
Java Platform, Standard Edition
Internationalization Guide

Release 13
F17442-01
September 2019

Java Platform, Standard Edition Internationalization Guide, Release 13

F17442-01

Copyright © 1993, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

1 Internationalization Enhancements

Internationalization Enhancements in JDK 11 1-1

Unicode 10.0.0 1-1

Internationalization Enhancements in JDK 10 1-1

Additional Unicode Language-Tag Extensions 1-1

Internationalization Enhancements in JDK 9 1-2

Unicode 8.0 1-2

CLDR Locale Data Enabled by Default 1-2

UTF-8 Properties Files 1-3

2 Internationalization Overview

Text Representation 2-1

Locale Identification and Localization 2-2

Locales 2-2

Locale Class 2-2

Supported Locales 2-2

Localized Resources 2-3

ResourceBundle Class 2-3

ListResourceBundle Class 2-3

PropertyResourceBundle Class 2-3

Date and Time Handling 2-4

Text Processing 2-4

Formatting 2-4

Format Class 2-4

DateFormat Class 2-4

iii

SimpleDateFormat Class 2-5

DateFormatSymbols Class 2-5

NumberFormat Class 2-5

DecimalFormat Class 2-5

DecimalFormatSymbols Class 2-6

ChoiceFormat Class 2-6

MessageFormat Class 2-6

ParsePosition Class 2-6

FieldPosition Class 2-6

Locale-Sensitive String Operations 2-6

Collator Class 2-7

RuleBasedCollator Class 2-7

CollationElementIterator Class 2-7

CollationKey Class 2-7

BreakIterator Class 2-7

StringCharacterIterator Class 2-8

CharacterIterator Interface 2-8

Normalizer Class 2-8

Locale-Sensitive Services SPIs 2-8

Character Encoding Conversion 2-8

Supported Encodings 2-9

Stream I/O 2-9

Reader and Writer Classes 2-9

PrintStream Class 2-9

Charset Package 2-9

Input Methods 2-9

Input Method Support in Swing 2-10

Input Method Framework 2-10

3 Supported Encodings

Basic Encoding Set (contained in java.base module) 3-1

Extended Encoding Set (contained in jdk.charsets module) 3-4

Printing Charset Information 3-12

4 Supported Calendars

5 Supported Fonts

Support for Physical Fonts 5-1

iv

Support for Logical Fonts 5-1

6 Font Configuration Files

Supported Platforms 6-1

Loading Font Configuration Files 6-1

Names Used in Font Configuration Files 6-2

Properties for All Platforms 6-3

Version Property 6-3

Component Font Mappings 6-3

Search Sequences 6-4

Exclusion Ranges 6-5

Proportional Fonts 6-5

Font File Names 6-6

Appended Font Path 6-6

Properties for Windows 6-7

Property for Linux 6-7

v

Preface

This guide summarizes the internationalization APIs and features of the Java SE
Platform.

Audience
This guide is intended for Java programmers who want to design applications so that
they can be adapted to various languages and regions without engineering changes.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For coding examples and step-by-step instructions, see the Internationalization Trail in
The Java Tutorials (Java SE 8 and earlier).

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/javase/tutorial/i18n/index.html

1
Internationalization Enhancements

Recent releases of the JDK include enhancements to the internationalization process
to support updated standards.

Topics:

• Internationalization Enhancements in JDK 11

• Internationalization Enhancements in JDK 10

• Internationalization Enhancements in JDK 9

Internationalization Enhancements in JDK 11
Internationalization enhancements for JDK 11 include:

• Unicode 10.0.0

Unicode 10.0.0
Support has been added for Unicode 10.0.0. Java Platform, Standard Edition (Java
SE) 9 and 10 supported Unicode 8.0.

The Unicode 10.0 standard includes 16,018 characters and 10 scripts that were
introduced since Unicode 8.0, all of which are supported in Java SE 11.

Internationalization Enhancements in JDK 10
Internationalization enhancements for JDK 10 include:

• Additional Unicode Language-Tag Extensions

Additional Unicode Language-Tag Extensions

The IETF BCP (best current practice) 47 language tags standard, which has been
supported in the Locale class since Java SE 7, includes a Unicode extension subtag.
As of Java SE 9, only the -ca (calendar) and -nu (number) extensions are supported.

Java SE 10 added support for the following additional extensions in the relevant JDK
classes:

• -cu (currency type)

• -fw (first day of week)

• -rg (region override)

• -tz (time zone)

1-1

http://unicode.org/versions/Unicode10.0.0/

Since JDK 10, if an application specifies a locale of en-US-u-cu-EUR, which means US
English with Euro currency, java.util.Currency.getInstance(locale)
instantiates a Euro Currency. If the locale is en-US-u-cu-JPY, a Japanese Yen
Currency is instantiated.

Internationalization Enhancements in JDK 9
Internationalization enhancements for Oracle Java Development Kit 9 include:

• Unicode 8.0

• CLDR Locale Data Enabled by Default

• UTF-8 Properties Files

Unicode 8.0
Support has been added for Unicode 8.0. Java Platform, Standard Edition (Java SE) 8
supported Unicode 6.2.

The Unicode 6.3, 7.0, and 8.0 standards introduced 10,555 characters, 29 scripts, and
42 blocks, all of which are supported in Java SE 9.

CLDR Locale Data Enabled by Default
The XML-based locale data of the Unicode Common Locale Data Repository (CLDR),
first added in JDK 8, is the default locale data since JDK 9.

There are four distinct sources for locale data, identified by the following keywords:

• CLDR represents the locale data provided by the Unicode CLDR project.

• HOST represents the current user's customization of the underlying operating
system's settings. It works only with the user's default locale, and the customizable
settings may vary depending on the operating system. However, primarily date,
time, number, and currency formats are supported.

• SPI represents the locale-sensitive services implemented by the installed Service
Provider Interface (SPI) providers.

• COMPAT represents the locale data that is compatible with releases prior to JDK 9.

To select a locale data source, use the java.locale.providers system property,
listing the data sources in the preferred order. If a provider cannot offer the requested
locale data, the search proceeds to the next provider in order. For example:

java.locale.providers=HOST,SPI,CLDR,COMPAT

If you do not set this property, the default behavior is equivalent to the following
setting:

java.locale.providers=CLDR,COMPAT,SPI

To enable behavior that is compatible with JDK 8, set the java.locale.providers
system property to a value with COMPAT to the left of CLDR.

Chapter 1
Internationalization Enhancements in JDK 9

1-2

http://www.unicode.org/versions/Unicode6.3.0
http://www.unicode.org/versions/Unicode7.0.0
http://www.unicode.org/versions/Unicode8.0.0/
http://cldr.unicode.org/index

For supported locales, use the search field on the Technical Resources from Oracle
page and search for "Supported Locales" See java.util.spi.LocaleServiceProvider API
specification for the related API.

UTF-8 Properties Files
Since Java SE 9, properties files are loaded in UTF-8 encoding. In previous releases,
ISO-8859-1 encoding was used for loading property resource bundles. UTF-8 is a
much more convenient way to represent non-Latin characters.

Most existing properties files should not be affected: UTF-8 and ISO-8859-1 have the
same encoding for ASCII characters, and human-readable non-ASCII ISO-8859-1
encoding is not valid UTF-8. If an invalid UTF-8 byte sequence is detected, the Java
runtime automatically rereads the file in ISO-8859-1.

If there is an issue, consider the following options:

• Convert the properties file into UTF-8 encoding.

• Specify the runtime system property for the properties file's encoding, as in this
example:

java.util.PropertyResourceBundle.encoding=ISO-8859-1

See java.util.PropertyResourceBundle.

Chapter 1
Internationalization Enhancements in JDK 9

1-3

https://www.oracle.com/technical-resources/
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/spi/LocaleServiceProvider.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/spi/LocaleServiceProvider.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyResourceBundle.html

2
Internationalization Overview

Internationalization is the process of designing an application so that it can be adapted
to various languages and regions without engineering changes. Sometimes the term
internationalization is abbreviated as i18n, because there are 18 letters between the
first "i" and the last "n."

An internationalized program has the following characteristics:

• With the addition of localization data, the same executable can run worldwide.

• Textual elements, such as status messages and the GUI component labels, are
not hardcoded in the program. Instead they are stored outside the source code
and retrieved dynamically.

• Support for new languages does not require recompilation.

• Culturally-dependent data, such as dates and currencies, appear in formats that
conform to the end user's region and language.

• It can be localized quickly.

The global Internet demands global software - that is, software that can be developed
independently of the countries or languages of its users, and then localized for multiple
countries or regions. The Java Platform provides a rich set of APIs for developing
global applications. These internationalization APIs are based on the Unicode
standard and include the ability to adapt text, numbers, dates, currency, and user-
defined objects to any country's conventions.

