
Java Platform, Standard Edition
Oracle JDK Migration Guide

Release 12

F13815-02

March 2019

Getting Started
The purpose of this guide is to help you identify potential issues and give you
suggestions on how to proceed as you migrate your existing Java application to the
JDK 12 release. The guide also highlights the significant changes and enhancements
done to the JDK 12 release.

This guide contains the following sections:

• Significant Changes in the JDK

• Preparing For Migration

• Migrating From JDK 8 to Later JDK Releases

• Next Steps

Significant Changes in the JDK

Before migrating your application to the latest JDK release, you must understand what
the updates and changes are between it and the previous JDK release. If you are
migrating from JDK 8, you should also be familiar with the differences between JDK 8
and later releases that are described in Migrating From JDK 8 to Later JDK Releases.

See the following sections to know some of the significant changes in latest JDK
releases.

Significant Changes in JDK 12 Release
The following are some of the important additions and updates in Java SE 12 and JDK
12:

• JVM Constants API is introduced to model nominal descriptions of key class-file
and run-time artifacts, in particular constants that are loadable from the constant
pool. See JVM Constant API.

• The switch statement is extended so that it can be used either as a statement or
an expression. This is a preview language feature. See JEP 325: Switch
Expressions (Preview) and JEP 12: Preview Language and VM Features.

1

http://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#JDK-8203252
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/12

• Support for Unicode 11.0. See Unicode 11.0.

• Square character support is provided for the Japanese new era that begins from
May, 2019. See Square character support.

• The NumberFormat adds support for formatting a number in its compact form. See
Compact Number Formatting Support .

Significant Changes in JDK 11 Release
JDK 11 had some significant changes too. As JDK 11 is a long term support (LTS)
release, you must be familiar with the following important changes in JDK 11 release:

• Oracle no longer offers JRE and Server JRE downloads; consequently, Auto-
Update is not available anymore.

• Java Web Start, Java Plugin, and Java Control Panel are not available in JDK.
See Removal of the Deployment Stack.

• JavaFX is no longer included in the JDK. It is now available as a separate
download from https://openjfx.io/.

• JAXB and JAX-WS are no longer bundled with JDK. See Removal of Java EE and
CORBA Modules.

In addition, there are security related updates and few removed tools and components
that you need to be aware of. See:

• Security Updates

• Removed APIs, Tools, and Components

Removal of the Deployment Stack
Java deployment technologies were deprecated in JDK 9 and removed in JDK 11.

Java applet and Web Start functionality, including the Java plug-in, the Java Applet
Viewer, Java Control Panel, and Java Web Start, along with javaws tool, have been
removed in JDK 11.

See Remove Java Deployment Technologies.

Removal of Java EE and CORBA Modules
In JDK 11, the Java EE and CORBA modules were removed. These modules were
deprecated for removal in JDK 9.

The removed modules are:

• java.xml.ws: Java API for XML Web Services (JAX-WS), Web Services
Metadata for the Java Platform, and SOAP with Attachments for Java (SAAJ)

• java.xml.bind: Java Architecture for XML Binding (JAXB)

• java.xml.ws.annotation: The subset of the JSR-250 Common Annotations
defined by Java SE to support web services

2

http://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#JDK-8209923
http://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#JDK-8211398
http://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#JDK-8177552
https://openjfx.io/
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8185077

• java.corba: CORBA

• java.transaction: The subset of the Java Transaction API defined by Java SE
to support CORBA Object Transaction Services

• java.activation: JavaBeans Activation Framework

• java.se.ee: Aggregator module for the six modules above

• jdk.xml.ws: Tools for JAX-WS

• jdk.xml.bind: Tools for JAXB

Existing code with references to classes in these APIs will not compile without
changes to the build. Similarly, code on the class path with references to classes in
these APIs will fail with NoDefClassFoundError or ClassNotFoundException unless
changes are made in how the application is deployed.

See JEP 320: Remove the Java EE and CORBA Modules to get more information
about possible replacements for the modules.

Note:

You can download JAXB and JAX-WS from Maven.

Security Updates

Security Updates in JDK 11 Release
The JDK 11 release includes an implementation of the Transport Layer Security (TLS)
1.3 specification (RFC 8446).

TLS 1.3 is the latest iteration (August 2018) of the Transport Layer Security (TLS)
protocol and is enabled by default in JDK 11. This version focuses not only on speed
improvements, but also updates the overall security of the protocol by emphasizing
modern cryptography practices, and disallows outdated or weak crypto algorithms.
(For example, RSA key exchange and plain DSA signatures are no longer allowed.)

Several features were added to the TLS 1.3 protocol to improve backwards
compatibility, but there are several issues of which you need to be aware of. For
details, see JEP 332.

Removal of Security Certificates
The following root certificate has been removed from the keystore in JDK 11:

• Removal of GTE CyberTrust Global Root

The following root certificates have been removed from the truststore in JDK 11:

• Several Symantec Root CAs

• Baltimore Cybertrust Code Signing CA

3

http://openjdk.java.net/jeps/320
https://www.rfc-editor.org/info/rfc8446
http://openjdk.java.net/jeps/332
http://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#JDK-8195793
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8191031
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8189949

• SECOM Root Certificate

• AOL and Swisscom root certificates

Products that use certificates that have been removed may no longer work. If these
certificates are required, then you must configure and populate the cacerts with the
missing certs. To add certs to the truststore, see keytool in Java Platform, Standard
Edition Tools Reference guide.

Removed APIs, Tools, and Components
This section provides details about the APIs, tools, and components that were
removed in JDK 12 and JDK 11 releases.

APIs Removed in Java SE 12

The following APIs were removed in Java SE 12. For information on the possible
alternatives, see JDK 12 API Specification.

 java.io.FileInputStream.finalize()
 java.io.FileOutputStream.finalize()
 java.util.zip.Deflater.finalize()
 java.util.zip.Inflater.finalize()
 java.util.zip.ZipFile.finalize()

Removed APIs in JDK 11

The following APIs were removed in JDK 11. Many of these APIs were deprecated in
previous releases and have been replaced by newer APIs. For information on the
possible alternatives, see JDK 11 API Specification.

javax.security.auth.Policy
java.lang.Runtime.runFinalizersOnExit(boolean)
java.lang.SecurityManager.checkAwtEventQueueAccess()
java.lang.SecurityManager.checkMemberAccess(java.lang.Class,int)
java.lang.SecurityManager.checkSystemClipboardAccess()
java.lang.SecurityManager.checkTopLevelWindow(java.lang.Object)
java.lang.System.runFinalizersOnExit(boolean)
java.lang.Thread.destroy()
java.lang.Thread.stop(java.lang.Throwable)

Tools and Components Not Shipped with JDK 11 and Later

The following are the list of tools and components that are not shipped with JDK 11
and later.

