Java Platform, Standard Edition

HotSpot Virtual Machine Garbage Collection
Tuning Guide

ORACLE"

Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning Guide, Release 13
F18539-01
Copyright © 2015, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vil
Documentation Accessibility Vil
Related Documents Vi
Conventions Vil
1 Introduction to Garbage Collection Tuning
What Is a Garbage Collector? 1-1
Why Does the Choice of Garbage Collector Matter? 1-2
Supported Operating Systems in Documentation 1-3
2 Ergonomics
Garbage Collector, Heap, and Runtime Compiler Default Selections 2-1
Behavior-Based Tuning 2-1
Maximum Pause-Time Goal 2-2
Throughput Goal 2-2
Footprint 2-2
Tuning Strategy 2-2
3 Garbage Collector Implementation
Generational Garbage Collection 3-1
Generations 3-2
Performance Considerations 3-3
Throughput and Footprint Measurement 3-4
4 Factors Affecting Garbage Collection Performance
Total Heap 4-1
Heap Options Affecting Generation Size 4-1
Default Option Values for Heap Size 4-2

ORACLE iii

Conserving Dynamic Footprint by Minimizing Java Heap Size 4-3
The Young Generation 4-3
Young Generation Size Options 4-3
Survivor Space Sizing 4-3
Available Collectors
Serial Collector 5-1
Parallel Collector 5-1
The Mostly Concurrent Collectors 5-1
The Z Garbage Collector 5-2
Selecting a Collector 5-2
The Parallel Collector
Number of Parallel Collector Garbage Collector Threads 6-1
Arrangement of Generations in Parallel Collectors 6-2
Parallel Collector Ergonomics 6-2
Options to Specify Parallel Collector Behaviors 6-2
Priority of Parallel Collector Goals 6-3
Parallel Collector Generation Size Adjustments 6-3
Parallel Collector Default Heap Size 6-3
Specification of Parallel Collector Initial and Maximum Heap Sizes 6-4
Excessive Parallel Collector Time and OutOfMemoryError 6-4
Parallel Collector Measurements 6-4
The Mostly Concurrent Collectors
Overhead of Mostly Concurrent Collectors 7-1
Concurrent Mark Sweep (CMS) Collector
Concurrent Mark Sweep Collector Performance and Structure 8-1
Concurrent Mode Failure 8-2
Excessive GC Time and OutOfMemoryError 8-2
Concurrent Mark Sweep Collector and Floating Garbage 8-2
Concurrent Mark Sweep Collector Pauses 8-3
Concurrent Mark Sweep Collector Concurrent Phases 8-3
Starting a Concurrent Collection Cycle 8-3
Scheduling Pauses 8-4
Concurrent Mark Sweep Collector Measurements 8-4

ORACLE

O Garbage-First Garbage Collector
Introduction to Garbage-First Garbage Collector 9-1
Enabling G1 9-2
Basic Concepts 9-2
Heap Layout 9-2
Garbage Collection Cycle 9-3
Garbage Collection Pauses and Collection Set 9-5
Garbage-First Internals 9-5
Java Heap Sizing 9-5
Young-Only Phase Generation Sizing 9-6
Space-Reclamation Phase Generation Sizing 9-6
Periodic Garbage Collections 9-7
Determining Initiating Heap Occupancy 9-7
Marking 9-7
Behavior in Very Tight Heap Situations 9-8
Humongous Objects 9-8
Ergonomic Defaults for G1 GC 9-9
Comparison to Other Collectors 9-10
10 Garbage-First Garbage Collector Tuning
General Recommendations for G1 10-1
Moving to G1 from Other Collectors 10-2
Improving G1 Performance 10-2
Observing Full Garbage Collections 10-2
Humongous Object Fragmentation 10-3
Tuning for Latency 10-3
Unusual System or Real-Time Usage 10-3
Reference Object Processing Takes Too Long 10-4
Young-Only Collections Within the Young-Only Phase Take Too Long 10-4
Mixed Collections Take Too Long 10-5
High Update RS and Scan RS Times 10-5
Tuning for Throughput 10-6
Tuning for Heap Size 10-7
Tunable Defaults 10-7
11 The Z Garbage Collector
Setting the Heap Size 11-1
Setting Number of Concurrent GC Threads 11-1
ORACLE v

12 Other Considerations

Finalization and Weak, Soft, and Phantom References 12-1
Explicit Garbage Collection 12-1
Soft References 12-2
Class Metadata 12-2
ORACLE Vi

Preface

Audience

The Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection
Tuning Guide describes the garbage collection methods included in the Java HotSpot
Virtual Machine (Java HotSpot VM) and helps you determine which one is the best for
your needs.

This document is intended for users, application developers and system administrators
of the Java HotSpot VM that want to improve their understanding of the Java HotSpot
VM garbage collectors. This document further provides help with analysis and
solutions for common problems with garbage collection to make the application meet
the users' requirements.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following documents:

» Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
Wiley, Chichester, July 1996. With a chapter on Distributed Garabge Collection by
R. Lins. Richard Jones, Anony Hosking, and Elliot Moss.

* The Garbage Collection Handbook: The Art of Automatic Memory Managmenet.
CRC Applied Algorithms and Data Structures. Chapman & Hall, January 2012

Conventions

ORACLE

The following text conventions are used in this document:

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

viii

Introduction to Garbage Collection Tuning

A wide variety of applications, from small applets on desktops to web services on large
servers, use the Java Platform, Standard Edition (Java SE). In support of this diverse
range of deployments, the Java HotSpot VM provides multiple garbage collectors,
each designed to satisfy different requirements. Java SE selects the most appropriate
garbage collector based on the class of the computer on which the application is run.
However, this selection may not be optimal for every application. Users, developers,
and administrators with strict performance goals or other requirements may need to
explicitly select the garbage collector and tune certain parameters to achieve the
desired level of performance. This document provides information to help with these
tasks.

First, general features of a garbage collector and basic tuning options are described in
the context of the serial, stop-the-world collector. Then specific features of the other
collectors are presented along with factors to consider when selecting a collector.

Topics
¢ What Is a Garbage Collector?

* Why Does the Choice of Garbage Collector Matter?

e Supported Operating Systems in Documentation

What Is a Garbage Collector?

ORACLE

The garbage collector (GC) automatically manages the application's dynamic memory
allocation requests.

A garbage collector performs automatic dynamic memory management through the
following operations:

» Allocates from and gives back memory to the operating system.

* Hands out that memory to the application as it requests it.

» Determines which parts of that memory is still in use by the application.
* Reclaims the unused memory for reuse by the application.

The Java HotSpot garbage collectors employ various techniques to improve the
efficiency of these operations:

» Use generational scavenging in conjunction with aging to concentrate their efforts
on areas in the heap that most likely contain a lot of reclaimable memory areas.

» Use multiple threads to aggressively make operations parallel, or perform some
long-running operations in the background concurrent to the application.

e Try to recover larger contiguous free memory by compacting live objects.

1-1

Chapter 1
Why Does the Choice of Garbage Collector Matter?

Why Does the Choice of Garbage Collector Matter?

The purpose of a garbage collector is to free the application developer from manual
dynamic memory management. The developer is freed of the requirement to match
allocations with deallocations and closely take care of the lifetimes of allocated
dynamic memory. This completely eliminates some classes of errors related to
memory management at the cost of some additional runtime overhead. The Java
HotSpot VM provides a selection of garbage collection algorithms to choose from.

When does the choice of a garbage collector matter? For some applications, the
answer is never. That is, the application can perform well in the presence of garbage
collection with pauses of modest frequency and duration. However, this isn't the case
for a large class of applications, particularly those with large amounts of data (multiple
gigabytes), many threads, and high transaction rates.

Amdahl's law (parallel speedup in a given problem is limited by the sequential portion
of the problem) implies that most workloads can't be perfectly parallelized; some
portion is always sequential and doesn't benefit from parallelism. In the Java platform,
there are currently four supported garbage collection alternatives and all but one of
them, the serial GC, parallelize the work to improve performance. It's very important to
keep the overhead of doing garbage collection as low as possible. This can be seen in
the following example.

The graph in Figure 1-1 models an ideal system that's perfectly scalable with the
exception of garbage collection. The red line is an application spending only 1% of the
time in garbage collection on a uniprocessor system. This translates to more than a
20% loss in throughput on systems with 32 processors. The magenta line shows that
for an application at 10% of the time in garbage collection (not considered an
outrageous amount of time in garbage collection in uniprocessor applications), more
than 75% of throughput is lost when scaling up to 32 processors.

Figure 1-1 Comparing Percentage of Time Spent in Garbage Collection

1

T T T T
0.8+ 1% GC]
2% GC
06~ 3%GC |
0.4 —
10% GC
= 02+ —
a 20% GC
Ny
=y 30% GC
o
oo | | | | | | |
0 5 10 15 20 25 25 30
Processors

ORACLE 1-2

Chapter 1
Supported Operating Systems in Documentation

This figure shows that negligible throughput issues when developing on small systems
may become principal bottlenecks when scaling up to large systems. However, small
improvements in reducing such a bottleneck can produce large gains in performance.
For a sufficiently large system, it becomes worthwhile to select the right garbage
collector and to tune it if necessary.

The serial collector is usually adequate for most small applications, in particular those
requiring heaps of up to approximately 100 megabytes on modern processors. The
other collectors have additional overhead or complexity, which is the price for
specialized behavior. If the application does not need the specialized behavior of an
alternate collector, use the serial collector. One situation where the serial collector isn't
expected to be the best choice is a large, heavily threaded application that runs on a
machine with a large amount of memory and two or more processors. When
applications are run on such server-class machines, the Garbage-First (G1) collector
is selected by default; see Ergonomics.

Supported Operating Systems in Documentation

ORACLE

This document and its recommendations apply to all JDK 13 supported system
configurations, limited by actual availability of some garbage collectors in a particular
configuration. See Oracle JDK Certified System Configurations.

1-3

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=latest_certified_system_configurations

Ergonomics

Ergonomics is the process by which the Java Virtual Machine (JVM) and garbage
collection heuristics, such as behavior-based heuristics, improve application
performance.

The JVM provides platform-dependent default selections for the garbage collector,
heap size, and runtime compiler. These selections match the needs of different types
of applications while requiring less command-line tuning. In addition, behavior-based
tuning dynamically optimizes the sizes of the heap to meet a specified behavior of the
application.

This section describes these default selections and behavior-based tuning. Use these
defaults before using the more detailed controls described in subsequent sections.
Topics
* Garbage Collector, Heap, and Runtime Compiler Default Selections
* Behavior-Based Tuning

— Maximum Pause-Time Goal

— Throughput Goal

— Footprint
e Tuning Strategy

Garbage Collector, Heap, and Runtime Compiler Default
Selections

These are important garbage collector, heap size, and runtime compiler default
selections:

* Garbage-First (G1) collector

* The maximum number of GC threads is limited by heap size and available CPU
resources

e Initial heap size of 1/64 of physical memory
* Maximum heap size of 1/4 of physical memory

e Tiered compiler, using both C1 and C2

Behavior-Based Tuning

ORACLE

The Java HotSpot VM garbage collectors can be configured to preferentially meet one
of two goals: maximum pause-time and application throughput. If the preferred goal is

met, the collectors will try to maximize the other. Naturally, these goals can't always be
met: Applications require a minimum heap to hold at least all of the live data, and other
configuration might preclude reaching some or all of the desired goals.

2-1

Chapter 2
Tuning Strategy

Maximum Pause-Time Goal

The pause time is the duration during which the garbage collector stops the application
and recovers space that's no longer in use. The intent of the maximum pause-time
goal is to limit the longest of these pauses.

An average time for pauses and a variance on that average is maintained by the
garbage collector. The average is taken from the start of the execution, but it's
weighted so that more recent pauses count more heavily. If the average plus the
variance of the pause-time is greater than the maximum pause-time goal, then the
garbage collector considers that the goal isn't being met.

The maximum pause-time goal is specified with the command-line option -

XX: MaxGCPauseM | | i s=<nnn>. This is interpreted as a hint to the garbage collector that
a pause-time of <nnn> milliseconds or fewer is desired. The garbage collector adjusts
the Java heap size and other parameters related to garbage collection in an attempt to
keep garbage collection pauses shorter than <nnn> milliseconds. The default for the
maximum pause-time goal varies by collector. These adjustments may cause garbage
collection to occur more frequently, reducing the overall throughput of the application.
In some cases, though, the desired pause-time goal can't be met.

Throughput Goal

Footprint

The throughput goal is measured in terms of the time spent collecting garbage, and
the time spent outside of garbage collection is theapplication time.

The goal is specified by the command-line option - XX: GCTi meRat i o=nnn. The ratio of
garbage collection time to application time is 1/ (1+nnn). For example, -
XX: GCTi meRat i 0=19 sets a goal of 1/20th or 5% of the total time for garbage collection.

The time spent in garbage collection is the total time for all garbage collection induced
pauses. If the throughput goal isn't being met, then one possible action for the garbage
collector is to increase the size of the heap so that the time spent in the application
between collection pauses can be longer.

