Java Platform, Standard Edition
Troubleshooting Guide

Release 13
F17440-01
September 2019

ORACLE"

Java Platform, Standard Edition Troubleshooting Guide, Release 13
F17440-01
Copyright © 1995, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xi
Documentation Accessibility Xi
Related Documents Xi
Conventions Xi

Part | General Java Troubleshooting

1 Prepare Java for Troubleshooting
Set Up Java for Troubleshooting 1-1
Enable Options and Flags for JVM Troubleshooting 11
Gather Relevant Data 1-3
Make a Java Application Easier to Debug 1-3
2 Diagnostic Tools
Diagnostic Tools Overview 2-1
Flight Recorder 2-2
About Flight Recordings 2-3
Produce a Flight Recording 2-4
Inspect a Flight Recording 2-5
The jemd Utility 2-6
Useful Commands for the jemd Utility 2-8
Troubleshoot with the jemd Utility 2-9
Native Memory Tracking 2-9
Use NMT to Detect a Memory Leak 2-10
How to Monitor VM Internal Memory 2-10
NMT Memory Categories 2-15
JConsole 2-16
Troubleshoot with the JConsole Tool 2-16
Monitor Local and Remote Applications with JConsole 2-18

ORACLE iii

The jdb Utility 2-19

Troubleshoot with the jdb Utility 2-19
The jinfo Utility 2-20
Troubleshooting with the jinfo Utility 2-21
The jmap Utility 2-22
Heap Configuration and Usage 2-22
Heap Histogram 2-23
Class Loader Statistics 2-25
The jps Utility 2-27
The jrunscript Utility 2-27
The jstack Utility 2-27
Troubleshoot with the jstack Utility 2-28
Stack Trace from a Core Dump 2-28
Mixed Stack 2-28
The jstat Utility 2-30
The visualgc Tool 2-32
Control+Break Handler 2-33
Thread Dump 2-33
Thread States for a Thread Dump 2-34
Detect Deadlocks 2-35
Heap Summary 2-35
Native Operating System Tools 2-36
Troubleshooting Tools Based on the Operating System 2-36
Probe Providers in Java HotSpot VM 2-37
Custom Diagnostic Tools 2-38
The java.lang.management Package 2-39
The java.lang.instrument Package 2-39
The java.lang.Thread Class 2-39
JVM Tool Interface 2-40
Java Platform Debugger Architecture 2-40
Postmortem Diagnostic Tools 2-40
Hung Processes Tools 2-41
Monitoring Tools 2-42
Other Tools, Options, Variables, and Properties 2-43
The jstatd Daemon 2-44
3 Troubleshoot Memory Leaks
Debug a Memory Leak Using Flight Recorder 3-1
Understand the OutOfMemoryError Exception 3-4
Troubleshoot a Crash Instead of OutOfMemoryError 3-7

ORACLE iv

Diagnose Leaks in Java Language Code 3-7

Get a Heap Histogram 3-8
Monitor the Objects Pending Finalization 3-9
Diagnose Leaks in Native Code 3-9
Track All Memory Allocation and Free Calls 3-10
Track All Memory Allocations in the JNI Library 3-10
Track Memory Allocation with Operating System Support 3-11

4 Troubleshoot Performance Issues Using Flight Recorder

Flight Recorder Overhead 4-1
Find Bottlenecks 4-2
Garbage Collection Performance 4-3
Synchronization Performance 4-4
I/O Performance 4-5
Code Execution Performance 4-5

Part Il Debug JVM Issues

5 Troubleshoot System Crashes
Determine Where the Crash Occurred 5-1
Crash the Native Code 5-2
Crash in the Compiled Code 5-3
Crash in the HotSpot Compiler Thread 5-4
Crash in the VM Thread 5-4
Crash Due to Stack Overflow 5-4
Find a Workaround 5-6
Working Around Crashes in the HotSpot Compiler Thread or Compiled Code 5-6
Working Around Crashes During Garbage Collection 5-8
Working Around Crashes Caused by Class Data Sharing 5-10
Microsoft Visual C++ Version Considerations 5-10
6 Troubleshoot Process Hangs and Loops
Diagnose a Loop Process 6-1
Diagnose a Hung Process 6-2
Deadlock Detected 6-2
Deadlock Not Detected 6-4
No Thread Dump 6-4

ORACLE Y

7 Handle Signals and Exceptions
Handle Signals on Linux and macOS 7-1
Handle Exceptions on Windows 7-1
Signal Chaining 7-3
Handle Exceptions Using the Java HotSpot VM 7-5
Console Handlers 7-5
Signals Used in Linux and macOS 7-5
Part |ll Debug Core Library Issues
8 Time Zone Settings in the JRE
Native Time Zone Information and the JRE 8-1
Determine the Time Zone Data Version in Use 8-2
Troubleshoot Problems with TZupdater 8-2
Determine the Default Time Zone on Windows 8-3
Check the Default Time Zone Java Runtime Reports 8-3
Determine the Setting in the Control Panel 8-4
Check for Automatic Daylight Saving Time Adjustment 8-4
Set the Default Time Zone in Windows Settings 8-5
Check -Duser.timezone System Property 8-5
Special Tool in Windows 8-5
Internal Representation of Time Zone Mappings 8-6
Part I\ Debug Client Issues
9 Introduction to Client Issues
Java SE Desktop Technologies 9-1
General Steps to Troubleshoot an Issue 9-3
Identify the Type of Issue 9-3
Java Client Crashes 9-4
Performance Problems 9-4
Behavior Problems 9-5
Basic Tools 9-6
Java Debug Wire Protocol 9-6
ORACLE Vi