This guide summarizes the internationalization APIs and features of the Java Platform,
Standard Edition. For coding examples and step-by-step instructions, see the
Internationalization Trail in the Java Tutorials.

Text Representation
The Java programming language is based on the Unicode character set, and several
libraries implement the Unicode standard. Unicode is an international character set
standard which supports all of the major scripts of the world, as well as common
technical symbols. The original Unicode specification defined characters as fixed-width
16-bit entities, but the Unicode standard has since been changed to allow for
characters whose representation requires more than 16 bits. The range of legal code
points is now U+0000 to U+10FFFF. An encoding defined by the standard, UTF-16,
allows to represent all Unicode code points using one or two 16-bit units.

The primitive data type char in the Java programming language is an unsigned 16-bit
integer that can represent a Unicode code point in the range U+0000 to U+FFFF, or
the code units of UTF-16. The various types and classes in the Java platform that
represent character sequences - char[], implementations of
java.lang.CharSequence (such as the String class), and implementations of
java.text.CharacterIterator - are UTF-16 sequences. Most Java source code
is written in ASCII, a 7-bit character encoding, or ISO-8859-1, an 8-bit character
encoding, but is translated into UTF-16 before processing.

2-1

http://docs.oracle.com/javase/tutorial/i18n/index.html
http://unicode.org/standard/standard.html

The Character class is an object wrapper for the char primitive type. The
Character class also contains static methods such as isLowerCase() and
isDigit() for determining the properties of a character. These methods have
overloads that accept either a char (which allows representation of Unicode code
points in the range U+0000 to U+FFFF) or an int (which allows representation of all
Unicode code points).

Locale Identification and Localization
A Locale object is an identifier for a particular combination of language and region.
Localization is the process of adapting software for a specific region or language by
adding locale-specific components and translating text.

Locales
On the Java platform, a locale is simply an identifier for a particular combination of
language and region. It is not a collection of locale-specific attributes. Instead, each
locale-sensitive class maintains its own locale-specific information. With this design,
there is no difference in how user and system objects maintain their locale-specific
resources. Both use the standard localization mechanism.

Java programs are not assigned a single global locale. All locale-sensitive operations
may be explicitly given a locale as an argument. This greatly simplifies multilingual
programs. While a global locale is not enforced, a default locale is available for
programs that do not wish to manage locales explicitly. A default locale also makes it
possible to affect the behavior of the entire presentation with a single choice.

Java locales act as requests for certain behavior from another object. For example, a
French Canadian locale passed to a Calendar object asks that the Calendar
behave correctly for the customs of Quebec. It is up to the object accepting the locale
to do the right thing. If the object has not been localized for a particular locale, it will try
to find a "close" match with a locale for which it has been localized. Thus if a
Calendar object was not localized for French Canada, but was localized for the
French language in general, it would use the French localization instead.

Locale Class
A Locale object represents a specific geographical, political, or cultural region. An
operation that requires a locale to perform its task is called locale-sensitive and uses
the Locale object to tailor information for the user. For example, displaying a number
is a locale-sensitive operation - the number should be formatted according to the
customs and conventions of the user's native country, region, or culture.

Supported Locales
On the Java Platform, there does not have to be a single set of supported locales,
since each class maintains its own localizations. Nevertheless, there is a consistent
set of localizations supported by the classes of the Java Platform. Other
implementations of the Java Platform may support different locales. Locales that are
supported by the JDK are summarized by release. Use the search field on the
Technical Resources from Oracle page and search for "Supported Locales" to see
what is supported.

Chapter 2
Locale Identification and Localization

2-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://www.oracle.com/technical-resources/

Localized Resources
All locale-sensitive classes must be able to access resources customized for the
locales they support. To aid in the process of localization, it helps to have these
resources grouped together by locale and separated from the locale-neutral parts of
the program.

ResourceBundle Class
The class ResourceBundle is an abstract base class representing containers of
resources. Programmers create subclasses of ResourceBundle that contain
resources for a particular locale. New resources can be added to an instance of
ResourceBundle, or new instances of ResourceBundle can be added to a system
without affecting the code that uses them. Packaging resources as classes allows
developers to take advantage of Java's class loading mechanism to find resources.

Resource bundles contain locale-specific objects. When a program needs a locale-
specific resource, such as a String object, the program can load it from the resource
bundle that is appropriate for the current user's locale. In this way, the programmer
can write code that is largely independent of the user's locale, isolating most, if not all,
of the locale-specific information in resource bundles.

This allows Java programmers to write code that can:

• be easily localized, or translated, into different languages

• handle multiple locales at once

• be easily modified later to support even more locales

ResourceBundle.Control Class
ResourceBundle.Control is a nested class of ResourceBundle. It defines methods
to be called by the ResourceBundle.getBundle factory methods so that the
resource bundle loading behavior may be changed. For example, application specific
resource bundle formats, such as XML, could be supported by overriding the methods.

Since Java SE 9, ResourceBundle.Control is not supported in named modules.
Existing code using Control is expected to work, but for new code in a named module,
implement basenameProvider and load the resource bundle from there. See Resource
Bundles and Named Modules.

ListResourceBundle Class
ListResourceBundle is an abstract subclass of ResourceBundle that manages
resources for a locale in a convenient and easy to use list.

PropertyResourceBundle Class
PropertyResourceBundle is a concrete subclass of ResourceBundle that
manages resources for a locale using a set of static strings from a property file.

Chapter 2
Locale Identification and Localization

2-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.Control.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#getBundle(java.lang.String,java.util.Locale,java.util.ResourceBundle.Control)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#resource-bundle-modules
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ResourceBundle.html#resource-bundle-modules
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ListResourceBundle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PropertyResourceBundle.html

Date and Time Handling
The Date-Time package, java.time, introduced in Java SE 8, provides a
comprehensive model for date and time. Although java.time is based on the
International Organization for Standardization (ISO) calendar system, commonly used
global calendars are also supported.

See The Date-Time Packages lesson in The Java Tutorials (Java SE 8 and earlier).

Text Processing
Text processing involves formatting locale-sensitive information such as, currencies,
dates, times, and text messages. It also includes manipulating text in a locale-sensitive
manner, meaning that string operations, such as searching and sorting, are properly
performed regardless of locale.

Formatting
It is in formatting data for output that many cultural conventions are applied. Numbers,
dates, times, and messages may all require formatting before they can be displayed.
The Java platform provides a set of flexible formatting classes that can handle both the
standard locale formats and programmer defined custom formats. These formatting
classes are also able to parse formatted strings back into their constituent objects.

Format Class
The class Format is an abstract base class for formatting locale-sensitive information
such as dates, times, messages, and numbers. Three main subclasses are provided:
DateFormat, NumberFormat, and MessageFormat. These three also provide subclasses
of their own.

DateFormat Class
Dates and times are stored internally in a locale-independent way, but should be
formatted so that they can be displayed in a locale-sensitive manner. For example, the
same date might be formatted as:

• November 3, 1997 (English)

• 3 novembre 1997 (French)

The class DateFormat is an abstract base class for formatting and parsing date and
time values in a locale-independent manner. It has a number of static factory methods
for getting standard time formats for a given locale.

The DateFormat object uses Calendar and TimeZone objects in order to interpret
time values. By default, a DateFormat object for a given locale will use the
appropriate Calendar object for that locale and the system's default TimeZone
object. The programmer can override these choices if desired.

Chapter 2
Date and Time Handling

2-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
https://docs.oracle.com/javase/tutorial/datetime/overview/packages.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Format.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormat.html

SimpleDateFormat Class
The class SimpleDateFormat is a concrete class for formatting and parsing dates
and times in a locale-sensitive manner. It allows for formatting (milliseconds to text),
parsing (text to milliseconds), and normalization.

DateFormatSymbols Class
The class DateFormatSymbols is used to encapsulate localizable date-time
formatting data, such as the names of the months, the names of the days of the week,
time of day, and the time zone data. The DateFormat and SimpleDateFormat
classes both use the DateFormatSymbols class to encapsulate this information.

Usually, programmers will not use the DateFormatSymbols directly. Rather, they will
implement formatting with the DateFormat class's factory methods.

NumberFormat Class
The class NumberFormat is an abstract base class for formatting and parsing
numeric data. It contains a number of static factory methods for getting different kinds
of locale-specific number formats.

The NumberFormat class helps programmers to format and parse numbers for any
locale. Code using this class can be completely independent of the locale conventions
for decimal points, thousands-separators, the particular decimal digits used, or
whether the number format is even decimal. The application can also display a
number as a normal decimal number, currency, or percentage:

• 1,234.5 (decimal number in U.S. format)

• $1,234.50 (U.S. currency in U.S. format)

• 1.234,50 € (European currency in German format)

• 123.450% (percent in German format)

DecimalFormat Class
Numbers are stored internally in a locale-independent way, but should be formatted so
that they can be displayed in a locale-sensitive manner. For example, when using
"#,###.00" as a pattern, the same number might be formatted as:

• 1.234,56 (German)

• 1,234.56 (English)

The class DecimalFormat, which is a concrete subclass of the NumberFormat
class, can format decimal numbers. Programmers generally will not instantiate this
class directly but will use the factory methods provided.