If the throughput and maximum pause-time goals have been met, then the garbage
collector reduces the size of the heap until one of the goals (invariably the throughput
goal) can't be met. The minimum and maximum heap sizes that the garbage collector
can use can be set using - Xns=<nnn> and - Xmx=<mmm> for minimum and maximum
heap size respectively.

Tuning Strategy

ORACLE

The heap grows or shrinks to a size that supports the chosen throughput goal. Learn
about heap tuning strategies such as choosing a maximum heap size, and choosing
maximum pause-time goal.

Don't choose a maximum value for the heap unless you know that you need a heap
greater than the default maximum heap size. Choose a throughput goal that's
sufficient for your application.

2-2

ORACLE

Chapter 2
Tuning Strategy

A change in the application's behavior can cause the heap to grow or shrink. For
example, if the application starts allocating at a higher rate, then the heap grows to
maintain the same throughput.

If the heap grows to its maximum size and the throughput goal isn't being met, then
the maximum heap size is too small for the throughput goal. Set the maximum heap
size to a value that's close to the total physical memory on the platform, but doesn't
cause swapping of the application. Execute the application again. If the throughput
goal still isn't met, then the goal for the application time is too high for the available
memory on the platform.

If the throughput goal can be met, but pauses are too long, then select a maximum
pause-time goal. Choosing a maximum pause-time goal may mean that your
throughput goal won't be met, so choose values that are an acceptable compromise
for the application.

It's typical that the size of the heap oscillates as the garbage collector tries to satisfy
competing goals. This is true even if the application has reached a steady state. The
pressure to achieve a throughput goal (which may require a larger heap) competes
with the goals for a maximum pause-time and a minimum footprint (which both may
require a small heap).

2-3

Garbage Collector Implementation

One strength of the Java SE platform is that it shields the developer from the
complexity of memory allocation and garbage collection.

However, when garbage collection is the principal bottleneck, it's useful to understand
some aspects of the implementation. Garbage collectors make assumptions about the
way applications use objects, and these are reflected in tunable parameters that can

be adjusted for improved performance without sacrificing the power of the abstraction.

Topics
e Generational Garbage Collection
e Generations

 Performance Considerations

e Throughput and Footprint Measurement

Generational Garbage Collection

An object is considered garbage and its memory can be reused by the VM when it can
no longer be reached from any reference of any other live object in the running
program.

A theoretical, most straightforward garbage collection algorithm iterates over every
reachable object every time it runs. Any leftover objects are considered garbage. The
time this approach takes is proportional to the number of live objects, which is
prohibitive for large applications maintaining lots of live data.

The Java HotSpot VM incorporates a number of different garbage collection algorithms
that all use a technique called generational collection. While naive garbage collection
examines every live object in the heap every time, generational collection exploits
several empirically observed properties of most applications to minimize the work
required to reclaim unused (garbage) objects. The most important of these observed
properties is the weak generational hypothesis, which states that most objects survive
for only a short period of time.

The blue area in Figure 3-1 is a typical distribution for the lifetimes of objects. The x-
axis shows object lifetimes measured in bytes allocated. The byte count on the y-axis
is the total bytes in objects with the corresponding lifetime. The sharp peak at the left
represents objects that can be reclaimed (in other words, have "died") shortly after
being allocated. For example, i t er at or objects are often only alive for the duration of
a single loop.

ORACLE 3-1

Chapter 3
Generations

Figure 3-1 Typical Distribution for Lifetimes of Objects

(

Minor Collections Major Collections
A ; ; :

Bytes Surviving

Bytes Allocated

Some objects do live longer, and so the distribution stretches out to the right. For
instance, there are typically some objects allocated at initialization that live until the
VM exits. Between these two extremes are objects that live for the duration of some
intermediate computation, seen here as the lump to the right of the initial peak. Some
applications have very different looking distributions, but a surprisingly large number
possess this general shape. Efficient collection is made possible by focusing on the
fact that a majority of objects "die young."

Generations

To optimize for this scenario, memory is managed in generations (memory pools
holding objects of different ages). Garbage collection occurs in each generation when
the generation fills up.

The vast majority of objects are allocated in a pool dedicated to young objects (the
young generation), and most objects die there. When the young generation fills up, it
causes a minor collection in which only the young generation is collected; garbage in
other generations isn't reclaimed. The costs of such collections are, to the first order,
proportional to the number of live objects being collected; a young generation full of
dead objects is collected very quickly. Typically, some fraction of the surviving objects
from the young generation are moved to the old generation during each minor
collection. Eventually, the old generation fills up and must be collected, resulting in a
major collection, in which the entire heap is collected. Major collections usually last
much longer than minor collections because a significantly larger number of objects
are involved. Figure 3-2 shows the default arrangement of generations in the serial
garbage collector:

ORACLE 3-2

Chapter 3
Performance Considerations

Figure 3-2 Default Arrangement of Generations in the Serial Collector

. Old R
AN-AR T

W HE g
Bl @ = =

&
Y

Young

At startup, the Java HotSpot VM reserves the entire Java heap in the address space,
but doesn't allocate any physical memory for it unless needed. The entire address
space covering the Java heap is logically divided into young and old generations. The
complete address space reserved for object memory can be divided into the young
and old generations.

The young generation consists of eden and two survivor spaces. Most objects are
initially allocated in eden. One survivor space is empty at any time, and serves as the
destination of live objects in eden and the other survivor space during garbage
collection; after garbage collection, eden and the source survivor space are empty. In
the next garbage collection, the purpose of the two survivor spaces are exchanged.
The one space recently filled is a source of live objects that are copied into the other
survivor space. Objects are copied between survivor spaces in this way until they've
been copied a certain number of times or there isn't enough space left there. These
objects are copied into the old region. This process is also called aging.

Performance Considerations

ORACLE

The primary measures of garbage collection are throughput and latency.

» Throughput is the percentage of total time not spent in garbage collection
considered over long periods of time. Throughput includes time spent in allocation
(but tuning for speed of allocation generally isn't needed).

e Latency is the responsiveness of an application. Garbage collection pauses affect
the responsiveness of applications.

Users have different requirements of garbage collection. For example, some consider
the right metric for a web server to be throughput because pauses during garbage
collection may be tolerable or simply obscured by network latencies. However, in an
interactive graphics program, even short pauses may negatively affect the user
experience.

Some users are sensitive to other considerations. Footprint is the working set of a
process, measured in pages and cache lines. On systems with limited physical
memory or many processes, footprint may dictate scalability. Promptness is the time
between when an object becomes dead and when the memory becomes available, an
important consideration for distributed systems, including Remote Method Invocation
(RMI).

In general, choosing the size for a particular generation is a trade-off between these
considerations. For example, a very large young generation may maximize throughput,
but does so at the expense of footprint, promptness, and pause times. Young
generation pauses can be minimized by using a small young generation at the

3-3

Chapter 3
Throughput and Footprint Measurement

expense of throughput. The sizing of one generation doesn't affect the collection
frequency and pause times for another generation.

There is no one right way to choose the size of a generation. The best choice is
determined by the way the application uses memory as well as user requirements.
Thus the virtual machine's choice of a garbage collector isn't always optimal and may
be overridden with command-line options; see Factors Affecting Garbage Collection
Performance.

Throughput and Footprint Measurement

ORACLE

Throughput and footprint are best measured using metrics particular to the application.

For example, the throughput of a web server may be tested using a client load
generator. However, pauses due to garbage collection are easily estimated by
inspecting the diagnostic output of the virtual machine itself. The command-line option
-verbose: gc prints information about the heap and garbage collection at each
collection. Here is an example:

[15,651s][info][gc] GC(36) Pause Young (GL Evacuation Pause) 239M
>57M 307M (15, 646s, 15, 651s) 5, 048ns

[16,162s][info][gc] GC(37) Pause Young (GL Evacuation Pause) 238M
>57M 307M (16, 146s, 16, 162s) 16, 565ns

[16,367s][info J[gc] GC(38) Pause Full (Systemgc()) 69M >31M 104M
(16, 202s, 16,367s) 164,581ns

The output shows two young collections followed by a full collection that was initiated
by the application with a call to Syst em gc() . The lines start with a time stamp
indicating the time from when the application was started. Next comes information
about the log level (info) and tag (gc) for this line. This is followed by a GC
identification number. In this case, there are three GCs with the numbers 36, 37, and
38. Then the type of GC and the cause for stating the GC is logged. After this, some
information about the memory consumption is logged. That log uses the format "used
before GC" -> "used after GC" ("heap size").

In the first line of the example this is 239M->57M(307M), which means that 239 MB
were used before the GC and the GC cleared up most of that memory, but 57 MB
survived. The heap size is 307 MB. Note in this example that the full GC shrinks the
heap from 307 MB to 104 MB. After the memory usage information, the start and end
times for the GC are logged as well as the duration (end - start).

The -verbose: gc command is an alias for - Xl 0g: gc. - Xl og is the general logging
configuration option for logging in the HotSpot JVM. It's a tag-based system where gc
is one of the tags. To get more information about what a GC is doing, you can
configure logging to print any message that has the gc tag and any other tag. The
command line option for this is - Xl og: gc*.

Here's an example of one G1 young collection logged with - Xl og: gc* :

[10.178s][info][gc,start] GC(36) Pause Young (Gl Evacuation Pause)
[10.178s][info][gc,task] GC(36) Using 28 workers of 28 for evacuation
[10.191s][info][gc, phases] GC(36) Pre Evacuate Collection Set: 0.0ns
[10.191s][info][gc, phases] GC(36) Evacuate Col | ection Set: 6.9ms
[10.191s][info][gc, phases] GC(36) Post Evacuate Col | ection Set: 5.9ms
[10.191s][info][gc, phases | GC(36) Other: 0.2ns

3-4

ORACLE

Chapter 3
Throughput and Footprint Measurement

[10.191s][info][gc, heap] GC(36) Eden regions: 286->0(276)
[10.191s][info][gc, heap] GC(36) Survivor regions: 15->26(38)
[10.191s][info][gc, heap] GC(36) O d regions: 88->88
[10.191s][info][gc, heap] GC(36) Humobngous regions: 3->1
[10.191s][info][gc, metaspace | GC(36) Metaspace: 8152K->8152K(1056768K)
[10.191s][info][gc] GC(36) Pause Young (Gl Evacuation Pause) 391M
>114M 508N 13.075ns

[10.191s][info][gc,cpu] GC(36) User=0.20s Sys=0.00s Real =0.01s

Note:

The format of the output produced by - Xl og: gc* is subject to change in
future releases.

3-5

Factors Affecting Garbage Collection
Performance

The two most important factors affecting garbage collection performance are total
available memory and proportion of the heap dedicated to the young generation.
Topics
* Total Heap

— Heap Options Affecting Generation Size

— Default Option Values for Heap Size

— Conserving Dynamic Footprint by Minimizing Java Heap Size
* The Young Generation

— Young Generation Size Options

— Survivor Space Sizing

Total Heap

The most important factor affecting garbage collection performance is total available
memory. Because collections occur when generations fill up, throughput is inversely
proportional to the amount of memory available.

" Note:

The following discussion regarding growing and shrinking of the heap, the
heap layout, and default values uses the serial collector as an example.
While the other collectors use similar mechanisms, the details presented
here may not apply to other collectors. Refer to the respective topics for
similar information for the other collectors.

Heap Options Affecting Generation Size

A number of options affects generation size. Figure 4-1 illustrates the difference
between committed space and virtual space in the heap. At initialization of the virtual
machine, the entire space for the heap is reserved. The size of the space reserved can
be specified with the - Xnx option. If the value of the - Xns parameter is smaller than
the value of the - Xmx parameter, then not all of the space that's reserved is
immediately committed to the virtual machine. The uncommitted space is labeled
"virtual" in this figure. The different parts of the heap, that is, the old generation and
young generation, can grow to the limit of the virtual space as needed.

ORACLE 4-1

Chapter 4
Total Heap

Some of the parameters are ratios of one part of the heap to another. For example, the
parameter —XX: NewRat i 0 denotes the relative size of the old generation to the young
generation.

Figure 4-1 Heap Options

1 Total Size
1 Committed vs. Virtual
1 Old to Young Ratio

6|6 |= =
5 HHE :
l alal= =
[—
_i
Eden to Survivor
Space Ratio

Default Option Values for Heap Size

By default, the virtual machine grows or shrinks the heap at each collection to try to
keep the proportion of free space to live objects at each collection within a specific
range.

This target range is set as a percentage by the options -
XX: M nHeapFr eeRat i o=<minimum> and - XX: MaxHeapFr eeRat i o=<maximum>, and the
total size is bounded below by —Xns<ni n> and above by —Xnx<max>.

With these options, if the percent of free space in a generation falls below 40%, then
the generation expands to maintain 40% free space, up to the maximum allowed size
of the generation. Similarly, if the free space exceeds 70%, then the generation
contracts so that only 70% of the space is free, subject to the minimum size of the
generation.

The calculation used in Java SE for the Parallel collector are now used for all the
garbage collectors. Part of the calculation is an upper limit on the maximum heap size
for 64-bit platforms. See Parallel Collector Default Heap Size. There's a similar
calculation for the client JVM, which results in smaller maximum heap sizes than for
the server JVM.

