ORACLE

SigTest
User's Guide
Version 2.2
E19036-01

February 2011

This guide describes how to install and run the SigTest
collection of tools. This collection includes the Signature
Test tool and the API Coverage tool. Signature Test tool
includes utilities used to develop signature test
components that can be used to compare API test
signatures. API Coverage tool is used to estimate the test
coverage a test suite provides for an implementation of a
specified APL

SigTest/User's Guide, Version 2.2
E19036-01
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...ttt Xiii
Documentation Accessibility ... Xiii
WHho Should USe ThiS GUIAEc.eevieeiiiieiiecieetieteeeeete ettt ettt ettt e reeereeveeere e eeseersebe s s enseeseens Xiii
Before YOu Read This GUIE......cc.cviieieiriieiieiieeieteieiet ettt eteeteeseesasse s s s assessessessessessessesessensensas Xiii
How This Guide Is Organized............ccouoiimirioiiiiiciccie s Xiv
Related DoCUMENEATIONc.ecivieiieiiieeiecte ettt ettt ettt ete et et e e esteete e beesseebeesseseessesseensensesssesesseens Xiv
Typographic CONVENIONS........c.cciiiiiiiiiiiiiciiccrieee e Xiv

1 Introduction

1.1 Global FUNCHONALEYcvoviiiiiiiircr e 1-1
1.1.1 OPHON FIle ..o 1-1
1.1.1.1 Option File FOrmatcccccoouiiiiiiiiiiiiiiiiiiiccc e 1-2
1.1.2 The -Version OPtioN.......ccccocciiiiririiiiicreeeereee e 1-2

Partl Signature Test Tool

2 Introduction to Signature Test Tool

2.1 Signature Test BasiCsccoceueieiiiieiiiccicc s 2-1
2.2 What is Testedccoooiiiiiiiiiiiiii s 2-1
2.21 Mutual Binary Compatibility Check.........ccccccviviiiiiiiiiiiic, 2-2
2.2.2 Mutual Source Compatibility Checkcoocueiiiiiiiiiii 2-2
2.2.3 Migration Binary and Source Code Check..........ccoouiiiiiiiiiii, 2-3
22.4 Class and Class Member Attributes Checked ..o, 2-3
2.3 Source and Binary Compatibility MOdescc.couruiieiiiiiiiiiiic e 2-4
2.4 Using Custom Signature Loaders...........cc.oooiiiiiiiic 2-5

3 Using the Signature Test Tool

3.1 Signature Test TOOL BaSICScccccceiuiiiiiiiiiiiiiiiiiiiiccc s 3-1
3.1.1 Reflection and Static RUn Modes...........cccoceuiiiiiiiiiiiiiiicceeeceeeeeeas 3-2
3.1.2 Constant Checking in Differing Run Modesc.ccooiiiiiiiiciiic 3-2
3.1.3 Generics Checking in Binary Modeoocciiiiiiiiccc 3-2
3.1.4 CLASSPATH and -classpath Settings.........ccocoeeeiiiiiiicicec 3-3
3.1.4.1 Bootstrap and Extension Classes.............cccviiiiciiiiiiiniiiiceeeeeeeenes 3-3
3.2 Signature File Merge Rules ..., 3-4

3.2.1 JSR 68-Based METZEcooiuimiiiiiiiiiiiiiiciciiciice s 3-4

3.3 SetUD COMMEANA.....iiieiiierieitiiieie ettt et et e e teeae s e ebesreessesssesseessessesssasseessanseessessessns 3-4
3.3.1 Command DeSCIIPiON......c.cccuiuiuiuiiiiiiiiiicieieeiceeteee et 3-5
3.3.2 Case Sensitivity of Option Argumentsc.coeieieiiiiieiniccc e, 3-6
3.3.3 Signature File FOrmatsccooooriiiiiii 3-6
3.34 Signature File CONTENtS........ccciiiiiiiiiiiccceeeee e 3-7
3.3.4.1 Signature File Header ..o 3-7
3.3.4.2 Signature File BOAYcoooiiiiii 3-8
3.4 SignatureTest COMIMANA ...ttt et eeae e eresesaeesaeeeneeas 3-9
3.4.1 Command DeSCIiPtion.........cuiuiiiiiiiiiiiiiiiiiii e 3-9
3.4.2 Using Update Files ... 3-12
3.4.3 Report FOrmats.........cccoiiiiiiiiiiiiiiic s 3-14
3.4.3.1 Sorted RePOTtcocviviviiiiiiccc s 3-14
3.4.3.2 Unsorted RePOTtcuoviieiiiiiici 3-15
3.4.3.3 Human-Readable RepOrt.........ccccccuiuiiiiiiiiiiiiiiiiiccccceccceeee e 3-15
3.5 SetupAndTest COMMANA.......ccoiiiiiiiieeriecee et ettt ereeereeeteeeeveeeteeereesreeeseenseessseenseees 3-16
3.5.1 Command Description.........coooicueieiiicieicei e 3-16
3.6 Merge COMMANd......ccooiiiiiiecieetieeee ettt ettt et e et e et e eeeeeaeeereeesseeenseesseeesaeetesenseenseenns 3-18
3.6.1 Command DeSCIiption.........cciuiuiiiiiiiiieiiiiiiee s 3-18

Partll API Coverage Tool

4 Introduction to API Coverage Tool

4.1 Static API Coverage ANalysis.........ccooiiurueiiiiiiciiincie e 4-1
4.1.1 Major SOUTrce Of EITOTooouiiiiiii 4-1
41.2 Advantages of Static Coverage ANalysis..........ccccceiiciiiiiieeieeceeeeeereeenenenenes 4-1
4.2 HOW It WOTKS ..o 4-2
4.21 Level of Accuracy During Analysisccocoeueieiiiiiniiiicieece e, 4-2
422 Coverage ANalysis MOAES........cccocuriiiiiiiriririiiiceciccceeeeee e 4-3
4.2.3 Filtering Coverage By Marking Up Signature Files ..., 4-3
4.2.3.1 Filtering Markup Format.........cccccccoceiiiiiiiiiiiiiiccncccsecceae 4-4

5 Using the API Coverage Tool

51 Running API Coverage TOOLcccccvuiiiiiiiiiiiiiiiiiiiciiiiciccecee e 5-1
5.1.1 Special REPOrt Flec.cciiiiiiiiiiiiiiicieccecceee e 5-3
51.2 EXCIUAE LISt ..ot et eae e et e e v e s seaaeeseavessenanessnneessnneeennns 5-3

Partlll API Check Tool

6 Introduction API Check Tool
6.1 The API CRECK TOOLu.uueiiiiieeeeeeeeeeeeeeee ettt eeeet e e e e eseeaaaeeessesaaaeeesessasaeessesennsteesssssnaeees 6-1

7 Using the API Check Tool

7.1 API Check Tool Verification SCOPEeccccvvviiiiiiiiiniiiiiiiiic 7-1
7.2 Running API Check TOOL........cccccoiiiiiiiiiiiniiiiiincicnr e 7-2

Part IV Appendix

A Signature Test Tool Quick Start Examples

AA
A2
A21
A22
A3
A.3.1
A3.2

Example PrOgramis. ...t A-1
Example 1: Compare Two Different Implementations of the Same API........................... A-2
Using the Setup and SignatureTest Commands........cccoovviiriiiiiiiiiiiiinnnnn, A-2
Using the SetupAndTest Command.........cccoeiiriiiiiiiicieieiicc s A-4
Example 2: Merge Two Signature Files ... A-4
Running Merge EXample..........ccoooviiiiiiiiiiic s A-5
Example Result Files ... A-7

B API Coverage Tool Quick Start Examples

B.1

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8

Example Procedures...........ooiiiiiiiiciccce e B-1
Set Up the API Coverage Tool Ant Build Scriptcccovvvuvvrvninnnciirrrccerne B-1
Build API Coverage Tool EXamples............ccoceieiiiiiiiiiiiiiciccce s B-2
Run the Example Test SUite.........c.ccooioiiiiiiiiiicc s B-2
Generate a Signature File for the Tested APIL...........ccccccociiiiiiiiiccccceee, B-2
Use the API Coverage Tool to Calculate Test Coverage.........cocoeeuviirieieiicicieininnnen, B-3
WOIst Case MOde.......ccuviiiiiiiiiiiiiiiiiic s B-3
Real WOrld Mode........ciiiiiiiiiiiic s B-4
Real World Mode Without Fields and Enum Constantsc.ccccevvviiininnnnnn B-5

C API Migration Compatibility Rules (Signature Test)

C.1

C.11
Cc1.2
C1.3
C14
C15
c.2

C.21
c.2z2
c.23
Cc24
C.25
C.2.6
ca27
c.28
c.29

The Compatibility RUIEScooiiiiiii e C-1
GENETAL RULES ...ttt ettt a e s be bbb s bs b e ss e b e ereenneenis C-1
Interfaces and ANNOtation TYPEScccceueuiuiiiiiiiiiiieceeceeec s C-1
Interfaces and Class MethoOdScccceeviieeieriieiirieieceeteeeee et ens C-2
Interfaces and Class FIeldSccoouiiiiiiiiieriicieeceeeeeeee et C-2
CLASSES .vvevrevieeieieeiiettet et et e st et et e et et e s b e st e st asae st ese st e s e sesse s essessessessesseseeseesaaseaseasensarsansensan C-3

Comments and ClarifiCatiONS.........ccueeveeveereerieriieiesieeitesrestesreeeesseseesseseessesseessesssessessesssessenns C4
RULE L0 ottt ettt ettt e et e ete e te et e sbeesb e baenbeebeeaseeseenresreenneens C14
RULE 1o oottt ettt ettt ettt et et e st et e b esbe st estesseseesaesaesessessensassassensan C-4
RULE 2.3 ettt ettt et e s b e et e s e e e e s b e e sb et e e st e reess e teenseereenaennes C-5
RULES 2.5, 2.6 .ottt ettt ettt e e et e eteeeateeteeeaeeeaeesaeeenaeeeteseseeeseeeneen C-5
RULE 3.6 oottt ettt ettt ettt et e st et e s e sb e st est e st eseesaesaeseese et e s assassensn C-6
RULE 4.2 ..ttt ettt ettt et e st e e st e b e et e sbeesb e teessenseess e seensenseenaennes C-6
RULE 5.1 ottt ettt et ettt e ete e te et e sbeesb e ba et e eteeabeereenbeereenneens C-6
RULE 5.3 ettt ettt ettt ettt e b e st et e s b esbe st estesseseeseesaeseeseebeebessessensan C-7
RULE 5.7.2 ottt ettt ettt s b et e st e e b e sraesb e seesbeeseensaessenseereenaeens C-7

D Merge Command Operative Principles

D.1
D.1.1

Merge Command Operative Principles ... D-1
Element Handling by MErge ..o s D-2

vi

E Using the SigTest Tools With Ant

E.1
E.2
E.3
E.4

Using the Setup Command From an Ant Scriptooceiiiiiiiice, E-1
Using the SignatureTest Command From an Ant Script ... E-2
Using the Merge Command From an Ant Scriptooooeeiiiiiiiiiiic, E-3
Using APICheck From an Ant SCript........ccocooeioiiiiiiiicee E-4

F Using the SigTest Tools With Apache Maven

F.1
F.2
F.2.1
F.2.2
F.2.3
F.2.4

Index

GOAL OVEIVIEW ..ot F-1
GOAl DESCIIPHIONS......cvviiiiciiiciiecc et F-1
Sigtest-PIUGINISELUP ...cvoviiieiei e F-1
Sigtest-PIUGINTESToviviiie e F-3
SIGESt-PLUGINIMETZE ..o F-5
APICOVer-PlUGINIAPICOVET ...vovviiiiiiciiciccce s F-6

vii

List of Figures

7-1 java.util Classes

viii

List of Tables

3-1
3-2
3-3
34

D
- = 00 NO O,

oo AW
I RN
—ahwN=2DM

rnrlnrnrnrrlOOOOO
“—ohwN '

rner
A 0ODN

roonen
©o~No® O

Settings for the Setup and SignatureTest Commands........ccoeeieiiieiniieiiiinnennnnn, 3-3
Setup Command OPHONS ..o 3-5
Signature File Format Compatibilitycccooooiiiiiiiiii 3-7
Signature File Content SUMMATYccccoovviiiiiiiiiiiiiii s 3-9
SignatureTest Command OPHONS ..o 3-10
Update Types and AtIibULes..........ooiiiiiiiiii 3-12
SetupAndTest Command OPHONS........cccocoviiiiiiiiiii e 3-16
Merge Command OPLiONSccccoviiiiiiniiiiiiiiiii s 3-18
Example Scenarios and Potential EXrors...........cccooiiiiiiiiiniiiiiicccc 4-2
API Coverage Tool Command Options.............covcueieiiiciciiiicec e, 5-2
Report File Contents for Levels of Detailcccccoovnniiiin 5-3
API Migration Compatibility Rules - General............cccooiiiiiiiiiiiiiics C-1
API Migration Compatibility Rules - Interfaces and Annotation Types.........c.cccccoec.. C-2
API Migration Compatibility Rules - Interfaces and Class Methods..............ccoccueenee. C-2
API Migration Compatibility Rules - Interfaces and Class Fields..........ccccccoeviinininnee. C-3
API Migration Compatibility Rules - General............cccoooiiiiiiiiiiiiccs C-3
Setup Attributes Available for Ant SCripts ..o E-1
SignatureTest Attributes Available for Ant Scriptsc.ocooieveioiiiiiiiie E-2
Required Setup Attributes Available for Ant SCripts.......c.cccoeeveiiiiiiiniiiiicicciccs E-3
Optional Setup Attributes Available for Ant SCripts........cccoovvviiiviiiiiice E-4
SAMPLE of REDOING TABLE UNITS: Setup Attributes Available for Ant Scripts.... E-4
The sigtest-pPLlugin GOAlS ..ottt ettt ae e ere et eeveeeaaeeenes F-1
Required Parameters (sigtest-plugin: SELUD) ..o F-2
Optional Parameters (sigtest-plugin: SEtUp) .. F-2
Required Parameters (sigtest-plugin:test) ... F-3
Optional Parameters (sigtest-plugin: teSt). e F-3
Required Parameters (sigtest-plugin:merge)..... s F-5
Optional Parameters (sigtest-plugin:Merge) ... F-5
Required Parameters (apicover-plugin:apiCovVer). ... F-6
Optional Parameters (apicover-plugin:apiCover). e F-6

List of Examples

1-1
3-1

3-2
41

A1
A-2
A-3
A4
A-5
A-6
F—1

F-2
F-3
F—4

OPHON FIle ..o e 1-2
Update File EXampPIecouoiiiii e 3-12
Unsorted Report EXample ... 3-15
Signature File Mark-Up.......ccooiiii e 4-3
Version 1.0 Of C@S T . JAV . uiiiiiiiierieceeieetete ettt ettt e ae e sae e e be s s e beessesasssenseens A-1
Version 2.0 Of C@SE . JAV . uiiiiiiiiierieeeetecterieee ettt ettt te e e ae s e e sae e s e beessebesssessesssensenns A-1
CONLENES Of . /XL . SLG iiieriieieitiiierie sttt ettt te et e s ta e besreeseessesaeessesbesssessesssessesssesenns A-7
CONLENES Of . /X2 . SLG iiiiriieiiitiiierie sttt ettt e b e e e e besreeaeersesse e s essesssessesssessesssesenns A-7
CONLENES Of . /X3 . SLG iiieriieiiitiiieie sttt ettt te e et e e te e besreeaesrsesaeersessesssesseessessesssensenns A-8
Contents Of . /XL +X2 . ST iuiiiiiieiieieieerese ettt ettt e s e et e s teeaesaeeaesreessesseessesssessessenns A-8
Sample Plugin Configuration (Dom . Xm1)ccceeueiiicieieiiceieeecee e F-2
Sample Plugin Configuration (Dom . Xm1)ccccoeueiiiieieieiiceie e F-4
Sample Plugin Configuration (Dom. Xm)ccccceeueiiiicieieiicee e F-5
Sample Plugin Configuration (Dom . XmL)cccceueiiiirieieiicee e F-7

xi

Xii

Preface

This guide describes how to install and run the SigTest collection of tools. This
collection includes the Signature Test tool and the API Coverage tool. Signature Test
tool includes utilities used to develop signature test components that can be used to
compare API test signatures. API Coverage tool is used to estimate the test coverage a
test suite provides for an implementation of a specified API.

Note: For simplicity, this user’s guide refers to the test harness as the
JavaTest harness. Note that the open source version of the harness,
called JT harness, can be used in its place. The JT harness software can
be downloaded from: http://jtharness.dev.java.net/

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact .html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Who Should Use This Guide

This guide is for developers of quality assurance test suites and developers of
compatibility test suites — TCKs for a Java platform API as part of the Java
Community Process (JCP) program.

Before You Read This Guide

Before reading this guide, it is best to be familiar with the Java programming
language. A good resource for the Java programming language is the Oracle Technical
Network web site, located at
http://www.oracle.com/technetwork/java/index.html.

Note: Web URLs provided are subject to change.

xiii

How This Guide Is Organized

Introduction describes the SigTest collection of tools.

Part I describes how you can use the Signature Test tool to easily compare the
signatures of two different implementations of the same APL

Part II describes how you can use the API Coverage tool to estimate the test coverage a
test suite provides for an implementation of a specified API.

Part III describes how you can use the API Check tool to track API changes and roughly
check for source and binary compatibility.

Part IV contains an appendix that includes step-by-step examples that show how to
use Signature Test tool.

Related Documentation
For details about the Java programming language, see the following documents:
n The Java Programming Language, Third Edition
» The Java Language Specification, Second Edition
» The Java Virtual Machine Specification, Second Edition

These documents are available at
http://www.oracle.com/technetwork/java/index-jsp-142903.html#doc
umentation.