The DecimalFormat class has the ability to take a pattern string to specify how a
number should be formatted. The pattern specifies attributes such as the precision of
the number, whether leading zeros should be printed, and what currency symbols are
used. The pattern string can be altered if a program needs to create a custom format.

Chapter 2
Text Processing

2-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/NumberFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html

DecimalFormatSymbols Class
The class DecimalFormatSymbols represents the set of symbols (such as the
decimal separator, the grouping separator, and so on) needed by DecimalFormat to
format numbers. DecimalFormat creates for itself an instance of
DecimalFormatSymbols from its locale data. A programmer needing to change any
of these symbols can get the DecimalFormatSymbols object from the
DecimalFormat object and then modify it.

ChoiceFormat Class
The class ChoiceFormat is a concrete subclass of the NumberFormat class. The
ChoiceFormat class allows the programmer to attach a format to a range of
numbers. It is generally used in a MessageFormat object for handling plurals.

MessageFormat Class
Programs often need to build messages from sequences of strings, numbers and other
data. For example, the text of a message displaying the number of files on a disk drive
will vary:

• The disk C contains 100 files.

• The disk D contains 1 file.

• The disk F contains 0 files.

If a message built from sequences of strings and numbers is hard-coded, it cannot be
translated into other languages. For example, note the different positions of the
parameters "3" and "G" in the following translations:

• The disk G contains 3 files. (English)

• Il y a 3 fichiers sur le disque G. (French)

The class MessageFormat provides a means to produce concatenated messages in
language-neutral way. The MessageFormat object takes a set of objects, formats
them, and then inserts the formatted strings into the pattern at the appropriate places.

ParsePosition Class
The class ParsePosition is used by the Format class and its subclasses to keep
track of the current position during parsing. The parseObject() method in the
Format class requires a ParsePosition object as an argument.

FieldPosition Class
The FieldPosition class is used by the Format class and its subclasses to identify
fields in formatted output. One version of the format() method in the Format class
requires a FieldPosition object as an argument.

Locale-Sensitive String Operations
Programs frequently need to manipulate strings. Common operations on strings
include searching and sorting. Some tasks, such as collating strings or finding various

Chapter 2
Text Processing

2-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/ChoiceFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/MessageFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/ParsePosition.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/FieldPosition.html

boundaries in text, are surprisingly difficult to get right and are even more difficult when
multiple languages must be considered. The Java Platform provides classes for
handling many of these common string manipulations in a locale-sensitive manner.

Collator Class
The Collator class performs locale-sensitive string comparison. Programmers use
this class to build searching and alphabetical sorting routines for natural language text.
Collator is an abstract base class. Its subclasses implement specific collation
strategies. One subclass, RuleBasedCollator, is applicable to a wide set of
languages. Other subclasses may be created to handle more specialized needs.

RuleBasedCollator Class
The RuleBasedCollator class, which is a concrete subclass of the Collator
class, provides a simple, data-driven, table collator. Using RuleBasedCollator, a
programmer can create a customized table-based collator. For example, a
programmer can build a collator that will ignore (or notice) uppercase letters, accents,
and Unicode combining characters.

CollationElementIterator Class
The CollationElementIterator class is used as an iterator to walk through each
character of an international string. Programmers use the iterator to return the ordering
priority of the positioned character. The ordering priority of a character, or key, defines
how a character is collated in the given Collator object. The
CollationElementIterator class is used by the compare() method of the
RuleBasedCollator class.

CollationKey Class
A CollationKey object represents a string under the rules of a specific Collator
object. Comparing two CollationKey objects returns the relative order of the strings
they represent. Using CollationKey objects to compare strings is generally faster
than using the Collator.compare() method. Thus, when the strings must be
compared multiple times, for example when sorting a list of strings, it is more efficient
to use CollationKey objects.

BreakIterator Class
The BreakIterator class indirectly implements methods for finding the position of
the following types of boundaries in a string of text:

• potential line break

• sentence

• word

• character

The conventions on where to break lines, sentences, words, and characters vary from
one language to another. Since the BreakIterator class is locale-sensitive, it can be
used by programs that perform text operations. For example, consider a a word
processing program that can highlight a character, cut a word, move the cursor to the
next sentence, or word-wrap at a line ending. This word processing program would

Chapter 2
Text Processing

2-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Collator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/RuleBasedCollator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CollationElementIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CollationKey.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/BreakIterator.html

use break iterators to determine the logical boundaries in text, enabling it to perform
text operations in a locale-sensitive manner.

StringCharacterIterator Class
The StringCharacterIterator class provides the ability to iterate over a string of
Unicode characters in a bidirectional manner. This class uses a cursor to move within
a range of text, and can return individual characters or their index values. The
StringCharacterIterator class implements the character iterator functionality of
the CharacterIterator interface.

CharacterIterator Interface
The CharacterIterator interface defines a protocol for bidirectional iteration over
Unicode characters. Classes should implement this interface if they want to move
about within a range of text and return individual Unicode characters or their index
values. CharacterIteratoris for searching is useful when performing character
searches.

Normalizer Class
The Normalizer class provides methods to transform Unicode text into an equivalent
composed or decomposed form. The class supports the Unicode Normalization Forms
defined by the Unicode standard.

Locale-Sensitive Services SPIs
Locale sensitive services provided by classes in the java.text and java.util packages
can be extended by implementing locale-sensitive services SPIs for locales the Java
runtime has not yet supported.

Since JDK 9, the extension mechanism is not supported and SPI implementations for
internationalization functions in the java.text.spi, java.util.spi, and
java.awt.im.spi packages will be loaded from the application's classpath.

In addition to localized symbols or names for the Currency, Locale, and TimeZone
classes in the java.util package, implementations of the following classes in the
java.text package can be plugged in with the SPIs.

• BreakIterator

• Collator

• DateFormat

• DateFormatSymbols

• DecimalFormatSymbols

• NumberFormat

Character Encoding Conversion
The Java platform uses Unicode as its native character encoding; however, many
Java programs still need to handle text data in other encodings. Java therefore
provides a set of classes that convert many standard character encodings to and from

Chapter 2
Locale-Sensitive Services SPIs

2-8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/StringCharacterIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/CharacterIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Normalizer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Currency.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TimeZone.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/BreakIterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Collator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DateFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormatSymbols.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/NumberFormat.html

Unicode. Java programs that need to deal with non-Unicode text data convert that
data into Unicode, process the data as Unicode, then convert the result back to the
external character encoding. The InputStreamReader and OutputStreamWriter
classes provide methods that can convert between other character encodings and
Unicode.

Supported Encodings
The InputStreamReader, OutputStreamWriter, and String classes can convert
between Unicode and the set of character encodings listed in Supported Encodings.

Stream I/O
The Java Platform provides features in the java.io package to improve the handling
of character data: the Reader and Writer classes, and an enhancement to the
PrintStream class.

Reader and Writer Classes
The Reader and Writer class hierarchies provide the ability to perform I/O
operations on character streams. These hierarchies parallel the InputStream and
OutputStream class hierarchies, but operate on streams of characters rather than
streams of bytes. Character streams make it easy to write programs that are not
dependent upon a specific character encoding, and are therefore easier to
internationalize. The Reader and Writer classes also have the ability to convert
between Unicode and other character encodings.

PrintStream Class
The PrintStream class produces output using the system's default character
encoding and line terminator. This change allows methods such as
System.out.println() to act more reasonably with non-ASCII data.

Charset Package
The java.nio.charset package provides the underpinnings for character encoding
conversion. Applications can use its classes to fine-tune the behavior of built-in
character converters. Developers can also create custom converters for character
encodings that are not supported by built-in character converters, using the
java.nio.charset.spi package.

Input Methods
Input methods are software components that let the user enter text in ways other than
simple typing on a keyboard. They are commonly used to enter Japanese, Chinese, or
Korean - languages using thousands of different characters - on keyboards with far
fewer keys. However, the Java platform also supports input methods for other
languages and the use of entirely different input mechanisms, such as handwriting or
speech recognition.

Chapter 2
Input Methods

2-9

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/InputStreamReader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/OutputStreamWriter.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Reader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Writer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/PrintStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/charset/package-summary.html

The Java platform enables the use of native input methods provided by the host
operating system, such as Windows or Linux, as well as the implementation and use
of input methods written in the Java programming language.

The term input methods does not refer to class methods of the Java programming
language.

Input Method Support in Swing
The Swing text components provide an integrated user interface for text input using
input methods. Depending on the locale, one of two input styles is used. With on-the-
spot (inline) input, the style used for most locales, the input methods insert the text
directly into the text component while the text is being composed. With below-the-spot
input, the style used for Chinese locales, a separate composition window is used,
which is positioned automatically to be near the point where the text is to be inserted
after being committed.

