run the tests. See also test agent,
passive agent, and JavaTest harness agent.

An applet instance that is selected on at least one of the logical channels.

The JavaTest window that is used to synchronize s and to monitor agent
activity. The Agent Monitor window displays the agent pool and the agents
currently in use.

See test agent, active agent, passive agent, and ross.

All of the configuration values required for a test suite. All values include the
test environment values specific to that test suite and the JavaTest harness
standard values.

Fields, methods and constructors for all public classes that are defined in the
specification.

Tests (sometimes referred to as class and methods tests) that verify the
semantics of API members.

A process for challenging the fairness, validity, accuracy, or relevance of one or
more TCK tests. Tests that are successfully challenged are either corrected or
added to the TCK'’s exclude list. See also first-level appeals process,
second-level appeals process, and exclude list.

109

Application IDentifier

(AID)

Application

Management Software

(AMS)

Application

Programming Interface

110

(API)

Application Protocol
Data Unit (APDU)

assertion

assertion testing

automated tests

behavior-based
testing

boundary value
analysis

An identifier that is unique in the TCK namespace. As defined by

ISO 7816-5, it is a string used to uniquely identify card applications and certain
types of files in card file systems. An AID consists of two distinct pieces: a
5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary identifier
extension). The RID is a resource identifier assigned to companies by ISO. The
PIX identifiers are assigned by companies. There is a unique AID for each
package and a unique AID for each applet in the package. The package AID
and the default AID for each applet defined in the package are specified in the
CAP file. They are supplied to the converter when the CAP file is generated.

Software used to download, store and execute Java applications. Another name
for AMS is Java Application Manager (JAM).

An API defines calling conventions by which an application program accesses
the operating system and other services.

A script that is sent to the test applet as defined by ISO 7816-4.

A statement contained in a structured Java technology API specification to
specify some necessary aspect of the API. Assertions are statements of required
behavior, either positive or negative, that are made within the Java
specification.

Compatibility testing based on testing assertions in a specification.

Test that run without any intervention by a user. Automated tests can be
queued and run by the test harness and their results recorded without anyone
being present.

A set of test development methodologies that are based on the description,
behavior, or requirements of the system under test, not the structure of that
system. This is commonly known as “black-box” testing.

A test case development technique that entails developing additional test cases
based on the boundaries defined by previously categorized equivalence
classes.

Java ME TCK Framework Developer’s Guide ¢ August 2008

class

classes

compatibility rules

compatibility testing

configuration

Configuration Editor

configuration
interview

configuration
templates

configuration value

distributed tests

domain

The prototype for an object in an object-oriented language. A class might also
be considered a set of objects which share a common structure and behavior.
The structure of a class is determined by the class variables that represent the
state of an object of that class and the behavior is given by a set of methods
associated with the class. See also classes.

Classes are related in a class hierarchy. One class might be a specialization (a
subclass) of another (one of its superclasses), may be composed of other
classes, or might use other classes in a client-server relationship. See also class.

Define the criteria a Java technology implementation must meet to be certified
as “compatible” with the technology specification. See also compatibility
testing.

The process of testing an implementation to make sure it is compatible with
the corresponding Java specification. A suite of tests contained in a Technology
Compatibility Kit (TCK) is typically used to test that the implementation meets
and passes all of the compatibility rules of that specification.

Information about your computing environment required to execute a
Technology Compatibility Kit (TCK) test suite. The JavaTest harness uses a
configuration interview to collect and store configuration information.

The dialog box used by the JavaTest harness to present the configuration
interview.

A series of questions displayed by the JavaTest harness to gather information
from the user about the computing environment in which the TCK is being
run. This information is used to produce a test environment that the JavaTest
harness uses to execute tests.

Files used by the JavaTest harness to configure individual test runs. The
JavaTest harness uses the file name extension *.jti to store test harness
configuration templates.

Information about your computing environment required to execute a TCK test
or tests. The JavaTest harness uses a configuration interview to collect
configuration values.

Tests consisting of multiple components that are running on both the device
and the JavaTest harness host. Dividing test components between the device
and JavaTest harness is often used for tests of communication APIs, tests that
are heavily dependent on external resources, tests designed to run on devices
with constrained resources such as a small display, and data transfer tests.