The following are general guidelines regarding heap sizes for server applications:

* Unless you have problems with pauses, try granting as much memory as possible
to the virtual machine. The default size is often too small.

e Setting - Xms and - Xnx to the same value increases predictability by removing the
most important sizing decision from the virtual machine. However, the virtual
machine is then unable to compensate if you make a poor choice.

* In general, increase the memory as you increase the number of processors,
because allocation can be made parallel.

ORACLE 4-2

Chapter 4
The Young Generation

Conserving Dynamic Footprint by Minimizing Java Heap Size

If you need to minimize the dynamic memory footprint (the maximum RAM consumed
during execution) for your application, then you can do this by minimizing the Java
heap size. Java SE Embedded applications may require this.

Minimize Java heap size by lowering the values of the options - XX: MaxHeapFr eeRat i 0
(default value is 70%) and - XX: M nHeapFr eeRat i o (default value is 40%) with the
command-line options - XX: MaxHeapFr eeRat i 0 and - XX: M nHeapFr eeRat i 0. Lowering -
XX: MaxHeapFr eeRat i o to as low as 10% and - XX: M nHeapFr eeRat i 0 has shown to
successfully reduce the heap size without too much performance degradation;
however, results may vary greatly depending on your application. Try different values
for these parameters until they're as low as possible, yet still retain acceptable
performance.

In addition, you can specify - XX: - Shri nkHeapl nSt eps, which immediately reduces the
Java heap to the target size (specified by the parameter - XX: MaxHeapFr eeRat i 0). You
may encounter performance degradation with this setting. By default, the Java runtime
incrementally reduces the Java heap to the target size; this process requires multiple
garbage collection cycles.

The Young Generation

After total available memory, the second most influential factor affecting garbage
collection performance is the proportion of the heap dedicated to the young
generation.

The bigger the young generation, the less often minor collections occur. However, for
a bounded heap size, a larger young generation implies a smaller old generation,
which will increase the frequency of major collections. The optimal choice depends on
the lifetime distribution of the objects allocated by the application.

Young Generation Size Options

By default, the young generation size is controlled by the option - XX: NewRat i o.

For example, setting - XX: NewRat i 0=3 means that the ratio between the young and old
generation is 1:3. In other words, the combined size of the eden and survivor spaces
will be one-fourth of the total heap size.

The options - XX: NewSi ze and - XX: MaxNewSi ze bound the young generation size from
below and above. Setting these to the same value fixes the young generation, just as
setting - Xnms and - Xnx to the same value fixes the total heap size. This is useful for
tuning the young generation at a finer granularity than the integral multiples allowed by
- XX: NewRat i o.

Survivor Space Sizing

ORACLE

You can use the option - XX: Survi vor Rat i o to tune the size of the survivor spaces, but
often this isn't important for performance.

For example, - XX: Sur vi vor Rat i 0=6 sets the ratio between eden and a survivor space
to 1:6. In other words, each survivor space will be one-sixth of the size of eden, and

4-3

Chapter 4
The Young Generation

thus one-eighth of the size of the young generation (not one-seventh, because there
are two survivor spaces).

If survivor spaces are too small, then the copying collection overflows directly into the
old generation. If survivor spaces are too large, then they are uselessly empty. At each
garbage collection, the virtual machine chooses a threshold number, which is the
number of times an object can be copied before it's old. This threshold is chosen to
keep the survivors half full. You can use the log configuration - Xl og: gc, age can be
used to show this threshold and the ages of objects in the new generation. It's also
useful for observing the lifetime distribution of an application.

Table 4-1 provides the default values for survivor space sizing.

Table 4-1 Default Option Values for Survivor Space Sizing
|

Option Default Value
- XX: NewRat i o 2

- XX NewSi ze 1310 MB

- XX: MaxNewSi ze not limited

- XX: SurvivorRatio 8

The maximum size of the young generation is calculated from the maximum size of the
total heap and the value of the - XX: NewRat i 0 parameter. The "not limited" default
value for the - XX: MaxNewSi ze parameter means that the calculated value isn't limited
by - XX: MaxNewSi ze unless a value for - XX: MaxNewSi ze is specified on the command
line.

The following are general guidelines for server applications:

» First decide on the maximum heap size that you can afford to give the virtual
machine. Then, plot your performance metric against the young generation sizes
to find the best setting.

— Note that the maximum heap size should always be smaller than the amount
of memory installed on the machine to avoid excessive page faults and
thrashing.

» If the total heap size is fixed, then increasing the young generation size requires
reducing the old generation size. Keep the old generation large enough to hold all
the live data used by the application at any given time, plus some amount of slack
space (10 to 20% or more).

* Subject to the previously stated constraint on the old generation:
— Grant plenty of memory to the young generation.

— Increase the young generation size as you increase the number of processors
because allocation can be parallelized.

ORACLE 4-4

Available Collectors

The discussion to this point has been about the serial collector. The Java HotSpot VM
includes three different types of collectors, each with different performance
characteristics.

Topics

* Serial Collector

* Parallel Collector

e The Mostly Concurrent Collectors

» Selecting a Collector

Serial Collector

The serial collector uses a single thread to perform all garbage collection work, which
makes it relatively efficient because there is no communication overhead between
threads.

It's best-suited to single processor machines because it can't take advantage of
multiprocessor hardware, although it can be useful on multiprocessors for applications
with small data sets (up to approximately 100 MB). The serial collector is selected by
default on certain hardware and operating system configurations, or can be explicitly
enabled with the option - XX; +UseSeri al CC.

Parallel Collector

The parallel collector is also known as throughput collector, it's a generational collector
similar to the serial collector. The primary difference between the serial and parallel
collectors is that the parallel collector has multiple threads that are used to speed up
garbage collection.

The parallel collector is intended for applications with medium-sized to large-sized
data sets that are run on multiprocessor or multithreaded hardware. You can enable it
by using the - XX: +UsePar al | el GC option.

Parallel compaction is a feature that enables the parallel collector to perform major
collections in parallel. Without parallel compaction, major collections are performed
using a single thread, which can significantly limit scalability. Parallel compaction is
enabled by default if the option - XX: +UsePar al | el GC has been specified. You can
disable it by using the - XX: - UsePar al | el O dGC option.

The Mostly Concurrent Collectors

Concurrent Mark Sweep (CMS) collector and Garbage-First (G1) garbage collector are
the two mostly concurrent collectors. Mostly concurrent collectors perform some
expensive work concurrently to the application.

ORACLE 5-1

Chapter 5
The Z Garbage Collector

» G1 garbage collector: This server-style collector is for multiprocessor machines
with a large amount of memory. It meets garbage collection pause-time goals with
high probability, while achieving high throughput.

G1 is selected by default on certain hardware and operating system
configurations, or can be explicitly enabled using- XX: +UseGLGC .

e CMS collector : This collector is for applications that prefer shorter garbage
collection pauses and can afford to share processor resources with the garbage
collection.

Use the option - XX; +UseConcMar kSweepGC to enable the CMS collector
The CMS collector is deprecated as of JDK 9.

The Z Garbage Collector

The Z Garbage Collector (ZGC) is a scalable low latency garbage collector. ZGC
performs all expensive work concurrently, without stopping the execution of application
threads.

ZGC is intended for applications which require low latency (less than 10 ms pauses)
and/or use a very large heap (multi-terabytes). You can enable is by using the - XX:
+UseZGC option.

ZGC is available as an experimental feature, starting with JDK 11.

Selecting a Collector

ORACLE

Unless your application has rather strict pause-time requirements, first run your
application and allow the VM to select a collector.

If necessary, adjust the heap size to improve performance. If the performance still
doesn't meet your goals, then use the following guidelines as a starting point for
selecting a collector:

e If the application has a small data set (up to approximately 100 MB), then select
the serial collector with the option - XX: +UseSer i al GC.

» If the application will be run on a single processor and there are no pause-time
requirements, then select the serial collector with the option - XX: +UseSer i al GC.

» If (a) peak application performance is the first priority and (b) there are no pause-
time requirements or pauses of one second or longer are acceptable, then let the
VM select the collector or select the parallel collector with - XX: +UsePar al | el GC.

» If response time is more important than overall throughput and garbage collection
pauses must be kept shorter than approximately one second, then select a mostly
concurrent collector with - XX: +UseGLGC or - XX: +UseConc Mar kSweepGC.

» If response time is a high priority, and/or you are using a very large heap, then
select a fully concurrent collector with - XX: UseZGC.

These guidelines provide only a starting point for selecting a collector because
performance is dependent on the size of the heap, the amount of live data maintained
by the application, and the number and speed of available processors.

If the recommended collector doesn't achieve the desired performance, then first
attempt to adjust the heap and generation sizes to meet the desired goals. If

5-2

Chapter 5
Selecting a Collector

performance is still inadequate, then try a different collector: Use the concurrent
collector to reduce pause-time, and use the parallel collector to increase overall
throughput on multiprocessor hardware.

ORACLE 5-3

The Parallel Collector

The parallel collector (also referred to here as the throughput collector) is a
generational collector similar to the serial collector. The primary difference between
the serial and parallel collectors is that the parallel collector has multiple threads that
are used to speed up garbage collection.

The parallel collector is enabled with the command-line option - XX: +UsePar al | el GC.
By default, with this option, both minor and major collections are run in parallel to
further reduce garbage collection overhead.
Topics
* Number of Parallel Collector Garbage Collector Threads
* Arrangement of Generations in Parallel Collectors
e Parallel Collector Ergonomics

— Options to Specify Parallel Collector Behaviors

— Priority of Parallel Collector Goals

— Parallel Collector Generation Size Adjustments

— Parallel Collector Default Heap Size

* Specification of Parallel Collector Initial and Maximum Heap Sizes

» Excessive Parallel Collector Time and OutOfMemoryError

* Parallel Collector Measurements

Number of Parallel Collector Garbage Collector Threads

ORACLE

On a machine with <N> hardware threads where <N> is greater than 8, the parallel
collector uses a fixed fraction of <N> as the number of garbage collector threads.

The fraction is approximately 5/8 for large values of <N>. At values of <N> below 8,
the number used is <N>. On selected platforms, the fraction drops to 5/16. The
specific number of garbage collector threads can be adjusted with a command-line
option (which is described later). On a host with one processor, the parallel collector
will likely not perform as well as the serial collector because of the overhead required
for parallel execution (for example, synchronization). However, when running
applications with medium-sized to large-sized heaps, it generally outperforms the
serial collector by a modest amount on computers with two processors, and usually
performs significantly better than the serial collector when more than two processors
are available.

The number of garbage collector threads can be controlled with the command-line
option - XX: Par al | el GCThr eads=<N>. If you are tuning the heap with command-line
options, then the size of the heap needed for good performance with the parallel
collector is the same as needed with the serial collector. However, enabling the
parallel collector should make the collection pauses shorter. Because multiple garbage

6-1

Chapter 6
Arrangement of Generations in Parallel Collectors

collector threads are participating in a minor collection, some fragmentation is possible
due to promotions from the young generation to the old generation during the
collection. Each garbage collection thread involved in a minor collection reserves a
part of the old generation for promotions and the division of the available space into
these "promotion buffers" can cause a fragmentation effect. Reducing the number of
garbage collector threads and increasing the size of the old generation will reduce this
fragmentation effect.

Arrangement of Generations in Parallel Collectors

The arrangement of the generations is different in the parallel collector.

That arrangement is shown in Figure 6-1:

Figure 6-1 Arrangement of Generations in the Parallel Collector

. Young N
e
= m 2| &
g £] 5|8
L 3| B

a
W

Oid

Parallel Collector Ergonomics

When the parallel collector is selected by using - XX: +UsePar al | el GC, it enables a
method of automatic tuning that allows you to specify behaviors instead of generation
sizes and other low-level tuning details.

Options to Specify Parallel Collector Behaviors

ORACLE

You can specify maximum garbage collection pause time, throughput, and footprint
(heap size).

* Maximum garbage collection pause time: The maximum pause time goal is
specified with the command-line option - XX: MaxGCPauseM | | i s=<N>. This is
interpreted as a hint that pause times of <N> milliseconds or less are desired; by
default, no maximum pause- time goal. If a pause-time goal is specified, the heap
size and other parameters related to garbage collection are adjusted in an attempt
to keep garbage collection pauses shorter than the specified value; however, the
desired pause-time goal may not always be met. These adjustments may cause
the garbage collector to reduce the overall throughput of the application.

e Throughput: The throughput goal is measured in terms of the time spent doing
garbage collection versus the time spent outside of garbage collection, referred to
as application time. The goal is specified by the command-line option -

XX: GCTi meRat i 0=<N>, which sets the ratio of garbage collection time to application
timetol / (1 + <N>).

For example, - XX: GCTi meRat i 0=19 sets a goal of 1/20 or 5% of the total time in
garbage collection. The default value is 99, resulting in a goal of 1% of the time in
garbage collection.

6-2

Chapter 6
Parallel Collector Ergonomics

* Footprint: The maximum heap footprint is specified using the option - Xmx<N>. In
addition, the collector has an implicit goal of minimizing the size of the heap as
long as the other goals are being met.

