Java Platform, Standard Edition
JRockit to HotSpot Migration Guide

ORACLE"

Java Platform, Standard Edition JRockit to HotSpot Migration Guide, Release 12
F13887-01
Copyright © 1995, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience v

Documentation Accessibility %

Related Documents \Y

Conventions v
1 Introduction

Heap Sizing 1-1
2 Garbage Collectors

Tuning Garbage Collection 2-1
3 Runtime

Runtime Options 3-1
4 Compilation Optimization

Compiler Considerations 4-1

Important HotSpot JIT Compiler Options 4-2
5 Logging

Verbose Logging 5-1

HotSpot Logging Options 5-2
6 Command-Line Options

Mapping of Oracle JRockit to HotSpot Command-Line Options 6-1

jcmd Commands 6-9

ORACLE"

7 Common Migration Issues and Solutions

8 Troubleshooting Tools

Troubleshooting Tools Available in Java SE

8-1

ORACLE"

Preface

Audience

This guide helps users of Oracle JRockit to migrate to Java HotSpot VM (Java
Platform, Standard Edition). The document describes the command-line options and
tools available in Oracle JRockit, and their equivalents in the Java HotSpot VM
(HotSpot).

The target audiences for this document are developers and users who are working on

Oracle JRockit and planning to migrate to the Java Development Kit (JDK). The JDK is
Oracle's implementation of the Java Platform, Standard Edition (Java SE). The current
release is Java SE 12 and JDK 12. However, most of the information in this document
can be applied to releases earlier than JDK 12.

This document is intended for readers who have a detailed understanding of the Java
HotSpot VM components, and also have some understanding of concepts such as
garbage collection, threads, and native libraries. In addition, it is assumed that the
reader is reasonably proficient with the operating systems where the Java application
is developed and run.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See JDK 12 Documentation for other JDK 12 guides.

Conventions

ORACLE

The following text conventions are used in this document:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase12&id=homepage

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Vi

Introduction

This document provides simple guidelines to help migrate applications from Oracle
JRockit to Java HotSpot VM (HotSpot). It contains sections for each JVM system
component that describe the equivalents of those components in both Oracle JRockit
and HotSpot. The document also lists the corresponding JVM options of those
components. It includes tables that map the complete set of Oracle JRockit - X and -
XX command-line options to the ones available in HotSpot.

Heap Sizing

HotSpot has the same options as Oracle JRockit to set the initial and the maximum
Java heap size.

Table 1-1 Heap Size

Option Oracle JRockit HotSpot
- Xirs Sets the initial and minimum Sets the initial and minimum
size of the heap size of the heap
- Xnx Sets the maximum size of the Sets the maximum size of the
heap heap
" Note:

When migrating from Oracle JRockit to HotSpot, the Java heap size must
essentially be the same.

ORACLE 1-1

Garbage Collectors

This topic describes garbage collection tuning options available in Oracle JRockit and
HotSpot, and compares their functionality and performance.

Tuning Garbage Collection

The following table lists important garbage collection (GC) tuning options available in
Oracle JRockit and HotSpot:

Table 2-1 Garbage Collectors

Oracle JRockit Garbage
Collectors

HotSpot Garbage Collectors

Notes

Throughput collector set using
any of these options:

e -Xgc:throughput
* -Xgc: genpar

e -Xgc:singlepar
e -Xgc:parallel

Low latency collector set using
any of the following options:

- Xgc: pauseti me
- Xgc: gencon
- Xgc: si ngl econ

Throughput collector:

—XX: +UsePar al | el GC - Use parallel
compacting collector for both young and
old generation

- XX: +UseParal | el GC - XX: -

UseParal | el O dGC - Use parallel
compacting collector for the young
generation and serial mark-sweep for the
old generation

- XX: +UseGLGC
Or
- XX: +UseConcur r ent Mar kSweepGC

Note:

The CMS
collector was
deprecated
in JDK 9.

The number of parallel GC threads
can be controlled using

- XX: Par al | el GCThr eads=n.

The HotSpot offers a choice
between the two mostly concurrent
collectors:

Garbage-First (G1) Garbage
Collector is a server-style
collector for multiprocessor
machines with large memories.
It meets garbage collection
pause time goals with high
probability while achieving high
throughput

Concurrent Mark Sweep (CMS)
Collector is for applications that
prefer shorter garbage collection
pauses and can afford to share
processor resources with the
garbage collection

The Garbage-First Garbage
Collector is the default collector.

To understand the various garbage collectors that are included with the HotSpot, see
Introduction to Garbage Collection Tuning in Java Platform, Standard Edition HotSpot
Virtual Machine Garbage Collection Tuning Guide.

