

Oracle® Java SE Embedded
Developer's Guide

Release 8

E28300-05

July 2014

Documentation that describes essential concepts and
common tasks for Oracle Java SE Embedded technology, for
platform and application developers.

Oracle Java SE Embedded Developer's Guide, Release 8

E28300-05

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Part I Quick Start

1 Introducing Oracle Java SE Embedded

Embedded Systems: The Wave of the Future ... 1-1
Why Use Java for Your Embedded System?.. 1-3
Which Java Embedded is Right for Your Device?.. 1-4
The Heart of Java SE Embedded: Customize Your Runtime Environment 1-5

2 Quick Start for Platform Developers

Introduction... 2-1
Quick Start Example .. 2-1

3 Quick Start for Application Developers

Typical Tasks for Embedded Application Developers ... 3-1
Quick Start Examples .. 3-1

Part II Platform Development

4 Install Oracle Java SE Embedded

Why Install on a Host Computer? ... 4-1
Prerequisites for the Host Computer.. 4-2
Install Java SE Embedded on the Host Computer ... 4-2
Java SE Embedded Installed Directories ... 4-3

5 About Custom JREs

Your Choices When Creating a Custom JRE ... 5-1
Cryptographic Service Providers... 5-3
Locales .. 5-3
Character Encodings .. 5-3
Nashorn JavaScript Engine .. 5-3
JSR 197 Specification JAR .. 5-3

iv

6 About Oracle Java SE Embedded JVMs

Minimal JVM .. 6-1
Client JVM ... 6-1
Server JVM .. 6-1

7 About Compact Profiles

Compact Profiles for Subsets of the Java SE API... 7-1
Compact1 Profile APIs .. 7-1
Compact2 Profile APIs ... 7-1
Compact3 Profile APIs .. 7-1
Full JRE APIs .. 7-2
Determining Compact Profiles for API Objects .. 7-2

8 Create Your JRE with jrecreate

Running jrecreate ... 8-1
jrecreate Command Syntax... 8-1
jrecreate Options .. 8-1
jrecreate Command Examples.. 8-4
jrecreate Command Output .. 8-4
JRE Directories .. 8-5
Configuring the JRE for Swing/AWT Headful Applications .. 8-5

9 Deploy Your JRE to the Embedded Device

Moving the Custom JRE to the Target Device .. 9-1
Verifying Your Deployed JRE .. 9-1

Part III Embedded Application Development

10 Essentials for Developing Embedded Applications

Host Development for a Target Device ... 10-1
Host-Target Development Cycle ... 10-2
APIs and Javadocs ... 10-2
Native Methods ... 10-3
JDK 7 Limitations.. 10-3

11 Develop and Test Your Embedded Application

Develop Your Application ... 11-1
Test Your Application on the Host Computer.. 11-1

Compile with the javac Tool and the -profile Option .. 11-1
Use the jdeps Tool to Test Minimum Required Compact Profile .. 11-2

Testing Your Application on the Target Device... 11-2

12 Deploy Embedded Applications

Package Your Application on the Host with the jar Tool .. 12-1

v

About Connecting to the Target Device .. 12-1
Copy the Application to the Target Device .. 12-2
Next Steps ... 12-2

13 Launch Embedded Applications

Launch the Application with the java Launcher Tool .. 13-1
Launch Your Application with a Specific JVM ... 13-1
Enable Client Compiler (C1) Profiled Inlining ... 13-2
Improving JVM Startup Times with Class Data Sharing.. 13-2
Launch Your Application in Debug Mode ... 13-3
Unsupported java Launcher Options in the Minimal JVM .. 13-3
Exit an Application Running on an Embedded Device... 13-4
Troubleshooting... 13-4

14 Develop Headful Applications

Headful Applications Using JavaFX.. 14-1
JavaFX Components for Oracle Java SE Embedded ... 14-3

JavaFX Graphics Component .. 14-3
JavaFX Controls Component ... 14-4

Configuring Fonts ... 14-4
Unsupported JavaFX Features... 14-5
Using FXML Markup Instead of JavaFX APIs ... 14-5
Using JavaFX Scene Builder to Design the UI and Export to FXML ... 14-6
JavaFX Sample Applications ... 14-6
Font Setup in Headful Applications.. 14-7
Swing and AWT APIs ... 14-7

15 Codecache Tuning

Introduction.. 15-1
java Launcher Codecache Option Summary.. 15-1

How to Use the Codecache Options of the java Command .. 15-1
Codecache Size Options ... 15-2
Codecache Flush Options .. 15-2
Compilation Policy Options .. 15-2
Compilation Limit Options .. 15-3
Diagnostic Options .. 15-3

Measuring Codecache Usage .. 15-3
Constraining the Codecache Size... 15-4

When is Constraining the Codecache Size Useful? ... 15-4
How to Constrain the Codecache Size ... 15-5

Reducing Compilations ... 15-5
Reducing Compiled Method Sizes .. 15-6

Part IV Appendixes

Preparing the BeagleBoard-xM for JavaFX Applications .. A-1

vi

Use a Suitable Build Machine .. A-1
Install the Tools and Configure the System .. A-1
Obtain the Ångström/Open Embedded Scripts .. A-1
Set Up the BeagleBoard .. A-2
Build the Distribution ... A-2
Prepare the SD Card and Write File Systems .. A-2
Boot a BeagleBoard xM with the Card ... A-3
Install the Required Packages .. A-3
Build and Install DirectFB .. A-3
Disable Cursor Blinking ... A-4
Update the Graphics Drivers (Recommended) .. A-4
Disable the GDM (X Login Manager) .. A-5

Configure the SGX Driver (Optional) ... A-5
Oracle Java SE Embedded Support in NetBeans IDE .. B-1
Remote Debugging ... B-1

vii

Preface

Oracle Java SE Embedded is a customizable Java Runtime Environment (JRE) plus
tools. It can be used as the foundation of a wide range of embedded applications.

About This Guide
This guide is a consolidation of three guides that were available for Oracle Java SE
Embedded Release 8: a Concepts Guide, a Platform Developer's Guide, and an
Application Developer's Guide. Rather than having separate guides, the information is
now available in a single guide. This should enhance the ability to find information
related to any aspect of Oracle Java SE Embedded:

■ Part I, "Quick Start"

Shows both platform and application developers how to get up and running
quickly, plus a basic overview of Oracle Java SE Embedded technology.

■ Part II, "Platform Development"

Describes how to choose the minimum Java Virtual Machine (JVM) and compact
profile for the embedded device and how to create the JVM with the jrecreate tool.

■ Part III, "Embedded Application Development"

Presents information to assist with both headless and headful application
development.

Audience
Refer to the portions of the guide that pertain to your role as a platform developer or
application developer.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

viii

Related Documents
■ Oracle Java SE Embedded Release Notes

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Quick Start

Choose the best quick start guide for you, depending on whether you are a platform
developer or an application developer. If your plan to install Oracle Java SE Embedded
on your embedded device and develop applications for it, look at both quick start
guides.

■ Introducing Oracle Java SE Embedded

■ Quick Start for Platform Developers

■ Quick Start for Application Developers

1

Introducing Oracle Java SE Embedded 1-1

1Introducing Oracle Java SE Embedded

Learn the advantages of using Oracle Java SE Embedded technology on your devices,
and which of the Java SE Embedded documents will be most relevant to
accomplishing your goals.

This page contains the following topics:

■ Embedded Systems: The Wave of the Future

■ Why Use Java for Your Embedded System?

■ Which Java Embedded is Right for Your Device?

■ The Heart of Java SE Embedded: Customize Your Runtime Environment

Embedded Systems: The Wave of the Future
Embedded systems are computer-based but unlike desktop computers and their
applications. An embedded system's computer is embedded in a device. The variety of
devices is expanding daily.

Embedded Systems: The Wave of the Future

1-2 Oracle Java SE Embedded Developer's Guide

Many embedded systems are headless, meaning they have no conventional user
interface: no keyboard, no mouse, and no display. These systems respond to sensor
inputs, such as thermometers and accelerometers. They respond by adjusting
actuators, such as indicating alarms or sending messages. A headless system that is
connected to a network can run a web server and provide a web-based user interface.

Why Use Java for Your Embedded System?

Introducing Oracle Java SE Embedded 1-3

As hardware costs decrease, headful embedded systems are increasingly common.
Although users interact with such systems, typically by means of buttons or
touch-sensitive displays, the devices do not look like, or behave like, a desktop
computer. Figure 1–1 shows an example of a headful embedded system. In this
example, for demonstration purposes, the embedded computer is visible through a
window in the case.

Figure 1–1 Headful Embedded System Example: A Kiosk

Embedded systems typically have attributes that make them quite different from
desktop applications:

■ Their functions are fixed at the factory; they are dedicated, not general purpose.
Their workload is predictable.

■ They use custom hardware (sensors and actuators).

■ They are carefully optimized in multiple dimensions to use the least
computational resources that will meet requirements.

■ They do not tolerate malfunction. Usually, an embedded system cannot be fixed
after it is deployed.

■ With few resources, special purpose hardware, and high demand for correct
operation on day one, they are hard to develop software for.

Why Use Java for Your Embedded System?
Embedded system applications were once written in assembly language. But as
embedded computer hardware resources grew, pressures such as time-to-market and
development cost drove a shift to the more portable and less error-prone C and C++
languages. These languages required more memory and more CPU cycles, but
declining hardware costs and rising software complexity made the trade worthwhile.

Which Java Embedded is Right for Your Device?

1-4 Oracle Java SE Embedded Developer's Guide

Continuing this progression, Moore's Law and other factors have more recently made
Java increasingly attractive for embedded system development. These other factors
include a worldwide population of Java developers who have trained in enterprise
and other non-embedded domains. This talent and knowledge can be extended to
embedded systems by developing their application code in the Java programming
language.

Java is:

■ A modern, object-oriented, language without the error-inducing complexity of
C++. Objects are natural representations for sensors and actuators.

■ Less prone to errors than C. For example, there are no pointers, and memory
management is automatic.

■ Highly portable; Java classes do not need to be recompiled to run on a different
CPU or operating system.

■ Security-oriented. Java libraries support encrypting sensitive data sent to or from
embedded devices, and validating digitally signed code downloaded to update or
extend embedded applications in the field.

■ Multi-threaded, enabling the natural expression of parallel activities and their
simultaneous execution on platforms whose operating system thread model takes
advantage of multiple CPU cores.

■ Equipped with a large collection of OS-independent libraries including database
access and graphical user interfaces.

■ Tunable to match hardware resources and application needs. For example, there
are multiple options for runtime compilation to native instructions, and for how
and when unused (garbage) memory is reclaimed.

■ Extensible with native methods written in C that interact with special purpose
embedded system hardware.

■ Debuggable on the desktop and remotely. A desktop Java Runtime Environment
(see Which Java Embedded is Right for Your Device?) has the same APIs as one
that runs on an embedded computer, except for hardware-specific interfaces and
behaviors. Most functional debugging can be done on a desktop computer. An
embedded system that has a network connection can be debugged and profiled
remotely.

Which Java Embedded is Right for Your Device?
Oracle offers three Java Runtime Environment product families:

■ Java Platform, Standard Edition (Java SE): For Macintosh, Windows, Linux, and
Solaris desktop and server class computers. Hardware resources for JREs and Java
applications are rarely an issue on these computers. For more information, see
http://www.oracle.com/technetwork/java/javase/overview/

■ Oracle Java SE Embedded: For embedded systems with tens of megabytes of
memory for a JRE and Java applications, with or without graphical user interface
hardware. Oracle Java SE Embedded is described in this document.

■ Oracle Java Micro Edition Embedded (Oracle Java ME Embedded): For headless
embedded systems on devices that have a megabyte or less of memory for a JRE
and applications. For more information, see
http://www.oracle.com/technetwork/java/embedded/overview/java
me/

The Heart of Java SE Embedded: Customize Your Runtime Environment

Introducing Oracle Java SE Embedded 1-5

A Java Runtime Environment (JRE) enables and supports the safe execution of
portable Java program instructions (bytecodes) on a particular CPU and operating
system. A typical JRE has several components, including:

■ A JRE's Java Virtual Machine (JVM) verifies and translates bytecodes into CPU
instructions and arranges for them to be executed.

■ A JRE's memory manager interacts with the computer's operating system to
allocate dynamic (heap) memory and automatically reclaim it (collect garbage).

■ A JRE's application programming interfaces (APIs) provide services, such as file
systems, database access, and graphical user interfaces. These services are
sometimes implemented on corresponding operating system services, but insulate
Java applications from operating system dependencies.

■ A JRE's resource files store data such as time zones, fonts, and locales.

■ A JRE's launcher is an operating system command that starts a JRE running a Java
application.

Although by definition, JREs must be similar to make Java application code portable,
they can differ in composition. For example, different virtual machine designs can take
advantage of resources available on some computers but not on others.

The Heart of Java SE Embedded: Customize Your Runtime Environment
The Java Runtime Environment (JRE) consists of a Java Virtual Machine (JVM) plus
Libraries and Toolkits.

Oracle Java SE Embedded is a set of components from which you can build a custom
JRE that meets your application's functional requirements without sacrificing memory
to unneeded JRE features. All custom JREs are functional subsets of the Oracle Java SE
JRE, which means that you can develop and functionally test embedded application
code on desktop computers, except for classes that depend on the presence of
special-purpose embedded hardware. You can also reuse application classes in
desktop, server, and embedded applications.

