
Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection
Tuning Guide

Release 11
E95201-02
April 2022

Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning Guide, Release 11

E95201-02

Copyright © 2015, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions vii

1 Introduction to Garbage Collection Tuning

What Is a Garbage Collector? 1-1

Why Does the Choice of Garbage Collector Matter? 1-2

Supported Operating Systems in Documentation 1-3

2 Ergonomics

Garbage Collector, Heap, and Runtime Compiler Default Selections 2-1

Behavior-Based Tuning 2-1

Maximum Pause-Time Goal 2-2

Throughput Goal 2-2

Footprint 2-2

Tuning Strategy 2-2

3 Garbage Collector Implementation

Generational Garbage Collection 3-1

Generations 3-2

Performance Considerations 3-3

Throughput and Footprint Measurement 3-4

4 Factors Affecting Garbage Collection Performance

Total Heap 4-1

Heap Options Affecting Generation Size 4-1

Default Option Values for Heap Size 4-2

iii

Conserving Dynamic Footprint by Minimizing Java Heap Size 4-3

The Young Generation 4-3

Young Generation Size Options 4-3

Survivor Space Sizing 4-4

5 Available Collectors

Serial Collector 5-1

Parallel Collector 5-1

The Mostly Concurrent Collectors 5-1

The Z Garbage Collector 5-2

Selecting a Collector 5-2

6 The Parallel Collector

Number of Parallel Collector Garbage Collector Threads 6-1

Arrangement of Generations in Parallel Collectors 6-2

Parallel Collector Ergonomics 6-2

Options to Specify Parallel Collector Behaviors 6-2

Priority of Parallel Collector Goals 6-3

Parallel Collector Generation Size Adjustments 6-3

Parallel Collector Default Heap Size 6-3

Specification of Parallel Collector Initial and Maximum Heap Sizes 6-4

Excessive Parallel Collector Time and OutOfMemoryError 6-4

Parallel Collector Measurements 6-4

7 The Mostly Concurrent Collectors

Overhead of Mostly Concurrent Collectors 7-1

8 Concurrent Mark Sweep (CMS) Collector

Concurrent Mark Sweep Collector Performance and Structure 8-1

Concurrent Mode Failure 8-2

Excessive GC Time and OutOfMemoryError 8-2

Concurrent Mark Sweep Collector and Floating Garbage 8-2

Concurrent Mark Sweep Collector Pauses 8-3

Concurrent Mark Sweep Collector Concurrent Phases 8-3

Starting a Concurrent Collection Cycle 8-3

Scheduling Pauses 8-3

Concurrent Mark Sweep Collector Measurements 8-4

iv

9 Garbage-First Garbage Collector

Introduction to Garbage-First Garbage Collector 9-1

Enabling G1 9-2

Basic Concepts 9-2

Heap Layout 9-2

Garbage Collection Cycle 9-3

Garbage-First Internals 9-5

Determining Initiating Heap Occupancy 9-5

Marking 9-5

Behavior in Very Tight Heap Situations 9-5

Humongous Objects 9-6

Young-Only Phase Generation Sizing 9-6

Space-Reclamation Phase Generation Sizing 9-6

Ergonomic Defaults for G1 GC 9-7

Comparison to Other Collectors 9-8

10

Garbage-First Garbage Collector Tuning

General Recommendations for G1 10-1

Moving to G1 from Other Collectors 10-2

Improving G1 Performance 10-2

Observing Full Garbage Collections 10-2

Humongous Object Fragmentation 10-3

Tuning for Latency 10-3

Unusual System or Real-Time Usage 10-3

Reference Object Processing Takes Too Long 10-4

Young-Only Collections Within the Young-Only Phase Take Too Long 10-4

Mixed Collections Take Too Long 10-4

High Update RS and Scan RS Times 10-5

Tuning for Throughput 10-6

Tuning for Heap Size 10-7

Tunable Defaults 10-7

11

The Z Garbage Collector

Setting the Heap Size 11-1

Setting Number of Concurrent GC Threads 11-1

v

12

Other Considerations

Finalization and Weak, Soft, and Phantom References 12-1

Finalization 12-1

Migrating from Finalization 12-2

The try-with-Resources Statement 12-2

The Cleaner API 12-2

Reference-Object Types 12-4

Explicit Garbage Collection 12-5

Soft References 12-5

Class Metadata 12-5

vi

Preface

The Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning
Guide describes the garbage collection methods included in the Java HotSpot Virtual
Machine (Java HotSpot VM) and helps you determine which one is the best for your needs.

Audience
This document is intended for users, application developers and system administrators of the
Java HotSpot VM that want to improve their understanding of the Java HotSpot VM garbage
collectors. This document further provides help with analysis and solutions for common
problems with garbage collection to make the application meet the users' requirements.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley,
Chichester, July 1996. With a chapter on Distributed Garabge Collection by R. Lins.
Richard Jones, Anony Hosking, and Elliot Moss.

• The Garbage Collection Handbook: The Art of Automatic Memory Managmenet. CRC
Applied Algorithms and Data Structures. Chapman & Hall, January 2012

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Introduction to Garbage Collection Tuning

A wide variety of applications, from small applets on desktops to web services on large
servers, use the Java Platform, Standard Edition (Java SE). In support of this diverse range
of deployments, the Java HotSpot VM provides multiple garbage collectors, each designed to
satisfy different requirements. Java SE selects the most appropriate garbage collector based
on the class of the computer on which the application is run. However, this selection may not
be optimal for every application. Users, developers, and administrators with strict
performance goals or other requirements may need to explicitly select the garbage collector
and tune certain parameters to achieve the desired level of performance. This document
provides information to help with these tasks.

First, general features of a garbage collector and basic tuning options are described in the
context of the serial, stop-the-world collector. Then specific features of the other collectors
are presented along with factors to consider when selecting a collector.

Topics

• What Is a Garbage Collector?

• Why Does the Choice of Garbage Collector Matter?

• Supported Operating Systems in Documentation

What Is a Garbage Collector?
The garbage collector (GC) automatically manages the application's dynamic memory
allocation requests.

A garbage collector performs automatic dynamic memory management through the following
operations:

• Allocates from and gives back memory to the operating system.

• Hands out that memory to the application as it requests it.

• Determines which parts of that memory is still in use by the application.

• Reclaims the unused memory for reuse by the application.

The Java HotSpot garbage collectors employ various techniques to improve the efficiency of
these operations:

• Use generational scavenging in conjunction with aging to concentrate their efforts on
areas in the heap that most likely contain a lot of reclaimable memory areas.

• Use multiple threads to aggressively make operations parallel, or perform some long-
running operations in the background concurrent to the application.

• Try to recover larger contiguous free memory by compacting live objects.

1-1

Why Does the Choice of Garbage Collector Matter?
The purpose of a garbage collector is to free the application developer from manual
dynamic memory management. The developer is freed of the requirement to match
allocations with deallocations and closely take care of the lifetimes of allocated
dynamic memory. This completely eliminates some classes of errors related to
memory management at the cost of some additional runtime overhead. The Java
HotSpot VM provides a selection of garbage collection algorithms to choose from.

When does the choice of a garbage collector matter? For some applications, the
answer is never. That is, the application can perform well in the presence of garbage
collection with pauses of modest frequency and duration. However, this isn't the case
for a large class of applications, particularly those with large amounts of data (multiple
gigabytes), many threads, and high transaction rates.

Amdahl's law (parallel speedup in a given problem is limited by the sequential portion
of the problem) implies that most workloads can't be perfectly parallelized; some
portion is always sequential and doesn't benefit from parallelism. In the Java platform,
there are currently four supported garbage collection alternatives and all but one of
them, the serial GC, parallelize the work to improve performance. It's very important to
keep the overhead of doing garbage collection as low as possible. This can be seen in
the following example.

The graph in Figure 1-1 models an ideal system that's perfectly scalable with the
exception of garbage collection. The red line is an application spending only 1% of the
time in garbage collection on a uniprocessor system. This translates to more than a
20% loss in throughput on systems with 32 processors. The magenta line shows that
for an application at 10% of the time in garbage collection (not considered an
outrageous amount of time in garbage collection in uniprocessor applications), more
than 75% of throughput is lost when scaling up to 32 processors.

Figure 1-1 Comparing Percentage of Time Spent in Garbage Collection

Processors

T
h
ro

u
g
h
p
u
t

0.8

0.2

0
0 5 10 15 20 25 25 30

1

0.4

0.6

1% GC

2% GC

3% GC

10% GC

20% GC

30% GC

Chapter 1
Why Does the Choice of Garbage Collector Matter?

1-2

This figure shows that negligible throughput issues when developing on small systems may
become principal bottlenecks when scaling up to large systems. However, small
improvements in reducing such a bottleneck can produce large gains in performance. For a
sufficiently large system, it becomes worthwhile to select the right garbage collector and to
tune it if necessary.

The serial collector is usually adequate for most small applications, in particular those
requiring heaps of up to approximately 100 megabytes on modern processors. The other
collectors have additional overhead or complexity, which is the price for specialized behavior.
If the application does not need the specialized behavior of an alternate collector, use the
serial collector. One situation where the serial collector isn't expected to be the best choice is
a large, heavily threaded application that runs on a machine with a large amount of memory
and two or more processors. When applications are run on such server-class machines, the
Garbage-First (G1) collector is selected by default; see Ergonomics.

Supported Operating Systems in Documentation
This document and its recommendations apply to all JDK 11 supported system
configurations, limited by actual availability of some garbage collectors in a particular
configuration. See Oracle JDK Certified System Configurations.

Chapter 1
Supported Operating Systems in Documentation

1-3

http://www.oracle.com/technetwork/java/javase/documentation/jdk11certconfig-5010719.html

2
Ergonomics

Ergonomics is the process by which the Java Virtual Machine (JVM) and garbage collection
heuristics, such as behavior-based heuristics, improve application performance.

The JVM provides platform-dependent default selections for the garbage collector, heap size,
and runtime compiler. These selections match the needs of different types of applications
while requiring less command-line tuning. In addition, behavior-based tuning dynamically
optimizes the sizes of the heap to meet a specified behavior of the application.

This section describes these default selections and behavior-based tuning. Use these
defaults before using the more detailed controls described in subsequent sections.

Topics

• Garbage Collector, Heap, and Runtime Compiler Default Selections

• Behavior-Based Tuning

– Maximum Pause-Time Goal

– Throughput Goal

– Footprint

• Tuning Strategy

Garbage Collector, Heap, and Runtime Compiler Default
Selections

These are important garbage collector, heap size, and runtime compiler default selections:

• Garbage-First (G1) collector

• The maximum number of GC threads is limited by heap size and available CPU
resources

• Initial heap size of 1/64 of physical memory

• Maximum heap size of 1/4 of physical memory

• Tiered compiler, using both C1 and C2

Behavior-Based Tuning
The Java HotSpot VM garbage collectors can be configured to preferentially meet one of two
goals: maximum pause-time and application throughput. If the preferred goal is met, the
collectors will try to maximize the other. Naturally, these goals can't always be met:
Applications require a minimum heap to hold at least all of the live data, and other
configuration might preclude reaching some or all of the desired goals.

2-1

Maximum Pause-Time Goal
The pause time is the duration during which the garbage collector stops the application
and recovers space that's no longer in use. The intent of the maximum pause-time
goal is to limit the longest of these pauses.

An average time for pauses and a variance on that average is maintained by the
garbage collector. The average is taken from the start of the execution, but it's
weighted so that more recent pauses count more heavily. If the average plus the
variance of the pause-time is greater than the maximum pause-time goal, then the
garbage collector considers that the goal isn't being met.

The maximum pause-time goal is specified with the command-line option -
XX:MaxGCPauseMillis=<nnn>. This is interpreted as a hint to the garbage collector that
a pause-time of <nnn> milliseconds or fewer is desired. The garbage collector adjusts
the Java heap size and other parameters related to garbage collection in an attempt to
keep garbage collection pauses shorter than <nnn> milliseconds. The default for the
maximum pause-time goal varies by collector. These adjustments may cause garbage
collection to occur more frequently, reducing the overall throughput of the application.
In some cases, though, the desired pause-time goal can't be met.

Throughput Goal
The throughput goal is measured in terms of the time spent collecting garbage, and
the time spent outside of garbage collection is theapplication time.

The goal is specified by the command-line option -XX:GCTimeRatio=nnn. The ratio of
garbage collection time to application time is 1/ (1+nnn). For example, -
XX:GCTimeRatio=19 sets a goal of 1/20th or 5% of the total time for garbage collection.

The time spent in garbage collection is the total time for all garbage collection induced
pauses. If the throughput goal isn't being met, then one possible action for the garbage
collector is to increase the size of the heap so that the time spent in the application
between collection pauses can be longer.

Footprint
If the throughput and maximum pause-time goals have been met, then the garbage
collector reduces the size of the heap until one of the goals (invariably the throughput
goal) can't be met. The minimum and maximum heap sizes that the garbage collector
can use can be set using -Xms=<nnn> and -Xmx=<mmm> for minimum and maximum
heap size respectively.