ORACLE

2-1

Runtime

This topic describes important options that control the runtime behavior of the HotSpot.

Runtime Options

The following table lists important equivalent options of the runtime subsystem in
Oracle JRockit and HotSpot:

Table 3-1 Runtime Options

Oracle JRockit HotSpot Notes

- XX: +UseLazyUnl ocki ng - XX: +UseBi asedLocki ng UseBi asedLocki ng
improves the
performance of
uncontended
synchronization. This
option is enabled by
default. However, if the
application has high
contended
synchronization, then
disable the
UseBi asedLocki ng
option to enhance the
performance.

- Xl ar gePages - XX: +UselLar gePages In HotSpot, this option
is enabled by default
on the Solaris platform.
On the Linux platform,
this option was
disabled from version
7u60 onwards.

Use - XX:

+Uselar gePages to
enable the use of large
pages on the platforms
where it is disabled by
default. However, - XX:
+Uselar gePages
doesn’t enable the use
of large pages in the
MetaSpace. To enable
this option, add - XX:
+Uselar gePages| nMe
t aspace.

ORACLE 3-1

Table 3-1 (Cont.) Runtime Options

Chapter 3
Runtime Options

Oracle JRockit

Notes

- XX: MaxLar gePageSi ze

- XXconpr essedRef s

- XX: Lar gePageSi zel nByt es=si ze

- XX: +UseConpr essedCops

Sets the maximum size
(in bytes) for large
pages used for the
Java heap. By default,
the size is set to 0,
which implies that the
JVM chooses the size
for large pages
automatically.

Use of Conpr essed
Qops is the default for
64-bit HotSpot
processes when - XnK
isn't specified and the
values of - Xnx are less
than 32 gigabytes.

ORACLE

3-2

Compilation Optimization

This topic describes the various compiler options available in Oracle JRockit and
HotSpot to optimize compilation.

e Compiler Considerations

e Important HotSpot JIT Compiler Options

Compiler Considerations

ORACLE

Unlike Oracle JRockit, HotSpot features a Java byte code interpreter in addition to two
different Just In Time (JIT) compilers, client (also known as C1) and sever (also known
as C2).

This section provides details about the complier that you can use.

HotSpot VM defaults to interpreting Java byte code. It compiles (JIT compilation)
methods that are executed for a predetermined number of times. JIT compliers are
either client or server compilers.

* Client compiler: It compiles methods quickly but emits machine code that is less
optimized than the server compiler. This complier is used for quick startup. Also, in
this compiler, the smaller memory footprint is more important than steady-state
performance.

* Server compiler: The compiler often takes more time (and memory) to compile the
same methods. However, it generates better optimized machine code than the
code generated by the client compiler. It provides better runtime performance after
the application reaches the steady state.

The tiered compilation enhances the server VM startup speed by using client compiler
as the first tier. A server VM uses the interpreter to collect the profiling information
about the methods that is fed into the compiler. In the tiered scheme, in addition to the
interpreter, the client compiler generates compiled versions of methods that collect
profiling information about themselves. As the compiled code is substantially faster
than the interpreter, the program executes with greater performance during this
profiling phase. Often, even a startup is faster because the final code produced by the
server compiler is available during the early stages of application initialization. The
tiered scheme can also achieve better peak performance than a regular server VM.
This is because the faster profiling phase allows a longer period of profiling, which
yields better optimization.

Tiered compilation is the default mode for the server VM. The 64-bit mode is
supported. To enable tiered compilation manually, use the - XX: +Ti er edConpi | ati on
flag. You can disable tiered compilation by using the - XX: - Ti er edConpi | ati on flag.

Oracle JRockit JVM compiles a Java method and generates the machine code for the
first time it is invoked. This compiled code of frequently invoked methods is optimized
in the background by an Optimizer thread. This code is different from the HotSpot
where methods are interpreted first and compiled later, either by the client (fewer
optimizations) or the server (more optimizations) compiler.

4-1

Chapter 4
Important HotSpot JIT Compiler Options

Compiler Control

Compiler Control provides an improved way to control the JVM compilers. The JVM
compilation is done through compiler directive options. These options are method-
specific and can be changed at run time. See Compiler Control.