You use the jrecreate tool to select the size of the JVM to be installed and the profile
to be included as components of the custom JRE. The JVM you choose depends on
performance characteristics, and the profile depends on the libraries used by the
applications that will run on the device. As you develop applications, you can use the
jdeps tool to determine the minimum profile required for your application.

The Heart of Java SE Embedded: Customize Your Runtime Environment

1-6 Oracle Java SE Embedded Developer's Guide

2

Quick Start for Platform Developers 2-1

2Quick Start for Platform Developers

Learn how to get your embedded devices running with the minimal JRE required for
your device, plus the embedded applications you plan to run.

This chapter contains the following topics:

■ Introduction

■ Quick Start Example

Introduction
Java SE Embedded has the tools to enable you to install custom JREs on the target
device. The job of a platform developer is to determine which JRE components are
required for the device and for the applications that will run on the device. See About
Custom JREs.

Quick Start Example
This section will walk you through a simple example of how to set up a JRE on your
embedded device and deploy your Java applications.

Let's suppose that you have a typical setup:

■ A host computer running Linux

■ An embedded device with Linux installed

■ An Oracle Java SE Embedded bundle that matches the embedded device's
hardware and operating system

You want to put a JRE on your embedded device that will have the correct compact
profile and JVM to run the two example headless applications shown here.

Here are the basic tasks that a platform developer would be likely to face in deciding
which JRE to install on their embedded device.

■ Task 1, "Install Oracle Java SE Embedded on your host computer"

■ Task 2, "Determine which profile to use for your applications"

■ Task 3, "Determine which JVM to use"

■ Task 4, "Use jrecreate to create the JRE"

■ Task 5, "Deploy the JRE to the embedded device"

■ Task 6, "Deploy your embedded applications to the device"

The next section shows a simple example of how to accomplish these tasks.

Quick Start Example

2-2 Oracle Java SE Embedded Developer's Guide

This scenario is very simple. For more information and more options, see the More
Information links at the end of each section.

Task 1 Install Oracle Java SE Embedded on your host computer
Download and set up Oracle Java SE Embedded on a host computer.

1. Download the Oracle Java SE Embedded bundle from
http://www.oracle.com/technetwork/java/embedded/embedded-se/d
ownloads/index.html

2. Extract the bundle from the tar file:

$ cd download
$ gunzip *.gz
$ tar -xvf *.tar

List of unpacked files ...

3. Set the following environment variables:

■ Set EJDK_HOME to download/ejdk1.8.0_06

■ If not already set, define value of JAVA_HOME as the path of the local Java SE
installation.

4. Verify the installation:

$ cd $EJDK_HOME
$ bin/jrecreate.sh --help
Usage: jrecreate --help

Summary of jrecreate syntax ...

More Information:

■ Install Oracle Java SE Embedded

Task 2 Determine which profile to use for your applications
Use the Java jdeps tool across all of your platform applications to determine the
minimal compact profile to install on your device: compact1, compact2, or compact3.

You can use the jdeps command to determine the minimal compact profile you can
use. To illustrate the use of the jdeps command, let's take two simple headless
application examples: Hello World and Hello RMI.

In the Hello World example, shown in Example 2–1, the application merely prints
"Hello World" to the console.

Example 2–1 Hello World Application

public class HelloWorld {
 public static void main (String args[]) {

Note: In most cases, embedded devices run headless applications (no
user interface). The Hello World and Hello RMI applications used as
examples in this guide are headless applications.

Headful applications (with a UI) are developed using the JavaFX APIs
in the Java Development Kit (JDK). If you are working with headful
applications, see the appendix Preparing a Device for JavaFX.

Quick Start Example

Quick Start for Platform Developers 2-3

 System.out.println("Hello world!");
 }
}

In the Hello RMI example, shown in Example 2–2, the application uses the RMI
LocateRegistry class to access a remote object and print a stack trace if there is an
error.

Example 2–2 Hello RMI Application

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloRMI {
 public static void main (String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
 }
 try {
 Registry registry = LocateRegistry.getRegistry("testRMI");
 System.out.println("Hello RMI!");
 } catch (Exception e) {
 System.err.println("RMI exception:");
 e.printStackTrace();
 }
 }
}

Let's also assume that both of your applications have been compiled. If you want to
compile either of the example applications, the compile commands are shown in
Example 2–3.

Example 2–3 Compile Commands for Hello World and Hello RMI

% javac HelloWorld.java
% javac HelloRMI.java

Now you can use the jdeps tool to determine the minimum compact profile required
to run each application. Example 2–4 show the command and results for the Hello
World application.

Example 2–4 jdeps Command and Results for the Hello World Application

% jdeps -P HelloWorld.class

HelloWorld.class ->
/net/test11.us.example.com/export/java-re/jdk/8/ea/b124/binaries/linux-i586/jre/li
b/rt.jar
 <unnamed> (HelloWorld.class)
 -> java.io compact1
 -> java.lang compact1

The results in Example 2–4 show that the compact1 profile is the minimal profile
required to run the Hello World application.

Example 2–5 shows the command results for the Hello RMI application.

Example 2–5 jdeps Command and Results for the Hello RMI Application

% jdeps -P HelloRMI.class

Quick Start Example

2-4 Oracle Java SE Embedded Developer's Guide

HelloRMI.class ->
/net/test11.us.example.com/export/java-re/jdk/8/ea/b124/binaries/linux-i586/jre/li
b/rt.jar
 <unnamed> (HelloRMI.class)
 -> java.io compact1
 -> java.lang compact1
 -> java.rmi.registry compact2

The results in Example 2–5 show that the java.rmi.registry class in the Hello RMI
application minimally require the compact2 profile.

More Information:

■ About Compact Profiles

Task 3 Determine which JVM to use
Choose which version of the JVM you want to install, based on which performance
characteristics are most important: minimal, client, or server.

Choose the JVM based on which performance characteristics are most important for
running your applications. In a nutshell, the three Java SE Embedded JVMs have the
following performance characteristics:

In this example, let's try out the minimal JVM, which has the smallest footprint, and
upgrade to a higher JVM if we are not happy with performance.

More Information:

■ About Oracle Java SE Embedded JVMs

Task 4 Use jrecreate to create the JRE
Since we have chosen the profile and the VM to install, we can now install the JRE to a
temporary directory on the host computer using the jrecreate command, which is
included in the bin folder of the extracted Java SE Embedded bundle.

Run the following command on the host computer:

% download/ejdk1.8.0_06/bin/jrecreate.sh \
 --profile compact1 \
 --dest /tmp/defaultJRE/

More Information:

■ Create Your JRE with jrecreate

Task 5 Deploy the JRE to the embedded device
To deploy the JRE, simple copy the JRE files that you created with the jrecreate
command over to the embedded device. How you copy depends on how whether you
use the network or an SD card, but here is an example of a copy command:

scp -r /tmp/defaultJRE/* root@target:/opt/local/ejdk1.8.0_06/

Table 2–1 JVM Versions and Their Primary Performance Characteristics

JVM Version Primary Performance Characteristics

Minimal Minimal memory footprint

Client Responsiveness

Server Tuned for long-running applications

Quick Start Example

Quick Start for Platform Developers 2-5

More Information:

■ Deploy Your JRE to the Embedded Device

Task 6 Deploy your embedded applications to the device
If you have compiled the Hello World and Hello RMI applications, you can try
copying them over and running them on your embedded device. Or, you can try
copying over an application of your own.

More Information:

■ About Connecting to the Target Device

Quick Start Example

2-6 Oracle Java SE Embedded Developer's Guide

3

Quick Start for Application Developers 3-1

3Quick Start for Application Developers

Learn how to test your applications so they will run with the compact profile that
matches the JRE installed on the embedded device.

This page contains the following topics:

■ Typical Tasks for Embedded Application Developers

■ Quick Start Examples

Typical Tasks for Embedded Application Developers
Here are the basic tasks that embedded application developers use to develop an
application for an embedded device.

■ Task 1, "Develop Your application"

■ Task 2, "Test your application frequently"

■ Task 3, "Package and deploy your application"

Quick Start Examples
The tasks in the following sections will walk you through a simple example of how to
develop applications for an embedded device. These instructions assume the
following conditions:

■ You will work on a host computer for application development. You can work
with a supported, standard JDK installation, using your regular development
tools. Download the standard JDK from.
http://www.oracle.com/technetwork/java/javase/downloads/index
.html

■ You have a basic knowledge of the Java programming language and Java SE
technology.

■ You know which compact profile is installed, or will be installed, on the embedded
device as part of the JRE.

For basic information about compact profiles, see About Compact Profiles.

This quick start scenario is very simple. For more information and more options, see
the More Information links at the end of each section.

Note: If you have a device or your own that you need to set up with
Java SE Embedded, see Quick Start for Platform Developers.

Quick Start Examples

3-2 Oracle Java SE Embedded Developer's Guide

Task 1 Develop Your application
Develop your application using your regular Java development tools and the standard
JDK. The difference from standard development is that you will frequently test your
application to ensure the libraries in your application meet the requirements of the
compact profile installed on the device.

To illustrate the process, let's take two simple headless application examples: Hello
World and Hello RMI.

In the Hello World example, shown in Example 3–1, the application merely prints
"Hello World" to the console.

Example 3–1 Hello World Application

public class HelloWorld {
 public static void main (String args[]) {
 System.out.println("Hello world!");
 }
}

In the Hello RMI example, shown in Example 3–2, the application uses an RMI
LocateRegistry class to access a remote object and print a stack trace if there is an
error.

Example 3–2 Hello RMI Application

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class HelloRMI {
 public static void main (String args[]) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new SecurityManager());
 }
 try {
 Registry registry = LocateRegistry.getRegistry("testRMI");
 System.out.println("Hello RMI!");
 } catch (Exception e) {
 System.err.println("RMI exception:");
 e.printStackTrace();
 }
 }
}

More Information:

■ Host Development for a Target Device

■ About Compact Profiles

■ How compact profile information is displayed in the APIs: APIs and Javadocs

■ Talk to the platform developer if you plan to use more than the basic set of
character encodings.

Tip: NetBeans IDE provides support for profiling, running, and
debugging applications on both the host computer and target device.
See Developing Embedded Applications in NetBeans IDE.

Quick Start Examples

Quick Start for Application Developers 3-3

Task 2 Test your application frequently
As you develop your application, test it frequently to make sure the libraries use fit the
compact profile that is planned for the device. See Your Choices When Creating a
Custom JRE.

To test, first compile the application, then run the jdeps command. For more complex
applications, you can additionally test the application on the target device.

In order to use the jdeps tool, you must compile your application. As shown in
Example 3–3, use javac without the -profile option, because the purpose is to
determine the profile.

Example 3–3 Compile Commands for Hello World and Hello RMI

% javac HelloWorld.java
% javac HelloRMI.java

Now you can use the jdeps tool to determine the minimum compact profile required
to run each application. Example 3–4 show the command and results for the Hello
World application.

Example 3–4 jdeps Command and Results for the Hello World Application

% jdeps -P HelloWorld.class

HelloWorld.class ->
/net/test11.us.example.com/export/java-re/jdk/8/ea/b124/binaries/linux-i586/jre/li
b/rt.jar
 <unnamed> (HelloWorld.class)
 -> java.io compact1
 -> java.lang compact1

The results in Example 3–4 show that the compact1 profile is the minimum profile
required to run the HelloWorld application.

Example 3–5 shows the jdeps command results for the Hello RMI application.

Example 3–5 jdeps Command and Results for the Hello RMI Application

% jdeps -P HelloRMI.class
HelloRMI.class ->
/net/test11.us.example.com/export/java-re/jdk/8/ea/b124/binaries/linux-i586/jre/li
b/rt.jar
 <unnamed> (HelloRMI.class)
 -> java.io compact1
 -> java.lang compact1
 -> java.rmi.registry compact2

The result in Example 3–5 show that a java.rmi.registry class in the Hello RMI
application requires the compact2 profile, so compact2 would be the minimum profile
that would need to be installed.

More Information:

■ Use the jdeps Tool to Test Minimum Required Compact Profile

Note: In most cases, embedded devices run headless applications (no
user interface). If you are working with headful applications, see
Develop Headful Applications.

Quick Start Examples

3-4 Oracle Java SE Embedded Developer's Guide

Task 3 Package and deploy your application
Compile the final application using the -profile option, as in the example in
Specifying the Profile in the javac CommandExample 3–6.

Example 3–6 Specifying the Profile in the javac Command

$ javac -profile compact1 HelloWorld.java

Package the application by creating a JAR file in the normal fashion.

To deploy the application, simply copy the JAR file and any resource files to the
embedded device.How you copy to the device depends on how whether you use the
network or an SD card.

More Information:

■ Compile with the javac Tool and the -profile Option

■ Testing Your Application on the Target Device

■ Launch the Application with the java Launcher Tool

Tip: For larger applications, it is a best practice to test the application
on the embedded device in iterative steps to see how the application
performs. In this way you can make performance improvement
changes to the application in the early stages of the development of
teach component.

