
Java Platform, Standard Edition
Nashorn User's Guide

Release 13
F18357-01
September 2019

Java Platform, Standard Edition Nashorn User's Guide, Release 13

F18357-01

Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Introduction to the Nashorn Engine

Invoking Nashorn from Java Code 1-1

Invoking Nashorn from the Command Line 1-2

Nashorn Parser API 1-3

2 The Nashorn Java API

Accessing Java Classes 2-1

Creating Java Objects 2-3

Accessing Class and Instance Members 2-3

Using JavaBeans 2-4

Working with Java Arrays 2-5

Working with Java Strings 2-6

Working with Java Numbers 2-6

Working with Java Lists and Maps 2-6

Extending Java Classes 2-7

Restricting Script Access to Specified Java Classes 2-8

Using Class Filters 2-9

Restricting Access to Java Reflection APIs 2-9

Example of Using the ClassFilter Interface 2-9

3 Nashorn and JavaFX

Interpreting JavaFX Script Application with Nashorn 3-1

Using Nashorn to Simplify JavaFX Script Applications 3-2

Example of a JavaFX Application (HelloWorld.java) 3-2

iii

Example of a JavaFX Script Application (HelloWorld.js) 3-3

Example of a Simpler Version of JavaFX Script Application
(HelloWorldSimple.js) 3-3

Nashorn Script Objects 3-3

Example of a JavaFX Script Application with Loaded Scripts 3-4

4 Nashorn and Shell Scripting

Shebang 4-1

String Interpolation 4-2

Here Document 4-3

Global Objects 4-3

Additional Nashorn Built-in Functions 4-5

A JavaFX Script Application Examples

Example JavaFX 3-D A-1

Example JavaFX Animation A-2

iv

Preface

This document describes the use of the Nashorn engine for Java application
development with scripting features provided by the Java Platform, Standard Edition
(Java SE).

Audience
This document is intended for Java programmers who want to use the Nashorn engine
for scripting features provided by Java SE. It is assumed that you are familiar with
Java and a version of the ECMAScript language standard (JavaScript).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
• Scripting Languages and Java

in Java Platform, Standard Edition Java Scripting Programmer's Guide

• The Java Scripting API specification (the javax.script package)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/java/javase/11/docs/api/java.scripting/javax/script/package-summary.html

1
Introduction to the Nashorn Engine

This section provides introductory information about the Nashorn engine and how it
can be used to interpret JavaScript code in a Java application or from the command
line.

Note:

The Nashorn engine, the jjs tool, and the modules
jdk.scripting.nashorn and jdk.scripting.nashorn.shell are
deprecated in JDK 11 in preparation for removal in a future release.

The Nashorn engine is an implementation of the ECMAScript Edition 5.1 Language
Specification. It also implements many new features introduced in ECMAScript 6
including template strings; let, const, and block scope; iterators and for..of loops;
Map, Set, WeakMap, and WeakSet data types; symbols; and binary and octal literals.

It was fully developed in the Java language as part of the Nashorn Project. The code is
based on the new features of the Da Vinci Machine, which is the reference
implementation of Java Specification Request (JSR) 292: Supporting Dynamically
Typed Languages on the Java Platform.

The Nashorn engine is included in the Java SE Development Kit (JDK). You can
invoke Nashorn from a Java application using the Java Scripting API to interpret
embedded scripts, or you can pass the script to the jjs or jrunscript tool.

Note:

Nashorn is the only JavaScript engine included in the JDK. However, you
can use any script engine compliant with JSR 223: Scripting for the Java
Platform or implement your own; see Scripting Languages and Java in Java
Platform, Standard Edition Java Scripting Programmer's Guide.

Topics

• Invoking Nashorn from Java Code

• Invoking Nashorn from the Command Line

• Nashorn Parser API

Invoking Nashorn from Java Code
To invoke Nashorn in your Java application, create an instance of the Nashorn engine
using the Java Scripting API.

1-1

https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/6.0/
http://openjdk.java.net/projects/nashorn/
http://openjdk.java.net/projects/mlvm/
http://jcp.org/en/jsr/detail?id=292
http://jcp.org/en/jsr/detail?id=292
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

To get an instance of the Nashorn engine:

1. Import the javax.script package.

The Java Scripting API is composed of classes and interfaces in this package.

2. Create a ScriptEngineManager object.

The ScriptEngineManager class is the starting point for the Java Scripting API. A
ScriptEngineManager object is used to instantiate ScriptEngine objects and
maintain global variable values shared by them.

3. Get a ScriptEngine object from the manager using the getEngineByName()
method.

This method takes one String argument with the name of the script engine. To
get an instance of the Nashorn engine, pass in "nashorn". Alternatively, you can
use any of the following: "Nashorn", "javascript", "JavaScript", "js", "JS",
"ecmascript", "ECMAScript".

After you have the Nashorn engine instance, you can use it to evaluate statements
and script files, set variables, and so on. The following example, EvalScript.java,
provides simple Java application code that evaluates a print("Hello, World!");
statement using Nashorn.

import javax.script.*;

public class EvalScript {
 public static void main(String[] args) throws Exception {
 // create a script engine manager
 ScriptEngineManager factory = new ScriptEngineManager();
 // create a Nashorn script engine
 ScriptEngine engine = factory.getEngineByName("nashorn");
 // evaluate JavaScript statement
 try {
 engine.eval("print('Hello, World!');");
 } catch (final ScriptException se) { se.printStackTrace(); }
 }
}

Note:

The eval() method throws a ScriptException that must be handled
properly.

Java Scripting API Examples with Java Classes in Java Platform, Standard Edition
Java Scripting Programmer's Guide demonstrates how to use scripts in Java code.

Invoking Nashorn from the Command Line
There are two command-line tools that can be used to invoke the Nashorn engine:

• jrunscript: This is a generic command that invokes any available script engine
compliant with JSR 223. By default, without any options, jrunscript invokes the
Nashorn engine, because it is the default script engine in the JDK.