10 AWT

Debug Tips for AWT 10-1
Layout Manager Issues 10-2
Key Events 10-2
Modality Issues 10-3
AWT Crashes 10-3
Focus Events 10-5
How to Trace Focus Events 10-5
Native Focus System 10-6
Focus Models Supported by X Window Managers 10-7
Miscellaneous Problems with Focus 10-7
Data Transfer 10-9
Debug Drag-and-Drop Applications 10-9
Frequent Issues with Data Transfer 10-9
Other Issues 10-12
Splash Screen Issues 10-12
Tray Icon Issues 10-13
Pop-up Menu Issues 10-13
Background or Foreground Color Inheritance 10-13
AWT Panel Size Restriction 10-13
Hangs During Debugging of Pop-up Menus and Similar Components on X11 10-14
Window.toFront()/toBack() Behavior on X11 10-14
Heavyweight or Lightweight Components Mix 10-15
11 Java 2D Pipeline Rendering and Properties
Linux: X11 Pipeline 11-1
X11 Pipeline Pixmaps Properties 11-2
X11 Pipeline MIT Shared Memory Extension 11-3
Windows OS - DirectDraw/GDI Pipeline 11-3
Windows OS - Direct3D Pipeline in Full-Screen Mode 11-5
OpenGL Pipeline in Linux and Windows 11-6
Enable OpenGL Pipeline 11-6
Minimum Requirements 11-6
Diagnose Startup Issues 11-7
Diagnose Rendering and Performance Issues 11-7
Latest OpenGL Drivers 11-8

ORACLE

Vii

12 Java 2D

13 Swing

Generic Performance Issues 12-1
Hardware-Accelerated Rendering Primitives 12-1
Primitive Tracing to Detect and Avoid Non-Accelerated Rendering 12-2
Causes of Poor Rendering Performance 12-3
Improve Performance of Software-only Rendering 12-5

Text-Related Issues 12-6
Application Crash During Text Rendering 12-6
Differences in Text Appearance 12-8
Metrics 12-9

Java 2D Printing 12-10

General Debug Tips for Swing 13-1

Specific Debug Tips for Swing 13-2
Incorrect Threading 13-2
JComponent Children Overlap 13-4
Display Update 13-4
Model Change 13-4
Add or Remove Components 13-4
Opaque Override 13-4
Permanent Changes to Graphics 13-5
Custom Painting and Double Buffering 13-5
Opaque Content Pane 13-5
Renderer Call for Each Cell Performance 13-5
Possible Leaks 13-6
Mix Heavyweight and Lightweight Components 13-6
Use Synth 13-6
Track Activity on Event Dispatch Thread 13-6
Specify Default Layout Manager 13-7
Listener Object Dispatched to Incorrect Component 13-7
Add a Component to Content Pane 13-7
Drag and Drop Support 13-8
One Parent for a Component 13-8
JFileChooser Issues with Windows Shortcuts 13-8

14 Internationalization
Troubleshoot Internationalization and Localization 14-1
viii

ORACLE

15 Java Sound
Troubleshoot Java Sound Issues 15-1
Part V. Submit Bug Reports
16 Submit a Bug Report
Check for Fixes in Update Releases 16-1
Prepare to Submit a Bug Report 16-1
Collect Data for a Bug Report 16-2
Hardware Details 16-2
Operating System Details 16-3
Java SE Version 16-3
Command-Line Options 16-3
Environment Variables 16-4
Fatal Error Log 16-4
Core and Crash Dump 16-5
Detailed Description of the Problem 16-5
Logs and Traces 16-5
Results from Troubleshooting Steps 16-6
Collect Core Dumps 16-6
Collect Core Dumps on Linux 16-6
Reasons for Not Getting a Core File 16-8
Collect Crash Dumps on Windows 16-8
Part VI Appendices
A Fatal Error Log
Location of Fatal Error Log A-1
Description of Fatal Error Log A-2
Header Format A-2
Thread Section Format A-5
Process Section Format A-8
System Section Format A-14
B Java 2D Properties
Properties on Linux B-1
ORACLE iX

Properties on Windows

C Environment Variables and System Properties

B-2

The JAVA_TOOL_OPTIONS Environment Variable C-1

The java.security.debug System Property C-2
D Command-Line Options

Java HotSpot VM Command-Line Options D-1

Other Command-Line Options D-5

E Summary of Tools in This Release

ORACLE"

Preface

Audience

This document helps you to troubleshoot issues that might occur with Java Client
applications created on the Java Platform, Standard Edition (Java SE) and on Java
HotSpot VM. This document provides a description of the available tools and
command-line options that can help to analyze problems. This document also provides
guidance about debugging core library and client issues and describes some general
issues, such as crashes, hangs, and memory leaks. Finally, this document provides
directions for data collection and bug report preparation.