Part II
Part II Platform Development

This part of the guide provides information for anyone who wants to create a custom
JRE with Oracle Java SE Embedded tools and install it on an embedded device.

Part I contains the following chapters:

■ Install Oracle Java SE Embedded

■ About Custom JREs

■ About Oracle Java SE Embedded JVMs

■ About Compact Profiles

■ Create Your JRE with jrecreate

■ Deploy Your JRE to the Embedded Device

See also the Quick Start for Platform Developers to get an overview of the process.

4

Install Oracle Java SE Embedded 4-1

4Install Oracle Java SE Embedded

This chapter describes how to unpack and set up an Oracle Java SE Embedded
installation bundle and the contents of the unpacked directories on a host computer.

The instructions in this chapter are for Linux hosts. Users of Windows hosts must
make adjustments as is common when working with products that have a Unix
background. Some examples:

■ File path and environment variable names must be adjusted.

■ The jrecreate command is a .bat file rather than the .sh file shown in examples.

■ 7-zip or an equivalent utility can be substituted for gunzip to unpack an Oracle
Java SE Embedded bundle.

This chapter contains the following topics:

■ Why Install on a Host Computer?

■ Prerequisites for the Host Computer

■ Install Java SE Embedded on the Host Computer

■ Java SE Embedded Installed Directories

Why Install on a Host Computer?
Oracle Java SE Embedded does not have a JRE that you can install on an embedded
device out of the box. You must build a custom JRE with the jrecreate tool on a host
computer, then copy the JRE to the embedded device.

Tip: For a quick overview of the process of installing Java SE
Embedded on a host, creating a custom JRE with jrecreate, and
moving the JRE to the target device, see Quick Start for Platform
Developers.

Note: Oracle Java SE Embedded is a modular system that must be
configured before launching. You must use the jrecreate command
to select the runtime components (such as APIs and virtual machines)
that are appropriate for the functional and performance needs of your
devices and applications. See Your Choices When Creating a Custom
JRE. For details about how to create an embedded JRE, see Create
Your JRE with jrecreate.

Prerequisites for the Host Computer

4-2 Oracle Java SE Embedded Developer's Guide

This chapter contains information about installing Oracle Java SE Embedded on your
host computer.

Once you have finished installing Oracle Java SE Embedded on your host computer,
the next steps are:

■ Create Your JRE with jrecreate

■ Deploy Your JRE to the Embedded Device

Prerequisites for the Host Computer
Before installing Java SE Embedded on your host computer, it must meet the following
conditions.

■ A supported version of the Java SE Development Kit (JDK) or the Java Runtime
Environment (JRE) is installed.

■ The JDK or JRE directory is searched before any other Java installation on the host.
You can use the PATH environment variable or another method, such as a symbolic
link.

■ The JAVA_HOME environment variable names the same JDK or JRE directory.

■ You have downloaded an Oracle Java SE Embedded bundle that matches the
target platform's hardware and operating system. Download the Oracle Java SE
Embedded bundle from
http://www.oracle.com/technetwork/java/embedded/embedded-se/d
ownloads/index.html

If you plan to develop for multiple target platform types, you need a
corresponding bundle for each.

Install Java SE Embedded on the Host Computer
Oracle Java SE Embedded is bundled in a compressed tar file that, when
uncompressed, creates a directory called ejdk<version>. Subdirectories contain the
jrecreate command and the Oracle Java SE Embedded components.

Copy the bundle to a host directory of your choice (installDir), and set it up as
follows:

1. Extract:

$ cd installDir
$ gunzip *.gz
$ tar -xvf *.tar

List of unpacked files ...

2. Remove the tar file.

3. Set the EJDK_HOME environment variable to installDir/ejdk<version>.

Tip: If you are an application developer and do not plan to create a
custom JRE and install it on an embedded device yourself, you do not
need to install Oracle Java SE Embedded on a host computer. Use a
supported version of the Java Development Kit (JDK) to develop your
applications on a host computer. See the chapters in Embedded
Application Development.

Java SE Embedded Installed Directories

Install Oracle Java SE Embedded 4-3

4. Verify the installation by displaying the jrecreate command help:

$ cd $EJDK_HOME
$ bin/jrecreate.sh --help
Usage: jrecreate --help

Summary of jrecreate syntax ...

Java SE Embedded Installed Directories
Extracting creates the directory installDir/ejdk<version>/, which contains the
following subdirectories:

■ bin/

Contains the jrecreate script that you use to create a custom JRE for the target.

■ doc/

Reserved for possible future use.

■ lib/

Contains the jrecreate command implementation.

■ target:

The name of this target directory represents the operating system and CPU
architecture of your embedded device. The directory contains the components that
the jrecreate command uses to compose a custom JRE, as described in Create
Your JRE with jrecreate.

Java SE Embedded Installed Directories

4-4 Oracle Java SE Embedded Developer's Guide

5

About Custom JREs 5-1

5About Custom JREs

Learn about the basic concepts that underlie the custom JREs that you create with
Oracle Java SE Embedded technology.

This page contains the following topics:

■ Your Choices When Creating a Custom JRE

■ Cryptographic Service Providers

■ Locales

■ Character Encodings

■ Nashorn JavaScript Engine

■ JSR 197 Specification JAR

Your Choices When Creating a Custom JRE
Space optimizations make a full JRE created with Oracle Java SE Embedded smaller
than the functionally equivalent out-of-the-box Java SE JRE.

In addition, you can create even smaller JREs in steps down to about 12 MB of static
footprint. Using the jrecreate command, you can choose among components to build
a custom JRE that matches expected workloads and response goals.

Figure 5–1 shows the components that go into a custom JRE, and how JREs of varying
function and size can be created from the Oracle Java SE Embedded components.

Your Choices When Creating a Custom JRE

5-2 Oracle Java SE Embedded Developer's Guide

Figure 5–1 jrecreate Composes Custom JREs from Components

You can find out more about the Oracle Java SE Embedded JRE components shown on
the left in Figure 5–1 by following these links:

■ Full JRE APIs

■ Profile APIs: see About Compact Profiles

■ JVMs: see About Custom JREs

■ JavaFX Components: JavaFX Components for Oracle Java SE Embedded

■ Cryptographic Service Providers

■ Locales

■ Character Encodings

■ Nashorn JavaScript Engine

The right side of Figure 5–1 shows examples of custom JREs, created with the
jrecreate tool included with Oracle Java SE Embedded. In this diagram, the simplest
JRE consists of a minimal JVM and the compact1 profile APIs. More complex is a client
JVM, compact2 profile APIs, and basic graphics. Largest and most capable is a server
JVM, full JRE APIs, graphics with controls, and a cryptographic token interface.

JSR 197 Specification JAR

About Custom JREs 5-3

Cryptographic Service Providers
For cryptographic operations, the Java language defines standard APIs for application
developers, which are implemented by replaceable service providers.

Oracle Java SE Embedded includes two optional provider packages. Choose either or
both, as your application requires. See Create Your JRE with jrecreate for how to use
the jrecreate tool to add provider packages. The packages are:

■ Cryptographic Token Interface Standard PKCS#11 package, by RSA Security. This
package is for devices that have smart cards or hardware security modules. This
extension increases the static size of a JRE by about 234 KB.

■ Elliptic Curve Cryptography (ECC) package, an alternative to the RSA public key
standard. This extension increases the static size of a JRE by about 36 KB.

Locales
By default, the jrecreate command creates the US English (en_us) locale. Optionally,
it creates all Java SE locales. For information about Java SE locales, see the list of
supported locales for JRE. To add optional locales to your JRE, see the --extension
option in jrecreate Options.

Character Encodings
By default, the jrecreate command creates the basic set of character encodings.
Optionally, it creates the extended set defined at the same URL. To add optional
character encodings, see the --extension option in jrecreate Options.

Nashorn JavaScript Engine
All Oracle Java SE profiles and the full JRE include the javax.scripting API which
supports scripting language statements in Java source files. At run time, the scripting
statements are executed by a user-supplied scripting engine.

To include the Nashorn JavaScript engine in a JRE, see the --extension option in
jrecreate Options.

For more information on the Nashorn JavaScript engine, see
https://blogs.oracle.com/nashorn/entry/welcome_to_the_nashorn_
blog.

JSR 197 Specification JAR
JSR 197 is the specification of the Generic Connection Framework (GCF) Optional
Package for the Java 2 Platform, Standard Edition, version 1.0. The API is equivalent to
CLDC 1.0 GCF. The MIDP 2.0 and FP 1.1 have a more complete GCF API (for example
HTTPS).

The embedded package supports:

■ file

Local file read, write, and read/write

■ datagram

UDP send and receive

■ socket

JSR 197 Specification JAR

5-4 Oracle Java SE Embedded Developer's Guide

TCP client and server

■ http

HTTP client

Note that the JSR 197 JAR provided with Oracle Java SE Embedded has no functional
implementation. It delegates all functions to the java.io and java.net packages.

The JSR 197 specification APIs are provided as a JAR file in the Oracle Java SE
Embedded download bundle. It is not supported by the jrecreate command, but you
can add it manually. The JAR file is located in the following directory of an Oracle Java
SE Embedded installation:

ejdk<version>/<platform>/options/gcf/lib

This location needs to be in the classpath for any application that needs it, or you can
add it as a standard extension into the lib/ext directory of the JRE.

6

About Oracle Java SE Embedded JVMs 6-1

6About Oracle Java SE Embedded JVMs

Learn about the JVMs that you can choose from when building a custom JRE.

A Java virtual machine (JVM) is the basis of a Java Runtime Environment. A JVM
loads, verifies, and executes application and library code. A JVM can execute code by
interpreting the bytecodes directly, or it can compile frequently used bytecode blocks
into machine instructions, cache the compiled blocks, and then run them faster
without interpretation. A JVM also manages dynamic memory allocation and
reclamation, known as garbage collection.

Three Java Virtual Machines are included with the Oracle Java SE Embedded software.
Each design balances performance-resource tradeoffs in a different way.

You can experiment with all three JVMs, and you can use one for debugging and
another for production. To include particular Java Virtual Machines in a custom JRE,
see Create Your JRE with jrecreate.

Minimal JVM
The minimal JVM emphasizes a minimal memory footprint over nonessential features.
For example, it has a single serial garbage collector and no serviceability features. The
minimal JVM does not support all java launcher options. See Launch the Application
with the java Launcher Tool.

Client JVM
The client JVM is a full-featured Java Virtual Machine optimized for responsiveness. It
starts and compiles applications more quickly and uses less memory than the server
JVM. It has garbage collection options and supports debugging and profiling.

Server JVM
The server JVM is functionally identical to the client JVM, but it is tuned for
long-running applications. It uses more memory than the client JVM. It launches and
compiles applications more slowly but runs them faster because it creates more
optimized code.

The server JVM is not available on all targets. See Oracle Java SE Embedded Release Notes
for specific information about which targets support the server JVM.

Server JVM

6-2 Oracle Java SE Embedded Developer's Guide

Note: On platforms or JREs with no server VM, -server is aliased to
the available VM, - either -client or -minimal. Similarly in a JRE
produced by jrecreate that only has the minimal VM, -client is
aliased to -minimal. Note that -minimal is never aliased; if you
request it and it is not present, you will get an error.

7

About Compact Profiles 7-1

7About Compact Profiles

This chapter discusses the concept of compact profiles in the Oracle Java SE Embedded
platform.

This chapter contains the following sections:

■ Compact Profiles for Subsets of the Java SE API

■ Compact1 Profile APIs

■ Compact2 Profile APIs

■ Compact3 Profile APIs

■ Full JRE APIs

■ Determining Compact Profiles for API Objects

Compact Profiles for Subsets of the Java SE API
You can minimize space requirements on the embedded device by limiting the static
footprint to Java API packages that the application uses. You can build a custom JRE
that contains the full set of Java SE APIs or one of three subsets, called profiles.

Compact1 Profile APIs
Similar to the legacy Connected Device Configuration (CDC) with the Foundation
Profile, secure sockets layer (SSL), logging, and scripting language support, including
Javascript. When configured with the minimal JVM, the compact1 profile APIs have a
static footprint of about 12MB.

Compact2 Profile APIs
Adds these packages to compact1:

■ Remote Method Invocation (RMI, JSR 66))

■ Java API for XML Processing (JAXP, JSR 280)

■ Java Database Connectivity (JDBC, JSR 169)

When configured withe the minimal JVM, the compact2 profile APIs have a static
footprint of about 17MB.

Compact3 Profile APIs
The compact2 profile adds serviceability, naming, the compiler API, and more security.

Full JRE APIs

7-2 Oracle Java SE Embedded Developer's Guide

For a description of serviceability, see
http://openjdk.java.net/groups/hotspot/docs/Serviceability.html

Note that the compact3 profiles cannot be configured with the minimal JVM.

Full JRE APIs
The full JRE adds desktop, web services, and CORBA APIs. It also supports Java Flight
Recorder (JFR) command line options.

The full JRE APIs include all the Java SE classes, yet space-saving optimizations make
a full Oracle Java SE Embedded JRE substantially smaller than a Java SE JRE. When
configured with the client JVM, the full JRE APIs have a static footprint of about 50MB.

Determining Compact Profiles for API Objects
The Java SE API documentation shows which compact profiles each API object
belongs to. For example, Figure 7–1 is a screenshot of an API documentation page
showing that the javax.sql package belongs to all three compact profiles.