See security domain.

Glossary 111

equivalence class
partitioning

exclude list

first-level appeals
process

framework

Graphical User
Interface (GUI)

HTML test
description

implementation

instantiation

interactive tests

Java Platform, Standard

112

Edition (Java SE
platform)

A test case development technique that entails breaking a large number of test
cases into smaller subsets with each subset representing an equivalent category
of test cases.

A list of TCK tests that a technology implementation is not required to pass in
order to certify compatibility. The JavaTest harness uses exclude list files
(*.3tx), to filter out of a test run those tests that do not have to be passed. The
exclude list provides a level playing field for all implementors by ensuring that
when a test is determined to be invalid, no implementation is required to pass
it. Exclude lists are maintained by the Maintenance Lead and are made
available to all technology developers. The ML might add tests to the exclude
list for the test suite as needed at any time. An updated exclude list replaces
any previous exclude lists for that test suite.

The process by which a technology implementor can appeal or challenge a
TCK test. First-level appeals are resolved by the Expert Group responsible for
the technology specification and TCK. See also appeals process and
second-level appeals process.

See test framework.

Provides application control through the use of graphic images.

A test description that is embodied in an HTML table in a file separate from
the test source file.

See technology implementation.

In object-oriented programming, means to produce a particular object from its
class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either
default values or those provided by the class’s constructor function.

Tests that require some intervention by the user. For example, the user might
have to provide some data, perform some operation, or judge whether or not
the implementation passed or failed the test.

A set of specifications that defines the desktop runtime environment required
for the deployment of Java technology applications. Java SE platform
implementations are available for a variety of platforms, but most notably the
Solaris and Windows operating systems.

Java ME TCK Framework Developer’s Guide ¢ August 2008

Java Application
Manager (JAM)

Java Archive (JAR)
file

Java Compatibility Test
Tools (Java CTT)

Java Community
Process (JCP)
program

Java platform
libraries

Java specification

Java Specification
Request (JSR)

Java technology

Java Technology
Compatibility Kit

JavaTest harness
agent

JavaTest harness

A native application used to download, store, and execute applications.
Another name for JAM is Application Management Software (AMS).

A platform-independent file format that combines many files into one.

Tools, documents, templates, and samples that can be used to design and build
TCKs. Using the Java CTT simplifies compatibility test development and
makes developing and running tests more efficient.

An open organization of international Java community software developers
and licensees whose charter is to develop and revise Java specifications, and
their associated Reference Implementation (RI), and Technology Compatibility
Kit (TCK).

The class libraries that are defined for each particular version of a Java
technology in its Java specification.

A written specification for some aspect of Java technology.

The actual descriptions of proposed and final technology specifications for the
Java platform.

A Java specification and its Reference Implementation (RI). Examples of Java
technologies are the] ava SE platform, the Connected Limited Device
Configuration (CLDC), and the Mobile Information Device Profile (MIDP).

See Technology Compatibility Kit (TCK).

A test agent supplied with the JavaTest harness to run TCK tests on a Java
technology implementation where it is not possible or desirable to run the
main JavaTest harness. See also test agent, active agent, and passive agent.

A test harness developed by Sun to manage test execution and result reporting
for a Technology Compatibility Kit (TCK). The harness configures, sequences,
and runs test suites. The JavaTest harness provides flexible and customizable
test execution. It includes everything a test architect needs to design and
implement tests for implementations of a Java specification.

Glossary 113

keywords

Maintenance Lead

methods

MultiTest

namespace

object-oriented

objects

packages

passive agent

prior status

Profile specification

Program Management
Office (PMO)

114

Used to direct the JavaTest harness to include or exclude tests from a test run.
Keywords are defined for a test by the test suite architect.

The person responsible for maintaining an existing Java specification, related
Reference Implementation (RI), and Technology Compatibility Kit (TCK). The
ML manages the TCK appeals process, exclude list, and any revisions needed
to the specification, TCK, or RI.

Procedures or routines associated with one or more classes, in object-oriented
languages.