Typographic Conventions

Typeface Meaning Examples

AaBbCcl23 The names of commands, files, Edit your . login file.
and directories, or on-screen Use 1s -a to list all files.
computer output

% You have mail.

AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.

words to be emphasized These are called class options.

You must be superuser to do this.

Command-line variable or
placeholder. Replace with a real
name or value

To delete a file, type rm filename.

SigTest-Directory’

\ or " A backslash at theend of aline java classname \
indicates that a long code line has
been broken in two on a UNIX®
system, typically to improve
legibility in code. The caret
character (*) indicates this on a

[classname_arguments]

java classname *

Microsoft Windows system. [classname_arguments]
Indented code Indicates a wrapped continuation java classname
or command from a previous line with no
. . [classname_arguments]
line carriage return or return

character in the actual code.

Xiv

! The top-most SigTest Tool collection installation directory is referred to as SigTest-Directory throughout the
SigTest Tool collection documentation.

XV

XVi

1

Introduction

The SigTest product is a collection of tools that can be used to compare APIs and to
measure the test coverage of an APL The tools were originally created to assist in the
creation of Java technology compatibility test suites (TCKs), but are also useful in the
creation of other types of test suites and in the software development process. The
SigTest product consists of the following tools.

Signature Test tool makes it easy to compare the signatures of two different
implementations or different versions of the same API. When it compares different
implementations of the same API, the tool verifies that all of the members are present,
reports when new members are added, and checks the specified behavior of each API
member. When it compares different versions of the same AP]I, the tool checks that the
old version can be replaced by the new one without adversely affecting existing clients
of the APL

API Coverage tool can be used to estimate the test coverage a test suite provides for
an implementation of a specified APL It does this by determining how many public
class members the test suite references within the API specification. The tool uses a
signature file representation of the API specification as the source of specification
analysis. It does not process a formal specification in any form.

API Check tool tracks API changes and roughly checks for source and binary
compatibility. Much like Signature Test tool, it compares the reference implementation
of an API recorded as golden signature file with a tested implementation. Unlike
Signature Test tool, which requires that all classes (and the classes they depend on) be
specified to the tool, API Check tool does not require dependencies to be specified. For
that reason, API Check tool is faster than Signature Test tool, but less rigorous.

Part I of this manual describes how to use the Signature Test Tool, Part II describes
how to use the API Coverage tool, Part III describes how to use the API Check tool,
and Part IV contains two appendices that include step-by-step examples that show
how to use the Signature Test tool and the rules used in the Signature Test API
migration feature.

1.1 Global Functionality

This section describes functionality that is available to all the tools and their
commands.

1.1.1 Option File

All of the tools accept options from a option file as well as from the command line.
Option files allow you to create complex command lines in a text editor and then reuse
them.

Introduction 1-1

Global Functionality

The option file is specified on the tool command line using the “@” character as shown
in the following example.

java -jar sigtest.jar test @file

In this case, file is the path to a option file. You can use a combination of option files
and command-line options as shown in the following example.

java -jar sigtest.jar test @file -package com.acme.api.printing.color

1.1.1.1 Option File Format

In addition to options and their arguments, option files can also contain “set”
commands that you can use to set variables for use within the option file. The option
file syntax is demonstrated in Example 1-1.

Example 1-1 Option File

set HOME=/home/ersh

set JRE=/opt/java/jrel6

set AMCE_HOME=$ (HOME) /projects/release
set API=$ (ACME_HOME)/lib/ams.jar

static

backward
classpath=$ (JRE) /1lib/rt.jar:$ (API)
filename=$ (ACME_HOME) /misc/reference.sig

This option file is equivalent to the following command line.

java -jar sigtest.jar test -static -backward -classpath
/opt/java/jrel6/lib/rt.jar: /home/ersh/projects/release/lib/ams.jar
-filename /home/ersh/projects/acmesystem/msc/reference.sig
-package com.acme.api.printing.color

1.1.2 The -version Option

All of the tools and commands support the -version option as a way to display
information about the tools and will list which signature files they are compatible
with. In addition, you can specify the -version option as an argument directly to the
JAR file as well as shown here.

java -jar sigtest.jar -version

1-2 SigTest/User's Guide

Part |

Signature Test Tool

This part describes how you can use the Signature Test Tool to easily compare the
signatures of two different implementations or different versions of the same API.

This part includes the following chapters:
» Chapter 2, "Introduction to Signature Test Tool"

= Chapter 3, "Using the Signature Test Tool"

2

Introduction to Signature Test Tool

You can use the Signature Test tool to easily compare the signatures of two different
implementations of the same API. It verifies that all of the members are present,
reports when new members are added, and checks the specified behavior of each API
member.

2.1 Signature Test Basics

A signature test compares two implementations of an API and reports the differences.
The Signature Test tool compares the signatures of two implementations or versions of
the same API and can do the following:

» Create and run a test that verifies that all of the members are present
= Report when new members are added
» Check the specified behavior of each API member

s Determine whether the old version of the API can be replaced with the newer one
without adversely affecting existing clients of the API

The signature test created by the Signature Test tool can be run independently at the
command line, or under the control of the JavaTest™ harness.

Note: For simplicity, this user’s guide refers to the test harness as the
JavaTest harness. Note that the open source version of the harness,
called JT harness, can be used in its place. The JT harness software can

be downloaded from this URL:
http://jtharness.dev.java.net/

The Signature Test tool was originally created to assist in the creation of Java
technology compatibility test suites (TCKs). It simplified the process of verifying that
the API signature of a new implementation of a Java technology matched the signature
of a reference implementation of that API.

When used in a software development environment, the Signature Test tool can be
used to track and control changes to an API throughout the development process.

2.2 What is Tested

The signature test algorithm compares the API implementation under test with a
signature file created from the API you are comparing it to — often referred to as a
reference implementation. The signature test checks for compatibility by verifying the

Introduction to Signature Test Tool 2-1

What is Tested

equality of API member sets. By checking for mutual compatibility of API member
sets, the test verifies that the following conditions are true:

s Ifan APlitem is defined in the reference implementation of the API, then that item
is implemented in the API under test, and vice versa.

= Attributes chosen for comparison are identical in both implementations of the APL
The tool chooses attributes for comparison according to the type of check being
processed. This is described more in Section 2.2.1, "Mutual Binary Compatibility
Check" and Section 2.2.2, "Mutual Source Compatibility Check".

By checking for migration compatibility of API member sets, the test verifies that the
following conditions are true:

» If an APl item is defined in the previous version of the API, then that item is
implemented in the API version under test

n If an APl item is not defined in the previous version of the API, but added to the
API version under test, the added item does not break backward compatibility.
This is described more in Section 2.2.3, "Migration Binary and Source Code
Check".

= Attributes chosen for comparison are identical in both versions of the API or their
change does not break backward compatibility. The tool chooses attributes for
comparison according to the type of check being processed. This is described more
in Section 2.2.3, "Mligration Binary and Source Code Check".

2.2.1 Mutual Binary Compatibility Check

The signature test binary compatibility check mode verifies that a Java technology
implementation undergoing compatibility testing and its referenced APIs are mutually
binary compatible as defined in Chapter 13, “Binary Compatibility,” of The Java
Language Specification. This assures that any application runs with any compatible API
without any linkage errors.

This check is less strict than the default source compatibility check, described next. It is
for use primarily in the special case of when a technology is developed for Java
technology environments that are purely runtime. Such an environment does not
provide a Java technology-based compiler (Java compiler), nor does it include class
files that could be used to compile applications for that environment. Because of the
limited use of such an environment, the API requirements are slightly relaxed
compared to environments that support application development.

Java application environments can contain several Java technologies. Not all Java
technologies can be combined with each other, and in particular, their sets of API
signatures might be incompatible with each other. Relaxing signature checks to the
level of mutual binary compatibility allows the developer to combine technologies in a
purely runtime environment that cannot be combined otherwise.

2.2.2 Mutual Source Compatibility Check

While binary compatibility is important, it cannot guarantee that an application in
binary form as a set of class files can be recompiled without error.

The signature test source compatibility check mode verifies that any application that
compiles without error with a compatible API, compiles without error with all other
source compatible APIs.

Mutual source compatibility is a stricter check than the mutual binary compatibility
and the Signature Test tool performs it by default.

2-2 SigTest/User's Guide

What is Tested

2.2.3 Migration Binary and Source Code Check

Mutual compatibility is generally used in certification processes where the goal is to
ensure that an alternative or third-party implementation of an API conforms to a
reference implementation. Application developers have a different concern, they must
ensure that evolving library APIs that their applications link to continue to work with
customers’ applications. The Signature Test tool can be used to check APIs as they
evolve and ensure both binary and source code migration compatibility.

Migration binary compatibility checking ensures that there will be no linkage errors
between pre-existing client binaries and the new version. This determination is based
on the Chapter 13, “Binary Compatibility,” of The Java Language Specification.

Migration source code compatibility means that pre-existing client source code can be
recompiled with the new version without compilation errors.

2.2.4 Class and Class Member Attributes Checked

A Java platform API consists of classes, and interfaces, and their member fields,
methods, and constructors, and documented annotations. In turn, all of these API
items can have various attributes such as names, modifiers, a list of parameters, a list
of interfaces, exceptions, nested classes, and so forth. A signature test checks that
certain members and attributes belonging to the API under test are the same as those
defined by the API to which it is being compared. Signature test only checks public
and protected API items and in the most cases ignores private and package access
items. Members with private and package visibility are taken into account when the
tool calculates hiding for more visible members.

The tool checks the following attributes when comparing items in the API
implementation under test:

s Classes and interfaces, including nested classes and interfaces:

- Set of modifiers except strictfp

— Name of the superclass

— Names of all superinterfaces, direct plus indirect, where order is insignificant
s Constructors:

- Set of modifiers

- List of argument types

- Insource compatibility mode only, the normalized list of thrown exceptions
where order is insignificant

Normalizing the throw lists involves removing all superfluous exception
classes. An exception class is superfluous if it is a subclass of either the
java.lang.RuntimeException class, the java.lang.Error class, or
another class from the same list.

s Methods:
— The set of modifiers, except strictfp, synchronized, and native
— The return type
— The list of argument types

- Insource mode only, the normalized list of thrown exceptions, described
earlier, where order is insignificant

s Fields:

Introduction to Signature Test Tool 2-3

Source and Binary Compatibility Modes

- Set of modifiers, except transient
- Field type
s Documented annotations with SOURCE and RUNTIME retention of the following
types:
— Classes and interfaces
— Fields, methods and constructors
— Parameters and annotation types
The tool performs the check in the following order:

1. For all top-level public and protected classes and interfaces, it compares the
attributes of any classes and interfaces with the same fully qualified name.

2, Taking into account all declared and inherited members, it compares all public and
protected members of the same kind and same simple name, treating constructors
as class members for convenience sake.

2.3 Source and Binary Compatibility Modes

Earlier Signature Test tool versions performed a comparison of all exceptions declared
in throws clauses for methods and constructors. Certain variations in this area caused
an error message during the signature test. Despite these error messages, the source
files compiled successfully together. Successful compilation is the basic criteria for
source compatibility with the current Signature Test tool, while successful linking as
the basic criteria for binary compatibility.

Changes to the throws clause of methods or constructors do not break compatibility
with existing binaries because these clauses are checked only at compile time, causing
no linkage error. For the purpose of signature testing, this relates directly to binary
compatibility as described earlier in Section 2.2.1, "Mutual Binary Compatibility
Check".

The adaptation of JSR 68, The Java ME Platform Specification, formalized the use of
building blocks in API development. A building block is a subset of an existing API
that is approved for reuse in the construction of profiles or optional packages. The
building block concept enables a developer to duplicate the functionality provided by
another API without having to redefine an entirely new API. For further details see
JSR 68 at http://www.jcp.org/en/jsr/detail?id=68.

The use of building blocks created a need for more lenient checking of exception throw
lists compared to earlier Signature Test tool versions. Consequently, Signature Test tool
2.2 provides both a source and a binary compatibility mode of operation. This retains
compatibility with earlier signature files while adding support for building blocks and
eliminating the unnecessary error messages.

The SignatureTest command recognizes the -mode option that takes the values
“src” or “bin” as arguments for choosing source mode or binary mode. The choice of
which mode to use depends on the type of signature file being used in the test. This is
described in more detail later in these sections:

= Section 3.3, "Setup Command" describes how to generate a signature file

= Section 3.4, "SignatureTest Command" describes how to specify the mode when
running a signature test

= Section 3.6, "Merge Command" describes how to generate a combined signature
file from set of signature files

2-4 SigTest/User's Guide

Using Custom Signature Loaders

The difference between the binary and source compatibility modes is how the tool
handles the throws list for constructors and methods (as described in Section 2.2.4,
"Class and Class Member Attributes Checked"). Constant checking behavior is also
different in binary and source compatibility modes. Although constant checking can
be applied to binary compatibility, it is a necessary prerequisite for source code
compatibility. Section 3.1.2, "Constant Checking in Differing Run Modes" describes
these differences in more detail.

2.4 Using Custom Signature Loaders

The signature test has a requirement for the Java Platform, Standard Edition (Java SE
platform) runtime environment version 1.4 or later. This requirement might prevent
use of the tool on limited or nonstandard environments such as some Java Platform,
Micro Edition (Java ME platform) or Java Platform, Enterprise Edition (Java EE
platform) configurations.

To overcome this, the tool provides support for custom signature loaders that can be
implemented as plug-ins. These plug-ins gather signatures from a runtime
environment when the SignatureTest command cannot be run directly. For
example, you might create a light-weight remote JavaTest harness agent and run the
signature loader on a remote Connected Device Configuration (CDC) compatible
device. Another example is using a wrapped J2EE platform bean as a signature loader
inside a J2EE platform container where any direct file I/O operations are prohibited.

As an aid in developing such an extension, the Signature Test tool distribution
includes a class library that contains a signature serializer and some related utility
classes in the SigTest-Directory/1ib/remote. jar file. This file contains a subset of the
Signature Test tool classes that are necessary to develop a custom plug-in. All of these
library classes are CDC 1.0 compatible and have minimal memory requirements. The
source code for these classes is distributed in the
SigTest-Directory/redistributables/sigtest_src. zip file. The code is designed
for running a plug-in with the JavaTest harness using the Java ME Framework. The
server and client source code and the HTML test descriptions for an actual plug-in
example are located in the SigTest-Directory/examples/remote directory.

Note: The open source version of the ME Framework is available at:
http://cgme.dev.java.net/framework.html.

Introduction to Signature Test Tool 2-5

Using Custom Signature Loaders

2-6 SigTest/User's Guide

3

Using the Signature Test Tool

This chapter provides a synopsis of each of the Signature Test tool commands along
with their available options and arguments. It contains these sections:

= Signature Test Tool Basics
s Setup Command

s SignatureTest Command
s SetupAndTest Command
s Merge Command

= Report Formats

Note: Appendix A includes examples of each command.

3.1 Signature Test Tool Basics

The Signature Test tool operates from the command line to generate or manipulate
signature files. A signature file is a text representation of the set of public and
protected features provided by an API. Test suite developers include it in a finished
test suite as a signature reference for comparison to the technology implementation

under test. The following list shows the commands that are available.

Setup - Creates a signature file from either an API defined by a specification or a
reference APl implementation.

SignatureTest - Compares the reference API represented in the signature file to
the API under test and produces a report. This is the test that becomes part of a
finished test suite.

SetupAndTest - Executes the Setup and SignatureTest commands in one
operation.

Merge - Creates a combined signature file from several signature files representing
different Java APIs in one Java runtime environment according to the JSR 68 rules.

The Signature Test tool distribution includes a Java Archive (JAR) file used for
developing a signature test and one for distribution within a finished test suite to run
its signature test. The description of each follows:

sigtestdev. jar - Contains classes for running the commands used during
signature test development.

sigtest.jar - Contains only the classes for running the SignatureTest
command. This file is distributed in a finished test suite.

Using the Signature Test Tool 3-1

Signature Test Tool Basics

Test suite developers perform these operations while using sigtestdev.jar to
develop a signature test.

1. Run the Setup command to create a signature file from either an API defined by a
specification or a reference API implementation.

2. Include the files required to run the signature test in the finished test suite
distribution.

3.1.1 Reflection and Static Run Modes

Two run modes are available during command execution. These modes determine
how the class descriptions are examined and retrieved, as follows:

s Reflection Mode - Uses reflection to examine API classes and retrieve information
about them. The reflection mode is of greatest advantage when the API to be
analyzed has no external class files.

= Static Mode - Specified with the -static flag, the tool parses only the class files
listed in the -classpath command-line option.

Note: In static mode you can test specified classes in another runtime
environment. For example, this can be useful to analyze APIs that are
part of a Java SE platform 1.4.2 environment when the
SignatureTest command is run on a Java SE platform version 5.0.

3.1.2 Constant Checking in Differing Run Modes

The requirements related to constant checking differ in binary and source
compatibility testing. Although constant checking can be applied to binary
compatibility, it is a necessary prerequisite for source code compatibility. Use the
-static mode to enforce strict constant checking in source code compatibility testing.

When running a signature test in source compatibility mode and using the static
mode, constant checking is strict and two way. This means that all the constant fields
specified in the reference API must exist and have the same values in the API under
test. Likewise, all the constant fields and their related values specified in the API
under test must exist and have the same values in the reference API.

In binary compatibility mode, the requirements related to constant checking are less
strict. The signature test verifies that all the constant fields and associated values
contained in the reference API are also available in the API under test. If any field
values are missing or different, it reports an error. However, the signature test does not
report an error if constant values are found in the API under test that are not available
in the reference API.