Figure 7–1 Example Javadoc with Information about Compact Profiles

Note: For headless configurations, the full JRE APIs include the
java.awt and java.swing classes. These classes are provided for
printing and drawing bitmaps in memory. An attempt to create a GUI
window in this mode raises the HeadlessException.

Configuring the JRE for Swing/AWT Headful Applications describes
a configuration that supports AWT/Swing.

8

Create Your JRE with jrecreate 8-1

8Create Your JRE with jrecreate

This chapter describes how to create your Java Runtime Environments with the
jrecreate tool.

This chapter contains the following topics:

■ Running jrecreate

■ jrecreate Command Syntax

■ jrecreate Options

■ jrecreate Command Examples

■ jrecreate Command Output

■ JRE Directories

■ Configuring the JRE for Swing/AWT Headful Applications

Running jrecreate
You must run jrecreate on the host computer, then copy over the resulting JRE to the
embedded device.

jrecreate Command Syntax
jrecreate --dest host-destination-directory [options]

jrecreate Options
Options can be specified in any order. Only one option is required, the directory into
which jrecreate writes the JRE.

Note that double hyphens precede the long form of all options.

Note: jrecreate needs approximately 1 GB of free memory to run.

Note: The ARM Swing/AWT configuration of Oracle Java SE
Embedded does not support all jrecreate options. See Configuring
the JRE for Swing/AWT Headful Applications.

jrecreate Options

8-2 Oracle Java SE Embedded Developer's Guide

-h
--help
Optional. Use as the only option when you need a summary of the command-line
options.

-d path
--dest path
Required. Directory in which to write the JRE image and related files. The directory
must not exist.

-p profile
--profile profile
Optional. Default: full JRE APIs.

Creates a JRE whose APIs are based on a specified profile (see About Compact
Profiles). The valid values are one of the following:

■ compact1

■ compact2

■ compact3

--vm jvm
Optional. If neither --vm nor --profile is specified, all available JVMs are included in
the JRE.

Creates a JRE that has a particular Java Virtual Machine (JVM) or all JVMs. See About
Oracle Java SE Embedded JVMs. The valid values are one of the following:

■ minimal

■ client

■ server (if available for the target computer)

■ all (all available for the target computer)

To learn how the java program launcher chooses a JVM when multiple JVMs are
available, see Launch the Application with the java Launcher Tool.

If you do not specify the --vm option, then the jrecreate command uses the value of
the --profile option to select a JVM as follows:

■ compact1: minimal

■ compact2: minimal

■ compact3: client

-x extension [,extension ...]
--extension extension [,extension ...]
Optional. Default: no extensions

Adds optional components to a JRE. With the exceptions noted below, you can use the
components in any combination and with all profiles and JVMs.

You can specify multiple extensions in either of the following ways:

■ Multiple option instances:
--extension sunec \
--extension sunpkcs11

■ Comma separated list of extensions:
--extension sunec,sunpkcs11

jrecreate Options

Create Your JRE with jrecreate 8-3

Valid --extension Values

■ fx:graphics: Installs the JavaFX Graphics component and Base component for
headful applications, described in JavaFX Components for Oracle Java SE
Embedded.

■ fx:controls: Installs the JavaFX Controls component, the Graphics component,
the Base component, and the FXML component for headful applications, described
in JavaFX Components for Oracle Java SE Embedded. If you specify fx:controls,
you do not need to add fx:graphics as a value.

■ sunec: Security provider for Elliptic Curve Cryptography (ECC). See
Cryptographic Service Providers.

■ sunpkcs11: Security provider for Cryptographic Token Interface Standard
PKCS#11. See Cryptographic Service Providers.

■ locales: Include all Java SE locales instead of the default US-English. See Locales.

■ charsets: Include extended character encoding set. See Character Encodings.

■ nashorn: Include the Nashorn JavaScript engine. See Nashorn JavaScript Engine.

-g
--debug
Optional. Default: no debug support.

Creates a JRE that contains debugging support, including Java Virtual Machine Tool
Interface (JVMTI) support for inspecting and controlling an application.

Notes on the --debug component:

■ This option is not valid for the minimal JVM. If that combination is specified, then
the jrecreate command selects the client JVM.

■ Some debugging functionality requires that the java command be run with the
-XX:+UsePerfData flag. By default in Oracle Java SE Embedded, this flag is turned
off.

-k
--keep-debug-info
Optional. Default: no debugging information.

Does not strip debugging information from class and unsigned JAR files. This option
increases the size of some JRE files for easier debugging.

--no-compression
Optional. Default: compressed JAR files.

Creates a JRE whose unsigned JAR files are created in an uncompressed format. This
option trades increased footprint for potentially improved startup time. Experiment to
see if the option is beneficial in your environment.

-n
--dry-run
Optional. Default: create the JRE.

Generates a descriptive report without creating a JRE image.

-v
--verbose
Optional. Default: terse output.

jrecreate Command Examples

8-4 Oracle Java SE Embedded Developer's Guide

Displays verbose output, including the commands that the jrecreate command
invokes. This option is helpful for debugging.

--ejdk-home path
Optional. Default: value of EJDK_HOME environment variable if set; otherwise
/ejdk<version>

Directory that contains the Oracle Java SE Embedded runtime components to use in
the custom JRE. Use this option when you have multiple Oracle Java SE Embedded
installations and you want to run the jrecreate command in installation1 but build
a JRE with components from installation2. For example, installation1 might be
contain ARM components, and installation2 might contain x86 components.

jrecreate Command Examples
The following example show how the jrecreate options are used to create some
common custom JREs.

The installDir variable represents the host directory where Oracle Java SE
Embedded is installed.

Example 1
Smallest JRE: headless, compact1 profile, minimal JVM (default for compact1).

% installDir/ejdk<version>/bin/jrecreate.sh \
--profile compact1 \
--dest /tmp/defaultJRE/

Example 2
compact2 profile, client JVM with debugging support.

% installDir/ejdk<version>/bin/jrecreate.sh \
 --dest /tmp/exampleJRE1/ \
 --profile compact2 \
 --vm client \
 --keep-debug-info \
 --debug

Example 3
JavaFX controls and Java SE locales added to server JVM and compact3 profile.

% installDir/ejdk<version>/bin/jrecreate.sh \
 --dest /tmp/exampleJRE2 \
 --profile compact3 \
 --vm server \
 --extension fx:controls \
 --extension locales

Example 4
Full JRE APIs, all JVMs (default).

% installDir/ejdk<version>/bin/jrecreate.sh \
 --dest /tmp/exampleJRE3

jrecreate Command Output
When it begins to run, the jrecreate command displays a summary of the options
used to build the JRE, for example:

Configuring the JRE for Swing/AWT Headful Applications

Create Your JRE with jrecreate 8-5

Building JRE using options Options {
 ejdk-home: /home/xxxx/ejdk/ejdk<version>
 dest: /tmp/testjre
 target: linux_i586
 vm: minimal
 runtime: compact1 profile
 debug: false
 keep-debug-info: false
 no-compression: false
 dry-run: false
 verbose: false
 extension: []
}

JRE Directories
After the command completes, the destination (--dest) directory on the host may
contain the following directories, depending on which components are included in the
JRE:

■ bin/: Target-native commands, minimally including the java JRE application
launcher. The complement of tools varies according to the value of the --profile
option.

■ lib/: The files that make up the core of the JRE, including classes, JVMs, time zone
information, and other resources.

■ release: A text file that tools can read to obtain attributes of the generated JRE,
such as the Java version, profile name (if applicable), operating system name, and
CPU architecture.

■ bom: A text file that documents how the JRE was created, including the jrecreate
command options and the files that the command used.

■ COPYRIGHT, LICENSE, README, THIRDPARTYLICENSEREADME.txt: Legal and other
documentation. Present only if --profile is not specified (full JRE APIs).

Configuring the JRE for Swing/AWT Headful Applications
The ARM AWT/Swing configuration of Oracle Java SE Embedded supports the Swing
and AWT graphics APIs if you need to run Swing/AWT applications. Consult Oracle
Java SE Embedded System Requirements for the platforms that support headful
Swing/AWT applications.

To install the Swing/AWT APIs, you must create a full JRE by using the jrecreate
command without the --profile option. With a full JRE, you can install the client VM
(the --vm client option), the server VM (the --vm server option) or both (the --vm
all option, or leave the --vm option unspecified). The minimal VM is not supported.

If you plan to run both AWT/Swing and JavaFX applications on a target that supports
both AWT/Swing and JavaFX, you can add JavaFX APIs by adding the --extension
option with fx:graphics or fx:controls. To keep the footprint small, only install the
JavaFX APIs when you know that you will be running JavaFX applications.

Note: An application can only make calls to the Swing/AWT API or
the JavaFX API, not both.

Configuring the JRE for Swing/AWT Headful Applications

8-6 Oracle Java SE Embedded Developer's Guide

9

Deploy Your JRE to the Embedded Device 9-1

9Deploy Your JRE to the Embedded Device

This chapter describes how to deploy a custom JRE to a target device.

It contains the following sections.

■ Moving the Custom JRE to the Target Device

■ Verifying Your Deployed JRE

Moving the Custom JRE to the Target Device
To make a JRE image run on a target device, copy its files from the jrecreate
destination (--dest) directory (see jrecreate Command Output) to the file system of
the target device.

How you copy depends on the device and your environment. For example, you can
use an SD card or a network connection.

Adapt the following steps to your environment (destDir is the jrecreate destination
directory):

1. Recursively copy destDir from the host to the device directory where you want
the JRE installed. For example:

$ scp -r /tmp/SmallJRE/* root@target:/opt/local/ejdk<version>/

2. If necessary, update the device's PATH environment variable to include the bin/
directory of the JRE. For instance:

$ PATH=$PATH:/opt/local/ejdk<version>/bin/
$ export PATH

To launch applications on your deployed JRE, see Launch Embedded Applications.

Verifying Your Deployed JRE
To verify that the JRE is correctly deployed on the target device, run the java
command with the -version option on the target. For example:

$ ssh root@target java -version

Your command output will display details such as build numbers and components.

If you need to debug your running application, you must use the -XX:+UsePerfData
flag of the java command. In Oracle Java SE Embedded, this flag is turned off by
default.

Verifying Your Deployed JRE

9-2 Oracle Java SE Embedded Developer's Guide

For more information about deploying and launching embedded applications, see
Deploy Embedded Applications and Launch Embedded Applications.

Part III
Part III Embedded Application Development

This part of the guide contains information for developers who plan to develop
applications for embedded devices with Oracle Java SE Embedded JREs installed. It
contains the following chapters:

■ Essentials for Developing Embedded Applications

■ Develop and Test Your Embedded Application

■ Deploy Embedded Applications

■ Launch Embedded Applications

■ Develop Headful Applications

■ Codecache Tuning

10

Essentials for Developing Embedded Applications 10-1

10Essentials for Developing Embedded
Applications

This chapter describes the fundamentals of developing Java applications that run on
an Oracle Java SE Embedded custom JRE.

This chapter contains the following topics:

■ Host Development for a Target Device

■ Host-Target Development Cycle

■ APIs and Javadocs

■ Native Methods

■ JDK 7 Limitations

Host Development for a Target Device
The fundamental difference between conventional and embedded Java programming
is the presence of a second computer, called the target. The target is embedded in a
device — a printer, a medical instrument, an industrial tool, or whatever houses the
embedded system.

If the target has sufficient resources and is supported by the Java SE Development Kit
(JDK), you can develop an embedded application on it, as you would develop a Java
desktop application or a Java server application. Resources include CPU cycles,
memory, file system, display, pointing device, and keyboard. Click the Download
button on the Java SE download page to see a list of the processor-operating system
combinations for which JDKs are available:
http://www.oracle.com/technetwork/java/javafx/downloads/

Resource-rich targets are rare. By contrast, desktop and laptop computers are common,
inexpensive, familiar, and have resources in abundance. An array of software
development tools, such as integrated development environments and code
repositories, is also available for desktop and laptop computers. Accordingly,
embedded application development is usually divided between a desktop or laptop
computer, called a host, and the target.

You use the host computer to write and compile source code, to perform functional
testing, to package the compiled application into an executable Java archive (JAR) file,
and, possibly, to remotely start and stop applications on the target. See Develop and
Test Your Embedded Application and Deploy Embedded Applications for details.

Host-Target Development Cycle

10-2 Oracle Java SE Embedded Developer's Guide

Host-Target Development Cycle
Figure 10–1 shows that embedded application development is the same as
conventional Java application development, with an additional activity: performance
testing on the target. Performance testing, as the term is used here, means running the
application on the actual deployment hardware to discover hardware-specific issues.
These might include excessive memory consumption, insufficient speed, race
conditions, and problems with peripherals, including displays, sensors, and actuators.
Functional testing on the host computer cannot reveal these conditions, but it can
expose problems in core application behavior.

Figure 10–1 Fundamental Embedded Development Cycle

Because custom JREs support networking and can support remote Java debugging and
profiling, you can copy JARs to, and run performance tests on, a target that is located
in another room, building, or continent.