Tuning Strategy
The heap grows or shrinks to a size that supports the chosen throughput goal. Learn
about heap tuning strategies such as choosing a maximum heap size, and choosing
maximum pause-time goal.

Don't choose a maximum value for the heap unless you know that you need a heap
greater than the default maximum heap size. Choose a throughput goal that's
sufficient for your application.

Chapter 2
Tuning Strategy

2-2

A change in the application's behavior can cause the heap to grow or shrink. For example, if
the application starts allocating at a higher rate, then the heap grows to maintain the same
throughput.

If the heap grows to its maximum size and the throughput goal isn't being met, then the
maximum heap size is too small for the throughput goal. Set the maximum heap size to a
value that's close to the total physical memory on the platform, but doesn't cause swapping of
the application. Execute the application again. If the throughput goal still isn't met, then the
goal for the application time is too high for the available memory on the platform.

If the throughput goal can be met, but pauses are too long, then select a maximum pause-
time goal. Choosing a maximum pause-time goal may mean that your throughput goal won't
be met, so choose values that are an acceptable compromise for the application.

It's typical that the size of the heap oscillates as the garbage collector tries to satisfy
competing goals. This is true even if the application has reached a steady state. The
pressure to achieve a throughput goal (which may require a larger heap) competes with the
goals for a maximum pause-time and a minimum footprint (which both may require a small
heap).

Chapter 2
Tuning Strategy

2-3

3
Garbage Collector Implementation

One strength of the Java SE platform is that it shields the developer from the complexity of
memory allocation and garbage collection.

However, when garbage collection is the principal bottleneck, it's useful to understand some
aspects of the implementation. Garbage collectors make assumptions about the way
applications use objects, and these are reflected in tunable parameters that can be adjusted
for improved performance without sacrificing the power of the abstraction.

Topics

• Generational Garbage Collection

• Generations

• Performance Considerations

• Throughput and Footprint Measurement

Generational Garbage Collection
An object is considered garbage and its memory can be reused by the VM when it can no
longer be reached from any reference of any other live object in the running program.

A theoretical, most straightforward garbage collection algorithm iterates over every reachable
object every time it runs. Any leftover objects are considered garbage. The time this
approach takes is proportional to the number of live objects, which is prohibitive for large
applications maintaining lots of live data.

The Java HotSpot VM incorporates a number of different garbage collection algorithms that
all use a technique called generational collection. While naive garbage collection examines
every live object in the heap every time, generational collection exploits several empirically
observed properties of most applications to minimize the work required to reclaim unused
(garbage) objects. The most important of these observed properties is the weak generational
hypothesis, which states that most objects survive for only a short period of time.

The blue area in Figure 3-1 is a typical distribution for the lifetimes of objects. The x-axis
shows object lifetimes measured in bytes allocated. The byte count on the y-axis is the total
bytes in objects with the corresponding lifetime. The sharp peak at the left represents objects
that can be reclaimed (in other words, have "died") shortly after being allocated. For example,
iterator objects are often only alive for the duration of a single loop.

3-1

Figure 3-1 Typical Distribution for Lifetimes of Objects

Minor Collections Major Collections

Bytes Allocated

B
y
te

s
 S

u
rv

iv
in

g

Some objects do live longer, and so the distribution stretches out to the right. For
instance, there are typically some objects allocated at initialization that live until the
VM exits. Between these two extremes are objects that live for the duration of some
intermediate computation, seen here as the lump to the right of the initial peak. Some
applications have very different looking distributions, but a surprisingly large number
possess this general shape. Efficient collection is made possible by focusing on the
fact that a majority of objects "die young."

Generations
To optimize for this scenario, memory is managed in generations (memory pools
holding objects of different ages). Garbage collection occurs in each generation when
the generation fills up.

The vast majority of objects are allocated in a pool dedicated to young objects (the
young generation), and most objects die there. When the young generation fills up, it
causes a minor collection in which only the young generation is collected; garbage in
other generations isn't reclaimed. The costs of such collections are, to the first order,
proportional to the number of live objects being collected; a young generation full of
dead objects is collected very quickly. Typically, some fraction of the surviving objects
from the young generation are moved to the old generation during each minor
collection. Eventually, the old generation fills up and must be collected, resulting in a
major collection, in which the entire heap is collected. Major collections usually last
much longer than minor collections because a significantly larger number of objects
are involved. Figure 3-2 shows the default arrangement of generations in the serial
garbage collector:

Chapter 3
Generations

3-2

Figure 3-2 Default Arrangement of Generations in the Serial Collector

At startup, the Java HotSpot VM reserves the entire Java heap in the address space, but
doesn't allocate any physical memory for it unless needed. The entire address space
covering the Java heap is logically divided into young and old generations. The complete
address space reserved for object memory can be divided into the young and old
generations.

The young generation consists of eden and two survivor spaces. Most objects are initially
allocated in eden. One survivor space is empty at any time, and serves as the destination of
live objects in eden and the other survivor space during garbage collection; after garbage
collection, eden and the source survivor space are empty. In the next garbage collection, the
purpose of the two survivor spaces are exchanged. The one space recently filled is a source
of live objects that are copied into the other survivor space. Objects are copied between
survivor spaces in this way until they've been copied a certain number of times or there isn't
enough space left there. These objects are copied into the old region. This process is also
called aging.

Performance Considerations
The primary measures of garbage collection are throughput and latency.

• Throughput is the percentage of total time not spent in garbage collection considered
over long periods of time. Throughput includes time spent in allocation (but tuning for
speed of allocation generally isn't needed).

• Latency is the responsiveness of an application. Garbage collection pauses affect the
responsiveness of applications.

Users have different requirements of garbage collection. For example, some consider the
right metric for a web server to be throughput because pauses during garbage collection may
be tolerable or simply obscured by network latencies. However, in an interactive graphics
program, even short pauses may negatively affect the user experience.

Some users are sensitive to other considerations. Footprint is the working set of a process,
measured in pages and cache lines. On systems with limited physical memory or many
processes, footprint may dictate scalability. Promptness is the time between when an object
becomes dead and when the memory becomes available, an important consideration for
distributed systems, including Remote Method Invocation (RMI).

In general, choosing the size for a particular generation is a trade-off between these
considerations. For example, a very large young generation may maximize throughput, but
does so at the expense of footprint, promptness, and pause times. Young generation pauses
can be minimized by using a small young generation at the expense of throughput. The sizing
of one generation doesn't affect the collection frequency and pause times for another
generation.

Chapter 3
Performance Considerations

3-3

There is no one right way to choose the size of a generation. The best choice is
determined by the way the application uses memory as well as user requirements.
Thus the virtual machine's choice of a garbage collector isn't always optimal and may
be overridden with command-line options; see Factors Affecting Garbage Collection
Performance.

Throughput and Footprint Measurement
Throughput and footprint are best measured using metrics particular to the application.

For example, the throughput of a web server may be tested using a client load
generator, whereas the footprint of the server may be measured on the Solaris
operating system using the pmap command. However, pauses due to garbage
collection are easily estimated by inspecting the diagnostic output of the virtual
machine itself.

The command-line option -verbose:gc prints information about the heap and garbage
collection at each collection. Here is an example:

[15,651s][info][gc] GC(36) Pause Young (G1 Evacuation Pause) 239M-
>57M(307M) (15,646s, 15,651s) 5,048ms
[16,162s][info][gc] GC(37) Pause Young (G1 Evacuation Pause) 238M-
>57M(307M) (16,146s, 16,162s) 16,565ms
[16,367s][info][gc] GC(38) Pause Full (System.gc()) 69M->31M(104M)
(16,202s, 16,367s) 164,581ms

The output shows two young collections followed by a full collection that was initiated
by the application with a call to System.gc(). The lines start with a time stamp
indicating the time from when the application was started. Next comes information
about the log level (info) and tag (gc) for this line. This is followed by a GC
identification number. In this case, there are three GCs with the numbers 36, 37, and
38. Then the type of GC and the cause for stating the GC is logged. After this, some
information about the memory consumption is logged. That log uses the format "used
before GC" -> "used after GC" ("heap size").

In the first line of the example this is 239M->57M(307M), which means that 239 MB
were used before the GC and the GC cleared up most of that memory, but 57 MB
survived. The heap size is 307 MB. Note in this example that the full GC shrinks the
heap from 307 MB to 104 MB. After the memory usage information, the start and end
times for the GC are logged as well as the duration (end - start).

The -verbose:gc command is an alias for -Xlog:gc. -Xlog is the general logging
configuration option for logging in the HotSpot JVM. It's a tag-based system where gc
is one of the tags. To get more information about what a GC is doing, you can
configure logging to print any message that has the gc tag and any other tag. The
command line option for this is -Xlog:gc*.

Here's an example of one G1 young collection logged with -Xlog:gc* :

[10.178s][info][gc,start] GC(36) Pause Young (G1 Evacuation Pause)
[10.178s][info][gc,task] GC(36) Using 28 workers of 28 for evacuation
[10.191s][info][gc,phases] GC(36) Pre Evacuate Collection Set: 0.0ms
[10.191s][info][gc,phases] GC(36) Evacuate Collection Set: 6.9ms
[10.191s][info][gc,phases] GC(36) Post Evacuate Collection Set: 5.9ms
[10.191s][info][gc,phases] GC(36) Other: 0.2ms

Chapter 3
Throughput and Footprint Measurement

3-4

[10.191s][info][gc,heap] GC(36) Eden regions: 286->0(276)
[10.191s][info][gc,heap] GC(36) Survivor regions: 15->26(38)
[10.191s][info][gc,heap] GC(36) Old regions: 88->88
[10.191s][info][gc,heap] GC(36) Humongous regions: 3->1
[10.191s][info][gc,metaspace] GC(36) Metaspace: 8152K->8152K(1056768K)
[10.191s][info][gc] GC(36) Pause Young (G1 Evacuation Pause) 391M-
>114M(508M) 13.075ms
[10.191s][info][gc,cpu] GC(36) User=0.20s Sys=0.00s Real=0.01s

Note:

The format of the output produced by -Xlog:gc* is subject to change in future
releases.

Chapter 3
Throughput and Footprint Measurement

3-5

4
Factors Affecting Garbage Collection
Performance

The two most important factors affecting garbage collection performance are total available
memory and proportion of the heap dedicated to the young generation.

Topics

• Total Heap

– Heap Options Affecting Generation Size

– Default Option Values for Heap Size

– Conserving Dynamic Footprint by Minimizing Java Heap Size

• The Young Generation

– Young Generation Size Options

– Survivor Space Sizing

Total Heap
The most important factor affecting garbage collection performance is total available memory.
Because collections occur when generations fill up, throughput is inversely proportional to the
amount of memory available.

Note:

The following discussion regarding growing and shrinking of the heap, the heap
layout, and default values uses the serial collector as an example. While the other
collectors use similar mechanisms, the details presented here may not apply to
other collectors. Refer to the respective topics for similar information for the other
collectors.

Heap Options Affecting Generation Size
A number of options affects generation size. Figure 4-1 illustrates the difference between
committed space and virtual space in the heap. At initialization of the virtual machine, the
entire space for the heap is reserved. The size of the space reserved can be specified with
the -Xmx option. If the value of the -Xms parameter is smaller than the value of the -Xmx
parameter, then not all of the space that's reserved is immediately committed to the virtual
machine. The uncommitted space is labeled "virtual" in this figure. The different parts of the
heap, that is, the old generation and young generation, can grow to the limit of the virtual
space as needed.

4-1

Some of the parameters are ratios of one part of the heap to another. For example, the
parameter –XX:NewRatio denotes the relative size of the old generation to the young
generation.

Figure 4-1 Heap Options

Default Option Values for Heap Size
By default, the virtual machine grows or shrinks the heap at each collection to try to
keep the proportion of free space to live objects at each collection within a specific
range.

This target range is set as a percentage by the options -
XX:MinHeapFreeRatio=<minimum> and -XX:MaxHeapFreeRatio=<maximum>, and the
total size is bounded below by –Xms<min> and above by –Xmx<max>. The default
options for the 64-bit Solaris operating system (SPARC Platform Edition) are shown in
Table 4-1.

Table 4-1 Default Options for 64-Bit Solaris Operating System

Option Default Value

-XX:MinHeapFreeRatio 40

-XX:MaxHeapFreeRatio 70

-Xms 6656 KB

-Xmx calculated

With these options, if the percent of free space in a generation falls below 40%, then
the generation expands to maintain 40% free space, up to the maximum allowed size
of the generation. Similarly, if the free space exceeds 70%, then the generation
contracts so that only 70% of the space is free, subject to the minimum size of the
generation.

As noted in Table 4-1, the default maximum heap size is a value that's calculated by
the JVM. The calculation used in Java SE for the Parallel collector are now used for all
the garbage collectors. Part of the calculation is an upper limit on the maximum heap
size for 64-bit platforms. See Parallel Collector Default Heap Size. There's a similar
calculation for the client JVM, which results in smaller maximum heap sizes than for
the server JVM.

The following are general guidelines regarding heap sizes for server applications:

Chapter 4
Total Heap

4-2

• Unless you have problems with pauses, try granting as much memory as possible to the
virtual machine. The default size is often too small.