A JavaTest harness library class that enables tests to include multiple test cases.
Each test case can be addressed individually in a test suite exclude list.

A set of names in which all names are unique.

A category of programming languages and techniques based on the concept of
objects, which are data structures encapsulated with a set of routines, called
methods that operate on the data.

In object-oriented programming, objects are unique instances of a data
structure defined according to the template provided by its class. Each object
has its own values for the variables belonging to its class and can respond to
the messages (methods) defined by its class.

A namespace within the Java programming language. It can have classes and
interfaces. A package is the smallest unit within the Java programming
language.

A test agent configured to wait for a request from the JavaTest harness before
running tests. The JavaTest harness initiates connections to passive agents as
needed. See also test agent, active agent, and JavaTest harness agent.

A JavaTest harness filter used to restrict the set of tests in a test run based on
the last test result information stored in the test result files (. jtr).

A specification that references one of the platform edition specifications and
zero or more other Java specifications (that are not already a part of a platform
edition specification). APIs from the referenced platform edition must be
included according to the referencing rules set out in that platform edition
specification. Other referenced specifications must be referenced in their
entirety.

The administrative structure that implements the Java Community Process
(JCP) program.

Java ME TCK Framework Developer’s Guide ¢ August 2008

protected API

protection domain

Reference
Implementation (RI)

second-level appeals
process

security domain

security policy

signature file

signature test

specification

standard values

structure-based
testing

system configuration

APIs that require that an applet have permission to access them. An attempt to
use a protected API without the necessary permissions cause a security
exception error.

A set of permissions that control which protected APIs an applet can use.

The prototype or proof of concept implementation of a Java specification. All
new or revised specifications must include an RI. A specification RI must pass
all of the TCK tests for that specification.

Allows technology implementors who are not satisfied with a first-level appeal
decision to appeal the decision. See also appeals process and first-level appeals
process.

A set of permissions that define what an application is allowed to do in
relationship to restricted APIs and secure communications.

The set of permissions that a technology implementation or Application
Programming Interface (API) requires an application to have for the
application to access the implementation or API.

A text representation of the set of public features provided by an API that is
part of a finished TCK. It is used as a signature reference during the TCK
signature test for comparison to the technology implementation under test.

Checks that all the necessary API members are present and that there are no
extra members that illegally extend the APIL It compares the API being tested
with a reference API and confirms if the API being tested and the reference API
are mutually binary compatible.

See Java specification.

A configuration value used by the JavaTest harness to determine which tests in
the test suite to run and how to run them. The user can change standard values
using either the all values or standard values view in the Configuration Editor.

A set of test development methodologies that are based on the internal
structure or logic of the system under test, not the description, behavior, or
requirements of that system. This is commonly known as white-box or
glass-box testing. Compatibility testing does not make use of structure-based
test techniques.

Refers to the combination of operating system platform, Java programming
language, and JavaTest harness tools and settings.

Glossary 115

tag test description

Technology
Compatibility Kit
(TCK)

TCK coverage file

technology
implementation

test agent

test

test cases

test command
test command

template

test description

116

A test description that is embedded in the Java programming language source
file of each test.

The suite of tests, tools, and documentation that enable an implementor of a
Java specification to determine if the implementation is compliant with the
specification.

A file used by the Java CTT Spec Trac tool to track the test coverage of a test
suite during test development. It binds test cases to their related assertion in
the specification. The bindings make it possible to generate statistical reports
on test coverage.

Any binary representation of the form and function defined by a Java
specification.

An application that receives tests from the test harness, runs them on the
implementation being tested, and reports the results to the test harness. Test
agents are normally only used when the TCK and implementation being tested
are running on different platforms. See also active agent, passive agent, and
JavaTest harness agent.

The source code and any accompanying information that exercise a particular
feature, or part of a feature, of a technology implementation to make sure that
the feature complies with the Java specification compatibility rules. A single
test can contain multiple test cases. Accompanying information can include
test documentation, auxiliary data files, or other resources used by the source
code. Tests correspond to assertions of the specification.