Chapter 1
Invoking Nashorn from the Command Line

1-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.scripting/javax/script/package-summary.html

• jjs: This is the recommended tool, created specifically for Nashorn. To evaluate a
script file using Nashorn, pass the name of the script file to the jjs tool. To launch
an interactive shell that interprets statements passed in using standard input, start
the jjs tool without specifying any script files.

Nashorn Parser API
The Nashorn parser API enables applications, in particular IDEs and server-side
frameworks, to parse and analyze ECMAScript code.

Parse ECMAScript code from a string, URL, or file with methods from the Parser
class. These methods return an instance of CompilationUnitTree, which
represents ECMAScript code as an abstract syntax tree. The package
jdk.nashorn.api.tree contains the Nashorn parser API.

Chapter 1
Nashorn Parser API

1-3

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.scripting.nashorn/jdk/nashorn/api/tree/Parser.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.scripting.nashorn/jdk/nashorn/api/tree/CompilationUnitTree.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.scripting.nashorn/jdk/nashorn/api/tree/package-summary.html

2
The Nashorn Java API

This section describes how to access Java from a script interpreted by the Nashorn
engine.

Note:

The Nashorn engine, the jjs tool, and the modules
jdk.scripting.nashorn and jdk.scripting.nashorn.shell are
deprecated in JDK 11 in preparation for removal in a future release.

This section contains examples of script statements interpreted by the Nashorn engine
in interactive language shell mode. This interactive shell is started by running the jjs
command without any scripts passed to it. This is useful for trying things out, but the
main purpose of the Nashorn Java API is to write Java applications as scripts that can
be interpreted by the Nashorn engine.

Topics

• Accessing Java Classes

• Creating Java Objects

• Accessing Class and Instance Members

• Using JavaBeans

• Working with Java Arrays

• Working with Java Strings

• Working with Java Numbers

• Working with Java Lists and Maps

• Extending Java Classes

• Restricting Script Access to Specified Java Classes

Accessing Java Classes
There are two approaches to access packages and classes using Nashorn: the
traditional approach is to use the Packages global object, and the recommended
approach is to use the Java global object. This section describes both approaches.

The predefined top-level Packages object enables you to access Java packages and
classes using their fully qualified names, as if they are properties of the Packages

2-1

object. The following example shows how you can access the MyPackage package and
its MyClass class if MyPackage.jar is in your class path:

jjs> Packages.MyPackage
[JavaPackage MyPackage]
jjs> Packages.MyPackage.MyClass
[JavaClass MyPackage.MyClass]

Accessing standard Java packages and classes is more straightforward than
accessing custom packages and classes. For your convenience, there are global
objects defined for each of the standard Java packages: com, edu, java, javax, and
org. They have aliases that correspond to properties of the Packages object. The
following example shows how you can access the java.lang package and the
java.lang.System class:

jjs> java.lang
[JavaPackage java.lang]
jjs> typeof java.lang
object
jjs> java.lang.System
[JavaClass java.lang.System]
jjs> typeof java.lang.System
function

As you can see from the previous example, Nashorn interprets Java packages as
JavaPackage objects, and Java classes as JavaClass function objects, which can be
used as constructors for the classes. Creating Java Objects describes how to
instantiate a class.

The traditional approach for accessing Java packages and classes is intuitive and
straightforward, but at the same time, it can be inefficient, limited, and error-prone for
the following reasons:

• Each property access has a cost, so accessing a package or class in a deep
hierarchy can be slow.

• There is no special syntax for creating Java arrays. You must use the
java.lang.reflect.Array class as a workaround.

• If you misspell a class name, Nashorn assumes that you provided a package
name, and interprets it as a JavaPackage object instead of a JavaClass function
object. You might not be aware of this until an error is thrown when you attempt to
use it as a class. To avoid this, use the typeof operator to conditionally test that
the construct you are trying to access is interpreted as a function object. The
following example shows how this conditional check works:

jjs> typeof java.lang.System == "function"
true
jjs> typeof java.lang.Zyztem == "function"
false

To avoid the disadvantages of the approach previously described, Nashorn defines the
Java global object that has several functions for working with Java classes. The
Java.type() function takes a string with the fully qualified Java class name, and

Chapter 2
Accessing Java Classes

2-2

returns the corresponding JavaClass function object. The following example shows
how you can access the java.lang.System class:

jjs> Java.type("java.lang.System")
[JavaClass java.lang.System]

Similar to importing classes in Java, it is a good practice to declare variables of
JavaClass type at the beginning of a script. The following example shows how you can
declare the System variable and give it a value of the java.lang.System class:

jjs> var System = Java.type("java.lang.System")
jjs> System
[JavaClass java.lang.System]

Creating Java Objects
To instantiate a class, pass the JavaClass function object to the new operator. Nashorn
invokes the corresponding constructor based on the arguments passed to the function.

The following example shows how you can instantiate the java.util.HashMap class
with the default initial capacity and with the initial capacity set to 100:

jjs> var HashMap = Java.type("java.util.HashMap")
jjs> var mapDef = new HashMap()
jjs> var map100 = new HashMap(100)

Accessing Class and Instance Members
You can use the standard dot notation to access static fields, methods, and inner
classes as follows.

jjs> Java.type("java.lang.Math").PI
3.141592653589793
jjs> Java.type("java.lang.System").currentTimeMillis()
1375813353330
jjs> Java.type("java.util.Map").Entry
[JavaClass java.util.Map$Entry]

An inner class can also be accessed using internal representation with the dollar sign
($) as the separator, or a dot, which is consistent with Java:

jjs> Java.type("java.util.Map$Entry")
[JavaClass java.util.Map$Entry]
jjs> Java.type("java.util.Map.Entry")
[JavaClass java.util.Map$Entry]

