
Java Platform, Standard Edition
Java Language Updates

Release 13
F18344-01
September 2019

Java Platform, Standard Edition Java Language Updates, Release 13

F18344-01

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience iv

Documentation Accessibility iv

Related Documents iv

Conventions iv

1 Java Language Changes

Java Language Changes for Java SE 13 1-1

Java Language Changes for Java SE 12 1-1

Java Language Changes for Java SE 11 1-1

Java Language Changes for Java SE 10 1-1

Java Language Changes for Java SE 9 1-1

2 Preview Features

3 Switch Expressions

4 Local Variable Type Inference

5 More Concise try-with-resources Statements

6 Small Language Changes in Java SE 9

iii

Preface

This guide describes the updated language features in Java SE 9 and subsequent
releases.

Audience
This document is for Java developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 13 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=homepage

1
Java Language Changes

This section summarizes the updated language features in Java SE 9 and subsequent
releases.

Java Language Changes for Java SE 13
Java SE 13 introduces text blocks, which are multiline string literals that don't require
common escape sequences; see Programmer's Guide to Text Blocks. It also
introduces one change to switch expressions: To specify their value, use the new
yield statement instead of the break statement; see Switch Expressions.

Java Language Changes for Java SE 12
Java SE 12 introduces switch expressions, plus a new kind of case label that prevents
fall through. This is available as a preview feature. See Switch Expressions in Java
Platform, Standard Edition Java Language Updates, Release 12.

Java Language Changes for Java SE 11
Java SE 11 lets you declare formal parameters of implicitly typed lambda expressions
with the var identifier; see Local Variable Type Inference.

Java Language Changes for Java SE 10
Java SE 10 introduces support for inferring the type of local variables from the context,
which makes code more readable and reduces the amount of required boilerplate
code.

Java Language Changes for Java SE 9
The major change to Java Platform, Standard Edition (Java SE) 9 is the introduction of
the Java Platform module system.

The Java Platform module system introduces a new kind of Java programing
component, the module, which is a named, self-describing collection of code and data.
Its code is organized as a set of packages containing types, i.e., Java classes and
interfaces; its data includes resources and other kinds of static information. Modules
can either export or encapsulate packages, and they express dependencies on other
modules explicitly.

To learn more about the Java Platform module system, see Project Jigsaw on
OpenJDK.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase12&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
http://openjdk.java.net/projects/jigsaw/

Apart from the new module system, a few changes have been made to the Java
language; see More Concise try-with-resources Statements and Small Language
Changes in Java SE 9.

Chapter 1
Java Language Changes for Java SE 9

1-2

2
Preview Features

A preview feature is a new feature whose design, specification, and implementation
are complete, but which is not permanent, which means that the feature may exist in a
different form or not at all in future JDK releases.

Introducing a feature as a preview feature in a mainline JDK release enables the
largest developer audience possible to try the feature out in the real world and provide
feedback. In addition, tool vendors are encouraged to build support for the feature
before Java developers use it in production. Developer feedback helps determine
whether the feature has any design mistakes, which includes hard technical errors
(such as a flaw in the type system), soft usability problems (such as a surprising
interaction with an older feature), or poor architectural choices (such as one that
forecloses on directions for future features). Through this feedback, the feature's
strengths and weaknesses are evaluated to determine if the feature has a long-term
role in the Java SE Platform, and if so, whether it needs refinement. Consequently, the
feature may be granted final and permanent status (with or without refinements), or
undergo a further preview period (with or without refinements), or else be removed.

Every preview feature is described by a JDK Enhancement Proposal (JEP) that
defines its scope and sketches its design. For example, JEP 325 describes the JDK 12
preview feature for switch expressions. For background information about the role and
lifecycle of preview features, see JEP 12.

Using Preview Features

To use preview language features in your programs, you must explicitly enable them in
the compiler and the runtime system. If not, you'll receive an error message that states
that your code is using a preview feature and preview features are disabled by default.

To compile source code with javac that uses preview features from JDK release n,
use javac from JDK release n with the --enable-preview command-line option in
conjunction with either the --release n or -source n command-line option.

For example, suppose you have an application named MyApp.java that uses the JDK
12 preview language feature switch expressions. Compile this with JDK 12 as follows:

javac --enable-preview --release 12 MyApp.java

2-1

https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/12

Note:

When you compile an application that uses preview features, you'll receive a
warning message similar to the following:

Note: MyApp.java uses preview language features.
Note: Recompile with -Xlint:preview for details

Remember that preview features are subject to change and are intended to
provoke feedback.

To run an application that uses preview features from JDK release n, use java from
JDK release n with the --enable-preview option. To continue the previous example,
to run MyApp, run java from JDK 12 as follows:

java --enable-preview MyApp

Note:

Code that uses preview features from an older release of the Java SE
Platform will not necessarily compile or run on a newer release.