• Setting -Xms and -Xmx to the same value increases predictability by removing the most
important sizing decision from the virtual machine. However, the virtual machine is then
unable to compensate if you make a poor choice.

• In general, increase the memory as you increase the number of processors, because
allocation can be made parallel.

Conserving Dynamic Footprint by Minimizing Java Heap Size
If you need to minimize the dynamic memory footprint (the maximum RAM consumed during
execution) for your application, then you can do this by minimizing the Java heap size. Java
SE Embedded applications may require this.

Minimize Java heap size by lowering the values of the options -XX:MaxHeapFreeRatio
(default value is 70%) and -XX:MinHeapFreeRatio (default value is 40%) with the command-
line options -XX:MaxHeapFreeRatio and -XX:MinHeapFreeRatio. Lowering -
XX:MaxHeapFreeRatio to as low as 10% and -XX:MinHeapFreeRatio has shown to
successfully reduce the heap size without too much performance degradation; however,
results may vary greatly depending on your application. Try different values for these
parameters until they're as low as possible, yet still retain acceptable performance.

In addition, you can specify -XX:-ShrinkHeapInSteps, which immediately reduces the Java
heap to the target size (specified by the parameter -XX:MaxHeapFreeRatio). You may
encounter performance degradation with this setting. By default, the Java runtime
incrementally reduces the Java heap to the target size; this process requires multiple
garbage collection cycles.

The Young Generation
After total available memory, the second most influential factor affecting garbage collection
performance is the proportion of the heap dedicated to the young generation.

The bigger the young generation, the less often minor collections occur. However, for a
bounded heap size, a larger young generation implies a smaller old generation, which will
increase the frequency of major collections. The optimal choice depends on the lifetime
distribution of the objects allocated by the application.

Young Generation Size Options
By default, the young generation size is controlled by the option -XX:NewRatio.

For example, setting -XX:NewRatio=3 means that the ratio between the young and old
generation is 1:3. In other words, the combined size of the eden and survivor spaces will be
one-fourth of the total heap size.

The options -XX:NewSize and -XX:MaxNewSize bound the young generation size from below
and above. Setting these to the same value fixes the young generation, just as setting -Xms
and -Xmx to the same value fixes the total heap size. This is useful for tuning the young
generation at a finer granularity than the integral multiples allowed by -XX:NewRatio.

Chapter 4
The Young Generation

4-3

Survivor Space Sizing
You can use the option -XX:SurvivorRatio to tune the size of the survivor spaces, but
often this isn't important for performance.

For example, -XX:SurvivorRatio=6 sets the ratio between eden and a survivor space
to 1:6. In other words, each survivor space will be one-sixth of the size of eden, and
thus one-eighth of the size of the young generation (not one-seventh, because there
are two survivor spaces).

If survivor spaces are too small, then the copying collection overflows directly into the
old generation. If survivor spaces are too large, then they are uselessly empty. At each
garbage collection, the virtual machine chooses a threshold number, which is the
number of times an object can be copied before it's old. This threshold is chosen to
keep the survivors half full. You can use the log configuration -Xlog:gc,age can be
used to show this threshold and the ages of objects in the new generation. It's also
useful for observing the lifetime distribution of an application.

Table 4-2 provides the default values for 64-bit Solaris.

Table 4-2 Default Option Values for Survivor Space Sizing

Option Default Value

-XX:NewRatio 2

-XX:NewSize 1310 MB

-XX:MaxNewSize not limited

-XX:SurvivorRatio 8

The maximum size of the young generation is calculated from the maximum size of the
total heap and the value of the -XX:NewRatio parameter. The "not limited" default
value for the -XX:MaxNewSize parameter means that the calculated value isn't limited
by -XX:MaxNewSize unless a value for -XX:MaxNewSize is specified on the command
line.

The following are general guidelines for server applications:

• First decide on the maximum heap size that you can afford to give the virtual
machine. Then, plot your performance metric against the young generation sizes
to find the best setting.

– Note that the maximum heap size should always be smaller than the amount
of memory installed on the machine to avoid excessive page faults and
thrashing.

• If the total heap size is fixed, then increasing the young generation size requires
reducing the old generation size. Keep the old generation large enough to hold all
the live data used by the application at any given time, plus some amount of slack
space (10 to 20% or more).

• Subject to the previously stated constraint on the old generation:

– Grant plenty of memory to the young generation.

– Increase the young generation size as you increase the number of processors
because allocation can be parallelized.

Chapter 4
The Young Generation

4-4

5
Available Collectors

The discussion to this point has been about the serial collector. The Java HotSpot VM
includes three different types of collectors, each with different performance characteristics.

Topics

• Serial Collector

• Parallel Collector

• The Mostly Concurrent Collectors

• Selecting a Collector

Serial Collector
The serial collector uses a single thread to perform all garbage collection work, which makes
it relatively efficient because there is no communication overhead between threads.

It's best-suited to single processor machines because it can't take advantage of
multiprocessor hardware, although it can be useful on multiprocessors for applications with
small data sets (up to approximately 100 MB). The serial collector is selected by default on
certain hardware and operating system configurations, or can be explicitly enabled with the
option -XX:+UseSerialGC.

Parallel Collector
The parallel collector is also known as throughput collector, it's a generational collector
similar to the serial collector. The primary difference between the serial and parallel collectors
is that the parallel collector has multiple threads that are used to speed up garbage collection.

The parallel collector is intended for applications with medium-sized to large-sized data sets
that are run on multiprocessor or multithreaded hardware. You can enable it by using the -
XX:+UseParallelGC option.

Parallel compaction is a feature that enables the parallel collector to perform major
collections in parallel. Without parallel compaction, major collections are performed using a
single thread, which can significantly limit scalability. Parallel compaction is enabled by
default if the option -XX:+UseParallelGC has been specified. You can disable it by using the
-XX:-UseParallelOldGC option.

The Mostly Concurrent Collectors
Concurrent Mark Sweep (CMS) collector and Garbage-First (G1) garbage collector are the
two mostly concurrent collectors. Mostly concurrent collectors perform some expensive work
concurrently to the application.

5-1

• G1 garbage collector: This server-style collector is for multiprocessor machines
with a large amount of memory. It meets garbage collection pause-time goals with
high probability, while achieving high throughput.

G1 is selected by default on certain hardware and operating system
configurations, or can be explicitly enabled using-XX:+UseG1GC .

• CMS collector : This collector is for applications that prefer shorter garbage
collection pauses and can afford to share processor resources with the garbage
collection.

Use the option -XX:+UseConcMarkSweepGC to enable the CMS collector

The CMS collector is deprecated as of JDK 9.

The Z Garbage Collector
The Z Garbage Collector (ZGC) is a scalable low latency garbage collector. ZGC
performs all expensive work concurrently, without stopping the execution of application
threads.

ZGC is intended for applications which require low latency (less than 10 ms pauses)
and/or use a very large heap (multi-terabytes). You can enable is by using the -
XX:+UseZGC option.

ZGC is available as an experimental feature, starting with JDK 11.

Selecting a Collector
Unless your application has rather strict pause-time requirements, first run your
application and allow the VM to select a collector.

If necessary, adjust the heap size to improve performance. If the performance still
doesn't meet your goals, then use the following guidelines as a starting point for
selecting a collector:

• If the application has a small data set (up to approximately 100 MB), then select
the serial collector with the option -XX:+UseSerialGC.

• If the application will be run on a single processor and there are no pause-time
requirements, then select the serial collector with the option -XX:+UseSerialGC.

• If (a) peak application performance is the first priority and (b) there are no pause-
time requirements or pauses of one second or longer are acceptable, then let the
VM select the collector or select the parallel collector with -XX:+UseParallelGC.

• If response time is more important than overall throughput and garbage collection
pauses must be kept shorter than approximately one second, then select a mostly
concurrent collector with -XX:+UseG1GC or -XX:+UseConcMarkSweepGC.

• If response time is a high priority, and/or you are using a very large heap, then
select a fully concurrent collector with -XX:UseZGC.

These guidelines provide only a starting point for selecting a collector because
performance is dependent on the size of the heap, the amount of live data maintained
by the application, and the number and speed of available processors.

If the recommended collector doesn't achieve the desired performance, then first
attempt to adjust the heap and generation sizes to meet the desired goals. If

Chapter 5
The Z Garbage Collector

5-2

performance is still inadequate, then try a different collector: Use the concurrent collector to
reduce pause-time, and use the parallel collector to increase overall throughput on
multiprocessor hardware.

Chapter 5
Selecting a Collector

5-3

6
The Parallel Collector

The parallel collector (also referred to here as the throughput collector) is a generational
collector similar to the serial collector. The primary difference between the serial and parallel
collectors is that the parallel collector has multiple threads that are used to speed up garbage
collection.

The parallel collector is enabled with the command-line option -XX:+UseParallelGC. By
default, with this option, both minor and major collections are run in parallel to further reduce
garbage collection overhead.

Topics

• Number of Parallel Collector Garbage Collector Threads

• Arrangement of Generations in Parallel Collectors

• Parallel Collector Ergonomics

– Options to Specify Parallel Collector Behaviors

– Priority of Parallel Collector Goals

– Parallel Collector Generation Size Adjustments

– Parallel Collector Default Heap Size

* Specification of Parallel Collector Initial and Maximum Heap Sizes

• Excessive Parallel Collector Time and OutOfMemoryError

• Parallel Collector Measurements

Number of Parallel Collector Garbage Collector Threads
On a machine with <N> hardware threads where <N> is greater than 8, the parallel collector
uses a fixed fraction of <N> as the number of garbage collector threads.

The fraction is approximately 5/8 for large values of <N>. At values of <N> below 8, the
number used is <N>. On selected platforms, the fraction drops to 5/16. The specific number
of garbage collector threads can be adjusted with a command-line option (which is described
later). On a host with one processor, the parallel collector will likely not perform as well as the
serial collector because of the overhead required for parallel execution (for example,
synchronization). However, when running applications with medium-sized to large-sized
heaps, it generally outperforms the serial collector by a modest amount on computers with
two processors, and usually performs significantly better than the serial collector when more
than two processors are available.

The number of garbage collector threads can be controlled with the command-line option -
XX:ParallelGCThreads=<N>. If you are tuning the heap with command-line options, then the
size of the heap needed for good performance with the parallel collector is the same as
needed with the serial collector. However, enabling the parallel collector should make the
collection pauses shorter. Because multiple garbage collector threads are participating in a
minor collection, some fragmentation is possible due to promotions from the young

6-1

generation to the old generation during the collection. Each garbage collection thread
involved in a minor collection reserves a part of the old generation for promotions and
the division of the available space into these "promotion buffers" can cause a
fragmentation effect. Reducing the number of garbage collector threads and increasing
the size of the old generation will reduce this fragmentation effect.

Arrangement of Generations in Parallel Collectors
The arrangement of the generations is different in the parallel collector.

That arrangement is shown in Figure 6-1:

Figure 6-1 Arrangement of Generations in the Parallel Collector

Parallel Collector Ergonomics
When the parallel collector is selected by using -XX:+UseParallelGC, it enables a
method of automatic tuning that allows you to specify behaviors instead of generation
sizes and other low-level tuning details.

Options to Specify Parallel Collector Behaviors
You can specify maximum garbage collection pause time, throughput, and footprint
(heap size).

• Maximum garbage collection pause time: The maximum pause time goal is
specified with the command-line option -XX:MaxGCPauseMillis=<N>. This is
interpreted as a hint that pause times of <N> milliseconds or less are desired; by
default, no maximum pause- time goal. If a pause-time goal is specified, the heap
size and other parameters related to garbage collection are adjusted in an attempt
to keep garbage collection pauses shorter than the specified value; however, the
desired pause-time goal may not always be met. These adjustments may cause
the garbage collector to reduce the overall throughput of the application.

• Throughput: The throughput goal is measured in terms of the time spent doing
garbage collection versus the time spent outside of garbage collection, referred to
as application time. The goal is specified by the command-line option -
XX:GCTimeRatio=<N>, which sets the ratio of garbage collection time to application
time to 1 / (1 + <N>).

For example, -XX:GCTimeRatio=19 sets a goal of 1/20 or 5% of the total time in
garbage collection. The default value is 99, resulting in a goal of 1% of the time in
garbage collection.

Chapter 6
Arrangement of Generations in Parallel Collectors

6-2

• Footprint: The maximum heap footprint is specified using the option -Xmx<N>. In addition,
the collector has an implicit goal of minimizing the size of the heap as long as the other
goals are being met.

Priority of Parallel Collector Goals
The goals are maximum pause-time goal, throughput goal, and minimum footprint goal, and
goals are addressed in that order:

The maximum pause-time goal is met first. Only after it's met is the throughput goal
addressed. Similarly, only after the first two goals have been met is the footprint goal
considered.

Parallel Collector Generation Size Adjustments
Statistics such as average pause time kept by the collector are updated at the end of each
collection.

The tests to determine if the goals have been met are then made and any needed
adjustments to the size of a generation is made. The exception is that explicit garbage
collections, for example, calls to System.gc()are ignored in terms of keeping statistics and
making adjustments to the sizes of generations.