Chapter 2
Creating Java Objects

2-3

To invoke an instance method or access an instance field of an object, use the dot
operator, similar to how it is done in Java. The following example shows how you can
call the toUpperCase() method on a String object:

jjs> var String = Java.type("java.lang.String")
jjs> var str = new String("Hello")
jjs> str
Hello
jjs> var upper = str.toUpperCase()
jjs> upper
HELLO

Nashorn also supports member access using the bracket notation, where you specify
the name of the member as a string between brackets ([]) that immediately follow the
class (in case of a static member) or object (in case of an instance member). This
method is defined by the ECMAScript as an alternative to the dot notation, and is not
intuitive for Java developers. However, it can be used to resolve method overload
ambiguity. By default, Nashorn uses the overloaded method that best matches the
arguments, and this is not always what you expect. For example, if you want to print a
double value, you must use the java.lang.System.out.println(double) method
overload, as shown in the following example:

jjs> Java.type("java.lang.System").out.println(10)
10
jjs> Java.type("java.lang.System").out["println(double)"](10)
10.0

Using JavaBeans
Nashorn enables you to treat accessor and mutator methods in JavaBeans as
equivalent JavaScript properties. The name of the property is the name of the
JavaBean method without the get or set suffix, and starts with a lowecase letter.

For example you can call the getYear() and setYear() methods in a java.util.Date
object using the year property as follows:

jjs> var Date = Java.type("java.util.Date")
jjs> var date = new Date()
jjs> date.year + 1900
2013
jjs> date.year = 2014 - 1900
114
jjs> date.year + 1900
2014

Chapter 2
Using JavaBeans

2-4

Working with Java Arrays
To access a Java array class, pass to the Java.type() function the type of objects
that comprise the array followed by a pair of brackets (similar to Java syntax).

The following example shows how you can access a Java array of integers and a Java
array of String objects:

jjs> Java.type("int[]")
[JavaClass [I]
jjs> Java.type("java.lang.String[]")
[JavaClass [Ljava.lang.String;]

After you have the array type object, you can use it to instantiate an array as you do
any other class. You can access array entries by their indexes, and use the dot or
bracket notation to access members (similar to Java syntax), as shown in the following
example:

jjs> var IntArrayType = Java.type("int[]")
jjs> var arr = new IntArrayType(10)
jjs> arr[1] = 123
123
jjs> arr[2] = 321
321
jjs> arr[1] + arr[2]
444
jjs> arr[10]
java.lang.ArrayIndexOutOfBoundsException: Array index out of range: 10
jjs> arr.length
10

If you have an existing JavaScript array, you can convert it to a Java array using the
Java.to() function. The following example shows how you can convert a JavaScript
array of strings "a", "b", and "c", to a java.lang.String[] array with the same
values:

jjs> var jsArr = ["a","b","c"]
jjs> var strArrType = Java.type("java.lang.String[]")
jjs> var javaArr = Java.to(jsArr, strArrType)
jjs> javaArr.class
class [Ljava.lang.String;
jjs> javaArr[0]
a

You can iterate through a Java array's indexes and values using the for and for each
statements as follows:

jjs> for (var i in javaArr) print(i)
0
1
2

Chapter 2
Working with Java Arrays

2-5

jjs> for each (var i in javaArr) print(i)
a
b
c

Working with Java Strings
Nashorn represents strings as java.lang.String objects. When you concatenate two
strings, you get a String instance.

jjs> var a = "abc"
jjs> a.class
class java.lang.String
jjs> var b = a + "def"
jjs> b.class
class java.lang.String
jjs> var c = String(b)
jjs> c.class
class java.lang.String

Working with Java Numbers
Nashorn interprets numbers as java.lang.Double, java.lang.Long, or
java.lang.Integer objects, depending on the computation performed. You can use
the Number() function to force a number to be a Double object, as shown in the
following example.

jjs> var intNum = 10
jjs> intNum.class
class java.lang.Integer
jjs> var dblNum = Number(intNum)
jjs> dblNum.class
class java.lang.Double

Working with Java Lists and Maps
Nashorn interprets Java lists as arrays; iterate over the values of a list with the for
each statement. To iterate over keys and values in a map, use the keySet() and
values() methods.

You can access list elements by using the index in brackets ([]) and iterate over the
values of a list using the for each statement, as shown in the following example.

jjs> var ArrayList = Java.type("java.util.ArrayList")
jjs> var alist = new ArrayList()
jjs> alist.add("a")
true
jjs> alist.add("b")
true
jjs> alist.add("c")
true

Chapter 2
Working with Java Strings

2-6

jjs> alist[1]
b
jjs> for each (var i in alist) print(i)
a
b
c

Note:

You can only access list and map elements by using the index in brackets; in
particular, you cannot access queue and set elements by using this syntax.

The following example shows how you can create a HashMap object and iterate over its
keys and values with the keySet() and values() methods.

jjs> var HashMap = Java.type("java.util.HashMap")
jjs> var hm = new HashMap()
jjs> hm.put("name", "Bob")
jjs> hm.put("age", 40)
jjs> hm.put("weight", 180)
jjs> for each (var i in hm.keySet()) print(i)
weight
age
name
jjs> for each (var i in hm.values()) print(i)
180
40
Bob

Alternatively, you can iterate over the values of a map the same way you iterate over
the values of a list, as shown in the following example:

jjs> for each (var i in hm) print(i)
180
40
Bob

Extending Java Classes
You can extend a class using the Java.extend() function that takes a Java type as
the first argument and method implementations (in the form of JavaScript functions) as
the other arguments.