3.1.3 Generics Checking in Binary Mode

The information related to generics is not used by the Java Virtual Machine' at
runtime. This information is used only by the compiler at compile time. Because the
information does not effect the runtime linkage process, it cannot cause binary
incompatibility.

In binary mode the SignatureTest command compares the signatures of
parameterized types after omitting the type parameters and arguments from both the
signature file and the analyzed API (termed “type erasure”). This is to ensure that they

! The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java platform

3-2 SigTest/User's Guide

Signature Test Tool Basics

are compatible at runtime. See The Java Language Specification, Third Edition, for a
detailed description of type erasure.

The bridge methods that are generated by the compiler during type erasure are not a
part of the API and so they are ignored by the Signature Test tool.

3.1.4 cLASSPATH and -classpath Settings

Table 3-1 lists the requirements for setting the CLASSPATH environment variable and
the -classpath option when running either the Setup or SignatureTest
commands. The table uses the following terms to describe the classes that must be
included:

= Required classes - All superclasses and superinterfaces of the classes under test

s Classes under test - The set of classes specified by a combination of the following
options:

- -package
- -PackageWithoutSubpackages

— -—exclude

Note: The Setup command can only be run in static mode.

Table 3—-1 Settings for the Setup and SignatureTest Commands

Variable or Option In Reflection Mode In Static Mode
CLASSPATH environment Required. Must contain the ~ Required. Must contain
variable following: either sigtestdev.jar or

. . i .jar.
n sigtestdev.jar or sigtest.ja

sigtest.jar
s Classes under test

= Other required classes,
except for bootstrap and
extension classes
described in
Section 3.1.4.1,
"Bootstrap and
Extension Classes"

-classpath arqument N/A Required. Must contain the
following:

s Classes under test

= All required classes

3.1.4.1 Bootstrap and Extension Classes

Bootstrap and extension classes are those located in rt . jar and several other JAR
files under the Java-Home/jre/1ib/ directory, where Java-Home is the base directory
of the Java platform runtime installation. For example, classes from the java package
such as java.lang.Object are bootstrap classes. Their location is already available
to the Java Virtual Machine environment. Because of this, they do not need to be
specified in the CLASSPATH environment variable when reflection mode is used.
Furthermore, bootstrap and extension classes are always loaded from JAR files located
in the Java-Home/jre/1ib/ directory, regardless of whether they were specified in the
class path or not. This is an important feature of the reflection mode.

Using the Signature Test Tool 3-3

Signature File Merge Rules

3.2 Signature File Merge Rules

The -Files option of the SignatureTest command accepts values to specify one or
more signature files that are combined to represent an API configuration that is used
as input for testing. This resulting API-set can also be combined into a single signature
file for testing purposes.

By default the API combination is assumed to be constructed according to the JSR 68
rules. This can be overridden during a Signature Test tool test run by specifying the
-NoMerge option to run the signature test. The -NoMerge option forces the Signature
Test tool to use the first class description it encounters if more than one class with the
same name is found in the set of signature files specified by the -Files option. In this
case it uses the class from the left-most signature file that is specified with -Files.

Note: The operative merging principles used by the Signature Test
tool are described in Appendix D.

3.2.1 JSR 68-Based Merge

The Java ME platform architecture specified by JSR 68! allows for the inclusion of
several Java platform APIs in one conforming Java platform runtime environment. The
condition for combining these APIs is that any application written for the resulting
runtime environment must execute successfully on the combination.

If such a combination exists, it is defined on the basis of the combined sets of APIs
with semantics, and the semantics must be compatible with those of all the included
components.

The only means of verifying the semantics of the combination is to run the applicable
test suite for each API. However, it is possible to automate the creation of a combined
set of API signatures, and it is also possible to detect when a combined set cannot be
built.

The Merge command functionality combines (merges) several input signature files
into one resulting signature file, as follows: If A, B, and C are signature files, then A +
B yields signature file C, and each of the three signature files represent the
corresponding classes of their respective APIs. The Merge process constructs the
resulting API C out of the two input APIs A and B.

3.3 Setup Command
The Setup command has the following synopsis:
java -jar sigtestdev.jar Setup [options]
or
java com.sun.tdk.signaturetest.Setup [options]

Table 3-2 describes the available command options and the values that they accept.
Before running the command, also see these sections: Section 3.3.2, "Case Sensitivity of
Option Arguments" and Section 3.1.4, "CLASSPATH and -classpath Settings".

! http://jep.org/en/jsr/detail?id=68

3-4 SigTest/User's Guide

Setup Command

3.3.1 Command Description

The Setup command accepts a reference implementation of an API as input. The
command processes the API input to generate a signature file that represents the API
to be used as a reference of comparison for the purpose of signature testing.

Setup processes the API input in the static mode by parsing the set of classes
specified with the -~classpath options.

Also see Appendix A for an example of the command that you can run.

Note: Arguments to options marked with an asterisk (*) in Table 3-2
can be specified multiple times. For example, if you want to specify
filtering for the java.awt, java.lang, and java.math packages,
you can specify the three arguments separated by a file separator
character as shown in the following example:. -Package
java.awt:java.lang:java.math On Unix operating systems the

7R “,y

separator character is “:” and on Microsoft Windows it is “;

Table 3-2 setup Command Options

Option Description

-help Optional. Displays usage information for available
command options and exits.

-debug Optional. Enables printing of the stack trace for
debugging purposes if Setup fails.

-classpath path Required. Specifies the path to one or more APIs that
generate the signature file. Can contain multiple
directories or ZIP or JAR files. The -package option
further refines the set of classes specified in
-classpath (see Section 3.1.4, "CLASSPATH and
-classpath Settings"). There is no default
-classpath. Use the path separator appropriate for
the platform (identified by

java.io.File.pathSeparator).

-TestURL path Optional. Specifies the directory location in which to
create the signature file as a £i1le protocol URL:

file://path

Must end in a trailing slash on a UNIX system or a
backslash on a Microsoft Windows or DOS system.
Setup does not support the HTTP protocol.

-FileName file_name Required. Specifies the name of the signature file to
be created.
-ClosedFile Optional. The default if not specified. Specifies to

include in the signature file all direct and indirect
superclasses for all required classes (tested classes),
even if these superclasses are non-public or from
untested packages.

-NonClosedFile Optional. Declines the default -ClosedFile mode
previously described. Does not include all direct and
indirect superclasses and superinterfaces of tested
classes in the signature file

Using the Signature Test Tool 3-5

Setup Command

Table 3-2 (Cont.) setup Command Options

Option Description

-package package_or_class_name* Optional. Specifies a class or package to be included
in the signature file, including its subpackages if a
package is specified. The -package value acts as a
filter on the set of classes specified in -classpath.
The default is all classes. Repeat the option to specify
multiple entries.

-PackageWithoutSubpackages Optional. Similar to the -package option, this

package* specifies a package to be included but without its
subpackages. Repeat the option to specify multiple
entries.

-exclude package_or_class_name* Optional. Specifies a package or class to be excluded

from the signature file, including its subpackages.
Repeat the option for multiple entries. Excludes
duplicate entries specified by the -package or the
-PackageWithoutSubpackages option.

-verbose Optional. Enables error diagnostics for inherited
class members.

-version Optional. Displays version information.

-apiVersion version_string Optional. Specifies the API version string to be

recorded in the second line of the signature file, as
described in Section 3.3.4, "Signature File Contents".

-CopyRight copyright_string Optional. Writes the specified copyright string to the
signature file.

-static Deprecated. The Setup command now runs only in
static mode.

3.3.2 Case Sensitivity of Option Arguments

The specification of each argument option at the command line is not case sensitive,
but the input value entered immediately after the option is case sensitive.

The following two command lines produce identical results for the -FileName flag:

% java -jar sigtestdev.jar Setup -FileName name.sig

% java -jar sigtestdev.jar Setup -filename name.sig

However, these two might not produce identical results if the host operating system is

case sensitive to the file name values entered:

% java -jar sigtestdev.jar Setup -FileName name.sig
% java -jar sigtestdev.jar Setup -FileName NAME.sig

3.3.3 Signature File Formats

The Signature Test tool has changed signature file formats through progressive
versions. Table 3-3 lists the existing signature file formats and describes how each
relates to a specific Signature Test tool version. In Signature Test tool 2.2, the
SignatureTest and Merge commands read v2.1 and later signature files, and
output only v4.1.

3-6 SigTest/User's Guide

Setup Command

Table 3-3

Signature File Format Compatibility

Format

Description

v0

Generates a signature file with simple class member names. This was
the default format in Signature Test tool 1.0, but is not supported by
SignatureTest command in Signature Test tool 1.3 and later.

vl

Generates a signature file with fully qualified class member names.
This was the default format in Signature Test tool 1.1. This format
includes non-normalized exception throw lists for constructors and
methods. Normalizing the throw list involves removing all
superfluous exception classes. A class is superfluous if it is a subclass
of either the java.lang.RuntimeException class, or the
java.lang.Error class, or another class from the same list. This
format is not supported by SignatureTest command in Signature
Test tool 1.3 and later.

v2

This is the default format for Signature Test tool 1.2. Generates a
signature file with fully qualified class member names and modified
supr statements. This format includes normalized exception throw lists
for constructors and methods. This format is not supported by
SignatureTest command in Signature Test tool 1.3 and later.

v2.1

This version extends the v2 format to indicate whether an interface is
inherited directly or indirectly. It is read by SignatureTest
command in Signature Test tool 1.3 and later.

v3.1

Generates data for JDK" software version 5.0 such as generics,
annotations, and enums.

v4.0

Inherited members are not written to the signature file. Private and
default visibility fields and nested classes that can potentially hide
visible API elements are tracked. In Signature Test tool 2.2, all output
files are of this version.

v4.l

Non-static constants are written to the signature file. References to
outer classes are stored for the inner classes. Constructor names are
changed to <init>. This has been the case since SigTest 2.2.

Also see Section 2.3, "Source and Binary Compatibility Modes".

3.3.4 Signature File Contents

Setup generates each signature file with a mandatory header in the first two lines,
followed by the body of the signature file.

Note:

Comment lines start with the pound (#) character and can be

inserted anywhere after the first two mandatory header lines.

3.3.4.1 Signature File Header

Setup generates the first two mandatory header lines of each signature file as follows:

#Signature file format
#Version version-string

With the following variable replacement values:

» format is either one of the values described in Table 3-3, or empty, that indicates v0.

» version-string is a value taken directly from the argument given at the startup
command line to the -apiversion option (see Table 3-2).

Using the Signature Test Tool 3-7

Setup Command

Note that the header can also contain an optional copyright string.

3.3.4.2 Signature File Body

The remaining body of a signature file immediately follows the header. It contains the
following information, which is further clarified in Table 3—4:

s Foreachpublic or protected class:
- All modifiers except strictfp
— The fully qualified name of any superclass or interfaces implemented
- Generic type parameters, and annotations.
s For each public or protected interface:
- All modifiers except strictfp
- The fully qualified name of any superinterfaces implemented,
- Generic type parameters
- Annotations
s Foreachpublic or protected field:
- All modifiers except transient
— The fully qualified name of the field’s type and its fully qualified name
— If the field is a primitive or string constant, the value of the field is included
s For each public or protected method:
— All modifiers (except native, synchronized, and strictfp)

— The fully qualified name of the type of returned value, the method’s fully
qualified name

- Types of all parameters

— The names of exceptions declared in a throws clause
s For each public or protected constructor:

- All modifiers

— The fully qualified name of the constructor

- Types of all parametera

- Any exceptions declared in a throws clause

Note: All private types that are used in the definition of a
public or protected item are substituted by their public or
protected equivalent if possible, otherwise an error is generated. All
types included in a signature file are either public or protected
and not private or package local.

Table 3—4 further summarizes the contents of a generated signature file. A plus (+)
indicates a class modifier is included in a generated signature file and a minus (-)
indicates it is ignored for that particular element. A blank cell indicates that the
condition does not apply to a cell, for example, a class does not have a transient
modifier so it is blank.

3-8 SigTest/User's Guide

SignatureTest Command

Table 3—-4 Signature File Content Summary

Nested

Class or Class or
Modifier Interface Field Method Constructor Interface
public + + + + +
protected + + + +
abstract + + +
static + + +
final + + + +
strictfp - - -
transient -
volatile +
synchronized -
native -

3.4 SignatureTest Command

The signatureTest command has the following synopsis:

java -jar sigtest.jar Test [options]

or

java com.sun.tdk.signaturetest.SignatureTest [options]

The second alternative assumes that sigtest. jar is on the class path. The rules
described in Section 3.3.2, "Case Sensitivity of Option Arguments" apply. Table 3-5 lists
the available options.

Note: SignatureTest command settings for the CLASSPATH
environment variable and the -classpath option are the same as
those listed for the Setup command in Table 3-1.

3.4.1 Command Description

The SignatureTest command compares the reference API represented in a
signature file to the API under test and produces a report. Depending on the
command-line options specified, it uses either the reflection or static mode. If the
-classpath option is specified, the SignatureTest command checks if any extra
classes are contained in the APIs it specifies.

See Section 3.3.3, "Signature File Formats" for details about supported versions of
signature file formats.

Note: Arguments to options marked with an asterisk (*) in Table 3-5
can be specified multiple times. For example, if you want to specify
filtering for the java.awt, java.lang, and java.math packages,
you can specify the three arguments separated by a file separator
character as shown in the following example:. --Package
java.awt:java.lang:java.math On Unix operating systems the

",y “",rr

separator character is “:” and on Microsoft Windows it is “;”.

Using the Signature Test Tool 3-9

SignatureTest Command

Table 3-5 signatureTest Command Options

Option Description

-help Optional. Displays usage information for available
command options and exits.

-debug Optional. Enables printing of the stack trace for
debugging purposes if SignatureTest fails.

-static Optional. Specifies to run in static mode without

using reflection and reports on only the class files
specified in the -classpath option.

-mode [bin | src]

Optional. Specifies the compatibility mode to use
during the signature test, either binary or source,
respectively. Defaults to src. Section 2.3, "Source
and Binary Compatibility Modes" describes each
mode.

-Checkvalue Specifies to check the values of primitive and
string constants. This option generates an error if a
signature file does not contain the data necessary
for constant checking.

-NoCheckValue Specifies not to check the values of primitive and

string constants.

-ClassCacheSize size_of cache

Optional. Used in static mode only. Default is 1024.
Specifies the size of the class cache as a number of
classes to be held in memory to reduce execution
time. Increasing this value dedicates more memory
to this function.

-classpath path

Optional. Specifies the path to one or more APIs to
be tested. Defaults to the classes contained in the
signature file under test. Can contain multiple
directories or ZIP or JAR files. The -package
option filters the set of classes specified in
-classpath (see Section 3.1.4, "CLASSPATH and
-classpath Settings"). Uses the path separator
appropriate for the platform (identified by

java.io.File.pathSeparator).

-TestURL URL

Optional. Specifies the directory location of the
signature file as a £ile protocol URL:

file://path

Must end in a trailing forward slash on a UNIX
system or a backslash on a Microsoft Windows or
DOS system.

-FileName file_name

Required if -Files is not specified. Specifies the
name of a signature file to be used.

-Files file_names

Required if -FileName is not specified. Use this
option for testing a combination of APIs
represented by corresponding signature files.
Specifies the names of the signature files to be used
delimited by a file separator. The file separator on
UNIX systems is a colon (:) character, and on
Microsoft Windows systems it is a semicolon (;).
See Section 3.2, "Signature File Merge Rules" for
details about the rules used for merging.

3-10 SigTest/User's Guide

SignatureTest Command

Table 3-5 (Cont.) signatureTest Command Options

Option

Description

-NoMerge

Optional. Forces using the first encountered class
description if more than one class with the same
name is found in the input set of signature files
specified by -Files option. In this case it uses the
class from the left-most signature file that is
specified with -Files. This option prevents the
test from using the default merging behavior
according to the JSR 68 rules. See Section 3.2,
"Signature File Merge Rules" for details about the
rules used for merging.

-Package package_or_class_name*

Optional. Specifies a class or package to be
reported on, including its subpackages if a package
is specified. The default is all classes and packages
in the signature file. This option acts as a filter on
the set of classes or packages optionally specified
in -classpath. Repeat the option to specify
multiple entries.

-PackageWithoutSubpackages

package*

Optional. Similar to the -package option,
specifies a package to be reported on without its
subpackages. Repeat the option to specify multiple
entries.

-Exclude package_or_class_name*

Optional. A package or class to be excluded from
the report, including its subpackages. Repeat the
option for multiple entries. Excludes duplicate
entries specified by the -package or the
-PackageWithoutSubpackages option.

-out file_name

Optional. Prints report messages to a specified file
instead of standard output.

-FormatPlain Optional. Specifies not to sort report messages, but
output them immediately. Allows a decrease in
memory consumption compared to the default
sorted format of message reporting.

-FormatHuman Optional. Specifies the human-readable report

H output format. Simple API changes are presented
not as pair of errors (“missing element” and
“added element”), but as a single API change.

-Backward Optional. Specifies migration compatibility check

B mode.

-apiVersion wversion_string

Optional. Specifies the API version number of the
implementation under test to be recorded in the
report.

-verbose Optional. Prints all error messages for inherited
class members. Default is to remove all these error
messages.

-version Optional. Displays version information.

-ErrorAll Optional. Specifies to make the signature test more

strict by upgrading certain warnings to errors.

-Update file_name

Optional. Specifies the name of an update file. See
Section 3.4.2, "Using Update Files".

Using the Signature Test Tool 3-11

SignatureTest Command

3.4.2 Using Update Files

An update file is an XML file that contains API changes that can be applied to a
signature file before tests are performed. An update can have an ID and corresponding
comments. Example 3-1 shows an example of an update file that removes and adds a
class before test execution.