APIs and Javadocs
The Java SE API documentation displays profile information. Figure 10–2 shows an
example of an interface that is not in the compact1 profile APIs. Its definition explicitly
names the compact2 and compact3 profiles. All interfaces are implicitly in the full JRE
APIs.

JDK 7 Limitations

Essentials for Developing Embedded Applications 10-3

Figure 10–2 Example Javadoc Showing an Interface in Two Profiles

Native Methods
Embedded applications sometimes need access to target device hardware for which
there is no Java API. Sensors and actuators are typical examples. Typically, device
access functions are available in C. You can call these functions from Java by creating
intermediating native methods. For a description of the Java Native Interface (JNI), see
the JNI specification in the Java SE Developer Guides.

For a simple example of JNI, see the Oracle MoonOcean blog at
https://blogs.oracle.com/moonocean/entry/a_simple_example_of_jni

JDK 7 Limitations
If you want to use JDK 7, observe this caution:

Note: When using JDK 7, ensure that you use only APIs included in
the custom JRE created for your device by the platform developer (See
About Compact Profiles). If your application uses an API that is not
present in the target device's custom JRE, the host's JDK 7 compiler
and runtime mask your error. When you test the application on the
target device, its custom JRE throws a ClassNotFoundException. Test
early and periodically on the target to detect this error promptly.

Also, the jdeps tool is not available in JDK 7.

JDK 7 Limitations

10-4 Oracle Java SE Embedded Developer's Guide

11

Develop and Test Your Embedded Application 11-1

11Develop and Test Your Embedded
Application

This chapter describes techniques for developing, testing, and compiling your
embedded application. It applies to both headless and headful applications.

This chapter contains the following topics:

■ Develop Your Application

■ Test Your Application on the Host Computer

■ Testing Your Application on the Target Device

For information that is unique to headful applications, see Develop Headful
Applications.

Develop Your Application
Develop applications on a host computer with a full JDK. You can use the Java
application development tools of your choice. See, for example, Developing
Embedded Applications in NetBeans IDE.

As you refer to the standard JDK documentation, use the information in the API
documentation about compact profiles to ensure that you are working within the
constraints of the JRE that will be installed on the embedded device. See Determining
Compact Profiles for API Objects.

Test Your Application on the Host Computer
Test your application frequently to ensure that your application will run under the
compact profile that is included in your custom JRE. There are two standard JDK tools
that check the profile: javac and jdeps.

Compile with the javac Tool and the -profile Option
When you compile your application with the javac tool, specify the profile installed on
the target device with the -profile option to test whether all the APIs in your
application are included in the profile that be included in your custom JRE.

For example, the following command compiles the application and at the same time
tests to make sure that all of your APIs are included in the compact1 profile.

$ javac -profile compact1 Hello.java

Tip: For an overview of the development process, see Quick Start for
Application Developers.

Testing Your Application on the Target Device

11-2 Oracle Java SE Embedded Developer's Guide

If Hello.java uses an API that is not present in the compact1 profile, the compiler
detects the error.

Use the jdeps Tool to Test Minimum Required Compact Profile
After compiling, you can use the jdeps dependency analyzer tool with the -P option to
determine the minimum compact profile required for each class in your application.
For example:

% jdeps -P HelloWorld.class

Here is an example of the output:

HelloWorld.class ->
/net/test11.us.example.com/export/java-re/jdk/8/ea/b124/binaries/linux-i586/jre/li
b/rt.jar
 <unnamed> (HelloWorld.class)
 -> java.io compact1
 -> java.lang compact1

In this example, both classes used in the application minimally require the compact1
profile.

For more information about this tool, see the jdeps documentation for UNIX or
Windows.

Testing Your Application on the Target Device
Occasionally you should test your application on the target device, and when the
application is final, deploy it. See Deploy Embedded Applications.

12

Deploy Embedded Applications 12-1

12Deploy Embedded Applications

This chapter shows you how to package your application and copy it to the target
device.

It contains the following sections.

■ Package Your Application on the Host with the jar Tool

■ About Connecting to the Target Device

■ Copy the Application to the Target Device

■ Next Steps

Package Your Application on the Host with the jar Tool
Use the standard jar command to create a .jar file of the compiled application. See the
Java SE jar tool documentation for UNIX and Windows

About Connecting to the Target Device
As noted in Host Development for a Target Device, there are many options for
controlling the target and copying compiled applications to it. The setup details are
target-specific, and cannot be described in this guide.

Compiling on the host and running on the target requires a way to copy compiled
application files from host to target. There are many possibilities, including:

■ Writing to a storage device supported by both computers, such as an SD card or
flash drive. Format the drive as FAT32 to eliminate file ownership/permission
issues.

■ Remotely mounting the target's file system on the host with the Network File
System (NFS) or Samba.

■ Committing compiled code from the host to a shared repository and updating the
target from the repository.

■ Using remote commands from a host over a network, such as scp (secure copy).

The target must provide a way to initiate operating system commands, notably the
java launcher. To accomplish this, you can do one of the following:

■ Connect a keyboard and display directly to the target.

■ Use ssh from a network-connected host to run commands on the target remotely.

Using a network for communication enables the host and target to be
geographically separated.

Copy the Application to the Target Device

12-2 Oracle Java SE Embedded Developer's Guide

To provide a uniform environment for examples, this chapter assumes that your host
can communicate with the target with the standard network commands scp and ssh.
You need the IP address, user name, and password to connect the host to the target.

Copy the Application to the Target Device
Copy the .jar file from the host to the target with the scp command.

Next Steps
Launch the application on the target device. See Launch Embedded Applications.

13

Launch Embedded Applications 13-1

13Launch Embedded Applications

This chapter shows you how to use the java launcher with various options and flags
to launch your embedded applications on the target device. It also shows how to exit
an application running on an embedded device and where to go for troubleshooting
help.

It contains the following sections.

■ Launch the Application with the java Launcher Tool

■ Launch Your Application with a Specific JVM

■ Enable Client Compiler (C1) Profiled Inlining

■ Improving JVM Startup Times with Class Data Sharing

■ Launch Your Application in Debug Mode

■ Unsupported java Launcher Options in the Minimal JVM

■ Exit an Application Running on an Embedded Device

■ Troubleshooting

Launch the Application with the java Launcher Tool
Start an application for performance testing on the target device with the java
launcher. You can use the -cp or -jar option.

The following example shows the commands for remotely launching the application
with ssh and java -cp. In this example, the user name on the target device is pi

$ ssh pi@192.0.2.0
pi@192.0.2.0's password:
...
$ java -cp Hello.jar helloworldapp.HelloWorldApp

The final argument is the package.class that contains the application's main()
method.

Besides this generic example, you can Launch Your Application with a Specific JVM or
Launch Your Application in Debug Mode. See also Unsupported java Launcher
Options in the Minimal JVM

Launch Your Application with a Specific JVM
An Oracle Java SE Embedded JRE can contain multiple JVMs. You can specify a
particular JVM with these java launcher options:

Enable Client Compiler (C1) Profiled Inlining

13-2 Oracle Java SE Embedded Developer's Guide

■ -minimal

■ -client

■ -server

If you use the -client and -server option and that JVM is not present or available,
then it will be aliased to the available JVM. Using the -minimal option causes an error
if the minimal JVM is not present.

Enable Client Compiler (C1) Profiled Inlining
The client compiler inlining policy uses profile information to improve performance in
the minimal and client JVMs. You can enable C1 profiled inlining by using the java
launcher flag -XX:+C1ProfileInlining.

Improving JVM Startup Times with Class Data Sharing
Class Data Sharing (CDS) is used with the HotSpot VM to reduce JVM startup times.
For general information about CDS, see the Java SE 8 documentation.

Starting with Oracle Java SE Embedded 8u6, you can customize the set of classes
included in the classlist and the name of the shared-archive file, and you can specify a
custom location for the classlist. These are special features for Oracle Java SE
Embedded applications.

There are three java launcher flags that are related to custom CDS classlists:

-XX:DumpLoadedClassList=<classlist_file>
 Creates a custom classlist by writing out the set of all classes loaded by the boot
loader to the named file in <classlist_file>. This custom classlist can be used by
CDS when creating a shared archive.

-XX:SharedClassListFile=<classlist_file>
Specifies a user-defined classlist to be used when creating a shared archive, such as the
one created by the -XX:DumpLoadedClassList flag.

-XX:SharedArchiveFile=<archive_file>
Specifies the name and location of the shared-archive file to be written to during a
CDS dump, or read from during JVM execution with CDS enabled.

Here is an example of how you build and implement a custom classlist for your
application.

Task 1 Generate the custom list of core library (boot) classes used by your
application
java -XX:DumpLoadedClassList=./MyApp.classlist MyApp

Note: The shared-archive file content is considered trusted by
default, meaning the contents are not checked, but it contains
executable native code that runs outside the Java sandbox. Ensure that
the integrity of any shared-archive file you generate cannot be subject
to potentially malicious modifications.

Unsupported java Launcher Options in the Minimal JVM

Launch Embedded Applications 13-3

Task 2 Generate a custom shared archive containing those classes
java -Xshare:dump -XX:SharedClassListFile=./MyApp.classlist
 -XX:SharedArchiveFile=./MyApp.jsa

Task 3 Run your application using the custom shared archive
java -Xshare:on -XX:SharedArchiveFile=./MyApp.jsa MyApp

Launch Your Application in Debug Mode
If you have a JRE on the target that was built with debugging support, you can start
the application in debug mode, then attach a JVMTI-compliant remote debug client
from any host on the same network. One client is jdb, described in the Java SE tools
documentation for UNIX and Windows. Example 13–1 shows launching with java
-jar in debug mode.

Example 13–1 Launching with -jar in Debug Mode

$ java -jar Hello.jar \
-agentlib:jdwp=transport=dt_socket,server=y,address=8000

Unsupported java Launcher Options in the Minimal JVM
To reduce memory use, the minimal JVM does not support some virtual machine
options passed by the java launcher. When an unsupported option is specified,
depending on its seriousness, the launcher prints a warning message, ignores the
option, and launches the JVM, or prints an error message and terminates without
launching the JVM.

Note: Some debugging functionality requires that the java tool be
run with the -XX:+UsePerfData flag. By default in Oracle Java SE
Embedded, this flag is turned off, whereas it is turned on by default in
the Java SE JDK.

Table 13–1 Options not Supported by the Minimal JVM

Option(s) java Launcher Response

-agentpath:jdwp, -Xrunjdwp Error

-javaagent:jarpath=[options] Error

-Xagent:hprof, -Xrunhprof, -agentlib:hprof,
-agentpath:hprof

Error

-Xcheck:jni Warning

-Xincgc, -XX:+UseGarbageCollector Warning

-Xshare:auto Warning

-Xshare:dump, -Xshare:on Error

-XX:+ManagementServer, -Dcom.sun.management Error

-XX:NativeMemoryTracking Error

-XX:*Flight* Error

Exit an Application Running on an Embedded Device

13-4 Oracle Java SE Embedded Developer's Guide

The minimal JVM does not support remote debugging, profiling, monitoring, and
serviceability tools. These include jcmd, jdb, jinfo, jmap, jstack, and others,
including integrated development environments. The minimal JVM ignores requests
from these tools.

Exit an Application Running on an Embedded Device
Java applications cannot be terminated from the device's console. However,
applications can be terminated using a remote shell:

$ pkill java

Troubleshooting
If you have difficulty with an application, you can find diagnostic help in the Java
Platform, Standard Edition Troubleshooting Guide.

Also refer to Oracle Java SE Embedded Release Notes for known issues.

14

Develop Headful Applications 14-1

14Develop Headful Applications

We recommend that you use the JavaFX API to create headful applications. If you
prefer, Oracle Java SE Embedded provides an AWT/Swing configuration for ARM.

This chapter contains the following topics:

■ Headful Applications Using JavaFX

■ JavaFX Components for Oracle Java SE Embedded

■ Configuring Fonts

■ Unsupported JavaFX Features

■ Using FXML Markup Instead of JavaFX APIs

■ Using JavaFX Scene Builder to Design the UI and Export to FXML

■ JavaFX Sample Applications

■ Font Setup in Headful Applications

■ Swing and AWT APIs

Headful Applications Using JavaFX
JavaFX is based on the scene graph construct, takes advantage of hardware
acceleration, and supports animation. You can learn about JavaFX technology by
visiting the Java SE Client Technologies page.

Figure 14–1 shows an example of a JavaFX headful application running on an
embedded device.

Headful Applications Using JavaFX

14-2 Oracle Java SE Embedded Developer's Guide

Figure 14–1 City Explorer Example

Figure 14–2 shows a photo of a typical embedded touch device. Oracle Java SE
Embedded supports multitouch events on supported devices. See Oracle Java SE
Embedded Release Notes for devices that are supported for multitouch events.

Figure 14–2 Example Touch Device

A JavaFX GUI application can reference APIs from any Java library. For example, a
JavaFX application can call Java API libraries to access native system capabilities or to
communicate with other embedded applications.

The look and feel of JavaFX applications can be customized. Cascading Style Sheets
(CSS) separate appearance and style from implementation so that developers can

JavaFX Components for Oracle Java SE Embedded

Develop Headful Applications 14-3

concentrate on coding. Graphic designers can easily customize the appearance and
style of the application through the CSS.