An application using Swing text components does not have to coordinate the
interaction between the text components and input methods. However, it should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

Input Method Framework
The input method framework enables the collaboration between text editing
components and input methods in entering text. Programmers who develop text
editing components or input methods use this framework. Other application developers
generally make only minimal use of it. For example, they should call
InputContext.endComposition when all text must be committed, such as when a
document is saved or printed.

Chapter 2
Input Methods

2-10

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/im/InputContext.html#endComposition()
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/im/InputContext.html#endComposition()

3
Supported Encodings

The java.io.InputStreamReader, java.io.OutputStreamWriter, java.lang.String
classes, and classes in the java.nio.charset package can convert between Unicode
and a number of other character encodings. The supported encodings vary between
different implementations of the Java SE Platform. The class description for
java.nio.charset.Charset lists the encodings that any implementation of the
Java SE Platform is required to support.

The following tables show the encoding sets supported by this version of the Oracle
Java SE Platform. The canonical names used by the java.nio APIs are in many
cases not the same as those used in the java.io and java.lang APIs.

Basic Encoding Set (contained in java.base module)

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

CESU-8 CESU8 CESU8 csCESU-8 Unicode CESU-8

IBM00858 Cp858 cp858 ccsid00858
cp00858 858 PC-
Multilingual-850+euro

Variant of Cp850 with
Euro character

IBM437 Cp437 cp437 ibm437
ibm-437 437
cspc8codepage437
windows-437

MS-DOS United
States, Australia, New
Zealand, South Africa

IBM775 Cp775 cp775 ibm775
ibm-775 775

PC Baltic

IBM850 Cp850 cp850 ibm-850
ibm850 850
cspc850multilingual

MS-DOS Latin-1

IBM852 Cp852 cp852 ibm852
ibm-852 852
csPCp852

MS-DOS Latin-2

IBM855 Cp855 cp855 ibm-855
ibm855 855 cspcp855

IBM Cyrillic

IBM857 Cp857 cp857 ibm857
ibm-857 857
csIBM857

IBM Turkish

IBM862 Cp862 cp862 ibm862
ibm-862 862
csIBM862
cspc862latinhebrew

PC Hebrew

IBM866 Cp866 cp866 ibm866
ibm-866 866
csIBM866

MS-DOS Russian

3-1

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

ISO-8859-1 ISO8859_1 iso-ir-100 ISO_8859-1
latin1 l1 IBM819
cp819 csISOLatin1
819 IBM-819
ISO8859_1
ISO_8859-1:1987
ISO_8859_1 8859_1
ISO8859-1

ISO-8859-1, Latin
Alphabet No. 1

ISO-8859-13 ISO8859_13 iso8859_13 8859_13
iso_8859-13
ISO8859-13

Latin Alphabet No. 7

ISO-8859-15 ISO8859_15 ISO_8859-15 Latin-9
csISO885915
8859_15 ISO-8859-15
ISO8859_15
ISO8859-15 IBM923
IBM-923 cp923 923
LATIN0 LATIN9 L9
csISOlatin0
csISOlatin9
ISO8859_15_FDIS

Latin Alphabet No. 9

ISO-8859-16 ISO8859_16 iso-ir-226
ISO_8859-16:2001
ISO_8859-16 latin10
l10 csISO885916

Latin Alphabet No. 10
or South-Eastern
European

ISO-8859-2 ISO8859_2 iso8859_2 8859_2
iso-ir-101 ISO_8859-2
ISO_8859-2:1987
ISO8859-2 latin2 l2
ibm912 ibm-912
cp912 912
csISOLatin2

Latin Alphabet No. 2

ISO-8859-4 ISO8859_4 iso8859_4 iso8859-4
8859_4 iso-ir-110
ISO_8859-4
ISO_8859-4:1988
latin4 l4 ibm914
ibm-914 cp914 914
csISOLatin4

Latin Alphabet No. 4

ISO-8859-5 ISO8859_5 iso8859_5 8859_5
iso-ir-144 ISO_8859-5
ISO_8859-5:1988
ISO8859-5 cyrillic
ibm915 ibm-915
cp915 915
csISOLatinCyrillic

Latin/Cyrillic Alphabet

Chapter 3
Basic Encoding Set (contained in java.base module)

3-2

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

ISO-8859-7 ISO8859_7 iso8859_7 8859_7
iso-ir-126 ISO_8859-7
ISO_8859-7:1987
ELOT_928 ECMA-118
greek greek8
csISOLatinGreek
sun_eu_greek ibm813
ibm-813 813 cp813
iso8859-7

Latin/Greek Alphabet
(ISO-8859-7:2003)

ISO-8859-9 ISO8859_9 iso8859_9 8859_9
iso-ir-148 ISO_8859-9
ISO_8859-9:1989
ISO8859-9 latin5 l5
ibm920 ibm-920 920
cp920 csISOLatin5

Latin Alphabet No. 5

KOI8-R KOI8_R koi8_r koi8 cskoi8r KOI8-R, Russian

KOI8-U KOI8_U koi8_u KOI8-U, Ukrainian

US-ASCII ASCII iso-ir-6
ANSI_X3.4-1986
ISO_646.irv:1991
ASCII ISO646-US us
IBM367 cp367
csASCII default 646
iso_646.irv:1983
ANSI_X3.4-1968
ascii7

American Standard
Code for Information
Interchange

UTF-16 UTF-16 UTF_16 utf16 unicode
UnicodeBig

Sixteen-bit Unicode
(or UCS)
Transformation
Format, byte order
identified by an
optional byte-order
mark

UTF-16BE UnicodeBigUnmarked UTF_16BE
ISO-10646-UCS-2 X-
UTF-16BE
UnicodeBigUnmarked

Sixteen-bit Unicode
(or UCS)
Transformation
Format, big-endian
byte order

UTF-16LE UnicodeLittleUnmarke
d

UTF_16LE X-
UTF-16LE
UnicodeLittleUnmarke
d

Sixteen-bit Unicode
(or UCS)
Transformation
Format, little-endian
byte order

UTF-32 UTF-32 UTF_32 UTF32 32-bit Unicode (or
UCS) Transformation
Format, byte order
identified by an
optional byte-order
mark

UTF-32BE UTF-32BE UTF_32BE X-
UTF-32BE

32-bit Unicode (or
UCS) Transformation
Format, big-endian
byte order

Chapter 3
Basic Encoding Set (contained in java.base module)

3-3

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

UTF-32LE UTF-32LE UTF_32LE X-
UTF-32LE

32-bit Unicode (or
UCS) Transformation
Format, little-endian
byte order

UTF-8 UTF8 UTF8 unicode-1-1-
utf-8

Eight-bit Unicode (or
UCS) Transformation
Format

windows-1250 Cp1250 cp1250 cp5346 Windows Eastern
European

windows-1251 Cp1251 cp1251 cp5347
ansi-1251

Windows Cyrillic

windows-1252 Cp1252 cp1252 cp5348
ibm-1252 ibm1252

Windows Latin-1

windows-1253 Cp1253 cp1253 cp5349 Windows Greek

windows-1254 Cp1254 cp1254 cp5350 Windows Turkish

windows-1257 Cp1257 cp1257 cp5353 Windows Baltic

x-IBM737 Cp737 cp737 ibm737
ibm-737 737

PC Greek

x-IBM874 Cp874 cp874 ibm874
ibm-874 874

IBM Thai

x-UTF-16LE-BOM UnicodeLittle UnicodeLittle Sixteen-bit Unicode
(or UCS)
Transformation
Format, little-endian
byte order, with byte-
order mark

X-UTF-32BE-BOM X-UTF-32BE-BOM UTF_32BE_BOM
UTF-32BE-BOM

32-bit Unicode (or
UCS) Transformation
Format, big-endian
byte order, with byte-
order mark

X-UTF-32LE-BOM X-UTF-32LE-BOM UTF_32LE_BOM
UTF-32LE-BOM

32-bit Unicode (or
UCS) Transformation
Format, little-endian
byte order, with byte-
order mark

Extended Encoding Set (contained in jdk.charsets module)

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

Big5 Big5 csBig5 Big5, Traditional
Chinese

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-4

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

Big5-HKSCS Big5_HKSCS Big5_HKSCS big5hk
big5-hkscs big5hkscs

Big5 with Hong Kong
extensions, Traditional
Chinese (incorporating
2001 revision)

EUC-JP EUC_JP euc_jp eucjis eucjp
Extended_UNIX_Cod
e_Packed_Format_for
_Japanese
csEUCPkdFmtjapanes
e x-euc-jp x-eucjp

JISX 0201, 0208 and
0212, EUC encoding
Japanese

EUC-KR EUC_KR euc_kr ksc5601 euckr
ks_c_5601-1987
ksc5601-1987
ksc5601_1987
ksc_5601 csEUCKR
5601