Priority of Parallel Collector Goals

The goals are maximum pause-time goal, throughput goal, and minimum footprint
goal, and goals are addressed in that order:

The maximum pause-time goal is met first. Only after it's met is the throughput goal
addressed. Similarly, only after the first two goals have been met is the footprint goal
considered.

Parallel Collector Generation Size Adjustments

Statistics such as average pause time kept by the collector are updated at the end of
each collection.

The tests to determine if the goals have been met are then made and any needed
adjustments to the size of a generation is made. The exception is that explicit garbage
collections, for example, calls to Syst em gc() are ignored in terms of keeping
statistics and making adjustments to the sizes of generations.

Growing and shrinking the size of a generation is done by increments that are a fixed
percentage of the size of the generation so that a generation steps up or down toward
its desired size. Growing and shrinking are done at different rates. By default, a
generation grows in increments of 20% and shrinks in increments of 5%. The
percentage for growing is controlled by the command-line option -

XX: YoungGener at i onSi zel ncr ement =<Y> for the young generation and -

XX: Tenur edCGener ati onSi zel ncr enent =<T> for the old generation. The percentage by
which a generation shrinks is adjusted by the command-line flag -

XX: Adapt i veSi zeDecr enent Scal eFact or =<D>. If the growth increment is X%, then the
decrement for shrinking is X/D%.

If the collector decides to grow a generation at startup, then there's a supplemental
percentage is added to the increment. This supplement decays with the number of
collections and has no long-term effect. The intent of the supplement is to increase
startup performance. There isn't supplement to the percentage for shrinking.

If the maximum pause-time goal isn't being met, then the size of only one generation is
shrunk at a time. If the pause times of both generations are above the goal, then the
size of the generation with the larger pause time is shrunk first.

If the throughput goal isn't being met, then the sizes of both generations are increased.
Each is increased in proportion to its respective contribution to the total garbage
collection time. For example, if the garbage collection time of the young generation is
25% of the total collection time and if a full increment of the young generation would
be by 20%, then the young generation would be increased by 5%.

Parallel Collector Default Heap Size

Unless the initial and maximum heap sizes are specified on the command line, they're
calculated based on the amount of memory on the machine. The default maximum
heap size is one-fourth of the physical memory while the initial heap size is 1/64th of

ORACLE 6-3

Chapter 6
Excessive Parallel Collector Time and OutOfMemoryError

physical memory. The maximum amount of space allocated to the young generation is
one third of the total heap size.

Specification of Parallel Collector Initial and Maximum Heap Sizes

You can specify the initial and maximum heap sizes using the options - Xs (initial
heap size) and - Xmx (maximum heap size).

If you know how much heap your application needs to work well, then you can set -
Xms and - Xnx to the same value. If you don't know, then the JVM will start by using the
initial heap size and then growing the Java heap until it finds a balance between heap
usage and performance.

Other parameters and options can affect these defaults. To verify your default values,
use the - XX: +Pri nt Fl agsFi nal option and look for - XX: MaxHeapSi ze in the output. For
example, on Linux you can run the following:

java - XX +Print Fl agsFinal <GC options> -version | grep MaxHeapSi ze

Excessive Parallel Collector Time and OutOfMemoryError

The parallel collector throws an Qut Of Merror yEr r or if too much time is being spent in
garbage collection (GC).

If more than 98% of the total time is spent in garbage collection and less than 2% of
the heap is recovered, then an Qut Of Menor yEr r or, is thrown. This feature is designed
to prevent applications from running for an extended period of time while making little
or no progress because the heap is too small. If necessary, this feature can be
disabled by adding the option - XX: - UseGCOver headLi ni t to the command line.

Parallel Collector Measurements

ORACLE

The verbose garbage collector output from the parallel collector is essentially the same
as that from the serial collector.

6-4

The Mostly Concurrent Collectors

The mostly concurrent collectors perform parts of their work concurrently to the
application, hence their name. The Java HotSpot VM includes two mostly concurrent
collectors:

e Concurrent Mark Sweep (CMS) collector: This collector is for applications that
prefer shorter garbage collection pauses and can afford to share processor
resources with the garbage collection.

e Garbage-First (G1) garbage collector: This server-style collector is for
multiprocessor machines with a large amount of memory. It meets garbage
collection pause-time goals with high probability while achieving high throughput.

Overhead of Mostly Concurrent Collectors

The mostly concurrent collector trades processor resources (which would otherwise be
available to the application) for shorter major collection pause time.

The most visible overhead is the use of one or more processors during the concurrent
parts of the collection. On an N processor system, the concurrent part of the collection
uses KI/N of the available processors, where 1 <= K <= ceiling{N/4}. In addition to the
use of processors during concurrent phases, additional overhead is incurred to enable
concurrency. Thus, while garbage collection pauses are typically much shorter with the
concurrent collector, application throughput also tends to be slightly lower than with
the other collectors.

On a machine with more than one processing core, processors are available for
application threads during the concurrent part of the collection, so the concurrent
garbage collector thread doesn't pause the application. This usually results in shorter
pauses, but again fewer processor resources are available to the application and
some slowdown should be expected, especially if the application uses all of the
processing cores maximally. As N increases, the reduction in processor resources due
to concurrent garbage collection becomes smaller, and the benefit from concurrent
collection increases. See Concurrent Mode Failure, which discusses potential limits to
such scaling.

Because at least one processor is used for garbage collection during the concurrent
phases, the concurrent collectors don't normally provide any benefit on a uniprocessor
(single-core) machine.

ORACLE 7-1

Concurrent Mark Sweep (CMS) Collector

The Concurrent Mark Sweep (CMS) collector is designed for applications that prefer
shorter garbage collection pauses and that can afford to share processor resources
with the garbage collector while the application is running.

Typically applications that have a relatively large set of long-lived data (a large old
generation) and run on machines with two or more processors tend to benefit from the
use of this collector. The CMS collector is enabled with the command-line option - XX:
+UseConcMar kSweepGC.

The CMS collector is deprecated. Strongly consider using the Garbage-First collector
instead.

Topics

e Concurrent Mark Sweep Collector Performance and Structure
* Concurrent Mode Failure

* Excessive GC Time and OutOfMemoryError

* Concurrent Mark Sweep Collector and Floating Garbage

» Concurrent Mark Sweep Collector Pauses

* Concurrent Mark Sweep Collector Concurrent Phases

e Starting a Concurrent Collection Cycle

* Scheduling Pauses

* Concurrent Mark Sweep Collector Measurements

Concurrent Mark Sweep Collector Performance and

Structure

ORACLE

Similar to the other available collectors, the CMS collector is generational; thus both
minor and major collections occur. The CMS collector attempts to reduce pause times
due to major collections by using separate garbage collector threads to trace the
reachable objects concurrently with the execution of the application threads.

During each major collection cycle, the CMS collector pauses all the application
threads for a brief period at the beginning of the collection and again toward the middle
of the collection. The second pause tends to be the longer of the two pauses. Multiple
threads perform the collection work during both pauses. One or more garbage
collector threads do the remainder of the collection (including most of the tracing of live
objects and sweeping of unreachable objects). Minor collections can interleave with an
ongoing major cycle, and are done in a manner similar to the parallel collector (in
particular, the application threads are stopped during minor collections).

8-1

Chapter 8
Concurrent Mode Failure

Concurrent Mode Failure

The CMS collector uses one or more garbage collector threads that run
simultaneously with the application threads with the goal of completing the collection of
the old generation before it becomes full.

As described previously, in normal operation, the CMS collector does most of its
tracing and sweeping work with the application threads still running, so only brief
pauses are seen by the application threads. However, if the CMS collector is unable to
finish reclaiming the unreachable objects before the old generation fills up, or if an
allocation cannot be satisfied with the available free space blocks in the old
generation, then the application is paused and the collection is completed with all the
application threads stopped. The inability to complete a collection concurrently is
referred to as concurrent mode failure and indicates the need to adjust the CMS
collector parameters. If a concurrent collection is interrupted by an explicit garbage
collection (Syst em gc()) or for a garbage collection needed to provide information
for diagnostic tools, then a concurrent mode interruption is reported.

Excessive GC Time and OutOfMemoryError

The CMS collector throws an Qut Of Menor yEr r or if too much time is being spent in
garbage collection: If more than 98% of the total time is spent in garbage collection
and less than 2% of the heap is recovered, then an Qut Of Menor yEr r or is thrown.

This feature is designed to prevent applications from running for an extended period of
time while making little or no progress because the heap is too small. If necessary, this
feature can be disabled by adding the option - XX: - UseGCOver headLi nit to the
command line.

The policy is the same as that in the parallel collector, except that time spent
performing concurrent collections isn't counted toward the 98% time limit. In other
words, only collections performed while the application is stopped count toward
excessive GC time. Such collections are typically due to a concurrent mode failure or
an explicit collection request (for example, a call to Syst em gc()).

Concurrent Mark Sweep Collector and Floating Garbage

ORACLE

The CMS collector, like all the other collectors in Java HotSpot VM, is a tracing
collector that identifies at least all the reachable objects in the heap.

Richard Jones and Rafael D. Lins in their publication Garbage Collection: Algorithms
for Automated Dynamic Memory, it's an incremental update collector. Because
application threads and the garbage collector thread run concurrently during a major
collection, objects that are traced by the garbage collector thread may subsequently
become unreachable by the time collection process ends. Such unreachable objects
that haven't yet been reclaimed are referred to as floating garbage. The amount of
floating garbage depends on the duration of the concurrent collection cycle and on the
frequency of reference updates, also known as mutations, by the application.
Furthermore, because the young generation and the old generation are collected
independently, each acts as a source of roots to the other. As a rough guideline, try
increasing the size of the old generation by 20% to account for the floating garbage.
Floating garbage in the heap at the end of one concurrent collection cycle is collected
during the next collection cycle.

8-2

Chapter 8
Concurrent Mark Sweep Collector Pauses

Concurrent Mark Sweep Collector Pauses

The CMS collector pauses an application twice during a concurrent collection cycle.
The first pause is to mark as live the objects directly reachable from the roots (for
example, object references from application thread stacks and registers, static objects,
and so on) and from elsewhere in the heap (for example, the young generation).

This first pause is referred to as the initial mark pause. The second pause comes at
the end of the concurrent tracing phase and finds objects that were missed by the
concurrent tracing due to updates by the application threads of references in an object
after the CMS collector had finished tracing that object. This second pause is referred
to as the remark pause.

Concurrent Mark Sweep Collector Concurrent Phases

The concurrent tracing of the reachable object graph occurs between the initial mark
pause and the remark pause.

During this concurrent tracing phase, one or more concurrent garbage collector
threads may be using processor resources that would otherwise have been available
to the application. As a result, compute-bound applications may see a commensurate
decrease in application throughput during this and other concurrent phases even
though the application threads aren’t paused. After the remark pause, a concurrent
sweeping phase collects the objects identified as unreachable. After a collection cycle
completes, the CMS collector waits, consuming almost no computational resources,
until the start of the next major collection cycle.

Starting a Concurrent Collection Cycle

ORACLE

With the serial collector a major collection occurs whenever the old generation
becomes full and all application threads are stopped while the collection is done. In
contrast, the start of a concurrent collection in CMS collector must be timed such that
the collection can finish before the old generation becomes full; otherwise, the
application would observe longer pauses due to concurrent mode failure. There are
several ways to start a concurrent collection.

Based on recent history, the CMS collector maintains estimates of the time remaining
before the old generation will be exhausted and of the time needed for a concurrent
collection cycle. Using these dynamic estimates, a concurrent collection cycle is
started with the aim of completing the collection cycle before the old generation is
exhausted. These estimates are padded for safety because concurrent mode failure
can be very costly.

A concurrent collection also starts if the occupancy of the old generation exceeds an
initiating occupancy (a percentage of the old generation). The default value for this
initiating occupancy threshold is approximately 92%, but the value is subject to change
from release to release. This value can be manually adjusted using the command-line
option - XX: CMBI ni ti ati ngOccupancyFract i on=<N>, where <N> is an integral
percentage (0 to 100) of the old generation size.

8-3

Chapter 8
Scheduling Pauses

Scheduling Pauses

The pauses for the young generation collection and the old generation collection occur
independently.

They don't overlap, but may occur in quick succession such that the pause from one
collection, immediately followed by one from the other collection, can appear to be a
single, longer pause. To avoid this, the CMS collector attempts to schedule the remark
pause roughly midway between the previous and next young generation pauses. This
scheduling is currently not done for the initial mark pause, which is usually much
shorter than the remark pause.