A small test that is run as part of a set of similar tests. Test cases are
implemented using the JavaTest harness MultiTest library class. A test case
tests a specification assertion, or a particular feature, or part of a feature, of an
assertion.

A class that knows how to execute test classes in different environments. Test
commands are used by the test script to execute tests.

A generalized specification of a test command in a test environment. The test
command is specified in the test environment using variables so that it can
execute any test in the test suite regardless of its arguments.

Machine-readable information that describes a test to the test harness so that it
can correctly process and run the related test. The actual form and type of test
description depends on the attributes of the test suite. A test description exists

Java ME TCK Framework Developer’s Guide ¢ August 2008

test environment

test execution model

test finder

test framework

test harness

test script

test specification

test suite

work directory

for every test in the test suite and is read by the test finder. When using the
JavaTest harness, the test description is a set of test-suite-specific name-value
pairs in either HTML tables or Javadoc tool-style tags.

One or more test command templates that the test script uses to execute tests
and a set of name-value pairs that define test description entries or other
values required to run the tests.

The steps involved in executing the tests in a test suite. The test execution
model is implemented by the test script.

When using the JavaTest harness, a nominated class, or set of classes, that read,
verify, and process the files that contain test descriptions in a test suite. All test
descriptions that are located are handed off to the JavaTest harness for further
processing.

Software designed and implemented to customize a test harness for a
particular test environment. In many cases, test framework components must
be provided by the TCK user. In addition to the test harness, a test framework
might (or might not) include items such as a: configuration interview, Java
Application Manager (JAM), test agent, test finder, test script, and so forth. A
test framework might also include other user-supplied software components
(plug-ins) to provide support for implementation-specific protocols.

The applications and tools that are used for test execution and test suite
management. The JavaTest harness is an example of a test harness.

A Java technology software class whose job it is to interpret the test description
values, run the tests, and report the results back to the JavaTest harness. The
test script must understand how to interpret the test description information
returned to it by the test finder.

A human-readable description, in logical terms, of what a test does and the
expected results. Test descriptions are written for test users who need to know
in specific detail what a test does. The common practice is to write the test
specification in HTML format and store it in the test suite’s test directory tree.

A collection of tests, used with the test harness to verify compliance of the
technology implementation to a Java specification. Every Technology

Compatibility Kit (TCK) contains one or more test suites.

A directory associated with a specific test suite and used by the JavaTest
harness to store files containing information about the test suite and its tests.

Glossary 117

118 Java ME TCK Framework Developer's Guide * August 2008

Index

Symbols assertion testing, 110

$testMsgSwitch environment variable, 51 assertions, 110

$timeOut environment variable, 52 attribute

.jtx files, 112 executeArgs, 50
remote, 50, 55

A remoteSource, 50

automated test, 48

active agent, 109
automated tests, 8, 110

active applet instance, 109
addStatus interface, 55
AdvancedTestSuite directory, 48, 54, 58
agent, 7,109

JavaTest harness, 113

B

behavior-based testing, 110
black-box testing, 110
boundary value analysis, 110

agent monitor, 109
build directory, 23

agent, passive, 11

AID, 110 c
all values, 109 CDC, 4
AMS, 7,110 L
CDCCDistributedTest class, 49
Ant, 23 class, 111
ant build script, 24 CDCDistributedTest, 49
APDU, 110 com.sun.tck.midp.lib.OTATest, 59
API, 110 DistribInteractiveTest, 55
API member, 109 J2MEDistributedTest, 49, 55
API member test, 109 JZSEDistributedTest, 50
appeals process, 109 MidDistribInteractiveTest, 55
first-level, 112 classes, 111
second-level, 115 CLDC, 3
Application IDentifier, 110 cleanUp interface, 55
Application Management Software, 7, 110 client test component, 49
Application Programming Interface, 110 com.sun.tck.midp.lib.OTATest class, 59
Application Protocol Data Unit, 110 command