Example 3-1 Update File Example

<updateset>
<update type="removeclass” id="Change #12” comments="Fixing bug #1234"
classname="com.acme.Elefant” />
<update type="addclass” id="Change #13” commens="Approved by the committee”

classname="com.acme.Tiger”
CLSS public com.acme.Tier”>
cons public Tiger()
cons public Tiger (java.land.String)
supr java.lang.Object
</update>
</updateset>

The XML file is enclosed within the <updateset> element and each change is
specified in an <update> element. Each <change> element consists of a type and a
set of attributes. The types and their attributes are described in Table 3-6.

Table 3-6 Update Types and Attributes

Update Types Description

removeclass Removes a class.
Required attributes:
= classname - the name of the class to remove
Optional attributes:
= id-changeID
= comments - a comment that describes the change
Example:

<update type="removeclass" classname="com.acme.Zoo"
id="Issue #1717" comments="Bug fixing" />

removepackage Removes all classes belonging to a specified package.
Required attributes:
= packagename - the name of the package to remove
Optional attributes:
s id-changeID
= comments - a comment that describes the change
Example:

<update type="removepackage"
packagename="com.acme.animals" id="CR 4657"
comments="Removing incorrectly introduced package,
approved" />

3-12 SigTest/User's Guide

SignatureTest Command

Table 3-6 (Cont.) Update Types and Attributes

Update Types Description

addclass Adds a class.
Required attributes:
s classname - the name of the class to remove
= Definition of the new class in the element body
Optional attributes:
= id-changeID
= comments - a comment that describes the change
Example:
<update type="addclass"
classname="com.acme.zoo.Rabbit">
CLSS public com.acme.zoo.Rabbit
cons public com.acme.zoo.Rabbit ()
cons public com.acme.zoo.Rabbit (java.lang.String)
Supr com.acme.zoo.Animal
</update>

removemember Removes a class member.
Required attributes:
= classname - the name of the class to change
= member - the name of the member signature to remove
Optional attributes:
s id-changeID
= comments - a comment that describes the change
Example:
<update type="removemember"
classname="com.acme.zoo.donkey" member="meth public
final com.acme.Tail getTail()"/>

addmember Adds a class member.

Required attributes:

= classname - the name of the class to change

= member - the member signature add

Optional attributes:

= id-changeID

= comments - a comment that describes the change
Example:

<update type="addmember"
classname="com.acme.zoo.donkey" comments="See wiki for
details" member="meth public com.acme.Ear|[]
getEars()"/>

Using the Signature Test Tool 3-13

SignatureTest Command

Table 3-6 (Cont.) Update Types and Attributes

Update Types Description

changemember Changes a class member
Required attributes:
= classname - the name of the class to change
= member - the member signature to change
= newmember -the new member signature
Optional attributes:
s id-changelD
= comments - a comment that describes the change
Example:

<update type="changemember"
classname="com.acme.zoo.donkey" member="meth public
Ear[] getEars()" newmember="meth public
java.util.List<com.acme.Ear> getEars()"/>

3.4.3 Report Formats

You can cause SignatureTest command report messages to be sorted (default), or
unsorted by specifying the -FormatPlain flag at the command line. See Step 8 of the
procedure Section A.2.2, "Using the SetupAndTest Command" to see a sorted report
that was generated into a plain text file with the -out option. Report messages contain
the following types of information:

s The versions of both the reference API and the API under test
s The total number of errors found
s The differences such as added or missing classes, superclasses, fields, or methods

s The fully qualified name of the enclosing class related to any missing or added
description

= Two errors for any modified item, one for a missing item and another for an added
item

= A description of any incompatibility in the API implementation under test

3.4.3.1 Sorted Report

Report messages are sorted by default. Unlike the unsorted format, duplicate
messages are removed. To accurately compare the error totals between formats, the
sorted report prints two error counts: the total number of errors and the total number
of duplicates.

The sorted report groups error messages by category of difference with classes within
each category ordered alphabetically by name, and empty categories are ignored. This
is the category ordering sequence:

= Missing Classes

= Missing Class Descriptions (Modified classes and nested classes)
= Missing Superclasses or Superinterfaces

= Missing Fields

= Missing Constructors

3-14 SigTest/User's Guide

SignatureTest Command

= Missing Methods

s Added Classes

= Added Class Descriptions (Modified classes and nested classes)
s Added Superclasses or Superinterfaces

s Added Fields

= Added Constructors

s Added Methods

= Linkage Errors

Linkage errors occur during testing if the API implementation under test is corrupted,
for example, if a superclass or superinterface of a class under test cannot be loaded.

See the sorted report in Example A—4.

3.4.3.2 Unsorted Report

The -FormatPlain option specifies an unsorted report. The unsorted format reports
messages immediately during execution and duplicate messages are included.

Example 3-2 shows an unsorted report that corresponds to the sorted report in
Example A—4.

Example 3-2 Unsorted Report Example

Definition required but not found in example.test
method public int get(int)

Definition found but not permitted in example.test
method public java.lang.String get(int)

Definition found but not permitted in example.test
method public void put()

SignatureTest report

Tested version: 2.0

STATUS: Failed. 3 errors

3.4.3.3 Human-Readable Report

The human-readable report format is similar to the sorted report format. Unlike the
sorted report format where some changes in the API are presented as pairs of
messages (“added element” and “missed element”), the human-readable report format
presents these changes as a single message that describes the difference between the
APIs. This report recognizes the following cases:

= Modifiers were changed

= Return type was changed

= Parameter types were changed

= Normalized throw list was changed
= Constant value was changed

= Annotation was changed

Unlike the sorted report format, all messages are grouped by class first, rather than
message type. The code example below shows the output for an class:

Class tests.human.many.El
Changed
method public abstract void tests.human.many.El.foo() throws

Using the Signature Test Tool 3-15

SetupAndTest Command

java.io.

IOException

- Throws: [java.io.IOException]
method public abstract void tests.human.many.El.foo() throws

java.io.

IOException

- [public, abstract]

+ [protected]

field public final static int tests.human.many.El.i = 0
- type: int

+ type: char

field public final static int tests.human.many.El.i = 0
- value: 0

3.5 SetupAndTest Command

The SetupAndTest command has the following synopsis:

java -jar sigtestdev.jar SetupAndTest [options]

or

java com.sun.tdk.signaturetest.SetupAndTest [options]

The second alternative assumes that sigtestdev. jar is on the class path. The rules
described in Section 3.3.2, "Case Sensitivity of Option Arguments" apply. Table 3-7 lists
the available options.

3.5.1 Command Description

SetupAndTest is a wrapper command that runs only in static mode to execute the
Setup and SignatureTest commands in one operation. It performs these functions:

1. Calls the Setup command to create a signature file from the reference API
specified as input. It creates a temporary signature file if no name is specified for it
with the -FileName option.

2. Calls the SignatureTest command to make the comparison and produce a
report.

Note: Arguments to options marked with an asterisk in Table 3-7
can be specified multiple times. For example, if you want to specify
filtering for the java.awt, java.lang, and java.math packages,
you can specify the three arguments separated by a file separator
character as shown in the following example:-Package
java.awt:java.lang:java.math On Unix operating systems the

“.y "

separator character is “:” and on Microsoft Windows it is “;

Table 3-7 SetupAndTest Command Options

XXX Must have a Heading Row XXX

-help Optional. Displays usage information for
available command options and exits.

-reference path Required. Specifies the path to the classes to
be used for creating the signature file.

-test path Required. Path to the packages being tested.

-FileName file Optional. Specifies the signature file name.

The command execution uses a temporary
file if not specified.

3-16 SigTest/User's Guide

SetupAndTest Command

Table 3-7 (Cont.) setupAndTest Command Options

XXX Must have a Heading Row

XXX

-mode [bin | src]

Optional. Specifies the compatibility mode to
use during the signature test, either binary or
source, respectively. Defaults to src.

Section 2.3, "Source and Binary Compatibility
Modes" describes each mode.

-package package_or_class_name*

Optional. Specifies a class or package to be
reported on, including its subpackages if a
package is specified. This option acts as a
filter on the set of classes or packages that are
tested and reported on. The default is all
classes and packages. Repeat the option to
specify multiple entries.

-PackageWithoutSubpackages name*

Optional. Specifies package to be tested
excluding subpackages.

-exclude name*

Optional. A package or class to be excluded
from testing, including its subpackages.
Repeat the option for multiple entries.
Excludes duplicate entries specified by the
-package or the
-PackageWithoutSubpackages option.

-ClassCacheSize size_of_cache

Optional. Specifies the size of the class cache
as a number of classes to be held in memory
to reduce execution time. Increasing this
value dedicates more memory to this
function. Defaults to 100.

-CheckValue

Optional. Specifies to check the values of
primitive and string constants. This option
generates an error if a signature file does not
contain the data necessary for constant
checking.

-NoCheckValue

Optional. Specifies not to check the values of
primitive and string constants.

-verbose

Optional. Enables error diagnostics for
inherited class members.

-version

Optional. Displays version information.

-apiVersion wversion_string

Optional. Specifies the API version number
of the implementation under test to be
recorded in the generated report.

-out file_name

Optional. Prints report messages to a
specified file instead of standard output.

-FormatPlain

Optional. Specifies not to sort report
messages, but output them immediately.
Allows a decrease in memory consumption
compared to the default sorted format of
message reporting.

-FormatHuman
-H

Optional. Specifies the human-readable
report output format. Simple API changes are
presented not as pair of errors (“missing
element” and “added element”), but as a
single API change.

-Backward
-B

Optional. Specifies migration compatibility
check mode.

Using the Signature Test Tool 3-17

Merge Command

3.6 Merge Command
The Merge command has the following synopsis:
java -jar sigtest.jar Merge [options]
or
java com.sun.tdk.signaturetest.Merge [options]

The second alternative assumes that sigtest. jar is on the class path. The rules
described in Section 3.3.2, "Case Sensitivity of Option Arguments" apply. Table 3-8 lists
the available options.

3.6.1 Command Description

The Merge command combines (merges) a number of input signature files into one
resulting signature file. See Section 3.2, "Signature File Merge Rules" for details about
the rules used for merging, and Section 3.3.3, "Signature File Formats" for details about
supported versions of signature file formats. Table 3-8 lists the Merge command
options.

Table 3-8 Merge Command Options

Option Description

-help Optional. Displays usage information for available command options and
exits.

-Files Required. Specifies the names of the signature files to be merged delimited

by a file separator. The file separator on UNIX systems is a colon (:)
character, and on Microsoft Windows systems it is a semicolon (;). See
Section 3.2, "Signature File Merge Rules" for details about the rules used for

merging.
-Write Required. Specifies the resulting output signature file.
-Binary Optional. Specifies to use the binary merge mode. See Section 2.3, "Source

and Binary Compatibility Modes".

3-18 SigTest/User's Guide

Part li

API Coverage Tool

Describes how you can use the API Coverage tool to estimate the test coverage a test
suite provides for an implementation of a specified API. It does this by determining
how many public class members the test suite references within the API specification.
The tool uses a signature file representation of the API specification as the source of
specification analysis. It does not process a formal specification in any form.

This part includes the following chapters:
» Chapter 4, "Introduction to API Coverage Tool"
» Chapter 5, "Using the API Coverage Tool"

4

Introduction to API Coverage Tool

The API Coverage tool is used to estimate the test coverage that a test suite under
development affords to implementations of its related API specification. It does this by
determining how many public class members the test suite references within the API
specification that it is designed to test against. The tool uses a signature file
representation of the API specification as the source of specification analysis. It does
not process a formal specification in any form.

The API Coverage tool code is contained in both the sigtestdev. jar and
sigtest. jar files. Additional installation is not required. See Chapter 5 for details
about running API Coverage tool.

4.1 Static APl Coverage Analysis

The tool operates on the principle that a reference to an API member from within a test
class indicates a test of that member by the test suite. The ratio of referenced class
members to the total number of class members calculated for an API yields a
percentage of test coverage for the APL

This method is called static API coverage analysis because it does not actually run any
tests from the test suite. Since it does not dynamically determine which API members
are actually accessed by the tests, the coverage calculation expresses only an estimated
percentage of test coverage.

4.1.1 Major Source of Error

Static analysis cannot correctly predict the outcome of virtual calls to overridden
methods that are resolved at runtime through dynamic method dispatch. The
frequency of this type of overridden method can vary between differing
implementations of the same API specification. This makes it difficult to formulate an
exact percentage of test suite coverage when using static analysis (in spite of the fact
that the implementations may all be binary compatible and correctly implement the
specification).

Tests that make dynamic calls to API members are not recognized by API Coverage
tool. This may cause some test calls to not be accurately measured and may result in
test coverage being underreported.

4.1.2 Advantages of Static Coverage Analysis

Static API coverage testing provides the following advantages over dynamic coverage
methods.

Introduction to API Coverage Tool 4-1

How It Works

» Static testing is more lightweight. Testing is easier to setup and quicker to run than
dynamic methods.

= Static testing is easier to automate and provides more consistent results because it
is not affected by external conditions such as machine load, or network traffic.

= Static testing is more practical for gathering results for very large APIs. A test suite
and its associated API might include many thousands of tests and associated API
class members making it very cumbersome to instrument dynamic tests.

= Static testing allows you to quickly estimate the quality of test coverage for all
APIs, especially APIs that are difficult to test dynamically.

4.2 How It Works

The static API coverage algorithms examine precompiled test suite test classes to
determine the members that they reference. This includes inner classes and fields as
well as constructors, although constructors cannot be inherited.

The algorithms are based on the fact that the constant pool of any class file holds all of
its external class references. This constant pool consists of the following related
records:

CONSTANT_Fieldref
CONSTANT Methodref
CONSTANT InterfaceMethodref

Each of these records contains the fully qualified name of an external class and the
name of the class member referenced. For a method, this includes the signature of the
method and its return type.

4.2.1 Level of Accuracy During Analysis

Table 4-1 lists example scenarios encountered during static coverage analysis and their
related potential for error. The table references the following objects:

= Q.mis a method referenced by the test suite.

Where Q is the fully qualified class name, and m is the descriptor of the called
method (including the name, list of arguments, and return type).

= SubQ is a subclass of, and SupQ is a superclass of class Q.

x is an object on the stack referenced by either the invokevirtual or
invokeinterface instruction.

The main potential for an inaccurate coverage measurement exists when a great many
members are overridden in subclasses of an implementation (as described in condition
#2 of Table 4-1).

Table 4-1 Example Scenarios and Potential Errors

Condition Scenario Result

#1: Object x is of type Class Q declares method m and Q.mis correctly marked as covered

2 Q.mis the method called Correctly marks either Q.m or
Method m is inherited from SupQ.m as covered, depending on
superclass SupQ and is not the calculation mode in use
declared in Q; method SupQ.mis (described later in Section 4.2.2,
called "Coverage Analysis Modes")

4-2 SigTest/User's Guide

How It Works

Table 4-1 (Cont.) Example Scenarios and Potential Errors

Condition Scenario Result

#2: Object x is of type No subclass or superclass of Q Correctly marks Q. m as covered

SubQ, a subclass of 9 overrides method m; Q. m is called 0.mis incorrectly marked as

A subclass of Q does override covered; this scenario is the main
method m and the overriding source of analysis errors

method is called; if there are

multiple inherited subclasses,

exactly which method is called

cannot be correctly identified

before runtime

#3: A method is Uses:Method. invoke (Object, No method is marked as covered,
called by means of Object[]) assuming that
reflection java.lang.reflect isnotin the

API under test; this case cannot be
correctly resolved

4.2.2 Coverage Analysis Modes

The API Coverage tool uses these two modes of analysis:

= Real World Mode: Returns a fairly accurate estimate based on input from one
specific APl implementation, such as a reference implementation. You can then
compare the real world results to those of the worst case mode.

= Worst Case Mode: Returns an estimate based on a hypothetical API in which
every class overrides or hides all members from its superclass. This scenario is
highly unlikely to occur in actual practice. You use this mode by extrapolating its
results into those of the real world case to estimate the possible range in test
coverage that a test suite will provide in the field over a number of differing
implementations.

Chapter 5 describes how to set up and use the API Coverage tool.

4.2.3 Filtering Coverage By Marking Up Signature Files

Typically, API Coverage tool measures coverage for an entire API or package(s).
However, in some use cases it is convenient to track the coverage of a particular
feature that spreads throughout multiple packages and classes.

For example, you might want to track a new feature that adds a few methods or fields
to preexisting classes, or you might want to track a feature that adds an extra interface
implemented by a preexisting class. You will want to know which of those newly
added methods are tested.

The way to get this information is to mark up a signature file with directives that
indicate which API members belong to the feature that you want reported in the API
Coverage tool report. A fragment of a signature file with filtering directives (in bold) is
shown in Example 4-1.

Example 4-1 Signature File Mark-Up
#APICover file v4.1l

CLSS public final java.awt.SplashScreen

meth public boolean isVisible()

#coverage on

meth public java.awt.Dimension getSize()

meth public java.awt.Graphics2D createGraphics ()

Introduction to API Coverage Tool 4-3

How It Works

#coverage off

meth
meth
meth
meth
meth
meth
supr
hfds

public java.awt.Rectangle getBounds ()

public java.net.URL getImageURL()

public static java.awt.SplashScreen getSplashScreen()

public void close()

public void setImageURL(java.net.URL) throws java.io.IOException
public void update()

java.lang.Object

image, imageURL, log, splashPtr, theInstance,wasClosed

4.2.3.1 Filtering Markup Format

The following steps describe how to mark up a signature file to designate classes and
members you want to track.

1. Copy the signature file.

2. In a text editor, change the first line of the copy of the signature file from

#Signature filev4d .1 to #APICover filev4. 1.