Concurrent Mark Sweep Collector Measurements

The following is the output from the CMS collector with the option - Xl og: gc:

[121,834s][info][gc] GC(657) Pause Initial Mark 191M >191M 485M)
(121, 831s, 121,834s) 3,433ns

[121,835s][info][gc] GC(657) Concurrent Mark (121, 835s)
[121,889s][info][gc] GC(657) Concurrent Mark (121, 835s, 121,889s) 54, 330ns
[121,889s][info][gc] GC(657) Concurrent Preclean (121, 889s)
[121,892s][info][gc] GC(657) Concurrent Preclean (121,889s, 121, 892s)
2,781ns

[121,892s][info][gc] GC(657) Concurrent Abortable Preclean (121, 892s)
[121,949s][info][gc] GC(658) Pause Young (Allocation Failure) 324M
>199M 485M) (121,929s, 121,949s) 19, 705ns

[122,068s][info][gc] GC(659) Pause Young (Allocation Failure) 333M
>200M 485M) (122, 043s, 122,068s) 24, 892ns

[122,075s][info][gc] GC(657) Concurrent Abortable Preclean (121, 892s,
122, 075s) 182, 989ns

[122,087s][info][gc] GC(657) Pause Remark 209M >209M 485M (122, 076s,
122,087s) 11, 373ns

[122,087s][info][gc] GC(657) Concurrent Sweep (122, 087s)
[122,193s][info][gc] GC(660) Pause Young (Allocation Failure) 301M
>165M 485M) (122, 181s, 122,193s) 12, 151ns

[122,254s][info][gc] GC(657) Concurrent Sweep (122,087s, 122, 254s)
166, 7588

[122,254s][info][gc] GC(657) Concurrent Reset (122,254s)
[122,255s][info][gc] GC(657) Concurrent Reset (122,254s, 122,255s) 0, 952ns
[122,297s][info][gc] GC(661) Pause Young (Allocation Failure) 259M
>128M 485M) (122,291s, 122,297s) 5,797ns

~— —

ORACLE 8-4

ORACLE

Chapter 8
Concurrent Mark Sweep Collector Measurements

< Note:

The output for the CMS collection (GC ID 657) is interspersed with the output
from the minor collections (GC IDs 658, 659 and 660); typically many minor
collections occur during a concurrent collection cycle. Pause Initial Mark
indicates the start of the concurrent collection cycle. The lines starting with
"Concurrent” indicate the start and end of the concurrent phases. Pause
Remark is the final pause. Not discussed previously is the precleaning
phases. Precleaning represents work that can be done concurrently in
preparation for the remark phase. The final phase is indicated by Concurrent
Reset and is in preparation for the next concurrent collection.

The initial mark pause is typically short relative to the minor collection pause time. The
concurrent phases (concurrent mark, concurrent preclean, and concurrent sweep)
normally last significantly longer than a minor collection pause, as indicated in the
CMS collector output example. Note, however, that the application isn't paused during
these concurrent phases. The remark pause is often comparable in length to a minor
collection. The remark pause is affected by certain application characteristics (for
example, a high rate of object modification can increase this pause) and the time since
the last minor collection (for example, more objects in the young generation may
increase this pause).

8-5

Garbage-First Garbage Collector

This section describes the Garbage-First (G1) Garbage Collector (GC).

Topics
» Introduction to Garbage-First Garbage Collector
* Enabling G1
» Basic Concepts

— Heap Layout

— Garbage Collection Cycle
e Garbage-First Internals

— Determining Initiating Heap Occupancy

— Marking

— Behavior in Very Tight Heap Situations

— Determining Initiating Heap Occupancy

— Humongous Objects

— Young-Only Phase Generation Sizing

— Space-Reclamation Phase Generation Sizing
* Ergonomic Defaults for G1 GC

e Comparison to Other Collectors

Introduction to Garbage-First Garbage Collector

The Garbage-First (G1) garbage collector is targeted for multiprocessor machines with
a large amount of memory. It attempts to meet garbage collection pause-time goals
with high probability while achieving high throughput with little need for configuration.
G1 aims to provide the best balance between latency and throughput using current
target applications and environments whose features include:

e Heap sizes up to tens of GBs or larger, with more than 50% of the Java heap
occupied with live data.

e Rates of object allocation and promotion that can vary significantly over time.
e A significant amount of fragmentation in the heap.

e Predictable pause-time target goals that aren't longer than a few hundred
milliseconds, avoiding long garbage collection pauses.

G1 replaces the Concurrent Mark-Sweep (CMS) collector. It is also the default
collector.

The G1 collector achieves high performance and tries to meet pause-time goals in
several ways described in the following sections.

ORACLE 9-1

Chapter 9
Enabling G1

Enabling G1

The Garbage-First garbage collector is the default collector, so typically you don't have
to perform any additional actions. You can explicitly enable it by providing - XX:
+UseGLGC on the command line.

Basic Concepts

G1 is a generational, incremental, parallel, mostly concurrent, stop-the-world, and
evacuating garbage collector which monitors pause-time goals in each of the stop-the-
world pauses. Similar to other collectors, G1 splits the heap into (virtual) young and old
generations. Space-reclamation efforts concentrate on the young generation where it
is most efficient to do so, with occasional space-reclamation in the old generation

Some operations are always performed in stop-the-world pauses to improve
throughput. Other operations that would take more time with the application stopped
such as whole-heap operations like global marking are performed in parallel and
concurrently with the application. To keep stop-the-world pauses short for space-
reclamation, G1 performs space-reclamation incrementally in steps and in parallel. G1
achieves predictability by tracking information about previous application behavior and
garbage collection pauses to build a model of the associated costs. It uses this
information to size the work done in the pauses. For example, G1 reclaims space in
the most efficient areas first (that is the areas that are mostly filled with garbage,
therefore the name).

G1 reclaims space mostly by using evacuation: live objects found within selected
memory areas to collect are copied into new memory areas, compacting them in the
process. After an evacuation has been completed, the space previously occupied by
live objects is reused for allocation by the application.

The Garbage-First collector is not a real-time collector. It tries to meet set pause-time
targets with high probability over a longer time, but not always with absolute certainty
for a given pause.

Heap Layout

G1 partitions the heap into a set of equally sized heap regions, each a contiguous
range of virtual memory as shown in Figure 9-1. A region is the unit of memory
allocation and memory reclamation. At any given time, each of these regions can be
empty (light gray), or assigned to a particular generation, young or old. As requests for
memory comes in, the memory manager hands out free regions. The memory
manager assigns them to a generation and then returns them to the application as free
space into which it can allocate itself.

ORACLE 9-2

Chapter 9
Basic Concepts

Figure 9-1 G1 Garbage Collector Heap Layout

|
|
|
|
|
|
|
|
|
|

The young generation contains eden regions (red) and survivor regions (red with "S").
These regions provide the same function as the respective contiguous spaces in other
collectors, with the difference that in G1 these regions are typically laid out in a
noncontiguous pattern in memory. Old regions (light blue) make up the old generation.
Old generation regions may be humongous (light blue with "H") for objects that span
multiple regions.

An application always allocates into a young generation, that is, eden regions, with the
exception of humongous objects that are directly allocated as belonging to the old
generation.

Garbage Collection Cycle

ORACLE

On a high level, the G1 collector alternates between two phases. The young-only
phase contains garbage collections that fill up the currently available memory with
objects in the old generation gradually. The space-reclamation phase is where G1
reclaims space in the old generation incrementally, in addition to handling the young
generation. Then the cycle restarts with a young-only phase.

Figure 9-2 gives an overview about this cycle with an example of the sequence of
garbage collection pauses that could occur:

9-3

ORACLE

Chapter 9
Basic Concepts

Figure 9-2 Garbage Collection Cycle Overview

Old gen occupancy
exceeds threshold

Concurrent Start Remark

r

\\. . Cleanup

Young-only

Space Reclamation

The following list describes the phases, their pauses and the transition between the
phases of the G1 garbage collection cycle in detail:

1.

Young-only phase: This phase starts with a few Normal young collections that
promote objects into the old generation. The transition between the young-only
phase and the space-reclamation phase starts when the old generation occupancy
reaches a certain threshold, the Initiating Heap Occupancy threshold. At this time,
G1 schedules a Concurrent Start young collection instead of a Normal young
collection.

» Concurrent Start : This type of collection starts the marking process in addition
to performing a Normal young collection. Concurrent marking determines all
currently reachable (live) objects in the old generation regions to be kept for
the following space-reclamation phase. While collection marking hasn’t
completely finished, Normal young collections may occur. Marking finishes
with two special stop-the-world pauses: Remark and Cleanup.

* Remark: This pause finalizes the marking itself, performs global reference
processing and class unloading, reclaims completely empty regions and
cleans up internal data structures. Between Remark and Cleanup G1
calculates information to later be able to reclaim free space in selected old
generation regions concurrently, which will be finalized in the Cleanup pause.

e Cleanup: This pause determines whether a space-reclamation phase will
actually follow. If a space-reclamation phase follows, the young-only phase
completes with a single Prepare Mixed young collection.

Space-reclamation phase: This phase consists of multiple Mixed collections that in
addition to young generation regions, also evacuate live objects of sets of old
generation regions. The space-reclamation phase ends when G1 determines that
evacuating more old generation regions wouldn't yield enough free space worth
the effort.

9-4

Chapter 9
Garbage-First Internals

After space-reclamation, the collection cycle restarts with another young-only phase.
As backup, if the application runs out of memory while gathering liveness information,
G1 performs an in-place stop-the-world full heap compaction (Full GC) like other
collectors.

Garbage Collection Pauses and Collection Set

G1 performs garbage collections and space reclamation in stop-the-world pauses. Live
objects are typically copied from source regions to one or more destination regions in
the heap, and existing references to these moved objects are adjusted.

For non-humongous regions, the destination region for an object is determined from
the source region of that object:

e Objects of the young generation (eden and survivor regions) are copied into
survivor or old regions, depending on their age.

e Objects from old regions are copied to other old regions.

Objects in humongous regions are treated differently. G1 only determines their
liveness, and if they are not live, reclaims the space they occupy. Objects within
humongous regions are never moved by G1.

The collection set is the set of source regions to reclaim space from. Depending on the
type of garbage collection, the collection set consists of different kinds of regions:

* In a Young-Only phase, the collection set consists only of regions in the young
generation, and humongous regions with objects that could potentially be
reclaimed.

* In the Space-Reclamation phase, the collection set consists of regions in the
young generation, humongous regions with objects that could potentially be
reclaimed, and some old generation regions from the set of collection set
candidate regions.

G1 prepares the collection set candidate regions during the concurrent cycle. During
the Remark pause, G1 selects regions that have a low occupancy, which are regions
that contain a significant amount of free space. These regions are then prepared
concurrently between the Remark and Cleanup pauses for later collection. The
Cleanup pause sorts the results of this preparation according to their efficiency. More
efficient regions that seem to take less time to collect and that contain more free space
are preferred in subsequent mixed collections.

Garbage-First Internals

This section describes some important details of the Garbage-First (G1) garbage
collector.

Java Heap Sizing

ORACLE

G1 respects standard rules when resizing the Java heap, using - XX: I ni ti al HeapSi ze
as the minimum Java heap size, - XX: MaxHeapSi ze as the maximum Java heap size, -
XX: M nHeapFreeRati o for the minimum percentage of free memory, -

XX: MaxHeapFr eeRat i o for determining the maximum percentage of free memory after
resizing. The G1 collector considers to resize the Java heap during a the Remark and
the Full GC pauses only. This process may release memory to or allocate memory
from the operating system.

9-5

Chapter 9
Garbage-First Internals

Young-Only Phase Generation Sizing

G1 always sizes the young generation at the end of a normal young collection for the
next mutator phase. This way, G1 can meet the pause time goals that were set using -
XX: MaxGCPauseTi meM | |i s and - XX: PauseTi nel nterval M || i s based on long-term
observations of actual pause time. It takes into account how long it took young
generations of similar size to evacuate. This includes information like how many
objects had to be copied during collection, and how interconnected these objects had
been.

If not otherwise constrained, then G1 adaptively sizes the young generation size
between the values that - XX: GLNewSi zePer cent and - XX: GLMaxNewSi zePer cent
determine to meet pause-time. See Garbage-First Garbage Collector Tuning for more
information about how to fix long pauses.

Alternatively, - XX: NewSi ze in combination with - XX: MaxNewSi ze may be used to set
minimum and maximum young generation size respectively.

¢ Note:

Only specifying one of these latter options fixes young generation size to
exactly the value passed with -XX: NewSi ze and - XX: MaxNewSi ze respectively.
This disables pause time control.

Space-Reclamation Phase Generation Sizing

ORACLE

During the space-reclamation phase, G1 tries to maximize the amount of space that is
reclaimed in the old generation in a single garbage collection pause. The size of the
young generation is set to the minimum allowed, typically as determined by -

XX: GLNewSi zePer cent .

At the start of every mixed collection in this phase, G1 selects a set of regions from the
collection set candidates to add to the collection set. This additional set of old
generation regions consists of three parts:

¢ A minimum set of old generation regions to ensure evacuation progress. This set
of old generation regions is determined by the number of regions in the collection
set candidates divided by the length of the Space-Reclamation phase as
determined by - XX: GLM xedGCCount Tar get .

» Additional old generation regions from the collection set candidates if G1 predicts
that after collecting the minimum set there will be time left. Old generation regions
are added until 80% of the remaining time is predicted to be used.

» A set of optional collection set regions that G1 evacuates incrementally after the
other two parts have been evacuated and there is time left in this pause.

The first two sets of regions are collected in an initial collection pass, with additional
regions from the optional collection set fit into the remaining pause time. This method
ensures space reclamation progress while improving the probability to keep pause
time and minimal overhead due to management of the optional collection set.