The following script extends the java.lang.Runnable interface and uses it to construct
a new java.lang.Thread object:

var Run = Java.type("java.lang.Runnable");
var MyRun = Java.extend(Run, {
 run: function() {
 print("Run in separate thread");

Chapter 2
Extending Java Classes

2-7

 }
});
var Thread = Java.type("java.lang.Thread");
var th = new Thread(new MyRun());

Nashorn can automatically extend functional interfaces (see the annotation type
FunctionalInterface) if you provide the function for implementing the method as
the argument to the constructor. The following script extends the java.lang.Runnable
interface and uses it to construct a new java.lang.Thread object, but it uses fewer
lines of code than in Example 2-1, because the Java.extend() function is called
automatically for a functional interface.

var Thread = Java.type("java.lang.Thread")
var th = new Thread(function() print("Run in a separate thread"))

Extending Java Classes in Java Platform, Standard Edition Java Scripting
Programmer's Guide describes the capabilities of the Java.extend() function.

Example 2-1 Extending a Java Class

var Run = Java.type("java.lang.Runnable");
var MyRun = Java.extend(Run, {
 run: function() {
 print("Run in separate thread");
 }
});
var Thread = Java.type("java.lang.Thread");
var th = new Thread(new MyRun());

Example 2-2 Extending a Functional Interface

var Thread = Java.type("java.lang.Thread")
var th = new Thread(function() print("Run in a separate thread"))

Restricting Script Access to Specified Java Classes
The jdk.nashorn.api.scripting.ClassFilter interface provides fine-grained control
over access to Java classes from JavaScript code by restricting access to specified
Java classes from scripts run by a Nashorn script engine.

Applications that embed Nashorn, in particular, server-side JavaScript frameworks,
often have to run scripts from untrusted sources and therefore must limit access to
Java APIs. These applications can implement the ClassFilter interface to restrict
Java class access to a subset of Java classes. To do so, client applications must use
Nashorn APIs to instantiate the Nashorn script engine.

Chapter 2
Restricting Script Access to Specified Java Classes

2-8

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/FunctionalInterface.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.scripting.nashorn/jdk/nashorn/api/scripting/ClassFilter.html

Note:

While the ClassFilter interface can prevent access to Java classes, it is
not enough to run untrusted scripts securely. The ClassFilter interface is
not a replacement for a security manager. Applications should still run with a
security manager before evaluating scripts from untrusted sources. Class
filtering provides finer control beyond what a security manager provides. For
example, an application that embeds Nashorn may prevent the spawning of
threads from scripts or other resource-intensive operations that may be
allowed by security manager.

Using Class Filters
To use a class filter, implement the ClassFilter interface and define the method
boolean exposeToScripts(String).

The String argument is the name of the Java class or package that the Nashorn script
engine encounters when it runs a script. Define the method exposeToScripts such
that it returns false for those classes and packages you want to prevent scripts from
accessing. Then, create a Nashron script engine with your class filter with the method
NashornScriptEngineFactory.getScriptEngine(ClassFilter) or
NashornScriptEngineFactory.getScriptEngine(String[], ClassLoader,
ClassFilter).

Restricting Access to Java Reflection APIs
If you are using a security manager, then Nashorn allows a script to use the Java
Reflection APIs (for example, the java.lang.reflect and java.lang.invoke
packages) only if the script has the nashorn.javaReflection run time permission.

If you are using a class filter, then Nashorn prevents access to Java Reflection APIs
even when a security manager is not present. Note that you do not need to use a class
filter if the Java Reflection APIs are available because a script can use the
Class.forName(String) to circumvent the class filter.

Example of Using the ClassFilter Interface
This example, MyClassFilterTest.java, demonstrates the ClassFilter interface. It
restricts scripts’ access to the class java.io.File.

import javax.script.ScriptEngine;
import jdk.nashorn.api.scripting.ClassFilter;
import jdk.nashorn.api.scripting.NashornScriptEngineFactory;

public class MyClassFilterTest {

 class MyCF implements ClassFilter {
 @Override
 public boolean exposeToScripts(String s) {
 if (s.compareTo("java.io.File") == 0) return false;
 return true;
 }
 }

Chapter 2
Restricting Script Access to Specified Java Classes

2-9

 public void testClassFilter() {

 final String script =
 "print(java.lang.System.getProperty(\"java.home\"));" +
 "print(\"Create file variable\");" +
 "var File = Java.type(\"java.io.File\");";

 NashornScriptEngineFactory factory = new NashornScriptEngineFactory();

 ScriptEngine engine = factory.getScriptEngine(
 new MyClassFilterTest.MyCF());
 try {
 engine.eval(script);
 } catch (Exception e) {
 System.out.println("Exception caught: " + e.toString());
 }
 }

 public static void main(String[] args) {
 MyClassFilterTest myApp = new MyClassFilterTest();
 myApp.testClassFilter();
 }
}

This example prints the following:

C:\Java\jdk-11
Create file variable
Exception caught: java.lang.RuntimeException: java.lang.ClassNotFoundException:
java.io.File

The MyClassFilterTest.java example does the following:

1. Implements the ClassFilter with the inner class MyCF by defining the method
exposeToScripts. In this example, the method exposeToScripts returns false if its
String argument is java.io.File; otherwise it returns true.

2. Creates a Nashorn script engine, engine, with the method
NashornScriptEngineFactory.getScriptEngine(ClassFilter). The example
invokes getScriptEgnine with an instance of MyCF.

3. Runs the following script with the Nashorn script engine engine:

print(java.lang.System.getProperty(\"java.home\"));
print(\"Create file variable\");
var File = Java.type(\"java.io.File\");

The class filter in engine checks each Java package and class in the script. When
the class filter encounters the class java.io.File, the class filter returns false,
and the Java.type function throws a ClassNotFoundException.

Chapter 2
Restricting Script Access to Specified Java Classes

2-10

3
Nashorn and JavaFX

This section describes how to create and run JavaFX applications using scripts
interpreted by the Nashorn engine. It is assumed that you are familiar with JavaFX.

Note:

The Nashorn engine, the jjs tool, and the modules
jdk.scripting.nashorn and jdk.scripting.nashorn.shell are
deprecated in JDK 11 in preparation for removal in a future release.