Growing and shrinking the size of a generation is done by increments that are a fixed
percentage of the size of the generation so that a generation steps up or down toward its
desired size. Growing and shrinking are done at different rates. By default, a generation
grows in increments of 20% and shrinks in increments of 5%. The percentage for growing is
controlled by the command-line option -XX:YoungGenerationSizeIncrement=<Y> for the
young generation and -XX:TenuredGenerationSizeIncrement=<T> for the old generation.
The percentage by which a generation shrinks is adjusted by the command-line flag -
XX:AdaptiveSizeDecrementScaleFactor=<D>. If the growth increment is X%, then the
decrement for shrinking is X/D%.

If the collector decides to grow a generation at startup, then there's a supplemental
percentage is added to the increment. This supplement decays with the number of collections
and has no long-term effect. The intent of the supplement is to increase startup performance.
There isn't supplement to the percentage for shrinking.

If the maximum pause-time goal isn't being met, then the size of only one generation is
shrunk at a time. If the pause times of both generations are above the goal, then the size of
the generation with the larger pause time is shrunk first.

If the throughput goal isn't being met, then the sizes of both generations are increased. Each
is increased in proportion to its respective contribution to the total garbage collection time.
For example, if the garbage collection time of the young generation is 25% of the total
collection time and if a full increment of the young generation would be by 20%, then the
young generation would be increased by 5%.

Parallel Collector Default Heap Size
Unless the initial and maximum heap sizes are specified on the command line, they're
calculated based on the amount of memory on the machine. The default maximum heap size
is one-fourth of the physical memory while the initial heap size is 1/64th of physical memory.
The maximum amount of space allocated to the young generation is one third of the total
heap size.

Chapter 6
Parallel Collector Ergonomics

6-3

Specification of Parallel Collector Initial and Maximum Heap Sizes
You can specify the initial and maximum heap sizes using the options -Xms (initial heap
size) and -Xmx (maximum heap size).

If you know how much heap your application needs to work well, then you can set -
Xms and -Xmx to the same value. If you don't know, then the JVM will start by using the
initial heap size and then growing the Java heap until it finds a balance between heap
usage and performance.

Other parameters and options can affect these defaults. To verify your default values,
use the -XX:+PrintFlagsFinal option and look for -XX:MaxHeapSize in the output. For
example, on Linux or Solaris, you can run the following:

java -XX:+PrintFlagsFinal <GC options> -version | grep MaxHeapSize

Excessive Parallel Collector Time and OutOfMemoryError
The parallel collector throws an OutOfMemoryError if too much time is being spent in
garbage collection (GC).

If more than 98% of the total time is spent in garbage collection and less than 2% of
the heap is recovered, then an OutOfMemoryError, is thrown. This feature is designed
to prevent applications from running for an extended period of time while making little
or no progress because the heap is too small. If necessary, this feature can be
disabled by adding the option -XX:-UseGCOverheadLimit to the command line.

Parallel Collector Measurements
The verbose garbage collector output from the parallel collector is essentially the same
as that from the serial collector.

Chapter 6
Excessive Parallel Collector Time and OutOfMemoryError

6-4

7
The Mostly Concurrent Collectors

The mostly concurrent collectors perform parts of their work concurrently to the application,
hence their name. The Java HotSpot VM includes two mostly concurrent collectors:

• Concurrent Mark Sweep (CMS) collector: This collector is for applications that prefer
shorter garbage collection pauses and can afford to share processor resources with the
garbage collection.

• Garbage-First (G1) garbage collector: This server-style collector is for multiprocessor
machines with a large amount of memory. It meets garbage collection pause-time goals
with high probability while achieving high throughput.

Overhead of Mostly Concurrent Collectors
The mostly concurrent collector trades processor resources (which would otherwise be
available to the application) for shorter major collection pause time.

The most visible overhead is the use of one or more processors during the concurrent parts
of the collection. On an N processor system, the concurrent part of the collection uses K/N of
the available processors, where 1 <= K <= ceiling{N/4}. In addition to the use of processors
during concurrent phases, additional overhead is incurred to enable concurrency. Thus, while
garbage collection pauses are typically much shorter with the concurrent collector, application
throughput also tends to be slightly lower than with the other collectors.

On a machine with more than one processing core, processors are available for application
threads during the concurrent part of the collection, so the concurrent garbage collector
thread doesn't pause the application. This usually results in shorter pauses, but again fewer
processor resources are available to the application and some slowdown should be
expected, especially if the application uses all of the processing cores maximally. As N
increases, the reduction in processor resources due to concurrent garbage collection
becomes smaller, and the benefit from concurrent collection increases. See Concurrent Mode
Failure, which discusses potential limits to such scaling.

Because at least one processor is used for garbage collection during the concurrent phases,
the concurrent collectors don't normally provide any benefit on a uniprocessor (single-core)
machine.

7-1

8
Concurrent Mark Sweep (CMS) Collector

The Concurrent Mark Sweep (CMS) collector is designed for applications that prefer shorter
garbage collection pauses and that can afford to share processor resources with the garbage
collector while the application is running.

Typically applications that have a relatively large set of long-lived data (a large old
generation) and run on machines with two or more processors tend to benefit from the use of
this collector. The CMS collector is enabled with the command-line option -
XX:+UseConcMarkSweepGC.

The CMS collector is deprecated. Strongly consider using the Garbage-First collector instead.

Topics

• Concurrent Mark Sweep Collector Performance and Structure

• Concurrent Mode Failure

• Excessive GC Time and OutOfMemoryError

• Concurrent Mark Sweep Collector and Floating Garbage

• Concurrent Mark Sweep Collector Pauses

• Concurrent Mark Sweep Collector Concurrent Phases

• Starting a Concurrent Collection Cycle

• Scheduling Pauses

• Concurrent Mark Sweep Collector Measurements

Concurrent Mark Sweep Collector Performance and Structure
Similar to the other available collectors, the CMS collector is generational; thus both minor
and major collections occur. The CMS collector attempts to reduce pause times due to major
collections by using separate garbage collector threads to trace the reachable objects
concurrently with the execution of the application threads.

During each major collection cycle, the CMS collector pauses all the application threads for a
brief period at the beginning of the collection and again toward the middle of the collection.
The second pause tends to be the longer of the two pauses. Multiple threads perform the
collection work during both pauses. One or more garbage collector threads do the remainder
of the collection (including most of the tracing of live objects and sweeping of unreachable
objects). Minor collections can interleave with an ongoing major cycle, and are done in a
manner similar to the parallel collector (in particular, the application threads are stopped
during minor collections).

8-1

Concurrent Mode Failure
The CMS collector uses one or more garbage collector threads that run
simultaneously with the application threads with the goal of completing the collection of
the old generation before it becomes full.

As described previously, in normal operation, the CMS collector does most of its
tracing and sweeping work with the application threads still running, so only brief
pauses are seen by the application threads. However, if the CMS collector is unable to
finish reclaiming the unreachable objects before the old generation fills up, or if an
allocation cannot be satisfied with the available free space blocks in the old
generation, then the application is paused and the collection is completed with all the
application threads stopped. The inability to complete a collection concurrently is
referred to as concurrent mode failure and indicates the need to adjust the CMS
collector parameters. If a concurrent collection is interrupted by an explicit garbage
collection (System.gc()) or for a garbage collection needed to provide information
for diagnostic tools, then a concurrent mode interruption is reported.

Excessive GC Time and OutOfMemoryError
The CMS collector throws an OutOfMemoryError if too much time is being spent in
garbage collection: If more than 98% of the total time is spent in garbage collection
and less than 2% of the heap is recovered, then an OutOfMemoryError is thrown.

This feature is designed to prevent applications from running for an extended period of
time while making little or no progress because the heap is too small. If necessary, this
feature can be disabled by adding the option -XX:-UseGCOverheadLimit to the
command line.

The policy is the same as that in the parallel collector, except that time spent
performing concurrent collections isn't counted toward the 98% time limit. In other
words, only collections performed while the application is stopped count toward
excessive GC time. Such collections are typically due to a concurrent mode failure or
an explicit collection request (for example, a call to System.gc()).

Concurrent Mark Sweep Collector and Floating Garbage
The CMS collector, like all the other collectors in Java HotSpot VM, is a tracing
collector that identifies at least all the reachable objects in the heap.

Richard Jones and Rafael D. Lins in their publication Garbage Collection: Algorithms
for Automated Dynamic Memory, it's an incremental update collector. Because
application threads and the garbage collector thread run concurrently during a major
collection, objects that are traced by the garbage collector thread may subsequently
become unreachable by the time collection process ends. Such unreachable objects
that haven't yet been reclaimed are referred to as floating garbage. The amount of
floating garbage depends on the duration of the concurrent collection cycle and on the
frequency of reference updates, also known as mutations, by the application.
Furthermore, because the young generation and the old generation are collected
independently, each acts as a source of roots to the other. As a rough guideline, try
increasing the size of the old generation by 20% to account for the floating garbage.
Floating garbage in the heap at the end of one concurrent collection cycle is collected
during the next collection cycle.

Chapter 8
Concurrent Mode Failure

8-2

Concurrent Mark Sweep Collector Pauses
The CMS collector pauses an application twice during a concurrent collection cycle. The first
pause is to mark as live the objects directly reachable from the roots (for example, object
references from application thread stacks and registers, static objects, and so on) and from
elsewhere in the heap (for example, the young generation).

This first pause is referred to as the initial mark pause. The second pause comes at the end
of the concurrent tracing phase and finds objects that were missed by the concurrent tracing
due to updates by the application threads of references in an object after the CMS collector
had finished tracing that object. This second pause is referred to as the remark pause.

Concurrent Mark Sweep Collector Concurrent Phases
The concurrent tracing of the reachable object graph occurs between the initial mark pause
and the remark pause.

During this concurrent tracing phase, one or more concurrent garbage collector threads may
be using processor resources that would otherwise have been available to the application. As
a result, compute-bound applications may see a commensurate decrease in application
throughput during this and other concurrent phases even though the application threads
aren’t paused. After the remark pause, a concurrent sweeping phase collects the objects
identified as unreachable. After a collection cycle completes, the CMS collector waits,
consuming almost no computational resources, until the start of the next major collection
cycle.

Starting a Concurrent Collection Cycle
With the serial collector a major collection occurs whenever the old generation becomes full
and all application threads are stopped while the collection is done. In contrast, the start of a
concurrent collection in CMS collector must be timed such that the collection can finish before
the old generation becomes full; otherwise, the application would observe longer pauses due
to concurrent mode failure. There are several ways to start a concurrent collection.

Based on recent history, the CMS collector maintains estimates of the time remaining before
the old generation will be exhausted and of the time needed for a concurrent collection cycle.
Using these dynamic estimates, a concurrent collection cycle is started with the aim of
completing the collection cycle before the old generation is exhausted. These estimates are
padded for safety because concurrent mode failure can be very costly.

A concurrent collection also starts if the occupancy of the old generation exceeds an initiating
occupancy (a percentage of the old generation). The default value for this initiating
occupancy threshold is approximately 92%, but the value is subject to change from release to
release. This value can be manually adjusted using the command-line option -
XX:CMSInitiatingOccupancyFraction=<N>, where <N> is an integral percentage (0 to 100) of
the old generation size.

Scheduling Pauses
The pauses for the young generation collection and the old generation collection occur
independently.

Chapter 8
Concurrent Mark Sweep Collector Pauses

8-3

They don't overlap, but may occur in quick succession such that the pause from one
collection, immediately followed by one from the other collection, can appear to be a
single, longer pause. To avoid this, the CMS collector attempts to schedule the remark
pause roughly midway between the previous and next young generation pauses. This
scheduling is currently not done for the initial mark pause, which is usually much
shorter than the remark pause.

Concurrent Mark Sweep Collector Measurements
The following is the output from the CMS collector with the option -Xlog:gc:

[121,834s][info][gc] GC(657) Pause Initial Mark 191M->191M(485M)
(121,831s, 121,834s) 3,433ms
[121,835s][info][gc] GC(657) Concurrent Mark (121,835s)
[121,889s][info][gc] GC(657) Concurrent Mark (121,835s, 121,889s)
54,330ms
[121,889s][info][gc] GC(657) Concurrent Preclean (121,889s)
[121,892s][info][gc] GC(657) Concurrent Preclean (121,889s, 121,892s)
2,781ms
[121,892s][info][gc] GC(657) Concurrent Abortable Preclean (121,892s)
[121,949s][info][gc] GC(658) Pause Young (Allocation Failure) 324M-
>199M(485M) (121,929s, 121,949s) 19,705ms
[122,068s][info][gc] GC(659) Pause Young (Allocation Failure) 333M-
>200M(485M) (122,043s, 122,068s) 24,892ms
[122,075s][info][gc] GC(657) Concurrent Abortable Preclean (121,892s,
122,075s) 182,989ms
[122,087s][info][gc] GC(657) Pause Remark 209M->209M(485M) (122,076s,
122,087s) 11,373ms
[122,087s][info][gc] GC(657) Concurrent Sweep (122,087s)
[122,193s][info][gc] GC(660) Pause Young (Allocation Failure) 301M-
>165M(485M) (122,181s, 122,193s) 12,151ms
[122,254s][info][gc] GC(657) Concurrent Sweep (122,087s, 122,254s)
166,758ms
[122,254s][info][gc] GC(657) Concurrent Reset (122,254s)
[122,255s][info][gc] GC(657) Concurrent Reset (122,254s, 122,255s)
0,952ms
[122,297s][info][gc] GC(661) Pause Young (Allocation Failure) 259M-
>128M(485M) (122,291s, 122,297s) 5,797ms

Note:

The output for the CMS collection (GC ID 657) is interspersed with the output
from the minor collections (GC IDs 658, 659 and 660); typically many minor
collections occur during a concurrent collection cycle. Pause Initial Mark
indicates the start of the concurrent collection cycle. The lines starting with
"Concurrent" indicate the start and end of the concurrent phases. Pause
Remark is the final pause. Not discussed previously is the precleaning
phases. Precleaning represents work that can be done concurrently in
preparation for the remark phase. The final phase is indicated by Concurrent
Reset and is in preparation for the next concurrent collection.