9-6

Chapter 9
Garbage-First Internals

The Space-Reclamation phase ends when the remaining amount of space that can be
reclaimed in the collection set candidate regions is less than the percentage set by -
XX: GlHeapWast ePer cent .

See Garbage-First Garbage Collector Tuning for more information about how many
old generation regions G1 will use and how to avoid long mixed collection pauses.

Periodic Garbage Collections

If there is no garbage collection for a long time because of application inactivity, the
VM may hold on to a large amount of unused memory for a long time that could be
used elsewhere. To avoid this, G1 can be forced to do regular garbage collection
using the - XX: GLPer i odi ¢GCl nt erval option. This option determines a minimum
interval in ms at which G1 considers performing a garbage collection. If this amount of
time passed since any previous garbage collection pause and there is no concurrent
cycle in progress, G1 triggers additional garbage collections with the following possible
effects:

» During the Young-Only phase: G1 starts a concurrent marking using a Concurrent
Start pause or, if - XX: - GLPer i odi cGCl nvokesConcurrent has been specified, a
Full GC.

* During the Space Reclamation phase: G1 continues the space reclamation phase
triggering the garbage collection pause type appropriate to current progress.

The - XX: GLPeri odi cGCSyst em_oadThr eshol d option may be used to refine whether a
garbage collection is triggered: if the average one-minute system load value as
returned by the get | oadavg() call on the JVM host system (for example, a container)
is above this value, no periodic garbage collection will be run.

See JEP 346: Promptly Return Unused Committed Memory from G1 for more
information about periodic garbage collections.

Determining Initiating Heap Occupancy

Marking

ORACLE

The Initiating Heap Occupancy Percent (IHOP) is the threshold at which an Initial Mark
collection is triggered and it is defined as a percentage of the old generation size.

G1 by default automatically determines an optimal IHOP by observing how long
marking takes and how much memory is typically allocated in the old generation
during marking cycles. This feature is called Adaptive IHOP. If this feature is active,
then the option - XX: I ni ti ati ngHeapOccupancyPer cent determines the initial value as
a percentage of the size of the current old generation as long as there aren't enough
observations to make a good prediction of the Initiating Heap Occupancy threshold.
Turn off this behavior of G1 using the option- XX: - GLUseAdapt i vel HOP. In this case, the
value of - XX: I ni ti ati ngHeapQccupancyPer cent always determines this threshold.

Internally, Adaptive IHOP tries to set the Initiating Heap Occupancy so that the first
mixed garbage collection of the space-reclamation phase starts when the old
generation occupancy is at a current maximum old generation size minus the value of
- XX: GlHeapReser vePer cent as the extra buffer.

G1 marking uses an algorithm called Snapshot-At-The-Beginning (SATB) . It takes a
virtual snapshot of the heap at the time of the Initial Mark pause, when all objects that

9-7

https://openjdk.java.net/jeps/346

Chapter 9
Garbage-First Internals

were live at the start of marking are considered live for the remainder of marking. This
means that objects that become dead (unreachable) during marking are still
considered live for the purpose of space-reclamation (with some exceptions). This may
cause some additional memory wrongly retained compared to other collectors.
However, SATB potentially provides better latency during the Remark pause. The too
conservatively considered live objects during that marking will be reclaimed during the
next marking. See the Garbage-First Garbage Collector Tuning topic for more
information about problems with marking.

Behavior in Very Tight Heap Situations

When the application keeps alive so much memory so that an evacuation can't find
enough space to copy to, an evacuation failure occurs. Evacuation failure means that
G1 tries to complete the current garbage collection by keeping any objects that have
already been moved in their new location, and not copying any not yet moved objects,
only adjusting references between the object. Evacuation failure may incur some
additional overhead, but generally should be as fast as other young collections. After
this garbage collection with the evacuation failure, G1 will resume the application as
normal without any other measures. G1 assumes that the evacuation failure occurred
close to the end of the garbage collection; that is, most objects were already moved
and there is enough space left to continue running the application until marking
completes and space-reclamation starts.

If this assumption doesn’t hold, then G1 will eventually schedule a Full GC. This type
of collection performs in-place compaction of the entire heap. This might be very slow.

See Garbage-First Garbage Collector Tuning for more information about problems
with allocation failure or Full GC's before signalling out of memory.

Humongous Objects

ORACLE

Humongous objects are objects larger or equal the size of half a region. The current
region size is determined ergonomically as described in the Ergonomic Defaults for G1
GC section, unless set using the - XX: GLHeapRegi onSi ze option.

These humongous objects are sometimes treated in special ways:

e Every humongous object gets allocated as a sequence of contiguous regions in
the old generation. The start of the object itself is always located at the start of the
first region in that sequence. Any leftover space in the last region of the sequence
will be lost for allocation until the entire object is reclaimed.

e Generally, humongous objects can be reclaimed only at the end of marking during
the Cleanup pause, or during Full GC if they became unreachable. There is,
however, a special provision for humongous objects for arrays of primitive types
for example, bool , all kinds of integers, and floating point values. G1
opportunistically tries to reclaim humongous objects if they are not referenced by
many objects at any kind of garbage collection pause. This behavior is enabled by
default but you can disable it with the option -

XX: GLEager Recl ai mHunmongous(hbj ect s.

» Allocations of humongous objects may cause garbage collection pauses to occur
prematurely. G1 checks the Initiating Heap Occupancy threshold at every
humongous object allocation and may force an initial mark young collection
immediately, if current occupancy exceeds that threshold.

9-8

Chapter 9
Ergonomic Defaults for G1 GC

* The humongous objects never move, not even during a Full GC. This can cause
premature slow Full GCs or unexpected out-of-memory conditions with lots of free
space left due to fragmentation of the region space.

Ergonomic Defaults for G1 GC
This topic provides an overview of the most important defaults specific to G1 and their

default values. They give a rough overview of expected behavior and resource usage
using G1 without any additional options.

Table 9-1 Ergonomic Defaults G1 GC

Option and Default Value Description
- XX: MaxGCPauseM I | i s=200 The goal for the maximum pause time.
- XX: GCPauseTi nel nt er val =<ergo> The goal for the maximum pause time interval. By

default G1 doesn’t set any goal, allowing G1 to
perform garbage collections back-to-back in
extreme cases.

- XX: Par al | el GCThr eads=<ergo> The maximum number of threads used for parallel
work during garbage collection pauses. This is
derived from the number of available threads of
the computer that the VM runs on in the following
way: if the number of CPU threads available to the
process is fewer than or equal to 8, use that.
Otherwise add five eighths of the threads greater
than to the final number of threads.

At the start of every pause, the maximum number
of threads used is further constrained by maximum
total heap size: G1 will not use more than one
thread per - XX: HeapSi zePer GCThr ead amount
of Java heap capacity.

- XX: ConcCCThr eads=<ergo> The maximum number of threads used for
concurrent work. By default, this value is -
XX: Par al | el GCThr eads divided by 4.

- XX: +GlUseAdapt i vel HOP Defaults for controlling the initiating heap
occupancy indicate that adaptive determination of
that value is turned on, and that for the first few

XX: Ini tiati ngHeapQccupancyPer cent collection cycles G1 will use an occupancy of 45%

=45 of the old generation as mark start threshold.

- XX: GlHeapRegi onSi ze=<er go> The set of the heap region size based on initial
and maximum heap size. So that heap contains
roughly 2048 heap regions. The size of a heap
region can vary from 1 to 32 MB, and must be a
power of 2.

- XX: GLNewSi zePer cent =5 The size of the young generation in total, which

- XX: GLMaxNewSi zePer cent =60 varies between these two values as percentages

) of the current Java heap in use.
- XX: GlHeapWast ePer cent =5 The allowed unreclaimed space in the collection

set candidates as a percentage. G1 stops the
space-reclamation phase if the free space in the
collection set candidates is lower than that.

- XX: GLM xedGCCount Tar get =8 The expected length of the space-reclamation
phase in a number of collections.

ORACLE 9-9

Chapter 9
Comparison to Other Collectors

Table 9-1 (Cont.) Ergonomic Defaults G1 GC

__|
Option and Default Value Description

- Old generation regions with higher live object

XX: GLM xedGCLi veThr eshol dPer cent = occupancy than this percentage aren't collected in
85 this space-reclamation phase.

¢ Note:

<er go> means that the actual value is determined ergonomically depending
on the environment.

Comparison to Other Collectors

This is a summary of the main differences between G1 and the other collectors:

» Parallel GC can compact and reclaim space in the old generation only as a whole.
G1 incrementally distributes this work across multiple much shorter collections.
This substantially shortens pause time at the potential expense of throughput.

* Similar to the CMS, G1 concurrently performs part of the old generation space-
reclamation concurrently. However, CMS can't defragment the old generation
heap, eventually running into long Full GC's.

* G1 may exhibit higher overhead than the above collectors, affecting throughput
due to its concurrent nature.

* ZGC is targeted at very large heaps, aiming to provide significantly smaller pause
times at further cost of throughput.

Due to how it works, G1 has some unique mechanisms to improve garbage collection
efficiency:

* G1 can reclaim some completely empty, large areas of the old generation during
any collection. This could avoid many otherwise unnecessary garbage collections,
freeing a significant amount of space without much effort.

* G1 can optionally try to deduplicate duplicate strings on the Java heap
concurrently.

Reclaiming empty, large objects from the old generation is always enabled. You can
disable this feature with the option - XX: - GLEager Recl ai mHunongousObj ect s. String
deduplication is disabled by default. You can enable it using the option - XX:
+GLEnabl eSt ri ngDedupl i cati on.

ORACLE 9-10

Garbage-First Garbage Collector Tuning

This section describes how to adapt Garbage-First garbage collector (G1 GC)
behavior in case it does not meet your requirements.
Topics
* General Recommendations for G1
* Moving to G1 from Other Collectors
* Improving G1 Performance
— Observing Full Garbage Collections
— Humongous Object Fragmentation
— Tuning for Latency
* Unusual System or Real-Time Usage
* Reference Object Processing Takes Too Long
* Young-Only Collections Within the Young-Only Phase Take Too Long
* Mixed Collections Take Too Long
* High Update RS and Scan RS Times
— Tuning for Throughput
— Tuning for Heap Size

— Tunable Defaults

General Recommendations for G1

ORACLE

The general recommendation is to use G1 with its default settings, eventually giving it
a different pause-time goal and setting a maximum Java heap size by using - Xnx if
desired.

G1 defaults have been balanced differently than either of the other collectors. G1's
goals in the default configuration are neither maximum throughput nor lowest latency,
but to provide relatively small, uniform pauses at high throughput. However, G1's
mechanisms to incrementally reclaim space in the heap and the pause-time control
incur some overhead in both the application threads and in the space-reclamation
efficiency.

If you prefer high throughput, then relax the pause-time goal by using -

XX: MaxGCPauseM | |i s or provide a larger heap. If latency is the main requirement,
then modify the pause-time target. Avoid limiting the young generation size to
particular values by using options like - Xrm, - XX: NewRat i 0 and others because the
young generation size is the main means for G1 to allow it to meet the pause-time.
Setting the young generation size to a single value overrides and practically disables
pause-time control.

10-1

Chapter 10
Moving to G1 from Other Collectors

Moving to G1 from Other Collectors

Generally, when moving to G1 from other collectors, particularly the Concurrent Mark
Sweep collector, start by removing all options that affect garbage collection, and only
set the pause-time goal and overall heap size by using - Xnx and optionally - Xis.

Many options that are useful for other collectors to respond in some particular way,
have either no effect at all, or even decrease throughput and the likelihood to meet the
pause-time target. An example could be setting young generation sizes that
completely prevent G1 from adjusting the young generation size to meet pause-time
goals.

Improving G1 Performance

G1 is designed to provide good overall performance without the need to specify
additional options. However, there are cases when the default heuristics or default
configurations for them provide suboptimal results. This section gives some guidelines
about diagnosing and improving in these cases. This guide describes only the
possibilities that G1 provides to improve garbage collector performance in a selected
metric, when given a set application. On a case-by-case basis, application-level
optimizations could be more effective than trying to tune the VM to perform better, for
example, by avoiding some problematic situations by less long-lived objects
altogether.

For diagnosis purposes, G1 provides comprehensive logging. A good start is to use
the - Xl 0g: gc*=debug option and then refine the output from that if necessary. The log
provides a detailed overview during and outside the pauses about garbage collection
activity. This includes the type of collection and a breakdown of time spent in particular
phases of the pause.

The following subsections explore some common performance issues.

Observing Full Garbage Collections

ORACLE

A full heap garbage collection (Full GC) is often very time consuming. Full GCs caused
by too high heap occupancy in the old generation can be detected by finding the words
Pause Full (Allocation Failure) in the log. Full GCs are typically preceded by garbage
collections that encounter an evacuation failure indicated by t o- space exhaust ed
tags.

The reason that a Full GC occurs is because the application allocates too many
objects that can't be reclaimed quickly enough. Often concurrent marking has not been
able to complete in time to start a space-reclamation phase. The probability to run into
a Full GC can be compounded by the allocation of many humongous objects. Due to
the way these objects are allocated in G1, they may take up much more memory than
expected.