Main Tools

4

http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8191844
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8203230
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/

• appletviewer

See JDK-8200146 : Remove the appletviewer launcher.

CORBA Tools

• idlj

• orbd

• servertool

• tnamesrv

In addition, the rmic (the RMI compiler) will no longer support the -idl or -iiop
options. See JDK 11 Release Notes.

Java Web Services Tools

• schemagen

• wsgen

• wsimport

• xjc

See JEP 320: Remove the Java EE and CORBA Modules.

Java Deployment Tools

• javapackager

• javaws

Note:

The pack200 and unpack200 have been deprecated and might be removed in
a future JDK release.

See Removal of JavaFX from JDK and JEP 336: Deprecate the Pack200 Tools and
API.

Monitoring Tools

• jmc: In JDK 11, JMC is available as a standalone package and not bundled in the
JDK.

See Removal of JMC from JDK and Java Mission Control.

JVM-MANAGEMENT-MIB.mib

5

https://bugs.java.com/view_bug.do?bug_id=JDK-8200146
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8190378
http://openjdk.java.net/jeps/320
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8198527
http://openjdk.java.net/jeps/336
http://openjdk.java.net/jeps/336
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8202347
https://blogs.oracle.com/java-platform-group/java-mission-control-now-serving-openjdk-binaries-too

The specification for JVM monitoring and management through SNMP JVM-
MANAGEMENT-MIB.mib has been removed. See Removal of JVM-MANAGEMENT-
MIB.mib.

SNMP Agent

The jdk.snmp module has been removed. See Removal of SNMP Agent.

Oracle Desktop Specific Removals

• Oracle JDK T2K font rasterizer has been removed.

• Lucida Fonts: Oracle JDK no longer ships any fonts and relies entirely on fonts
installed on the operating system. See Removal of Lucida Fonts from Oracle JDK.

Preparing For Migration
The following sections will help you successfully migrate your application:

• Download the Latest JDK

• Run Your Program Before Recompiling

• Update Third-Party Libraries

• Compile Your Application if Needed

• Run jdeps on Your Code

Download the Latest JDK
Download and install the latest JDK release.

Run Your Program Before Recompiling
Try running your application on the latest JDK release (JDK 12). Most code and
libraries should work on JDK 12 without any changes, but there may be some libraries
that need to be upgraded.

Note:

Migrating is an iterative process. You’ll probably find it best to try running
your program (this task) first, then complete these three tasks more or less in
parallel:

• Update Third-Party Libraries

• Compile Your Application if Needed

• Run jdeps on Your Code.

6

https://bugs.java.com/view_bug.do?bug_id=JDK-8206211
https://bugs.java.com/view_bug.do?bug_id=JDK-8206211
https://bugs.java.com/view_bug.do?bug_id=JDK-8071367
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#JDK-8191522
http://www.oracle.com/technetwork/java/javase/downloads/index.html

When you run your application, look for warnings from the JVM about obsolete VM
options. If the VM fails to start, then look for Removed GC Options.

If your application starts successfully, look carefully at your tests and ensure that the
behavior is the same as on the JDK version you have been using. For example, a few
early adopters have noticed that their dates and currencies are formatted differently.
See Use CLDR Locale Data by Default.

To make your code work on the latest JDK release, understand the new features and
changes in each of the JDK release.

• For detailed information about the new features and changes in JDK 12, see
What's New in JDK 12 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 11, see
What’s New in JDK 11 — New Features and Enhancements.

• For detailed information about the new features and changes in JDK 10, see
What’s New in JDK 10.

• For a comprehensive list of all of the new features of JDK 9, see What's New in
JDK 9.

For detailed information about the changes in JDK 9, see JDK 9 Release Notes.

Even if your program appears to run successfully, you should complete the rest of the
steps in this guide and review the list of issues.

Update Third-Party Libraries
For every tool and third-party library that you use, you may need to have an updated
version that supports the latest JDK release.

Check the websites for your third-party libraries and your tool vendors for a version of
each library or tool that’s designed to work on the latest JDK. If one exists, then
download and install the new version.

If you use Maven or Gradle to build your application, then make sure to upgrade to a
recent version that supports the latest JDK version.

If you use an IDE to develop your applications, then it might help in migrating the
existing code. The NetBeans, Eclipse, and IntelliJ IDEs all have versions available that
include support for the latest JDK.

You can see the status of the testing of many Free Open Source Software (FOSS)
projects with OpenJDK builds at Quality Outreach on the OpenJDK wiki.

Compile Your Application if Needed
Compiling your code with the latest JDK compiler will ease migration to future releases
since the code may depend on APIs and features, which have been identified as
problematic. However, it is not strictly necessary.

If you need to compile your code with JDK 11 and later compilers, then take note of
the following:

7

https://www.oracle.com/technetwork/java/javase/12-relnote-issues-5211422.html#NewFeature
http://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html#NewFeature
http://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html#NewFeature
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-C23AFD78-C777-460B-8ACE-58BE5EA681F6
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-C23AFD78-C777-460B-8ACE-58BE5EA681F6
http://www.oracle.com/technetwork/java/javase/9-relnotes-3622618.html
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

• If you use the underscore character ("_") as a one-character identifier in source
code, then your code won’t compile in JDK 11 and later releases. It generates a
warning in JDK 8, and an error, starting from JDK 9.

As an example:

static Object _ = new Object();

This code generates the following error message from the compiler:

MyClass.java:2: error: as of release 9, '_' is a keyword, and may not
be used as a legal identifier.

• If you use the -source and -target options with javac, then check the values that
you use.

The supported -source/-target values are 12 (the default), 11, 10, 9, 8, 7, and 6
(6 is deprecated, and a warning is displayed when this value is used).