Chapter 8
Concurrent Mark Sweep Collector Measurements

8-4

The initial mark pause is typically short relative to the minor collection pause time. The
concurrent phases (concurrent mark, concurrent preclean, and concurrent sweep) normally
last significantly longer than a minor collection pause, as indicated in the CMS collector
output example. Note, however, that the application isn't paused during these concurrent
phases. The remark pause is often comparable in length to a minor collection. The remark
pause is affected by certain application characteristics (for example, a high rate of object
modification can increase this pause) and the time since the last minor collection (for
example, more objects in the young generation may increase this pause).

Chapter 8
Concurrent Mark Sweep Collector Measurements

8-5

9
Garbage-First Garbage Collector

This section describes the Garbage-First (G1) Garbage Collector (GC).

Topics

• Introduction to Garbage-First Garbage Collector

• Enabling G1

• Basic Concepts

– Heap Layout

– Garbage Collection Cycle

• Garbage-First Internals

– Determining Initiating Heap Occupancy

– Marking

– Behavior in Very Tight Heap Situations

– Determining Initiating Heap Occupancy

– Humongous Objects

– Young-Only Phase Generation Sizing

– Space-Reclamation Phase Generation Sizing

• Ergonomic Defaults for G1 GC

• Comparison to Other Collectors

Introduction to Garbage-First Garbage Collector
The Garbage-First (G1) garbage collector is targeted for multiprocessor machines with a
large amount of memory. It attempts to meet garbage collection pause-time goals with high
probability while achieving high throughput with little need for configuration. G1 aims to
provide the best balance between latency and throughput using current target applications
and environments whose features include:

• Heap sizes up to ten of GBs or larger, with more than 50% of the Java heap occupied
with live data.

• Rates of object allocation and promotion that can vary significantly over time.

• A significant amount of fragmentation in the heap.

• Predictable pause-time target goals that aren’t longer than a few hundred milliseconds,
avoiding long garbage collection pauses.

G1 replaces the Concurrent Mark-Sweep (CMS) collector. It is also the default collector.

The G1 collector achieves high performance and tries to meet pause-time goals in several
ways described in the following sections.

9-1

Enabling G1
The Garbage-First garbage collector is the default collector, so typically you don't have
to perform any additional actions. You can explicitly enable it by providing -
XX:+UseG1GC on the command line.

Basic Concepts
G1 is a generational, incremental, parallel, mostly concurrent, stop-the-world, and
evacuating garbage collector which monitors pause-time goals in each of the stop-the-
world pauses. Similar to other collectors, G1 splits the heap into (virtual) young and old
generations. Space-reclamation efforts concentrate on the young generation where it
is most efficient to do so, with occasional space-reclamation in the old generation

Some operations are always performed in stop-the-world pauses to improve
throughput. Other operations that would take more time with the application stopped
such as whole-heap operations like global marking are performed in parallel and
concurrently with the application. To keep stop-the-world pauses short for space-
reclamation, G1 performs space-reclamation incrementally in steps and in parallel. G1
achieves predictability by tracking information about previous application behavior and
garbage collection pauses to build a model of the associated costs. It uses this
information to size the work done in the pauses. For example, G1 reclaims space in
the most efficient areas first (that is the areas that are mostly filled with garbage,
therefore the name).

G1 reclaims space mostly by using evacuation: live objects found within selected
memory areas to collect are copied into new memory areas, compacting them in the
process. After an evacuation has been completed, the space previously occupied by
live objects is reused for allocation by the application.

The Garbage-First collector is not a real-time collector. It tries to meet set pause-time
targets with high probability over a longer time, but not always with absolute certainty
for a given pause.

Heap Layout
G1 partitions the heap into a set of equally sized heap regions, each a contiguous
range of virtual memory as shown in Figure 9-1. A region is the unit of memory
allocation and memory reclamation. At any given time, each of these regions can be
empty (light gray), or assigned to a particular generation, young or old. As requests for
memory comes in, the memory manager hands out free regions. The memory
manager assigns them to a generation and then returns them to the application as free
space into which it can allocate itself.

Chapter 9
Enabling G1

9-2

Figure 9-1 G1 Garbage Collector Heap Layout

 H

 S

 S

 H

The young generation contains eden regions (red) and survivor regions (red with "S"). These
regions provide the same function as the respective contiguous spaces in other collectors,
with the difference that in G1 these regions are typically laid out in a noncontiguous pattern in
memory. Old regions (light blue) make up the old generation. Old generation regions may be
humongous (light blue with "H") for objects that span multiple regions.

An application always allocates into a young generation, that is, eden regions, with the
exception of humongous objects that are directly allocated as belonging to the old generation.

G1 garbage collection pauses can reclaim space in the young generation as a whole, and
any additional set of old generation regions at any collection pause. During the pause G1
copies objects from this collection set to one or more different regions in the heap. The
destination region for an object depends on the source region of that object: the entire young
generation is copied into either survivor or old regions, and objects from old regions to other,
different old regions using aging.

Garbage Collection Cycle
On a high level, the G1 collector alternates between two phases. The young-only phase
contains garbage collections that fill up the currently available memory with objects in the old
generation gradually. The space-reclamation phase is where G1 reclaims space in the old
generation incrementally, in addition to handling the young generation. Then the cycle
restarts with a young-only phase.

Figure 9-2 gives an overview about this cycle with an example of the sequence of garbage
collection pauses that could occur:

Chapter 9
Basic Concepts

9-3

Figure 9-2 Garbage Collection Cycle Overview

The following list describes the phases, their pauses and the transition between the
phases of the G1 garbage collection cycle in detail:

1. Young-only phase: This phase starts with a few Normal young collections that
promote objects into the old generation. The transition between the young-only
phase and the space-reclamation phase starts when the old generation occupancy
reaches a certain threshold, the Initiating Heap Occupancy threshold. At this time,
G1 schedules a Concurrent Start young collection instead of a Normal young
collection.

• Concurrent Start : This type of collection starts the marking process in addition
to performing a Normal young collection. Concurrent marking determines all
currently reachable (live) objects in the old generation regions to be kept for
the following space-reclamation phase. While collection marking hasn’t
completely finished, Normal young collections may occur. Marking finishes
with two special stop-the-world pauses: Remark and Cleanup.

• Remark: This pause finalizes the marking itself, performs global reference
processing and class unloading, reclaims completely empty regions and
cleans up internal data structures. Between Remark and Cleanup G1
calculates information to later be able to reclaim free space in selected old
generation regions concurrently, which will be finalized in the Cleanup pause.

• Cleanup: This pause determines whether a space-reclamation phase will
actually follow. If a space-reclamation phase follows, the young-only phase
completes with a single Prepare Mixed young collection.

2. Space-reclamation phase: This phase consists of multiple Mixed collections that in
addition to young generation regions, also evacuate live objects of sets of old
generation regions. The space-reclamation phase ends when G1 determines that
evacuating more old generation regions wouldn't yield enough free space worth
the effort.

Chapter 9
Basic Concepts

9-4

After space-reclamation, the collection cycle restarts with another young-only phase. As
backup, if the application runs out of memory while gathering liveness information, G1
performs an in-place stop-the-world full heap compaction (Full GC) like other collectors.

Garbage-First Internals
This section describes some important details of the Garbage-First (G1) garbage collector.

Determining Initiating Heap Occupancy
The Initiating Heap Occupancy Percent (IHOP) is the threshold at which an Initial Mark
collection is triggered and it is defined as a percentage of the old generation size.

G1 by default automatically determines an optimal IHOP by observing how long marking
takes and how much memory is typically allocated in the old generation during marking
cycles. This feature is called Adaptive IHOP. If this feature is active, then the option -
XX:InitiatingHeapOccupancyPercent determines the initial value as a percentage of the
size of the current old generation as long as there aren't enough observations to make a
good prediction of the Initiating Heap Occupancy threshold. Turn off this behavior of G1 using
the option-XX:-G1UseAdaptiveIHOP. In this case, the value of -
XX:InitiatingHeapOccupancyPercent always determines this threshold.

Internally, Adaptive IHOP tries to set the Initiating Heap Occupancy so that the first mixed
garbage collection of the space-reclamation phase starts when the old generation occupancy
is at a current maximum old generation size minus the value of -XX:G1HeapReservePercent
as the extra buffer.

Marking
G1 marking uses an algorithm called Snapshot-At-The-Beginning (SATB) . It takes a virtual
snapshot of the heap at the time of the Initial Mark pause, when all objects that were live at
the start of marking are considered live for the remainder of marking. This means that objects
that become dead (unreachable) during marking are still considered live for the purpose of
space-reclamation (with some exceptions). This may cause some additional memory wrongly
retained compared to other collectors. However, SATB potentially provides better latency
during the Remark pause. The too conservatively considered live objects during that marking
will be reclaimed during the next marking. See the Garbage-First Garbage Collector
Tuning topic for more information about problems with marking.

Behavior in Very Tight Heap Situations
When the application keeps alive so much memory so that an evacuation can't find enough
space to copy to, an evacuation failure occurs. Evacuation failure means that G1 tries to
complete the current garbage collection by keeping any objects that have already been
moved in their new location, and not copying any not yet moved objects, only adjusting
references between the object. Evacuation failure may incur some additional overhead, but
generally should be as fast as other young collections. After this garbage collection with the
evacuation failure, G1 will resume the application as normal without any other measures. G1
assumes that the evacuation failure occurred close to the end of the garbage collection; that
is, most objects were already moved and there is enough space left to continue running the
application until marking completes and space-reclamation starts.

If this assumption doesn’t hold, then G1 will eventually schedule a Full GC. This type of
collection performs in-place compaction of the entire heap. This might be very slow.

Chapter 9
Garbage-First Internals

9-5

See Garbage-First Garbage Collector Tuning for more information about problems with
allocation failure or Full GC's before signalling out of memory.

Humongous Objects
Humongous objects are objects larger or equal the size of half a region. The current
region size is determined ergonomically as described in the Ergonomic Defaults for G1
GC section, unless set using the -XX:G1HeapRegionSize option.

These humongous objects are sometimes treated in special ways:

• Every humongous object gets allocated as a sequence of contiguous regions in
the old generation. The start of the object itself is always located at the start of the
first region in that sequence. Any leftover space in the last region of the sequence
will be lost for allocation until the entire object is reclaimed.

• Generally, humongous objects can be reclaimed only at the end of marking during
the Cleanup pause, or during Full GC if they became unreachable. There is,
however, a special provision for humongous objects for arrays of primitive types
for example, bool, all kinds of integers, and floating point values. G1
opportunistically tries to reclaim humongous objects if they are not referenced by
many objects at any kind of garbage collection pause. This behavior is enabled by
default but you can disable it with the option -
XX:G1EagerReclaimHumongousObjects.

• Allocations of humongous objects may cause garbage collection pauses to occur
prematurely. G1 checks the Initiating Heap Occupancy threshold at every
humongous object allocation and may force an initial mark young collection
immediately, if current occupancy exceeds that threshold.

• The humongous objects never move, not even during a Full GC. This can cause
premature slow Full GCs or unexpected out-of-memory conditions with lots of free
space left due to fragmentation of the region space.

Young-Only Phase Generation Sizing
During the young-only phase, the set of regions to collect (collection set), consists only
of young generation regions. G1 always sizes the young generation at the end of a
normal young collection for the next mutator phase. This way, G1 can meet the pause
time goals that were set using -XX:MaxGCPauseTimeMillis and -
XX:PauseTimeIntervalMillis based on long-term observations of actual pause time.
It takes into account how long it took young generations of similar size to evacuate.
This includes information like how many objects had to be copied during collection,
and how interconnected these objects had been.

If not otherwise constrained, then G1 adaptively sizes the young generation size
between the values that -XX:G1NewSizePercent and -XX:G1MaxNewSizePercent
determine to meet pause-time. See Garbage-First Garbage Collector Tuning for more
information about how to fix long pauses.

Space-Reclamation Phase Generation Sizing
During the space-reclamation phase, G1 tries to maximize the amount of space that's
reclaimed in the old generation in a single garbage collection pause. The size of the
young generation is set to minimum allowed, typically as determined by -
XX:G1NewSizePercent, and any old generation regions to reclaim space are added

Chapter 9
Garbage-First Internals

9-6

until G1 determines that adding further regions will exceed the pause time goal. In a
particular garbage collection pause, G1 adds old generation regions in order of their
reclamation efficiency, highest first, and the remaining available time to get the final collection
set.

