

JavaFX
Interoperability

Release 8

E50477-01

March 2014

This tutorial describes the capabilities provided by the
javafx.concurrent package to create multithreaded
applications. You find out how to integrate JavaFX content
into Swing applications and how to use Swing components
in JavaFX applications. You learn how to add JavaFX scene
graph to a Standard Widget Toolkit (SWT) application, and
how to make SWT and JavaFX controls interoperate.

JavaFX Interoperability, Release 8

E50477-01

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Irina Fedortsova, Nancy Hilderbrandt, Steve Northover

Contributor: Artem Ananiev, Anton Tarasov, Alexander Zvegintsev, Alexander Kouznetsov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

About This Document ... vii
Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions .. vii

Part I Concurrency in JavaFX

1 Concurrency in JavaFX

Why Use the javafx.concurrent Package? .. 1-1
Overview of the javafx.concurrent Package.. 1-1

The Worker Interface ...1-2
The Task Class ..1-2

Cancelling the Task ...1-3
Showing the Progress of a Background Task ...1-4

The Service Class ..1-4
The WorkerStateEvent Class and State Transitions ..1-6
The ScheduledService Class ...1-7

Conclusion ... 1-8

Part II JavaFX-Swing Interoperability

2 The JavaFX Advantage for Swing Developers

Using FXML... 2-1
JavaFX Scene Builder ... 2-1
CSS Support .. 2-1
JavaFX Media Support... 2-2
Animation .. 2-2
HTML Content.. 2-2

3 Integrating JavaFX into Swing Applications

Adding JavaFX Content to a Swing Component.. 3-1
Swing–JavaFX Interoperability and Threads.. 3-2

Changing JavaFX Data in Response to a Change in Swing Data ..3-2
Changing Swing Data in Response to a Change in JavaFX Data ..3-3

iv

Introducing the SimpleSwingBrowser Application.. 3-3
Initializing Swing Data ..3-3
Loading JavaFX Content ...3-5
Updating Swing Data ..3-6

Application Files .. 3-7

4 Enriching Swing Applications with JavaFX Functionality

Sample Swing Application... 4-1
Integrating JavaFX Bar Chart ... 4-2
Application Files .. 4-5

5 Leveraging Applications with Media Features

About Media Integration .. 5-1
Building the Media Player Application... 5-1

Skinning the Application with CSS ...5-2
Adding a New Control to the Control Bar ...5-3

Application Files .. 5-4

6 Implementing a Swing Application in JavaFX

Analyzing the Converter Application Developed in Swing ... 6-1
Planning the Converter Application in JavaFX .. 6-2
Creating the Converter Application in JavaFX ... 6-2

Standard JavaFX Pattern to Create the GUI ...6-2
Containers and Layouts ..6-3
UI Controls ..6-3
Mechanism of Getting Notifications on User Actions and Binding ...6-4
Creating the ConversionPanel Class ...6-4

Creating Instance Variables for UI Controls ...6-4
Creating DoubleProperty and NumberFormat Objects ..6-5
Laying Out the Components ...6-5
Creating InvalidationListener Objects ...6-6
Adding Change Listeners to Controls and Ensuring Synchronization6-6

Creating the Converter Class ...6-6
Defining Instance Variables ...6-6
Creating the Constructor for the Converter Class ...6-7
Creating the Graphical Scene ..6-7

Application Files .. 6-8

7 Embedding Swing Content in JavaFX Applications

SwingNode Class ... 7-1
Embedding Swing Content and Handling Events .. 7-2
Adding Interoperability Between Swing and JavaFX Components .. 7-5
Conclusion ... 7-9
Application Files .. 7-9

Part III Interoperability with SWT

v

8 JavaFX Interoperability with SWT

Introduction... 8-1
Adding JavaFX Content to an SWT Component .. 8-2
Creating SWT-JavaFX Applications in an IDE ... 8-4
Packaging SWT-JavaFX Applications... 8-4

Packaging the Application when JavaFX is Bundled with the JDK ...8-4
Packaging the Application with a Standalone JavaFX Installation ..8-4

Application Files .. 8-4

Part IV Source Code for the Interoperability Tutorial

A SimpleSwingBrowser.java

B SwingInterop.java

C SampleTableModel.java

D MediaPlayer.java

E MediaControl.java

F mediaplayer.css

G Converter.java

H ConversionPanel.java

I SwingNodeSample.java

J ButtonHtmlDemo.java

K EnableFXButton.java

L EnableButtons.java

M Image Source Files

left.gif... M-1
right.gif .. M-2
down.gif .. M-2
middle.gif.. M-2

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
tutorial - JavaFX Interoperability Tutorial.

About This Document
This tutorial describes the capabilities provided by the javafx.concurrent package to
create multithreaded applications. You find out how to integrate JavaFX content into
Swing applications and vice versa, how to use Swing components in JavaFX
applications. You also learn how to add a JavaFX scene graph to a Standard Widget
Toolkit (SWT) application and how to make SWT and JavaFX controls interoperate.

Audience
This document is intended for JavaFX developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the JavaFX documentation set:

■ Getting Started with JavaFX

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Concurrency in JavaFX

In this tutorial, you learn about the capabilities provided by the javafx.concurrent
package to create multithreaded applications.

This tutorial contains the following topics:

■ The Worker Interface

■ The Task Class

■ The Service Class

■ The WorkerStateEvent Class and State Transitions

■ The ScheduledService Class

1

Concurrency in JavaFX 1-1

1Concurrency in JavaFX

This chapter describes the capabilities provided by the javafx.concurrent package to
create multithreaded applications.

You learn how to keep your JavaFX application user interface (UI) responsive by
delegating time-consuming task execution to background threads.

Why Use the javafx.concurrent Package?
The JavaFX scene graph, which represents the graphical user interface of a JavaFX
application, is not thread-safe and can only be accessed and modified from the UI
thread also known as the JavaFX Application thread. Implementing long-running
tasks on the JavaFX Application thread inevitably makes an application UI
unresponsive. A best practice is to do these tasks on one or more background threads
and let the JavaFX Application thread process user events.

If you have special requirements or need extra power over the code, implementing a
background worker by creating a Runnable object and a new thread is an appropriate
way to go. Note that at some point you must communicate with the JavaFX
Application thread, either with a result or with the progress of the background task.

For the most cases and for the majority of developers the recommended way is to use
the JavaFX APIs provided by the javafx.concurrent package, which takes care of
multithreaded code that interacts with the UI and ensures that this interaction
happens on the correct thread.

Overview of the javafx.concurrent Package
The Java platform provides a complete set of concurrency libraries available through
the java.util.concurrent package. The javafx.concurrent package leverages the
existing API by considering the JavaFX Application thread and other constraints faced
by GUI developers.

The javafx.concurrent package consists of the Worker interface and two concrete
implementations, Task and Service classes. The Worker interface provides APIs that
are useful for a background worker to communicate with the UI. The Task class is a
fully observable implementation of the java.util.concurrent.FutureTask class. The
Task class enables developers to implement asynchronous tasks in JavaFX
applications. The Service class executes tasks.

The WorkerStateEvent class specifies an event that occurs whenever the state of a
Worker implementation changes. Both the Task and Service classes implement the
EventTarget interface and thus support listening to the state events.

Overview of the javafx.concurrent Package

1-2 JavaFX Interoperability

The Worker Interface
The Worker interface defines an object that performs some work on one or more
background threads. The state of the Worker object is observable and usable from the
JavaFX Application thread.

The lifecycle of the Worker object is defined as follows. When created, the Worker
object is in the READY state. Upon being scheduled for work, the Worker object
transitions to the SCHEDULED state. After that, when the Worker object is performing the
work, its state becomes RUNNING. Note that even when the Worker object is
immediately started without being scheduled, it first transitions to the SCHEDULED state
and then to the RUNNING state. The state of a Worker object that completes successfully
is SUCCEEDED, and the value property is set to the result of this Worker object.
Otherwise, if any exceptions are thrown during the execution of the Worker object, its
state becomes FAILED and the exception property is set to the type of the exception
that occurred. At any time before the end of the Worker object the developer can
interrupt it by invoking the cancel method, which puts the Worker object into the
CANCELLED state.

Distinctions in the lifecycle of a ScheduledService object can be found in the The
ScheduledService Class section.

The progress of the work being done by the Worker object can be obtained through
three different properties such as totalWork, workDone, and progress.

For more information on the range of the parameter values, see the API
documentation.

The Task Class
Tasks are used to implement the logic of work that needs to be done on a background
thread. First, you need to extend the Task class. Your implementation of the Task class
must override the call method to do the background work and return the result.

The call method is invoked on the background thread, therefore this method can only
manipulate states that are safe to read and write from a background thread. For
example, manipulating an active scene graph from the call method throws runtime
exceptions. On the other hand, the Task class is designed to be used with JavaFX GUI
applications, and it ensures that any changes to public properties, change notifications
for errors or cancellation, event handlers, and states occur on the JavaFX Application
thread. Inside the call method, you can use the updateProgress, updateMessage,
updateTitle methods, which update the values of the corresponding properties on the
JavaFX Application thread. However, if the task was canceled, a return value from the
call method is ignored.

Note that the Task class fits into the Java concurrency libraries because it inherits from
the java.utils.concurrent.FutureTask class, which implements the Runnable
interface. For this reason, a Task object can be used within the Java concurrency
Executor API and also can be passed to a thread as a parameter. You can call the Task
object directly by using the FutureTask.run() method, which enables calling this task
from another background thread. Having a good understanding of the Java
concurrency API will help you understand concurrency in JavaFX.

A task can be started in one of the following ways:

■ By starting a thread with the given task as a parameter:

Thread th = new Thread(task);

th.setDaemon(true);

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-3

th.start();

■ By using the ExecutorService API:

ExecutorService.submit(task);

The Task class defines a one-time object that cannot be reused. If you need a reusable
Worker object, use the Service class.

Cancelling the Task
There is no reliable way in Java to stop a thread in process. However, the task must
stop processing whenever cancel is called on the task. The task is supposed to check
periodically during its work whether it was cancelled by using the isCancelled
method within the body of the call method. Example 1–1 shows a correct
implementation of the Task class that checks for cancellation.

Example 1–1

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations;
 for (iterations = 0; iterations < 100000; iterations++) {
 if (isCancelled()) {
 break;
 }
 System.out.println("Iteration " + iterations);
 }
 return iterations;
 }
};

If the task implementation has blocking calls such as Thread.sleep and the task is
cancelled while in a blocking call, an InterruptedException is thrown. For these
tasks, an interrupted thread may be the signal for a cancelled task. Therefore, tasks
that have blocking calls must double-check the isCancelled method to ensure that the
InterruptedException was thrown due to the cancellation of the task as shown in
Example 1–2.

Example 1–2

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations;
 for (iterations = 0; iterations < 1000; iterations++) {
 if (isCancelled()) {
 updateMessage("Cancelled");
 break;
 }
 updateMessage("Iteration " + iterations);
 updateProgress(iterations, 1000);

 //Block the thread for a short time, but be sure
 //to check the InterruptedException for cancellation
 try {
 Thread.sleep(100);
 } catch (InterruptedException interrupted) {

Overview of the javafx.concurrent Package

1-4 JavaFX Interoperability

 if (isCancelled()) {
 updateMessage("Cancelled");
 break;
 }
 }
 }
 return iterations;
 }
};

Showing the Progress of a Background Task
A typical use case in multithreaded applications is showing the progress of a
background task. Suppose you have a background task that counts from one to one
million and a progress bar, and you must update the progress on this progress bar as
the counter runs in the background. Example 1–3 shows how to update a progress bar.

Example 1–3

import javafx.concurrent.Task;

Task task = new Task<Void>() {
 @Override public Void call() {
 static final int max = 1000000;
 for (int i=1; i<=max; i++) {
 if (isCancelled()) {
 break;
 }
 updateProgress(i, max);
 }
 return null;
 }
};
ProgressBar bar = new ProgressBar();
bar.progressProperty().bind(task.progressProperty());
new Thread(task).start();

First, you create the task by overriding the call method where you implement the
logic of the work to be done and invoke the updateProgress method, which updates
the progress, totalWork, and workDone properties of the task. This is important
because you can now use the progressProperty method to retrieve the progress of the
task and bind the progress of the bar to the progress of the task.

The Service Class
The Service class is designed to execute a Task object on one or several background
threads. The Service class methods and states must only be accessed on the JavaFX
Application thread. The purpose of this class is to help the developer to implement the
correct interaction between the background threads and the JavaFX Application
thread.

You have the following control over the Service object: you can start, cancel and restart
it as you need. To start the Service object, use the Service.start() method.

Using the Service class, you can observe the state of the background work and
optionally cancel it. Later, you can reset the service and restart it. Thus, the service can
be defined declaratively and restarted on demand.

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-5

For a service that needs to be automatically restarted, see The ScheduledService Class
section.

When implementing the subclasses of the Service class, be sure to expose the input
parameters to the Task object as properties of the subclass.

The service can be executed in one of the following ways:

■ By an Executor object, if it is specified for the given service

■ By a daemon thread, if no executor is specified

■ By a custom executor such as a ThreadPoolExecutor

Example 1–4 shows an implementation of the Service class which reads the first line
from any URL and returns it as a string.

Example 1–4

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.concurrent.Service;
import javafx.concurrent.Task;
import javafx.concurrent.WorkerStateEvent;
import javafx.event.EventHandler;
import javafx.stage.Stage;

public class FirstLineServiceApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 FirstLineService service = new FirstLineService();
 service.setUrl("http://google.com");
 service.setOnSucceeded(new EventHandler<WorkerStateEvent>() {

 @Override
 public void handle(WorkerStateEvent t) {
 System.out.println("done:" + t.getSource().getValue());
 }
 });
 service.start();
 }

 public static void main(String[] args) {
 launch();
 }

 private static class FirstLineService extends Service<String> {
 private StringProperty url = new SimpleStringProperty();

 public final void setUrl(String value) {
 url.set(value);
 }

 public final String getUrl() {
 return url.get();

Overview of the javafx.concurrent Package

1-6 JavaFX Interoperability

 }

 public final StringProperty urlProperty() {
 return url;
 }

 @Override
 protected Task<String> createTask() {
 return new Task<String>() {
 @Override
 protected String call()
 throws IOException, MalformedURLException {
 try (BufferedReader in = new BufferedReader(
 new InputStreamReader(
 new URL(getUrl()).openStream;
 in = new BufferedReader(
 new InputStreamReader(u.openStream()))) {
 return in.readLine();
 }
 }
 };
 }
}

The WorkerStateEvent Class and State Transitions
Whenever the state of the Worker implementation changes, an appropriate event,
defined by the WorkerStateEvent class, occurs. For example, when the Task object
transitions to the SUCCEEDED state, the WORKER_STATE_SUCCEEDED event occurs, the
onSucceeded event handler is called, after which the protected convenience method
succeeded is invoked on the JavaFX Application thread.