3. Use the #coverage on and #coverage of f directives to mark the classes and
members.

Classes or members between the #coverage on and #coverage of £ directives
are tracked during coverage calculation. All the other classes and members are
excluded.

4-4 SigTest/User's Guide

O

Using the API Coverage Tool

API Coverage tool requires these environmental settings and components:

= A properly configured certified Java Platform, Standard Edition (“Java SE
platform”) runtime version 1.4 or later

= One of the following JAR files in your class path:
- sigtestdev.jar
— sigtest.jar
The API Coverage tool Main class is contained in both JAR files.

The API Coverage tool is a command-line utility that executes in a Java application
environment. It generates static API test coverage reports in either plain text or XML
format based on the following two input items:

= The test suite being tested for its coverage, represented by a set of test class files

= A signature file that forms a text representation of the public members of an API
that must be tested by the test suite

You can use the Setup command of the Signature Test tool to create the appropriate
signature file for use by the API Coverage tool. The Setup command is described in
Chapter 3.

5.1 Running API Coverage Tool
API Coverage tool command synopsis:

% java -jar apicover.jar [options]
or
% java com.sun.tdk.apicover.Main [options]

The second alternative assumes that apicover. jar is on the class path. The rules
described in Section 3.3.2, "Case Sensitivity of Option Arguments" apply. Table 5-1 lists
the available options.

Note: Arguments to options marked with an asterisk (*) in Table 5-1
can be specified multiple times. For example, if you want to specify
filtering for the java.awt, java.lang, and java.math packages,
you can specify the three arguments separated by a file separator
character as shown in the following example:. ~-tsInclude
java.awt:java.lang:java.math On Unix operating systems the

“,y

separator character is “:” and on Microsoft Windows it is “;”.

Using the API Coverage Tool 5-1

Running API Coverage Tool

Table 5-1 API Coverage Tool Command Options

Options Description

-help Optional. Displays usage information for available
command options and exits.

-ts path Required. Cannot be repeated. Path to the test suite

classes to be analyzed. Also accepts a JAR file.

-tsInclude package_name*

Optional. Can be repeated. Recursively include classes
from the specified test suite package.

-tsIncludeW package_name*

Optional. Can be repeated. Include classes from the
specified test suite package without subpackages.

-tsExclude package_name*

Optional. Can be repeated. Recursively exclude classes
from the specified test suite package.

-excludelist filename

Optional. Can be repeated. Specifies the file name of an
exclude list which contains API elements to be excluded
from the coverage calculation. Section 5.1.2, "Exclude
List" describes the exclude list format.

-excludeInterfaces

Optional. Exclude all interface classes. This option is
superfluous if used with -~excludeAbstractClasses.

-excludeAbstractClasses

Optional. Exclude all abstract classes including
interfaces.

-excludeAbstractMethods

Optional. Exclude all abstract methods from all classes
and interfaces

-excludeFields

Optional. Exclude all fields from all classes and
interfaces. cannot be used with the
-includeConstantField option.

-includeConstantFields

Optional. Specifies to include all final fields of any type
in the coverage calculation. cannot be used with the
-excludeFields option. The default, without this
option, is to remove from the coverage calculation all
final fields of primitive types and type
java.lang.String.

Constant fields such as final fields of primitive and String
types are initialized at compile-time with a constant
expression. The Java technology-based compiler usually
optimizes them and replaces them with their values. In
such cases, test suite classes does not contain a reference
to the field, even if the field were used/referenced in the
test suite. For this reason, the tool removes all constant
fields from the calculation by default to make coverage
calculations more consistent. The
-includeConstantFields option provides a means
for changing this behavior.

-api path/filename

Required. Cannot be repeated. Specifies the location of
the signature file representing the API under
examination. The path defaults to the working directory.
Accepts v1 and v2 format signature files generated by
the Signature Test Tool Setup command, and rejects v0.
See the -FileFormat option description in Chapter 3.

-apiInclude package_name*

Optional. Can be repeated. Recursively include classes
from the specified API package.

-apiIncludeW package_name*

Optional. Can be repeated. Include classes from the
specified API package without subpackages.

-apiExclude package_name*

Optional. Can be repeated. Recursively excludes classes
from the specified API package.

5-2 SigTest/User's Guide

Running API Coverage Tool

Table 5-1 (Cont.) API Coverage Tool Command Options

Options Description

-mode [w | r] Optional. Specifies the mode of coverage calculation as w
for worst case or r for real world. Defaults to worst case.

-detail [0 | 1 | 2 | 3 | Optional. Specifies the level of report detail as an integer

4] from 0—4. Defaults to 2. See Table 5-2.

-format [plain | xml] Optional. Specifies the report format as plain text or

XML. Defaults to plain. Note that an example of the
XML output is available in SIGTEST_HOME /msc.

-report path/filename Optional. Where to place the generated report file. The
path argument defaults to the working directory when
only a file name is specified; otherwise, defaults to
standard out.

-version Optional. Displays version information.

Table 5-2 describes the reporting levels resulting from the five settings available with
the -detail option.

Table 5-2 Report File Contents for Levels of Detail

Detail Covered
Setting Package Summary Class Summary Members Not Covered Members
0

1 X X

2 X X X

3 X X

4 X X X X

5.1.1 Special Report File

The special report file specified with the —out option contains the same coverage data
that the standard report file contains. The main difference is that this format is easier
for other applications to parse.

The special report file is essentially a table with these two columns delimited by a tab
character:

s The left column provides the coverage counter value which can be zero.

s The right column provides the fully qualified name of the corresponding API
member: a class, constructor, method, or field.

The -mode option affects the special report file, while the -detail setting has no
effect on it.

5.1.2 Exclude List

In some cases a test suite either cannot or should not test certain elements of an API,
whether they be a class, a method, or field. In this case you can use the
-excludeList filename option (described in Table 5-1) to make the coverage
calculation more accurate by excluding the elements listed in the specified exclude list
file(s).

The exclude list is a text file that specifies each entry for exclusion on a separate line, as
follows:

Using the API Coverage Tool 5-3

Running API Coverage Tool

» Package name specified to recursively exclude all classes of the package
» Class name specified as a fully qualified class name
» Field name specified using a fully qualified class name: classname.fieldname

s Method name specified using a fully qualified class name: classname.methodname
(parameters)

Exclude list processing follows these rules:
= Regards a line starting with the # character as a comment.
= Ignores empty lines.

= Silently ignores an entry if it is not found in the APL.

Note: Each entry specified for exclusion should match its appearance
in a report file. For example, you must specify an inner class with the
$ character prepended to its name, like this: OutersInner

5-4 SigTest/User's Guide

Part lli

API Check Tool

This appendix describes how to use the API Check tool to track API changes and
check for source and binary compatibility.

This part includes the following chapters:
s Chapter 6, "Introduction API Check Tool"
s Chapter 7, "Using the API Check Tool"

6

Introduction API Check Tool

This chapter introduces the API Check Tool. Chapter 7 describes how to use the tool.

6.1 The API Check Tool

The API Check tool tracks API changes and checks for source and binary
compatibility. Much like Signature Test tool, it compares the reference implementation
of an API recorded as golden signature file with a tested implementation. Unlike
Signature Test tool, which requires that all classes (and the classes they depend on) be
specified to the tool, API Check tool does not require dependencies to be specified. For
that reason, API Check tool is faster than Signature Test tool, but less rigorous.

As an example of how this can be useful, consider the case of an developer who uses
the JavaMail API. The developer might wish to check whether a new implementation
of the JDK software contains all members that the JavaMail API calls — essentially a
quick signature check that looks for missing signatures. API Check tool provides a fast
and simple way to generate a report to show this.

Introduction API Check Tool 6-1

The API Check Tool

6-2 SigTest/User's Guide

7

Using the API Check Tool

API Check tool behaves much the same as Signature Test tool and uses the same
options and signature files. See Chapter 3 for a description of the options. The input
signature file is generated by the Signature Test tool Setup command using the
-NonClosedFile option. Neither the CLASSPATH variable used for reflection mode,
nor classes listed with -classpath option for static mode can contain base classes.
See Section 3.1.4, "CLASSPATH and -classpath Settings" for more information.

7.1 API Check Tool Verification Scope

API Check tool verifies classes in signature files that are also covered by packages
defined using the -package option. If the specified signature file is generated using
the -NonClosedFile option, all superclasses and superinterfaces outside this scope
are not checked.

As an example, consider a signature file that contains java.util classes. Use the
following command to create the signature file:

java -jar sigtestdev.jar setup -classpath SJAVA_HOME/jre/lib/rt.jar
-filename java-util.sig -nonclosedfile -package java.util

Use the following command to verify the java.util.ArrayList class using the
signature file created in the previous command:

java -jar apicheck.jar -static -classpath $JAVA_HOME/jre/lib/rt.jar -filename
java-util.sig -package java.util.ArrayList

Because java.util.ArrayList is specified as the scope for checking, it is he only
class verified. ArrayList has a branching class and interface hierarchy that belongs
tothe java.lang, java.util and java. io packages as shown in Figure 7-1.
Because the input signature file only contains classes from the java.util package,
only the ArrayList class superclasses and superinterfaces from java.util are
analyzed and their members are checked as ArrayList class inherited members.

Using the API Check Tool 7-1

Running API Check Tool

Figure 7-1 java.util Classes

java.util _________________ ,
classes | Tterable<E> :
 —— { ________
________ i
java.lang.Object AbstractCollection<E> hl Collection<E> :
T b e e e e e = ;{ ________
T demmmeees]
AbstractList<E> - List<E> :
L i:’ ______________
TP : ! e 1
| java-lang.Cloneable 1~ ArrayList<E> - RandomAccess !
. S /
________ Y

"""" 1
[. -

| java.io.Serializable

L

Image shows the java.util classes and their relationships to each other

B R R R R R R R R Rt R R R R bt s 2 222

Consider a similar signature file that contains java. lang classes. In a similar check
for the RuntimePermission class, the RuntimePermission hierarchy starts in the
java.lang.Object class, departs the java.lang package to java.security and
finally returns to the java.lang package:

java.lang.Object
extended by java.security.Permission
extended by java.security.BasicPermission
extended by java.lang.RuntimePermission

API Check tool cannot verify any of the RuntimePermission class hierarchy
because its direct superclass is outside the scope. In this case, even though
java.lang.Object isin scope no inherited members are taken into account, and
only members declared in Runt imePermission itself are analyzed.

7.2 Running API Check Tool

API Check tool command synopsis:

% java -jar apicheck.jar [options]
or
% java com.sun.tdk.apicheck.Main [options]

The rules described in Section 3.3.2, "Case Sensitivity of Option Arguments" apply.

The command options are the same as those for Signature Test Tool and are listed in
Table 3-5.

The settings for the CLASSPATH environment variable and the -classpath option
are the same as those for Signature Test Tool and are listed in Table 3-1.

7-2 SigTest/User's Guide

Part IV

Appendix

This part contains appendices that include step-by-step examples that show how to
use the tools, API migration rules, and information about using the tools with Ant and
Maven.

This part includes the following appendices:

Appendix A, "Signature Test Tool Quick Start Examples"
Appendix B, "API Coverage Tool Quick Start Examples"
Appendix C, "API Migration Compatibility Rules (Signature Test)"
Appendix D, "Merge Command Operative Principles"

Appendix E, "Using the SigTest Tools With Ant"

Appendix F, "Using the SigTest Tools With Apache Maven"

A

Signature Test Tool Quick Start Examples

This appendix contains the following two step-by-step examples that show you how to
use the Signature Test tool:

= Example 1: Compare Two Different Implementations of the Same API

= Example 2: Merge Two Signature Files

A.1 Example Programs

Sample sources used in the examples, along with simple UNIX operating system shell
and Windows batch scripts are provided in the examples/usersguide directory.
You can use these to help run the examples. The README file in that directory
explains how to use them.

Note: The examples use UNIX operating system syntax.

Caution: Code examples are an optional part of the SigTest
distribution and are not required to use the SigTest tools. You can
remove the example directory ($SIGTEST_HOME /examples) if you
are concerned about security issues the examples might create.

Example A-1 and Example A-2 show the two implementations of the test API used
throughout these examples.

Example A-1 Version 1.0 of test.java

package example;
public class test {
public <T> T get (T x) {
return x;

}

Example A-2 Version 2.0 of test.java

package example;
public class test {

public String get (int x) {

Signature Test Tool Quick Start Examples A-1

Example 1: Compare Two Different Implementations of the Same API

return "";

}

public void put () {
}

A.2 Example 1: Compare Two Different Implementations of the Same API
You can compare two implementations of an API in two ways:

= Run the Setup command to create a signature file for the first implementation
and then run the SignatureTest command to compare them. This is shown in
the first part of this example: A.2.1.

s Run the SetupAndTest command. The command combines the Setup and

SignatureTest commands. This is shown in the second part of this example:
A22.

A.2.1 Usingthe setup and SignatureTest Commands
This example shows how to compare the following implementations of the
test.java APl using the Setup and SignatureTest commands.
1. Make SigTest-directory/examples/usersguide the current directory.

2. Compile the two implementation files.

SigTest tool works with class files. Use the following commands to compile the
source files into class file:

% javac -d V1.0 V1.0/test.java
% javac -d V2.0 V2.0/test.java

3. Set the CLASSPATH environment variable to include the path to
sigtestdev. jar.

% setenv CLASSPATH=../../lib/sigtestdev.jar

4. Set the JAVA_HOME environment variable to include the base directory of the
Java platform runtime installation on your system.

% setenv JAVAHOME=java_runtime_path

5. Use the Setup command to create a signature file for the V1.0 implementation.

Note that the “\” characters are used to break long lines. Type this as a single line
at the command line.

% java com.sun.tdk.signaturetest.Setup \
-classpath V1.0:$JAVA_HOME/jre/lib/rt.jar \
-static \

-apiVersion V1.0 \
-package example \
-fileName test.sig

The Setup command emits console output similar to the following;:

Constant checking: on

Found in total: 16260 classes
Selected by -Package: 1 classes
Written to sigfile: 2 classes
STATUS: Passed.

A-2 SigTest/User's Guide

Example 1: Compare Two Different Implementations of the Same API

Confirm that the contents of the signature file are correct by comparing it to the
following file:

#Signature file v4.0

CLSS public example.test

cons public test()

meth public <%0 extends java.lang.Object> {%%0} get ({%%0})
supr java.lang.Object

CLSS public java.lang.Object

cons public Object()

meth protected java.lang.Object clone() throws
java.lang.CloneNotSupportedException

meth protected void finalize() throws java.lang.Throwable

meth public boolean equals(java.lang.Object)

meth public final java.lang.Class<?> getClass()

meth public final void notify()

meth public final void notifyAll()

meth public final void wait() throws java.lang.InterruptedException
meth public final void wait(long) throws java.lang.InterruptedException
meth public final void wait(long,int) throws java.lang.InterruptedException
meth public int hashCode()

meth public java.lang.String toString()

Use the SignatureTest command to compare the V2.0 API signature with the
V1.0 signature file you created in Step 5.

% java com.sun.tdk.signaturetest.Setup \
-classpath V2.0:SJAVA_HOME/jre/lib/rt.jar \
-static \

-package example \
-fileName test.sig \
-out report.txt

The -out option directs the command to write its results to report. txt.

A message similar to the following is written to the console when the command
terminates:

See log recorded to file report.txt for more details.

STATUS:Failed.3 errors

Confirm that the contents of the report. txt file are correct by comparing it to to
the following file:

Note: There might be some minor differences because of
system-specific information.

SignatureTest report

Tested version:

Check mode: src [throws normalized]
Constant checking: off

Missing Methods

example.test: method public <%0 extends java.lang.Object> {%%0}
example.test.get ({%%0})

Signature Test Tool Quick Start Examples A-3

Example 2: Merge Two Signature Files

Added Methods

example.test: method public java.lang.String example.test.get(int)
example.test: method public void example.test.put()

STATUS:Failed.3 errors

A.2.2 Using the SetupAndTest Command

The SetupAndTest command combines the functionality of the Setup and
SignatureTest commands into a single command.

1. Follow steps 1 - 4 in the previous example.
2. Use the following SetupAndTest command to create a signature file.

% java $CLASSPATH com.sun.tdk.signaturetest.SetupAndTest \
-reference V1.0:$JAVA_HOME/jre/lib/rt.jar \
-test V2.0:$JAVA_HOME/jre/lib/rt.jar \
-package example

The SetupAndTest command reports results similar to following example to
standard output.

Invoke Setup ...

Class path: "V1.0;C:\java\jdkl.5.0_06\/jre/lib/rt.jar"
Constant checking: on

Found in total: 12749 classes
Selected by -Package: 1 classes
Written to sigfile: 2 classes
Invoke SignatureTest ...
SignatureTest report

Tested version: 2.0

Check mode: src [throws normalized]
Constant checking: on

Missing Methods

example.test: method public <%0 extends java.lang.Object> {%%0}
example.te
st.get ({%%0})

Added Methods

example.test: method public java.lang.String example.test.get (int)
example.test: method public void example.test.put ()

STATUS:Failed.3 errors

A.3 Example 2: Merge Two Signature Files
This example shows how to use the Merge command to accomplish the following:

1. Compile three . java files to produce . class files.

A-4 SigTest/User's Guide

Example 2: Merge Two Signature Files

2. Run the Setup command on each . class file to produce a signature file.

3. Use the Merge command to combine the files.

A.3.1 Running Merge Example

These examples use the environment variables listed below:.

Environment
Variable Description

CLASSPATH Must include the sigtestdev. jar file. For
example:/sigtest-1.5/1ib/sigtestdev.jar

RT_JAR The location of the runtime rt . jar file. For example:
/opt/jdkl.5.0_09/jre/lib/rt.jar

1. Set up the environment with the environment variable settings in the table above.

2. Create each of the files shown in the following examples. Create each in a different
directory but with the same file name.