Because the desktop and embedded JavaFX APIs are compatible, you can do most GUI
design and functional testing on a host computer, then copy the application to the
target for final testing and tuning. For a quick view of the development process, see
Quick Start for Application Developers.

Areas where behavior differs between embedded and desktop JavaFX platforms
include the following:

■ Embedded graphics processing units (GPUs) are typically much less powerful
than desktop GPUs. A less powerful GPU can lead to decreased performance in
some applications.

■ UI controls can have a different appearance and behavior on embedded platforms
depending on whether or not there is a touch interface.

■ On embedded platforms, JavaFX provides a virtual keyboard for text input by
users and for testing.

JavaFX Components for Oracle Java SE Embedded
In order to minimize the JRE, the JavaFX APIs are divided into two components:

■ JavaFX Graphics Component

■ JavaFX Controls Component

You must know which JavaFX component is included in the custom JRE for your
application to run successfully on the target device.

JavaFX Graphics Component
JavaFX applications with effect and animation run on a JRE that is built with the
Graphics component. The Graphics component supports windows, scene graph,
animation, timelines, and property binding. The Graphics component does not
support events or UI controls. A typical application running on a JRE that contains
only the Graphics component can display effects and animation but cannot handle
user input.

The Graphics component that is installed into a custom JRE with Oracle Java SE
Embedded includes the Base component, as described on the Projects and
Components page of the OpenJFX website.

The Graphics component's static footprint is about 6 MB.

Table 14–1 shows the packages included in the Graphics component.

Table 14–1 JavaFX Graphics Component Packages

Package Description

javafx.animation Animation

javafx.application Lifecycle

javafx.beans JavaFX beans

javafx.beans.binding JavaFX bean property binding

javafx.beans.property Read-only and read-write bean properties

javafx.beans.value Observable and writable values

Configuring Fonts

14-4 Oracle Java SE Embedded Developer's Guide

JavaFX Controls Component
The Controls component adds support for UI controls, event handling, and charts. The
Controls component also includes the FXML component, described on the Projects and
Components page of the OpenJFX website. In addition, installing the Controls
component in the custom JRE automatically includes the Graphics component.

The total footprint of the Controls component plus the other components installed
with it is about 9 MB.

Table 14–2 shows the JavaFX packages included in the Controls component.

Configuring Fonts
See https://wiki.openjdk.java.net/display/OpenJFX/Font+Setup for
information about configuring fonts for JavaFX applications.

javafx.collections JavaFX observable collections

javafx.concurrent Threading classes

javafx.css Styleable properties

javafx.event Event handling

javafx.geometry 2D and 3D

javafx.scene Scene graph core

javafx.scene.canvas Immediate mode rendering

javafx.scene.effect Visual effects

javafx.scene.image Loading and displaying images

javafx.scene.input Input events

javafx.scene.layout Scene layout

javafx.scene.paint Colors and gradients

javafx.scene.shape 2D and 3D shapes

javafx.scene.text Text rendering and metrics

javafx.scene.transform 2D and 3D transformations

javafx.stage Windowing

javafx.util Utilities

javafx.util.converter String converters

Table 14–2 JavaFX Controls Component Packages

Package Description

javafx.fxml FXML

javafx.scene.chart Charts

javafx.scene.control UI controls

javafx.scene.control.cell Cells for UI controls

Table 14–1 (Cont.) JavaFX Graphics Component Packages

Package Description

Using FXML Markup Instead of JavaFX APIs

Develop Headful Applications 14-5

Unsupported JavaFX Features
The Graphics and Controls components are a large subset of JavaFX. Compared to the
desktop version, the JavaFX components included in Oracle Java SE Embedded have
the following restrictions:

■ They do not support the WebView node (a scene graph node for displaying and
interacting with web content).

■ They do not support applets, Swing integration, or Standard Widget Toolkit (SWT)
integration.

■ They do not have the MediaView class or any support for media playback.

■ They do not support APIs related to integration with a desktop UI (for example,
access to a global clipboard, window decorations or iconization, file and directory
choosers).

■ The embedded version of the JavaFX virtual keyboard supports only the US
English locale.

■ When running with the compact1 profile (see Compact1 Profile APIs), JavaFX
components do not support user interfaces defined with FXML, including those
generated by JavaFX Scene Builder.

Table 14–3 lists JavaFX desktop packages that are not present in either of the two
Oracle Java SE Embedded JavaFX components.

Using FXML Markup Instead of JavaFX APIs
If you have a web design background, or if you would like to separate the user
interface (UI) and the back-end logic, then you can use FXML to develop the
presentation aspects of the UI.

FXML is an XML-based language that provides the structure for building a user
interface separate from the application logic of your code. This separation of the
presentation and application logic is attractive to web developers because they can
assemble a user interface that takes advantage of Java components without mastering
the code for fetching and filling in the data.

To see how to use FXML and integrate it into a JavaFX application, see the Java SE
Client Technologies page.

Table 14–3 JavaFX Packages not Available in Oracle Java SE Embedded

Package Description

javafx.beans.property.adapter Integration with JavaBeans

javafx.embed.swing Integration with the Swing API

javafx.embed.swt Integration with the SWT API

javafx.print Printing

javafx.scene.media Media playback

javafx.scene.web Web content

netscape.javascript JavaScript integration

Note: All but the compact1 profile can use FXML See About
Compact Profiles.

Using JavaFX Scene Builder to Design the UI and Export to FXML

14-6 Oracle Java SE Embedded Developer's Guide

Using JavaFX Scene Builder to Design the UI and Export to FXML
If you prefer to design UIs without writing code or FXML directly, then use JavaFX
Scene Builder. As you build the layout of your UI, Scene Builder generates the FXML
code for the layout, which is then integrated into a JavaFX application that contains
the application logic.

For links to JavaFX Scene Builder documentation, see the Java SE Client Technologies
page.

JavaFX Sample Applications
The JavaFX sample applications download zip file contains Ensemble 8, a sample that
was tested on embedded platforms that support JavaFX and have JREs that were built
with the graphics component. Note that the 3DViewer and Modena samples are
known not to run on embedded devices.

To access the Ensemble 8 sample, download the JavaFX samples by following the link
from the Java SE downloads page at
http://www.oracle.com/technetwork/java/javase/downloads/

Once you have extracted the sample JAR file from the sample zip file, you can
double-click it to run it on your host machine. Use the following procedure to run the
sample on a target device that is supported for JavaFX and is running a JRE that was
built with the graphics component.

1. Transfer the JAR file to the target embedded device.

2. On the target device, run the java launcher to invoke the sample's main class, for
example:

$ deployDir/bin/java -classpath /tmp/JavaFXSamples/Ensemble8.jar
ensemble.EnsembleApp

Note the following about this example:

■ On the target, deployDir contains an Oracle Java SE Embedded JRE that
includes the controls component or the graphics component.

■ On the target, the PATH environment variable is set so that the Java launcher is
found in deployDir/bin/.

■ On the target, the extracted sample applications are in the
/tmp/JavaFXSamples/ directory.

■ If the target device uses software rendering, add the following option to the
command line:

 -Djavafx.platform=directfb

Java applications cannot be terminated from the device's console. Instead, terminate
them using a remote shell:

$ pkill java

Note: The compact1 profile cannot use JavaFX Scene Builder because
the underlying FXML output is not supported.

Swing and AWT APIs

Develop Headful Applications 14-7

Font Setup in Headful Applications
See https://wiki.openjdk.java.net/display/OpenJFX/Font+Setup for
information about configuring fonts.

Swing and AWT APIs
JavaFX components included in an Oracle Java SE Embedded JRE have much smaller
static footprints than the Swing and AWT libraries, but if you prefer you can use the
ARM AWT/Swing configuration of Oracle Java SE Embedded. This configuration
supports the Swing and AWT graphics APIs.

Make sure that the JRE for the target device includes the AWT/Swing configuration.
See Configuring the JRE for Swing/AWT Headful Applications.

Note: Note that an application can only make calls to the
Swing/AWT API or the JavaFX API, not both.

Swing and AWT APIs

14-8 Oracle Java SE Embedded Developer's Guide

15

Codecache Tuning 15-1

15Codecache Tuning

This chapter describes techniques for reducing the just-in-time (JIT) compiler's
consumption of memory in the codecache, where it stores compiled methods.

This chapter contains the following topics:

■ Introduction

■ java Launcher Codecache Option Summary

■ Measuring Codecache Usage

■ Constraining the Codecache Size

■ Reducing Compilations

■ Reducing Compiled Method Sizes

Introduction
The Java Virtual Machine (JVM) generates native code and stores it in a memory area
called the codecache. The JVM generates native code for a variety of reasons, including
for the dynamically generated interpreter loop, Java Native Interface (JNI) stubs, and
for Java methods that are compiled into native code by the just-in-time (JIT) compiler.
The JIT is by far the biggest user of the codecache. This appendix describes techniques
for reducing the JIT compiler's codecache usage while still maintaining good
performance.

This chapter describes three ways to reduce the JIT's use of the codecache:

■ Constrain the amount of codecache available to the JIT.

■ Tune the JIT to compile fewer methods.

■ Tune the JIT to generate less code per method.

java Launcher Codecache Option Summary
The JVM options passed by the java launcher listed in the tables in this section can be
used to reduce the amount of codecache used by the JIT. The table descriptions are
summaries. Most of the options are described in more detail in the sections that follow.

How to Use the Codecache Options of the java Command
The options listed in the following sections share the following characteristics.

java Launcher Codecache Option Summary

15-2 Oracle Java SE Embedded Developer's Guide

■ All options are –XX options, for example, -XX:InitialCodeCacheSize=32m.
Options that have true/false values are specified using + for true and - for false.
For example, -XX:+PrintCodeCache sets this option to true.

■ For any option that has "varies" listed as the default value, run the launcher with
XX:+PrintFlagsFinal to see your platform's default value.

■ If the default value for an option differs depending on which JVM is being used
(client or server), then both defaults are listed, separated by a '/'. The client JVM
default is listed first. The minimal JVM uses the same JIT as the client JVM, and
therefore has the same defaults.

Codecache Size Options
Table 15–1 summarizes the codecache size options. See also Constraining the
Codecache Size.

Codecache Flush Options
Table 15–2 summarizes the codecache flush options.

Compilation Policy Options
Table 15–3 summarizes the compilation policy (when to compile) options.

Table 15–1 Codecache Size Options

Option Default Description

InitialCodeCacheSize 160K (varies) Initial code cache size (in bytes)

ReservedCodeCacheSize 32M/48M Reserved code cache size (in bytes) - maximum code
cache size

CodeCacheExpansionSize 32K/64K Code cache expansion size (in bytes)

Table 15–2 Codecache Flush Options

Option Default Description

ExitOnFullCodeCache false Exit the JVM if the codecache fills

UseCodeCacheFlushing false Attempt to sweep the codecache before shutting off compiler

MinCodeCacheFlushingInterval 30 Minimum number of seconds between codecache sweeping
sessions

CodeCacheMinimumFreeSpace 500K When less than the specified amount of space remains, stop
compiling. This space is reserved for code that is not
compiled methods, for example, native adapters.

Table 15–3 Compilation Policy Options

Option Default Description

CompileThreshold 1000 or 1500/10000 Number of interpreted method invocations before
(re-)compiling

OnStackReplacePercentage 140 to 933 NON_TIERED number of method invocations/branches
(expressed as a percentage of CompileThreshold) before
(re-)compiling OSR code

Measuring Codecache Usage

Codecache Tuning 15-3

Compilation Limit Options
Table 15–4 summarizes the compilation limit options, which determine how much
code is compiled).

Diagnostic Options
Table 15–5 summarizes the diagnostic options.

Measuring Codecache Usage
To measure the success of a codecache usage reduction effort, you must measure the
codecache usage and the effect on performance. This section explains how to measure
the codecache usage. It is up to you to decide the best way to measure performance for
your application.

Start with a baseline (the amount of codecache used when no codecache reduction
techniques are applied), and then monitor the effect of your codecache reduction
techniques on both codecache size and performance relative to the baseline.

Keep in mind that the codecache starts relatively small and then grows as needed as
new methods are compiled. Sometimes compiled methods are freed from the
codecache, especially when the maximum size of the codecache is constrained. The
memory used by free methods can be reused for newly compiled methods, allowing
additional methods to be compiled without growing the codecache further.

You can get information on codecache usage by specifying –XX:+PrintCodeCache on
the java launcher command line. When your application exits, you will see output
similar to the following:

CodeCache: size=32768Kb used=542Kb max_used=542Kb free=32226Kb
 bounds [0xb414a000, 0xb41d2000, 0xb614a000]
 total_blobs=131 nmethods=5 adapters=63
 compilation: enabled

The most useful part of the output for codecache reduction efforts is the first line. The
following describes each of the values printed:

■ size: The maximum size of the codecache. It should be equivalent to what was
specified by –XX:ReservedCodeCacheSize. Note that this is not the actual amount

Table 15–4 Compilation Limit Options

Option Default Description

MaxInlineLevel 9 Maximum number of nested calls that are inlined

MaxInlineSize 35 Maximum bytecode size of a method to be inlined

MinInliningThreshold 250 Minimum invocation count a method needs to have to be inlined

InlineSynchronizedMethods true Inline synchronized methods

Table 15–5 Diagnostic Options

Option Default Description

PrintFlagsFinal false Print all JVM options after argument and ergonomic processing

PrintCodeCache false Print the code cache memory usage when exiting

PrintCodeCacheOnCompilation false Print the code cache memory usage each time a method is
compiled

Constraining the Codecache Size

15-4 Oracle Java SE Embedded Developer's Guide

of physical memory (RAM) used by the codecache. This is just the amount of
virtual address space set aside for it.