The tools jshell and javadoc also support the --enable-preview command-line
option.

Sending Feedback

You can provide feedback on preview features, or anything else about the Java SE
Platform, as follows:

• If you find any bugs, then submit them at Java Bug Database.

• If you want to provide substantive feedback on the usability of a preview feature,
then post it on the OpenJDK mailing list where the feature is being discussed. To
find the mailing list of a particular feature, see the feature's JEP page and look for
the label Discussion. For example, on the page JEP 325: Switch Expressions
(Preview), you'll find "Discussion amber dash dev at openjdk dot java dot net" near
the top of the page.

• If you are working on an open source project, then see Quality Outreach on the
OpenJDK Wiki.

Chapter 2

2-2

https://bugs.java.com/bugdatabase/
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

3
Switch Expressions

Java SE 12 introduced switch expressions, which (like all expressions) evaluate to a
single value, and can be used in statements. It also introduced "arrow case" labels that
eliminate the need for break statements to prevent fall through. Based on developer
feedback on this feature, Java SE 13 introduces one change to switch expressions:
To specify their value, use the new yield statement instead of the break statement.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future JDK releases. To
compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features. For background
information about the design of switch expressions, see JEP 354.

Consider the following switch statement that prints the number of letters of a day of
the week:

public enum Day { SUNDAY, MONDAY, TUESDAY,
 WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; }

// ...

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalStateException("Invalid day: " + day);

3-1

https://openjdk.java.net/jeps/354

 }
 System.out.println(numLetters);

It would be better if you could "return" the length of the day's name instead of storing it
in the variable numLetters; you can do this with a switch expression. Furthermore, it
would be better if you didn't need break statements to prevent fall through; they are
laborious to write and easy to forget. You can do this with a new kind of case label.
The following is a switch expression that uses the new kind of case label to print the
number of letters of a day of the week:

 Day day = Day.WEDNESDAY;
 System.out.println(
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 case THURSDAY, SATURDAY -> 8;
 case WEDNESDAY -> 9;
 default -> throw new IllegalStateException("Invalid day: " +
day);
 }
);

The new kind of case label has the following form:

case label_1, label_2, ..., label_n -> expression;|throw-statement;|block

When the Java runtime matches any of the labels to the left of the arrow, it runs the
code to the right of the arrow and does not fall through; it does not run any other code
in the switch expression (or statement). If the code to the right of the arrow is an
expression, then the value of that expression is the value of the switch expression.

You can use the new kind of case label in switch statements. The following is like the
first example, except it uses "arrow case" labels instead of "colon case" labels:

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> numLetters = 6;
 case TUESDAY -> numLetters = 7;
 case THURSDAY, SATURDAY -> numLetters = 8;
 case WEDNESDAY -> numLetters = 9;
 default -> throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

You can use "colon case" labels in switch expressions:

 Day day = Day.WEDNESDAY;
 int numLetters = switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:

Chapter 3

3-2

 System.out.println(6);
 yield 6;
 case TUESDAY:
 System.out.println(7);
 yield 7;
 case THURSDAY:
 case SATURDAY:
 System.out.println(8);
 yield 8;
 case WEDNESDAY:
 System.out.println(9);
 yield 9;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

Java SE 13 introduces the yield statement. It takes one argument, which is the value
that the case label produces in a switch expression.

The yield statement makes it easier for you to differentiate between switch
statements and switch expressions. A switch statement, but not a switch expression,
can be the target of a break statement. Conversely, a switch expression, but not a
switch statement, can be the target of a yield statement.

Chapter 3

3-3

Note:

It's recommended that you use "arrow case" labels. It's easy to forget to
insert break or yield statements when using "colon case" labels; if you do,
you might introduce unintentional fall through in your code.

For "arrow case" labels, to specify multiple statements or code that are not
expressions or throw statements, enclose them in a block. Specify the value
that the case label produces with the yield statement:

 int numLetters = switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> {
 System.out.println(6);
 yield 6;
 }
 case TUESDAY -> {
 System.out.println(7);
 yield 7;
 }
 case THURSDAY, SATURDAY -> {
 System.out.println(8);
 yield 8;
 }
 case WEDNESDAY -> {
 System.out.println(9);
 yield 9;
 }
 default -> {
 throw new IllegalStateException("Invalid day: " + day);
 }
 };

Chapter 3

3-4

4
Local Variable Type Inference

In JDK 10 and later, you can declare local variables with non-null initializers with the
var identifier, which can help you write code that’s easier to read.