Topics

• Interpreting JavaFX Script Application with Nashorn

• Using Nashorn to Simplify JavaFX Script Applications

• Nashorn Script Objects

Interpreting JavaFX Script Application with Nashorn
You can interpret a JavaFX script application with Nashorn using the jjs command
with the -fx option. For example, the following command invokes Nashorn to interpret
the JavaFXscript.js file:

jjs -fx --module-path /SOMEDIR/javafx-sdk-11/lib --add-modules
javafx.controls JavaFXscript.js

Note:

• You must explicitly add the JavaFX modules to launch a script as a
JavaFX application. If you don’t add them, then the jjs command prints
a message and exits:

jjs -fx JavaFXscript.js

JavaFX is not available.

• JavaFX modules include javafx.base, javafx.controls,
javafx.fxml, javafx.graphics, javafx.media, javafx.swing,
and javafx.web. Ensure that you specify all the modules your
application requires in the --add-modules option.

• Obtain JavaFX from OpenJFX.

A JavaFX script application is similar to the Java equivalent, but Nashorn enables you
to simplify many of the JavaFX constructs. Typically, a JavaFX script application

3-1

https://wiki.openjdk.java.net/display/OpenJFX/Main

contains only the start() function, which is equivalent to the start() method in its
Java counterpart. It can also contain the init() and stop() functions.

Using Nashorn to Simplify JavaFX Script Applications
Nashorn enables you to simplify your JavaFX code by not requiring you to declare
certain types and enabling you to access certain methods and properties more easily.

By analyzing the examples in Example of a JavaFX Application (HelloWorld.java) and
Example of a JavaFX Script Application (HelloWorld.js), you can see how Nashorn
enables you to simplify Java code when you write a JavaFX application as a script:

• There is no need to declare variable types, import packages, use annotations,
specify the class name, and implement its main() method.

• Only the JavaFX classes that are instantiated must be declared.

• JavaBeans do not require the get and set prefixes, and are treated as JavaScript
properties instead of as Java methods. See Using JavaBeans.

• Implementing the javafx.event.EventHandler interface does not require you to
specify the implemented method explicitly. Because handle() is the only method,
Nashorn automatically applies the provided function to the method. See Extending
Java Classes.

The JavaFX primary stage is available to Nashorn as a global property $STAGE. This
global property enables you to treat the whole script as one start() function (you can
still add the init() and stop() functions). Example of a Simpler Version of JavaFX
Script Application (HelloWorldSimple.js) contains the source code for a simplified
version of the JavaFX script application from Example of a JavaFX Script Application
(HelloWorld.js).

Example of a JavaFX Application (HelloWorld.java)
The following example, HelloWorld.java, contains the source code for a simple
JavaFX application that displays a button, which when clicked prints "Hello World!"
to standard output.

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloWorld extends Application {
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World!");
 Button btn = new Button();
 btn.setText("Say 'Hello World'");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override

Chapter 3
Using Nashorn to Simplify JavaFX Script Applications

3-2

 public void handle(ActionEvent event) {
 System.out.println("Hello World!");
 }
 });

 StackPane root = new StackPane();
 root.getChildren().add(btn);
 primaryStage.setScene(new Scene(root, 300, 250));
 primaryStage.show();
 }
}

Example of a JavaFX Script Application (HelloWorld.js)
The following example, HelloWorld.js, contains the source code for a JavaFX
script application that displays a button, which when clicked prints "Hello World!" to
standard output.

var Button = javafx.scene.control.Button;
var StackPane = javafx.scene.layout.StackPane;
var Scene = javafx.scene.Scene;

function start(primaryStage) {
 primaryStage.title = "Hello World!";
 var button = new Button();
 button.text = "Say 'Hello World'";
 button.onAction = function() print("Hello World!");
 var root = new StackPane();
 root.children.add(button);
 primaryStage.scene = new Scene(root, 300, 250);
 primaryStage.show();
}

Example of a Simpler Version of JavaFX Script Application
(HelloWorldSimple.js)

The following example, HelloWorldSimple.js, contains the source code for a
simplified version of the JavaFX script application using the global property $STAGE.

var Button = javafx.scene.control.Button;
var StackPane = javafx.scene.layout.StackPane;
var Scene = javafx.scene.Scene;

$STAGE.title = "Hello World!";
var button = new Button();
button.text = "Say 'Hello World'";
button.onAction = function() print("Hello World!");
var root = new StackPane();
root.children.add(button);
$STAGE.scene = new Scene(root, 300, 250);
$STAGE.show();

Nashorn Script Objects
In most cases, you should only add the classes that you instantiate or use to access
static fields. However, for prototyping purposes, Nashorn predefines a set of scripts

Chapter 3
Nashorn Script Objects

3-3

that can be loaded to import groups of JavaFX packages and classes. You can load a
script using the load() function that takes a string with the name of the script.

The following table lists the predefined script objects that are available for inclusion:

This script ... Imports ...

fx:base.js javafx.stage.Stage
javafx.scene.Scene
javafx.scene.Group
javafx/beans
javafx/collections
javafx/events
javafx/util

fx:graphics.js javafx/animation
javafx/application
javafx/concurrent
javafx/css
javafx/geometry
javafx/print
javafx/scene
javafx/stage

fx:controls.js javafx/scene/chart
javafx/scene/control

fx:fxml.js javafx/fxml

fx:web.js javafx/scene/web

fx:media.js javafx/scene/media

fx:swing.js javafx/embed/swing

fx:swt.js javafx/embed/swt

Example of a JavaFX Script Application with Loaded Scripts contains the source code
of the simplified JavaFX script application from Example of a Simpler Version of
JavaFX Script Application (HelloWorldSimple.js) with load() functions used to import
the necessary packages and classes.