The number of old generation regions to take per garbage collection is bounded at the lower
end by the number of potential candidate old generation regions (collection set candidate
regions) to collect, divided by the length of the space-reclamation phase as determined by -
XX:G1MixedGCCountTarget. The collection set candidate regions are all old generation
regions that have an occupancy that's lower than -XX:G1MixedGCLiveThresholdPercent at
the start of the phase.

The phase ends when the remaining amount of space that can be reclaimed in the collection
set candidate regions is less than the percentage set by -XX:G1HeapWastePercent.

See Garbage-First Garbage Collector Tuning for more information about how many old
generation regions G1 will use and how to avoid long mixed collection pauses.

Ergonomic Defaults for G1 GC
This topic provides an overview of the most important defaults specific to G1 and their default
values. They give a rough overview of expected behavior and resource usage using G1
without any additional options.

Table 9-1 Ergonomic Defaults G1 GC

Option and Default Value Description

-XX:MaxGCPauseMillis=200 The goal for the maximum pause time.

-XX:GCPauseTimeInterval=<ergo> The goal for the maximum pause time interval. By
default G1 doesn’t set any goal, allowing G1 to perform
garbage collections back-to-back in extreme cases.

-XX:ParallelGCThreads=<ergo> The maximum number of threads used for parallel
work during garbage collection pauses. This is derived
from the number of available threads of the computer
that the VM runs on in the following way: if the number
of CPU threads available to the process is fewer than
or equal to 8, use that. Otherwise add five eighths of
the threads greater than to the final number of threads.

At the start of every pause, the maximum number of
threads used is further constrained by maximum total
heap size: G1 will not use more than one thread per -
XX:HeapSizePerGCThread amount of Java heap
capacity.

-XX:ConcGCThreads=<ergo> The maximum number of threads used for concurrent
work. By default, this value is -
XX:ParallelGCThreads divided by 4.

-XX:+G1UseAdaptiveIHOP
-
XX:InitiatingHeapOccupancyPercent=4
5

Defaults for controlling the initiating heap occupancy
indicate that adaptive determination of that value is
turned on, and that for the first few collection cycles G1
will use an occupancy of 45% of the old generation as
mark start threshold.

Chapter 9
Ergonomic Defaults for G1 GC

9-7

Table 9-1 (Cont.) Ergonomic Defaults G1 GC

Option and Default Value Description

-XX:G1HeapRegionSize=<ergo> The set of the heap region size based on initial and
maximum heap size. So that heap contains roughly
2048 heap regions. The size of a heap region can vary
from 1 to 32 MB, and must be a power of 2.

-XX:G1NewSizePercent=5
-XX:G1MaxNewSizePercent=60

The size of the young generation in total, which varies
between these two values as percentages of the
current Java heap in use.

-XX:G1HeapWastePercent=5 The allowed unreclaimed space in the collection set
candidates as a percentage. G1 stops the space-
reclamation phase if the free space in the collection set
candidates is lower than that.

-XX:G1MixedGCCountTarget=8 The expected length of the space-reclamation phase in
a number of collections.

-
XX:G1MixedGCLiveThresholdPercent=85

Old generation regions with higher live object
occupancy than this percentage aren't collected in this
space-reclamation phase.

Note:

<ergo> means that the actual value is determined ergonomically depending
on the environment.

Comparison to Other Collectors
This is a summary of the main differences between G1 and the other collectors:

• Parallel GC can compact and reclaim space in the old generation only as a whole.
G1 incrementally distributes this work across multiple much shorter collections.
This substantially shortens pause time at the potential expense of throughput.

• Similar to the CMS, G1 concurrently performs part of the old generation space-
reclamation concurrently. However, CMS can't defragment the old generation
heap, eventually running into long Full GC's.

• G1 may exhibit higher overhead than other collectors, affecting throughput due to
its concurrent nature.

Due to how it works, G1 has some unique mechanisms to improve garbage collection
efficiency:

• G1 can reclaim some completely empty, large areas of the old generation during
any collection. This could avoid many otherwise unnecessary garbage collections,
freeing a significant amount of space without much effort.

• G1 can optionally try to deduplicate duplicate strings on the Java heap
concurrently.

Reclaiming empty, large objects from the old generation is always enabled. You can
disable this feature with the option -XX:-G1EagerReclaimHumongousObjects. String

Chapter 9
Comparison to Other Collectors

9-8

deduplication is disabled by default. You can enable it using the option -
XX:+G1EnableStringDeduplication.

Chapter 9
Comparison to Other Collectors

9-9

10
Garbage-First Garbage Collector Tuning

This section describes how to adapt Garbage-First garbage collector (G1 GC) behavior in
case it does not meet your requirements.

Topics

• General Recommendations for G1

• Moving to G1 from Other Collectors

• Improving G1 Performance

– Observing Full Garbage Collections

– Humongous Object Fragmentation

– Tuning for Latency

* Unusual System or Real-Time Usage

* Reference Object Processing Takes Too Long

* Young-Only Collections Within the Young-Only Phase Take Too Long

* Mixed Collections Take Too Long

* High Update RS and Scan RS Times

– Tuning for Throughput

– Tuning for Heap Size

– Tunable Defaults

General Recommendations for G1
The general recommendation is to use G1 with its default settings, eventually giving it a
different pause-time goal and setting a maximum Java heap size by using -Xmx if desired.

G1 defaults have been balanced differently than either of the other collectors. G1's goals in
the default configuration are neither maximum throughput nor lowest latency, but to provide
relatively small, uniform pauses at high throughput. However, G1's mechanisms to
incrementally reclaim space in the heap and the pause-time control incur some overhead in
both the application threads and in the space-reclamation efficiency.

If you prefer high throughput, then relax the pause-time goal by using -XX:MaxGCPauseMillis
or provide a larger heap. If latency is the main requirement, then modify the pause-time
target. Avoid limiting the young generation size to particular values by using options like -Xmn,
-XX:NewRatio and others because the young generation size is the main means for G1 to
allow it to meet the pause-time. Setting the young generation size to a single value overrides
and practically disables pause-time control.

10-1

Moving to G1 from Other Collectors
Generally, when moving to G1 from other collectors, particularly the Concurrent Mark
Sweep collector, start by removing all options that affect garbage collection, and only
set the pause-time goal and overall heap size by using -Xmx and optionally -Xms.

Many options that are useful for other collectors to respond in some particular way,
have either no effect at all, or even decrease throughput and the likelihood to meet the
pause-time target. An example could be setting young generation sizes that
completely prevent G1 from adjusting the young generation size to meet pause-time
goals.

Improving G1 Performance
G1 is designed to provide good overall performance without the need to specify
additional options. However, there are cases when the default heuristics or default
configurations for them provide suboptimal results. This section gives some guidelines
about diagnosing and improving in these cases. This guide describes only the
possibilities that G1 provides to improve garbage collector performance in a selected
metric, when given a set application. On a case-by-case basis, application-level
optimizations could be more effective than trying to tune the VM to perform better, for
example, by avoiding some problematic situations by less long-lived objects
altogether.

For diagnosis purposes, G1 provides comprehensive logging. A good start is to use
the -Xlog:gc*=debug option and then refine the output from that if necessary. The log
provides a detailed overview during and outside the pauses about garbage collection
activity. This includes the type of collection and a breakdown of time spent in particular
phases of the pause.

The following subsections explore some common performance issues.

Observing Full Garbage Collections
A full heap garbage collection (Full GC) is often very time consuming. Full GCs caused
by too high heap occupancy in the old generation can be detected by finding the words
Pause Full (Allocation Failure) in the log. Full GCs are typically preceded by garbage
collections that encounter an evacuation failure indicated by to-space exhausted
tags.

The reason that a Full GC occurs is because the application allocates too many
objects that can't be reclaimed quickly enough. Often concurrent marking has not been
able to complete in time to start a space-reclamation phase. The probability to run into
a Full GC can be compounded by the allocation of many humongous objects. Due to
the way these objects are allocated in G1, they may take up much more memory than
expected.

The goal should be to ensure that concurrent marking completes on time. This can be
achieved either by decreasing the allocation rate in the old generation, or giving the
concurrent marking more time to complete.

G1 gives you several options to handle this situation better:

Chapter 10
Moving to G1 from Other Collectors

10-2

• You can determine the number of regions occupied by humongous objects on the Java
heap using the gc+heap=info logging. Y in the lines "Humongous regions: X->Y” give you
the amount of regions occupied by humongous objects. If this number is high compared
to the number of old regions, the best option is to try to decrease this number of objects.
You can achieve this by increasing the region size using the -XX:G1HeapRegionSize
option. The currently selected heap region size is printed at the beginning of the log.

• Increase the size of the Java heap. This typically increases the amount of time marking
has to complete.

• Increase the number of concurrent marking threads by setting -XX:ConcGCThreads
explicitly.

• Force G1 to start marking earlier. G1 automatically determines the Initiating Heap
Occupancy Percent (IHOP) threshold based on earlier application behavior. If the
application behavior changes, these predictions might be wrong. There are two options:
Lower the target occupancy for when to start space-reclamation by increasing the buffer
used in an adaptive IHOP calculation by modifying -XX:G1ReservePercent; or, disable
the adaptive calculation of the IHOP by setting it manually using -XX:-
G1UseAdaptiveIHOP and -XX:InitiatingHeapOccupancyPercent.

Other causes than Allocation Failure for a Full GC typically indicate that either the application
or some external tool causes a full heap collection. If the cause is System.gc(), and there is
no way to modify the application sources, the effect of Full GCs can be mitigated by using -
XX:+ExplicitGCInvokesConcurrent or let the VM completely ignore them by setting -
XX:+DisableExplicitGC. External tools may still force Full GCs; they can be removed only by
not requesting them.

Humongous Object Fragmentation
A Full GC could occur before all Java heap memory has been exhausted due to the necessity
of finding a contiguous set of regions for them. Potential options in this case are increasing
the heap region size by using the option -XX:G1HeapRegionSize to decrease the number of
humongous objects, or increasing size of the heap. In extreme cases, there might not be
enough contiguous space available for G1 to allocate the object even if available memory
indicates otherwise. This would lead to a VM exit if that Full GC can not reclaim enough
contiguous space. As a result, there are no other options than either decreasing the amount
of humongous object allocations as mentioned previously, or increasing the heap.

Tuning for Latency
This section discusses hints to improve G1 behavior in case of common latency problems
that is, if the pause-time is too high.

Unusual System or Real-Time Usage
For every garbage collection pause, the gc+cpu=info log output contains a line including
information from the operating system with a breakdown about where during the pause-time
has been spent. An example for such output is User=0.19s Sys=0.00s Real=0.01s.

User time is time spent in VM code, system time is the time spent in the operating system,
and real time is the amount of absolute time passed during the pause. If the system time is
relatively high, then most often the environment is the cause.

Common known issues for high system time are:

Chapter 10
Improving G1 Performance

10-3

• The VM allocating or giving back memory from the operating system memory may
cause unnecessary delays. Avoid the delays by setting minimum and maximum
heap sizes to the same value using the options -Xms and -Xmx, and pre-touching
all memory using -XX:+AlwaysPreTouch to move this work to the VM startup
phase.

• Particularly in Linux, coalescing of small pages into huge pages by the
Transparent Huge Pages (THP) feature tends to stall random processes, not just
during a pause. Because the VM allocates and maintains a lot of memory, there is
a higher than usual risk that the VM will be the process that stalls for a long time.
Refer to the documentation of your operating system on how to disable the
Transparent Huge Pages feature.

• Writing the log output may stall for some time because of some background task
intermittently taking up all I/O bandwidth for the hard disk the log is written to.
Consider using a separate disk for your logs or some other storage, for example
memory-backed file system to avoid this.

Another situation to look out for is real time being a lot larger than the sum of the
others this may indicate that the VM did not get enough CPU time on a possibly
overloaded machine.

Reference Object Processing Takes Too Long
Information about the time taken for processing of Reference Objects is shown in the
Reference Processing phase. During the Reference Processing phase, G1 updates
the referents of Reference Objects according to the requirements of the particular type
of Reference Object. By default, G1 tries to parallelize the sub-phases of Reference
Processing using the following heuristic: for every -XX:ReferencesPerThread
reference Objects start a single thread, bounded by the value in -
XX:ParallelGCThreads. This heuristic can be disabled by setting -
XX:ReferencesPerThread to 0 to use all available threads by default, or parallelization
disabled completely by -XX:-ParallelRefProcEnabled.

Young-Only Collections Within the Young-Only Phase Take Too Long
Normal young and, in general any young collection roughly takes time proportional to
the size of the young generation, or more specifically, the number of live objects within
the collection set that needs to be copied. If the Evacuate Collection Set phase takes
too long, in particular, the Object Copy sub-phase, decrease -XX:G1NewSizePercent.
This decreases the minimum size of the young generation, allowing for potentially
shorter pauses.