Important HotSpot JIT Compiler Options

ORACLE

The following table lists some important Oracle JRockit and HotSpot compiler options:

4-2

Chapter 4

Important HotSpot JIT Compiler Options

Table 4-1 JIT Compiler Options
]

Oracle JRockit

HotSpot

Notes

- XnoOpt

XXopt Fil e: <file>

ORACLE

As JIT compilation in HotSpot is considered analogous to
optimization in Oracle JRockit (that is, both techniques
are only used on methods that are determined by
profiling to be hot), the HotSpot equivalent to Oracle
JRockit's - XnoQpt is - Xi nt . In this technique, no JIT
compilation is done and only the byte code interpreter is
used to execute all methods. This compilation might
impact the performance. However, it can be useful
when- XnoOpt is used for troubleshooting or working
around possible compiler issues of Oracle JRockit.

Like Oracle JRockit, HotSpot also offers ways to exclude
methods from compilation or to disable specific
optimizations on them.

If there are any problems while optimizing the methods,
then use XnoQpt or XXopt Fi | e options with Oracle
JRockit VM to disable the optimization on those methods.
However, to exclude the compilation or disable specific
optimizations on these methods, ensure that you don't
directly translate to HotSpot options.

The same compilation or optimization problems observed
with the Oracle JRockit JVM for any specific methods are
unlikely to happen with the HotSpot JVM. So, to begin
with, it is best to remove these options while migrating to
the HotSpot JVM.

Equivalent HotSpot JVM options are:
XX: Conpi | eCommand=command, met hod[, opti on
]
Specifies a command to perform on a method. For
example, to exclude the i ndexCf () method of the
St ri ng class from being compiled, use the
following:
- XX: Conpi | eCommand=excl ude, j ava/ | ang/
String.indext
e - XX Conpi | eCommandFi | e=<fi | ename>
Sets the file from which JIT compiler commands are
read. By default, the . hot spot _conpi | er file is

used to store commands performed by the JIT
compiler.

* - XX Conpi | eOnl y=<met hods>
Sets the list of methods (separated by commas) to
which compilation must be restricted.

e - XX Conpi | eThreshol d=<i nvocati ons>

Sets the number of interpreted method invocations

before compilation. By default, in the server JVM, the

JIT compiler performs 10,000 interpreted method
invocations to gather information for efficient
compilation.

Options Conpi | eConmand,
Conpi | eCommandFi | e,
Conpi | eOnl y, and

Conpi | eThreshol d can be
used to disable or delay the
compilation of specified
methods.

4-3

Table 4-1 (Cont.) JIT Compiler Options
]

Oracle JRockit

HotSpot

Chapter 4

Important HotSpot JIT Compiler Options

Notes

- XX: Opt Thr eads

- XX
+Reser veCodeMeno
ry

XX: MaxCodeMenory
=<sij ze>

None

There are no optimization threads in HotSpot JVM. The
count of compiler threads that perform both the
compilation and the optimizations can be set using:

- XX: Cl Conpi | er Count =<t hr eads>

- XX: Reser vedCodeCacheSi ze=<si ze>

- XX: +Ti eredConpi | ati on

Sets the number of compiler
threads to use for compilation.
By default, the number of
threads is set to 2 for the server
JVM and it scales to number of
cores if tiered compilation is
used.

Sets the maximum code cache
size (in bytes) for JIT-compiled
code. This option is equivalent to
- Xmaxj i t codesi ze.

Enables the use of tiered
compilation. This option is
enabled by default from JDK 8
and later versions. Only the Java
HotSpot Server VM supports this
option.

ORACLE

4-4

Logging

This topic describes the various logging options available in Oracle JRockit and

HotSpot:

* Verbose Logging
* HotSpot Logging Options

Verbose Logging

Verbose logging in HotSpot can be enabled using the - ver bose option. There are
some specific flags that can be used with this option to get area-specific verbose

ORACLE

output.

The following table lists various logging options available in Oracle JRockit and

compares them with the options available in HotSpot:

Table 5-1 Verbose Logging

Oracle JRockit Verbose HotSpot Option Notes

Module

all oc NA NA

cl ass -verbose: cl ass Displays information about the
classes that are being loaded.

codegen NA NA

conpaction NA NA

cpui nfo NA NA

exceptions NA NA

gc -verbose: gc Displays information about
each garbage collection (GC)
event.

gcheuristic NA NA

gcpause NA NA

gcpausetree NA NA

gcreport NA NA

| oad NA NA

memnor y NA NA

memdbg NA NA

opt NA NA

r ef obj NA NA

starttime NA NA

5-1

Chapter 5
HotSpot Logging Options

Table 5-1 (Cont.) Verbose Logging
|

Oracle JRockit Verbose HotSpot Option Notes

Module

shut down NA NA

systengc NA NA

timng NA NA

NA -verbose: j ni Displays information about the

use of native methods and
other Java Native Interface
(INI) activity.