Example of a JavaFX Script Application with Loaded Scripts
The following example contains the source code for a simplified version of the JavaFX
script application using the load() functions to import packages and classes:

load("fx:base.js");
load("fx:controls.js");
load("fx:graphics.js");

$STAGE.title = "Hello World!";
var button = new Button();
button.text = "Say 'Hello World'";
button.onAction = function() print("Hello World!");
var root = new StackPane();
root.children.add(button);
$STAGE.scene = new Scene(root, 300, 250);
$STAGE.show();

Chapter 3
Nashorn Script Objects

3-4

For more examples of JavaFX script applications, see JavaFX Script Application
Examples.

Chapter 3
Nashorn Script Objects

3-5

4
Nashorn and Shell Scripting

This section describes the extensions of the Nashorn engine that enable you to use
UNIX shell scripting features for JavaScript scripts.

Note:

The Nashorn engine, the jjs tool, and the modules
jdk.scripting.nashorn and jdk.scripting.nashorn.shell are
deprecated in JDK 11 in preparation for removal in a future release.

You can enable shell scripting extensions in Nashorn using the jjs command with the
-scripting option. For example, the following command invokes Nashorn in
interactive mode with shell scripting extensions enabled:

jjs -scripting

In addition to the standard JavaScript comments (// and /* */), Nashorn supports
shell-style comments using the number sign (#). If the number sign is the first
character in a script, then the Nashorn shell scripting extensions are automatically
enabled when you interpret the script, even if you use the jjs tool without the -
scripting option. This is useful when specifying the shebang (#!) at the beginning of
a script to run it as a shell executable. See Shebang.

Topics

• Shebang

• String Interpolation

• Here Document

• Global Objects

• Additional Nashorn Built-in Functions

Shebang
You can use the shebang (#!) at the beginning of a script file to enable the script file to
run as a shell executable. If you specify the path to the jjs tool in the shebang, then
when you execute the script, the shell runs the jjs tool instead, and passes the script
file to it.

The jjs tool is located in the JAVA_HOME/bin directory, where JAVA_HOME is the
installation directory of the JDK. When you install the JDK, the JAVA_HOME environment
variable is usually set up automatically. If it was not set up automatically, or if you have
several versions of the JDK installed, set the JAVA_HOME environment variable to the
correct path of the JDK installation directory manually.

4-1

You can specify the direct path to the jjs tool in the shebang, but it is a good practice
to create a symbolic link in the /usr/bin directory as follows:

>> cd /usr/bin
>> ln -s $JAVA_HOME/bin/jjs jjs
>>

Note:

You might have to run the ln command with root privileges using sudo.

After you set up the symbolic link, you can create Nashorn scripts that can be run as
executables. Also, it is possible to add command-line options directly to the shebang
statement. The following example, scriptArgs.js, shows an executable script that
prints the version of the Nashorn engine and then the arguments passed to the script.

#!/usr/bin/jjs -fv
print("Arguments: " + arguments);

If you run the scriptArgs.js file as a shell executable, it is interpreted by the Nashorn
engine as follows:

>> ./scriptArgs.js -- arg1 arg2 arg3
nashorn full version 1.8.0
Arguments: arg1,arg2,arg3
>>

Alternatively, if the path to the jjs tool is in the PATH environment variable, you can
point the shebang to jjs as follows:

#!/usr/bin/env jjs

String Interpolation
String interpolation is used in UNIX shells to construct strings that contain values of
variables or expressions. With shell scripting features enabled, Nashorn enables you
to embed variables and expressions into string literals in the same way.

For example, you can assign the result of the Date() constructor to the date variable,
and then pass this variable to the string using the dollar sign ($) and braces ({}) as
follows:

jjs> var date = Date()
jjs> "Date and time: ${date}"
Date and time: Mon Aug 19 2013 19:43:08 GMT+0400 (MSK)

The preceding example displays the date and time when the date variable was
assigned the value returned by the Date() constructor. If you want to display the

Chapter 4
String Interpolation

4-2

current date and time when the expression is evaluated, you can pass the Date()
constructor directly as follows:

jjs> "Current date and time: ${Date()}"
Current date and time: Mon Aug 19 2013 19:49:53 GMT+0400 (MSK)

String interpolation works only for strings within double quotation marks. Strings within
single quotation marks are not interpolated:

jjs> 'The variable is ${date}'
The variable is ${date}

Here Document
A here document (heredoc) specifies strings in UNIX shells that preserve line breaks
and indentations. With shell scripting features enabled, you can use Nashorn to
evaluate scripts with heredocs.

The following example, scriptHereArgs.js, shows an executable script that prints the
first passed-in argument on the first line, then the second argument indented on the
second line, and the third argument on the forth line (after one blank line).

#!/usr/bin/jjs
print(<<EOD);
${arguments[0]} is normal
 ${arguments[1]} is indented

${arguments[2]} is separated by a blank line
EOD

If you run the scriptHereArgs.js file as a shell executable, it is interpreted by the
Nashorn engine as follows:

>> ./scriptHereArgs.js -- Line1 Line2 Line3
Line1 is normal
 Line2 is indented

Line3 is separated by a blank line

Global Objects
With shell scripting features enabled, Nashorn defines several global objects.

$ARG
This global object can be used to access the arguments passed to the script, similar
to how the arguments object is used, for example:

>> jjs -scripting -- arg1 arg2 arg3
jjs> $ARG
arg1,arg2,arg3

Chapter 4
Here Document

4-3

jjs> $ARG[1]
arg2

$ENV
This global object maps all the current environment variables, for example:

jjs> $ENV.USER
johndoe
jjs> $ENV.PWD
/foo/bar

$EXEC()
This global function launches processes to run commands, for example:

jjs> $EXEC("ls -l")
total 0
drwxr-xr-x+ 1 johndoe staff 4096 Aug 18 11:03 dir
-rwxrw-r-- 1 johndoe staff 168 Aug 19 17:44 file.txt

jjs>

The $EXEC() function can also take a second argument, which is a string to be used
as standard input (stdin) for the process:

jjs> $EXEC("cat", "Send this to stdout")
Send this to stdout
jjs>

Note:

If the command does not require any input, you can launch a process using
the backtick string notation. For example, instead of $EXEC("ls -l"), you
can use `ls -l`.