Another problem with sizing of the young generation may occur if application
performance, and in particular the amount of objects surviving a collection, suddenly
changes. This may cause spikes in garbage collection pause time. It might be useful to
decrease the maximum young generation size by using -XX:G1MaxNewSizePercent.
This limits the maximum size of the young generation and so the number of objects
that need to be processed during the pause.

Mixed Collections Take Too Long
Mixed collections are used to reclaim space in the old generation. The collection set of
mixed collections contains young and old generation regions. You can obtain
information about how much time evacuation of either young or old generation regions

Chapter 10
Improving G1 Performance

10-4

contribute to the pause-time by enabling the gc+ergo+cset=trace log output. Look at the
predicted young region time and predicted old region time for young and old generation
regions respectively.

If the predicted young region time is too long, then see Young-Only Collections Within the
Young-Only Phase Take Too Long for options. Otherwise, to reduce the contribution of the old
generation regions to the pause-time, G1 provides three options:

• Spread the old generation region reclamation across more garbage collections by
increasing -XX:G1MixedGCCountTarget.

• Avoid collecting regions that take a proportionally large amount of time to collect by not
putting them into the candidate collection set by using -
XX:G1MixedGCLiveThresholdPercent. In many cases, highly occupied regions take a lot
of time to collect.

• Stop old generation space reclamation earlier so that G1 won't collect as many highly
occupied regions. In this case, increase -XX:G1HeapWastePercent.

Note that the last two options decrease the amount of collection set candidate regions where
space can be reclaimed for the current space-reclamation phase. This may mean that G1
may not be able to reclaim enough space in the old generation for sustained operation.
However, later space-reclamation phases may be able to garbage collect them.

High Update RS and Scan RS Times
To enable G1 to evacuate single old generation regions, G1 tracks locations of cross-region
references, that is references that point from one region to another. The set of cross-region
references pointing into a given region is called that region's remembered set. The
remembered sets must be updated when moving the contents of a region. Maintenance of
the regions' remembered sets is mostly concurrent. For performance purposes, G1 doesn't
immediately update the remembered set of a region when the application installs a new
cross-region reference between two objects. Remembered set update requests are delayed
and batched for efficiency.

G1 requires complete remembered sets for garbage collection, so the Update RS phase of
the garbage collection processes any outstanding remembered set update requests. The
Scan RS phase searches for object references in remembered sets, moves region contents,
and then updates these object references to the new locations. Depending on the application,
these two phases may take a significant amount of time.

Adjusting the size of the heap regions by using the option -XX:G1HeapRegionSize affects the
number of cross-region references and as well as the size of the remembered set. Handling
the remembered sets for regions may be a significant part of garbage collection work, so this
has a direct effect on the achievable maximum pause time. Larger regions tend to have fewer
cross-region references, so the relative amount of work spent in processing them decreases,
although at the same time, larger regions may mean more live objects to evacuate per
region, increasing the time for other phases.

G1 tries to schedule concurrent processing of the remembered set updates so that the
Update RS phase takes approximately -XX:G1RSetUpdatingPauseTimePercent percent of the
allowed maximum pause time. By decreasing this value, G1 usually performs more
remembered set update work concurrently.

Spurious high Update RS times in combination with the application allocating large objects
may be caused by an optimization that tries to reduce concurrent remembered set update
work by batching it. If the application that created such a batch happens just before a
garbage collection, then the garbage collection must process all this work in the Update RS

Chapter 10
Improving G1 Performance

10-5

times part of the pause. Use -XX:-ReduceInitialCardMarks to disable this behavior
and potentially avoid these situations.

Scan RS Time is also determined by the amount of compression that G1 performs to
keep remembered set storage size low. The more compact the remembered set is
stored in memory, the more time it takes to retrieve the stored values during garbage
collection. G1 automatically performs this compression, called remembered set
coarsening, while updating the remembered sets depending on the current size of that
region's remembered set. Particularly at the highest compression level, retrieving the
actual data can be very slow. The option -XX:G1SummarizeRSetStatsPeriod in
combination with gc+remset=trace level logging shows if this coarsening occurs. If so,
then the X in the line Did <X> coarsenings in the Before GC Summary section shows
a high value. The -XX:G1RSetRegionEntries option could be increased significantly to
decrease the amount of these coarsenings. Avoid using this detailed remembered set
logging in production environments as collecting this data can take a significant
amount of time.

Tuning for Throughput
G1's default policy tries to maintain a balance between throughput and latency;
however, there are situations where higher throughput is desirable. Apart from
decreasing the overall pause-times as described in the previous sections, the
frequency of the pauses could be decreased. The main idea is to increase the
maximum pause time by using -XX:MaxGCPauseMillis. The generation sizing
heuristics will automatically adapt the size of the young generation, which directly
determines the frequency of pauses. If that does not result in expected behavior,
particularly during the space-reclamation phase, increasing the minimum young
generation size using -XX:G1NewSizePercent will force G1 to do that.

In some cases, -XX:G1MaxNewSizePercent, the maximum allowed young generation
size, may limit throughput by limiting young generation size. This can be diagnosed by
looking at region summary output of gc+heap=info logging. In this case the combined
percentage of Eden regions and Survivor regions is close to -
XX:G1MaxNewSizePercent percent of the total number of regions. Consider increasing-
XX:G1MaxNewSizePercent in this case.

Another option to increase throughput is to try to decrease the amount of concurrent
work in particular, concurrent remembered set updates often require a lot of CPU
resources. Increasing -XX:G1RSetUpdatingPauseTimePercent moves work from
concurrent operation into the garbage collection pause. In the worst case, concurrent
remembered set updates can be disabled by setting -XX:-
G1UseAdaptiveConcRefinement -XX:G1ConcRefinementGreenZone=2G -
XX:G1ConcRefinementThreads=0. This mostly disables this mechanism and moves all
remembered set update work into the next garbage collection pause.

Enabling the use of large pages by using -XX:+UseLargePages may also improve
throughput. Refer to your operating system documentation on how to set up large
pages.

You can minimize heap resizing work by disabling it; set the options -Xms and -Xmx to
the same value. In addition, you can use -XX:+AlwaysPreTouch to move the operating
system work to back virtual memory with physical memory to VM startup time. Both of
these measures can be particularly desirable in order to make pause-times more
consistent.

Chapter 10
Improving G1 Performance

10-6

Tuning for Heap Size
Like other collectors, G1 aims to size the heap so that the time spent in garbage collection is
below the ratio determined by the -XX:GCTimeRatio option. Adjust this option to make G1
meet your requirements.

Tunable Defaults
This section describes the default values and some additional information about command-
line options that are introduced in this topic.

Table 10-1 Tunable Defaults G1 GC

Option and Default Value Description

-XX:+G1UseAdaptiveConcRefinement
-XX:G1ConcRefinementGreenZone=<ergo>

-
XX:G1ConcRefinementYellowZone=<ergo>

-XX:G1ConcRefinementRedZone=<ergo>

-XX:G1ConcRefinementThreads=<ergo>

The concurrent remembered set update (refinement)
uses these options to control the work distribution of
concurrent refinement threads. G1 chooses the
ergonomic values for these options so that -
XX:G1RSetUpdatingPauseTimePercent time is
spent in the garbage collection pause for processing
any remaining work, adaptively adjusting them as
needed. Change with caution because this may cause
extremely long pauses.

-XX:+ReduceInitialCardMarks This batches together concurrent remembered set
update (refinement) work for initial object allocations.

-XX:+ParallelRefProcEnabled
-XX:ReferencesPerThread=1000

-XX:ReferencesPerThread determines the degree
of parallelization: for every N Reference Objects one
thread will participate in the sub-phases of Reference
Processing, limited by -XX:ParallelGCThreads. A
value of 0 indicates that the maximum number of
threads as indicated by the value of -
XX:ParallelGCThreads will always be used.

This determines whether processing of
java.lang.Ref.* instances should be done in
parallel by multiple threads.

-
XX:G1RSetUpdatingPauseTimePercent=1
0

This determines the percentage of total garbage
collection time G1 should spend in the Update RS
phase updating any remaining remembered sets. G1
controls the amount of concurrent remembered set
updates using this setting.

-XX:G1SummarizeRSetStatsPeriod=0 This is the period in a number of GCs that G1
generates remembered set summary reports. Set this
to zero to disable. Generating remembered set
summary reports is a costly operation, so it should be
used only if necessary, and with a reasonably high
value. Use gc+remset=trace to print anything.

Chapter 10
Improving G1 Performance

10-7

Table 10-1 (Cont.) Tunable Defaults G1 GC

Option and Default Value Description

-XX:GCTimeRatio=12 This is the divisor for the target ratio of time that should
be spent in garbage collection as opposed to the
application. The actual formula for determining the
target fraction of time that can be spent in garbage
collection before increasing the heap is 1 / (1 +
GCTimeRatio). This default value results in a target
with about 8% of the time to be spent in garbage
collection.

Note:

<ergo> means that the actual value is determined ergonomically depending
on the environment.

Chapter 10
Improving G1 Performance

10-8

11
The Z Garbage Collector

The Z Garbage Collector (ZGC) is a scalable low latency garbage collector. ZGC performs all
expensive work concurrently, without stopping the execution of application threads for more
than 10ms, which makes is suitable for applications which require low latency and/or use a
very large heap (multi-terabytes).

The Z Garbage Collector is available as an experimental feature, and is enabled with the
command-line options -XX:+UnlockExperimentalVMOptions -XX:+UseZGC.

Setting the Heap Size
The most important tuning option for ZGC is setting the max heap size (-Xmx). Since ZGC is
a concurrent collector a max heap size must be selected such that, 1) the heap can
accommodate the live-set of your application, and 2) there is enough headroom in the heap
to allow allocations to be serviced while the GC is running. How much headroom is needed
very much depends on the allocation rate and the live-set size of the application. In general,
the more memory you give to ZGC the better. But at the same time, wasting memory is
undesirable, so it’s all about finding a balance between memory usage and how often the GC
needs to run.

Setting Number of Concurrent GC Threads
The second tuning option one might want to look at is setting the number of concurrent GC
threads (-XX:ConcGCThreads). ZGC has heuristics to automatically select this number. This
heuristic usually works well but depending on the characteristics of the application this might
need to be adjusted. This option essentially dictates how much CPU-time the GC should be
given. Give it too much and the GC will steal too much CPU-time from the application. Give it
too little, and the application might allocate garbage faster than the GC can collect it.

11-1

12
Other Considerations

This section covers other situations that affect garbage collection.

Topics

• Finalization and Weak, Soft, and Phantom References

• Explicit Garbage Collection

• Soft References

• Class Metadata

Finalization and Weak, Soft, and Phantom References
Some applications interact with garbage collection by using finalization and weak, soft, or
phantom references.

However, the use of finalization is discouraged. It can lead to problems with security,
performance, and reliability. For instance, relying on finalization to close file descriptors
makes an external resource (descriptors) dependent on garbage collection promptness.

Note:

Finalization has been deprecated in JDK 9.

Finalization
A class can declare a finalizer – the method protected void finalize() – whose body
releases any underlying resources. The GC will schedule the finalizer of an unreachable
object, which is called before the GC reclaims the object's memory.

An object becomes unreachable, and thus eligible for garbage collection, when there’s no
path from a GC root to the object. GC roots include references from an active thread and
internal JVM references; they are the references that keep objects in memory.

See Monitoring the Objects Pending Finalization in Java Platform, Standard Edition
Troubleshooting Guide to determine if finalizable objects are building up in your system. In
addition, you can use one of these tools:

• JDK Mission Control:

1. In the JVM Browser, right-click your JVM and select Start JMX Console.

2. In the MBean Browser, in the MBean Tree, expand java.lang and select Memory.

3. In MBean Features, the attribute ObjectPendingFinalizationCount is the
approximate number of objects that are pending finalization.

• jcmd tool:

12-1

– Run the following command to print information about the Java finalization
queue; the value <pid> is the PID of your JVM:

jcmd <pid> GC.finalizer_info

Migrating from Finalization
To avoid finalization, use one of the following techniques:

• The try-with-Resources Statement

• The Cleaner API

The try-with-Resources Statement

The try-with-resources statement is a try statement that declares one or more
resources. A resource is an object that must be closed after the program is finished
with it. The try-with-resources statement ensures that each resource is closed at the
end of the code block, even if one or more exceptions occur. See The Try-with-
resources Statement for more information.

The Cleaner API
If you foresee that the lifecycle of a resource in your application will live beyond the
scope of a try-with-resources statement, then you can use the Cleaner API instead.
The Cleaner API allows a program to register a cleaning action for an object that is run
some time after the object becomes unreachable.

Cleaners enable you to avoid many of the drawbacks of finalizers:

• More secure: A cleaner must explicitly register an object. In addition, cleaning
actions cannot access it so object resurrection is impossible.

• Better performance: You have more control over when you register a cleaning
action, which means a cleaning action never processes an uninitialized or partially
initialized object. You can also cancel an object's cleaning action.

• More reliable: You can control which threads run cleaning actions.

However, like finalizers, the garbage collector schedules cleaning actions, so they may
suffer from unbounded delays. Thus, don’t use the cleaner API in situations where the
timely release of a resource is required.