HotSpot Logging Options

These are some of the common logging options available in HotSpot that can be used
to enable the diagnostic output for a specific subsystem within the HotSpot JVM.

Table 5-2 Logging Options

HotSpot Logging Options

Notes

- Xl og
- Xl oggc: <fil enane>

- XX: LogFi | e=<pat h>
- XX: +LogConpi | ati on

- XX
+Pri nt ConmandLi neFl ags

ORACLE

Enables the common logging system for all JVM components.

Sets the file to which verbose GC event information must be
redirected for logging. The information written to this file is
similar to the output of - ver bose: gc with the time elapsed
from the first GC event preceding each logged event. The -
Xl oggc option overrides the - ver bose: gc, if both are given
with the same | ava command.

Note:

This option was deprecated in
JDK 9.

Sets the path and file name where the log data is written.

Enables logging of compilation activity to a file named

hot spot . | 0g in the current working directory. You can specify
a different log file path and name using the - XX: LogFi | e
option. The - XX: +LogConpi | ati on option must be used
together with the - XX: Unl ockDi agnost i cVMOpt i ons option
that unlocks diagnostic JVM options.

Enables printing of the selected JVM flags that appeared on
the command-line.

5-2

Chapter 5
HotSpot Logging Options

Table 5-2 (Cont.) Logging Options
___|
HotSpot Logging Options Notes

- XX +Print GC Enables printing of messages at every GC.

Note:

This option was deprecated in
JDK 9.

- XX +Print GCDet ai | s Enables printing of detailed messages at every GC.

Note:

This option was deprecated in
JDK 9.

-XX: +Print NMTSt ati stics Enables printing of collected native memory tracking data at
JVM exit when native memory tracking is enabled.

-XX: +Print NMTSt ati stics Enables printing of collected native memory tracking data at
JVM exit when native memory tracking is enabled.

- XX: +Print Assenbl y Enables printing of assembly code resulting from JIT
compilation of Java bytecode by using the external
di sassenbl er. so library. This option enables you to view the
generated code, which helps you to diagnose the performance
issues. This option must be used together with the -
XX: Unl ockDi agnost i cVMOpt i ons option that unlocks
diagnostic JVM options.

- XX: +Pri nt Conpi | ation Enables verbose diagnostic output from the JVM by printing a
message to the console every time a method is compiled.

- XX +Printlnlining Enables printing of inlining decisions. This option enables you
to view the methods that are getting inlined.

- XX Enables printing of a class instance histogram after a Control
+Print A assHi st ogram +C event (SIGTERM). By default, this option is disabled.

- XX Enables printing of j ava. util.concurrent locks after a
+Pri nt Concurrent Locks Control+C event (SIGTERM). By default, this option is
disabled.

Table 5-3 GC Logging Options

__|
GC Logging Options Notes

Enables printing of messages at every GC. The ¢c is the main tag to
- Xl 0g: gc log all GC related information. The gc tag is combined with other tags
to log specific information. A few tags are listed in the following rows.

ORACLE 5.3

ORACLE

Table 5-3 (Cont.) GC Logging Options

Chapter 5
HotSpot Logging Options

GC Logging Options Notes |

- Xl og: gc
+regi on=trace

Enables the printing of information about the
regions that are allocated and that are
reclaimed by the G1 collector.

- Xl og: gc
tergo*=trace

Enables printing of information about adaptive
generation sizing.

- Xl og: saf epoi nt

Enables printing of the time elapsed from the
last pause (for example, a GC pause).

- Xl og: gc
+t ask=trace

Enables printing of time stamps for every
individual GC worker thread task.

Xl og: gc::uptime,t
id

Enables printing of time stamps at every GC
using the decorators upti ne and ti d.

- Xl og: gc
+stri ngdedup

Prints detailed deduplication statistics.

- Xl og: gc Enables printing of tenuring age information.
+age=trace
- Xl og: gc* Enables printing of detailed messages at

every GC.

X og:gc:file=<fil
ename>

Logs messages with the gc tag to the file name specified. For example
the option - Xl 0g: gc: fi |l e=gc. t xt logs the messages to the gc. t xt

file.

See Enable Logging with the JVM Unified Logging Framework in the Java Platform,
Standard Edition Tools Reference guide.

5-4

Command-Line Options

This topic describes the various HotSpot command-line options and compares them
with those available in Oracle JRockit:

* Mapping of Oracle JRockit to HotSpot Command-Line Options

e jcmd Commands

Mapping of Oracle JRockit to HotSpot Command-Line
Options
Certain Oracle JRockit command-line options are similar to HotSpot options.