In JDK 8, -source and -target values of 1.5/5 and earlier were deprecated, and
caused a warning. In JDK 9 and above, those values cause an error.

>javac -source 5 -target 5 Sample.java
warning: [options] bootstrap class path not set in conjunction with -
source 5
error: Source option 5 is no longer supported. Use 6 or later.
error: Target option 1.5 is no longer supported. Use 1.6 or later.

If possible, use the new --release flag instead of the -source and -target
options. See javac in Java Platform, Standard Edition Tools Reference.

The valid arguments for the --release flag follow the same policy as for -source
and -target, one plus three back.

The javac can recognize and process class files of all previous JDKs, going all the
way back to JDK 1.0.2 class files.

See JEP 182: Policy for Retiring javac -source and -target Options.

• Critical internal JDK APIs such as sun.misc.Unsafe are still accessible in JDK
11 and later, but most of the JDK’s internal APIs are not accessible at compile
time. You may get compilation errors that indicate that your application or its
libraries are dependent on internal APIs.

To identify the dependencies, run the Java Dependency Analysis tool. See Run
jdeps on Your Code. If possible, update your code to use the supported
replacement APIs.

You may use the --add-exports option as a temporary workaround to compile
source code with references to JDK internal classes.

• You may see more deprecation warnings than previously.

Run jdeps on Your Code

8

http://openjdk.java.net/jeps/182

Run the jdeps tool on your application to see what packages and classes your
applications and libraries depend on. If you use internal APIs, then jdeps may suggest
replacements to help you to update your code.

To look for dependencies on internal JDK APIs, run jdeps with the -jdkinternals
option. For example, if you run jdeps on a class that calls sun.misc.BASE64Encoder,
you’ll see:

>jdeps -jdkinternals Sample.class
Sample.class -> JDK removed internal API
 Sample -> sun.misc.BASE64Encoder JDK internal API (JDK removed
internal API)

Warning: JDK internal APIs are unsupported and private to JDK
implementation that are
subject to be removed or changed incompatibly and could break your
application.
Please modify your code to eliminate dependency on any JDK internal APIs.
For the most recent update on JDK internal API replacements, please check:
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool

JDK Internal API Suggested Replacement
---------------- ---------------------
sun.misc.BASE64Encoder Use java.util.Base64 @since 1.8

If you use Maven, there’s a jdeps plugin available.

For jdeps syntax, see jdeps in the Java Platform, Standard Edition Tools Reference.

Keep in mind that jdeps is a static analysis tool, and static analysis of code might not
provide a complete list of dependencies. If the code uses reflection to call an internal
API, then jdeps doesn’t warn you.

Migrating From JDK 8 to Later JDK Releases
There were significant changes made between the JDK 8 and later JDK releases.

Every new Java SE release introduces some binary, source, and behavioral
incompatibilities with previous releases. The modularization of the Java SE Platform
that happened in JDK 9 brought many benefits, but also many changes. Code that
uses only official Java SE Platform APIs and supported JDK-specific APIs should
continue to work without change. Code that uses JDK-internal APIs should continue to
run but should be migrated to use the supported APIs.

The following sections describe the changes in the JDK package and APIs that you
should be aware of when migrating your JDK 8 applications to later JDK releases.

Look at the list of changes that you may encounter as you run your application.

• New Version-String Scheme

• Understanding Runtime Access Warnings

• Changes to the Installed JDK/JRE Image

9

• Removed or Changed APIs

• Deployment

• Security Updates in JDK 9

• Changes to Garbage Collection

• Removed Tools and Components

• Removed macOS-Specific Features

When your application is running successfully on the latest version of JDK, review
Next Steps, which will help you avoid problems with future releases.

Understanding Runtime Access Warnings
Some tools and libraries use reflection to access parts of the JDK that are meant for
internal use only. This illegal reflective access will be disabled in a future release of the
JDK. Currently, it is permitted by default and a warning is issued.

For example, here is the warning issued when starting Jython:

>java -jar jython-standalone-2.7.0.jar
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by jnr.posix.JavaLibCHelper (file:/C:/
Jython/jython2.7.0/jython-standalone-2.7.0.jar) to method
sun.nio.ch.SelChImpl.getFD()
WARNING: Please consider reporting this to the maintainers of
jnr.posix.JavaLibCHelper
WARNING: Use --illegal-access=warn to enable warnings of further illegal
reflective access operations
WARNING: All illegal access operations will be denied in a future release
Jython 2.7.0 (default:9987c746f838, Apr 29 2015, 02:25:11)

If you see a warning like this, contact the maintainers of the tool or library. The second
line of the warning names the exact JAR file whose code used reflection to access an
internal part of the JDK.

By default, a maximum of one warning about reflective access is issued in the lifetime
of the process started by the java launcher. The exact timing of the warning depends
on the behavior of tools and libraries performing reflective–access operations. The
warning may appear early in the lifetime of the process, or a long time after startup.

You can disable the warning message on a library-by-library basis by using the --add-
opens command line flag. For example, you can start Jython in the following way:

>java --add-opens java.base/sun.nio.ch=ALL-UNNAMED --add-opens java.base/
java.io=ALL-UNNAMED -jar jython-standalone-2.7.0.jar
Jython 2.7.0 (default:9987c746f838, Apr 29 2015, 02:25:11)

This time, the warning is not issued because the java invocation explicitly
acknowledges the reflective access. As you can see, you may need to specify multiple

10

--add-opens flags to cover all of the reflective access operations that are attempted by
libraries on the class path.

To better understand the behavior of tools and libraries, you can use the --illegal-
access=warn command line flag. This flag causes a warning message to be issued for
every illegal reflective-access operation. In addition, you can obtain detailed
information about illegal reflective-access operations, including stack traces, by setting
--illegal-access=debug.

If you have updated libraries, or when you get them, then you can experiment with
using the --illegal-access=deny command line flag. It disables all reflective-access
operations except for those enabled by other command-line options, such as --add-
opens. This will be the default mode in a future release.

There are two options that allow you to break encapsulation in specific ways. You
could use these in combination with --illegal-access=deny, or, as already
mentioned, to suppress warnings.

• If you need to use an internal API that has been made inaccessible, then use the
--add-exports runtime option. You can also use --add-exports at compile time
to access internal APIs.

• If you have to allow code on the class path to do deep reflection to access
nonpublic members, then use the --add-opens option.