There are several protected convenience methods such as cancelled, failed, running,
scheduled, and succeeded, which are invoked when the Worker implementation
transitions to the corresponding state. These methods can be overridden by subclasses
of the Task and Service classes when the state is changed to implement the logic of
your application. Example 1–5 shows a Task implementation that updates the status
message on the task’s success, cancellation, and failure.

Example 1–5

import javafx.concurrent.Task;

Task<Integer> task = new Task<Integer>() {
 @Override protected Integer call() throws Exception {
 int iterations = 0;
 for (iterations = 0; iterations < 100000; iterations++) {
 if (isCancelled()) {
 break;
 }
 System.out.println("Iteration " + iterations);
 }
 return iterations;
 }

 @Override protected void succeeded() {
 super.succeeded();
 updateMessage("Done!");

Overview of the javafx.concurrent Package

Concurrency in JavaFX 1-7

 }

 @Override protected void cancelled() {
 super.cancelled();
 updateMessage("Cancelled!");
 }

@Override protected void failed() {
 super.failed();
 updateMessage("Failed!");
 }
};

The ScheduledService Class
Many use cases that involve polling require a service that restarts automatically. To
meet those needs, the Service class was extended to produce the ScheduledService
class. The ScheduledService class represents a service that automatically restarts after
a successful execution and, under special conditions, upon its failure.

When created, the ScheduledService object is in the READY state.

After calling the ScheduledService.start() or ScheduledService.restart()
method, the ScheduledService object transitions to the SCHEDULED state for the
duration specified by the delay property.

In the RUNNING state, the ScheduledService object executes its task.

Task completes successfully
After the task completes, the ScheduledService object transitions to the SUCCEEDED
state, then to the READY state, and then back to the SCHEDULED state. The duration of
being in the SCHEDULED state depends on the time when the last transition to the
RUNNING state occurred, the current time, and the value of the period property, which
defines the minimum amount of time between two consequent runs. If the previous
execution completed before the period expired, then the ScheduledService object
stays in the SCHEDULED state until the period expires. Otherwise, if the previous
execution took longer than the specified period, then the ScheduledService object
instantly transitions to the RUNNING state.

Task fails
In the case when the task terminates in the FAILED state, the ScheduledService object
either restarts or quits, depending on the values for the restartOnFailure,
backoffStrategy, and maximumFailureCount properties.

If the restartOnFailure property is false, then the ScheduledService object
transitions to the FAILED state and quits. In this case, you can restart the failed
ScheduledService object manually.

If the restartOnFailure property is true, then the ScheduledService object
transitions to the SCHEDULED state and remains in this state for the duration of
cumulativePeriod property, which is obtained as a result of calling the
backoffStrategy property. Using the cumulativePeriod property, you can force the
failed ScheduledService object to wait longer before the next run. After the
ScheduledService completes successfully, the cumulativePeriod property is reset to
the value of the period property. When the amount of consequent failures reaches the

Conclusion

1-8 JavaFX Interoperability

value of the maximumFailureCount property, the ScheduledService object transitions
to the FAILED state and quits.

Any changes that happen to the delay and period properties while the
ScheduledService object is running will be taken into account on the next iteration.
The default values for the delay and period properties are set to 0.

Conclusion
In this chapter, you learned the basic capabilities provided by the javafx.concurrent
package and became familiar with several examples of the Task and Service classes
implementation. For more examples of how to create the Task implementation
correctly, see the API documentation for the Task class.

Part II
Part II JavaFX-Swing Interoperability

This tutorial provides an overview of JavaFX benefits available to GUI developers,
illustrates the JavaFX–Swing interoperability, shows how to enrich an existing Swing
application by taking advantage of JavaFX functionality, and how to implement a
typical Swing application in JavaFX.

The tutorial contains the following chapters:

■ The JavaFX Advantage for Swing Developers

■ Integrating JavaFX into Swing Applications

■ Enriching Swing Applications with JavaFX Functionality

■ Leveraging Applications with Media Features

■ Implementing a Swing Application in JavaFX

■ Embedding Swing Content in JavaFX Applications

2

The JavaFX Advantage for Swing Developers 2-1

2The JavaFX Advantage for Swing Developers

JavaFX is designed to provide applications with such sophisticated GUI features as
smooth animation, web views, audio and video playback, and styles based on
Cascading Style Sheets (CSS).

For more than 10 years, application developers have found Swing to be a highly
effective toolkit for building graphical user interfaces (GUIs) and adding interactivity
to Java applications. However, some of today’s most popular GUI features cannot be
easily implemented by using Swing. These features and others described in the
following sections can help application developers to meet the full range of modern
requirements. Later chapters in this document explain how to use Swing and JavaFX
together.

Using FXML
FXML is an XML-based markup language that enables developers to create a user
interface (UI) in a JavaFX application separately from implementing the application
logic. Swing has never offered a declarative approach to building a user interface. The
declarative method for creating a UI is particularly suitable for the scene graph,
because the scene graph is more transparent in FXML. Using FXML enables
developers to more easily maintain complex user interfaces.

To learn more about the benefits of using FXML, see Mastering FXML.

JavaFX Scene Builder
To help developers build the layout of their applications, JavaFX provides a design
tool called the JavaFX Scene Builder. You drag and drop UI components to a JavaFX
Content pane, and the tool generates the FXML code that can be used in an IDE such
as NetBeans or Eclipse.

For more information, see the Scene Builder documentation.

CSS Support
Cascading style sheets contain style definitions that control the look of UI elements.
The usage of CSS in JavaFX applications is similar to the usage of CSS in HTML. With
CSS, you can easily customize and develop themes for JavaFX controls and scene
graph objects.

Using CSS as opposed to setting inline styles enables you to separate the logic of the
application from setting its visual appearance. Using CSS also simplifies further
maintenance of how your application looks and provides some performance benefits.

JavaFX Media Support

2-2 JavaFX Interoperability

For more information about CSS, see Skinning JavaFX Applications with CSS and
JavaFX CSS Reference Guide.

JavaFX Media Support
With the media support provided by the JavaFX platform, you can leverage your
desktop application by adding media functionality such as playback of audio and
video files. Media functionality is available on all platforms where JavaFX is
supported. For the list of supported media codecs, see Introduction to JavaFX Media.

For more details, see the Leveraging Applications with Media Features chapter.

Animation
Animation brings dynamics and a modern look to the interface of your applications.
Animating objects in a Swing application is possible but is not straightforward. In the
Swing rendering model, painting happens on a double buffer. All alterations of object
properties and positions with time are rendered on a double buffer. Only when the
painting is completed, is the final result actually painted onto the screen. To show
time-based alterations of objects requires significant efforts from a developer using
Swing. In contrast, JavaFX enables developers to animate graphical objects in their
applications more easily because of the scene graph underlying the platform and the
particular APIs that are specifically created for that purpose.

For more details about animation in JavaFX, see Creating Transitions and Timeline
Animations. Be sure to check the Tree animation example.

HTML Content
For a long time, Swing developers have wanted the ability to render HTML content in
Java applications. JavaFX brought this feature to life by providing a user interface
component that has web view and full browsing functionality.

For more details, see Adding HTML Content to JavaFX Applications.

3

Integrating JavaFX into Swing Applications 3-1

3Integrating JavaFX into Swing Applications

This chapter describes how to add JavaFX content into a Swing application and how to
use threads correctly when both Swing and JavaFX content operate within a single
application.

JavaFX SDK provides the JFXPanel class, which is located in the javafx.embed.swing
package and enables you to embed JavaFX content into Swing applications.

Adding JavaFX Content to a Swing Component
For the purpose of this chapter, you create a JFrame component, add a JFXPanel object
to it, and set the graphical scene of the JFXPanel component that contains JavaFX
content.

As in any Swing application, you create the graphical user interface (GUI) on an event
dispatch thread (EDT). Example 3–1 shows the initAndShowGUI method, which creates
a JFrame component and adds a JFXPanel object to it. Creating an instance of the
JFXPanel class implicitly starts the JavaFX runtime. After the GUI is created, call the
initFX method to create the JavaFX scene on the JavaFX application thread.

Example 3–1

import javafx.application.Platform;
import javafx.embed.swing.JFXPanel;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class Test {

 private static void initAndShowGUI() {
 // This method is invoked on the EDT thread
 JFrame frame = new JFrame("Swing and JavaFX");
 final JFXPanel fxPanel = new JFXPanel();
 frame.add(fxPanel);
 frame.setSize(300, 200);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Platform.runLater(new Runnable() {
 @Override
 public void run() {

Swing–JavaFX Interoperability and Threads

3-2 JavaFX Interoperability

 initFX(fxPanel);
 }
 });
 }

 private static void initFX(JFXPanel fxPanel) {
 // This method is invoked on the JavaFX thread
 Scene scene = createScene();
 fxPanel.setScene(scene);
 }

 private static Scene createScene() {
 Group root = new Group();
 Scene scene = new Scene(root, Color.ALICEBLUE);
 Text text = new Text();

 text.setX(40);
 text.setY(100);
 text.setFont(new Font(25));
 text.setText("Welcome JavaFX!");

 root.getChildren().add(text);

 return (scene);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 initAndShowGUI();
 }
 });
 }
}

Swing–JavaFX Interoperability and Threads
With JavaFX and Swing data coexisting in a single application, you may encounter the
following interoperability situations:

■ A JavaFX data change is triggered by a change in Swing data.

■ A Swing data change is triggered by a change in JavaFX data.

Changing JavaFX Data in Response to a Change in Swing Data
JavaFX data should be accessed only on the JavaFX User thread. Whenever you must
change JavaFX data, wrap your code into a Runnable object and call the
Platform.runLater method as shown in Example 3–2.

Example 3–2

jbutton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Platform.runLater(new Runnable() {
 @Override
 public void run() {
 fxlabel.setText("Swing button clicked!");

Introducing the SimpleSwingBrowser Application

Integrating JavaFX into Swing Applications 3-3

 }
 });
 }
});

Changing Swing Data in Response to a Change in JavaFX Data
Swing data should be changed only on the EDT. To ensure that your code is
implemented on the EDT, wrap it into a Runnable object and call the
SwingUtilities.invokeLater method as shown in Example 3–3.

Example 3–3

SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 //Code to change Swing data.
 }
});

Introducing the SimpleSwingBrowser Application
To see how Swing–JavaFX interoperability works, consider the SimpleSwingBrowser
application. This is a Swing application with an integrated JavaFX component
intended to view Web pages. You can type a URL in an address bar and view the page
loaded in the application window. The SimpleSwingBrowser application window is
shown in Figure 3–1.

Figure 3–1 The SimpleSwingBrowser Application Window

Initializing Swing Data
You can view the SimpleSwingBrowser.java file or download the
SimpleSwingBrowser.zip file with a NetBeans project. Extract files from the zip file to
a directory on your local file system and run the project in your Netbeans IDE.

Introducing the SimpleSwingBrowser Application

3-4 JavaFX Interoperability

As of version 7.2, the NetBeans IDE provides support for Swing applications with the
embedded JavaFX content. When creating a new project, in the JavaFX category
choose JavaFX in Swing Application.

The GUI of the SimpleSwingBrowser application is created on the EDT when the
application starts. The main method is implemented as shown in Example 3–4.

Example 3–4

public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 SimpleSwingBrowser browser = new SimpleSwingBrowser();
 browser.setVisible(true);
 browser.loadURL("http://oracle.com");
 }
 });
}

The SimpleSwingBrowser class initializes Swing objects and calls the initComponents
method to create the GUI as shown in Example 3–5.

Example 3–5

public class SimpleSwingBrowser extends JFrame {

 private final JFXPanel jfxPanel = new JFXPanel();
 private WebEngine engine;

 private final JPanel panel = new JPanel(new BorderLayout());
 private final JLabel lblStatus = new JLabel();

 private final JButton btnGo = new JButton("Go");
 private final JTextField txtURL = new JTextField();
 private final JProgressBar progressBar = new JProgressBar();

 public SimpleSwingBrowser() {
 super();
 initComponents();
 }

 private void initComponents() {
 createScene();

 ActionListener al = new ActionListener() {

Note: To run this application from behind a firewall, you must
specify proxy settings in order for the application to access a remote
resource.

In the NetBeans IDE, right-click the SimpleSwingBrowser project in
the Projects window, select Properties, and in the Projects Properties
dialog, select Run.

In the VM Options field, set the proxy in the following format:

-Dhttp.proxyHost=webcache.mydomain.com -Dhttp.proxyPort=8080

Introducing the SimpleSwingBrowser Application

Integrating JavaFX into Swing Applications 3-5

 @Override
 public void actionPerformed(ActionEvent e) {
 loadURL(txtURL.getText());
 }
 };

 btnGo.addActionListener(al);
 txtURL.addActionListener(al);

 progressBar.setPreferredSize(new Dimension(150, 18));
 progressBar.setStringPainted(true);

 JPanel topBar = new JPanel(new BorderLayout(5, 0));
 topBar.setBorder(BorderFactory.createEmptyBorder(3, 5, 3, 5));
 topBar.add(txtURL, BorderLayout.CENTER);
 topBar.add(btnGo, BorderLayout.EAST);

 JPanel statusBar = new JPanel(new BorderLayout(5, 0));
 statusBar.setBorder(BorderFactory.createEmptyBorder(3, 5, 3, 5));
 statusBar.add(lblStatus, BorderLayout.CENTER);
 statusBar.add(progressBar, BorderLayout.EAST);

 panel.add(topBar, BorderLayout.NORTH);
 panel.add(jfxPanel, BorderLayout.CENTER);
 panel.add(statusBar, BorderLayout.SOUTH);

 getContentPane().add(panel);

 setPreferredSize(new Dimension(1024, 600));
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 pack();
 }
}

The topmost window of this application is a JFrame object, which contains various
Swing components such as a text field, a button, a progress bar, and a JFX panel
intended to display JavaFX content.

Loading JavaFX Content
On the first run, the web page at http://oracle.com is loaded into a WebView object.
As a new URL is entered in the address bar, the action listener, which is attached to the
txtURL text field in the initComponents method, initiates the loading of a page as
shown in Example 3–6.

Example 3–6

ActionListener al = new ActionListener() {
 @Override public void actionPerformed(ActionEvent e) {
 loadURL(txtURL.getText());
 }
};

JavaFX data should only be accessed on the JavaFX application thread. The loadURL
method wraps the code into a Runnable object and calls the Platform.runLater
method as shown in Example 3–7.