119

getNextApp, 53,57 G

compatibility rules, 111 getNextApp command, 48, 53, 57
compatibility testing, 111 getNextTest request, 49, 53, 57
configuration, 4, 111 glass-box testing, 115

interview, 111 Graphical User Interface, 112

system, 115 GUI, 112

templates, 111

value, 111 H

Configuration Editor, 111

HTML test description, 112
Connected Device Configuration, 3

HTTP, 4
Connected Limited Device Configuration, 3 HTTPS, 9
connectivity requirements, 4 HTTPS server, 9, 49
D |
zll?tagt;ram, 4 IDE, 20
irector . s
AdvzncedTestSuite, 48,54, 58 ¥nstant1?1t10n, 12
build, 23 interactive keyword, 55
SimplestTestSuite, 48 interactive tests, 11,112
SimpleTestSuite, 48 interview class, 6
tests, 21 ISO 7816-4, 110
DistribInteractiveTest class, 55
distributed keyword, 50, 55 J
distributed tests, 9, 111 J2MEDistributedTest class, 49, 55
J2SEDistributedTest class, 50, 55
E JAD, 59
environment variable JAM, 7,113
$testMsgSwitch, 52 JAR, 113
$timeOut, 52 Java Application Descriptor, 59
equivalence class partitioning, 112 Java Application Manager, 7, 113
exclude list, 112 Java Archive, 113
executeArgs attribute, 50 Java Community Process Program, 113
executeClass, 20 Java Compatibility Test Tools, 113
execution server, 6,53 Java CTT, 3, 15,113

Java Platform Libraries, 113

F Java platform, Standard Edition, 112
file Java SE, 112

.Jjtx, 112 i e

test class dependencies, 20 Java specification, 110, 113

test class dependency, 22 Java Specification Request, 113

test description, 20 Java technology, 113
first-level appeals process, 112 Java Technology Compatibility Kit, 113
Foundation Profile, 4 Java Test harness, 3
FP, 4 JavaTest harness, 113

JavaTest harness agent, 113

120 Java ME TCK Framework Developer's Guide * August 2008

JCP, 3,15
JDK, 3
JSR, 113

K

keyword, 20
distributed, 50, 55
interactive, 55

keywords, 114

M

Maintenance Lead, 114
messageReceived interface, 55
messaging service, 6

method, 114
MidDistribInteractiveTest class, 55
MIDlet suite, 59

MIDP, 4

Mobile Information Device Profile, 4
MultiTest, 20, 114

N

namespace, 114

0]

object-oriented, 114

objects, 114

optional package, 4

OTA application provisioning, 59
OTA provisioning server, 6

OTA tests, 12,59

P
packages, 114

passive agent, 6,11, 114

PBP, 4

Personal Basis Profile, 4

Personal Profile, 4

PMO, 114

PP, 4

prior status, 114

profile, 4

Profile Specification, 114
Program Management Office, 114

protected API, 115
protection domain, 115
provisioning server, 59
provisioning server, OTA, 6

R

ref, 20

Reference Implementation, 115
remote attribute, 50, 55

remote test component, 50
remoteSource attribute, 50

request
getNextTest, 53, 57

RI, 115

S
second-level appeals process, 115
security domain, 115
security policy, 115
sendTestResult, 49, 54, 58
server

execution, 53

HTTPS, 49

provisioning, 59
server, HTTPS, 9
server-side test, 6
setFormTitle interface, 55
signature file, 115
signature test, 115
SimplestTestSuite directory, 48
SimpleTestSuite directory, 48
Socket TCP/IP, 5
SSL, 5
standard values, 115
structure-based testing, 115
support class, 6
system configuration, 115

T

tag test description, 116
target device

CDC, 5

CLDC, 5
TCK, 1,116

Index

121

TCK coverage file, 116
TCP/IP, 4
Technology Compatibility Kit, 116
technology implementation, 116
test, 116
agent, 116
API member, 109
automated, 48, 110
case, 116
command, 116
command template, 116
description, 116
distributed, 111
environment, 117
execution model, 117
finder, 117
framework, 117
harness, 117
interactive, 112
script, 117
signature, 115
specification, 117
suite, 117
test class, 20