If you want to suppress all reflective access warnings, then use the --add-exports
and --add-opens options where needed.

--add-exports

If you must use an internal API that has been made inaccessible by default, then you
can break encapsulation using the --add-exports command-line option.

The syntax of the --add-exports option is:

--add-exports <source-module>/<package>=<target-module>(,<target-module>)*

where <source-module> and <target-module> are module names and <package> is
the name of a package.

The --add-exports option allows code in the target module to access types in the
named package of the source module if the target module reads the source module.

As a special case, if the <target-module> is ALL-UNNAMED, then the source package is
exported to all unnamed modules, whether they exist initially or are created later on.
For example:

--add-exports java.management/sun.management=ALL-UNNAMED

This example allows code in all unnamed modules (code on the class path) to access
the public members of public types in java.management/sun.management. If the code
on the class path attempts to do deep reflection to access nonpublic members, then
the code fails.

11

If an application oldApp that runs on the classpath must use the unexported
com.sun.jmx.remote.internal package of the java.management module, then the
access that it requires can be granted in this way:

--add-exports java.management/com.sun.jmx.remote.internal=ALL-UNNAMED

You can also break encapsulation with the JAR file manifest:

Add-Exports:java.management/sun.management

Use the --add-exports option carefully. You can use it to gain access to an internal
API of a library module, or even of the JDK itself, but you do so at your own risk. If that
internal API changes or is removed, then your library or application fails.

See also JEP 261.

--add-opens

If you have to allow code on the class path to do deep reflection to access nonpublic
members, then use the --add-opens runtime option.

Some libraries do deep reflection, meaning setAccessible(true), so they can access
all members, including private ones. You can grant this access using the --add-opens
option on the java command line. No warning messages are generated as a result of
using this option.

If --illegal-access=deny, and you see IllegalAccessException or
InaccessibleObjectException messages at runtime, you could use the --add-opens
runtime option, basing the arguments upon the information shown in the exception
message.

The syntax for --add-opens is:

--add-opens module/package=target-module(,target-module)*

This option allows <module> to open <package> to <target-module>, regardless of the
module declaration.

As a special case, if the <target-module> is ALL-UNNAMED, then the source package is
exported to all unnamed modules, whether they exist initially or are created later on.
For example:

--add-opens java.management/sun.management=ALL-UNNAMED

This example allows all of the code on the class path to access nonpublic members of
public types in the java.management/sun.management package.

12

http://openjdk.java.net/jeps/261

Note:

If you are using the JNI Invocation API, including, for example, a Java Web
Start JNLP file, you must include an equals sign between --add-opens and
its value.

<j2se version="10" java-vm-args="--add-opens=module/package=ALL-
UNNAMED" />

The equals sign between --add-opens and its value is optional on the
command line.

New Version-String Scheme
JDK 10 introduced some minor changes, to better accommodate the time-based
release model, to the version-string scheme introduced in JDK 9. JDK 11 and later
retains the version string format that was introduced in JDK 10.

If your code relies on the version-string format to distinguish major, minor, security,
and patch update releases, then you may need to update it.

The format of the new version-string is:

$FEATURE.$INTERIM.$UPDATE.$PATCH

A simple Java API to parse, validate, and compare version strings has been added.
See java.lang.Runtime.Version.

See Version String Format in Java Platform, Standard Edition Installation Guide .

For the changes to the version string introduced in JDK 9, see JEP 223: New Version-
String Scheme .

For the version string changes introduced in JDK 10, see JEP 322: Time-Based
Release Versioning.

Changes to the Installed JDK/JRE Image
Significant changes have been made to the JDK and JRE.

Changed JDK and JRE Layout

After you install the JDK, if you look at the file system, you’ll notice that the directory
layout is different from that of releases before JDK 9.

JDK 11 and Later

JDK 11 and later does not have the JRE image. See Installed Directory Structure of
JDK in Java Platform, Standard Edition Installation Guide.

13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.Version.html
http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/322
http://openjdk.java.net/jeps/322

JDK 9 and JDK 10

Prior releases had two types of runtime images: the JRE, which was a complete
implementation of the Java SE Platform, and the JDK, which included the entire JRE
in a jre/ directory, plus development tools and libraries.

In JDK 9 and and JDK 10, the JDK and JRE are two types of modular runtime images
containing the following directories:

• bin: contains binary executables.

• conf: contains .properties, .policy, and other kinds of files intended to be
edited by developers, deployers, and end users. These files were formerly found in
the lib directory or its subdirectories.

• lib: contains dynamically linked libraries and the complete internal implementation
of the JDK.

In JDK 9 and JDK 10, there are still separate JDK and JRE downloads, but each has
the same directory structure. The JDK image contains the extra tools and libraries that
have historically been found in the JDK. There are no jdk/ versus jre/ wrapper
directories, and binaries (such as the java command) aren’t duplicated.

See JEP 220: Modular Run-Time Images.

New Class Loader Implementations

JDK 9 and later releases maintain the hierarchy of class loaders that existed since the
1.2 release. However, the following changes have been made to implement the
module system:

• The application class loader is no longer an instance of URLClassLoader but,
rather, of an internal class. It is the default loader for classes in modules that are
neither Java SE nor JDK modules.

• The extension class loader has been renamed; it is now the platform class loader.
All classes in the Java SE Platform are guaranteed to be visible through the
platform class loader. In addition, the classes in modules that are standardized
under the Java Community Process but not part of the Java SE Platform are
guaranteed to be visible through the platform class loader.

Just because a class is visible through the platform class loader does not mean
the class is actually defined by the platform class loader. Some classes in the Java
SE Platform are defined by the platform class loader while others are defined by
the bootstrap class loader. Applications should not depend on which class loader
defines which platform class.

The changes that were implemented in JDK 9 may impact code that creates class
loaders with null (that is, the bootstrap class loader) as the parent class loader
and assumes that all platform classes are visible to the parent. Such code may
need to be changed to use the platform class loader as the parent (see
ClassLoader.getPlatformClassLoader).

The platform class loader is not an instance of URLClassLoader, but, rather, of
an internal class.