Introducing the SimpleSwingBrowser Application

3-6 JavaFX Interoperability

Example 3–7

public void loadURL(final String url) {
 Platform.runLater(new Runnable() {
 @Override public void run() {
 String tmp = toURL(url);

 if (url == null) {
 tmp = toURL("http://" + url);
 }

 engine.load(tmp);
 }
 });
}

private static String toURL(String str) {
 try {
 return new URL(str).toExternalForm();
 } catch (MalformedURLException exception) {
 return null;
 }
}

Updating Swing Data
As a new page is loaded into the WebView component, the title of the page is retrieved
from the JavaFX data and passed to the Swing GUI to be placed on the application
window as a title. This behavior is implemented in the createScene method as shown
in Example 3–8.

Example 3–8

private void createScene() {

 Platform.runLater(new Runnable() {
 @Override
 public void run() {

 WebView view = new WebView();
 engine = view.getEngine();

 engine.titleProperty().addListener(new ChangeListener<String>() {
 @Override
 public void changed(ObservableValue<? extends String> observable,
String oldValue, final String newValue) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 SimpleSwingBrowser.this.setTitle(newValue);
 }
 });
 }
 });
 }
 });
}

Application Files

Integrating JavaFX into Swing Applications 3-7

Application Files
Source Code

■ SimpleSwingBrowser.java

NetBeans Projects

SimpleSwingBrowser.zip

Application Files

3-8 JavaFX Interoperability

4

Enriching Swing Applications with JavaFX Functionality 4-1

4Enriching Swing Applications with JavaFX
Functionality

In this chapter you learn how to intermix a Swing table and JavaFX bar chart in a
single application.

This chapter starts with a Swing application and provides an example of how to enrich
the Swing application by adding JavaFX functionality.

Sample Swing Application
Many real-world projects employ Swing applications that deal with tables. You can
continue using the existing code and still take an advantage of JavaFX APIs. For
example, you can add a JavaFX bar chart to provide a colorful illustration of the
tabular data. This chapter provides the SwingInterop example that handles a Swing
table and a JavaFX bar chart. As you change the data in a table cell, the bar chart
immediately updates.

Start with the sample application that has only the Swing table shown in Figure 4–1.

Figure 4–1 Swing JTable Application Window

This application consists of two classes:

■ SampleTableModel.java

■ SwingInterop.java

The SampleTableModel class inherits from the AbstractTableModel class and defines
the table.

The SwingInterop class inherits from the JApplet class and is the basic class of the
application. Its main method calls the run method on the Event Dispatch Thread
(EDT) to create the graphical user interface (GUI). The run method creates a JFrame
object and a JApplet object, and initializes the JApplet object with an instance of the
SwingInterop class. Then it calls the init method, which creates the table and adds
the table to the content pane of the applet.

Integrating JavaFX Bar Chart

4-2 JavaFX Interoperability

You can see the implementation of both classes by clicking the links above.

Integrating JavaFX Bar Chart
To provide data for a bar chart, modify the SampleTableModel class by adding a new
class variable (bcData) and a method that retrieves data from the table and returns the
data in the format appropriate for the bar chart. The implementation of the
getBarChartData method is shown in Example 4–1.

Example 4–1

import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.chart.BarChart;

public class SampleTableModel extends AbstractTableModel {
 private static ObservableList<BarChart.Series> bcData;

 public ObservableList<BarChart.Series> getBarChartData() {
 if (bcData == null) {
 bcData = FXCollections.<BarChart.Series>observableArrayList();
 for (int row = 0; row < getRowCount(); row++) {
 ObservableList<BarChart.Data> series =
FXCollections.<BarChart.Data>observableArrayList();
 for (int column = 0; column < getColumnCount(); column++) {
 series.add(new BarChart.Data(getColumnName(column),
getValueAt(row, column)));
 }
 bcData.add(new BarChart.Series(series));
 }
 }
 return bcData;
 }
//rest of the SampleTableModel class code
}
The SwingInterop class overrides the JApplet.init method to create the content pane
of the application. Modify the init method to create a JFXPanel object to hold the
JavaFX bar chart and a JSplitPane object to hold both the JavaFX chart and the table.
The required changes to the init method are shown in bold in Example 4–2.

Example 4–2

@Override
public void init() {
 tableModel = new SampleTableModel();
 // create javafx panel for charts
 chartFxPanel = new JFXPanel();
 chartFxPanel.setPreferredSize(new Dimension(PANEL_WIDTH_INT, PANEL_HEIGHT_
INT));

 //create JTable
 JTable table = new JTable(tableModel);
 table.setAutoCreateRowSorter(true);
 table.setGridColor(Color.DARK_GRAY);
 SwingInterop.DecimalFormatRenderer renderer =
new SwingInterop.DecimalFormatRenderer();
 renderer.setHorizontalAlignment(JLabel.RIGHT);
 for (int i = 0; i < table.getColumnCount(); i++) {
 table.getColumnModel().getColumn(i).setCellRenderer(renderer);

Integrating JavaFX Bar Chart

Enriching Swing Applications with JavaFX Functionality 4-3

 }
 JScrollPane tablePanel = new JScrollPane(table);
 tablePanel.setPreferredSize(new Dimension(PANEL_WIDTH_INT,
TABLE_PANEL_HEIGHT_INT));
 JPanel chartTablePanel = new JPanel();
 chartTablePanel.setLayout(new BorderLayout());

 //Create split pane that holds both the bar chart and table
 JSplitPane jsplitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
 jsplitPane.setTopComponent(chartTablePanel);
 jsplitPane.setBottomComponent(tablePanel);
 jsplitPane.setDividerLocation(410);
 chartTablePanel.add(chartFxPanel, BorderLayout.CENTER);

 //Add the split pane to the content pane of the application
 add(jsplitPane, BorderLayout.CENTER);
}

To get rid of a syntax error, add import statements and the definition of the
chartFxPanel class variable to the SwingInterop class as shown in Example 4–3.

Example 4–3

import javafx.embed.swing.JFXPanel;
import javax.swing.*;

public class SwingInterop extends JApplet {
 private static JFXPanel chartFxPanel;
// rest of the SwingInterop class code here
}

You prepared the UI of your Swing application to render JavaFX data. The next step is
creating the JavaFX scene. Because the JavaFX scene must be created on the JavaFX
Application thread, wrap your code into a Runnable object as shown in Example 4–4.
Add this code at the end of the init method.

Example 4–4

Platform.runLater(new Runnable() {
 @Override
 public void run() {
 createScene();
 }
});

Add the import statement shown in Example 4–5 to the SwingInterop class.

Example 4–5

import javafx.application.Platform;

Implement the createScene method of the SwingInterop class as shown in
Example 4–6. Add the import statements and define the instance variable chart.

Example 4–6

import javafx.scene.Scene;
import javafx.scene.chart.Chart;

private void createScene() {

Integrating JavaFX Bar Chart

4-4 JavaFX Interoperability

 chart = createBarChart();
 chartFxPanel.setScene(new Scene(chart));
}

The createBarChart method creates the chart diagram and adds a change listener to
the table. Note that any change of JavaFX data must happen on the JavaFX thread. For
this reason, wrap the code in the event handler, which updates the JavaFX chart, into a
Runnable object and pass it to the Platform.runLater method. The implementation of
the createBarChart method is shown in Example 4–7.

Example 4–7

private BarChart createBarChart() {
 CategoryAxis xAxis = new CategoryAxis();
xAxis.setCategories(FXCollections.<String>observableArrayList(tableModel.
getColumnNames()));
 xAxis.setLabel("Year");
 double tickUnit = tableModel.getTickUnit();

 NumberAxis yAxis = new NumberAxis();
 yAxis.setTickUnit(tickUnit);
 yAxis.setLabel("Units Sold");

 final BarChart chart = new BarChart(xAxis, yAxis,
tableModel.getBarChartData());
 tableModel.addTableModelListener(new TableModelListener() {

 public void tableChanged(TableModelEvent e) {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 final Object value =
((SampleTableModel) e.getSource()).getValueAt(row, column);

 Platform.runLater(new Runnable() {
 public void run() {
 XYChart.Series<String, Number> s =
(XYChart.Series<String, Number>) chart.getData().get(row);
 BarChart.Data data = s.getData().get(column);
 data.setYValue(value);
 }
 });
 }
 }
 });
 return chart;
}

Add the import statements shown in Example 4–8.

Example 4–8

import javafx.collections.FXCollections;
import javafx.scene.chart.BarChart;
import javafx.scene.chart.CategoryAxis;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javax.swing.event.TableModelEvent;
import javax.swing.event.TableModelListener;

Application Files

Enriching Swing Applications with JavaFX Functionality 4-5

Rename the title of the frame to "Swing JTable and Bar Chart" and run the
SwingInterop application.

The application window is shown in Figure 4–2.

Figure 4–2 SwingInterop Application Window

Application Files
Source Code

■ SwingInterop.java

■ SampleTableModel.java

NetBeans Projects

■ SwingInterop.zip

Application Files

4-6 JavaFX Interoperability

5

Leveraging Applications with Media Features 5-1

5Leveraging Applications with Media Features

In this chapter you review a Media Player application that plays a video file and has
controls typical for a video player such as a start/pause button, sliders to show
playback progress and adjust volume, and a check box that turns repeat on.

For the purpose of this chapter, get familiar with the javafx.scene.media package
that enables developers to create media applications.

About Media Integration
Any JavaFX media application can be built using the following key classes:

■ Media class: Represents a media resource

■ MediaPlayer class: Provides the controls for playing the specified resource

■ MediaView class: Provides a view of the media resource played by a MediaPlayer
object

Because the MediaView class is a subclass of the Node class, the MediaView object can
be added to a JavaFX scene. This is the principal factor that provides a foundation for
integration of the JavaFX media functionality into desktop and web applications. Now
that you know how to embed the JavaFX scene into Swing applications, you can
further leverage your applications by integrating the Media Player component. You
can animate the MediaView object, transform it, and apply effects to it, just as you can
with any other node. In this way, you can support numerous creative tasks.

Building the Media Player Application
The Incorporating Media Assets Into JavaFX Applications document provides
step-by-step instructions on how to create the EmbeddedMediaPlayer application. It
also provides the Netbeans project source. Follow the detailed instructions to build the
application or download the source project using the link on the sidebar.

The MediaPlayer application discussed in this chapter is based on the
EmbeddedMediaPlayer application but is slightly improved as follows:

■ As a best programming practice, the application uses an external CSS file.

■ The control bar contains the Loop check box to turn repeat on.

The application window is shown in Figure 5–1.

Building the Media Player Application

5-2 JavaFX Interoperability

Figure 5–1 Media Player Application Window

You can modify the EmbeddeMediaPlayer project or save its copy with a different
name and modify the new project.

Skinning the Application with CSS
To skin the application with CSS, first create the mediaplayer.css file and save it in
the folder with the source files of your application. Add the style rules shown in
Example 5–1.

Example 5–1

#mediaControl {
 -fx-background-color: #bfc2c7;
}
#mediaViewPane {
 -fx-background-color: black;;
}

Next, open the MediaControl.java file and remove from the MediaControl constructor
the lines shown in Example 5–2.

Example 5–2

setStyle("-fx-background-color: #bfc2c7;");
mvPane.setStyle("-fx-background-color: black;");

Then modify the MediaControl constructor by adding the lines shown in bold in
Example 5–3.

Example 5–3

public MediaControl(final MediaPlayer mp) {
 this.mp = mp;
 setId("mediaControl");

 mediaView = new MediaView(mp);
 Pane mvPane = new Pane();
 mvPane.getChildren().add(mediaView);

Building the Media Player Application

Leveraging Applications with Media Features 5-3

 mvPane.setId("mediaViewPane");
 setCenter(mvPane);

Adding a New Control to the Control Bar
Adding a new control to the control bar requires only a few steps. In the section where
you define the MediaControl class instance variables, remove the definition of the
repeat variable shown in Example 5–4.

Example 5–4

private final boolean repeat = false;

In the MediaControl class, remove the code that used the repeat instance variable
shown in Example 5–5.

Example 5–5

mp.setCycleCount(repeat ? MediaPlayer.INDEFINITE : 1);

Now add the class variable repeatBox as shown in Example 5–6.

Example 5–6

private CheckBox repeatBox;

Add a label and the check box to the control bar of your Media Player. Place the
following code in the MediaControl constructor after the lines that added the
volumeSlider to the bar, as shown in Example 5–7.

Example 5–7

mediaBar.getChildren().add(volumeSlider);

Label repeatLabel = new Label(" Loop: ");
repeatLabel.setPrefWidth(50);
repeatLabel.setMinWidth(25);
mediaBar.getChildren().add(repeatLabel);

repeatBox = new CheckBox();
repeatBox.setSelected(true);
mediaBar.getChildren().add(repeatBox);

setBottom(mediaBar);

Implement the logic of using the check box in the setOnEndOfMedia method, as shown
in Example 5–8.

Example 5–8

mp.setOnEndOfMedia(new Runnable() {

 public void run() {
 if (repeatBox.isSelected()) {
 mp.seek(mp.getStartTime());
 } else {
 playButton.setText(">");
 stopRequested = true;
 atEndOfMedia = true;

Application Files

5-4 JavaFX Interoperability

 }
 }
});

To enable the Media Player access a remote media resource when running from behind
a firewall, provide the proxy settings in the following format:
-Dhttp.proxyHost=yourproxyhost.com -Dhttp.proxyPort=portNumber. In this
example, yourproxyhost.com is your proxy and portNumber is a port number to use.

Application Files
Source Code

■ MediaPlayer.java

■ MediaControl.java

NetBeans Projects

■ MediaPlayer.zip

6

Implementing a Swing Application in JavaFX 6-1

6Implementing a Swing Application in JavaFX

In this chapter, you consider a Swing application and learn how to implement it in
JavaFX.

For the purpose of this chapter, get familiar with the Converter application shown in
Figure 6–1. This application converts distance measurements between metric and U.S.
units.

Figure 6–1 Converter Application in Java

Analyzing the Converter Application Developed in Swing
For more information about the implementation of this example in the Java
programming language, see How to Use Panels and Using Models trails in the Swing
tutorial. In particular, the graphical user interface (GUI) is discussed in the trail about
the panels.

To learn the code of the Converter application, download its NetBeans project or the
source files available at the example index.

Swing components use models. If you look at the contents of the project, you notice
the ConverterRangeModel and FollowerRangeModel classes that define models for the
Converter application.

The Converter application consists of the following files:

■ ConversionPanel.java — contains a custom JPanel subclass to hold components

■ Converter.java — contains the main application class

■ ConverterRangeModel.java — defines the top slider’s model

Planning the Converter Application in JavaFX

6-2 JavaFX Interoperability

■ FollowerRangeModel.java — defines the bottom slider’s model

■ Units.java — creates Unit objects

Note that the synchronization between each text field and its slider is implemented by
event handlers that listen for changes in values.