This section provides either a one-to-one mapping of Oracle JRockit options to
HotSpot options, or refers you to other sections of this document. There are certain
Oracle JRockit options for which there are no corresponding HotSpot JVM options.
Also, some of the mapped HotSpot options aren’t exactly equivalent to the Oracle
JRockit options and may provide slightly different behavior on the HotSpot.

When migrating, simply translating every option used with Oracle JRockit into similar
HotSpot options isn't recommended. Especially for performance-related options, the
best practice is to start by only specifying the Java heap size and the garbage
collector, such as CMS or G1. Any additional tuning for HotSpot, if necessary, must be
done based on new benchmarking and profiling done with HotSpot. It isn’t advised to
assume that most, if any, JVM-level tuning decisions made for an Oracle JRockit
configuration will also apply to a HotSpot configuration.

Table 6-1 -X Command-Line Options
]

Oracle JRockit HotSpot Notes

- Xboot cl asspat h Same NA

- Xboot cl asspat h/ a Same NA

- Xboot cl asspat h/ p Same NA

- Xcheck: j ni Same NA

- Xdebug Same NA

- Xgc NA See Tuning Garbage
Collection.

- XgcPri o (deprecated) NA See Garbage Collectors .

- Xl ar gePages - XX: +UselLar gePages NA

- Xmanagenent NA NA

- Xns Same NA

- Xnmx Same NA

ORACLE 6-1

Table 6-1 (Cont.) -X Command-Line Options

Chapter 6

Mapping of Oracle JRockit to HotSpot Command-Line Options

Oracle JRockit HotSpot Notes

- Xnod assGC (deprecated) Same Don't use, except for
troubleshooting.

- XnoOpt NA See Compilation
Optimization .

- Xns Same NA

- XpauseTar get

-Xrs

- Xss

-XstrictFP

- Xver bose

- Xver bosedecor at i ons
- Xver boselog

- Xver boseTi meSt anp

XX: MaxGCPauseM | |'is=n
Same

Same

NA

-verhose

NA

NA

NA

See Garbage Collectors .

NA
NA
NA
See Logging .
See Logging.
See Logging.
See Logging.

Table 6-2 -XX Command-Line Options

Oracle JRockit

HotSpot

Notes on HotSpot
Options

- XXaggr essi ve

ORACLE

- XX: +Aggr essi veHeap
- XX: +Aggressi veOpt s

- XX: +Aggr essi veHeap
enables Java heap
optimization. This sets
various parameters to be
optimal for long-running
jobs with intensive memory
allocation, based on the
configuration of the
computer (RAM and CPU).
By default, the option is
disabled and the heap isn't
optimized.

- XX: +Aggressi veOpt s
enables other non-heap
related optimization.

6-2

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options
]

Oracle JRockit HotSpot Notes on HotSpot
Options
- XX: Al 'l ocChunkSi ze Related options: NA

- XX: 4| - CheckJNI Cal | s
- XX: +| - CheckSt acks
- XXconpact i on

- XXconpact Rati o
(deprecated)

- XXconpact Set Li mi t
(deprecated)

XXconpact Set Li ni t Per Cbj ec
t (deprecated)

- XXconpr essedRef s

- XX +| -
CrashOnQut OF Meror yEr r or

- XX 4 -
Di sabl eAtt achMechani sm

- XXdumpFul | St at e

- XXdunpSi ze
- XX: ExceptionTraceFil ter

- XX +| -
Exi t OnQut Of Menor yEr r or

XX: Exi t OnQut Of Menor yEr r or
Exi t Code

- XXext er nal Conpact Rati o
(deprecated)

ORACLE

XX: Al | ocat el nst ancePr ef et chLi nes=<|
nes>

-XX: Al | ocat ePr ef et chDi st ance=<si ze>

XX: Al | ocat ePrefetchlnstr=<instructio
n>

- XX: Al | ocat ePref et chLi nes=<l i nes>
- XX: Al | ocat ePr ef et chSt epSi ze=<si ze>
- XX: Al | ocat ePref et chSt yl e=<styl e>

- Xcheck: j ni NA

NA NA

NA NA

NA NA

NA NA

NA NA

- XX: - UseConpr essedOops See Runtime Options.
Same NA

Same NA

NA On the HotSpot side, there

is an option

Creat eM ni dunpOnCr ash
to enable the dumping of
minidumps when fatal
errors occur on the
Windows platform.