14

http://openjdk.java.net/jeps/220
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ClassLoader.html#getPlatformClassLoader()

• The bootstrap class loader is still built-in to the Java Virtual Machine and
represented by null in the ClassLoader API. It defines the classes in a handful
of critical modules, such as java.base. As a result, it defines far fewer classes
than in JDK 8, so applications that are deployed with -Xbootclasspath/a or that
create class loaders with null as the parent may need to change as described
previously.

Removed rt.jar and tools.jar in JDK 9

Class and resource files previously stored in lib/rt.jar, lib/tools.jar, lib/dt.jar
and various other internal JAR files are stored in a more efficient format in
implementation-specific files in the lib directory.

The removal of rt.jar and similar files leads to issues in these areas:

• Starting from JDK 9, ClassLoader.getSystemResource doesn’t return a URL
pointing to a JAR file (because there are no JAR files). Instead, it returns a jrt
URL, which names the modules, classes, and resources stored in a runtime image
without revealing the internal structure or format of the image.

For example:

ClassLoader.getSystemResource("java/lang/Class.class");

When run on JDK 8, this method returns a JAR URL of the form:

jar:file:/usr/local/jdk8/jre/lib/rt.jar!/java/lang/Class.class

which embeds a file URL to name the actual JAR file within the runtime image.

A modular image doesn’t contain any JAR files, so URLs of this form make no
sense. On JDK 9 and later releases, this method returns:

jrt:/java.base/java/lang/Class.class

• The java.security.CodeSource API and security policy files use URLs to
name the locations of code bases that are to be granted specific permissions. See
Policy File Syntax in Java Platform, Standard Edition Security Developer's Guide.
Components of the runtime system that require specific permissions are currently
identified in the conf/security/java.policy file by using file URLs.

• Older versions of IDEs and other development tools require the ability to
enumerate the class and resource files stored in a runtime image, and to read their
contents directly by opening and reading rt.jar and similar files. This isn’t
possible with a modular image.

Removed Extension Mechanism in JDK 9

In JDK 8 and earlier, the extension mechanism made it possible for the runtime
environment to find and load extension classes without specifically naming them on

15

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ClassLoader.html#getSystemResource(java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/security/CodeSource.html

the class path. Starting from JDK 9, if you need to use the extension classes, ensure
that the JAR files are on the class path.

In JDK 9 and JDK 10, the javac compiler and java launcher will exit if the
java.ext.dirs system property is set, or if the lib/ext directory exists. To
additionally check the platform-specific systemwide directory, specify the -XX:
+CheckEndorsedAndExtDirs command-line option. This causes the same exit behavior
to occur if the directory exists and isn’t empty. The extension class loader is retained in
JDK 9 (and later releases) and is specified as the platform class loader (see
getPlatformClassLoader.) However, in JDK 11, this option is obsolete and a
warning is issued when it is used.

The following error means that your system is configured to use the extension
mechanism:

<JAVA_HOME>/lib/ext exists, extensions mechanism no longer supported; Use -
classpath instead.
.Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

You’ll see a similar error if the java.ext.dirs system property is set.

To fix this error, remove the ext/ directory or the java.ext.dirs system property.

See JEP 220: Modular Run-Time Images.

Removed Endorsed Standards Override Mechanism

The java.endorsed.dirs system property and the lib/endorsed directory are no
longer present. The javac compiler and java launcher will exit if either one is detected.

Starting from JDK 9, you can use upgradeable modules or put the JAR files on the
class path.

This mechanism was intended for application servers to override components used in
the JDK. Packages to be updated would be placed into JAR files, and the system
property java.endorsed.dirs would tell the Java runtime environment where to find
them. If a value for this property wasn’t specified, then the default of $JAVA_HOME/lib/
endorsed was used.

In JDK 8, you can use the -XX:+CheckEndorsedAndExtDirs command-line argument to
check for such directories anywhere on the system.

In JDK 9 and later releases, the javac compiler and java launcher will exit if the
java.endorsed.dirs system property is set, or if the lib/endorsed directory exists.

The following error means that your system is configured to use the endorsed
standards override mechanism:

<JAVA_HOME>/lib/endorsed is not supported. Endorsed standards and
standalone APIs
in modular form will be supported via the concept of upgradeable modules.

16

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ClassLoader.html#getPlatformClassLoader()
http://openjdk.java.net/jeps/220

Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

You’ll see a similar error if the java.endorsed.dirs system property is set.

To fix this error, remove the lib/endorsed directory, or unset the java.endorsed.dirs
system property.

See JEP 220: Modular Run-Time Images.

Windows Registry Key Changes

The Java 11 installer creates these Windows registry keys when installing the JDK:

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK”

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK\11”

If there are two versions of JDK installed, then there will be two different Windows
registry keys are created. For example, if JDK 11.0.1 is installed with JDK 11, then the
installer creates the another Windows registry key as shown:

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK”

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK\11.0.1”

Removed or Changed APIs
This section highlights APIs that have been made inaccessible, removed, or altered in
their default behavior. You may encounter the issues described in this section when
compiling or running your application.

See APIs Removed in Java SE 12 and Removed APIs in JDK 11.

Removed APIs in JDK 9 and JDK 10

The following are some important APIs that have been removed from JDK 9 and JDK
10 releases.

Removed java.* APIs

The Java team is committed to backward compatibility. If an application runs in JDK 8,
then it will run on JDK 9 and later releases as long as it uses APIs that are supported
and intended for external use.

These include:

• JCP standard, java.*, javax.*

• JDK-specific APIs, some com.sun.*, some jdk.*

Supported APIs can be removed from the JDK, but only with notice. Find out if your
code is using deprecated APIs by running the static analysis tool jdeprscan.

17

http://openjdk.java.net/jeps/220

java.* APIs that were removed in JDK 9 include the previously deprecated methods
from the java.util.logging.LogManager and java.util.jar.Pack200
packages:

java.util.logging.LogManager.addPropertyChangeListener
java.util.logging.LogManager.removePropertyChangeListener
java.util.jar.Pack200.Packer.addPropertyChangeListener
java.util.jar.Pack200.Packer.removePropertyChangeListener
java.util.jar.Pack200.Unpacker.addPropertyChangeListener
java.util.jar.Pack200.Unpacker.removePropertyChangeListener

Removal and Future Removal of sun.misc and sun.reflect APIs

Unlike the java.* APIs, almost all of the sun.* APIs are unsupported, JDK-internal
APIs, and may go away at any time.