Planning the Converter Application in JavaFX
The Converter application contains two similar panels that hold components such as a
text field, slider, and combo box. The panels have titles. The TitlePane class from the
javafx.scene.control package ideally suits the GUI of the Converter application.

In what follows, you will implement the ConversionPanel class and add two instances
of this class to the graphical scene of the Converter application.

First, note that the components within a single ConversionPanel object should be
synchronized as follows. Whenever you move the knob on the slider, you must update
the value in the text field and vice versa: Whenever you change the value in the text
field, you must adjust the position of the knob on the slider.

As soon as you choose another value from the combo box, you must update the value
of the text field and, hence, the position of the knob on the slider.

Second, note that both ConversionPanel objects should be synchronized. As soon as
changes happen on one panel, the corresponding components on another panel must
be updated.

It is suggested that you implement synchronization between the panels using the
DoubleProperty object, called meters, and listen to changes in the properties of the
text fields and combo boxes by creating and registering two InvalidationListener
objects: fromMeters and toMeters. Whenever the property of the text field on one
panel changes, the invalidated method of the attached InvalidationListener object
is called, which updates the meters property. Because the meters property changes,
the invalidated method of the InvalidationListener object, attached to the meters
property, is called, which updates the corresponding text field on another panel.

Similarly, whenever the property of the combo box on one panel changes, the
invalidated method of the attached InvalidationListener object is called, which
updates the text field on this panel.

To provide synchronization between the value of the slider and the value of the meters
object, use bidirectional binding.

For more information about JavaFX properties and binding, see Using JavaFX
Properties and Binding.

Creating the Converter Application in JavaFX
Create a new JavaFX project in NetBeans IDE and name it Converter. Copy the
Unit.java file from the Swing application to the Converter project. Add a new java
class to this project and name it ConversionPanel.java.

Standard JavaFX Pattern to Create the GUI
Before you start creating the GUI of the Converter application in JavaFX, see the
standard pattern of GUI creation in Swing applications, as shown in Example 6–1.

Creating the Converter Application in JavaFX

Implementing a Swing Application in JavaFX 6-3

Example 6–1

public class Converter {
 private void initAndShowGUI() {
 ...
 }
 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 initAndShowGUI();
 }
 });
 }
}

To map this pattern to JavaFX, you extend the javafx.application.Application
class, override the start method, and call the main method, as shown in Example 6–2.

Example 6–2

import javafx.application.Application;
import javafx.stage.Stage;

public class Converter extends Application {
 @Override
 public void start(Stage t) {
 ...
 }
 public static void main(String[] args) {
 launch(args);
 }
}

When you create a new JavaFX project in the NetBeans IDE, this pattern is
automatically generated for you. However, it is important that you understand the
basic approach to GUI creation in JavaFX, especially if you use a text editor.

Containers and Layouts
In Swing, containers and layout managers are different entities. You create a container,
such as a JPanel or JComponent object, and set a layout manager for this container. You
can assign a specific layout manager and write.add() in your code or assign none of
the layout managers.

In JavaFX, the container itself takes care of laying out its child nodes. You create a
specific layout pane, such as a Vbox, FlowPane, or TitledPane object, and then add
content to the list of its child nodes using the.getChildren().add()methods.

There are several layout container classes in JavaFX, called panes, some of which have
their counterparts in Swing, such as the FlowPane class in JavaFX and FlowLayout class
in Swing.

For more information, see Working With Layouts in JavaFX.

UI Controls
JavaFX SDK provides a set of standard UI controls. Some of the UI controls have their
counterparts in Swing such as the Button class in JavaFX and JButton in Swing;

Creating the Converter Application in JavaFX

6-4 JavaFX Interoperability

Slider in JavaFX and JSlider in Swing; and TextField in JavaFX and JTextField in
Swing.

To implement the Converter application in JavaFX, you can use the standard UI
controls provided by the TextField, Slider, and ComboBox classes.

For more information, see Using JavaFX UI Controls.

Mechanism of Getting Notifications on User Actions and Binding
In Swing, you can register a listener on any component and listen for changes in the
component properties, such as size, position, or visibility; or listen for events, such as
whether the component gained or lost the keyboard focus; or whether the mouse was
clicked, pressed, or released over the component.

In JavaFX, each object has a set of properties for which you can register a listener. The
listener is called whenever a value of the property changes.

Note that an object can be registered as a listener for changes in another object’s
properties. Thus, you can use the binding mechanism to synchronize some properties
of two objects.

Creating the ConversionPanel Class
The ConversionPanel class is used to hold components: a text field, a slider, and a
combo box. When creating the graphical scene of the Converter application, you add
two instances of the ConversionPanel class to the graphical scene. Add the import
statement for the TitledPane class and extend the ConversionPanel class as shown in
Example 6–3.

Example 6–3

import javafx.scene.control.TitledPane;

public class ConversionPanel extends TitledPane {

}

Creating Instance Variables for UI Controls
Add import statements for the TextField, Slider, ComboBox controls and define
instance variables for the components as shown in Example 6–4.

Example 6–4

import java.text.NumberFormat;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Slider;
import javafx.scene.control.TextField;

private ComboBox<Unit> comboBox;
private Slider slider;
private TextField textField;

Creating the Converter Application in JavaFX

Implementing a Swing Application in JavaFX 6-5

Creating DoubleProperty and NumberFormat Objects
Add the import statement for the DoubleProperty and NumberFormat classes and
create a DoubleProperty object named meters as shown in Example 6–5. The meters
object is used to ensure the synchronization between two ConversionPanel objects.

Example 6–5

import javafx.beans.property.DoubleProperty;

private DoubleProperty meters;
provate numberFormat;

Laying Out the Components
To lay out the text field and the slider, use the VBox class. To lay out both of these
components and a combo box, use the HBox class. Add the import statements for the
ObservableList class and implement the constructor of the ConversionPanel class as
shown in Example 6–6.

Example 6–6

import javafx.collections.ObservableList;

public ConversionPanel(String title, ObservableList<Unit> units,
DoubleProperty meters) {
 setText(title);
 setCollapsible(false);

 numberFormat = NumberFormat.getNumberInstance();
 numberFormat.setMaximumFractionDigits(2);

 textField = new TextField();
 slider = new Slider(0, MAX, 0);
 comboBox = new ComboBox(units);
 comboBox.setConverter(new StringConverter<Unit>() {

 @Override
 public String toString(Unit t) {
 return t.description;
 }

 @Override
 public Unit fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 })
 VBox vbox = new VBox(textField, slider);
 HBox hbox = new HBox(vbox, comboBox);
 setContent(hbox);
 this.meters = meters;

 comboBox.getSelectionModel().select(0);
}

The last line of code selects a value in the ComboBox object.

Creating the Converter Application in JavaFX

6-6 JavaFX Interoperability

Creating InvalidationListener Objects
To listen to changes in the properties of the text fields and combo boxes, create the
InvalidationListener objects fromMeters and toMeters as shown in Example 6–7.

Example 6–7

import javafx.beans.InvalidationListener;

private InvalidationListener fromMeters = t -> {
 if (!textField.isFocused()) {
 textField.setText(numberFormat.format(meters.get() / getMultiplier()));
 }
};

private InvalidationListener toMeters = t -> {
 if (!textField.isFocused()) {
 return;
 try {
 meters.set(numberFormat.parse(textField.getText()).doubleValue() *
getMultiplier());
 } catch (ParseException | Error | RuntimeException ignored) {
 }
};

Adding Change Listeners to Controls and Ensuring Synchronization
To provide the synchronization between the text fields and combo boxes, add change
listeners as shown in Example 6–8.

Example 6–8

meters.addListener(fromMeters);
comboBox.valueProperty().addListener(fromMeters);
textField.textProperty().addListener(toMeters);
fromMeters.invalidated(null);

Create a bidirectional binding between the value of the slider and the value of the
meters object as shown in Example 6–9.

Example 6–9

slider.valueProperty().bindBidirectional(meters);

When a new value is typed in the text field, the invalidated method of the toMeters
listener is called, which updates the value of the meters object.

Creating the Converter Class
Open the Converter.java file that was automatically generated by the NetBeans IDE
and remove all of the code except for the main method. Then, press Ctrl (or
Cmd)+Shift+I to correct the import statements.

Defining Instance Variables
Add import statements for the ObservableList, DoubleProperty, and
SimpleDoubleProperty classes and create metricDistances, usaDistances, and
meters variables of the appropriate types as shown in Example 6–10.

Creating the Converter Application in JavaFX

Implementing a Swing Application in JavaFX 6-7

Example 6–10

import javafx.beans.property.DoubleProperty;
import javafx.collections.ObservableList;
import javafx.beans.property.SimpleDoubleProperty;

private ObservableList<Unit> metricDistances;
private ObservableList<Unit> usaDistances;
private DoubleProperty meters = new SimpleDoubleProperty(1);

Creating the Constructor for the Converter Class
In the constructor for the Converter class, create Unit objects for the metric and the
U.S. distances as shown in Example 6–11. Add the import statement for the
FXCollections class. Later, you will instantiate two ConversionPanel objects with
these units.

Example 6–11

import javafx.collections.FXCollections;

public Converter() {
metricDistances = FXCollections.observableArrayList(
 new Unit("Centimeters", 0.01),
 new Unit("Meters", 1.0),
 new Unit("Kilometers", 1000.0));

usaDistances = FXCollections.observableArrayList(
 new Unit("Inches", 0.0254),
 new Unit("Feet", 0.305),
 new Unit("Yards", 0.914),
 new Unit("Miles", 1613.0));
}

Creating the Graphical Scene
Override the start method to create the graphical scene for your Converter
application. Add two ConversionPanel objects to the graphical scene and lay out them
vertically. Note that two ConversionPanel objects are instantiated with the same
meters object. Use the VBox class as a root container for the graphical scene. Instantiate
two ConversionPanel objects as shown in Example 6–12.

Example 6–12

@Override
public void start(Stage stage) {
 VBox vbox = new VBox(
 new ConversionPanel(
 "Metric System", metricDistances, meters),
 new ConversionPanel(
 "U.S. System", usaDistances, meters));
 Scene scene = new Scene(vbox);

 stage.setTitle("Converter");
 stage.setScene(scene);
 stage.show();
}

Application Files

6-8 JavaFX Interoperability

You can view the source code and download the NetBeans project of the Converter
application in JavaFX using the links at the bottom of this document.

The Converter application in JavaFX is shown in Figure 6–2.

Figure 6–2 Converter Application in JavaFX

Compare the two applications with the same functionality implemented using the
Swing library and JavaFX.

Not only does the application in JavaFX contain three files as compared with five files
of the Swing application, but the code in JavaFX is cleaner. The applications also differ
in look and feel.

Application Files
Source Code

■ Converter.java

■ ConversionPanel.java

NetBeans Projects

■ Converter.zip

7

Embedding Swing Content in JavaFX Applications 7-1

7Embedding Swing Content in JavaFX
Applications

This article describes how to embed Swing components in JavaFX applications. It
discusses the threading restrictions and provides working applications that illustrate
Swing buttons with HTML content embedded in a JavaFX application and
interoperability between Swing and JavaFX buttons.

The ability to embed JavaFX content in Swing applications has existed since the
JavaFX 2.0 release. To enhance the interoperability of JavaFX and Swing, JavaFX 8
introduces a new class that provides reverse integration and enables developers to
embed Swing components in JavaFX applications.

Before you run any code from this article, install JDK 8 on your computer.

SwingNode Class
JavaFX 8 introduces the SwingNode class, which is located in the javafx.embed.swing
package. This class enables you to embed Swing content in a JavaFX application. To
specify the content of the SwingNode object, call the setContent method, which
accepts an instance of the javax.swing.JComponent class. You can call the setContent
method on either the JavaFX application thread or event dispatch thread (EDT).
However, to access the Swing content, ensure that your code runs on EDT, because the
standard Swing threading restrictions apply.

The code shown in Example 7–1 illustrates the general pattern of using the SwingNode
class.

Example 7–1

import javafx.application.Application;
import javafx.embed.swing.SwingNode;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import javax.swing.JButton;
import javax.swing.SwingUtilities;

public class SwingFx extends Application {

 @Override
 public void start (Stage stage) {
 final SwingNode swingNode = new SwingNode();

 createSwingContent(swingNode);

Embedding Swing Content and Handling Events

7-2 JavaFX Interoperability

 StackPane pane = new StackPane();
 pane.getChildren().add(swingNode);

 stage.setTitle("Swing in JavaFX");
 stage.setScene(new Scene(pane, 250, 150));
 stage.show();
 }

 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new JButton("Click me!"));
 });
 }
}
When run, this code produces the output shown in Figure 7–1.

Figure 7–1 Swing JButton Embedded in a JavaFX Application

Embedding Swing Content and Handling Events
The ButtonHtmlDemo in the Swing tutorial adds font, color, and other formatting to
three buttons shown in Example 7–2 and Example 7–3. The buttons respond to mouse
and keyboard events as shown in Example 7–5 and Example 7–6. Figure 7–2 shows the
three buttons created using Swing in the ButtonHtmlDemo now embedded in a JavaFX
Application (SwingNodeSample). You will create the SwingNodeSample application and
ensure that all events are delivered to an appropriate Swing button and get processed.

Figure 7–2 ButtonHtmlDemo Embedded in a JavaFX Application

The left and right buttons have multiple lines of text implemented with the HTML
formatting as shown in Example 7–2.

Embedding Swing Content and Handling Events

Embedding Swing Content in JavaFX Applications 7-3

Example 7–2

b1 = new JButton("<html><center><u>D</u>isable
"
 + "middle button",
 leftButtonIcon);

b3 = new JButton("<html><center><u>E</u>nable
"
 + "middle button",
 rightButtonIcon);

The simple format of middle button does not require HTML, so it is initialized with a
string label and an image as shown in Example 7–3.

Example 7–3

b2 = new JButton("middle button", middleButtonIcon);

All three buttons have the tooltips and mnemonic characters as shown in Example 7–4.

Example 7–4

b1.setToolTipText("Click this button to disable the middle button.");
b2.setToolTipText("This middle button does nothing when you click it.");
b3.setToolTipText("Click this button to enable the middle button.");

b1.setMnemonic(KeyEvent.VK_D);
b2.setMnemonic(KeyEvent.VK_M);
b3.setMnemonic(KeyEvent.VK_E);

The left and right buttons are used to disable and enable the middle button
respectively. To enable the application to detect and respond to user action on these
buttons, attach action listeners and set action commands as shown in Example 7–5.

Example 7–5

b1.addActionListener(this);
b3.addActionListener(this);

b1.setActionCommand("disable");
b3.setActionCommand("enable");

Implement the actionPerformed method shown in Example 7–6. This method is called
when the user clicks the left or right button.