Create directories named 1, 2, and 3. Add the appropriate file to each directory.

package x;

public class A {
public void abc() {}
public void foo() {}

package Xx;

public class A {
public void abc() {}
public void bar() {}

package X;
public class A {

public static void abc() {}
}

3. Run these commands to compile each file into a separate x subdirectory:

% javac -d 1 1/A.java
% javac -d 2 2/A.java
J

avac -d 3 3/A.java

oe

This creates the following class files:
a. ./1/x/A.class
b. ./2/x/A.class
c. ./3/x/A.class

4. Run the following three Setup commands on each A. class file to produce the
three x#. sig files like the ones shown in following examples.

a. Command #1:

% java -cp 1:SCLASSPATH com.sun.tdk.signaturetest.Setup \
-static -classpath 1:$RT_JAR -package x -FileName x1.sig

Signature Test Tool Quick Start Examples A-5

Example 2: Merge Two Signature Files

The command generates the . /x1 . sig file like the one shown in the
following example and produces a similar console message.

Class path: "1:/opt/jdk1.5.0_09/jre/lib/rt.jar"
Constant checking: on

Found in total: 13185 classes

Selected by -Package: 1 classes

Written to sigfile: 2 classes

STATUS: Passed.

b. Command #2:

% java -cp 2:SCLASSPATH com.sun.tdk.signaturetest.Setup \
-static -classpath 2:SRT_JAR -package x -FileName x2.sig

The command generates the . /x2 . sig file shown in the following example
and produces a console message similar to this indicating successful setup.

Class path: "2:/opt/jdk1.5.0_09/jre/lib/rt.jar"
Constant checking: on

Found in total: 13185 classes

Selected by -Package: 1 classes

Written to sigfile: 2 classes

STATUS: Passed.

c. Command #3:

% java -cp 3:SCLASSPATH com.sun.tdk.signaturetest.Setup \

-static -classpath 3:$RT_JAR -package x -FileName x3.sig
The command generates the . /x3 . sig file shown in following example and
produces a console message similar to this indicating successful setup.

Class path: "3:/opt/jdk1.5.0_09/jre/lib/rt.jar"
Constant checking: on

Found in total: 13185 classes

Selected by -Package: 1 classes

Written to sigfile: 2 classes

STATUS: Passed.

5. Run the following command to merge x1 . sig and x2 . sig and produce the
x1+x2.sig file shown in the following example:
% java -cp SCLASSPATH com.sun.tdk.signaturetest.Merge -Files \

x1.81g:x2.8ig -Write x1+x2.sig

The command generates a console message similar to the following message:

Warning: class java.lang.Throwable not found
STATUS: Passed.

6. Run this command to merge x2.sig and x3 . sig attempting to produce the
x2+x3.sig file:

o)

% java -cp SCLASSPATH com.sun.tdk.signaturetest.Merge -Files
X2.81g:x3.8ig -Write x2+x3.sig

The command prints a message to the console similar to the following. it indicates
a conflicting static modifier, and no signature file is created:

x.A.abc : <static> modifier conflict
STATUS:Error.Error

A-6 SigTest/User's Guide

Example 2: Merge Two Signature Files

The conflict occurs because x2 . sig contains this method (see Example A—4):

meth public void x.A.abc ()
and x3.sig contains this method:
meth public static void x.A.abc()

A.3.2 Example Result Files

This section contains the files that are generated from the previous Merge examples.

Example A-3 Contents of . /x1.sig

#Signature file v4.0
#Version

CLSS
cons
meth

java.

meth
meth
meth
meth
meth
meth
meth
meth
meth
meth
CLSS
cons
meth
meth
supr

public java.lang.Object

public Object()

protected java.lang.Object clone() throws
lang.CloneNotSupportedException

protected void finalize() throws java.lang.Throwable

public boolean equals(java.lang.Object)

public final java.lang.Class<?> getClass()

public final void notify()

public final void notifyAll()

public final void wait() throws java.lang.InterruptedException
public final void wait(long) throws java.lang.InterruptedException
public final void wait(long,int) throws java.lang.InterruptedException
public int hashCode()

public java.lang.String toString()

public x.A

public A()

public void abc ()

public void foo()

java.lang.Object

Example A-4 Contents of . /x2.sig

#Signature file v4.0
#Version

CLSS
cons
meth

java.

meth
meth
meth
meth
meth
meth
meth
meth
meth
meth

CLSS
cons
meth
meth
supr

public java.lang.Object

public Object ()

protected java.lang.Object clone() throws
lang.CloneNotSupportedException

protected void finalize() throws java.lang.Throwable

public boolean equals(java.lang.Object)

public final java.lang.Class<?> getClass()

public final void notify()

public final void notifyAll()

public final void wait() throws java.lang.InterruptedException
public final void wait(long) throws java.lang.InterruptedException
public final void wait(long,int) throws java.lang.InterruptedException
public int hashCode()

public java.lang.String toString()

public x.A
public A()
public void abc ()
public void bar()
java.lang.Object

Signature Test Tool Quick Start Examples

A-7

Example 2: Merge Two Signature Files

Example A-5 Contents of . /x3.sig

#Signature file v4.0

#Version

CLSS public java.lang.Object

cons public Object()

meth protected java.lang.Object clone() throws
java.lang.CloneNotSupportedException

meth protected void finalize() throws java.lang.Throwable

meth public boolean equals(java.lang.Object)

meth public final java.lang.Class<?> getClass()

meth public final void notify()

meth public final void notifyAll()

meth public final void wait() throws java.lang.InterruptedException
meth public final void wait(long) throws java.lang.InterruptedException
meth public final void wait(long,int) throws java.lang.InterruptedException
meth public int hashCode()

meth public java.lang.String toString()

CLSS public x.A

cons public A()

meth public static void abc ()

supr java.lang.Object

Example A—-6 Contents of . /x1+x2.sig

#Signature file v4.0
#Version

CLSS
cons
meth
java.
meth
meth
meth
meth
meth
meth
meth
meth
meth
meth

CLSS
cons
meth
meth
meth
supr

public java.lang.Object

public Object ()

protected java.lang.Object clone() throws
lang.CloneNotSupportedException

protected void finalize() throws java.lang.Throwable

public boolean equals(java.lang.Object)

public final java.lang.Class<?> getClass()

public final void notify()

public final void notifyAll()

public final void wait() throws java.lang.InterruptedException
public final void wait(long) throws java.lang.InterruptedException
public final void wait(long,int) throws java.lang.InterruptedException
public int hashCode()

public java.lang.String toString()

public x.A
public A()
public void abc()
public void bar()
public void foo()
java.lang.Object

A-8 SigTest/User's Guide

B

API Coverage Tool Quick Start Examples

This section contains step-by-step examples that show how to produce test coverage
reports using the API Coverage tool. The examples are located in the following
directory:

SIGTEST_HOME /examples/userguide/apicover

The appendix consists of the following examples. The examples build upon each other.

Set Up the API Coverage Tool Ant Build Script

Build API Coverage Tool Examples

Run the Example Test Suite

Run the Example Test Suite

Use the API Coverage Tool to Calculate Test Coverage

Note: The examples use UNIX operating system syntax.

Caution: Code examples are an optional part of the SigTest
distribution and are not required to use the SigTest tools. You can
remove the example directory ($SIGTEST_HOME/examples) if you
are concerned about security issues the examples might create.

B.1 Example Procedures

The following procedures describes how to set up and use the API Coverage tool.

B.1.1 Set Up the API Coverage Tool Ant Build Script

1.

Make SIGTEST_HOME /examples/userguide/apicover the current
directory.

Make sure that the JAVA_HOME environment variable refers to JDK 5.0 or higher.
Edit the following file:
SIGTEST_HOME /examples/userguide/apicover/build.properties

Set the junit.jar property to point to the junit. jar file. Obtain this file from
version 3.7 or higher of the JUnit test harness product.

Make sure Apache Ant 1.7 or higher is available and properly configured on your
system.

API| Coverage Tool Quick Start Examples B-1

Example Procedures

B.1.2 Build API Coverage Tool Examples

1. Run the ant command and specify the “build” target.
This command builds the following:
= APIclasses
= Example application (helloWorld. jar)
s Test suite
s API documentation (doc/ directory)
2. Run the example application to verify that it built correctly.
%java -jar helloWorld.jar
The application’s output should look like this:

Good morning, Brazil!

Good morning, USA!

Good evening, China!

Good afternoon, Czech Republic!
Good afternoon, Russia!

Good afternoon, United Kingdom!
Good evening, India!

Good afternoon, Mali!

Hello, world!

B.1.3 Run the Example Test Suite
1. Use the Ant “test” target to run the test suite.

Y%ant test

The test suite runs and produces the following output:

[junit] Running TestGreet
[junit] Tests run: 4, Failures: 0, Errors: 1, Time elapsed: 0.219 sec
[junit] Test TestGreet FAILED

B.1.4 Generate a Signature File for the Tested API

1. Use the Ant “sigtest” target to generate the signature file.
%ant sigtest
The “sigtest” target executes the following command:

java -jar sigtestdev.jar setup -filename reports/greetapi.sig
-package com.sun.tdk.samples.helloworld.api -classpath
helloWorld.jar:SJAVA_HOME/jre/lib/rt.jar

This command generates the file reports/greetapi.sig. While the command runs
you should see the following output:

sigtest:

[java] Class path: "helloWorld.jar:/opt/java/jdkl.5.0_16/jre/lib/rt.jar"

[java] Constant checking: on

[java] Found in total: 13217 classes
[java] Selected by -Package: 5 classes
[java] Written to sigfile: 8 classes
[java] STATUS:Passed.
[]

java] Java Result: 95

B-2 SigTest/User's Guide

Example Procedures

B.1.5 Use the API Coverage Tool to Calculate Test Coverage

1. Use the Ant “apicov” target to calculate static test coverage

%ant apicov

B.1.6 Worst Case Mode

The script executes the following command:

java -jar apicover.jar -ts test_classes -api reports/greetapi.sig -apiinclude
com.sun.tdk.samples.helloworld.api -mode w -report reports/cov-worst-case.txt

This mode reports that about of 37% of the API is covered by the tests. Some members
that are defined in superclasses, such as finalize() or clone(), are marked as not
covered. Some fields are also marked as not covered by the tests. The output written to
a file named reports/cov-worst-case.txt and should appear as shown below.

Coverage Report

Package classes
Class members tested %%
Member
com 4 35 13 37%
com. sun 4 35 13 37%
com. sun. tdk 4 35 13 37%
com.sun. tdk.samples 4 35 13 37%
com.sun. tdk.samples.helloworld 4 35 13 37%
com.sun. tdk.samples.helloworld.api 4 35 13 37%
Greet 3 3 100%
GreetFactory 6 1 16%
- clone()
- equals(java.lang.Object)
- finalize()
- hashCode()
- toString()
Places 16 5 31%
- finalize()
- getCountry()
- toString()

- valueOf (java.lang.Class, java.lang.String)
- valueOf (java.lang.String)

- Brazil

- China

- Czech

- India

- Mali

- UK

TimeOfDay 10 4 40%

API Coverage Tool Quick Start Examples B-3

Example Procedures

B.1.7 Real World Mode
The script executes the following command:

java -jar apicover.jar -ts test_classes -api reports/greetapi.sig -apiinclude
com.sun. tdk.samples.helloworld.api -mode r -report reports/cov-realworld.txt

This estimation does not take into account overridden members defined in
superclasses. Overall coverage is 52%.

The report is named reports/cov-realworld. txt and is shown below.

Coverage Report

Package classes
Class members tested %%
Member
comsn : 25 13 s%
comswn.tak s 25 13 s
com.sun.tak.samples s 25 13 s
com.sun. tdk.samples helloworld . 25 13 5%
com.sun.tak.samples helloworld.api 4 2% 13 s
Greet 3 3 100%
GreetFactory 1 1 100%
Places 13 5 38%

- getCountry ()

- valueOf (java.lang.String)
- Brazil

- China

- Czech

- India

- Mali

- UK

TimeOfDay 8 4 50%
- AFTERNOON

EVENING

- MORNING

- NIGHT

Configuration

ts test_classes

api reports/greetapi.sig
mode r

B-4 SigTest/User's Guide

Example Procedures

B.1.8 Real World Mode Without Fields and Enum Constants

The script executes the following command:

java -jar apicover.jar -ts test_classes -api reports/greetapi.sig -apiinclude
com.sun. tdk.samples.helloworld.api -mode r -excludeFields -report
reports/cov-realworld-without-fields.txt

In this case test coverage is 84%.

The report is named reports/cov-realworld-without-£fields. txt and is
shown below.

Coverage Report

Package classes
Class members tested %%
Member
comswn s 311 s
comswn.tak s 3 o1 s
com.sun.tak.samples s 3 o1 s
com.sun. tdk.samples helloworld . TR TR Y
com.sun.tak.samples helloworld.api 4 3 o1 s
Greet 3 3 100%
GreetFactory 1 1 100%
Places 5 3 60%

- getCountry ()
- valueOf (java.lang.String)

TimeOfDay 4 4 100%

Configuration

ts test_classes

api reports/greetapi.sig
excludeFields yes

mode r

API Coverage Tool Quick Start Examples B-5

Example Procedures

B-6 SigTest/User's Guide

C

API Migration Compatibility Rules (Signature
Test)

This appendix describes the rules used by the Signature Test tool API migration
feature.

C.1 The Compatibility Rules

The following sections and tables describe the rules and show whether they break
only source compatibility or both source and binary compatibility. Comments and
clarifications follow the table for rules that have an asterisk after their number.

Note: A class is called subclassable if it has subclasses outside its
package. In other words, this class is not final and has public
constructor

C.1.1 General Rules

The rules from this group are triggered if the more specific rules from the other groups below
are not triggered. For example, adding an interface method defined in rule 2.1, adding
constructor in the rule 5.5. In such cases more general rule 1.1 is ignored.

Table C-1 API Migration Compatibility Rules - General

Rule # Description Breaks Severity

1.1* API (public or protected) type (class, interface, enum, annotation type) or member Source Warning
(method, field) added

1.2 API (public or protected) type (class, interface, enum, annotation type) or member Both Severe

(method, field) removed

1.3 Narrowing type or member visibility - from public to non-public, from protected to Both Severe
package or private

14* Generification of the public API type None

C.1.2 Interfaces and Annotation Types

The rules in this group apply to interfaces and annotation types.

API Migration Compatibility Rules (Signature Test) C-1

The Compatibility Rules

Table C-2 API Migration Compatibility Rules - Interfaces and Annotation Types

Rule # Description Breaks Severity
21 Add methods Both Severe
22 Add fields Both Severe
23*% Expand the set of superinterfaces (direct or indirect) if the added interface has a Source ~ Warning
field (constant)
24 Contract superinterface set (direct or inherited) Both Severe
25* Add member without default value to annotation type Source Severe
2.6* Add member with default value to annotation type None
2.7 Remove member from annotation type Both Severe
2.8 Remove default value from member of annotation type Both Severe
C.1.3 Interfaces and Class Methods
The rules in this group apply to interfaces and class methods.
Note: Some rules in this group apply only for class methods.
Table C-3 API Migration Compatibility Rules - Interfaces and Class Methods
Rule # Description Breaks Severity
3.1 Change signature and/or return type Both Severe
3.2 Change last parameter from array type T[] to variable array T... None
3.3 Change last parameter from array T... to array type T[] Source Severe
3.4 Change normalized throw list Source Severe
3.5 Decrease access from public to protected Both Severe
3.6* Increase access from protected to public if the class is subclassable Source ~ Warning
3.7 Change method from abstract to non-abstract None
3.8 Change method from non-abstract to abstract (if the class can be subclassed) Both Severe
3.9 Change method from final to non-final None
3.10 Change method from non-final to final Both Severe
3.1 Change method from static to non-static Both Severe
3.12 Change method from non-static to static Both Severe
3.13 Change method from native to non-native None
3.14 Change method from non-native to native None
3.15 Change method from synchronized to non-synchronized None
3.16 Change method from non-synchronized to synchronized None

C.1.4 Interfaces and Class Fields

The rules in this group apply to interfaces and class methods.

C-2 SigTest/User's Guide

The Compatibility Rules

Table C-4 API Migration Compatibility Rules - Interfaces and Class Fields

Note: Some rules from this group apply only for class fields

Rule # Description Breaks Severity
41 Change type Both Severe
4.2 Change/Remove constant value Both Warning
43 Decrease access Both Severe
44 Increase access None
45 Change from final to non-final None
4.6 Change from non-final to final Both Severe
47 Change from static to non-static Bone Severe
4.8 Change from non-static to static Both Severe
C.1.5 Classes

The rules in this group apply to classes.
Table C-5 API Migration Compatibility Rules - General
Rule # Description Breaks Severity
5.1* Add non-abstract and non-static methods Both Warning
52 Add abstract methods (if the class can be subclassed) Both Severe
5.3 Add static methods (if the class can be subclassed) Both Warning
54 Remove constructors Both Severe
5.5 Add first constructor with arguments or throws clause Both Severe
5.6 Add fields Both Severe
57 Expand implemented interface set (direct or indirect)
5.7.1 The added interface adds abstract methods Both Severe
5.7.2 The new interface adds fields or inner classes Source Severe
573 If5.7.1 and 5.7.3 are not true None
5.8 Contract implemented interface set (direct or indirect) Both Severe
5.9 Expand superclass set (direct or indirect)
59.1 Add superclass adds abstract method (see rules 5.1 - 5.3)
59.2 Add superclass adds field (see rule 5.6)
59.3 Other cases
5.10 Contract superclass set (direct or indirect) Both Severe
511 Change abstract to non-abstract None
512 Change non-abstract to abstract (if the class can be subclassed) Both Severe
5.13 Change final to non-final None
5.14 Change non-final to final Both Severe

API Migration Compatibility Rules (Signature Test) C-3

Comments and Clarifications

C.2 Comments and Clarifications

The following sections contain comments and clarifications that make the rules more
clear.