KS C 5601, EUC
encoding, Korean

GB18030 GB18030 gb18030-2000 Simplified Chinese,
PRC standard

GB2312 EUC_CN gb2312 gb2312-80
gb2312-1980 euc-cn
euccn x-EUC-CN
EUC_CN

GB2312, EUC
encoding, Simplified
Chinese

GBK GBK windows-936 CP936 GBK, Simplified
Chinese

IBM01140 Cp1140 cp1140 ccsid01140
cp01140 1140 ebcdic-
us-037+euro

Variant of Cp037 with
Euro character

IBM01141 Cp1141 cp1141 ccsid01141
cp01141 1141 ebcdic-
de-273+euro

Variant of Cp273 with
Euro character

IBM01142 Cp1142 cp1142 ccsid01142
cp01142 1142 ebcdic-
no-277+euro ebcdic-
dk-277+euro

Variant of Cp277 with
Euro character

IBM01143 Cp1143 cp1143 ccsid01143
cp01143 1143 ebcdic-
fi-278+euro ebcdic-
se-278+euro

Variant of Cp278 with
Euro character

IBM01144 Cp1144 cp1144 ccsid01144
cp01144 1144 ebcdic-
it-280+euro

Variant of Cp280 with
Euro character

IBM01145 Cp1145 cp1145 ccsid01145
cp01145 1145 ebcdic-
es-284+euro

Variant of Cp284 with
Euro character

IBM01146 Cp1146 cp1146 ccsid01146
cp01146 1146 ebcdic-
gb-285+euro

Variant of Cp285 with
Euro character

IBM01147 Cp1147 cp1147 ccsid01147
cp01147 1147 ebcdic-
fr-277+euro

Variant of Cp297 with
Euro character

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-5

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

IBM01148 Cp1148 cp1148 ccsid01148
cp01148 1148 ebcdic-
international-500+euro

Variant of Cp500 with
Euro character

IBM01149 Cp1149 cp1149 ccsid01149
cp01149 1149 ebcdic-
s-871+euro

Variant of Cp871 with
Euro character

IBM037 Cp037 cp037 ibm037 ebcdic-
cp-us ebcdic-cp-ca
ebcdic-cp-wt ebcdic-
cp-nl csIBM037 cs-
ebcdic-cp-us cs-
ebcdic-cp-ca cs-
ebcdic-cp-wt cs-
ebcdic-cp-nl ibm-037
ibm-37 cpibm37 037

USA, Canada
(Bilingual, French),
Netherlands, Portugal,
Brazil, Australia

IBM1026 Cp1026 cp1026 ibm1026
ibm-1026 1026

IBM Latin-5, Turkey

IBM1047 Cp1047 cp1047 ibm-1047
1047

Latin-1 character set
for EBCDIC hosts

IBM273 Cp273 cp273 ibm273
ibm-273 273

IBM Austria, Germany

IBM277 Cp277 cp277 ibm277
ibm-277 277

IBM Denmark, Norway

IBM278 Cp278 cp278 ibm278
ibm-278 278 ebcdic-sv
ebcdic-cp-se
csIBM278

IBM Finland, Sweden

IBM280 Cp280 cp280 ibm280
ibm-280 280

IBM Italy

IBM284 Cp284 cp284 ibm284
ibm-284 284
csIBM284 cpibm284

IBM Catalan/Spain,
Spanish Latin America

IBM285 Cp285 cp285 ibm285
ibm-285 285 ebcdic-
cp-gb ebcdic-gb
csIBM285 cpibm285

IBM United Kingdom,
Ireland

IBM290 Cp290 cp290 ibm290
ibm-290 csIBM290
EBCDIC-JP-kana 290

IBM Japanese
Katakana Host
Extended SBCS

IBM297 Cp297 cp297 ibm297
ibm-297 297 ebcdic-
cp-fr cpibm297
csIBM297

IBM France

IBM420 Cp420 cp420 ibm420
ibm-420 ebcdic-cp-ar1
420 csIBM420

IBM Arabic

IBM424 Cp424 cp424 ibm424
ibm-424 424 ebcdic-
cp-he csIBM424

IBM Hebrew

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-6

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

IBM500 Cp500 cp500 ibm500
ibm-500 500 ebcdic-
cp-ch ebcdic-cp-bh
csIBM500

EBCDIC 500V1

IBM860 Cp860 cp860 ibm860
ibm-860 860
csIBM860

MS-DOS Portuguese

IBM861 Cp861 cp861 ibm861
ibm-861 861
csIBM861 cp-is

MS-DOS Icelandic

IBM863 Cp863 cp863 ibm863
ibm-863 863
csIBM863

MS-DOS Canadian
French

IBM864 Cp864 cp864 ibm864
ibm-864 864
csIBM864

PC Arabic

IBM865 Cp865 cp865 ibm865
ibm-865 865
csIBM865

MS-DOS Nordic

IBM868 Cp868 cp868 ibm868
ibm-868 868 cp-ar
csIBM868

MS-DOS Pakistan

IBM869 Cp869 cp869 ibm869
ibm-869 869 cp-gr
csIBM869

IBM Modern Greek

IBM870 Cp870 cp870 ibm870
ibm-870 870 ebcdic-
cp-roece ebcdic-cp-yu
csIBM870

IBM Multilingual
Latin-2

IBM871 Cp871 cp871 ibm871
ibm-871 871 ebcdic-
cp-is csIBM871

IBM Iceland

IBM918 Cp918 cp918 ibm-918 918
ebcdic-cp-ar2

IBM Pakistan (Urdu)

IBM-Thai Cp838 cp838 ibm838
ibm-838 838

IBM Thailand
extended SBCS

ISO-2022-CN ISO2022CN ISO2022CN
csISO2022CN

GB2312 and
CNS11643 in ISO
2022 CN form,
Simplified and
Traditional Chinese
(conversion to
Unicode only)

ISO-2022-JP ISO2022JP iso2022jp jis
csISO2022JP
jis_encoding
csjisencoding

JIS X 0201, 0208, in
ISO 2022 form,
Japanese

ISO-2022-JP-2 ISO2022JP2 csISO2022JP2
iso2022jp2

JIS X 0201, 0208,
0212 in ISO 2022
form, Japanese

ISO-2022-KR ISO2022KR ISO2022KR
csISO2022KR

ISO 2022 KR, Korean

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-7

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

ISO-8859-3 ISO8859_3 iso8859_3 8859_3
ISO_8859-3:1988 iso-
ir-109 ISO_8859-3
ISO8859-3 latin3 l3
ibm913 ibm-913
cp913 913
csISOLatin3

Latin Alphabet No. 3

ISO-8859-6 ISO8859_6 iso8859_6 8859_6
iso-ir-127 ISO_8859-6
ISO_8859-6:1987
ISO8859-6 ECMA-114
ASMO-708 arabic
ibm1089 ibm-1089
cp1089 1089
csISOLatinArabic

Latin/Arabic Alphabet

ISO-8859-8 ISO8859_8 iso8859_8 8859_8
iso-ir-138 ISO_8859-8
ISO_8859-8:1988
ISO8859-8 cp916 916
ibm916 ibm-916
hebrew
csISOLatinHebrew

Latin/Hebrew
Alphabet

JIS_X0201 JIS_X0201 JIS0201 JIS_X0201
X0201
csHalfWidthKatakana

JIS X 0201

JIS_X0212-1990 JIS0212 JIS0212
jis_x0212-1990 x0212
iso-ir-159
csISO159JISX021219
90

JIS X 0212

Shift_JIS SJIS sjis shift_jis shift-jis
ms_kanji x-sjis
csShiftJIS

Shift-JIS, Japanese

TIS-620 TIS620 tis620 tis620.2533 TIS620, Thai

windows-1255 Cp1255 cp1255 Windows Hebrew

windows-1256 Cp1256 cp1256 Windows Arabic

windows-1258 Cp1258 cp1258 Windows Vietnamese

windows-31j MS932 MS932 windows-932
csWindows31J

Windows Japanese

x-Big5-HKSCS-2001 x-Big5-HKSCS-2001 Big5_HKSCS_2001
big5hk-2001 big5-
hkscs-2001 big5-
hkscs:unicode3.0
big5hkscs-2001