Example 7–6

public void actionPerformed(ActionEvent e) {
 if ("disable".equals(e.getActionCommand())) {
 b2.setEnabled(false);
 b1.setEnabled(false);
 b3.setEnabled(true);
 } else {
 b2.setEnabled(true);
 b1.setEnabled(true);
 b3.setEnabled(false);
 }
}

See the complete code of the ButtonHtmlDemo.java class.

Now set up a JavaFX project and run the SwingNodeSample application.

Embedding Swing Content and Handling Events

7-4 JavaFX Interoperability

To create the SwingNodeSample application:

Ensure that JDK 8 is installed on your computer. Then set up a JavaFX project in
NetBeans IDE:

1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX Application and click Next.

3. Name the project SwingNodeSample and select a JavaFX platform based on JDK
8. Click Finish.

4. In the Projects window, right-click the swingnodesample folder under Source
Packages. Choose New and then choose Java class.

5. Name a new class ButtonHtml and click Finish.

6. Copy the code of the ButtonHtmlDemo.java class and paste it in the project.

7. Open the swingnodesample folder on your disk and create the images folder.

8. Download the images left.gif, middle.gif, and right.gif by right clicking the
image and selecting Save Image As, and save them in the images folder.

9. In the SwingNodeSample class, remove the code inside the start method that was
automatically generated by NetBeans.

10. Instead, create a SwingNode object and implement the start method as shown in
Example 7–7.

Example 7–7

@Override
public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 StackPane pane = new StackPane();
 pane.getChildren().add(swingNode);

 Scene scene = new Scene(pane, 450, 100);
 stage.setScene(scene);
 stage.setTitle("ButtonHtmlDemo Embedded in JavaFX");
 stage.show();
}
11. To embed the three buttons produced by the ButtonHtml class, set the content of

the SwingNode object to be an instance of the ButtonHtml class as shown in
Example 7–8.

Example 7–8

private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new ButtonHtml());
 });
}
12. Press Ctrl (or Cmd) + Shift + I to correct the import statements.

To download the source code of the SwingNodeSample application, click the
SwingNodeSample.zip link.

Run the SwingNodeSample project and ensure that all means of interactivity provided
for the buttons work as they should:

■ With the mouse, hover over the buttons and see the tooltips.

Adding Interoperability Between Swing and JavaFX Components

Embedding Swing Content in JavaFX Applications 7-5

■ Click the left and right buttons to disable and enable the middle button
respectively.

■ Press Alt + D and Alt + E keys to disable and enable the middle button
respectively.

Adding Interoperability Between Swing and JavaFX Components
You can provide interoperability between JavaFX buttons and Swing buttons. For
example, the EnableFXButton application shown in Figure 7–3 enables a user to click
Swing buttons to disable or enable a JavaFX button. Conversely, the EnableButtons
application shown in Figure 7–4 enables a user to click a JavaFX button to activate a
Swing button.

Figure 7–3 Enable JavaFX Button Sample

Using Swing Buttons to Operate a JavaFX Button
The EnableFXButton application is created by modifying the SwingNodeSample
application and making the middle button an instance of the
javafx.scene.control.Button class. In the modified application, the Swing buttons
(Disable FX button) and (Enable FX button) are used to disable and enable a JavaFX
button (FX Button). Figure 7–3 shows the EnableFXButton application.

Follow these steps to create the EnableFXButton application:

1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX Application and click Next.

3. Name the project EnableFXButton.

4. In the Projects window, right-click the enablefxbutton folder under Source
Packages. Choose New and then choose Java class.

5. Name the new class ButtonHtml and click Finish.

6. Copy the code of the ButtonHtmlDemo.java class and paste it in the project.

7. Change the package declaration to enablefxbutton.

8. Open the enablefxbutton folder on your disk and create the images folder.

9. Download the images down.gif and middle.gif by right clicking the image and
selecting Save Image As, and save them in the images folder.

10. In the EnableFXButton class, declare a Button object as shown in Example 7–9.

Example 7–9

public class EnableFXButton extends Application {

Adding Interoperability Between Swing and JavaFX Components

7-6 JavaFX Interoperability

 public static Button fxbutton;

11. Remove the code inside the start method that was automatically generated by
NetBeans IDE and implement the start method as shown in Example 7–10.

Example 7–10

@Override
public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 BorderPane pane = new BorderPane();
 fxbutton = new Button("FX button");

 pane.setTop(swingNode);
 pane.setCenter(fxbutton);

 Scene scene = new Scene(pane, 300, 100);
 stage.setScene(scene);
 stage.setTitle("Enable JavaFX Button");
 stage.show();
}

12. Add the import statement for the SwingNode class as shown in Example 7–11.

Example 7–11

import javafx.embed.swing.SwingNode;

13. Implement the createSwingContent method to set the content of the SwingNode
object as shown in Example 7–12.

Example 7–12

private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new ButtonHtml());
 });
}

14. Press Ctrl (or Cmd) + Shift + I to add an import statement to the
javax.swing.SwingUtilities class.

15. Replace the initialization of fxbutton with the code shown in Example 7–13 to add
an image and set a tooltip and style for the JavaFX button.

Example 7–13

Image fxButtonIcon = new Image(
getClass().getResourceAsStream("images/middle.gif"));

fxbutton = new Button("FX button", new ImageView(fxButtonIcon));
fxbutton.setTooltip(
new Tooltip("This middle button does nothing when you click it."));
fxbutton.setStyle("-fx-font: 22 arial; -fx-base: #cce6ff;");

16. Press Ctrl (or Cmd) + Shift + I to add the import statements shown in
Example 7–14.

Adding Interoperability Between Swing and JavaFX Components

Embedding Swing Content in JavaFX Applications 7-7

Example 7–14

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.control.Tooltip;

17. Open the ButtonHtml class and remove all code related to the middle button b2.

18. Use the down.gif image for b1 (Disable FX button) and b3 (Enable FX button)
buttons as shown in Example 7–15.

Example 7–15

ImageIcon buttonIcon = createImageIcon("images/down.gif");
b1 = new JButton("<html><center><u>D</u>isable
"
 + "FX button",
 buttonIcon);
b3 = new JButton("<html><center><u>E</u>nable
"
 + "FX button",
 buttonIcon);

19. Modify the actionPerformed method to implement the disabling and enabling of
fxbutton as shown in Example 7–16. Note that the disabling and enabling of the
JavaFX button must happen on the JavaFX application thread.

Example 7–16

@Override
public void actionPerformed(ActionEvent e) {
 if ("disable".equals(e.getActionCommand())) {
 Platform.runLater(() -> {
 EnableFXButton.fxbutton.setDisable(true);
 });
 b1.setEnabled(false);
 b3.setEnabled(true);
 } else {
 Platform.runLater(() -> {
 EnableFXButton.fxbutton.setDisable(false);
 });
 b1.setEnabled(true);
 b3.setEnabled(false);
 }
}

20. Press Ctrl (or Cmd) + Shift + I to add the import statement shown in
Example 7–17.

Example 7–17

import javafx.application.Platform;

21. Run the application and click the Swing buttons to disable and enable the JavaFX
button, as shown in Figure 7–3.

Using a JavaFX Button to Operate a Swing Button
You can further modify the EnableFXButton application and implement the
setOnAction method for the JavaFX button so that clicking the JavaFX button activates
the Swing button. The modified application (EnableButtons) is shown in Figure 7–4.

Adding Interoperability Between Swing and JavaFX Components

7-8 JavaFX Interoperability

Figure 7–4 Enable Buttons Sample

To create the EnableButtons application:

1. Copy the EnableFXButton project and save it under the EnableButtons name.

2. Rename the EnableFXButton class to EnableButtons and the enablefxbutton
package to enablebuttons.

3. Correct the package statement in both the ButtonHtml and EnableButtons classes.

4. Open the EnableButtons class and make the pane an instance of the FlowPane class
as shown in Example 7–18.

Example 7–18

FlowPane pane = new FlowPane();

5. Modify the initialization of the fxButtonIcon variable to use the left.gif image
as shown in Example 7–19.

Example 7–19

Image fxButtonIcon = new Image(
getClass().getResourceAsStream("images/left.gif"));

6. Change the fxbutton text, tooltip, and font size and set the disableProperty to
true as shown in Example 7–20.

Example 7–20

fxbutton = new Button("Enable JButton", new ImageView(fxButtonIcon));
fxbutton.setTooltip(
new Tooltip("Click this button to enable the Swing button."));
fxbutton.setStyle("-fx-font: 18 arial; -fx-base: #cce6ff;");
fxbutton.setDisable(true);

7. Implement the setOnAction method by using a lambda expression as shown in
Example 7–21. Note that you must change Swing objects on event dispatch thread
only.

Example 7–21

fxbutton.setOnAction(ActionEvent e) {
 SwingUtilities.invokeLater(() -> {
 ButtonHtml.b1.setEnabled(true);
 });
 fxbutton.setDisable(true);
 }
});

Application Files

Embedding Swing Content in JavaFX Applications 7-9

8. Press Ctrl (or Cmd) + Shift + I to add the import statement to the
javafx.event.ActionEvent class.

9. Add the swingNode and fxbutton objects to the layout container as shown in
Example 7–22.

Example 7–22

pane.getChildren().addAll(swingNode, fxbutton);

10. Change the application title to "Enable Buttons Sample" as shown in
Example 7–23.

Example 7–23

stage.setTitle("Enable Buttons Sample");

11. Open the ButtonHtml class and change the modifier of the b1 button to public
static. Notice that the error mark in the EnableButtons class has disappeared.

12. Remove all code related to the b3 button and the line that sets an action command
for b1.

13. Modify the actionPerformed method by using a lambda expression as shown in
Example 7–24.

Example 7–24

@Override
public void actionPerformed(ActionEvent e) {
 Platform.runLater(() -> {
 EnableButtons.fxbutton.setDisable(false);
 });
 b1.setEnabled(false);
}

Conclusion
In this chapter you learned how to embed existing Swing components in JavaFX
applications and provide interoperability between Swing and JavaFX objects. The
ability to embed Swing content into JavaFX applications enables developers to migrate
Swing applications that use complex third-party Swing components for which they do
not have source code or applications that have legacy modules that exist only in
maintenance mode.

Application Files
Source Code

■ SwingNodeSample.java

■ ButtonHtmlDemo.java

Note: Ignore the error mark that appears on the left of the line that
enables b1. You will correct this error at step 11.

Application Files

7-10 JavaFX Interoperability

■ EnableButtons.java

■ EnableFXButton.java

NetBeans Projects

■ SwingNodeSample.zip

■ EnableButtons.zip

■ EnableFXButton.zip

Part III
Part III Interoperability with SWT

This document shows how to add a JavaFX scene graph to a Standard Widget Toolkit
(SWT) application, and how to make SWT and JavaFX controls interoperate.

■ "Introduction"

■ "Adding JavaFX Content to an SWT Component"

■ "Creating SWT-JavaFX Applications in an IDE"

■ "Packaging SWT-JavaFX Applications"

8

JavaFX Interoperability with SWT 8-1

8JavaFX Interoperability with SWT

This article shows how to add a JavaFX scene graph to a Standard Widget Toolkit
(SWT) application, and how to make SWT and JavaFX controls interoperate.

■ "Introduction"

■ "Adding JavaFX Content to an SWT Component"

■ "Creating SWT-JavaFX Applications in an IDE"

■ "Packaging SWT-JavaFX Applications"

■ "Application Files"

Introduction
If you develop SWT applications, you know that SWT uses the native operating
system controls and cannot easily be configured to use advanced GUI features, such as
animation. You can quickly add sparkle to an SWT application by integrating JavaFX
with SWT. All you need is the FXCanvas class from the javafx.embed.swt package.
The javafx.embed.swt package can be found in jfxswt.jar, which is located in the
JDK_Home/jre/lib/ directory. FXCanvas is a regular SWT canvas that can be used
anywhere that an SWT canvas can appear. It’s that simple.

In this article, you will see how to create an interactive SWT button and JavaFX button,
shown in Figure 8–1.

Figure 8–1 SWT Button on Left, JavaFX Button on Right

When the user clicks either button, the text is changed in the other button, as shown in
Figure 8–2 and Figure 8–3. This example shows how the SWT code and JavaFX code
can interoperate.

Figure 8–2 Clicking the SWT Button Changes the JavaFX Button Label

Adding JavaFX Content to an SWT Component

8-2 JavaFX Interoperability

Figure 8–3 Clicking the JavaFX Button Changes the SWT Button Label

Adding JavaFX Content to an SWT Component
In JavaFX, the Java code that creates and manipulates JavaFX classes runs in the
JavaFX User thread. In SWT, code that creates and manipulates SWT widgets runs in
the event loop thread. When JavaFX is embedded in SWT, these two threads are the
same. This means that there are no restrictions when calling methods defined in one
toolkit from the other.

Example 8–1 shows the code to create the SWT button and JavaFX button shown in
Figure 8–1. As shown in the code, you set JavaFX content into an FXCanvas with the
setScene() method in the FXCanvas class. To force SWT to lay out the canvas based on
the new JavaFX content, resize the JavaFX content first. To do this, get the JavaFX
Window that contains the JavaFX content and call sizeToScene(). When JavaFX is
embedded in SWT, a new preferred size is set for FXCanvas, enabling SWT to resize the
embedded JFX content in the same manner as other SWT controls.

JavaFX constructs content in terms of a hierarchical scene graph, placed inside a scene.
The code in Example 8–1 places the JavaFX button into a scene with the scene graph
shown in Figure 8–4 and described in comments in the code example.