The following is a simple example of a cleaner. It does the following:

1. Defines a cleaning action class, State, which initializes the cleaning action and
defines the cleaning action itself (by overriding the State::run() method).

2. Creates an instance of Cleaner.

3. With this instance of Cleaner, registers the object myObject1 and a cleaning action
(an instance of State).

4. To ensure that the garbage collector schedules the cleaner and the cleaning action
State::run() is performed before the example ends, the example:

a. Sets myObject1 to null to ensure it is phantom unreachable. See .

b. Calls System.gc() in a loop to trigger garbage collection cleanup.

Chapter 12
Finalization and Weak, Soft, and Phantom References

12-2

https://dev.java/learn/catching-and-handling-exceptions/#anchor_6
https://dev.java/learn/catching-and-handling-exceptions/#anchor_6

Figure 12-1 CleanerExample

import java.lang.ref.Cleaner;

public class CleanerExample {

 // This Cleaner is shared by all CleanerExample instances
 private static final Cleaner CLEANER = Cleaner.create();
 private final State state;

 public CleanerExample(String id) {
 state = new State(id);
 CLEANER.register(this, state);
 }

 // Cleaning action class for CleanerExample
 private static class State implements Runnable {
 final private String id;

 private State(String id) {
 this.id = id;
 System.out.println("Created cleaning action for " + this.id);
 }

 @Override
 public void run() {
 System.out.println("Cleaner garbage collected " + this.id);
 }
 }

 public static void main(String[] args) {
 CleanerExample myObject1 = new CleanerExample("myObject1");

 // Make myObject1 unreachable
 myObject1 = null;

 System.out.println("-- Give the GC a chance to schedule the Cleaner
--");
 for (int i = 0; i < 100; i++) {

 // Calling System.gc() in a loop is usually sufficient to trigger
 // cleanup in a small program like this.
 System.gc();
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {}
 }
 System.out.println("-- Finished --");
 }
}

Chapter 12
Finalization and Weak, Soft, and Phantom References

12-3

This example prints the following:

Created cleaning action for myObject1
-- Give the GC a chance to schedule the Cleaner --
Cleaner garbage collected myObject1
-- Finished --

Consider the following if you're implementing a cleaner for a production environment:

• The cleaning action class (State in this example) should be a private
implementation detail. In particular, it shouldn't be used from the main(String[])
method. Thus, your cleaning action class should be immutable whenever practical.
A new object should handle creating its own cleaning action class and registering
itself with a cleaner within its constructor.

• Classes typically need access to objects within the cleaner action class. The
simplest way to do this is for the object to save a reference to the cleaner action
class.

• Cleaner instances should be shared. In this example, all instances of
CleanerExample should share a single, static Cleaner instance.

See the JavaDoc API documentation for the Cleaner class for more information
about implementing a cleaner.

Reference-Object Types
There are three reference-object types: SoftReference, WeakReference, and
PhantomReference. Each reference-object type corresponds to a different level of
reachability. The following are the different levels of reachability, from strongest to
weakest, which reflect the life cycle of an object:

• An object is strongly reachable if it can be reached by some thread without
traversing any reference objects. A newly-created object is strongly reachable by
the thread that created it.

• An object is softly reachable if it is not strongly reachable but can be reached by
traversing a soft reference.

• An object is weakly reachable if it is neither strongly nor softly reachable but can
be reached by traversing a weak reference. When the weak references to a
weakly-reachable object are cleared, the object becomes eligible for finalization.

• An object is phantom reachable if it is neither strongly, softly, nor weakly
reachable, it has been finalized, and some phantom reference refers to it.

• An object is unreachable, and therefore eligible for reclamation, when it is not
reachable in any of the previous ways.

Each reference-object type encapsulates a single reference to a particular object,
which is called the referent. A reference object provides methods for clearing the
referent.

The following are the most common uses for reference-object instances:

• To maintain access to an object while still allowing it to be garbage collected if the
system needs to free up memory (such as a cached value that can be regenerated
if required)

Chapter 12
Finalization and Weak, Soft, and Phantom References

12-4

• To determine and perhaps take some action when an object has reached a particular
reachability level (in combination with the ReferenceQueue class)

Explicit Garbage Collection
Another way that applications can interact with garbage collection is by calling full garbage
collections explicitly by using System.gc().

This can force a major collection to be done when it may not be necessary (for example,
when a minor collection would suffice), and so in general should be avoided. The
performance effect of explicit garbage collections can be measured by disabling them using
the flag -XX:+DisableExplicitGC, which causes the VM to ignore calls to System.gc().

One of the most commonly encountered uses of explicit garbage collection occurs with the
distributed garbage collection (DGC) of Remote Method Invocation (RMI). Applications using
RMI refer to objects in other virtual machines. Garbage cannot be collected in these
distributed applications without occasionally invoking garbage collection of the local heap, so
RMI forces full collections periodically. The frequency of these collections can be controlled
with properties, as in the following example:

java -Dsun.rmi.dgc.client.gcInterval=3600000
 -Dsun.rmi.dgc.server.gcInterval=3600000 ...

This example specifies explicit garbage collection once per hour instead of the default rate of
once per minute. However, this may also cause some objects to take much longer to be
reclaimed. These properties can be set as high as Long.MAX_VALUE to make the time between
explicit collections effectively infinite if there's no desire for an upper bound on the timeliness
of DGC activity.

Soft References
Soft references are kept alive longer in the server virtual machine than in the client.

The rate of clearing can be controlled with the command-line option -
XX:SoftRefLRUPolicyMSPerMB=<N>, which specifies the number of milliseconds (ms) a soft
reference will be kept alive (once it is no longer strongly reachable) for each megabyte of free
space in the heap. The default value is 1000 ms per megabyte, which means that a soft
reference will survive (after the last strong reference to the object has been collected) for 1
second for each megabyte of free space in the heap. This is an approximate figure because
soft references are cleared only during garbage collection, which may occur sporadically.

Class Metadata
Java classes have an internal representation within Java Hotspot VM and are referred to as
class metadata.

In previous releases of Java Hotspot VM, the class metadata was allocated in the so-called
permanent generation. Starting with JDK 8, the permanent generation was removed and the
class metadata is allocated in native memory. The amount of native memory that can be used
for class metadata is by default unlimited. Use the option -XX:MaxMetaspaceSize to put an
upper limit on the amount of native memory used for class metadata.

Chapter 12
Explicit Garbage Collection

12-5

Java Hotspot VM explicitly manages the space used for metadata. Space is requested
from the OS and then divided into chunks. A class loader allocates space for metadata
from its chunks (a chunk is bound to a specific class loader). When classes are
unloaded for a class loader, its chunks are recycled for reuse or returned to the OS.
Metadata uses space allocated by mmap, not by malloc.

If -XX:UseCompressedOops is turned on and -XX:UseCompressedClassesPointers is
used, then two logically different areas of native memory are used for class metadata.
-XX:UseCompressedClassPointers uses a 32-bit offset to represent the class pointer
in a 64-bit process as does -XX:UseCompressedOops for Java object references. A
region is allocated for these compressed class pointers (the 32-bit offsets). The size of
the region can be set with -XX:CompressedClassSpaceSize and is 1 gigabyte (GB) by
default. The space for the compressed class pointers is reserved as space allocated
by -XX:mmap at initialization and committed as needed. The -XX:MaxMetaspaceSize
applies to the sum of the committed compressed class space and the space for the
other class metadata.

Class metadata is deallocated when the corresponding Java class is unloaded. Java
classes are unloaded as a result of garbage collection, and garbage collections may
be induced to unload classes and deallocate class metadata. When the space
committed for class metadata reaches a certain level (a high-water mark), a garbage
collection is induced. After the garbage collection, the high-water mark may be raised
or lowered depending on the amount of space freed from class metadata. The high-
water mark would be raised so as not to induce another garbage collection too soon.
The high-water mark is initially set to the value of the command-line option -
XX:MetaspaceSize. It is raised or lowered based on the options -
XX:MaxMetaspaceFreeRatio and -XX:MinMetaspaceFreeRatio. If the committed space
available for class metadata as a percentage of the total committed space for class
metadata is greater than -XX:MaxMetaspaceFreeRatio, then the high-water mark will
be lowered. If it's less than -XX:MinMetaspaceFreeRatio, then the high-water mark will
be raised.

Specify a higher value for the option -XX:MetaspaceSize to avoid early garbage
collections induced for class metadata. The amount of class metadata allocated for an
application is application-dependent and general guidelines do not exist for the
selection of -XX:MetaspaceSize. The default size of -XX:MetaspaceSize is platform-
dependent and ranges from 12 MB to about 20 MB.

Information about the space used for metadata is included in a printout of the heap.
The following is typical output:.

[0,296s][info][gc,heap,exit] Heap
[0,296s][info][gc,heap,exit] garbage-first heap total 514048K, used 0K
[0x00000005ca600000, 0x00000005ca8007d8, 0x00000007c0000000)
[0,296s][info][gc,heap,exit] region size 2048K, 1 young (2048K), 0
survivors (0K)
[0,296s][info][gc,heap,exit] Metaspace used 2575K, capacity 4480K,
committed 4480K, reserved 1056768K
[0,296s][info][gc,heap,exit] class space used 238K, capacity 384K,
committed 384K, reserved 1048576K

In the line beginning with Metaspace, the used value is the amount of space used for
loaded classes. The capacity value is the space available for metadata in currently
allocated chunks. The committed value is the amount of space available for chunks.
The reserved value is the amount of space reserved (but not necessarily committed)

Chapter 12
Class Metadata

12-6

for metadata. The line beginning with class space contains the corresponding values for the
metadata for compressed class pointers.

Chapter 12
Class Metadata

12-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Garbage Collection Tuning
	What Is a Garbage Collector?
	Why Does the Choice of Garbage Collector Matter?
	Supported Operating Systems in Documentation

	2 Ergonomics
	Garbage Collector, Heap, and Runtime Compiler Default Selections
	Behavior-Based Tuning
	Maximum Pause-Time Goal
	Throughput Goal
	Footprint

	Tuning Strategy

	3 Garbage Collector Implementation
	Generational Garbage Collection
	Generations
	Performance Considerations
	Throughput and Footprint Measurement

	4 Factors Affecting Garbage Collection Performance
	Total Heap
	Heap Options Affecting Generation Size
	Default Option Values for Heap Size
	Conserving Dynamic Footprint by Minimizing Java Heap Size

	The Young Generation
	Young Generation Size Options
	Survivor Space Sizing

	5 Available Collectors
	Serial Collector
	Parallel Collector
	The Mostly Concurrent Collectors
	The Z Garbage Collector
	Selecting a Collector

	6 The Parallel Collector
	Number of Parallel Collector Garbage Collector Threads
	Arrangement of Generations in Parallel Collectors
	Parallel Collector Ergonomics
	Options to Specify Parallel Collector Behaviors
	Priority of Parallel Collector Goals
	Parallel Collector Generation Size Adjustments
	Parallel Collector Default Heap Size
	Specification of Parallel Collector Initial and Maximum Heap Sizes

	Excessive Parallel Collector Time and OutOfMemoryError
	Parallel Collector Measurements

	7 The Mostly Concurrent Collectors
	Overhead of Mostly Concurrent Collectors

	8 Concurrent Mark Sweep (CMS) Collector
	Concurrent Mark Sweep Collector Performance and Structure
	Concurrent Mode Failure
	Excessive GC Time and OutOfMemoryError
	Concurrent Mark Sweep Collector and Floating Garbage
	Concurrent Mark Sweep Collector Pauses
	Concurrent Mark Sweep Collector Concurrent Phases
	Starting a Concurrent Collection Cycle
	Scheduling Pauses
	Concurrent Mark Sweep Collector Measurements

	9 Garbage-First Garbage Collector
	Introduction to Garbage-First Garbage Collector
	Enabling G1
	Basic Concepts
	Heap Layout
	Garbage Collection Cycle

	Garbage-First Internals
	Determining Initiating Heap Occupancy
	Marking
	Behavior in Very Tight Heap Situations
	Humongous Objects
	Young-Only Phase Generation Sizing
	Space-Reclamation Phase Generation Sizing

	Ergonomic Defaults for G1 GC
	Comparison to Other Collectors

	10 Garbage-First Garbage Collector Tuning
	General Recommendations for G1
	Moving to G1 from Other Collectors
	Improving G1 Performance
	Observing Full Garbage Collections
	Humongous Object Fragmentation
	Tuning for Latency
	Unusual System or Real-Time Usage
	Reference Object Processing Takes Too Long
	Young-Only Collections Within the Young-Only Phase Take Too Long
	Mixed Collections Take Too Long
	High Update RS and Scan RS Times

	Tuning for Throughput
	Tuning for Heap Size
	Tunable Defaults

	11 The Z Garbage Collector
	Setting the Heap Size
	Setting Number of Concurrent GC Threads

	12 Other Considerations
	Finalization and Weak, Soft, and Phantom References
	Finalization
	Migrating from Finalization
	The try-with-Resources Statement
	The Cleaner API

	Reference-Object Types

	Explicit Garbage Collection
	Soft References
	Class Metadata