NA NA
NA NA
Same NA
NA NA
NA NA

6-3

Chapter 6

Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options
]

Oracle JRockit HotSpot Notes on HotSpot
Options

- XX 4 - Same NA

Fai | Over Tod dVerifi er

- XX: +| - Fl i ght Recor der Same Enables the use of the

- XX: Fl i ght Recor der Opt i ons

- XX +|-

Fl i ght Recor di ngDunpOnUnha

ndl edException

XX: Fl'i ght Recor di ngDunpPat

h
- XXful | Syst enaC

- XXgcThr eads

- XX: GCTi nePer cent age
- XX: GCTi neRati o
- XXgcTri gger

- XX +|_

HeapDi agnosti csOnQut Of Mem

oryError

- XX: HeapDi agnosti csPat h

- XX 4 -
HeapDumpOnCt r | Br eak

ORACLE

Same

NA

NA

Related options:

- XX: +Di sabl eExplicitGC

- XX: +Expl i ci t GCl nvokesConcur r ent

- XX

+Expl i ci t GCl nvokesConcur rent AndUnl oa

dsCl asses

Related options:

NA
NA

- XX: Par al | el GCThr eads=<t hr eads>
- XX: ConcGCThr eads=<t hr eads>

Related options:

XX: CMBI ni tiatingQccupancyFracti on=<p

ercent >

- XX: CMBTri gger Rat i o=<per cent >

Can achieve the same by using -

XX: OnQut OF Menor yEr r or =<conmand>

NA
NA

Java Flight Recorder (JFR)
during the runtime of the
application. This is a
commercial feature that
requires you to also specify
the - XX:

+Unl ockCommer ci al Feat
ur es option.

NA
NA

NA

See Garbage Collectors .

See Garbage Collectors.

NA
NA

See Garbage Collectors .

Example:

java -

XX: OnQut O Menor yEr r or
=" map -heap %"
JavaProgram

NA
NA

6-4

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options
]

Oracle JRockit HotSpot Notes on HotSpot
Options

- XX+ - Same NA

HeapDumpOnQut OF Menor yErr o

r

-XX: HeapDunpPat h Same NA

- XX: HeapDunpSegnent Si ze NA NA

- XXheapParts (deprecated) NA NA

-XXi nternal Conpact Ratio NA NA

(deprecated)

- XX: 4| - JavaDebug NA NA

- XXkeepAreaRati o XX: Survi vorRati o=<ratio> Sets the ratio between the

eden space size and the
survivor space size. By
default, this option is set to
8.

There is another option -
XX:Initial Survivor Rat
i o=rati o to set the initial
survivor space ratio used
by the throughput garbage
collector. Adaptive sizing is
enabled by default with the
throughput garbage
collector by using the - XX:
+UseParal | el GCCand -
XX: +UseParal | el dGC
options, and the survivor
space is resized according
to the application behavior,
starting with this initial

value.

- XXl ar gehj ect Li mi t NA NA

(deprecated)

- XX: MaxCodeMenor y - XX: Reser vedCodeCacheSi ze=<si ze> See Compilation
Optimization .

- XX: MaxDi rect MenorySi ze Same NA

- - XX: NewRat i o=<rat i 0> Sets the ratio between

XX: Maxi mumNur ser yPer cent a young and old generation

ge sizes. By default, this
option is set to 2.

- XX: MaxLar gePageSi ze - XX: Lar gePageSi zel nByt es=<si ze> See Runtime options.

- XX: MaxRecvBuUf f er Si ze NA NA

- XXmi nBl ockSi ze NA NA

(deprecated)

ORACLE 6-5

Chapter 6

Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options
- XXnoSyst enC Related options: See Garbage Collectors .

- XX +Di sabl eExplicitCGC

e - XX +ExplicitGCl nvokesConcurrent

e - XX
+Expl i ci t GCl nvokesConcurr ent AndUnl oa
dsd asses

- XX: Opt Thr eads - XX: Cl Conpi | er Count =t hr eads

- XX: +| - RedoAl | ocPref et ch Related options:

XX: Al | ocat el nst ancePr ef et chLi nes=<|
nes>

e -XX: All ocat ePrefetchDi stance=<si ze>

XX: Al | ocat ePrefetchlnstr=<instructio
n>
e -XX Al'l ocat ePrefetchLi nes=<lines>
* -XX AllocatePrefetchStepSi ze=<si ze>
e -XX AllocatePrefetchStyl e=<styl e>

- XX: 4| - ReserveCodeMenory - XX: Reser vedCodeCacheSi ze=<si ze>

- NA

XX: Segnment edHeapDunpThr es

hol d

- XXset GC (deprecated) NA

-XX: +|-StrictFP NA

-XX: Start Flight Recording Same

-XXt1aSi ze XX: TLABSi ze=<si ze>
- XX: TreeMapNodeSi ze NA

- XX: 4| - UseAdapt i veFat Spin NA

ORACLE

See Compilation
Optimization .