Figure 8–4 JavaFX Scene Graph in SWT Application

Example 8–1 Java Code for Plain SWT and JavaFX Buttons

import javafx.embed.swt.FXCanvas;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.paint.Color;

import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.layout.RowLayout;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Event;
import org.eclipse.swt.widgets.Listener;

Adding JavaFX Content to an SWT Component

JavaFX Interoperability with SWT 8-3

import org.eclipse.swt.widgets.Shell;

public class TwoButtons {

 public static void main(String[] args) {
 final Display display = new Display();
 final Shell shell = new Shell(display);
 final RowLayout layout = new RowLayout();
 shell.setLayout(layout);

 /* Create the SWT button */
 final org.eclipse.swt.widgets.Button swtButton =
 new org.eclipse.swt.widgets.Button(shell, SWT.PUSH);
 swtButton.setText("SWT Button");

 /* Create an FXCanvas */
 final FXCanvas fxCanvas = new FXCanvas(shell, SWT.NONE) {

 @Override
 public Point computeSize(int wHint, int hHint, boolean changed) {
 getScene().getWindow().sizeToScene();
 int width = (int) getScene().getWidth();
 int height = (int) getScene().getHeight();
 return new Point(width, height);
 }
 };
 /* Create a JavaFX Group node */
 Group group = new Group();
 /* Create a JavaFX button */
 final Button jfxButton = new Button("JFX Button");
 /* Assign the CSS ID ipad-dark-grey */
 jfxButton.setId("ipad-dark-grey");
 /* Add the button as a child of the Group node */
 group.getChildren().add(jfxButton);
 /* Create the Scene instance and set the group node as root */
 Scene scene = new Scene(group, Color.rgb(
 shell.getBackground().getRed(),
 shell.getBackground().getGreen(),
 shell.getBackground().getBlue()));
 /* Attach an external stylesheet */
 scene.getStylesheets().add("twobuttons/Buttons.css");
 fxCanvas.setScene(scene);

 /* Add Listeners */
 swtButton.addListener(SWT.Selection, new Listener() {

 @Override
 public void handleEvent(Event event) {
 jfxButton.setText("JFX Button: Hello from SWT");
 shell.layout();
 }
 });
 jfxButton.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent event) {
 swtButton.setText("SWT Button: Hello from JFX");
 shell.layout();
 }
 });

Creating SWT-JavaFX Applications in an IDE

8-4 JavaFX Interoperability

 shell.open();
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }
}

The button style is based on a blog by Jasper Potts at the following location:
http://fxexperience.com/2011/12/styling-fx-buttons-with-css/

Creating SWT-JavaFX Applications in an IDE
Creating an SWT-JavaFX application in an IDE is simply a matter of adding the
following libraries to your project:

■ swt.jar, from an SWT zip download, available at
http://eclipse.org/swt

■ jfxswt.jar, from the JDK_HOME/jre/lib directory:

– For example, for a default JDK installation on Windows, the full path is:
C:\Program Files\Java\jdk1.8.0\jre\lib

Packaging SWT-JavaFX Applications
How you package your SWT-JavaFX application depends on whether JavaFX is
bundled with the JDK (7u6 and later) or installed in a different location (for releases
prior to JDK 7u6).

Packaging the Application when JavaFX is Bundled with the JDK
If you use NetBeans IDE 7.2 or later, no special handling is required to package your
application, provided you have added the libraries as described in Creating
SWT-JavaFX Applications in an IDE. You can simply do a Clean and Build, which
produces a double-clickable JAR file in the /dist directory of the project.

Packaging the Application with a Standalone JavaFX Installation
When an SWT-JavaFX application is built, the JAR file must be packaged as a JavaFX
application so the application on startup will look for the standalone JavaFX Runtime
on the user's system. The SWT library (swt.jar) must be included as a resource (32-bit
or 64-bit to match the target system).

Application Files
NetBeans Projects

■ TwoButtons.zip

Note: Ensure that all JAR files are either 32 bit or 64 bit, as required
for your environment.

Part IV
Part IV Source Code for the Interoperability

Tutorial

The following table lists the demo applications in this document with their associated
source code files.

Tutorial Source Code
NetBeans Project
File

Integrating JavaFX
into Swing

SimpleSwingBrowser
.java

SimpleSwingBrowser
.zip

Enriching Swing
Applications with
JavaFX Functionality

SwingInterop.java

SampleTableModel.j
ava

SwingInterop.zip

Leveraging
Applications with
Media Features

MediaControl.java

MediaPlayer.java

mediaplayer.css

MediaPlayer.zip

Implementing a
Swing Application in
JavaFX

Converter.java

ConversionPanel.ja
va

Converter.zip

Embedding Swing
Content in JavaFX

SwingNodeSample.ja
va

ButtonHtmlDemo.jav
a

EnableFXButton.jav
a

EnableButtons.java

SwingNodeSample.zi
p

EnableFXButton.zip

EnableButtons.zip

Interoperability with
SWT

TwoButtons.zip

A

SimpleSwingBrowser.java A-1

ASimpleSwingBrowser.java

For a description, see Integrating JavaFX into Swing Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package simpleswingbrowser;

import javafx.application.Platform;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.embed.swing.JFXPanel;
import javafx.event.EventHandler;
import javafx.scene.Scene;

A-2 JavaFX Interoperability

import javafx.scene.web.WebEngine;
import javafx.scene.web.WebEvent;
import javafx.scene.web.WebView;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.net.MalformedURLException;
import java.net.URL;

import static javafx.concurrent.Worker.State.FAILED;

public class SimpleSwingBrowser extends JFrame {

 private final JFXPanel jfxPanel = new JFXPanel();
 private WebEngine engine;

 private final JPanel panel = new JPanel(new BorderLayout());
 private final JLabel lblStatus = new JLabel();

 private final JButton btnGo = new JButton("Go");
 private final JTextField txtURL = new JTextField();
 private final JProgressBar progressBar = new JProgressBar();

 public SimpleSwingBrowser() {
 super();
 initComponents();
 }

 private void initComponents() {
 createScene();

 ActionListener al = new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 loadURL(txtURL.getText());
 }
 };

 btnGo.addActionListener(al);
 txtURL.addActionListener(al);

 progressBar.setPreferredSize(new Dimension(150, 18));
 progressBar.setStringPainted(true);

 JPanel topBar = new JPanel(new BorderLayout(5, 0));
 topBar.setBorder(BorderFactory.createEmptyBorder(3, 5, 3, 5));
 topBar.add(txtURL, BorderLayout.CENTER);
 topBar.add(btnGo, BorderLayout.EAST);

 JPanel statusBar = new JPanel(new BorderLayout(5, 0));
 statusBar.setBorder(BorderFactory.createEmptyBorder(3, 5, 3, 5));
 statusBar.add(lblStatus, BorderLayout.CENTER);
 statusBar.add(progressBar, BorderLayout.EAST);

 panel.add(topBar, BorderLayout.NORTH);
 panel.add(jfxPanel, BorderLayout.CENTER);
 panel.add(statusBar, BorderLayout.SOUTH);

 getContentPane().add(panel);

SimpleSwingBrowser.java A-3

 setPreferredSize(new Dimension(1024, 600));
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 pack();
 }

 private void createScene() {

 Platform.runLater(new Runnable() {
 @Override
 public void run() {

 WebView view = new WebView();
 engine = view.getEngine();

 engine.titleProperty().addListener(new ChangeListener<String>() {
 @Override
 public void changed(ObservableValue<? extends String>
observable, String oldValue, final String newValue) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 SimpleSwingBrowser.this.setTitle(newValue);
 }
 });
 }
 });

 engine.setOnStatusChanged(new EventHandler<WebEvent<String>>() {
 @Override
 public void handle(final WebEvent<String> event) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 lblStatus.setText(event.getData());
 }
 });
 }
 });

 engine.locationProperty().addListener(new ChangeListener<String>()
{
 @Override
 public void changed(ObservableValue<? extends String> ov,
String oldValue, final String newValue) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 txtURL.setText(newValue);
 }
 });
 }
 });

 engine.getLoadWorker().workDoneProperty().addListener(new
ChangeListener<Number>() {
 @Override
 public void changed(ObservableValue<? extends Number>
observableValue, Number oldValue, final Number newValue) {
 SwingUtilities.invokeLater(new Runnable() {

A-4 JavaFX Interoperability

 @Override
 public void run() {
 progressBar.setValue(newValue.intValue());
 }
 });
 }
 });

 engine.getLoadWorker()
 .exceptionProperty()
 .addListener(new ChangeListener<Throwable>() {

 @Override
 public void changed(ObservableValue<? extends
Throwable> o, Throwable old, final Throwable value) {
 if (engine.getLoadWorker().getState() == FAILED) {
 SwingUtilities.invokeLater(new Runnable() {
 @Override
 public void run() {
 JOptionPane.showMessageDialog(
 panel,
 (value != null)
 ? engine.getLocation() + "\n" +
value.getMessage()
 : engine.getLocation() + "\nUnexpected
error.",
 "Loading error...",
 JOptionPane.ERROR_MESSAGE);
 }
 });
 }
 }
 });

 jfxPanel.setScene(new Scene(view));
 }
 });
 }

 public void loadURL(final String url) {
 Platform.runLater(new Runnable() {
 @Override
 public void run() {
 String tmp = toURL(url);

 if (tmp == null) {
 tmp = toURL("http://" + url);
 }

 engine.load(tmp);
 }
 });
 }

 private static String toURL(String str) {
 try {
 return new URL(str).toExternalForm();
 } catch (MalformedURLException exception) {
 return null;
 }

SimpleSwingBrowser.java A-5

 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 SimpleSwingBrowser browser = new SimpleSwingBrowser();
 browser.setVisible(true);
 browser.loadURL("http://oracle.com");
 }
 });
 }
}

A-6 JavaFX Interoperability

B

SwingInterop.java B-1

BSwingInterop.java

For a description, see Enriching Swing Applications with JavaFX Functionality.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package swinginterop;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;
import java.text.DecimalFormat;

B-2 JavaFX Interoperability

import javax.swing.JFrame;
import javax.swing.SwingUtilities;

import javafx.embed.swing.JFXPanel;

import javafx.application.Platform;
import javafx.collections.FXCollections;
import javafx.scene.Scene;
import javafx.scene.chart.BarChart;
import javafx.scene.chart.CategoryAxis;
import javafx.scene.chart.Chart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javax.swing.*;
import javax.swing.event.TableModelEvent;
import javax.swing.event.TableModelListener;
import javax.swing.table.DefaultTableCellRenderer;

public class SwingInterop extends JApplet {

 private static final int PANEL_WIDTH_INT = 600;
 private static final int PANEL_HEIGHT_INT = 400;
 private static final int TABLE_PANEL_HEIGHT_INT = 100;
 private static JFXPanel chartFxPanel;
 private static SampleTableModel tableModel;
 private Chart chart;

 @Override
 public void init() {
 tableModel = new SampleTableModel();
 // create javafx panel for charts
 chartFxPanel = new JFXPanel();
 chartFxPanel.setPreferredSize(new Dimension(PANEL_WIDTH_INT, PANEL_HEIGHT_
INT));

 //JTable
 JTable table = new JTable(tableModel);
 table.setAutoCreateRowSorter(true);
 table.setGridColor(Color.DARK_GRAY);
 SwingInterop.DecimalFormatRenderer renderer = new
SwingInterop.DecimalFormatRenderer();
 renderer.setHorizontalAlignment(JLabel.RIGHT);
 for (int i = 0; i < table.getColumnCount(); i++) {
 table.getColumnModel().getColumn(i).setCellRenderer(renderer);
 }
 JScrollPane tablePanel = new JScrollPane(table);
 tablePanel.setPreferredSize(new Dimension(PANEL_WIDTH_INT, TABLE_PANEL_
HEIGHT_INT));

 JPanel chartTablePanel = new JPanel();
 chartTablePanel.setLayout(new BorderLayout());

 //Split pane that holds both chart and table
 JSplitPane jsplitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
 jsplitPane.setTopComponent(chartTablePanel);
 jsplitPane.setBottomComponent(tablePanel);
 jsplitPane.setDividerLocation(410);
 chartTablePanel.add(chartFxPanel, BorderLayout.CENTER);

SwingInterop.java B-3

 add(jsplitPane, BorderLayout.CENTER);

 // create JavaFX scene
 Platform.runLater(new Runnable() {
 @Override
 public void run() {
 createScene();
 }
 });
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 try {

UIManager.setLookAndFeel("com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel");
 } catch (Exception e) {}

 JFrame frame = new JFrame("Swing JTable");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JApplet applet = new SwingInterop();
 applet.init();

 frame.setContentPane(applet.getContentPane());

 frame.pack();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);

 applet.start();
 }
 });
 }

 private void createScene() {
 chart = createBarChart();
 chartFxPanel.setScene(new Scene(chart));
 }

 private BarChart createBarChart() {
 CategoryAxis xAxis = new CategoryAxis();

xAxis.setCategories(FXCollections.<String>observableArrayList(tableModel.getColumn
Names()));
 xAxis.setLabel("Year");

 double tickUnit = tableModel.getTickUnit();

 NumberAxis yAxis = new NumberAxis();
 yAxis.setTickUnit(tickUnit);
 yAxis.setLabel("Units Sold");

 final BarChart chart = new BarChart(xAxis, yAxis,
tableModel.getBarChartData());
 tableModel.addTableModelListener(new TableModelListener() {

B-4 JavaFX Interoperability

 @Override
 public void tableChanged(TableModelEvent e) {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 final Object value = ((SampleTableModel)
e.getSource()).getValueAt(row, column);

 Platform.runLater(new Runnable() {
 @Override
 public void run() {
 XYChart.Series<String, Number> s =
(XYChart.Series<String, Number>) chart.getData().get(row);
 BarChart.Data data = s.getData().get(column);
 data.setYValue(value);
 }
 });
 }
 }
 });
 return chart;
 }

 private static class DecimalFormatRenderer extends DefaultTableCellRenderer {
 private static final DecimalFormat formatter = new DecimalFormat("#.0");

 @Override
 public Component getTableCellRendererComponent(JTable table, Object value,
boolean isSelected, boolean hasFocus, int row, int column) {
 value = formatter.format((Number) value);
 return super.getTableCellRendererComponent(table, value, isSelected,
hasFocus, row, column);
 }
 }
}

C

SampleTableModel.java C-1

CSampleTableModel.java

For a description, see Enriching Swing Applications with JavaFX Functionality.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package swinginterop;

import java.util.Arrays;
import java.util.List;

import javax.swing.table.AbstractTableModel;

import javafx.collections.FXCollections;

C-2 JavaFX Interoperability

import javafx.collections.ObservableList;
import javafx.scene.chart.BarChart;

/**
 * SampleTableModel
 */
public class SampleTableModel extends AbstractTableModel {
 private static ObservableList<BarChart.Series> bcData;

 private final String[] names = {"2007", "2008", "2009"};

 private final Object[][] data = {
 {new Double(567), new Double(956), new Double(1154)},
 {new Double(1292), new Double(1665), new Double(1927)},
 {new Double(1292), new Double(2559), new Double(2774)}
 };

 public double getTickUnit() {
 return 1000;
 }
 public List<String> getColumnNames() {
 return Arrays.asList(names);
 }

 @Override
 public int getRowCount() {
 return data.length;
 }

 @Override
 public int getColumnCount() {
 return names.length;
 }

 @Override
 public Object getValueAt(int row, int column) {
 return data[row][column];
 }

 @Override
 public String getColumnName(int column) {
 return names[column];
 }

 @Override
 public Class getColumnClass(int column) {
 return getValueAt(0, column).getClass();
 }

 @Override
 public boolean isCellEditable(int row, int column) {
 return true;
 }

 @Override
 public void setValueAt(Object value, int row, int column) {
 if (value instanceof Double) {
 data[row][column] = (Double)value;
 }