Consider the following example, which seems redundant and is hard to read:

URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

You can rewrite this example by declaring the local variables with the var identifier.
The type of the variables are inferred from the context:

var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

var is a reserved type name, not a keyword, which means that existing code that uses
var as a variable, method, or package name is not affected. However, code that uses
var as a class or interface name is affected and the class or interface needs to be
renamed.

var can be used for the following types of variables:

• Local variable declarations with initializers:

var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var path = Paths.get(fileName); // infers Path
var bytes = Files.readAllBytes(path); // infers bytes[]

• Enhanced for-loop indexes:

List<String> myList = Arrays.asList("a", "b", "c");
for (var element : myList) {...} // infers String

• Index variables declared in traditional for loops:

for (var counter = 0; counter < 10; counter++) {...} // infers int

• try-with-resources variable:

try (var input =
 new FileInputStream("validation.txt")) {...} // infers
FileInputStream

4-1

• Formal parameter declarations of implicitly typed lambda expressions: A lambda
expression whose formal parameters have inferred types is implicitly typed:

BiFunction<Integer, Integer, Integer> = (a, b) -> a + b;

In JDK 11 and later, you can declare each formal parameter of an implicitly typed
lambda expression with the var identifier:

(var a, var b) -> a + b;

As a result, the syntax of a formal parameter declaration in an implicitly typed
lambda expression is consistent with the syntax of a local variable declaration;
applying the var identifier to each formal parameter in an implicitly typed lambda
expression has the same effect as not using var at all.

You cannot mix inferred formal parameters and var-declared formal parameters in
implicitly typed lambda expressions nor can you mix var-declared formal
parameters and manifest types in explicitly typed lambda expressions. The
following examples are not permitted:

(var x, y) -> x.process(y) // Cannot mix var and inferred formal
parameters
 // in implicitly typed lambda
expressions
(var x, int y) -> x.process(y) // Cannot mix var and manifest types
 // in explicitly typed lambda
expressions

Local Variable Type Inference Style Guidelines

Local variable declarations can make code more readable by eliminating redundant
information. However, it can also make code less readable by omitting useful
information. Consequently, use this feature with judgment; no strict rule exists about
when it should and shouldn't be used.

Local variable declarations don't exist in isolation; the surrounding code can affect or
even overwhelm the effects of var declarations. Style Guidelines for Local Variable
Type Inference in Java examines the impact that surrounding code has on var
declarations, explains tradeoffs between explicit and implicit type declarations, and
provides guidelines for the effective use of var declarations.

Chapter 4

4-2

http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html

5
More Concise try-with-resources
Statements

If you already have a resource as a final or effectively final variable, you can use
that variable in a try-with-resources statement without declaring a new variable. An
"effectively final" variable is one whose value is never changed after it is initialized.

For example, you declared these two resources:

 // A final resource
 final Resource resource1 = new Resource("resource1");
 // An effectively final resource
 Resource resource2 = new Resource("resource2");

In Java SE 7 or 8, you would declare new variables, like this:

 try (Resource r1 = resource1;
 Resource r2 = resource2) {
 ...
 }

In Java SE 9, you don’t need to declare r1 and r2:

// New and improved try-with-resources statement in Java SE 9
 try (resource1;
 resource2) {
 ...
 }

There is a more complete description of the try-with-resources statement in The Java
Tutorials (Java SE 8 and earlier).

5-1

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

6
Small Language Changes in Java SE 9

There are several small language changes in Java SE 9.

@SafeVarargs annotation is allowed on private instance methods.

The @SafeVarargs annotation can be applied only to methods that cannot be
overridden. These include static methods, final instance methods, and, new in Java
SE 9, private instance methods.

You can use diamond syntax in conjunction with anonymous inner classes.

Types that can be written in a Java program, such as int or String, are called
denotable types. The compiler-internal types that cannot be written in a Java program
are called non-denotable types.

Non-denotable types can occur as the result of the inference used by the diamond
operator. Because the inferred type using diamond with an anonymous class
constructor could be outside of the set of types supported by the signature attribute in
class files, using the diamond with anonymous classes was not allowed in Java SE 7.

In Java SE 9, as long as the inferred type is denotable, you can use the diamond
operator when you create an anonymous inner class.

The underscore character is not a legal name.

If you use the underscore character ("_") an identifier, your source code can no longer
be compiled.

Private interface methods are supported.

Private interface methods are supported. This support allows nonabstract methods of
an interface to share code between them.

6-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Language Changes
	Java Language Changes for Java SE 13
	Java Language Changes for Java SE 12
	Java Language Changes for Java SE 11
	Java Language Changes for Java SE 10
	Java Language Changes for Java SE 9

	2 Preview Features
	3 Switch Expressions
	4 Local Variable Type Inference
	5 More Concise try-with-resources Statements
	6 Small Language Changes in Java SE 9