WTK, 23

test class dependencies file, 20
test class dependency file, 22
test component
client, 49
remote, 50
test description file, 20
test provider, 6
test suite, 1
test type, 8
testClasses.Ist, 22
tests
OTA, 59
tests directory, 21
tests, interactive, 11
tests, OTA, 12

w

waitForMessage interface, 55
white-box testing, 115
Wireless Toolkit, 23

work directory, 117

122 Java ME TCK Framework Developer's Guide * August 2008

	Java™ ME TCK Framework Developers Guide
	Contents
	Figures
	Tables
	Code Examples
	Preface
	Introduction
	Getting Started
	Using the Framework
	Development Environment
	Target Environment
	Connectivity Requirements
	Resource Limitations

	Framework Components
	Framework Components on the Harness Side
	Framework Components on the Device Side

	Test Types
	Automated Tests
	Distributed Tests
	Interactive Tests
	OTA Tests

	Installation
	Prerequisites to Installing the Framework Bundle
	Installing the Framework Bundle
	To Install the Framework Bundle

	Installed Directories and Files

	Writing a Simple Automated Test
	Writing an Automated Test
	To Create a Simple Automated Test
	Additional Action

	Building an Updated Simple Test Suite
	To Build an Updated Test Suite
	Additional Action

	Testing an Updated Simple Test Suite
	To Test an Updated Test Suite

	Constructing a Test Suite
	Test Suite Structure
	testsuite.jtt File
	lib Directory
	tests Directory
	Test Class
	Test Case
	Test Description File

	classes Directory
	doc Directory

	Creating and Using a Configuration Interview
	Creating a Configuration Interview
	To Create a Configuration Interview Through the Interview Class
	See Also

	Plugging in a Custom Interview
	To Plug In a Custom Interview
	Additional Action

	Building a Test Suite

	Writing Tests That Use Framework Resources
	Testing Devices With Automated Tests
	Automated Test Execution

	Testing Communications or Networking With Distributed Tests
	Client Test Component
	Remote Test Component
	Test Description for Distributed Tests
	Required Distributed Test Keyword
	remote Attribute
	remoteSource Attribute
	executeArgs Attribute

	Distributed Test Execution

	Testing User Interfaces With Interactive Tests
	Client Test Component
	Remote Test Component
	Test Description for Interactive Tests
	Required Interactive Test Keywords

	Interactive Test Execution
	Example of an Interactive Test

	Testing Application Provisioning With OTA Tests
	Server Component of an OTA Test
	Client Test Component of an OTA Test
	Test Description for OTA Tests
	Required OTA Test Keyword
	executeClass Attribute
	remote Attribute
	OTA Test Description Examples

	OTA Test Execution
	Example of OTA Test

	Testing Security-Constrained Functionality With Security Tests
	Types of Security Tests
	Untrusted Tests
	Trusted Tests
	Double-duty Tests

	Using Keywords to Mark Security Tests
	Marking Untrusted Tests
	Marking Trusted Tests

	Using an Attribute to Mark Double-Duty Tests
	Granting or Denying Security Permissions
	Granting Security Permissions
	Denying Security Permissions

	Adding Resource Files in Tests
	Enabling Test Selection
	Factors and Mechanisms for Test Selection
	selectIf Test Selection
	To Enable Test Selection with the selectIF Expression
	Additional Action

	Using the ME Framework Agent
	Starting the Agent
	Using TCP/IP Communication
	Using UDP Communication
	Using HTTP Communication
	Using Serial Communication

	Displaying Agent Command Line Parameters

	Test API
	Test
	Status
	MultiTest
	J2MEDistributedTest
	CDCDistributedTest
	J2SEDistributedTest
	DistribInteractiveTest
	OTATest

	Framework Redistributables Directory
	lib Directory
	Core
	CLDC and MIDP Execution
	CLDC and MIDP Agents and Clients
	Plug-ins

	Communication
	Messaging

	CommService
	CommClients
	CommServers
	Test Export Support Libraries
	CDC Agents

	src Directory
	Java ME TCK Framework Server Classes and Interfaces
	Agent Classes
	Digital Signer
	Preverification Script
	Java ME Technology Version of Harness Classes
	Basic Interview Classes Containing General Questions
	Communication Channel

	doc Directory

	Test Description Fields and Keywords
	Test Description Fields
	Keywords

	Glossary
	Index