SampleTableModel.java C-3

 fireTableCellUpdated(row, column);
 }

 public ObservableList<BarChart.Series> getBarChartData() {
 if (bcData == null) {
 bcData = FXCollections.<BarChart.Series>observableArrayList();
 for (int row = 0; row < getRowCount(); row++) {
 ObservableList<BarChart.Data> series =
FXCollections.<BarChart.Data>observableArrayList();
 for (int column = 0; column < getColumnCount(); column++) {
 series.add(new BarChart.Data(getColumnName(column),
getValueAt(row, column)));
 }
 bcData.add(new BarChart.Series(series));
 }
 }
 return bcData;
 }
}

C-4 JavaFX Interoperability

D

MediaPlayer.java D-1

DMediaPlayer.java

For a description, see Leveraging Applications with Media Features.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package mediaplayer;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.media.Media;
import javafx.stage.Stage;

D-2 JavaFX Interoperability

public class MediaPlayer extends Application {
 private static final String MEDIA_URL =
"http://download.oracle.com/otndocs/products/javafx/oow2010-2.flv";
 private static String arg1;

 @Override public void start(Stage stage) {
 stage.setTitle("Media Player");
 Group root = new Group();
 Scene scene = new Scene(root,600,265);
 // create media player
 Media media = new Media((arg1 != null) ? arg1 : MEDIA_URL);
 javafx.scene.media.MediaPlayer mediaPlayer = new
javafx.scene.media.MediaPlayer(media);
 mediaPlayer.setAutoPlay(true);
 MediaControl mediaControl = new MediaControl(mediaPlayer);
 scene.setRoot(mediaControl);

scene.getStylesheets().add(MediaPlayer.class.getResource("mediaplayer.css").toExte
rnalForm());
 // show stage
 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args) {
 if (args.length > 0) {
 arg1 = args[0];
 }
 Application.launch(args);
 }
}

E

MediaControl.java E-1

EMediaControl.java

For a description, see Leveraging Applications with Media Features.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package mediaplayer;

import javafx.application.Platform;
import javafx.beans.InvalidationListener;
import javafx.beans.Observable;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.event.ActionEvent;

E-2 JavaFX Interoperability

import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.control.*;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Pane;
import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaPlayer.Status;
import javafx.scene.media.MediaView;
import javafx.util.Duration;

public class MediaControl extends BorderPane {

 private MediaPlayer mp;
 private MediaView mediaView;
 private boolean stopRequested = false;
 private boolean atEndOfMedia = false;
 private Duration duration;
 private Slider timeSlider;
 private final Label playTime;
 private CheckBox repeatBox;
 private Slider volumeSlider;
 private HBox mediaBar;

 @Override
 protected void layoutChildren() {

 if (mediaView != null && getBottom() != null) {
 mediaView.setFitWidth(getWidth());
 mediaView.setFitHeight(getHeight() - getBottom().prefHeight(-1));
 }
 super.layoutChildren();
 if (mediaView != null) {
 mediaView.setTranslateX((((Pane) getCenter()).getWidth() -
mediaView.prefWidth(-1)) / 2);
 mediaView.setTranslateY((((Pane) getCenter()).getHeight() -
mediaView.prefHeight(-1)) / 2);
 }
 }

 @Override
 protected double computeMinWidth(double height) {
 return mediaBar.prefWidth(-1);
 }

 @Override
 protected double computeMinHeight(double width) {
 return 200;
 }

 @Override
 protected double computePrefWidth(double height) {
 return Math.max(mp.getMedia().getWidth(), mediaBar.prefWidth(height));
 }

 @Override
 protected double computePrefHeight(double width) {

MediaControl.java E-3

 return mp.getMedia().getHeight() + mediaBar.prefHeight(width);
 }

 @Override
 protected double computeMaxWidth(double height) {
 return Double.MAX_VALUE;
 }

 @Override
 protected double computeMaxHeight(double width) {
 return Double.MAX_VALUE;
 }

 public MediaControl(final MediaPlayer mp) {
 this.mp = mp;
 setId("mediaControl");

 mediaView = new MediaView(mp);
 Pane mvPane = new Pane();
 mvPane.getChildren().add(mediaView);
 mvPane.setId("mediaViewPane");
 setCenter(mvPane);

 mediaBar = new HBox();
 mediaBar.setAlignment(Pos.CENTER);
 mediaBar.setPadding(new Insets(5, 10, 5, 10));
 BorderPane.setAlignment(mediaBar, Pos.CENTER);

 final Button playButton = new Button(">");
 playButton.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent e) {
 updateValues();
 Status status = mp.getStatus();

 if (status == Status.UNKNOWN
 || status == Status.HALTED) {
 System.out.println("Player is in a bad or unknown state, can't
play.");
 return;
 }

 if (status == Status.PAUSED
 || status == Status.READY
 || status == Status.STOPPED) {
 // rewind the movie if we're sitting at the end
 if (atEndOfMedia) {
 mp.seek(mp.getStartTime());
 atEndOfMedia = false;
 playButton.setText(">");
 updateValues();
 }
 mp.play();
 playButton.setText("||");
 } else {
 mp.pause();
 }
 }
 });

E-4 JavaFX Interoperability

 mp.currentTimeProperty().addListener(new InvalidationListener() {

 @Override
 public void invalidated(Observable ov) {
 updateValues();
 }
 });

 mp.setOnPlaying(new Runnable() {

 @Override
 public void run() {
 if (stopRequested) {
 mp.pause();
 stopRequested = false;
 } else {
 playButton.setText("||");
 }
 }
 });

 mp.setOnPaused(new Runnable() {

 @Override
 public void run() {
 playButton.setText(">");
 }
 });

 mp.setOnReady(new Runnable() {

 @Override
 public void run() {
 duration = mp.getMedia().getDuration();
 updateValues();
 }
 });

 mp.setOnEndOfMedia(new Runnable() {

 @Override
 public void run() {
 if (repeatBox.isSelected()) {
 mp.seek(mp.getStartTime());
 } else {
 playButton.setText(">");
 stopRequested = true;
 atEndOfMedia = true;

 }
 }
 });

 mediaBar.getChildren().add(playButton);
 // Add spacer
 Label spacer = new Label(" ");
 spacer.setMaxWidth(Double.MAX_VALUE);
 mediaBar.getChildren().add(spacer);

MediaControl.java E-5

 Label timeLabel = new Label("Time: ");
 timeLabel.setMinWidth(Control.USE_PREF_SIZE);
 mediaBar.getChildren().add(timeLabel);

 timeSlider = new Slider();
 timeSlider.setMaxWidth(Double.MAX_VALUE);
 timeSlider.setMinWidth(50);
 HBox.setHgrow(timeSlider, Priority.ALWAYS);
 timeSlider.valueProperty().addListener(new InvalidationListener() {

 @Override
 public void invalidated(Observable ov) {
 if (timeSlider.isValueChanging()) {
 // multiply duration by percentage calculated by slider
position
 if (duration != null) {
 mp.seek(duration.multiply(timeSlider.getValue() / 100.0));
 }
 updateValues();
 }
 }
 });
 mediaBar.getChildren().add(timeSlider);

 playTime = new Label();
 playTime.setPrefWidth(130);
 playTime.setMinWidth(50);
 mediaBar.getChildren().add(playTime);

 Label volumeLabel = new Label("Vol: ");
 volumeLabel.setMinWidth(Control.USE_PREF_SIZE);
 mediaBar.getChildren().add(volumeLabel);

 volumeSlider = new Slider();
 volumeSlider.setPrefWidth(70);
 volumeSlider.setMaxWidth(Region.USE_PREF_SIZE);
 volumeSlider.setMinWidth(30);
 volumeSlider.valueProperty().addListener(new ChangeListener<Number>() {

 @Override
 public void changed(ObservableValue<? extends Number> observable,
Number oldValue, Number newValue) {
 if (volumeSlider.isValueChanging()) {
 mp.setVolume(volumeSlider.getValue() / 100.0);
 }
 }
 });
 mediaBar.getChildren().add(volumeSlider);

 Label repeatLabel = new Label(" Loop: ");
 repeatLabel.setPrefWidth(50);
 repeatLabel.setMinWidth(25);
 mediaBar.getChildren().add(repeatLabel);

 repeatBox = new CheckBox();
 repeatBox.setSelected(true);
 mediaBar.getChildren().add(repeatBox);

 setBottom(mediaBar);

E-6 JavaFX Interoperability

 }

 protected void updateValues() {
 if (playTime != null && timeSlider != null && volumeSlider != null) {
 Platform.runLater(new Runnable() {

 @Override
 public void run() {
 Duration currentTime = mp.getCurrentTime();
 playTime.setText(formatTime(currentTime, duration));
 timeSlider.setDisable(duration.isUnknown());
 if (!timeSlider.isDisabled() &&
duration.greaterThan(Duration.ZERO) && !timeSlider.isValueChanging()) {

timeSlider.setValue(currentTime.divide(duration.toMillis()).toMillis() * 100.0);
 }
 if (!volumeSlider.isValueChanging()) {
 volumeSlider.setValue((int) Math.round(mp.getVolume() *
100));
 }
 }
 });
 }
 }

 private static String formatTime(Duration elapsed, Duration duration) {
 int intElapsed = (int) Math.floor(elapsed.toSeconds());
 int elapsedHours = intElapsed / (60 * 60);
 if (elapsedHours > 0) {
 intElapsed -= elapsedHours * 60 * 60;
 }
 int elapsedMinutes = intElapsed / 60;
 int elapsedSeconds = intElapsed - elapsedHours * 60 * 60 - elapsedMinutes
* 60;

 if (duration.greaterThan(Duration.ZERO)) {
 int intDuration = (int) Math.floor(duration.toSeconds());
 int durationHours = intDuration / (60 * 60);
 if (durationHours > 0) {
 intDuration -= durationHours * 60 * 60;
 }
 int durationMinutes = intDuration / 60;
 int durationSeconds = intDuration - durationHours * 60 * 60 -
durationMinutes * 60;

 if (durationHours > 0) {
 return String.format("%d:%02d:%02d/%d:%02d:%02d",
 elapsedHours, elapsedMinutes, elapsedSeconds,
 durationHours, durationMinutes, durationSeconds);
 } else {
 return String.format("%02d:%02d/%02d:%02d",
 elapsedMinutes, elapsedSeconds,
 durationMinutes, durationSeconds);
 }
 } else {
 if (elapsedHours > 0) {
 return String.format("%d:%02d:%02d",
 elapsedHours, elapsedMinutes, elapsedSeconds);
 } else {
 return String.format("%02d:%02d",

MediaControl.java E-7

 elapsedMinutes, elapsedSeconds);
 }
 }
 }
}

E-8 JavaFX Interoperability

F

mediaplayer.css F-1

Fmediaplayer.css

For a description, see Leveraging Applications with Media Features.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
#mediaControl {
 -fx-background-color: #bfc2c7;
}
#mediaViewPane {
 -fx-background-color: black;;
}

F-2 JavaFX Interoperability

G

Converter.java G-1

GConverter.java

For a description, see Implementing a Swing Application in JavaFX.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package converter;

import javafx.application.Application;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

G-2 JavaFX Interoperability

import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class Converter extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 private final ObservableList<Unit> metricDistances;
 private final ObservableList<Unit> usaDistances;
 private final DoubleProperty meters = new SimpleDoubleProperty(1);

 public Converter() {
 //Create Unit objects for metric distances, and then
 //instantiate a ConversionPanel with these Units.
 metricDistances = FXCollections.observableArrayList(
 new Unit("Centimeters", 0.01),
 new Unit("Meters", 1.0),
 new Unit("Kilometers", 1000.0));

 //Create Unit objects for U.S. distances, and then
 //instantiate a ConversionPanel with these Units.
 usaDistances = FXCollections.observableArrayList(
 new Unit("Inches", 0.0254),
 new Unit("Feet", 0.305),
 new Unit("Yards", 0.914),
 new Unit("Miles", 1613.0));
 }

 @Override
 public void start(Stage stage) {
 VBox vbox = new VBox(
 new ConversionPanel(
 "Metric System", metricDistances, meters),
 new ConversionPanel(
 "U.S. System", usaDistances, meters));
 Scene scene = new Scene(vbox);

 stage.setTitle("Converter");
 stage.setScene(scene);
 stage.show();
 }
}

H

ConversionPanel.java H-1

HConversionPanel.java

For a description, see Implementing a Swing Application in JavaFX.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package converter;

import java.text.NumberFormat;
import java.text.ParseException;
import javafx.beans.InvalidationListener;

import javafx.beans.property.DoubleProperty;

H-2 JavaFX Interoperability

import javafx.collections.ObservableList;
import javafx.scene.control.ComboBox;

import javafx.scene.control.Slider;

import javafx.scene.control.TextField;

import javafx.scene.control.TitledPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;

import javafx.util.StringConverter;

public class ConversionPanel extends TitledPane {

 final static int MAX = 10000;

 private ComboBox<Unit> comboBox;
 private Slider slider;
 private TextField textField;
 private DoubleProperty meters;
 private NumberFormat numberFormat;

 private InvalidationListener fromMeters = t -> {
 if (!textField.isFocused()) {
 textField.setText(numberFormat.format(meters.get() /
getMultiplier()));
 }
 };

 private InvalidationListener toMeters = t -> {
 if (!textField.isFocused()) {
 return;
 }
 try {
 meters.set(numberFormat.parse(textField.getText()).doubleValue() *
getMultiplier());
 } catch (ParseException | Error | RuntimeException ignored) {
 }
 };

 public ConversionPanel(String title, ObservableList<Unit> units,
DoubleProperty meters) {
 setText(title);
 setCollapsible(false);

 numberFormat = NumberFormat.getNumberInstance();
 numberFormat.setMaximumFractionDigits(2);

 textField = new TextField();
 slider = new Slider(0, MAX, 0);
 comboBox = new ComboBox(units);
 comboBox.setConverter(new StringConverter<Unit>() {

 @Override
 public String toString(Unit t) {
 return t.description;
 }

ConversionPanel.java H-3

 @Override
 public Unit fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 VBox vbox = new VBox(textField, slider);
 HBox hbox = new HBox(vbox, comboBox);
 setContent(hbox);
 this.meters = meters;

 comboBox.getSelectionModel().select(0);
 meters.addListener(fromMeters);
 comboBox.valueProperty().addListener(fromMeters);
 textField.textProperty().addListener(toMeters);
 fromMeters.invalidated(null);

 slider.valueProperty().bindBidirectional(meters);
 }

 /**
 * Returns the multiplier (units/meter) for the currently
 * selected unit of measurement.
 * @return
 */
 public double getMultiplier() {
 return comboBox.getValue().multiplier;
 }
}

H-4 JavaFX Interoperability

I

SwingNodeSample.java I-1

ISwingNodeSample.java

For a description, see Embedding Swing Content in JavaFX Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package swingnodesample;

import javafx.application.Application;
import javafx.embed.swing.SwingNode;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import javax.swing.SwingUtilities;

I-2 JavaFX Interoperability

public class SwingNodeSample extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 StackPane pane = new StackPane();
 pane.getChildren().add(swingNode);