The goal should be to ensure that concurrent marking completes on time. This can be
achieved either by decreasing the allocation rate in the old generation, or giving the
concurrent marking more time to complete.

G1 gives you several options to handle this situation better:

10-2

Chapter 10
Improving G1 Performance

* You can determine the number of regions occupied by humongous objects on the
Java heap using the gc+heap=i nf 0 logging. Y in the lines "Hunmongous regi ons: X-
>Y" give you the amount of regions occupied by humongous objects. If this number
is high compared to the number of old regions, the best option is to try to decrease
this number of objects. You can achieve this by increasing the region size using
the - XX GlHeapRegi onSi ze option. The currently selected heap region size is
printed at the beginning of the log.

* Increase the size of the Java heap. This typically increases the amount of time
marking has to complete.

* Increase the number of concurrent marking threads by setting - XX: ConcGCThr eads
explicitly.

» Force G1 to start marking earlier. G1 automatically determines the Initiating Heap
Occupancy Percent (IHOP) threshold based on earlier application behavior. If the
application behavior changes, these predictions might be wrong. There are two
options: Lower the target occupancy for when to start space-reclamation by
increasing the buffer used in an adaptive IHOP calculation by modifying -

XX: GLReser vePer cent ; or, disable the adaptive calculation of the IHOP by setting it
manually using - XX: - GLUseAdapt i vel HOP and -
XX: I'nitiatingHeapGccupancyPercent .

Other causes than Allocation Failure for a Full GC typically indicate that either the
application or some external tool causes a full heap collection. If the cause is
System gc(), and there is no way to modify the application sources, the effect of Full
GCs can be mitigated by using - XX: +Expl i ci t GCl nvokesConcur rent or let the VM
completely ignore them by setting - XX: +Di sabl eExpl i ci t GC. External tools may still
force Full GCs; they can be removed only by not requesting them.

Humongous Object Fragmentation

A Full GC could occur before all Java heap memory has been exhausted due to the
necessity of finding a contiguous set of regions for them. Potential options in this case
are increasing the heap region size by using the option - XX: GLHeapRegi onSi ze to
decrease the number of humongous objects, or increasing size of the heap. In
extreme cases, there might not be enough contiguous space available for G1 to
allocate the object even if available memory indicates otherwise. This would lead to a
VM exit if that Full GC can not reclaim enough contiguous space. As a result, there are
no other options than either decreasing the amount of humongous object allocations
as mentioned previously, or increasing the heap.

Tuning for Latency

This section discusses hints to improve G1 behavior in case of common latency
problems that is, if the pause-time is too high.

Unusual System or Real-Time Usage

ORACLE

For every garbage collection pause, the gc+cpu=i nf 0 log output contains a line
including information from the operating system with a breakdown about where during
the pause-time has been spent. An example for such output is User =0. 19s Sys=0. 00s
Real =0. 01s.

10-3

Chapter 10
Improving G1 Performance

User time is time spent in VM code, system time is the time spent in the operating
system, and real time is the amount of absolute time passed during the pause. If the
system time is relatively high, then most often the environment is the cause.

Common known issues for high system time are:

e The VM allocating or giving back memory from the operating system memory may
cause unnecessary delays. Avoid the delays by setting minimum and maximum
heap sizes to the same value using the options - Xms and - Xnx, and pre-touching
all memory using - XX: +Al waysPr eTouch to move this work to the VM startup
phase.

* Particularly in Linux, coalescing of small pages into huge pages by the
Transparent Huge Pages (THP) feature tends to stall random processes, not just
during a pause. Because the VM allocates and maintains a lot of memory, there is
a higher than usual risk that the VM will be the process that stalls for a long time.
Refer to the documentation of your operating system on how to disable the
Transparent Huge Pages feature.

* Writing the log output may stall for some time because of some background task
intermittently taking up all I/O bandwidth for the hard disk the log is written to.
Consider using a separate disk for your logs or some other storage, for example
memory-backed file system to avoid this.

Another situation to look out for is real time being a lot larger than the sum of the
others this may indicate that the VM did not get enough CPU time on a possibly
overloaded machine.

Reference Object Processing Takes Too Long

Information about the time taken for processing of Reference Objects is shown in the
Ref erence Processi ng phase. During the Ref erence Processi ng phase, G1 updates
the referents of Reference Objects according to the requirements of the particular type
of Reference Object. By default, G1 tries to parallelize the sub-phases of Ref er ence
Processi ng using the following heuristic: for every - XX: Ref er encesPer Thr ead
reference Objects start a single thread, bounded by the value in -

XX: Par al | el GCThr eads. This heuristic can be disabled by setting -

XX: Ref er encesPer Thr ead to 0 to use all available threads by default, or parallelization
disabled completely by - XX: - Par al | el Ref Pr ocEnabl ed.

Young-Only Collections Within the Young-Only Phase Take Too Long

ORACLE

Normal young and, in general any young collection roughly takes time proportional to
the size of the young generation, or more specifically, the number of live objects within
the collection set that needs to be copied. If the Evacuate Collection Set phase takes
too long, in particular, the Object Copy sub-phase, decrease - XX: GLNewSi zePer cent .
This decreases the minimum size of the young generation, allowing for potentially
shorter pauses.

Another problem with sizing of the young generation may occur if application
performance, and in particular the amount of objects surviving a collection, suddenly
changes. This may cause spikes in garbage collection pause time. It might be useful to
decrease the maximum young generation size by using - XX: GLMaxNewSi zePer cent .
This limits the maximum size of the young generation and so the number of objects
that need to be processed during the pause.

10-4

Chapter 10
Improving G1 Performance

Mixed Collections Take Too Long

High Update

ORACLE

Mixed collections are used to reclaim space in the old generation. The collection set of
mixed collections contains young and old generation regions. You can obtain
information about how much time evacuation of either young or old generation regions
contribute to the pause-time by enabling the gc+er gotcset =t r ace log output. Look at
the predicted young region time and predicted old region time for young and old
generation regions respectively.

If the predicted young region time is too long, then see Young-Only Collections Within
the Young-Only Phase Take Too Long for options. Otherwise, to reduce the
contribution of the old generation regions to the pause-time, G1 provides three
options:

» Spread the old generation region reclamation across more garbage collections by
increasing - XX: GLM xedGCCount Tar get .

* Avoid collecting regions that take a proportionally large amount of time to collect
by not putting them into the candidate collection set by using -
XX: GLM xedCCLi veThr eshol dPer cent . In many cases, highly occupied regions
take a lot of time to collect.

» Stop old generation space reclamation earlier so that G1 won't collect as many
highly occupied regions. In this case, increase - XX: GLHeapWast ePer cent .

Note that the last two options decrease the amount of collection set candidate regions
where space can be reclaimed for the current space-reclamation phase. This may
mean that G1 may not be able to reclaim enough space in the old generation for
sustained operation. However, later space-reclamation phases may be able to
garbage collect them.

RS and Scan RS Times

To enable G1 to evacuate single old generation regions, G1 tracks locations of cross-
region references, that is references that point from one region to another. The set of
cross-region references pointing into a given region is called that region's remembered
set. The remembered sets must be updated when moving the contents of a region.
Maintenance of the regions' remembered sets is mostly concurrent. For performance
purposes, G1 doesn't immediately update the remembered set of a region when the
application installs a new cross-region reference between two objects. Remembered
set update requests are delayed and batched for efficiency.

G1 requires complete remembered sets for garbage collection, so the Update RS
phase of the garbage collection processes any outstanding remembered set update
requests. The Scan RS phase searches for object references in remembered sets,
moves region contents, and then updates these object references to the new
locations. Depending on the application, these two phases may take a significant
amount of time.

Adjusting the size of the heap regions by using the option - XX: GLHeapRegi onSi ze
affects the number of cross-region references and as well as the size of the
remembered set. Handling the remembered sets for regions may be a significant part
of garbage collection work, so this has a direct effect on the achievable maximum
pause time. Larger regions tend to have fewer cross-region references, so the relative
amount of work spent in processing them decreases, although at the same time, larger

10-5

Chapter 10
Improving G1 Performance

regions may mean more live objects to evacuate per region, increasing the time for
other phases.

G1 tries to schedule concurrent processing of the remembered set updates so that the
Update RS phase takes approximately - XX: GLRSet Updat i ngPauseTi nePer cent
percent of the allowed maximum pause time. By decreasing this value, G1 usually
performs more remembered set update work concurrently.

Spurious high Update RS times in combination with the application allocating large
objects may be caused by an optimization that tries to reduce concurrent remembered
set update work by batching it. If the application that created such a batch happens
just before a garbage collection, then the garbage collection must process all this work
in the Update RS times part of the pause. Use - XX: - Reducel ni ti al Car dMarks to
disable this behavior and potentially avoid these situations.

Scan RS Time is also determined by the amount of compression that G1 performs to
keep remembered set storage size low. The more compact the remembered set is
stored in memory, the more time it takes to retrieve the stored values during garbage
collection. G1 automatically performs this compression, called remembered set
coarsening, while updating the remembered sets depending on the current size of that
region's remembered set. Particularly at the highest compression level, retrieving the
actual data can be very slow. The option - XX: GLSummar i zeRSet St at sPeri od in
combination with gc+renset =t r ace level logging shows if this coarsening occurs. If so,
then the X in the line Di d <X> coar seni ngs in the Before GC Summary section shows
a high value. The - XX: GLRSet Regi onEnt ri es option could be increased significantly to
decrease the amount of these coarsenings. Avoid using this detailed remembered set
logging in production environments as collecting this data can take a significant
amount of time.

Tuning for Throughput

ORACLE

G1's default policy tries to maintain a balance between throughput and latency;
however, there are situations where higher throughput is desirable. Apart from
decreasing the overall pause-times as described in the previous sections, the
frequency of the pauses could be decreased. The main idea is to increase the
maximum pause time by using - XX: MaxGCPauseM | | i s. The generation sizing
heuristics will automatically adapt the size of the young generation, which directly
determines the frequency of pauses. If that does not result in expected behavior,
particularly during the space-reclamation phase, increasing the minimum young
generation size using - XX: GLNewSi zePer cent will force G1 to do that.

In some cases, - XX: GLMaxNewSi zePer cent , the maximum allowed young generation
size, may limit throughput by limiting young generation size. This can be diagnosed by
looking at region summary output of gc+heap=i nf o logging. In this case the combined
percentage of Eden regions and Survivor regions is close to -

XX: GLMaxNewsSi zePer cent percent of the total number of regions. Consider increasing-
XX: GLMaxNewSi zePer cent in this case.

Another option to increase throughput is to try to decrease the amount of concurrent
work in particular, concurrent remembered set updates often require a lot of CPU
resources. Increasing - XX: GLRSet Updat i ngPauseTi nePer cent moves work from
concurrent operation into the garbage collection pause. In the worst case, concurrent
remembered set updates can be disabled by setting - XX: -

GlUseAdapt i veConcRef i nenent - XX: GLConcRef i nenent Gr eenZone=2G-

XX: GLConcRef i nement Thr eads=0. This mostly disables this mechanism and moves all
remembered set update work into the next garbage collection pause.

10-6

Chapter 10
Improving G1 Performance

Enabling the use of large pages by using - XX: +UseLar gePages may also improve
throughput. Refer to your operating system documentation on how to set up large

pages.

You can minimize heap resizing work by disabling it; set the options - Xns and - Xnx to
the same value. In addition, you can use - XX: +Al waysPr eTouch to move the operating
system work to back virtual memory with physical memory to VM startup time. Both of
these measures can be particularly desirable in order to make pause-times more

consistent.

Tuning for Heap Size

Like other collectors, G1 aims to size the heap so that the time spent in garbage
collection is below the ratio determined by the - XX: GCTi meRat i o option. Adjust this
option to make G1 meet your requirements.

Tunable Defaults

This section describes the default values and some additional information about
command-line options that are introduced in this topic.

ORACLE

Table 10-1 Tunable Defaults G1 GC

Option and Default Value

Description

- XX: +GLUseAdapt i veConcRef i nenment

XX: GLConcRef i nenent G eenZone=<erg
0>

XX: GLConcRef i nenent Yel | owZone=<er
go>

XX: GLConcRef i nenent RedZone=<ergo>

XX: GLConcRef i nenent Thr eads=<ergo>
- XX: +Reducel ni ti al Car dMar ks

- XX: +Par al | el Ref ProcEnabl ed
- XX: Ref er encesPer Thr ead=1000

The concurrent remembered set update
(refinement) uses these options to control the work
distribution of concurrent refinement threads. G1
chooses the ergonomic values for these options so
that - XX: GLRSet Updat i ngPauseTi nePer cent
time is spent in the garbage collection pause for
processing any remaining work, adaptively
adjusting them as needed. Change with caution
because this may cause extremely long pauses.

This batches together concurrent remembered set
update (refinement) work for initial object
allocations.

- XX: Ref er encesPer Thr ead determines the
degree of parallelization: for every N Reference
Objects one thread will participate in the sub-
phases of Reference Processing, limited by -

XX: Par al | el GCThr eads. A value of 0 indicates
that the maximum number of threads as indicated
by the value of - XX: Par al | el GCThr eads will
always be used.

This determines whether processing of
j ava. |l ang. Ref . * instances should be done
in parallel by multiple threads.