■ used: The amount of codecache memory actually in use. This is usually the
amount of RAM the codecache occupies. However, due to fragmentation and the
intermixing of free and allocated blocks of memory within the codecache, it is
possible that the codecache occupies more RAM than is indicated by this value,
because blocks that were used then freed are likely still in RAM.

■ max_used: This is the high water mark for codecache usage; the maximum size that
the codecache has grown to and used. This generally is considered to be the
amount of RAM occupied by the codecache, and will include any free memory in
the codecache that was at some point in use. For this reason, it is the number you
will likely want to use when determining how much codecache your application is
using.

■ free: This is size minus used.

The –XX:+PrintCodeCacheOnCompilation option also produces the same output as the
first line above produced by –XX:+PrintCodeCache, but does so each time a method is
compiled. It can be useful for measuring applications that do not terminate. It can also
be useful if you are interested in the codecache usage at a certain point in the
application's execution, such as after application startup has completed.

Because max_used generally represents the amount of RAM used by the codecache,
this is the value you will want note when you take your baseline measurement. The
sections that follow describe how you can reduce max_used.

Constraining the Codecache Size
Constraining the codecache size means the codecache is limited to a size that is less
than what would an unconstrained codecache would use. The
ReservedCodeCacheSize option determines the maximum size of the codecache. It
defaults to a minimum of 32MB for the client JVM and 48MB for the server VM. For
most Java applications, this size is so large that the application will never fill the entire
codecache. Thus the codecache is viewed as being unconstrained, meaning the JIT will
continue to compile any code that it thinks should be compiled.

When is Constraining the Codecache Size Useful?
Applications that make state changes that result in a new set of methods being "hot"
can benefit greatly from a constrained codecache.

A common state change is from startup to regular execution. The application might
trigger a lot of compilation during startup, but very little of this compiled code is
needed after startup. By constraining the codecache, you will trigger codecache
flushing to throw away the code compiled during startup to make room for the code
needed during application execution.

Some applications make state changes during execution, and tend to stay in the new
state for an extended period of time. For these applications, the codecache only needs
to be big enough to hold the compiled code needed during any given state. Thus if
your application has five distinct states, each needing about 1MB of codecache to
perform well, then you can constrain the codecache to 1MB, which will be an 80%
reduction over the normal 5MB codecache usage for the application. Note, however,
that each time the application makes a state change, there will be some performance
degradation while the JIT compiles the methods needed for the new state.

Reducing Compilations

Codecache Tuning 15-5

How to Constrain the Codecache Size
When the codecache is constrained (its usage approaches or reaches the
ReservedCodeCacheSize), to compile more methods, the JIT must first throw out some
already compiled methods. Discarding compiled methods is known as codecache
flushing. The UseCodeCacheFlushing option turns codecache flushing on and off. By
default it is on. You can disable this feature by specifying XX:-UseCodeCacheFlushing.
When enabled, the codecache flushing is triggered when the memory available in the
codecache is low. It is critical to enable codecache flushing if you constrain the
codecache. If flushing is disabled, the JIT does not compile methods after the
codecache fills up.

To determine an appropriate ReservedCodeCacheSize value for your application, you
must first see how much codecache the application uses when the codecache is
unconstrained. Use the XX:+PrintCodeCache option described in Measuring
Codecache Usage, and examine the max_used value, which is how much codecache
your application uses. You can then try setting ReservedCodeCacheSize to smaller
values and see how well your application performs.

If you are trying to use a small (less than 5MB) codecache, you must consider
CodeCacheMinimumFreeSpace. For larger codecaches, leave the default value alone.
Generally, the JIT keeps enough space free in the codecache to honor this option. For a
small code cache, add CodeCacheMinimumFreeSpace to your new
ReservedCodeCacheSize. As an example, suppose:

max_used = 3M
CodeCacheMinimumFreeSpace = 500k

To reduce the codecache size from 3MB to 2MB, increase ReservedCodeCacheSize to
2500k (2M+500K) After making the change, verify that max_used changes to 2M.

When constraining the codecache, usually CodeCacheMinimumFreeSpace can be set to a
lower value. However, CodeCacheMinimumFreeSpace should be at least 100KB. If free
space is exhausted, the JVM throws VirtualMachineError and exits, or in rare cases,
crashes. For the 3MB to 2MB example, the following settings are appropriate:

-XX:ReservedCodeCacheSize=2100k
-XX:CodeCacheMinimumFreeSpace=100k

Finding the optimal ReservedCodeCacheSize for your needs is an iterative process.
You can repeatedly use smaller and smaller values for ReservedCodeCacheSize until
your application's performance degrades unacceptably, and then increase until you get
acceptable performance again. You should also gauge the incremental return you are
achieving. You might find that you can decrease max_used by 50% with only a 5%
performance degradation, and decrease max_used by 60% with a 10% performance
degradation. In this example, the second 10% codecache reduction cost as much
performance as the initial 50% codecache reduction. You might conclude in this case
that the 50% reduction a good balance between codecache usage and performance.

Reducing Compilations
Reducing the number of compiled methods, or the rate at which they are compiled, is
another effective way of reducing the amount of codecache that is used. Two main
command line options that affect how aggressively methods are compiled:
CompileThreshold and OnStackReplacePercentage. CompileThreshold relates to the
number of method invocations needed before the method is compiled.
OnStackReplacePercentage relates to the number of backwards branches taken in a
method before it gets compiled, and is specified as a percentage of CompileThreshold.

Reducing Compiled Method Sizes

15-6 Oracle Java SE Embedded Developer's Guide

When a method's combined number of backwards branches and invocations reaches
or exceeds CompileThreshold * OnStackReplacePercentage / 100, the method is
compiled. Note that there is also an option called BackEdgeThreshold, but it currently
does nothing. Use OnStackReplacePercentage instead.

Larger values for these options decreases compilations. Setting the options larger than
their defaults defers when a method gets compiled (or recompiled), possibly even
preventing a method from ever getting compiled. Usually, setting these options to
larger values also reduces performance (methods are interpreted), so it is important to
monitor both performance and codecache usage when you adjust them. For the client
JVM, tripling the default values of these options is a good starting point. For the server
JVM, CompileThreshold is already set fairly high, so probably does not need to be
adjusted further.

Reducing Compiled Method Sizes
There are a number of command-line options that reduce the size of compiled
methods, but generally at some performance cost. Like the codecache reduction
methods described in other sections, the key is finding a setting that gives good code
cache usage reduction, without much performance loss.

The options described in this section all relate to reducing the amount of inlining the
compiler does. Inlining is when the compiler includes the code for a called method
into the compiled code for the method being compiled. Inlining can be done many
levels deep, so if method a() calls b() which in turn calls c(), then when compiling
a(), b() can be inlined in a(), which in turn can trigger the inlining of c() into a().

The JIT compiler uses multiple heuristics to determine if a method should be inlined.
In general, the heuristics are tuned for optimal performance. However, you can adjust
some of them to sacrifice some performance for less codecache usage. The more useful
options to tune are described below:

InlineSmallCode
The value of this option determines how small an already compiled method must be
for it to be inlined when called from a method being compiled. If the compiled version
of this method is bigger than the setting for InlineSmallCode, then it is not inlined.
Instead, a call to the compiled version of the method is generated.

MaxInlineLevel
This option represents the maximum nesting level of the inlining call chain. Inlining
becomes much less useful at deeper levels, and can eventually be harmful to
performance due to code bloat. The default value is 9. Setting MaxInlineLevel as low
as 1 or 2 ensures that trivial methods, such as getters and setters, are inlined.

MaxInlineSize
This option represents the maximum bytecode size of an inlined method. It defaults to
35, but is automatically reduced at each inlining level. Setting it very small (around 6)
ensures that only trivial methods are inlined.

MinInliningThreshold
The interpreter tracks invocation counts at method call sites. This count is used by the
JIT to help determine if a called method should be inlined. If a method's number of
invocations is less than MinInliningThreshold, the method is not inlined. Raising this
threshold reduces the number of method call sites that are inlined. Trivial methods are
always inlined and are not subject to the setting of MinInliningThreshold.

Reducing Compiled Method Sizes

Codecache Tuning 15-7

InlineSynchronizedMethods
This option can be used to disable the inlining of methods that are declared as
synchronized. Because synchronizing is a fairly expensive operation, especially on
multi-core devices, the benefits of inlining even small synchronized methods is greatly
diminished. You might find you can disable the inlining of synchronized methods
with little or no perceived performance degradation, but with a noticeable reduction in
the codecache usage.

Reducing Compiled Method Sizes

15-8 Oracle Java SE Embedded Developer's Guide

Part IV
Part IV Appendixes

The following appendixes are included in this guide

For Platform Developers:
■ Preparing a Device for JavaFX

For Application Developers
■ Developing Embedded Applications in NetBeans IDE

A

Preparing a Device for JavaFX A-1

APreparing a Device for JavaFX

If you want to run headful applications on your target device using the JavaFX API,
there is some extra configuration required. This appendix shows platform developers
how to prepare the BeagleBoard-xM as an example device.

This chapter contains the following sections:

■ Preparing the BeagleBoard-xM for JavaFX Applications

■ Configure the SGX Driver (Optional)

Preparing the BeagleBoard-xM for JavaFX Applications
To run JavaFX applications on the BeagleBoard-xM, you must configure its software as
described in this section. Configuration includes building an operating system, which
can take a few hours.

Use a Suitable Build Machine
Use a 32-bit Ubuntu build machine with at least 8 GBytes of free space for a kernel
build or about 30 GBytes free for a full system build with GNOME.

Install the Tools and Configure the System
1. Type the following command to install the build tools:

$ sudo apt-get install \
build-essential chrpath coreutils corkscrew cvs desktop-file-utils \
diffstat docbook-utils git-core help2man libncurses5-dev \
subversion texi2html texinfo

2. Set the default shell to bash:

$ sudo dpkg-reconfigure dash

3. When asked if dash should be the default shell, answer No.

Obtain the Ångström/Open Embedded Scripts
Clone the Ångström setup repository:

$ git clone http://github.com/Angstrom-distribution/setup-scripts.git

Note: Do not build on a VirtualBox shared folder. Vboxfs does not
support the creation of hard links, which the build system needs.

Preparing the BeagleBoard-xM for JavaFX Applications

A-2 Oracle Java SE Embedded Developer's Guide

$ cd setup-scripts/

Set Up the BeagleBoard
In the setup-scripts directory, run the following commands:

$ MACHINE=beagleboard ./oebb.sh config beagleboard
$ MACHINE=beagleboard ./oebb.sh update

Build the Distribution
In the setup-scripts directory, run the following commands. The setup scripts take
several hours to run.

$. ~/.oe/environment-angstromv2012.12
$ bitbake console-image

Prepare the SD Card and Write File Systems
1. In the setup-scripts directory, run the following commands, but replace

/dev/sdX with the correct device for an SD card connected to your Linux PC.

$ mkdir -p /tmp/boot /tmp/rootfs
$ sudo -s /
sources/meta-angstrom/contrib/omap3-mkcard.sh /dev/sdX

$ mount /dev/sdX1 /tmp/boot ; mount /dev/sdX2 /tmp/rootfs
$ cd build/tmp-angstrom_v2012_12-eglibc/deploy/images/beagleboard/
$ tar jxf console-image-beagleboard.tar.bz2 -C /tmp/rootfs
$ tar zxf modules-3.2.28-r122a-beagleboard.tgz -C /tmp/rootfs
$ cp MLO /tmp/boot

$ wget http://www.beagleboard.org/angstrom-mirror/ \
www.angstrom-distribution.org/demo/beagleboard/u-boot.img \
-O /tmp/boot/u-boot.img

$ cat > /tmp/boot/uEnv.txt << EOF
$ vram=24M

$ dvimode="1280x800MR - 32@60 mem=99M@0x80000000 mem=384M@0x88000000 \
omapfb.vram=0:12M,1:8M,2:4M"

$ optargs="consoleblank=0"
$ console="console=ttyO2,115200n8"
$ mmcroot="/dev/mmcblk0p2"
$ EOF

2. Unmount the file system:

$ sync
$ umount /tmp/boot /tmp/rootfs

Note: Use uboot.img from the Ångström website instead of the one
you built. If you use the one you built, then the USB input devices do
not work.

Preparing the BeagleBoard-xM for JavaFX Applications

Preparing a Device for JavaFX A-3

Boot a BeagleBoard xM with the Card
The first boot takes a long time. Slower SD cards take a very long time for the first
boot. If you have a serial console attached, you will see it pause for 30 to 90 minutes
after the following output. On the display, you see only the lines that start with time
stamps.