 Scene scene = new Scene(pane, 450, 100);

 stage.setScene(scene);
 stage.setTitle("ButtonHtmlDemo Embedded in JavaFX");
 stage.show();
 }

 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new ButtonHtml());
 });
 }
}

J

ButtonHtmlDemo.java J-1

JButtonHtmlDemo.java

For a description, see Embedding Swing Content in JavaFX Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package swingnodesample;

import java.awt.Color;
import java.awt.Font;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyEvent;
import javax.swing.AbstractButton;

J-2 JavaFX Interoperability

import javax.swing.JButton;
import javax.swing.JPanel;
import javax.swing.ImageIcon;

/*
 * ButtonHtmlDemo.java uses the following files:
 * images/right.gif
 * images/middle.gif
 * images/left.gif
 */
public class ButtonHtml extends JPanel
 implements ActionListener {
 protected JButton b1, b2, b3;

 public ButtonHtml() {
 ImageIcon leftButtonIcon = createImageIcon("images/right.gif");
 ImageIcon middleButtonIcon = createImageIcon("images/middle.gif");
 ImageIcon rightButtonIcon = createImageIcon("images/left.gif");

 b1 = new JButton("<html><center><u>D</u>isable
"
 + "middle button",
 leftButtonIcon);
 Font font = b1.getFont().deriveFont(Font.PLAIN);
 b1.setFont(font);
 b1.setVerticalTextPosition(AbstractButton.CENTER);
 b1.setHorizontalTextPosition(AbstractButton.LEADING); //aka LEFT, for
left-to-right locales
 b1.setMnemonic(KeyEvent.VK_D);
 b1.setActionCommand("disable");

 b2 = new JButton("middle button", middleButtonIcon);
 b2.setFont(font);
 b2.setForeground(new Color(0xffffdd));
 b2.setVerticalTextPosition(AbstractButton.BOTTOM);
 b2.setHorizontalTextPosition(AbstractButton.CENTER);
 b2.setMnemonic(KeyEvent.VK_M);

 b3 = new JButton("<html><center><u>E</u>nable
"
 + "middle button",
 rightButtonIcon);
 b3.setFont(font);
 //Use the default text position of CENTER, TRAILING (RIGHT).
 b3.setMnemonic(KeyEvent.VK_E);
 b3.setActionCommand("enable");
 b3.setEnabled(false);

 //Listen for actions on buttons 1 and 3.
 b1.addActionListener(this);
 b3.addActionListener(this);

 b1.setToolTipText("Click this button to disable the middle button.");
 b2.setToolTipText("This middle button does nothing when you click it.");
 b3.setToolTipText("Click this button to enable the middle button.");

 //Add Components to this container, using the default FlowLayout.
 add(b1);
 add(b2);
 add(b3);
 }

ButtonHtmlDemo.java J-3

 @Override
 public void actionPerformed(ActionEvent e) {
 if ("disable".equals(e.getActionCommand())) {
 b2.setEnabled(false);
 b1.setEnabled(false);
 b3.setEnabled(true);
 } else {
 b2.setEnabled(true);
 b1.setEnabled(true);
 b3.setEnabled(false);
 }
 }

 /** Returns an ImageIcon, or null if the path was invalid.
 * @param path
 * @return */
 protected static ImageIcon createImageIcon(String path) {
 java.net.URL imgURL = ButtonHtml.class.getResource(path);
 if (imgURL != null) {
 return new ImageIcon(imgURL);
 } else {
 System.err.println("Couldn't find file: " + path);
 return null;
 }
 }

}

J-4 JavaFX Interoperability

K

EnableFXButton.java K-1

KEnableFXButton.java

For a description, see Embedding Swing Content in JavaFX Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package enablefxbutton;

import javafx.application.Application;
import javafx.embed.swing.SwingNode;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Tooltip;
import javafx.scene.image.Image;

K-2 JavaFX Interoperability

import javafx.scene.image.ImageView;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;
import javax.swing.SwingUtilities;

public class EnableFXButton extends Application {
 public static Button fxbutton;

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();

 createSwingContent(swingNode);
 BorderPane pane = new BorderPane();

 Image fxButtonIcon = new
Image(getClass().getResourceAsStream("images/middle.gif"));

 fxbutton = new Button("FX button", new ImageView(fxButtonIcon));
 fxbutton.setTooltip(new Tooltip("This middle button does nothing when you
click it."));
 fxbutton.setStyle("-fx-font: 22 arial; -fx-base: #cce6ff;");
 pane.setTop(swingNode);
 pane.setCenter(fxbutton);

 Scene scene = new Scene(pane, 300, 100);
 stage.setScene(scene);
 stage.setTitle("Enable FX Button");
 stage.show();
 }

 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new ButtonHtml());
 });
 }
}

L

EnableButtons.java L-1

LEnableButtons.java

For a description, see Embedding Swing Content in JavaFX Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 2011, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Code
package enablebuttons;

import javafx.application.Application;
import javafx.embed.swing.SwingNode;
import javafx.event.ActionEvent;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Tooltip;

L-2 JavaFX Interoperability

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.FlowPane;
import javafx.stage.Stage;
import javax.swing.SwingUtilities;

public class EnableButtons extends Application {
 public static Button fxbutton;

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);

 FlowPane pane = new FlowPane();

 Image fxButtonIcon = new
Image(getClass().getResourceAsStream("images/left.gif"));

 fxbutton = new Button("Enable JButton", new ImageView(fxButtonIcon));
 fxbutton.setTooltip(new Tooltip("Click this button to enable the Swing
button."));
 fxbutton.setStyle("-fx-font: 18 arial; -fx-base: #cce6ff;");
 fxbutton.setDisable(true);

 fxbutton.setOnAction((ActionEvent e) -> {
 SwingUtilities.invokeLater(() -> {
 ButtonHtml.b1.setEnabled(true);
 });
 fxbutton.setDisable(true);
 });

 pane.getChildren().addAll(swingNode, fxbutton);

 Scene scene = new Scene(pane, 300, 100);

 stage.setScene(scene);
 stage.setTitle("Enable Buttons Sample");
 stage.show();
 }

 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new ButtonHtml());
 });
 }
}

M

Image Source Files M-1

MImage Source Files

This appendix provides graphical images used in the Embedding Swing Content in
JavaFX Applications.

Legal Terms and Copyright Notice
/*
 * Copyright (c) 1995, 2014, Oracle and/or its affiliates.
 * All rights reserved. Use is subject to license terms.
 *
 * This file is available and licensed under the following license:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the distribution.
 * - Neither the name of Oracle nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

left.gif

right.gif

M-2 JavaFX Interoperability

right.gif

down.gif

middle.gif

	Contents
	Preface
	About This Document
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Concurrency in JavaFX
	1 Concurrency in JavaFX
	Why Use the javafx.concurrent Package?
	Overview of the javafx.concurrent Package
	The Worker Interface
	The Task Class
	Cancelling the Task
	Showing the Progress of a Background Task

	The Service Class
	The WorkerStateEvent Class and State Transitions
	The ScheduledService Class

	Conclusion

	Part II JavaFX-Swing Interoperability
	2 The JavaFX Advantage for Swing Developers
	Using FXML
	JavaFX Scene Builder
	CSS Support
	JavaFX Media Support
	Animation
	HTML Content

	3 Integrating JavaFX into Swing Applications
	Adding JavaFX Content to a Swing Component
	Swing–JavaFX Interoperability and Threads
	Changing JavaFX Data in Response to a Change in Swing Data
	Changing Swing Data in Response to a Change in JavaFX Data

	Introducing the SimpleSwingBrowser Application
	Initializing Swing Data
	Loading JavaFX Content
	Updating Swing Data

	Application Files

	4 Enriching Swing Applications with JavaFX Functionality
	Sample Swing Application
	Integrating JavaFX Bar Chart
	Application Files

	5 Leveraging Applications with Media Features
	About Media Integration
	Building the Media Player Application
	Skinning the Application with CSS
	Adding a New Control to the Control Bar

	Application Files

	6 Implementing a Swing Application in JavaFX
	Analyzing the Converter Application Developed in Swing
	Planning the Converter Application in JavaFX
	Creating the Converter Application in JavaFX
	Standard JavaFX Pattern to Create the GUI
	Containers and Layouts
	UI Controls
	Mechanism of Getting Notifications on User Actions and Binding
	Creating the ConversionPanel Class
	Creating Instance Variables for UI Controls
	Creating DoubleProperty and NumberFormat Objects
	Laying Out the Components
	Creating InvalidationListener Objects
	Adding Change Listeners to Controls and Ensuring Synchronization

	Creating the Converter Class
	Defining Instance Variables
	Creating the Constructor for the Converter Class
	Creating the Graphical Scene

	Application Files
	7 Embedding Swing Content in JavaFX Applications
	SwingNode Class
	Example 7–1
	Figure 7–1 Swing JButton Embedded in a JavaFX Application

	Embedding Swing Content and Handling Events
	Figure 7–2 ButtonHtmlDemo Embedded in a JavaFX Application
	Example 7–2
	Example 7–3
	Example 7–4
	Example 7–5
	Example 7–6
	1. From the File menu, choose New Project.
	2. In the JavaFX application category, choose JavaFX Application and click Next.
	3. Name the project SwingNodeSample and select a JavaFX platform based on JDK 8. Click Finish.
	4. In the Projects window, right-click the swingnodesample folder under Source Packages. Choose New and then choose Java class.
	5. Name a new class ButtonHtml and click Finish.
	6. Copy the code of the ButtonHtmlDemo.java class and paste it in the project.
	7. Open the swingnodesample folder on your disk and create the images folder.
	8. Download the images left.gif, middle.gif, and right.gif by right clicking the image and selecting Save Image As, and save them in the images folder.
	9. In the SwingNodeSample class, remove the code inside the start method that was automatically generated by NetBeans.
	10. Instead, create a SwingNode object and implement the start method as shown in Example 7–7.

	Example 7–7
	11. To embed the three buttons produced by the ButtonHtml class, set the content of the SwingNode object to be an instance of the ButtonHtml class as shown in Example 7–8.

	Example 7–8
	12. Press Ctrl (or Cmd) + Shift + I to correct the import statements.

	Adding Interoperability Between Swing and JavaFX Components
	Figure 7–3 Enable JavaFX Button Sample
	Using Swing Buttons to Operate a JavaFX Button
	1. From the File menu, choose New Project.
	2. In the JavaFX application category, choose JavaFX Application and click Next.
	3. Name the project EnableFXButton.
	4. In the Projects window, right-click the enablefxbutton folder under Source Packages. Choose New and then choose Java class.
	5. Name the new class ButtonHtml and click Finish.
	6. Copy the code of the ButtonHtmlDemo.java class and paste it in the project.
	7. Change the package declaration to enablefxbutton.
	8. Open the enablefxbutton folder on your disk and create the images folder.
	9. Download the images down.gif and middle.gif by right clicking the image and selecting Save Image As, and save them in the images folder.
	10. In the EnableFXButton class, declare a Button object as shown in Example 7–9.
	Example 7–9
	11. Remove the code inside the start method that was automatically generated by NetBeans IDE and implement the start method as shown in Example 7–10.

	Example 7–10
	12. Add the import statement for the SwingNode class as shown in Example 7–11.

	Example 7–11
	13. Implement the createSwingContent method to set the content of the SwingNode object as shown in Example 7–12.

	Example 7–12
	14. Press Ctrl (or Cmd) + Shift + I to add an import statement to the javax.swing.SwingUtilities class.
	15. Replace the initialization of fxbutton with the code shown in Example 7–13 to add an image and set a tooltip and style for the JavaFX button.

	Example 7–13
	16. Press Ctrl (or Cmd) + Shift + I to add the import statements shown in Example 7–14.

	Example 7–14
	17. Open the ButtonHtml class and remove all code related to the middle button b2.
	18. Use the down.gif image for b1 (Disable FX button) and b3 (Enable FX button) buttons as shown in Example 7–15.

	Example 7–15
	19. Modify the actionPerformed method to implement the disabling and enabling of fxbutton as shown in Example 7–16. Note that the disabling and enabling of the JavaFX button must happen on the JavaFX application thread.

	Example 7–16
	20. Press Ctrl (or Cmd) + Shift + I to add the import statement shown in Example 7–17.

	Example 7–17
	21. Run the application and click the Swing buttons to disable and enable the JavaFX button, as shown in Figure 7–3.

	Using a JavaFX Button to Operate a Swing Button
	Figure 7–4 Enable Buttons Sample
	1. Copy the EnableFXButton project and save it under the EnableButtons name.
	2. Rename the EnableFXButton class to EnableButtons and the enablefxbutton package to enablebuttons.
	3. Correct the package statement in both the ButtonHtml and EnableButtons classes.
	4. Open the EnableButtons class and make the pane an instance of the FlowPane class as shown in Example 7–18.

	Example 7–18
	5. Modify the initialization of the fxButtonIcon variable to use the left.gif image as shown in Example 7–19.

	Example 7–19
	6. Change the fxbutton text, tooltip, and font size and set the disableProperty to true as shown in Example 7–20.

	Example 7–20
	7. Implement the setOnAction method by using a lambda expression as shown in Example 7–21. Note that you must change Swing objects on event dispatch thread only.

	Example 7–21
	Note
	8. Press Ctrl (or Cmd) + Shift + I to add the import statement to the javafx.event.ActionEvent class.
	9. Add the swingNode and fxbutton objects to the layout container as shown in Example 7–22.

	Example 7–22
	10. Change the application title to "Enable Buttons Sample" as shown in Example 7–23.

	Example 7–23
	11. Open the ButtonHtml class and change the modifier of the b1 button to public static. Notice that the error mark in the EnableButtons class has disappeared.
	12. Remove all code related to the b3 button and the line that sets an action command for b1.
	13. Modify the actionPerformed method by using a lambda expression as shown in Example 7–24.

	Example 7–24

	Conclusion
	Application Files

	Part III Interoperability with SWT
	8 JavaFX Interoperability with SWT
	Introduction
	Adding JavaFX Content to an SWT Component
	Creating SWT-JavaFX Applications in an IDE
	Packaging SWT-JavaFX Applications
	Packaging the Application when JavaFX is Bundled with the JDK
	Packaging the Application with a Standalone JavaFX Installation

	Application Files

	Part IV Source Code for the Interoperability Tutorial
	A SimpleSwingBrowser.java
	B SwingInterop.java
	C SampleTableModel.java
	D MediaPlayer.java
	E MediaControl.java
	F mediaplayer.css
	G Converter.java
	H ConversionPanel.java
	I SwingNodeSample.java
	J ButtonHtmlDemo.java
	K EnableFXButton.java
	L EnableButtons.java
	M Image Source Files
	left.gif
	right.gif
	down.gif
	middle.gif