Big5 with Hong Kong
Supplementary
Character Set, 2001
revision

x-Big5-Solaris Big5_Solaris Big5_Solaris Big5 with seven
additional Hanzi
ideograph character
mappings for the
Solaris zh_TW.BIG5
locale

x-euc-jp-linux EUC_JP_LINUX euc_jp_linux euc-jp-
linux

JISX 0201, 0208, EUC
encoding Japanese

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-8

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

x-eucJP-Open EUC_JP_Solaris EUC_JP_Solaris
eucJP-open

JISX 0201, 0208,
0212, EUC encoding
Japanese

x-EUC-TW EUC_TW euc_tw euctw
cns11643 EUC-TW

CNS11643 (Plane
1-7,15), EUC
encoding, Traditional
Chinese

x-IBM1006 Cp1006 cp1006 ibm1006
ibm-1006 1006

IBM AIX Pakistan
(Urdu)

x-IBM1025 Cp1025 cp1025 ibm1025
ibm-1025 1025

IBM Multilingual
Cyrillic: Bulgaria,
Bosnia, Herzegovinia,
Macedonia (FYR)

x-IBM1046 Cp1046 cp1046 ibm1046
ibm-1046 1046

IBM Arabic - Windows

x-IBM1097 Cp1097 cp1097 ibm1097
ibm-1097 1097

IBM Iran (Farsi)/
Persian

x-IBM1098 Cp1098 cp1098 ibm1098
ibm-1098 1098

IBM Iran (Farsi)/
Persian (PC)

x-IBM1112 Cp1112 cp1112 ibm1112
ibm-1112 1112

IBM Latvia, Lithuania

x-IBM1122 Cp1122 cp1122 ibm1122
ibm-1122 1122

IBM Estonia

x-IBM1123 Cp1123 cp1123 ibm1123
ibm-1123 1123

IBM Ukraine

x-IBM1124 Cp1124 cp1124 ibm1124
ibm-1124 1124

IBM AIX Ukraine

x-IBM1129 Cp1129 cp1129 ibm1129
ibm-1129 1129

IBM AIX Vietnamese

x-IBM1166 Cp1166 cp1166 ibm1166
ibm-1166 1166

IBM Cyrillic
Multilingual with euro
for Kazakhstan

x-IBM1364 Cp1364 cp1364 ibm1364
ibm-1364 1364

IBM EBCDIC KS X
1005-1

x-IBM1381 Cp1381 cp1381 ibm1381
ibm-1381 1381

IBM OS/2, DOS
People's Republic of
China (PRC)

x-IBM1383 Cp1383 cp1383 ibm1383
ibm-1383 1383
ibmeuccn ibm-euccn
cpeuccn

IBM AIX People's
Republic of China
(PRC)

x-IBM300 Cp300 cp300 ibm300
ibm-300 300

IBM Japanese Latin
Host Double-Byte

x-IBM33722 Cp33722 cp33722 ibm33722
ibm-33722 ibm-5050
ibm-33722_vascii_vpu
a 33722

IBM-eucJP -
Japanese (superset of
5050)

x-IBM833 Cp833 cp833 ibm833
ibm-833

IBM Korean Host
Extended SBCS

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-9

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

x-IBM834 Cp834 cp834 ibm834 834
ibm-834

IBM EBCDIC DBCS-
only Korean

x-IBM856 Cp856 cp856 ibm-856
ibm856 856

IBM Hebrew

x-IBM875 Cp875 cp875 ibm875
ibm-875 875

IBM Greek

x-IBM921 Cp921 cp921 ibm921
ibm-921 921

IBM Latvia, Lithuania
(AIX, DOS)

x-IBM922 Cp922 cp922 ibm922
ibm-922 922

IBM Estonia (AIX,
DOS)

x-IBM930 Cp930 cp930 ibm930
ibm-930 930

Japanese Katakana-
Kanji mixed with 4370
UDC, superset of
5026

x-IBM933 Cp933 cp933 ibm933
ibm-933 933

Korean Mixed with
1880 UDC, superset
of 5029

x-IBM935 Cp935 cp935 ibm935
ibm-935 935

Simplified Chinese
Host mixed with 1880
UDC, superset of
5031

x-IBM937 Cp937 cp937 ibm937
ibm-937 937

Traditional Chinese
Host miexed with
6204 UDC, superset
of 5033

x-IBM939 Cp939 cp939 ibm939
ibm-939 939

Japanese Latin Kanji
mixed with 4370 UDC,
superset of 5035

x-IBM942 Cp942 cp942 ibm942
ibm-942 942

IBM OS/2 Japanese,
superset of Cp932

x-IBM942C Cp942C cp942C ibm942C
ibm-942C 942C cp932
ibm932 ibm-932 932
x-ibm932

Variant of Cp942

x-IBM943 Cp943 cp943 ibm943
ibm-943 943

IBM OS/2 Japanese,
superset of Cp932
and Shift-JIS

x-IBM943C Cp943C cp943C ibm943C
ibm-943C 943C

Variant of Cp943

x-IBM948 Cp948 cp948 ibm948
ibm-948 948

OS/2 Chinese
(Taiwan) superset of
938

x-IBM949 Cp949 cp949 ibm949
ibm-949 949

PC Korean

x-IBM949C Cp949C cp949C ibm949C
ibm-949C 949C

Variant of Cp949

x-IBM950 Cp950 cp950 ibm950
ibm-950 950

PC Chinese (Hong
Kong, Taiwan)

x-IBM964 Cp964 cp964 ibm964
ibm-964 ibm-euctw
964

AIX Chinese (Taiwan)

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-10

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

x-IBM970 Cp970 cp970 ibm970
ibm-970 ibm-eucKR
970

AIX Korean

x-ISCII91 ISCII91 iscii ST_SEV_358-88
iso-ir-153
csISO153GOST19768
74 ISCII91

ISCII91 encoding of
Indic scripts

x-ISO-2022-CN-CNS ISO2022CN_CNS ISO2022CN_CNS
ISO-2022-CN-CNS

CNS11643 in ISO
2022 CN form,
Traditional Chinese
(conversion from
Unicode only)

x-ISO-2022-CN-GB ISO2022CN_GB ISO2022CN_GB
ISO-2022-CN-GB

GB2312 in ISO 2022
CN form, Simplified
Chinese (conversion
from Unicode only)

x-iso-8859-11 x-iso-8859-11 iso-8859-11
iso8859_11

Latin/Thai Alphabet

x-JIS0208 JIS0208 JIS0208
JIS_C6226-1983 iso-
ir-87 x0208
JIS_X0208-1983
csISO87JISX0208

JIS X 0208

x-JISAutoDetect JISAutoDetect JISAutoDetect Detects and converts
from Shift-JIS, EUC-
JP, ISO 2022 JP
(conversion to
Unicode only)

x-Johab x-Johab ksc5601-1992
ksc5601_1992
ms1361 johab

Korean, Johab
character set

x-MacArabic MacArabic MacArabic Macintosh Arabic

x-MacCentralEurope MacCentralEurope MacCentralEurope Macintosh Latin-2

x-MacCroatian MacCroatian MacCroatian Macintosh Croatian

x-MacCyrillic MacCyrillic MacCyrillic Macintosh Cyrillic

x-MacDingbat MacDingbat MacDingbat Macintosh Dingbat

x-MacGreek MacGreek MacGreek Macintosh Greek

x-MacHebrew MacHebrew MacHebrew Macintosh Hebrew

x-MacIceland MacIceland MacIceland Macintosh Iceland

x-MacRoman MacRoman MacRoman Macintosh Roman

x-MacRomania MacRomania MacRomania Macintosh Romania

x-MacSymbol MacSymbol MacSymbol Macintosh Symbol

x-MacThai MacThai MacThai Macintosh Thai

x-MacTurkish MacTurkish MacTurkish Macintosh Turkish

x-MacUkraine MacUkraine MacUkraine Macintosh Ukraine

x-MS932_0213 x-MS950-HKSCS MS932-0213
MS932_0213
MS932:2004
windows-932-0213
windows-932:2004

Shift_JISX0213
Windows MS932
Variant

Chapter 3
Extended Encoding Set (contained in jdk.charsets module)

3-11

Canonical Name for
java.nio API

Canonical Name for
java.io API and
java.lang API

Alias or Aliases Description

x-MS950-HKSCS MS950_HKSCS MS950_HKSCS Windows Traditional
Chinese with Hong
Kong extensions

x-MS950-HKSCS-XP x-mswin-936 MS950_HKSCS_XP HKSCS Windows XP
Variant

x-mswin-936 MS936 ms936 ms_936 Windows Simplified
Chinese

x-PCK PCK pck Solaris version of
Shift_JIS

x-SJIS_0213 x-SJIS_0213 sjis-0213 sjis_0213
sjis:2004
sjis_0213:2004
shift_jis_0213:2004
shift_jis:2004

Shift_JISX0213

x-windows-50220 MS50220 ms50220 cp50220 Windows Codepage
50220 (7-bit
implementation)

x-windows-50221 MS50221 ms50221 cp50221 Windows Codepage
50221 (7-bit
implementation)

x-windows-874 MS874 ms874 ms-874
windows-874

Windows Thai

x-windows-949 MS949 ms949 windows949
windows-949 ms_949

Windows Korean

x-windows-950 MS950 ms950 windows-950 Windows Traditional
Chinese

x-windows-iso2022jp windows-iso2022jp windows-iso2022jp Variant ISO-2022-JP
(MS932 based)

Printing Charset Information
The following applications print the aliases and the canonical name for java.io and
java.lang APIs of each charset supported by Java SE.