$OPTIONS
This object exposes command line options passed to nashorn "command line". For
example:

jjs> print("-scripting=" + $OPTIONS_scripting);
jjs> print("--compile-only=" + $OPTIONS_compile_only);
jjs> print("-timezone="+ $OPTIONS_timezone.ID);

$OUT
This global object is used to store the latest standard output (stdout) of the process.
For example, the result of $EXEC() is saved to $OUT.

$ERR
This global object is used to store the latest standard error (stderr) of the process.

Chapter 4
Global Objects

4-4

$EXIT
This global object is used to store the exit code of the process. If the exit code is not
zero, then the process failed.

Additional Nashorn Built-in Functions
Nashorn defines several built-in functions: echo, readLine and readFully functions
are defined only for -scripting mode. Other extensions like quit, exit, load,
loadWithNewGlobal, Object.bindProperties are always available.

quit()
exit()
These functions are synonymous, causing the current script process to exit to the
system. You can pass an integer value as the argument that represents the exit code
to be returned to the system. By default, without an argument, the exit code is set to
0, meaning that the process terminated correctly.

print()
echo()
These functions are synonymous, causing the values passed in as arguments to be
converted to strings, printed to stdout separated by spaces, and followed by a new
line. The implementation involves calls to java.lang.System.out.print(string)
followed by java.lang.System.out.println().

>> jjs -scripting -- arg1
jjs> var a = "Hello"
jjs> print(123, $ARG[0], a, "World")
123 arg1 Hello World
jjs>

readLine()
This function reads one line of input from stdin and sends it to stdout, or you can
assign the result to a variable. You can also pass a string to the readLine() function
to get a prompt line as in the following example:

jjs> var name = readLine("What is your name? ")
What is your name? Bob
jjs> print("Hello, ${name}!")
Hello, Bob!
jjs>

readFully()
This function reads the entire contents of a file passed in as a string argument and
sends it to stdout, or you can assign the result to a variable.

jjs> readFully("text.txt")
This is the contents of the text.txt file located in the current working
directory.

jjs>

Chapter 4
Additional Nashorn Built-in Functions

4-5

The readFully() function reads data with the method byte[]
Files.readAllBytes(Path), then performs byte order mark (BOM) detection on
the returned byte array to determine whether the data read is Unicode-encoded.

load()
This function loads and evaluates a script from a path, URL, or script object.

jjs> load("/foo/bar/script.js")
jjs> load("http://example.com/script.js")
jjs> load({name:"script.js", script:"var x = 1 + 1; x;"})

loadWithNewGlobal()
This function is similar to the load() function, but the script is evaluated with a new
global object. This is the primary method for creating a fresh context for evaluating
scripts. Additional arguments (after the script) passed to loadWithNewGlobal() are
stored in the arguments global variable of the new context.

Object.bindProperties(target, source)
This function is used to bind the source object's properties to the object target. The
function enables sharing of global properties. For example, in a Document Object
Model (DOM) simulation, you can share properties between the global object and the
document. In a multithreading application, you can share functions across global
objects of threads.
The following example shows how you can bind the obj object's properties to the
global object:

jjs> var obj = {x:34,y:100}
jjs> obj.x
34
jjs> obj.y
100
jjs> x
<shell>:1 ReferenceError: "x" is not defined
jjs> Object.bindProperties(this,obj)
[object global]
jjs> x
34
jjs> y = Math.PI
3.141592653589793
jjs> obj.y
3.141592653589793
jjs>

Note that the function Object.bindProperties(target, source) only binds
properties of source that do not exist in target. In the following example, the function
bindProperties tries to bind the properties of the obj object to the global object.
However, the x property already exists in the global object. Therefore, the function
bindProperties does not bind obj.x to global x. Thus, changing the value of obj.x
does not change the value of global x.

jjs> x = 2
2

Chapter 4
Additional Nashorn Built-in Functions

4-6

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/Files.html#readAllBytes(java.nio.file.Path)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/file/Files.html#readAllBytes(java.nio.file.Path)

jjs> var obj = {x:3}
jjs> Object.bindProperties(this,obj)
[object global]
jjs> x
2
jjs> x = 4
4
jjs> obj.x
3
jjs> x
4

Chapter 4
Additional Nashorn Built-in Functions

4-7

A
JavaFX Script Application Examples

This section provides examples of JavaFX script applications.

Note:

The Nashorn engine, the jjs tool, and the modules
jdk.scripting.nashorn and jdk.scripting.nashorn.shell are
deprecated in JDK 11 in preparation for removal in a future release.

Nashorn and JavaFX describes how to write JavaFX applications as scripts interpreted
by the Nashorn engine.

Topics

• Example JavaFX 3-D

• Example JavaFX Animation

Example JavaFX 3-D
This example demonstrates how a complex task (in this case, rendering 3-D graphics
with JavaFX) can be done with relatively little code using the Nashorn script engine
capabilities. When you run this example, a window with three green shapes is shown:
a box, a sphere, and a cylinder.

load("fx:base.js");
load("fx:controls.js");
load("fx:graphics.js");

var material = new PhongMaterial();
material.diffuseColor = Color.LIGHTGREEN;
material.specularColor = Color.rgb(30, 30, 30);

var meshView = Java.to([
 new Box(200, 200, 200),
 new Sphere(100),
 new Cylinder(100, 200)
], "javafx.scene.shape.Shape3D[]");

for (var i = 0; i != 3; i++) {
 meshView[i].material = material;
 meshView[i].translateX = (i + 1) * 220;
 meshView[i].translateY = 200;
 meshView[i].translateZ = 20;
 meshView[i].drawMode = DrawMode.FILL;
 meshView[i].cullFace = CullFace.BACK;