A few sun.* APIs were removed in JDK 9. Notably, sun.misc.BASE64Encoder
and sun.misc.BASE64Decoder were removed. Instead, use the supported
java.util.Base64 class, which was added in JDK 8.

If you use these APIs, you may wish to migrate to their supported replacements:

• sun.misc.Unsafe
The functionality of many of the methods in this class is available by using variable
handles, see JEP 193: Variable Handles.

• sun.reflect.Reflection::getCallerClass(int)
Instead, use the stack-walking API, see JEP 259: Stack-Walking API.

See JEP 260: Encapsulate Most Internal APIs.

java.awt.peer Not Accessible

The java.awt.peer and java.awt.dnd.peer packages aren’t accessible,
starting in JDK 9. The packages were never part of the Java SE API, despite being in
the java.* namespace.

All methods in the Java SE API that refer to types defined in these packages were
removed from JDK 9. Code that calls a method that previously accepted or returned a
type defined in these packages no longer compiles or runs.

There are two common uses of the java.awt.peer classes. You should replace
them as follows:

• To see if a peer has been set yet:

if (component.getPeer() != null) { .. }

Replace this with Component.isDisplayable() from the JDK 1.1 API:

public boolean isDisplayable() {
 return getPeer() != null;

18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Base64.html
http://openjdk.java.net/jeps/193
http://openjdk.java.net/jeps/259
http://openjdk.java.net/jeps/260

• To test if a component is lightweight:

if (component.getPeer() instanceof LightweightPeer) ..

Replace this with Component.isLightweight() from the JDK 1.2 API:

public boolean isLightweight() {
 return getPeer() instanceof LightweightPeer;

Removed com.sun.image.codec.jpeg Package

The nonstandard package com.sun.image.codec.jpeg has been removed. Use
the Java Image I/O API instead.

The com.sun.image.codec.jpeg package was added in JDK 1.2 as a
nonstandard way of controlling the loading and saving of JPEG format image files. It
has never been part of the platform specification.

In JDK 1.4, the Java Image I/O API was added as a standard API, residing in the
javax.imageio package. It provides a standard mechanism for controlling the
loading and saving of sampled image formats and requires all compliant Java SE
implementations to support JPEG based on the Java Image I/O specification.

Removed Tools Support for Compact Profiles

Starting in JDK 9, you can choose to build and run your application against any subset
of the modules in the Java runtime image, without needing to rely on predefined
profiles.

Profiles, introduced in Java SE 8, define subsets of the Java SE Platform API that can
reduce the static size of the Java runtime on devices that have limited storage
capacity. The tools in JDK 8 support three profiles, compact1, compact2, and compact3.
For the API composition of each profile, see Detailed Profile Composition and API
Reference in the JDK 8 documentation.

In JDK 8, you use the -profile option to specify the profile when running the javac
and java commands. Starting in JDK 9, the -profile option is supported by javac
only in conjunction with the --release 8 option, and isn’t supported by java.

JDK 9 and later releases let you choose the modules that are used at compile and run
time. By specifying modules with the new --limit-modules option, you can obtain the
same APIs that are in the compact profiles. This option is supported by both the javac
and java commands, as shown in the following examples:

javac --limit-modules java.base,java.logging MyApp.java

java --limit-modules java.base,java.logging MyApp

19

https://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html

The packages specified for each profile in Java SE 8 are exported, collectively, by the
following sets of modules:

• For the compact1 profile: java.base, java.logging, java.scripting

• For the compact2 profile: java.base, java.logging, java.scripting,
java.rmi, java.sql, java.xml

• For the compact3 profile: java.base, java.logging, java.scripting,
java.rmi, java.sql, java.xml, java.compiler, java.instrument,
java.management, java.naming, java.prefs, java.security.jgss,
java.security.sasl, java.sql.rowset, java.xml.crypto

You can use the jdeps tool to do a static analysis of the Java packages that are being
used in your source code. This gives you the set of modules that you need to execute
your application. If you had been using the compact3 profile, for example, then you
may see that you don’t need to include that entire set of modules when you build your
application. See jdeps in Java Platform, Standard Edition Tools Reference.

See JEP 200: The Modular JDK.

Use CLDR Locale Data by Default

Starting in JDK 9, the Unicode Consortium's Common Locale Data Repository (CLDR)
data is enabled as the default locale data, so that you can use standard locale data
without any further action.

In JDK 8, although CLDR locale data is bundled with the JRE, it isn’t enabled by
default.

Code that uses locale-sensitive services such as date, time, and number formatting
may produce different results with the CLDR locale data. Remember that even
System.out.printf() is locale-aware.

To enable behavior compatible with JDK 8, set the system property
java.locale.providers to a value with COMPAT ahead of CLDR, for example,
java.locale.providers=COMPAT,CLDR.

See CLDR Locale Data Enabled by Default in the Java Platform, Standard Edition
Internationalization Guide and JEP 252: Use CLDR Locale Data by Default.

Deprecated Nashorn JavaScript Script Engine and APIs

The Nashorn engine, the jjs tool, and the modules jdk.scripting.nashorn and
jdk.scripting.nashorn.shell have been deprecated in JDK 11 in preparation
for removal in a future release.

You'll receive a warning message if you run an application that uses the Nashorn
engine or the jjs tool. If your scripts or tools are not expecting these warning
messages, then you can suppress them.

When you run an application that uses the Nashorn Java API, you will receive the
warning, "Warning: Nashorn engine is planned to be removed from a future JDK
release." To suppress this warning, specify the --no-deprecation-warning option in
the nashorn.args system property. For example, suppose that EvalScript is an

20

http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/252

application that uses the Nashorn Java API. Run this application as follows to
suppress the warning:

java -Dnashorn.args="--no-deprecation-warning" EvalScript

Similarly when you run the jjs tool, you will receive the warning, "Warning: The jjs tool
is planned to be removed from a future JDK release." To suppress this warning,
specify the --no-deprecation-warning option.

Deployment
Java deployment technologies were deprecated in JDK 9 and removed in JDK 11.

Use the jlink tool introduced with JDK 9 to package and deploy dedicated runtimes
rather than relying on a pre-installed system JRE.

Removed Launch-Time JRE Version Selection

The ability to request a version of the JRE that isn’t the JRE being launched at launch
time is removed, starting in JDK 9.