NA

See Compilation
Optimization .

NA

NA
NA
NA

Sets the initial size (in
bytes) of a thread-local
allocation buffer (TLAB). If
this option is set to 0, then
the JVM chooses the initial
size automatically.

NA
NA

6-6

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options

Oracle JRockit HotSpot Notes on HotSpot
Options
-XX: +| -UseAl | ocPrefetch Related options: NA
XX: Al | ocat el nst ancePr ef et chLi nes=<|i
nes>
* -XX AllocatePrefetchD stance=<si ze>
XX: Al l ocatePrefetchlnstr=<instructio
n>
« - XX AllocatePrefetchLi nes=<lines>
* -XX AllocatePrefetchStepSi ze=<si ze>
« -XX AllocatePrefetchStyl e=<style
-XX: 4| -UseCal | Profiling -XX +UseTypeProfile NA
- XX: 4| - UseCf sAdapt edYi el d NA NA
- XX: 4| - Used assGC -Xnocl assgc Disables garbage
collection (GC) of classes.
This can save the GC time,
which shortens
interruptions during the
application run.
When you specify
Xnocl assgc at startup, the
class objects in the
application will be left
untouched during GC and
will always be considered
active.
- XX: 4| - UseCPool GC NA NA
- XX: +| - UseFast Ti ne NA NA
- XX: +| - UseFat Spi n NA NA

- XX +| -
Uselar gePagesFor [Heap|
Code]

- XX: +| - UseLazyUnl ocki ng
- XX: +| - UseLockProfiling

- XX +| -
UseLowAddr essFor Heap

e - XX +Uselar gePages
* - XX +UselLar gePagesl nMet aspace

- XX: +UseBi asedLocki ng
NA
NA

- XX: +| - UseNewHashFunction Same

ORACLE

See Runtime Options.

See Runtime Options.
NA

No direct corresponding
option available in HotSpot
but the low heap base can
be specified explicitly using
HeapBaseM nAddr ess
option.

Only relevant for JDK 5.
This option must not be
used on JDK 6 or later
versions.

6-7

Chapter 6
Mapping of Oracle JRockit to HotSpot Command-Line Options

Table 6-2 (Cont.) -XX Command-Line Options
]

Oracle JRockit HotSpot Notes on HotSpot
Options
- XX 4 - Same On HotSpot, this option is

UseThreadPriorities

enabled by default for the
Windows platform. On
JRockit, this option is
disabled by default for the
Windows platform.

ORACLE

Table 6-3 Diagnostic Commands

Oracle JRockit HotSpot

check _flightrecording JFR. check
conmand_| i ne VM comand_| i ne
dunp_flightrecording JFR dunp
exception_trace filter NA

force_crash NA

heap_di agnosti cs GC. heap_info

hel p hel p

hpr of dunp CC. heap_dunp
kil _nmanagenent server Managenent Agent . st op
list_vnflags VM f 1 ags

[ockprofile_print NA

[ockprofile_reset NA

meni eakser ver NA

print_class_summary
print_exceptions
print_menusage
print_object _summary
print_threads
print_utf8poo
print_vmstate
runsyst enmgc

set _filenane
start_flightrecording
start_nanagenent _server

stop_flightrecording

st op_managenent _server

CC.class_stats

NA

VM native_menory

GC. cl ass_hi st ogram

Thread. print

VM st ringtabl e and VM synbol t abl e
VWinfo

GC.run

NA

JFR start

Managenent Agent . start
Managenent Agent . start _| ocal

JFR stop
Managenent Agent . st op

6-8

Table 6-3 (Cont.) Diagnostic Commands

Chapter 6
jemd Commands

Oracle JRockit HotSpot
tinmestanmp NA
verbosity NA
version VM ver si on

jcmd Commands

ORACLE

The following are the list of jcmd commands:

JFR configure
JFR. st op

JFR start

JFR dunp

JFR. check

VM | og

VM native_nmenory

VM check_commerci al _features

VM unl ock_conmmrerci al _features

Managenent Agent . st at us
Managenent Agent . st op
Management Agent . start _| ocal
Managenent Agent . start

Conpi | er. directives_clear
Conpi | er. directives_renove
Conpi | er. directives_add
Conpi | er. directives_print
VM print _t ouched_met hods
Conpi | er. codecache

Conpi | er. codel i st

Conpi | er. queue

VM cl assl oader _stats
Thread. print

JVMII . data_dunp

JVMII . agent _| oad

VM stringtable

6-9

ORACLE

VM synbol t abl e

VM cl ass_hi erarchy
CC.class_stats

GC. cl ass_hi st ogram
CC. heap_dunp
CC.finalizer_info
CC. heap_info
CC.run_finalization
GC.run

VMinfo

VM upti me

VM dynl i bs

VM set flag

VM fl ags

VM syst em properties
VM comand_| i ne

VM version help

Chapter 6
jemd Commands

For the complete list of commands, see jcmd Commands in the Java Platform,

Standard Edition Tools Reference guide.