C.2.1 Rule1.1

Adding a class can theoretically break source code compatibility because new classes
can be incorrectly resolved in an existing client’s code with type-import-on-demand
declarations (also know as wildcard imports). This can happen if the code uses another
type with the same simple name. For example:

//client’s code

import com.acme.*;
import com.client.*;

Policy p = new Policy(); // this is com.client.Policy

In this case, after adding class com.acme . Policy, the compiler raises the error

reference to Policy is ambiguous, both class com.acme.Policy in com.acme and class
com.client.Policy in com.client match.

This rule is considered a warning because it will probably not affect binary
compatibility and adhering to this rule makes API evolution very difficult.

C.2.2 Rule 1.4

Generics are a facility of generic programming that was added to the Java
programming language as part of Java SE version 5.0. Generics allow a type or method
to operate on objects of various types while providing compile-time type safety.
Generification upgrades types using support to-be-specified-later types that are
instantiated as needed for specific types that are provided as type parameters.

The Java programming language implements generics using erasure, which ensures
that legacy and generic versions usually generate identical class files, except for some
auxiliary information about types. Binary compatibility is not broken because it is
possible to replace a legacy class file with a generic class file without changing or
recompiling any client code.

To facilitate interfacing with non-generic legacy code, it is also possible to use the
erasure of a parameterized type as a type. Such a type is called a raw type (Java
Language Specification 3/4.8). Allowing the raw type also ensures backward
compatibility for source code.

According to this, the following versions of the java.util.Iterator class are both
binary and source code backward compatible:

s Class java.util.Iterator asitis defined in Java SE version 1.4:

public interface Iterator {
boolean hasNext () ;
Object next();
void remove();

C-4 SigTest/User's Guide

Comments and Clarifications

s Class java.util.Iterator asitis defined in Java SE version 5.0:

public interface Iterator<E> {
boolean hasNext () ;
E next();
void remove();

C.2.3 Rule 2.3

Adding a superinterface with a constant field can shadow another entity with the
same simple name. Consider the following code:

public interface Poet({
boolean LITERATE = true;

public interface Playwright({
boolean LITERATE = true;

public interface Shakespeare extends Poet {
}

Suppose that a new version of the Shakespeare interface implements interface
Playwright as well as Poet as shown here:

public interface Shakespeare extends Poet, Playwright ({
}

The following client code will not compile because the reference to LITERATE is
ambiguous.

// client code
public class ShakespeareImpl implements Shakespeare {
void introduce() {
System.out.println("Hi, my name is Shakespeare and I’'m " + LITERATE ?
"quite literate" : "rather illiterate");}

C.2.4 Rules 2.5, 2.6

The example below shows how adding a member without a default value to an
annotation type breaks source code compatibility.

// annotation type vl
@interface Agent({
String name() ;

// client’s code which uses this annotation type vl
@Agent (name="James Bond")

// annotation type v2.1
@interface Agent{

String name();

String id(); // added member

API| Migration Compatibility Rules (Signature Test) C-5

Comments and Clarifications

C.2.5 Rule 3.6

C.2.6 Rule4.2

C.2.7 Rule 5.1

}

// legacy code is not compilable due to
// error - annotation Agent is missing id
@Agent (name="James Bond")

// annotation type v2.2
@interface Agent({
String name();
String id() default "007"; // added member with default value

}

// legacy code is compilable
@Agent (name="James Bond")

Changing a method from protected to public can break source code compatibility if
this method was overridden as protected. In this case the legacy code can not be
recompiled because “access narrowing” is prohibited in the Java programming
language. This rule is only a warning because it does not affect binary compatibility,
and the probability of its affecting source code compatibility is very low.

Changing or removing constant values can break source code compatibility. For
example, consider the following client code example. An integer constant named
NOTHING with a value of 0 is used:

switch (1) {
case NOTHING:
// some actions
case -1:
// some other actions

}

Assume that the value of the constant NOTHING is changed from 0 to -1. The client
code will not compile because of the duplicate case label. This rule is only a warning
because it does not affect binary compatibility, and the probability of its affecting
source code compatibility is very low.

Adding a regular method to a subclassable class can break source code and binary
compatibility because a subclass can have a method with the same signature but with
weaker access privileges. For example consider the following code example:

class ClientClass extends APIClass {
private void foo() {}

}

Assume that the class APIClass is changed, and the method

protected void foo() {}

is added. The code cannot be recompiled due of an error that generates the following
error message:

C-6 SigTest/User's Guide

Comments and Clarifications

foo() in ClientClass cannot override foo() in APIClass; attempting to assign
weaker access privileges; was protected

Binary compatibility is broken as defined in JLS 3/3.14.12

C.2.8 Rule5.3

Adding a static method to a subclassable class can break source code and binary
compatibility, because a subclass can have a method with the same signature. For
example consider the following code example:

class ClientClass extends APIClass {
protected void foo() {}
}

Suppose that the class APIClass is changed and the method

protected static void foo() {}
is added. The code can not be recompiled due to an error that generates the following
error message:

foo() in ClientClass cannot override foo() in APIClass; overridden method is
static

Binary compatibility is be broken as defined in JLS 3/3.14.12

C.2.9 Rule5.7.2

As in the case of rule 2.3, adding a superinterface with a constant field can shadow
another entity with the same simple name.

API Migration Compatibility Rules (Signature Test) C-7

Comments and Clarifications

C-8 SigTest/User's Guide

D

Merge Command Operative Principles

This appendix describes the command operative principles used by the Signature Test
tool.

D.1 Merge Command Operative Principles

The Merge command operates according to the following principles, where A and B
are input APIs that are combined into the resulting API C:

The Merge operation is commutative, so with API A and B, A+ B=B + A.
It recognizes either binary or source compatibility when merging APIs.

For any application X that is compatible with either API A or B, when A and B are
merged then X must be compatible with the resulting API C.

The resulting API C cannot contain a class that is not found in either of the A or B
input APIs. This means that any class in C has to have corresponding classes in
either A or B or both A and B.

API C must not contain a class member that is not found in its corresponding
classes in A and B. This applies only to declared class members and not inherited
members.

If some class in A or B, or both, has a member that overrides a member from a
superclass, then the corresponding class in C must also have this overriding
member.

Each API element in C has a set of attributes derived from the attributes of its
corresponding elements in A and B, and this is the smallest possible set of
attributes that does not break compatibility. So if at tr is an attribute of an
element from API C, then attr must be defined for the corresponding element
from A or B, and attr cannot be omitted without breaking compatibility between
A and C or between B and C.

No unnecessary APIs or relationships between classes or interfaces can be
introduced.

The basic algorithmic rules for combining two input APIs A and B into a signature file
that represents the resulting API C are as follows:

If one of the input APIs A or B contains an element that the other does not, then
this element goes into the resulting signature file of API C without modification
except for the following case: If the element in question is the first declared class
member in the inheritance chain of input API A or B, and the other input API
inherits the same element, then this element represented the resulting API C.

Merge Command Operative Principles D-1

Merge Command Operative Principles

If both of the input APIs contain two identical elements, only one of them is
represented in the resulting APL

If both of the input APIs contain a corresponding element, but with a different set
of attributes, then either of the following occurs:

- A conflict wherein the resulting API cannot exist.

- A compromise wherein the new element with a composite set of attributes is
created and it is represented in the resulting API-set.

D.1.1 Element Handling by Merge

General rules for handling elements of all kinds during the Merge process are as
follows.

When there are two different access modifiers select the more visible one.

For example, if A isa public int foo, and Bis protected int foo, then the
merge into C results into public int foo.

If the elements differ in the final modifier, do not include it. If a class is final,
then all of its methods are implicitly £inal according to Section 8.4.3.3 of The Java
Language Specification, 2nd Edition.

If corresponding elements differ in the static modifier, then declare a conflict.

Element-specific rules are as follows:

If corresponding classes differ in the abstract modifier, then declare a conflict.

Apply the following rules for classes or interfaces and nested classes or interfaces,
where for the purpose of this description, c1 and c2 are corresponding classes from
the input APIs:

If a superclass of c1 is a subclass of a superclass of c2, use the superclass of c1 as
the superclass for the new element. Otherwise, if a superclass of c2 is a subclass of
a superclass of c1, use the superclass of c2 as the superclass for the new element. If
neither of the previous two conditions are possible, then declare a conflict.

For classes or interfaces and nested classes or interfaces, create a combined set of
superinterfaces of the corresponding classes and dismiss duplicates. Use the
combined set for the new element.

For methods and constructors, construct a throws list as follows:

- Inbinary compatibility mode, an empty throws list results independently of
the source lists.

- Insource compatibility mode, both throws lists are normalized as described
in Table 3-3 before they are compared. If the normalized lists are equal, one is
used as the result, otherwise, a conflict is declared.

Methods that differ in the abstract modifier are not included.
If a method result type is not identical a conflict is declared.

If a field value type is not identical a conflict is declared.

If a field element differs in the volatile modifier, it is included.
Process constant field values as follows:

s If one of the fields has a constant value and other does not, include the
constant value in the result field.

D-2 SigTest/User's Guide

Merge Command Operative Principles

» If both fields have a constant value then declare a conflict if the values are
different, otherwise include the value in the result field.

Merge Command Operative Principles D-3

Merge Command Operative Principles

D-4 SigTest/User's Guide

E

Using the SigTest Tools With Ant

This appendix describes how to use the SigTest tools in Ant build scripts.

E.1 Using the Setup Command From an Ant Script

The Signature Test tool Setup command can be invoked from an Ant script. The
sigtestdev. jar file contains the corresponding Ant task.

Use the following task definition in your Ant build script:

<taskdef name="setup" classname="com.sun.tdk.signaturetest.ant.ASetup"
classpath="sigtestdev.jar"/>

Table E-1 lists required and optional attributes and nested elements for the “setup”
task.

Table E-1 Setup Attributes Available for Ant Scripts

Attribute Description

Required

“package” attribute or nested “package” Corresponds to the -package option
elements

“classpath” attribute or nested “classpath” Corresponds to the -classpath option

elements

“filename” attribute Corresponds to the -filename option

Optional:

“failonerror” attribute Stops the build process if the command exits with
an error. Default value is false

“apiVersion” attribute Corresponds to ~apiVersion. Set API version
for signature file

“exclude” attribute or nested “exclude” Corresponds to -exclude option. Specifies

elements package(s) or class(es), which is not required to be
tested

“negative” attribute Treats a failed result as successful and a successful

result as failed. Used for negative tests. Default
value is “false”.

The following code shows how to use the Setup command in an Ant script:

<target name="td" description="Setup task definition">

Using the SigTest Tools With Ant E-1

Using the SignatureTest Command From an Ant Script

<taskdef name="setup" classname="com.sun.tdk.signaturetest.ant.ASetup"
classpath="${sigtest.home}/sigtestdev.jar"/>
</target>

<target name="setup"
description="Runs signature test setup for com.acme.openapi package with subpackages"
depends="td">
<setup package="com.acme.openapi" failonerror="true" apiVersion="openapi-v2"
filename="acme-openapi-vl.sig">
<classpath>
<pathelement location="${java.home}/jre/lib/rt.jar"/>
<pathelement location="${testd.home}/lib/acmeAPIv2.jar"/>
</classpath>
<exclude class="com.acme.openapi.NotTested"/>
</setup>
</target>

E.2 Using the SignatureTest Command From an Ant Script

The SignatureTest command can be invoked from Ant script. Both
sigtestdev.jar and sigtest. jar contain corresponding Ant tasks. Unlike the
ordinary SignatureTest command, its Ant wrapper can run the test only in static
mode—reflection mode is not supported. Use the following task definition in your Ant
build script:

<taskdef name="test" classname="com.sun.tdk.signaturetest.ant.ATest"
classpath="sigtest.jar"/>

Table E-2 lists required and optional attributes and nested elements for “test” Ant
task.

Table E-2 SignatureTest Attributes Available for Ant Scripts

Attribute Description

Required:

“package” attribute or nested “package” Corresponds to the -package option

elements

“classpath” attribute or nested Corresponds to the -classpath option
“classpath” elements

“filename” attribute Corresponds to the -filename option

Optional:

“failonerror” attribute Stops the build process if the command exits with

an error. Default is false

“apiVersion” attribute Corresponds to the ~apiVersion option. Sets the
API version for signature files.

“exclude” attribute or nested “exclude” Corresponds to the -exclude option. Specifies

elements package(s) or class(es), do not require testing.

“binary” attribute Corresponds to the “-mode bin” option. Runs the
test in binary mode. Default is “false”.

“errorAll” attribute Corresponds to the —~errorall option. Handles
warnings as errors. Default is “false”.

“debug” attribute Corresponds to the -~debug option. Prints debug
information such as detailed stack traces. Default is
“false”.

E-2 SigTest/User's Guide

Using the Merge Command From an Ant Script

Table E-2 (Cont.) SignatureTest Attributes Available for Ant Scripts

Attribute Description

“backward” attribute Corresponds to the -Backward option. Runs
backward compatibility checking. Default is
“false”.

“formatHuman” attribute Corresponds to the - formatHuman option.
Processes human readable error output. Default is
“false”.

“output” attribute Corresponds to the -out option. Specifies the

report file name.

“negative” attribute Treats a failed result as successful and a successful
result as failed. Used for negative tests. Default
value is “false”.

The following code sample shows how to use the SignatureTest command with an Ant
script.

<target name="td" description="Signature test task definition">
<taskdef name="test" classname="com.sun.tdk.signaturetest.ant.ATest"
classpath="${sigtest.home}/sigtest.jar"/>
</target>

<target name="test"
description="Runs migration compatibility test for com.acme.openapi
package with subpackages, tests v2 against vl signature file"
depends="td">
<test failonerror="true" apiVersion="openapi-v2"
filename="acme-openapi-vl.sig" backward="true" output="st_report.txt">
<package name="com.acme.openapi" />
<exclude class="com.acme.openapi.NotTested"/>
<classpath>
<pathelement location="${java.home}/jre/lib/rt.jar"/>
<pathelement location="${testd.home}/lib/acmeAPIv2.jar"/>
</classpath>
</test>
</target>

E.3 Using the Merge Command From an Ant Script

The Signature Test tool Merge command can be invoked from an Ant script. Both the
sigtestdev.jar and sigtest. jar files contain the corresponding Ant task. Use
the following task definition in your Ant build script:

<taskdef name="merge" classname="com.sun.tdk.signaturetest.ant.AMerge"

classpath="sigtest.jar"/>

Table E-3 and Table E—4 list required and optional attributes and nested elements for
the “merge” task.

Table E-3 Required Setup Attributes Available for Ant Scripts

Description

“file” nested elements Corresponds to the -files option

“write” attribute

Corresponds to the -write option

Using the SigTest Tools With Ant E-3

Using APICheck From an Ant Script

Table E-4 Optional Setup Attributes Available for Ant Scripts

Attribute Description

“binary” attribute Corresponds to the -binary option. Default value is “false”.

“failonerror” attribute Stop the build process if the command exits with an error. Default value is “false”.
“negative” attribute Treats a failed result as successful and a successful result as failed. Used for negative

tests. Default value is “false”.

Table E-5 SAMPLE of REDOING TABLE UNITS: Setup Attributes Available for Ant Scripts

Attribute Description Status

“file” nested elements Corresponds to the -files option Required

“write” attribute Corresponds to the -write option Required

“binary” attribute Corresponds to the -binary option. Default value is “false”. Optional

“failonerror” attribute Stop the build process if the command exits with an error. Default valueis ~ Optional
“false”.

“negative” attribute Treats a failed result as successful and a successful result as failed. Used for Optional

negative tests. Default value is “false”.

The following code shows how to use the Merge command in an Ant script:

<target name="mergeFiles" description="Merges signature files">

<taskdef name="merge" classname="com.sun.tdk.signaturetest.ant.AMerge"

classpath="${sigtest.jar}"/> <merge write="${build.test.dir}/core_and_loaders.sig"

failonerror="true">

<file name="${build.test.dir}/core.sig"/>

<file name="${build.test.dir}/loaders.sig"/>

</merge>
</target>

E.4 Using APICheck From an Ant Script

The API Check tool command can be invoked from an Ant script. The apicheck. jar
file contains the corresponding Ant task. Use the following task definition in your Ant
build script:

<taskdef name="apicheck" classname="com.sun.tdk.apicheck.ant.ACheck"
classpath="apicheck.jar:sigtest.jar"/>

All required and optional attributes and nested elements for the “apicheck” task are
the same as used for the Signature Test Tool “test” Ant command and are listed in
Table E-2.

See B.1.1 for an example that shows how to set up APICheck in an Ant script.

E-4 SigTest/User's Guide

F

Using the SigTest Tools With Apache Maven

The Apache Maven SigTest plug-in (sigtest-plugin) makes the functionality of the
Sigtest, Setup and Merge commands available from Maven 2 build scripts. The Maven
APICover plug-in (apicover-plugin) makes the functionality of the APICover tool
available to Maven 2 build scripts. All goals are bound by default to the “test” life
cycle phase.

F.1 Goal Overview

The the four sigtest-plugin goals are described in Table F-1:

Table F-1 The sigtest-plugin Goals

Goal Description

sigtest-plugin:setup Provides Setup command functionality to Maven 2 build
scripts. Creates a signature file from an API defined by a
specification or a reference implementation.

sigtest-plugin:test Provides static mode SignatureTest functionality to Maven 2
build scripts. Compares the reference API represented in the
signature file to the API under test and produces a report.

sigtest-plugin:merge Provides Merge functionality to Maven 2 build scripts.
Creates a combined signature file from several signature
files representing different Java platform APIs in one Java
runtime environment according to the JSR 68 rules.

apicover-plugin:apicover Provides API Coverage tool functionality to Maven 2 build
scripts, This goal is used to estimate the test coverage that a
test suite under development affords to implementations of
its related API specification.