Starting Recreate Volatile Files and Directories...
Starting Load Random Seed...
Started Machine ID first boot configure [OK]
Starting Run pending postinsts...
Started Load Random Seed [OK]
Started Recreate Volatile Files and Directories [OK]
[5.725891] usb 1-2.2.1.3: New USB device found, idVendor=413c, idProduct=2106
[5.735839] usb 1-2.2.1.3: New USB device strings: Mfr=1, Product=2,
SerialNumber=0
[5.746093] usb 1-2.2.1.3: Product: Dell QuietKey Keyboard
[5.753997] usb 1-2.2.1.3: Manufacturer: Dell
[6.739074] twl_rtc twl_rtc: Power up reset detected.
[6.753692] twl_rtc twl_rtc: Enabling TWL-RTC.
[6.779571] twl_rtc twl_rtc: rtc core: registered twl_rtc as rtc0
[7.904846] smsc95xx v1.0.4
[8.042388] smsc95xx 1-2.1:1.0: eth0: register 'smsc95xx' at
usb-ehci-omap.0-2.1, smsc95xx USB 2.0 Ethernet, 9e:34:b3:e9:1c:9d
[8.058837] usbcore: registered new interface driver smsc95xx

When the device finishes the initial setup, log in as root with an empty password.

Install the Required Packages
Execute the following commands to install the required packages:

$ opkg update

$ opkg install libgles-omap3 omap3-sgx-modules gdm liberation-fonts udev \
gcc gcc-symlinks libc6-dev binutils make g++ g++-symlinks \
libstdc++-dev libstdc++6

$ opkg install ntpdate
$ ln -sf /lib/libudev.so.1 /lib/libudev.so.0
$ depmod -a
$ reboot

Build and Install DirectFB
1. Download and unzip the DirectFB source files from:

http://www.directfb.org/downloads/Core/DirectFB-1.4/DirectFB-
1.4.7.tar.gz.

2. Go to the created directfb folder and run:

./configure --with-inputdrivers=none --with-gfxdrivers=none \
 --without-tools --disable-static \
 --prefix=/usr \
 AR=/usr/arm-angstrom-linux-gnueabi/bin/ar
make
make install

Preparing the BeagleBoard-xM for JavaFX Applications

A-4 Oracle Java SE Embedded Developer's Guide

Disable Cursor Blinking
By default, the BeagleBoard is configured for the console cursor to blink, which can
cause flickering and visual defects, especially on a touchscreen device. Disable the
blinking with these commands:

$ cat > /etc/init.d/configure_cursorblink << EOF
#!/bin/sh
/bin/echo 0 > /sys/devices/virtual/graphics/fbcon/cursor_blink
EOF
$ chmod 755 /etc/init.d/configure_cursorblink
$ ln -sf /etc/init.d/configure_cursorblink etc/rc5.d/S99configure_cursorblink
$ /etc/init.d/configure_cursorblink

Update the Graphics Drivers (Recommended)
Updating the graphics drivers is optional, but recommended because the update
resolves some rendering issues. Perform the update on the 32-bit x86 Linux machine
on which you created the image.

1. Download the TI graphics SDK version 4.09.00.01 from
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_
sb/targetcontent/gfxsdk/latest/index_FDS.html.

2. Make sure you have an ARM cross-compiler on your system.

You need a cross-compiler for ARM installed on your system. The recommended
compiler is Sourcery CodeBench Lite Edition for ARM GNU/Linux, which is
available at:
http://www.mentor.com/embedded-software/sourcery-tools/source
ry-codebench/editions/lite-edition/.

The following instructions assume that the 2009q1 version of this compiler is
installed in /opt.

3. Execute the following commands to install the graphics drivers:

cd ~/setup-scripts/build/tmp-angstrom_v2012_12-eglibc/sysrootfs \
 /beagleboard/usr/src/kernel
sudo make ARCH=arm BUILD_BUILDHOST=x86
CROSS_COMPILE=/opt/arm-2009q1/bin/arm-none-linux-gnueabi- scripts

(Point CROSS_COMPILE to the prefix to add to all cross-compilation commands. For
example, /opt/arm-2009q1/bin/arm-none-linux-gnueabi-).

Note: There is no space between /opt/arm-2009q1 and /bin/arm, but there is a
space between arm-none-linux-gnueabi- and scripts.

4. Edit the Rules.make file in the TI graphics SDK directory.

Set CSTOOL_DIR to point to the root of your BeagleBoard tools. For example,
/opt/arm-2009q1.

Note: Software rendering with DirectFB for JavaFX applications
requires the following option on the java command line:

 -Djavafx.platform=directfb

Configure the SGX Driver (Optional)

Preparing a Device for JavaFX A-5

Set HOME to point to the directory above the <InstallationOfGraphicsSDK>. For
example, if the SDK is installed in /home/someguy/Graphics_SDK_4_09_00_01,
then set HOME=/home/someguy. For example:

set CSTOOL_DIR /opt/arm-2009q1
set CSTOOL_PREFIX=arm-none-linux-gnueabi-
set HOME DirectoryAboveGRAPHICS_INSTALL_DIR

5. Go to the TI graphics SDK (GRAPHICS_INSTALL_DIR) directory and execute the
following commands to build the drivers:

sudo make all_km OMAPES=5.x KERNEL_INSTALL_DIR= \
 setup-scripts/build/tmp-angstrom_v2012_12-eglibc/ \
 sysrootfs/beagleboard/usr/src/kernel modules

6. Shut down your BeagleBoard xM and attach the SD card to your x86 Linux
machine.

Folders should be automatically mounted to the /media/$USER/Angstrom and
/media/$USER/boot folders. If they are not, then mount them manually.

7. Execute the following commands in the TI graphics SDK directory:

cd gfx_rel_es5.x
sudo cp *.so /media/$USER/Angstrom/usr/lib
sudo cp *.ko /media/$USER/Angstrom/lib/modules/3.2.28/kernel/drivers/gpu/pvr
sudo mkdir -p /media/$USER/Angstrom/usr/local/bin
sudo cp pvrsrvctl /media/$USER/Angstrom/usr/local/bin
sudo rm /media/$USER/Angstrom/etc/init.d/pvr-init
sudo cp rc.pvr /media/$USER/Angstrom/etc/init.d/pvr-init
sudo cp sgx* /media/$USER/Angstrom/usr/bin
sudo sync
sudo umount /media/$USER/Angstrom /media/$USER/boot

8. Boot the BeagleBoard xM with the updated SD card.

Disable the GDM (X Login Manager)
To disable the GDM, type the following command:

systemctl disable gdm.service

Configure the SGX Driver (Optional)
The default configuration of the SGX driver is to write directly to the frame buffer. This
is fast, but can result in graphic artifacts, such as tearing or partial updates during
animation. If you encounter problems with this setting, you can modify the file
/etc/powervr.ini on the BeagleBoard, changing the line:

WindowSystem=libpvrPVR2D_FRONTWSEGL.so

to:

WindowSystem=libpvrPVR2D_FLIPWSEGL.so

Note: On older Ubuntu systems, file systems are mounted on
/media/Angstrom and /media/boot.

Configure the SGX Driver (Optional)

A-6 Oracle Java SE Embedded Developer's Guide

B

Developing Embedded Applications in NetBeans IDE B-1

BDeveloping Embedded Applications in
NetBeans IDE

Learn how to use NetBeans IDE to profile, run, and debug your embedded
applications on both host and target.

This appendix contains the following topics:

■ Oracle Java SE Embedded Support in NetBeans IDE

■ Remote Debugging

Oracle Java SE Embedded Support in NetBeans IDE
NetBeans IDE offers support for Oracle Java SE Embedded in the following ways.

■ You can set compact profiles so that the IDE will display violations in the source
code. See http://wiki.netbeans.org/CompactProfiles

■ You can run and debug your application on either the host or target within the
IDE. See http://wiki.netbeans.org/JavaSEEmbeddedHowTo

■ If you need to create a custom JRE for your own device, you can use the jrecreate
support in NetBeans. See
http://wiki.netbeans.org/JavaSEEmbeddedHowTo#Creating_.26_
Uploading_new_Embedded_JRE

■ As with all Java applications, you have instant access to Java SE API
documentation, which includes information about compact profiles.

Related Links

■ NetBeans IDE website: http://netbeans.org/

■ JDK8 Support in NetBeans: http://wiki.netbeans.org/JDK8

■ Ten-minute Hello World tutorial:
http://netbeans.org/kb/docs/java/quickstart.html

Remote Debugging
You can remotely debug an application with NetBeans IDE, provided that the target's
JRE was created with the --debug option and the client or server JVM. Examine the
target JRE's bom file to see the JRE's configuration. For information about the --debug
option of jrecreate and the bom file, see jrecreate Options.

Start the application in debug mode on the target (see Launch the Application with the
java Launcher Tool for an example). With the application waiting for a remote

Remote Debugging

B-2 Oracle Java SE Embedded Developer's Guide

connection, in the NetBeans IDE on your host, choose Debug and then Attach
Debugger. Fill in the Attach Debugger dialog fields similar to those in Figure B–1,
substituting the target's IP address and the port you specified when you launched the
application.

Figure B–1 Example Attach Debugger Dialog

	Contents
	Preface
	About This Guide
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Quick Start
	1 Introducing Oracle Java SE Embedded
	Embedded Systems: The Wave of the Future
	Why Use Java for Your Embedded System?
	Which Java Embedded is Right for Your Device?
	The Heart of Java SE Embedded: Customize Your Runtime Environment

	2 Quick Start for Platform Developers
	Introduction
	Quick Start Example

	3 Quick Start for Application Developers
	Typical Tasks for Embedded Application Developers
	Quick Start Examples

	Part II Platform Development
	4 Install Oracle Java SE Embedded
	Why Install on a Host Computer?
	Prerequisites for the Host Computer
	Install Java SE Embedded on the Host Computer
	Java SE Embedded Installed Directories

	5 About Custom JREs
	Your Choices When Creating a Custom JRE
	Cryptographic Service Providers
	Locales
	Character Encodings
	Nashorn JavaScript Engine
	JSR 197 Specification JAR

	6 About Oracle Java SE Embedded JVMs
	Minimal JVM
	Client JVM
	Server JVM

	7 About Compact Profiles
	Compact Profiles for Subsets of the Java SE API
	Compact1 Profile APIs
	Compact2 Profile APIs
	Compact3 Profile APIs
	Full JRE APIs
	Determining Compact Profiles for API Objects

	8 Create Your JRE with jrecreate
	Running jrecreate
	jrecreate Command Syntax
	jrecreate Options
	jrecreate Command Examples
	jrecreate Command Output
	JRE Directories
	Configuring the JRE for Swing/AWT Headful Applications

	9 Deploy Your JRE to the Embedded Device
	Moving the Custom JRE to the Target Device
	Verifying Your Deployed JRE

	Part III Embedded Application Development
	10 Essentials for Developing Embedded Applications
	Host Development for a Target Device
	Host-Target Development Cycle
	APIs and Javadocs
	Native Methods
	JDK 7 Limitations

	11 Develop and Test Your Embedded Application
	Develop Your Application
	Test Your Application on the Host Computer
	Compile with the javac Tool and the -profile Option
	Use the jdeps Tool to Test Minimum Required Compact Profile

	Testing Your Application on the Target Device

	12 Deploy Embedded Applications
	Package Your Application on the Host with the jar Tool
	About Connecting to the Target Device
	Copy the Application to the Target Device
	Next Steps

	13 Launch Embedded Applications
	Launch the Application with the java Launcher Tool
	Launch Your Application with a Specific JVM
	Enable Client Compiler (C1) Profiled Inlining
	Improving JVM Startup Times with Class Data Sharing
	Launch Your Application in Debug Mode
	Unsupported java Launcher Options in the Minimal JVM
	Exit an Application Running on an Embedded Device
	Troubleshooting

	14 Develop Headful Applications
	Headful Applications Using JavaFX
	JavaFX Components for Oracle Java SE Embedded
	JavaFX Graphics Component
	JavaFX Controls Component

	Configuring Fonts
	Unsupported JavaFX Features
	Using FXML Markup Instead of JavaFX APIs
	Using JavaFX Scene Builder to Design the UI and Export to FXML
	JavaFX Sample Applications
	Font Setup in Headful Applications
	Swing and AWT APIs

	15 Codecache Tuning
	Introduction
	java Launcher Codecache Option Summary
	How to Use the Codecache Options of the java Command
	Codecache Size Options
	Codecache Flush Options
	Compilation Policy Options
	Compilation Limit Options
	Diagnostic Options

	Measuring Codecache Usage
	Constraining the Codecache Size
	When is Constraining the Codecache Size Useful?
	How to Constrain the Codecache Size

	Reducing Compilations
	Reducing Compiled Method Sizes

	Part IV Appendixes
	A Preparing a Device for JavaFX
	Preparing the BeagleBoard-xM for JavaFX Applications
	Use a Suitable Build Machine
	Install the Tools and Configure the System
	Obtain the Ångström/Open Embedded Scripts
	Set Up the BeagleBoard
	Build the Distribution
	Prepare the SD Card and Write File Systems
	Boot a BeagleBoard xM with the Card
	Install the Required Packages
	Build and Install DirectFB
	Disable Cursor Blinking
	Update the Graphics Drivers (Recommended)
	Disable the GDM (X Login Manager)

	Configure the SGX Driver (Optional)

	B Developing Embedded Applications in NetBeans IDE
	Oracle Java SE Embedded Support in NetBeans IDE
	Remote Debugging