The following application prints the aliases of each charset:

import java.nio.charset.*;

class DisplayCharsetAliases {
 public static void main(String[] args) {
 System.out.println("Charset -> Aliases");
 System.out.println("==================");
 for (Charset cs : Charset.availableCharsets().values()) {
 System.out.println(cs.name() + " -> " + cs.aliases());
 }
 }
}

Chapter 3
Printing Charset Information

3-12

The following application prints the canonoical name for java.io and java.lang
APIs of each charset:

import java.nio.charset.*;
import sun.nio.cs.*;

class PrintCanonicalName {
 public static void main(String[] args) {
 for (Charset cs : Charset.availableCharsets().values()) {
 System.out.println(cs.name() + ":" +
 (cs instanceof HistoricallyNamedCharset ?
 ((HistoricallyNamedCharset)cs).historicalName() :
"-----"));
 }
 }
}

Compile this application as follows:

javac --add-exports java.base/sun.nio.cs=ALL-UNNAMED
PrintCanonicalName.java

Chapter 3
Printing Charset Information

3-13

4
Supported Calendars

The core of the Date-Time API is the java.time package. The classes defined in
java.time base their calendar system on the ISO calendar, which is the world standard
for representing date and time. The ISO calendar follows the proleptic Gregorian rules.
There are also non-ISO calendars predefined in java.time.chrono package: the
Japanese, Hijrah, Minguo, and Thai Buddhist calendars. For more about the Date-
Time API, see the Internationalization Trail in the Java Tutorials.

4-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
http://docs.oracle.com/javase/tutorial/datetime/iso/index.html

5
Supported Fonts

Different OS platforms may provide fonts that are implemented using different font
technologies. To support cross-platform use, the Java SE API defines five families of
"logical" fonts that can safely be used by an application using any Java SE
implementation. The names of these families are defined in the Font class
description.

Additionally a Java SE implementation may expose the platform fonts to be used
directly by name. These fonts are called "physical" fonts.

For more information on the terminology used here, see the Font class description.

• Support for Physical Fonts

• Support for Logical Fonts

Support for Physical Fonts
The JDK supports TrueType, OpenType, and PostScript Type 1 fonts.

Physical fonts need to be installed in locations known to the Java runtime
environment. The JDK locates fonts in the standard font locations defined by the host
operating system.

You can add physical fonts that use a supported font technology by installing them in a
way supported by the host operating system. The recommended location to add per-
user fonts on Linux is the $HOME/.fonts directory which is searched by the platform's
libfontconfig, and which is in turn used by the JDK.

Support for Logical Fonts
Typically one logical font maps to several physical fonts in order to cover a larger
range of code points than is possible with a single font. Logical fonts are mapped to
physical fonts in implementation-dependent ways, and can vary from platform to
platform and from release to release.

Font configuration files are used by some implementations to handle the mapping, see
Font Configuration Files:

• Current releases for Windows always use font configuration files.

• The macOS implementation always ignores font configuration files.

• Releases for Linux use font configuration files only if there is an exact match for
the OS version, otherwise font configuration files are ignored and platform APIs
are used to populate the logical fonts.

5-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Font.html

6
Font Configuration Files

The Java Platform defines five logical font names that every implementation must
support: Serif, SansSerif, Monospaced, Dialog, and DialogInput. These
logical font names are mapped to physical fonts in implementation dependent ways.

One way the Oracle JDK maps logical font names to physical fonts is by using font
configuration files. There may be several files to support different mappings depending
on the host operating system version. The files are distributed with the JDK
installation. You can edit or create your own font configuration files to adjust the
mappings to your particular system setup, however these must be placed in conf/
fonts, and are subject to implementation notes discussed below.

Font configuration files come in two formats: a properties format and a binary format.
The properties format is described in detail in this document and can be used for user-
defined configurations. The binary format is undocumented and used only for the
JDK's predefined configurations; the corresponding files in properties format are
available for reference as files with the .properties.src extension.

Supported Platforms
Font configuration files are implementation dependent. Not all implementations of the
Java Platform use them, and the format and content vary between runtime
environments and releases. The macOS implementation does not use font
configuration files, as the mapping is hard coded in the source and cannot be
changed.

The Oracle JDK supports font configuration files on the host operating system as
follows:

• For Windows, font configuration files are required.

• For macOS, font configuration files are unsupported.

• For Linux: the Oracle JDK is moving away from providing custom font
configuration files on Linux platforms, as they are difficult to keep up to date
across distributions and versions. A distribution that has control over the fonts on
the system can continue to provide this custom file. If the Java runtime finds a
custom file that exactly matches the distribution and version, that file is used. If no
exact match is found, the file is dynamically created at runtime. These generated
files are placed in a location determined by the implementation. They should be
considered implementation internal: they are not user editable and do not follow
the syntax as described in this specification.

Loading Font Configuration Files
The JDK places any files that it provides in $JDKHOME/lib. Do not modify that
location. Instead, put any updates or custom versions of the configuration files
in $JDKHOME/conf/fonts.

6-1

On platforms that support font configuration files, the runtime will look first
in $JDKHOME/conf/fonts. In other words, a user-supplied file is preferred if it is a
match.

The font configuration file for a host operating system is located as follows:

• JavaHome - the JDK directory, as given by the java.home system property.

• OS - a string identifying an operating system variant:

– For Windows, empty.

– For Linux, "RedHat", "SuSE", etc.

• Version - a string identifying the operating system version.

The runtime uses the first of the following files it finds:

JavaHome/lib/fontconfig.OS.Version.properties
JavaHome/lib/fontconfig.OS.Version.bfc
JavaHome/lib/fontconfig.OS.properties
JavaHome/lib/fontconfig.OS.bfc
JavaHome/lib/fontconfig.Version.properties
JavaHome/lib/fontconfig.Version.bfc
JavaHome/lib/fontconfig.properties
JavaHome/lib/fontconfig.bfc

Files with a .properties suffix are assumed to be properties files as specified by the
Properties class and are loaded through that class. Files without this suffix are
assumed to be in binary format.

Names Used in Font Configuration Files
Throughout the font configuration files, a number of different names are used:

• LogicalFontName - one of the five logical font names: serif, sansserif,
monospaced, dialog, and dialoginput. In font configuration files, these names are
always in lowercase.

• StyleName - one of the four standard font styles: plain, bold, italic, and
bolditalic. Again, these names are always in lowercase.

• PlatformFontName - the name of a physical font, in a format typically used on the
platform:

– On Windows, a font face name, such as "Courier New" or "\uad74\ub9bc".

– On Linux, an xlfd name, such as "-monotype-times new roman-regular-r---
-%d--*-p-*-iso8859-1". Note that "%d" is used for the font size - the actual
font size is filled in at runtime.

• CharacterSubsetName - a name for a subset of the Unicode character set which
certain component fonts can render. For Windows, the following names are
predefined: alphabetic, arabic, chinese-ms936, chinese-gb18030, chinese-ms950,
chinese-hkscs, cyrillic-iso8859-5, cyrillic-cp1251, cyrillic-koi8-r, devanagari,
dingbats, greek, hebrew, japanese, korean, latin, symbol, thai. For Linux, the
following names are predefined: arabic, chinese-gb2312, chinese-gbk, chinese-
gb18030-0, chinese-gb18030-1, chinese-cns11643-1, chinese-cns11643-2,
chinese-cns11643-3, chinese-big5, chinese-hkscs, cyrillic, devanagari, dingbats,

Chapter 6
Names Used in Font Configuration Files

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Properties.html

greek, hebrew, japanese-x0201, japanese-x0208, japanese-x0212, korean,
korean-johab, latin-1, latin-2, latin-4, latin-5, latin-7, latin-9, symbol,thai. A font
configuration file may define additional names to identify additional character
subsets.

• Encoding - the canonical name of the default encoding, as provided by
java.nio.charset.Charset.defaultCharset().name().

• Language - the language of the initial default locale.

• Country - the country of the initial default locale.

Properties for All Platforms
Properties that are applicable to all platforms enable you to specify the font
configuration format version, component font mappings, search sequences, exclusion
ranges, proportional fonts, font file names, and appended font path.

Version Property
The version property identifies the font configuration format version. This document
specifies version 1.

The complete property has the form:

version=1

Component Font Mappings
Component font mapping properties describe which physical font to use to render
characters from a given character subset with a given logical font in a given style.

The keys have the forms:

allfonts.CharacterSubsetName
LogicalFontName.StyleName.CharacterSubsetName

The first form is used if the same font is used for a character subset independent of
logical font and style (in this case, the font rendering engines apply algorithmic styles
to the font). The second form is used if different physical fonts are used for a character
subset for different logical fonts and styles. In this case, properties must be specified
for each combination of logical font and style, so 20 properties for one character
subset. If a property of the first form is present for a character subset, then properties
of the second form for the same character subset are ignored.