Modern applications are typically deployed using Java Web Start (JNLP), native OS
packaging systems, or active installers. These technologies have their own methods to
manage the JREs needed, by finding or downloading and updating the required JRE,
as needed. This makes the launcher's launch-time JRE version selection obsolete.

In the previous releases, you could specify what JRE version (or range of versions) to
use when starting an application. Version selection was possible through both a
command-line option and manifest entry in the application's JAR file.

Starting in JDK 9, the java launcher is modified as follows:

• Emits an error message and exits if the -version: option is given on the
command line.

• Emits a warning message and continues if the JRE-Version manifest entry is
found in a JAR file.

See JEP 231: Remove Launch-Time JRE Version Selection.

Removed Support for Serialized Applets

Starting in JDK 9, the ability to deploy an applet as a serialized object isn’t supported.
With modern compression and JVM performance, there’s no benefit to deploying an
applet in this way.

The object attribute of the applet tag and the object and java object applet
parameter tags are ignored when starting applet.

Instead of serializing applets, use standard deployment strategies.

JNLP Specification Update

21

http://openjdk.java.net/jeps/231

JNLP (Java Network Launch Protocol) has been updated to remove inconsistencies,
make code maintenance easier, and enhance security.

JNLP has been updated as follows:

1. & instead of & in JNLP files.
The JNLP file syntax conforms to the XML specification and all JNLP files should
be able to be parsed by standard XML parsers.

JNLP files let you specify complex comparisons. Previously, this was done by
using the ampersand (&), but this isn’t supported in standard XML. If you’re using &
to create complex comparisons, then replace it with & in your JNLP file. &
is compatible with all versions of JNLP.

2. Comparing numeric version element types against nonnumeric version element
types.

Previously, when an int version element was compared with another version
element that couldn’t be parsed as an int, the version elements were compared
lexicographically by ASCII value.

Starting in JDK 9, if the element that can be parsed as an int is a shorter string
than the other element, it will be padded with leading zeros before being compared
lexicographically by ASCII value. This ensures there can be no circularity.

In the case where both version comparisons and a JNLP servlet are used, you
should use only numeric values to represent versions.

3. Component extensions with nested resources in java (or j2se) elements.
This is permitted in the specification. It was previously supported, but this support
wasn’t reflected in the specification.

4. FX XML extension.
The JNLP specification has been enhanced to add a type attribute to
application-desc element, and add the subelement param in application-desc
(as it already is in applet-desc).

This doesn’t cause problems with existing applications because the previous way
of specifying a JavaFX application is still supported.

See the JNLP specification updates at JSR-056.

Security Updates in JDK 9
Some security-related defaults have changed, starting from JDK 9.

JCE Jurisdiction Policy File Default is Unlimited

If your application previously required the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files, then you no longer need to download or
install them. They are included in the JDK and are activated by default.

If your country or usage requires a more restrictive policy, the limited Java
cryptographic policy files are still available.

22

https://jcp.org/aboutJava/communityprocess/maintenance/jsr056/9.html

If you have requirements that are not met by either of the policy files provided by
default, then you can customize these policy files to meet your needs.

See the crypto.policy Security property in the <java-home>/conf/security/
java.security file, or Cryptographic Strength Configuration in the Java Platform,
Standard Edition Security Developer's Guide.

You are advised to consult your export/import control counsel or attorney to determine
the exact requirements.

Create PKCS12 Keystores

We recommend that you use the PKCS12 format for your keystores. This format,
which is the default keystore type, is based on the RSA PKCS12 Personal Information
Exchange Syntax Standard.

See Creating a Keystore to Use with JSSE in Java Platform, Standard Edition Security
Developer's Guide and keytool in Java Platform, Standard Edition Tools Reference.

Changes to Garbage Collection
This section describes changes to garbage collection starting in JDK 9.

Make G1 the Default Garbage Collector

The Garbage-First Garbage Collector (G1 GC) is the default garbage collector in JDK
9 and later releases.

A low-pause collector such as G1 GC should provide a better overall experience, for
most users, than a throughput-oriented collector such as the Parallel GC, which is the
JDK 8 default.

See Ergonomic Defaults for G1 GC and Tunable Defaults in Java Platform, Standard
Edition Java Virtual Machine Guide for more information about tuning G1 GC.

Removed GC Options

The following GC combinations will cause your application to fail to start in JDK 9 and
later releases:

• DefNew + CMS

• ParNew + SerialOld

• Incremental CMS

The foreground mode for CMS has also been removed. The command-line flags that
were removed are -Xincgc, -XX:+CMSIncrementalMode, -XX:
+UseCMSCompactAtFullCollection, -XX:+CMSFullGCsBeforeCompaction, and -XX:
+UseCMSCollectionPassing.

23

The command-line flag -XX:+UseParNewGC no longer has an effect. The ParNew flag
can be used only with CMS and CMS requires ParNew. Thus, the -XX:+UseParNewGC
flag has been deprecated and is eligible for removal in a future release.

See JEP 214: Remove GC Combinations Deprecated in JDK 8.

Removed Permanent Generation

The permanent generation was removed in JDK 8, and the related VM options cause a
warning to be printed. You should remove these options from your scripts:

• -XX:MaxPermSize=size

• -XX:PermSize=size

In JDK 9 and later releases, the JVM displays a warning like this:

Java HotSpot(TM) 64-Bit Server VM warning: Ignoring option MaxPermSize;
support was removed in 8.0

Tools that are aware of the permanent generation may have to be updated.

See JEP 122: Remove the Permanent Generation and JDK 9 Release Notes -
Removed APIs, Features, and Options .

Changes to GC Log Output

Garbage collection (GC) logging uses the JVM unified logging framework, and there
are some differences between the new and the old logs. Any GC log parsers that
you’re working with will probably need to change.

You may also need to update your JVM logging options. All GC-related logging should
use the gc tag (for example, —Xlog:gc), usually in combination with other tags. The —
XX:+PrintGCDetails and -XX:+PrintGC options have been deprecated.

See Enable Logging with the JVM Unified Logging Framework in the Java Platform,
Standard Edition Tools Reference and JEP 271: Unified GC Logging.

Removed Tools and Components
This list includes tools and components that are no longer bundled with the JDK.