F.2 Goal Descriptions

The following sections describe the requirements and parameters for each of the goals
listed in Table F-1. An example follows each section.

F.2.1 sigtest-plugin:setup

The setup goal accepts a reference implementation of an API as input. The command
processes API input in order to generate a signature file that represents the API to be
used as a reference for comparison during signature testing.

s Full name: com.sun. tdk:sigtest-plugin:2.2:setup

= Requires a Maven 2.0 project to be executed.

Using the SigTest Tools With Apache Maven F-1

Goal Descriptions

= Binds by default to the life cycle phase: test

Table F-2 Required Parameters (sigtest-plugin:setup)

Corresponding

Setup
Command
Name Type Option Description
fileName String -filename Specifies the name of the signature file to be
created.
pathElements List -classpath Specifies the path to one or more APIs that
generate the signature file. Can contain
multiple directories, Zip files or JAR files.
packages List -package Specifies classes or packages to be included

in the signature file including its
subpackages if a package is specified.

Table F-3 Optional Parameters (sigtest-plugin:setup)

Correspondin

g Setup
Command Default
Name Type Option Value Description
excludes List -exclude Specifies a package or class to be

excluded from the signature file,
including its subpackages.

nonClosedFile boolean

-NonClosedFile FALSE

Causes direct and indirect
superclasses and superinterfaces of
tested classes not to be included in
the signature file. This eliminates
cases where they do not belong to
the scope defined by “packages”

parameters.

apiVersion String

-apiVersion

Specifies the API version string to
be recorded in the second line of
the signature file.

failOnError boolean TRUE Stops the build process if the
command exits with an error.
negative boolean FALSE Treats tests that do not succeed as

having passed, and tests that do
succeed as having failed. Used for
negative tests.

Example F-1 Sample Plugin Configuration (pom.xm1)

<project>
<build>
<plugins>
<plugin>

<groupId>com.sun. tdk</groupId>

<artifactId>sigtest-plugin</artifactId>

<configuration>

F-2 SigTest/User's Guide

Goal Descriptions

<fileName>java-awt-lang-math.sig</fileName>

<packages>
<package>java.awt</package>
<package>java.lang</package>
<package>java.math</package>

</packages>

<excludes>
<exclude>java.lang.Math</exclude>
<exclude>java.lang.ref</exclude>

</excludes>
<pathElements>
<pathElement>${ref.jhome}/jre/lib/rt.jar</pathElement>
</pathElements>
<apiVersion>Java Six</apiVersion>
</configuration>
</plugin>
</plugins>
</build>
</project>

F.2.2 sigtest-plugin:test

The test goal compares the reference API (represented in a signature file) to the API
under test and produces a report. Unlike the SignatureTest command it only supports
static mode—reflection is not supported

s Full name: com.sun.tdk:sigtest-plugin:2.2:test
= Requires a Maven 2.0 project to be executed.

= Binds by default to the life cycle phase: test

Table F-4 Required Parameters (sigtest-plugin:test)

Corresponding

Name Type Setup Option Description

fileName String -filename Specifies the name of the signature file to be
created.

pathElements List -classpath Specifies the path to one or more APIs that

generate the signature file. Can specify
multiple directories, Zip files or JAR files.

packages List -package Specifies classes or packages to be included in
the signature file, including its subpackages if
a package is specified.

Table F-5 Optional Parameters (sigtest-plugin:test)

Corresponding
SignatureTest Default
Name Type Option Value Description

excludes List -exclude Specifies a package or class to be
excluded from the signature file,
including its subpackages.

apiVersion String -apiVersion Specifies the API version string to be
recorded in the second line of the
signature file.

Using the SigTest Tools With Apache Maven F-3

Goal Descriptions

Table F-5 (Cont.) Optional Parameters (sigtest-plugin:test)

Corresponding
SignatureTest Default
Name Type Option Value Description

binary boolean -mode bin FALSE Specifies that binary mode be used
during the signature test instead of
the source code compatibility mode.

backward boolean -Backward FALSE Specifies migration instead of
mutual compatibility check mode.

human boolean -FormatHuman FALSE Specifies the human-readable report
output format.

errorAll boolean -ErrorAll FALSE Specifies that the signature test be
made stricter by upgrading certain
warnings to errors.

debug boolean -debug FALSE Enables printing of the stack trace for
debugging purposes if SignatureTest
fails.

failOnError boolean TRUE Stops the build process if the

command exits with an error.

negative boolean FALSE Treats tests that do not succeed as
having passed, and tests that do
succeed as having failed. Used for
negative tests.

Example F-2 Sample Plugin Configuration (pom.xm1)

<project>
<build>
<plugins>
<plugin>

<groupId>com.sun. tdk</groupId>
<artifactId>sigtest-plugin</artifactId>
<configuration>
<fileName>java-awt-lang-math.sig</fileName>
<packages>
<package>java.awt</package>
<package>java.lang</package>
<package>java.math</package>
</packages>
<excludes>
<exclude>java.lang.Math</exclude>
<exclude>java.lang.ref</exclude>
</excludes>
<pathElements>
<pathElement>${ref.jhome}/jre/lib/rt.jar</pathElement>
</pathElements>
<apiVersion>Java Six</apiVersion>
<failOnError>false</failOnError>
<human>true</human>
<backward>true</backward>
<out>report.txt</out>
<debug>true</debug>
</configuration>
</plugin>

F-4 SigTest/User's Guide

Goal Descriptions

</plugins>

</build>

</project>

F.2.3 sigtest-plugin:merge
The merge goal command combines (merges) a number of input signature files into a
single signature file.

s Full name: com.sun.tdk:sigtest-plugin:2.2:merge

= Requires a Maven 2.0 project to be executed.

= Binds by default to the life cycle phase: test

Table F-6 Required Parameters (sigtest-plugin:merge)
Corresponding Merge
Name Type option Description
write String -Write Specifies the resulting output
signature file.
files List -Files Specifies the names of the
signature files to be merged.
Table F-7 Optional Parameters (sigtest-plugin:merge)
Correspondin
g Merge Default
Name Type Option Value Description
binary boolean -Binary FALSE Specifies that binary mode be
used during the signature test
instead of the source code
compatibility mode.
failOnError boolean TRUE Stops the build process if the
command exits with an error.
negative boolean FALSE Treats tests that do not succeed

as having passed, and tests
that do succeed as having
failed. Used for negative tests.

Example F-3 Sample Plugin Configuration (pom . xm)

<project>
<build>
<plu

<p

gins>
lugin>

<groupId>com.sun. tdk</groupId>
<artifactId>sigtest-plugin</artifactId>
<configuration>
<files>
<file>baseAPI.sig</file>
<file>optionalAPIl.sig</file>

Using the SigTest Tools With Apache Maven F-5

Goal Descriptions

<file>optionalAPI2.sig</file>
</files>
<write>result.sig</write>
<failOnError>false</failOnError>
</configuration>
</plugin>

</plugins>
</build>

</project>

F.2.4 apicover-plugin:apicover
The apicover-plugin:apicover goal is used to estimate the test coverage that a
test suite under development affords to implementations of its related API
specification. It does this by determining how many public class members the test
suite references within the API specification that it is designed to test against. The tool
uses a signature file representation of the API specification as the basis of its
specification analysis.

s Full name: com. sun. tdk:apicover-plugin:2.2:apicover
= Requires a Maven 2.0 project to be executed.

= Binds by default to the life cycle phase: test

Table F-8 Required Parameters (apicover-plugin:apicover)

Corresponding

APICover
Name Type Option Description
tests List -ts Specifies the path to the test suite classes to
be analyzed. Also accepts a JAR file.
api String -api Specifies the location of the signature file

representing the API under examination.

Table F-9 Optional Parameters (apicover-plugin:apicover)

Corresponding

APICover Default

Name Type Option Value Description

tsIncludes List -tsInclude Recursively includes classes
from the specified test suite
package.

tsIncludeWs List -tsIncludeW Includes classes from the
specified test suite package
without subpackages.

tsExcludes List -tsExclude Recursively excludes classes
from the specified test suite
package.

apilncludes List -apilnclude Recursively includes classes
from the specified API
package.

apilncludeWs List -apilncludeW Includes classes from the
specified API package

without subpackages.

F-6 SigTest/User's Guide

Goal Descriptions

Table F-9 (Cont.) Optional Parameters (apicover-plugin:apicover)

Corresponding

APICover Default

Name Type Option Value Description

apiExcludes List -apiExclude Recursively excludes classes
from the specified API
package.

excludeLists List -excludeList Specifies the file name of an
exclude list that contains API
elements to be excluded
from the coverage
calculation.

excludelnterfaces boolean -excludeInterface FALSE Excludes all interface classes.

S

excludeAbstractC boolean -excludeAbstract FALSE Excludes all abstract classes

lasses Classes including interfaces.

excludeAbstract boolean -excludeAbstract FALSE Excludes all abstract

Methods Methods methods from all classes and
interfaces

excludeFields boolean -excludeFields FALSE Excludes all fields from all
classes and interfaces.

includeConstantF boolean -includeConstant FALSE Specifies the inclusion of all

ields Fields final fields of any type in the
coverage calculation.

mode String -mode w (worst Specifies the mode of

case) coverage calculation as “w”

which represents the worst
case or “r” which represents
the real world.

detail String -detail 2 Specifies the level of report
detail as an integer from 0-4

format String -format plain Specifies the report format as
plain text or XML. The
values can be “plain” or
“xml”. Note that an example
of the XML output is
available in SIGTEST _
HOME /msc.

report String -report See the Specifies the location of the

description. generated report file. The
path argument defaults to
the working directory when
only a file name is specified.
If a file name is not specified,
it defaults to the Maven
logger

out String -out See the Generates a specially
description ~ formatted report file for use
by other applications and
places it at the specified
location/file name. The path
defaults to the working
directory.

Example F-4 Sample Plugin Configuration (pom.xm1)

<project>

Using the SigTest Tools With Apache Maven F-7

Goal Descriptions

<build>
<plugins>
<plugin>
<groupId>com.sun. tdk</groupId>
<artifactId>apicover-plugin</artifactId>
<configuration>
<api>publicAPIv3.sig</api>
<tests>
<test>${ts.path}/testSetl.jar</test>
<test>${ts.path}/testSet2.jar</test>
<test>${ts.path}/testSet3.jar</test>
</tests>
<apiIncludes>
<apiInclude>com.acme.api</apiInclude>
</apiIncludes>
<mode>r</mode>
<detail>4</detail>
<format>plain</format>

<report>${report.path}/covrep_real.txt</report>
</configuration>

</plugin>
</plugins>
</build>

</project>

F-8 SigTest/User's Guide

Cc

classpath variable, 5-1

command options
-apiVersion, 3-17
-Binary, 3-18
-CheckValue, 3-10,3-17
-ClassCacheSize, 3-10, 3-17
-classpath, 3-5,3-10
-ClosedFile, 3-5
-debug, 3-5,3-10
-ErrorAll, 3-11
-exclude, 3-6,3-11, 3-17
-FileName, 3-5, 3-10, 3-16
-Files, 3-10
-FormatPlain, 3-11, 3-17
-help, 3-5, 3-10, 3-16, 3-18
-mode, 3-10, 3-17
-NoCheckValue, 3-10, 3-17
-NoMerge, 3-11
-NonClosedFile, 3-5
-out, 3-11,3-17
-package, 3-6,3-11, 3-17
-PackageWithoutSubpackages, 3-6, 3-11, 3-17
-reference, 3-16
-static, 3-6, 3-10
-test, 3-16
-TestURL, 3-5,3-10
-verbose, 3-6,3-11, 3-17
-version, 3-6,3-11
-Write, 3-18

commands
Setup, 3-1
SetupAndTest, 3-1
SignatureTest, 3-1

custom signature loader, 2-5

G

generics, 3-2

J

Java 2 Platform, Standard Edition (J2SE™
Platform), 5-1
JSR68, 3-4

Index

M

Merge, 3-1,3-18
Merge rules, 3-4

(o)

option file, 1-1

R

reference implementation, 2-1
reflection mode, 3-2
report formats, 3-14

S

Setup, 3-1,3-4
SetupAndTest, 3-1,3-16
signature file, 3-1
signature file contents, 3-7
signature loader, 2-5
signature test, 2-1
SignatureTest, 3-1,3-9
sigtest_src.zip, 2-5
sigtestdevjar, 5-1
sigtest.jar, 5-1

sorted report, 3-14
static mode, 3-2

U

unsorted report, 3-15

Index-1

Index-2

	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Documentation Accessibility
	Who Should Use This Guide
	Before You Read This Guide
	How This Guide Is Organized
	Related Documentation
	Typographic Conventions
	1 Introduction
	1.1 Global Functionality
	1.1.1 Option File
	1.1.1.1 Option File Format

	1.1.2 The -version Option

	Part I Signature Test Tool
	2 Introduction to Signature Test Tool
	2.1 Signature Test Basics
	2.2 What is Tested
	2.2.1 Mutual Binary Compatibility Check
	2.2.2 Mutual Source Compatibility Check
	2.2.3 Migration Binary and Source Code Check
	2.2.4 Class and Class Member Attributes Checked

	2.3 Source and Binary Compatibility Modes
	2.4 Using Custom Signature Loaders

	3 Using the Signature Test Tool
	3.1 Signature Test Tool Basics
	3.1.1 Reflection and Static Run Modes
	3.1.2 Constant Checking in Differing Run Modes
	3.1.3 Generics Checking in Binary Mode
	3.1.4 CLASSPATH and -classpath Settings
	3.1.4.1 Bootstrap and Extension Classes

	3.2 Signature File Merge Rules
	3.2.1 JSR 68-Based Merge

	3.3 Setup Command
	3.3.1 Command Description
	3.3.2 Case Sensitivity of Option Arguments
	3.3.3 Signature File Formats
	3.3.4 Signature File Contents
	3.3.4.1 Signature File Header
	3.3.4.2 Signature File Body

	3.4 SignatureTest Command
	3.4.1 Command Description
	3.4.2 Using Update Files
	3.4.3 Report Formats
	3.4.3.1 Sorted Report
	3.4.3.2 Unsorted Report
	3.4.3.3 Human-Readable Report

	3.5 SetupAndTest Command
	3.5.1 Command Description

	3.6 Merge Command
	3.6.1 Command Description

	Part II API Coverage Tool
	4 Introduction to API Coverage Tool
	4.1 Static API Coverage Analysis
	4.1.1 Major Source of Error
	4.1.2 Advantages of Static Coverage Analysis

	4.2 How It Works
	4.2.1 Level of Accuracy During Analysis
	4.2.2 Coverage Analysis Modes
	4.2.3 Filtering Coverage By Marking Up Signature Files
	4.2.3.1 Filtering Markup Format

	5 Using the API Coverage Tool
	5.1 Running API Coverage Tool
	5.1.1 Special Report File
	5.1.2 Exclude List

	Part III API Check Tool
	6 Introduction API Check Tool
	6.1 The API Check Tool

	7 Using the API Check Tool
	7.1 API Check Tool Verification Scope
	7.2 Running API Check Tool

	Part IV Appendix
	A Signature Test Tool Quick Start Examples
	A.1 Example Programs
	A.2 Example 1: Compare Two Different Implementations of the Same API
	A.2.1 Using the Setup and SignatureTest Commands
	A.2.2 Using the SetupAndTest Command

	A.3 Example 2: Merge Two Signature Files
	A.3.1 Running Merge Example
	A.3.2 Example Result Files

	B API Coverage Tool Quick Start Examples
	B.1 Example Procedures
	B.1.1 Set Up the API Coverage Tool Ant Build Script
	B.1.2 Build API Coverage Tool Examples
	B.1.3 Run the Example Test Suite
	B.1.4 Generate a Signature File for the Tested API
	B.1.5 Use the API Coverage Tool to Calculate Test Coverage
	B.1.6 Worst Case Mode
	B.1.7 Real World Mode
	B.1.8 Real World Mode Without Fields and Enum Constants

	C API Migration Compatibility Rules (Signature Test)
	C.1 The Compatibility Rules
	C.1.1 General Rules
	C.1.2 Interfaces and Annotation Types
	C.1.3 Interfaces and Class Methods
	C.1.4 Interfaces and Class Fields
	C.1.5 Classes

	C.2 Comments and Clarifications
	C.2.1 Rule 1.1
	C.2.2 Rule 1.4
	C.2.3 Rule 2.3
	C.2.4 Rules 2.5, 2.6
	C.2.5 Rule 3.6
	C.2.6 Rule 4.2
	C.2.7 Rule 5.1
	C.2.8 Rule 5.3
	C.2.9 Rule 5.7.2

	D Merge Command Operative Principles
	D.1 Merge Command Operative Principles
	D.1.1 Element Handling by Merge

	E Using the SigTest Tools With Ant
	E.1 Using the Setup Command From an Ant Script
	E.2 Using the SignatureTest Command From an Ant Script
	E.3 Using the Merge Command From an Ant Script
	E.4 Using APICheck From an Ant Script

	F Using the SigTest Tools With Apache Maven
	F.1 Goal Overview
	F.2 Goal Descriptions
	F.2.1 sigtest-plugin:setup
	F.2.2 sigtest-plugin:test
	F.2.3 sigtest-plugin:merge
	F.2.4 apicover-plugin:apicover

	Index
	C
	G
	J
	M
	O
	R
	S
	U