10-7

Chapter 10
Improving G1 Performance

Table 10-1 (Cont.) Tunable Defaults G1 GC

__|
Option and Default Value Description

- This determines the percentage of total garbage

XX: GLRSet Updat i ngPauseTi mePer cent collection time G1 should spend in the Update RS

=10 phase updating any remaining remembered sets.
G1 controls the amount of concurrent remembered
set updates using this setting.

- XX: GLSummari zeRSet St at sPeri od=0 This is the period in a number of GCs that G1
generates remembered set summary reports. Set
this to zero to disable. Generating remembered set
summary reports is a costly operation, so it should
be used only if necessary, and with a reasonably
high value. Use gc+renmset =t race to print
anything.

- XX: GCTi neRat i 0=12 This is the divisor for the target ratio of time that
should be spent in garbage collection as opposed
to the application. The actual formula for
determining the target fraction of time that can be
spent in garbage collection before increasing the
heapis 1 / (1 + GCTi meRati 0). This default
value results in a target with about 8% of the time
to be spent in garbage collection.

- XX: GLPeri odi cCCl nt erval =0 The interval in ms to check whether G1 should
trigger a periodic garbage collection. Set to zero to
disable.

- XX If set, periodic garbage collections trigger a

+GlPeri odi c&Cl nvokesConcurrent concurrent marking or continue the existing

collection cycle, otherwise trigger a Full GC.

- Threshold for the current system load as returned

XX: GLPeri odi cGCSyst enLoadThr eshol by the hosts get | oadavg() call to determine

d=0.0 whether a periodic garbage collection should be
triggered. A current system load higher than this
value prevents periodic garbage collections. A
value of zero indicates that this threshold check is
disabled.

¢ Note:

<er go> means that the actual value is determined ergonomically depending
on the environment.

ORACLE 10-8

The Z Garbage Collector

The Z Garbage Collector (ZGC) is a scalable low latency garbage collector. ZGC
performs all expensive work concurrently, without stopping the execution of application
threads for more than 10ms, which makes is suitable for applications which require low
latency and/or use a very large heap (multi-terabytes).

The Z Garbage Collector is available as an experimental feature, and is enabled with
the command-line options - XX: +Unl ockExper i nent al VMOpt i ons - XX: +UseZGC.

Setting the Heap Size

The most important tuning option for ZGC is setting the max heap size (- Xnx) . Since
ZGC is a concurrent collector a max heap size must be selected such that, 1) the heap
can accommodate the live-set of your application, and 2) there is enough headroom in
the heap to allow allocations to be serviced while the GC is running. How much
headroom is needed very much depends on the allocation rate and the live-set size of
the application. In general, the more memory you give to ZGC the better. But at the
same time, wasting memory is undesirable, so it's all about finding a balance between
memory usage and how often the GC needs to run.

Setting Number of Concurrent GC Threads

ORACLE

The second tuning option one might want to look at is setting the number of concurrent
GC threads (- XX: ConcGCThr eads) . ZGC has heuristics to automatically select this
number. This heuristic usually works well but depending on the characteristics of the
application this might need to be adjusted. This option essentially dictates how much
CPU-time the GC should be given. Give it too much and the GC will steal too much
CPU-time from the application. Give it too little, and the application might allocate
garbage faster than the GC can collect it.

11-1

Other Considerations

This section covers other situations that affect garbage collection.

Topics

* Finalization and Weak, Soft, and Phantom References
» Explicit Garbage Collection

« Soft References

* Class Metadata

Finalization and Weak, Soft, and Phantom References

Some applications interact with garbage collection by using finalization and weak, soft,
or phantom references.

These features can create performance artifacts at the Java programming language
level. An example of this is relying on finalization to close file descriptors, which makes
an external resource (descriptors) dependent on garbage collection promptness.
Relying on garbage collection to manage resources other than memory is almost
always a bad idea.

See How to Handle Java Finalization's Memory-Retention Issues, which discusses in
depth some of the pitfalls of finalization and techniques for avoiding them.

Explicit Garbage Collection

ORACLE

Another way that applications can interact with garbage collection is by calling full
garbage collections explicitly by using Syst em gc() .

This can force a major collection to be done when it may not be necessary (for
example, when a minor collection would suffice), and so in general should be avoided.
The performance effect of explicit garbage collections can be measured by disabling
them using the flag - XX: +Di sabl eExpl i ci t GC, which causes the VM to ignore calls to

System gc().

One of the most commonly encountered uses of explicit garbage collection occurs with
the distributed garbage collection (DGC) of Remote Method Invocation (RMI).
Applications using RMI refer to objects in other virtual machines. Garbage cannot be
collected in these distributed applications without occasionally invoking garbage
collection of the local heap, so RMI forces full collections periodically. The frequency of
these collections can be controlled with properties, as in the following example:

java -Dsun.rm.dgc.client.gclnterval =3600000
-Dsun. rni . dgc. server. gcl nterval =3600000 . ..

12-1

http://www.devx.com/Java/Article/30192

Chapter 12
Soft References

This example specifies explicit garbage collection once per hour instead of the default
rate of once per minute. However, this may also cause some objects to take much
longer to be reclaimed. These properties can be set as high as Long. MAX_VALUE to
make the time between explicit collections effectively infinite if there's no desire for an
upper bound on the timeliness of DGC activity.

Soft References

Soft references are kept alive longer in the server virtual machine than in the client.

The rate of clearing can be controlled with the command-line option -

XX: Sof t Ref LRUPol i cyMsPer MB=<N>, which specifies the number of milliseconds (ms) a
soft reference will be kept alive (once it is no longer strongly reachable) for each
megabyte of free space in the heap. The default value is 1000 ms per megabyte,
which means that a soft reference will survive (after the last strong reference to the
object has been collected) for 1 second for each megabyte of free space in the heap.
This is an approximate figure because soft references are cleared only during garbage
collection, which may occur sporadically.

Class Metadata

ORACLE

Java classes have an internal representation within Java Hotspot VM and are referred
to as class metadata.

In previous releases of Java Hotspot VM, the class metadata was allocated in the so-
called permanent generation. Starting with JDK 8, the permanent generation was
removed and the class metadata is allocated in native memory. The amount of native
memory that can be used for class metadata is by default unlimited. Use the option -
XX: MaxMet aspaceSi ze to put an upper limit on the amount of native memory used for
class metadata.

Java Hotspot VM explicitly manages the space used for metadata. Space is requested
from the OS and then divided into chunks. A class loader allocates space for metadata
from its chunks (a chunk is bound to a specific class loader). When classes are
unloaded for a class loader, its chunks are recycled for reuse or returned to the OS.
Metadata uses space allocated by mmap, not by nal | oc.

If - XX: UseConpr essedQops is turned on and - XX: UseConpr essedC assesPoi nters is
used, then two logically different areas of native memory are used for class metadata.
- XX: UseConpr essedd assPoi nt er s uses a 32-bit offset to represent the class pointer
in a 64-bit process as does - XX: UseConpr essedQops for Java object references. A
region is allocated for these compressed class pointers (the 32-bit offsets). The size of
the region can be set with - XX: Conpr essedC assSpaceSi ze and is 1 gigabyte (GB) by
default. The space for the compressed class pointers is reserved as space allocated
by - XX: mmap at initialization and committed as needed. The - XX: MaxMet aspaceSi ze
applies to the sum of the committed compressed class space and the space for the
other class metadata.

Class metadata is deallocated when the corresponding Java class is unloaded. Java
classes are unloaded as a result of garbage collection, and garbage collections may
be induced to unload classes and deallocate class metadata. When the space
committed for class metadata reaches a certain level (a high-water mark), a garbage
collection is induced. After the garbage collection, the high-water mark may be raised
or lowered depending on the amount of space freed from class metadata. The high-
water mark would be raised so as not to induce another garbage collection too soon.

12-2

ORACLE

Chapter 12
Class Metadata

The high-water mark is initially set to the value of the command-line option -

XX: Met aspaceSi ze. It is raised or lowered based on the options -

XX: MaxMet aspaceFreeRati o and - XX: M nMet aspaceFr eeRat i 0. If the committed space
available for class metadata as a percentage of the total committed space for class
metadata is greater than - XX: MaxMet aspaceFr eeRat i 0, then the high-water mark will
be lowered. If it's less than - XX: M nMet aspaceFr eeRat i 0, then the high-water mark will
be raised.

Specify a higher value for the option - XX: Met aspaceSi ze to avoid early garbage
collections induced for class metadata. The amount of class metadata allocated for an
application is application-dependent and general guidelines do not exist for the
selection of - XX: Met aspaceSi ze. The default size of - XX: Met aspaceSi ze is platform-
dependent and ranges from 12 MB to about 20 MB.

Information about the space used for metadata is included in a printout of the heap.
The following is typical output:.

[0,296s][info][gc, heap, exit] Heap

[0,296s][info][gc, heap,exit] garbage-first heap total 514048K, used 0K
[0x00000005ca600000, 0x00000005ca8007d8, 0x00000007c0000000)
[0,296s][info][gc, heap,exit] region size 2048K, 1 young (2048K), 0
survivors (0K

[0,296s][info][gc, heap,exit] Metaspace used 2575K, capacity 4480K
conmi tted 4480K, reserved 1056768K

[0,296s][info][gc, heap,exit] class space used 238K, capacity 384K
conm tted 384K, reserved 1048576K

In the line beginning with Met aspace, the used value is the amount of space used for
loaded classes. The capaci ty value is the space available for metadata in currently
allocated chunks. The commi tt ed value is the amount of space available for chunks.
The reser ved value is the amount of space reserved (but not necessarily committed)
for metadata. The line beginning with cl ass space contains the corresponding values
for the metadata for compressed class pointers.

12-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Garbage Collection Tuning
	What Is a Garbage Collector?
	Why Does the Choice of Garbage Collector Matter?
	Supported Operating Systems in Documentation

	2 Ergonomics
	Garbage Collector, Heap, and Runtime Compiler Default Selections
	Behavior-Based Tuning
	Maximum Pause-Time Goal
	Throughput Goal
	Footprint

	Tuning Strategy

	3 Garbage Collector Implementation
	Generational Garbage Collection
	Generations
	Performance Considerations
	Throughput and Footprint Measurement

	4 Factors Affecting Garbage Collection Performance
	Total Heap
	Heap Options Affecting Generation Size
	Default Option Values for Heap Size
	Conserving Dynamic Footprint by Minimizing Java Heap Size

	The Young Generation
	Young Generation Size Options
	Survivor Space Sizing

	5 Available Collectors
	Serial Collector
	Parallel Collector
	The Mostly Concurrent Collectors
	The Z Garbage Collector
	Selecting a Collector

	6 The Parallel Collector
	Number of Parallel Collector Garbage Collector Threads
	Arrangement of Generations in Parallel Collectors
	Parallel Collector Ergonomics
	Options to Specify Parallel Collector Behaviors
	Priority of Parallel Collector Goals
	Parallel Collector Generation Size Adjustments
	Parallel Collector Default Heap Size
	Specification of Parallel Collector Initial and Maximum Heap Sizes

	Excessive Parallel Collector Time and OutOfMemoryError
	Parallel Collector Measurements

	7 The Mostly Concurrent Collectors
	Overhead of Mostly Concurrent Collectors

	8 Concurrent Mark Sweep (CMS) Collector
	Concurrent Mark Sweep Collector Performance and Structure
	Concurrent Mode Failure
	Excessive GC Time and OutOfMemoryError
	Concurrent Mark Sweep Collector and Floating Garbage
	Concurrent Mark Sweep Collector Pauses
	Concurrent Mark Sweep Collector Concurrent Phases
	Starting a Concurrent Collection Cycle
	Scheduling Pauses
	Concurrent Mark Sweep Collector Measurements

	9 Garbage-First Garbage Collector
	Introduction to Garbage-First Garbage Collector
	Enabling G1
	Basic Concepts
	Heap Layout
	Garbage Collection Cycle
	Garbage Collection Pauses and Collection Set

	Garbage-First Internals
	Java Heap Sizing
	Young-Only Phase Generation Sizing
	Space-Reclamation Phase Generation Sizing

	Periodic Garbage Collections
	Determining Initiating Heap Occupancy
	Marking
	Behavior in Very Tight Heap Situations
	Humongous Objects

	Ergonomic Defaults for G1 GC
	Comparison to Other Collectors

	10 Garbage-First Garbage Collector Tuning
	General Recommendations for G1
	Moving to G1 from Other Collectors
	Improving G1 Performance
	Observing Full Garbage Collections
	Humongous Object Fragmentation
	Tuning for Latency
	Unusual System or Real-Time Usage
	Reference Object Processing Takes Too Long
	Young-Only Collections Within the Young-Only Phase Take Too Long
	Mixed Collections Take Too Long
	High Update RS and Scan RS Times

	Tuning for Throughput
	Tuning for Heap Size
	Tunable Defaults

	11 The Z Garbage Collector
	Setting the Heap Size
	Setting Number of Concurrent GC Threads

	12 Other Considerations
	Finalization and Weak, Soft, and Phantom References
	Explicit Garbage Collection
	Soft References
	Class Metadata