To know more about the tools and components that are removed in JDK 12, see APIs
Removed in Java SE 12.

Removed Native-Header Generation Tool (javah)

The javah tool has been superseded by superior functionality in javac. It was
removed in JDK 10.

Since JDK 8, javac provides the ability to write native header files at the time that Java
source code is compiled, thereby eliminating the need for a separate tool.

24

http://openjdk.java.net/jeps/214
http://openjdk.java.net/jeps/122
http://www.oracle.com/technetwork/java/javase/9-removed-features-3745614.html
http://www.oracle.com/technetwork/java/javase/9-removed-features-3745614.html
http://openjdk.java.net/jeps/271

Instead of javah, use

javac -h

Removed JavaDB

JavaDB, which was a rebranding of Apache Derby, is no longer included in the JDK.

JavaDB was bundled with JDK 7 and JDK 8. It was found in the db directory of the
JDK installation directory.

You can download and install Apache Derby from Apache Derby Downloads.

Removed the JVM TI hprof Agent

The hprof agent library has been removed.

The hprof agent was written as demonstration code for the JVM Tool Interface and
wasn’t intended to be a production tool. The useful features of the hprof agent have
been superseded by better alternatives, including some that are included in the JDK.

For creating heap dumps in the hprof format, use a diagnostic command (jcmd) or the
jmap tool:

• Diagnostic command: jcmd <pid> GC.heap_dump. See jcmd.

• jmap: jmap -dump. See jmap.

For CPU profiler capabilities, use the Java Flight Recorder, which is bundled with the
JDK.

Note:

Java Flight Recorder requires a commercial license for use in production. To
learn more about commercial features and how to enable them, visit http://
www.oracle.com/technetwork/java/javaseproducts/.

See JEP 240: Remove the JVM TI hprof Agent.

Removed the jhat Tool

The jhat tool was an experimental, unsupported heap visualization tool added in JDK
6. Superior heap visualizers and analyzers have been available for many years.

Removed java-rmi.exe and java-rmi.cgi Launchers

The launchers java-rmi.exe from Windows and java-rmi.cgi from Linux and Solaris
have been removed.

java-rmi.cgi was in $JAVA_HOME/bin on Linux and Solaris.

25

https://db.apache.org/derby/derby_downloads.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html
http://www.oracle.com/technetwork/java/javaseproducts/
http://www.oracle.com/technetwork/java/javaseproducts/
http://openjdk.java.net/jeps/240

java-rmi.exe was in $JAVA_HOME/bin on Windows.

These launchers were added to the JDK to facilitate use of the RMI CGI proxy
mechanism, which was deprecated in JDK 8.

The alternative of using a servlet to proxy RMI over HTTP has been available, and
even preferred, for several years. See Java RMI and Object Serialization.

Removed Support for the IIOP Transport from the JMX
RMIConnector

The IIOP transport support from the JMX RMI Connector along with its supporting
classes have been removed from the JDK.

In JDK 8, support for the IIOP transport was downgraded from required to optional.
This was the first step in a multirelease effort to remove support for the IIOP transport
from the JMX Remote API. In JDK 9, support for IIOP was removed completely.

Public API changes include:

• The javax.management.remote.rmi.RMIIIOPServerImpl class has been
deprecated. Upon invocation, all its methods and constructors throw
java.lang.UnsupportedOperationException with an explanatory message.

• Two classes, org.omg.stub.javax.management.rmi._RMIConnection_Stub, and
org.omg.stub.javax.management.rmi._RMIConnection_Tie, aren’t generated.

Dropped Windows 32–bit Client VM

The Windows 32–bit client VM is no longer available. Only a server VM is offered.

JDK 8 and earlier releases offered both a client JVM and a server JVM for Windows
32-bit systems. JDK 9 and later releases offer only a server JVM, which is tuned to
maximize peak operating speed.

Removed Java VisualVM

Java VisualVM is a tool that provides information about code running on a Java Virtual
Machine. The jvisualvm tool was provided with JDK 6, JDK 7, and JDK 8.

Java VisualVM is no longer bundled with the JDK, but you can get it from the
VisualVM open source project site.

Removed native2ascii Tool

The native2ascii tool has been removed from the JDK. Because JDK 9 and later
releases support UTF-8 based properties resource bundles, the conversion tool for
UTF-8 based properties resource bundles to ISO-8859-1 is no longer needed.

See UTF-8 Properties Files in Java Platform, Standard Edition Internationalization
Guide.

26

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html#servlet
https://visualvm.github.io/

Removed macOS-Specific Features
This section includes macOS-specific features that have been removed, starting in
JDK 9.

Platform-Specific Desktop Features

The java.awt.Desktop class contains replacements for the APIs in the Apple–specific
com.apple.eawt and com.apple.eio packages. The new APIs supersede the macOS
APIs and are platform-independent.

The APIs in the com.apple.eawt and com.apple.eio packages are encapsulated, so
you won’t be able to compile against them in JDK 9 or later releases. However, they
remain accessible at runtime, so existing code that is compiled to old versions
continues to run. Eventually, libraries or applications that use the internal classes in
the apple and com.apple packages and their subpackages will need to migrate to the
new API.

The com.apple.concurrent and apple.applescript packages are removed without
any replacement.

See JEP 272: Platform-Specific Desktop Features.

Removed AppleScript Engine

The AppleScript engine, a platform-specific javax.script implementation, has been
removed without any replacement in the JDK.

The AppleScript engine has been mostly unusable in recent releases. The functionality
worked only in JDK 7 or JDK 8 on systems that already had Apple's version of the
AppleScriptEngine.jar file on the system.

Next Steps
After you have your application working on JDK 12, here are some suggestions that
can help you get the most from the Java SE Platform:

• If needed, cross-compile to an older release of the platform using the new -–
release flag in the javac tool.

• Take advantage of your IDE’s suggestions for updating your code with the latest
features.

• Find out if your code is using deprecated APIs by running the static analysis tool
jdeprscan. As already mentioned in this guide, APIs can be removed from the
JDK, but only with advance notice.

• Get familiar with new features like multi-release JAR files (see jar) .

Documentation Accessibility

27

http://openjdk.java.net/jeps/272

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Java Platform, Standard Edition Oracle JDK Migration Guide, Release 12
F13815-02

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is
applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

28

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