6-10

Common Migration Issues and Solutions

This topic describes some common issues that can occur while migrating from Oracle
JRockit to HotSpot, along with their solutions.
The following table lists some common issues that can occur during the migration
process and solutions for resolving them:

Table 7-1 Migrations Issues and Solutions

Problem

Oracle JRockit Option

HotSpot Option

Notes

Performance
degradation after
migrating to JDK 7.

L]
The issue was resolved

with the use of -
XX: Reser vedCodeCac
heSi ze=1g

Increased locking/
unlocking events
observed after
switching to HotSpot.
Disabling

UseBi asedLocki ng
helped improve the
overall performance.

- XX: +Reser veCodeMenory

Default values:

When you use - XX:

+Uselar gePagesFor Cod

e: 64 MB

* Whenyou use - XX: -
Uselar gePagesFor Code:
1024 MB

- XX: - UseLazyUnl ocki ng (to
disable)

XX: Reser vedCodeCac
heSi ze
The default value on

most of the platforms is
48 MB.

- XX -
UseBi asedLocki ng
(to disable)

With HotSpot VM, it was
observed that in some cases
increasing the
ReservedCodeCacheSi ze
value, for example, -

XX: Reser vedCodeCacheSi ze
=19, improves the performance
significantly.

The UseBi asedLocki ng
option improves the
performance of uncontended
synchronization. This option is
enabled by default.

However, if the application has
high contended
synchronization, then disabling
UseBi asedLocki ng benefits
the performance.

If you face performance issues
due to locking or
synchronization after migrating
to HotSpot, then disabling this
option might provide some
performance gains.

ORACLE

7-1

Troubleshooting Tools

This topic describes various troubleshooting tools available in Java SE and compares
their functionality to those available in Oracle JRockit.

Troubleshooting Tools Available in Java SE

The following table lists various tools available for troubleshooting in Java SE. Some of
these tools were brought over from Oracle JRockit to HotSpot VM for providing

comparable functionality:

Table 8-1 Tools

Java SE Troubleshooting Notes and Resources

Tools

Java Flight Recorder and
Mission Control

Serviceability Agent

JConsole

jemd command utility

JDK utilities

visualgc

ORACLE

See the following topics in Java Platform, Standard Edition
Troubleshooting Guide:
* Java Mission Control

* What are Java Flight Recordings

e How to produce a Flight Recording

* Inspect a Flight Recording

* Debug a Memory Leak Using Java Flight Recorder

See the article about the Serviceability Agent published in the

Java Magazine dated July 2012:
HotSpot's Hidden Treasure

See
Troubleshoot with JConsole in Java Platform, Standard Edition
Troubleshooting Guide

See:
e Troubleshoot with jemd Utility

in Java Platform, Standard Edition Troubleshooting Guide
 jcmd

in Java Platform, Standard Edition Tools Reference

There are many useful utilities bundled with JDK. See the
following topics in Java Platform, Standard Edition
Troubleshooting Guide:

 jdb

e jinfo

© jmap

© ps

e jstack

° jstat

e jrunscript
e jstatd
See

visualgc Tool in Java Platform, Standard Edition Troubleshooting
Guide.

8-1

https://bitbucket.org/javamagazine/magdownloads/downloads/2012-07-JavaMag-ServiceabilityAgent.pdf

Chapter 8
Troubleshooting Tools Available in Java SE

Table 8-1 (Cont.) Tools

Java SE Troubleshooting Notes and Resources
Tools

Native Memory Tracking See Native Memory Tracking in Java Platform, Standard Edition
Tool Java Virtual Machine Guide.

ORACLE 8-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Heap Sizing

	2 Garbage Collectors
	Tuning Garbage Collection

	3 Runtime
	Runtime Options

	4 Compilation Optimization
	Compiler Considerations
	Important HotSpot JIT Compiler Options

	5 Logging
	Verbose Logging
	HotSpot Logging Options

	6 Command-Line Options
	Mapping of Oracle JRockit to HotSpot Command-Line Options
	jcmd Commands

	7 Common Migration Issues and Solutions
	8 Troubleshooting Tools
	Troubleshooting Tools Available in Java SE