A-1

};

var pointLight = new PointLight(Color.WHITE);
pointLight.translateX = 800;
pointLight.translateY = -200;
pointLight.translateZ = -1000;

var root = new Group(meshView);
root.children.add(pointLight);

var scene = new Scene(root, 800, 400, true);
scene.fill = Color.rgb(127, 127, 127);
scene.camera = new PerspectiveCamera(false);
$STAGE.scene = scene;
$STAGE.show();

Example JavaFX Animation
This example demonstrates how to create a JavaFX animation using the Nashorn
script engine capabilities. When you run this example, a window with colorful circles
moving around is shown.

load("fx:base.js");
load("fx:controls.js");
load("fx:graphics.js");

var WIDTH = 500;
var HEIGHT = 600;
var animation;

function setup(primaryStage) {
 var root = new Group();
 primaryStage.resizable = false;
 var scene = new Scene(root, WIDTH, HEIGHT);
 scene.title = "Colourful Circles";
 primaryStage.scene = scene;

 // create first list of circles
 var layer1 = new Group();
 for(var i = 0; i < 15; i++) {
 var circle = new Circle(200, Color.web("white", 0.05));
 circle.strokeType = StrokeType.OUTSIDE;
 circle.stroke = Color.web("white", 0.2);
 circle.strokeWidth = 4;
 layer1.children.add(circle);
 }

 // create second list of circles
 var layer2 = new Group();
 for(var i = 0; i < 20; i++) {
 var circle = new Circle(70, Color.web("white", 0.05));
 circle.strokeType = StrokeType.OUTSIDE;
 circle.stroke = Color.web("white", 0.1);
 circle.strokeWidth = 2;
 layer2.children.add(circle);
 }

 // create third list of circles

Appendix A
Example JavaFX Animation

A-2

 var layer3 = new Group();
 for(var i = 0; i < 10; i++) {
 var circle = new Circle(150, Color.web("white", 0.05));
 circle.strokeType = StrokeType.OUTSIDE;
 circle.stroke = Color.web("white", 0.16);
 circle.strokeWidth = 4;
 layer3.children.add(circle);
 }

 // set a blur effect on each layer
 layer1.effect = new BoxBlur(30, 30, 3);
 layer2.effect = new BoxBlur(2, 2, 2);
 layer3.effect = new BoxBlur(10, 10, 3);

 // create a rectangle size of window with colored gradient
 var colors = new Rectangle(WIDTH, HEIGHT,
 new LinearGradient(0, 1, 1, 0, true, CycleMethod.NO_CYCLE,
 new Stop(0, Color.web("#f8bd55")),
 new Stop(0.14, Color.web("#c0fe56")),
 new Stop(0.28, Color.web("#5dfbc1")),
 new Stop(0.43, Color.web("#64c2f8")),
 new Stop(0.57, Color.web("#be4af7")),
 new Stop(0.71, Color.web("#ed5fc2")),
 new Stop(0.85, Color.web("#ef504c")),
 new Stop(1, Color.web("#f2660f"))));
 colors.blendMode = BlendMode.OVERLAY;

 // create main content
 var group = new Group(new Rectangle(WIDTH, HEIGHT, Color.BLACK),
 layer1,
 layer2,
 layer3,
 colors);
 var clip = new Rectangle(WIDTH, HEIGHT);
 clip.smooth = false;
 group.clip = clip;
 root.children.add(group);

 // create list of all circles
 var allCircles = new java.util.ArrayList();
 allCircles.addAll(layer1.children);
 allCircles.addAll(layer2.children);
 allCircles.addAll(layer3.children);

 // Create a animation to randomly move every circle in allCircles
 animation = new Timeline();
 for each (var circle in allCircles) {
 animation.getKeyFrames().addAll(
 new KeyFrame(Duration.ZERO, // set start position at 0s
 new KeyValue(circle.translateXProperty(),
Math.random() * WIDTH),
 new KeyValue(circle.translateYProperty(),
Math.random() * HEIGHT)),
 new KeyFrame(new Duration(20000), // set end position at 20s
 new KeyValue(circle.translateXProperty(),
Math.random() * WIDTH),
 new KeyValue(circle.translateYProperty(),
Math.random() * HEIGHT))
);
 }
 animation.autoReverse = true;

Appendix A
Example JavaFX Animation

A-3

 animation.cycleCount = Animation.INDEFINITE;
}

function stop() {
 animation.stop();
}

function play() {
 animation.play();
}

function start(primaryStage) {
 setup(primaryStage);
 primaryStage.show();
 play();
}

Appendix A
Example JavaFX Animation

A-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to the Nashorn Engine
	Invoking Nashorn from Java Code
	Invoking Nashorn from the Command Line
	Nashorn Parser API

	2 The Nashorn Java API
	Accessing Java Classes
	Creating Java Objects
	Accessing Class and Instance Members
	Using JavaBeans
	Working with Java Arrays
	Working with Java Strings
	Working with Java Numbers
	Working with Java Lists and Maps
	Extending Java Classes
	Restricting Script Access to Specified Java Classes
	Using Class Filters
	Restricting Access to Java Reflection APIs
	Example of Using the ClassFilter Interface

	3 Nashorn and JavaFX
	Interpreting JavaFX Script Application with Nashorn
	Using Nashorn to Simplify JavaFX Script Applications
	Example of a JavaFX Application (HelloWorld.java)
	Example of a JavaFX Script Application (HelloWorld.js)
	Example of a Simpler Version of JavaFX Script Application (HelloWorldSimple.js)

	Nashorn Script Objects
	Example of a JavaFX Script Application with Loaded Scripts

	4 Nashorn and Shell Scripting
	Shebang
	String Interpolation
	Here Document
	Global Objects
	Additional Nashorn Built-in Functions

	A JavaFX Script Application Examples
	Example JavaFX 3-D
	Example JavaFX Animation