The values are platform font names, as described in Names Used in Font
Configuration Files.

Since the character subsets supported by given fonts often overlap, separate search
sequence properties are used to define in which order to try the fonts when rendering
a character.

Chapter 6
Properties for All Platforms

6-3

Search Sequences
The Java runtime uses sequence properties to determine search sequences for the
five logical fonts. However, a font configuration file may specify properties that are
specific to a combination of encoding, language, and country, and the runtime will then
use a lookup to determine the search sequence property for each logical font.

The keys have the form:

sequence.allfonts.Encoding.Language.Country
sequence.LogicalFontName.Encoding.Language.Country
sequence.allfonts.Encoding.Language
sequence.LogicalFontName.Encoding.Language
sequence.allfonts.Encoding
sequence.LogicalFontName.Encoding
sequence.allfonts
sequence.LogicalFontName

The allfonts forms are used if the sequence is used for all five logical fonts. The
forms specifying logical font names are used if different sequences are used for
different logical fonts.

For each logical font, the Java runtime uses the property value with the first of the
above keys. This property determines the primary search sequence for the logical font.

The file may also define a single fallback search sequence. The key for the fallback
search sequence property is:

sequence.fallback

The values of all search sequence properties have the form:

SearchSequenceValue:
 CharacterSubsetName
 CharacterSubsetName , SearchSequenceValue

The primary search sequence properties specify character subset names for required
fonts, which are used for both AWT and 2D font rendering. The fallback search
sequence property gives character subset names for optional fonts, which are used as
fallbacks for all logical fonts, but only for 2D font rendering. On Windows, if there is a
system EUDC (End User Defined Characters) font registered with Windows, the
runtime automatically adds this font as well as a fallback font for 2D rendering.

The sequence properties determine in which sequence component fonts are tried to
render a given character. For example, given the following properties:

sequence.monospaced=japanese,alphabetic
sequence.fallback=korean
monospaced.plain.alphabetic=Arial
monospaced.plain.japanese=MSGothic
monospaced.plain.korean=Gulim

Chapter 6
Properties for All Platforms

6-4

The runtime will first attempt to render a character with the MSGothic font. If that font
doesn't provide a glyph for the character, it will attempt the Arial font. For 2D
rendering, it will also try the Gulim font as well as any TrueType, OpenType, or Type 1
fonts in the system's standard font locations. For 2D rendering on Windows, if there is
a system EUDC font registered with Windows, the runtime will also try this EUDC font.

When calculating font metrics for a logical font without reference to a string, only the
required fonts are taken into consideration. For the example above, the
FontMetrics.getMaxDescent method would return results based on the MSGothic
and Arial fonts, but not the Gulim font. In this way, simple user interface elements such
as buttons, which sometimes calculate their size based on font metrics, are not
affected by an extended list of component fonts which their labels usually don't use.
On the other hand, text components typically calculate metrics based on the text they
contain and thus will obtain correct results.

The sequence properties that the runtime obtains for the five logical fonts should list
the same character subsets, but may list them in different order.

Exclusion Ranges
The exclusion range properties specify Unicode character ranges which should be
excluded from being rendered with the fonts corresponding to a given character
subset. This is used if a font with a large character repertoire needs to be placed early
in the search sequence (for example, for performance reasons), but some characters
that it supports should be drawn with a different font instead. These properties are
optional, so there's at most one per character subset.

The keys have the form:

exclusion.CharacterSubsetName

The values have the form:

ExclusionRangeValue:
 Range
 Range , ExclusionRangeValue

Range:
 Char - Char

Char:
 HexDigit HexDigit HexDigit HexDigit
 HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

A Char is a Unicode character represented as a hexadecimal value.

Proportional Fonts
The proportional font properties describe the relationship between proportional and
non-proportional variants of otherwise equivalent fonts. These properties are used to
implement preferences specified by the
GraphicsEnvironment.preferProportionalFonts method.

Chapter 6
Properties for All Platforms

6-5

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/FontMetrics.html#getMaxDescent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/GraphicsEnvironment.html#preferProportionalFonts()

The keys have the form:

proportional.PlatformFontName

Space characters in the platform font name must be replaced with underscore
characters (_).

The values have the form:

PlatformFontName

In values, space characters are left unmodified.

Each property indicates that the font named in the value is the proportional equivalent
of the font named in the key, and also that the font named in the key is the non-
proportional equivalent of the font named in the value.

Font File Names
Font file name properties provide the names of the files containing the physical fonts
used in the font configuration file. File names are required for all physical fonts on
Windows and recommended for all physical fonts on Linux.

The keys have the form:

filename.PlatformFontName

Space characters in the platform font name must be replaced with underscore
characters (_).

The values are the file names of the files containing the fonts. On Windows, simple file
names are used; and the runtime environment looks for each file first in its own lib/
fonts directory if one exists, then in the Windows fonts directory. On Linux, absolute
path names, path names starting with "$JRE_LIB_FONTS" for the runtime environment's
own lib/fonts directory, or xlfd names are used.

Note:

Oracle JDK does not deliver any fonts in the lib/fonts location.

Appended Font Path
The Java runtime can automatically determine a number of directories that contain font
files, such as its own lib/fonts directory if one exists, or the Windows fonts folder.
Additional directories can be specified to be appended to the font path.

The key has the form:

appendedfontpath

Chapter 6
Properties for All Platforms

6-6

The value has the form:

AppendedFontPathValue:
 Directory
 Directory PathSeparator AppendedFontPathValue

The path separator is the platform dependent value of
java.io.File.pathSeparator.

Properties for Windows
There are no platform-specific properties for Windows. However, there is a special
form of the character subset name used in search sequences. The name "alphabetic"
can take a suffix indicating the character encoding associated with the subset:

alphabetic
alphabetic/default
alphabetic/1252

This information is only used for AWT, not for 2D. The /default suffix restricts use of
the component fonts for this character subset to the character set of the default
encoding; the /1252 suffix to the Windows-1252 character set. For accessing
component font mappings and exclusion ranges, the character encoding suffix is
omitted. For all other character subsets, the AWT character encoding is determined
internally by the Java runtime.

Property for Linux
The only property that is specific to Linux is the AWT font path, which identifies
platform directories that should be added to the X11 server font path.

The keys have the form:

awtfontpath.CharacterSubsetName

The values have the form:

AWTFontPathValue:
 Directory
 Directory : AWTFontPathValue

The directories must be valid X11 font directories. The Java runtime ensures that the
directories for all character subsets of a primary search sequence found by the search
sequence lookup (see Search Sequences) are part of the X11 font path. The
implementation assumes that all logical fonts use the same set of character subsets
for a given environment of encoding, language, and country.

Chapter 6
Properties for Windows

6-7

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html#pathSeparator

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Internationalization Enhancements
	Internationalization Enhancements in JDK 11
	Unicode 10.0.0

	Internationalization Enhancements in JDK 10
	Additional Unicode Language-Tag Extensions

	Internationalization Enhancements in JDK 9
	Unicode 8.0
	CLDR Locale Data Enabled by Default
	UTF-8 Properties Files

	2 Internationalization Overview
	Text Representation
	Locale Identification and Localization
	Locales
	Locale Class
	Supported Locales

	Localized Resources
	ResourceBundle Class
	ResourceBundle.Control Class

	ListResourceBundle Class
	PropertyResourceBundle Class

	Date and Time Handling
	Text Processing
	Formatting
	Format Class
	DateFormat Class
	SimpleDateFormat Class
	DateFormatSymbols Class
	NumberFormat Class
	DecimalFormat Class
	DecimalFormatSymbols Class
	ChoiceFormat Class
	MessageFormat Class
	ParsePosition Class
	FieldPosition Class

	Locale-Sensitive String Operations
	Collator Class
	RuleBasedCollator Class
	CollationElementIterator Class
	CollationKey Class
	BreakIterator Class
	StringCharacterIterator Class
	CharacterIterator Interface
	Normalizer Class

	Locale-Sensitive Services SPIs
	Character Encoding Conversion
	Supported Encodings
	Stream I/O
	Reader and Writer Classes
	PrintStream Class
	Charset Package

	Input Methods
	Input Method Support in Swing
	Input Method Framework

	3 Supported Encodings
	Basic Encoding Set (contained in java.base module)
	Extended Encoding Set (contained in jdk.charsets module)
	Printing Charset Information

	4 Supported Calendars
	5 Supported Fonts
	Support for Physical Fonts
	Support for Logical Fonts

	6 Font Configuration Files
	Supported Platforms
	Loading Font Configuration Files
	Names Used in Font Configuration Files
	Properties for All Platforms
	Version Property
	Component Font Mappings
	Search Sequences
	Exclusion Ranges
	Proportional Fonts
	Font File Names
	Appended Font Path

	Properties for Windows
	Property for Linux