The target audience for this document is developers who are using the Java
Development Kit (JDK), which is Oracle's implementation of the Java Platform,
Standard Edition (Java SE). Most of the information in this document can be applied to
the current and previous releases.

This document is intended for readers with a detailed understanding of the Java Client
technologies, a high-level understanding of the components of the Java HotSpot VM,
as well as some understanding of concepts such as garbage collection, threads, and
native libraries. It is also assumed that the reader is reasonably proficient with the
operating system where the Java application is developed and run.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information about Java SE and the relevant client/desktop technologies, visit
Java SE Home.

Conventions

ORACLE

The following text conventions are used in this document:

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Xii

General Java Troubleshooting

ORACLE

Java troubleshooting techniques for various diagnostic and monitoring tools,
diagnosing memory leaks, and identifying performance issues.

This part describes general Java troubleshooting techniques and contains the
following topics.

Prepare Java for Troubleshooting

Provides guidelines for setting up both Java and a Java application for better
troubleshooting techniques. These proactive Java setups help debug and narrow
down issues with Java and a Java application.

Diagnostic Tools

Describes various diagnostic and monitoring tools used with Java Development Kit
(JDK). Further describes the troubleshooting tools available and explains custom
tools development using application programming interfaces (APIs).

Troubleshoot Memory Leaks
Provides suggestions for diagnosing problems involving possible memory leaks.
Troubleshoot Performance Issues Using Flight Recorder

Identifies performance issues with a Java application and debugs issues using the
Java Flight Recorder.

Prepare Java for Troubleshooting

This chapter provides some guidelines for setting up both Java and a Java application
for better troubleshooting techniques. These proactive Java setups help debug and
narrow down issues with Java and the application. Not all suggestions apply to every
application.

This chapter contains the following sections:

Set Up Java for Troubleshooting

Enable Options and Flags for JVM Troubleshooting

Gather Relevant Data

Set Up Java for Troubleshooting

Set up the Java environment and command-line options to enable gathering relevant
data for troubleshooting.

To set up Java, perform the following:

1.

Update the Java version: Use the latest Java version to avoid spending time on
troubleshooting issues in Java that were fixed. Often, a problem caused by a bug
in the Java runtime is fixed in the latest update release. Working with the latest
Java version helps avoid some known and common issues.

Set up the Java environment to debug: Consider the following scenarios while
setting up a bigger Java application, starting an application with a launcher script,
or running distributed Java on several machines.

a.

Make it easy to change the Java version: Using the latest Java version
helps avoid many runtime issues. If your application starts by running a script,
ensure that you have to update the Java path in only one place. If you run in a
distributed system, then think about easy ways to change the Java versions
across all of the machines.

Make it easy to change the Java command-line options: Sometimes, while
troubleshooting, you may want to change Java options; for example, to add a
verbose output, to turn off a feature, or to tune Java for better performance.
Prepare the systems for these changes.

In a Java application that is running remotely, for example in a testing
framework or a cloud solution, ensure that you can still change the Java flags
easily. Sometimes, the application takes command-line parameters, or you
may want to try a flag quickly to reproduce a problem. Prepare the systems to
make these changes easy.

Enable Options and Flags for JVM Troubleshooting

Set up JVM options and flags to enable gathering relevant data for troubleshooting.

ORACLE

The data you gather depends on the system and what data you would use in case you
run into problems. Consider gathering the following data.

1-1

Chapter 1
Enable Options and Flags for JVM Troubleshooting

1. Enable core files: If Java crashes, for example due to a segmentation fault, the
OS saves to disk a core file (complete dump of the memory). On Linux, core files
are sometimes disabled by default. To enable core files on Linux, it is usually
enoughtoruntheulimt -c unlinited before starting the application command.
Some systems may have different ways to handle these limits.

Note:

The core files take up a lot of disk space, especially when run with a
large Java heap.

To decide whether to enable core files, consider what you would do if you had a
crash in your system. Would you want to see a core file? Many Java users won't
have much use for a core file. However, if you would want to debug a possible
crash either in a native debugger such as gdb or by using the Serviceability Agent,
then ensure that you enable core files before the starting the application.

Many times, crashes are hard to reproduce; therefore, enable core files before the
starting the application.

2. Add -XX:+HeapDumpOnOutOfMemoryError to the JVM flags: The - XX:
+HeapDunpOnQut O Menor yEr ror flag saves a Java Heap dump to disk if the
applications runs into an Qut Of Menor yError.

Like core files, heap dumps can be very large, especially when run with a big Java
heap.

Again, think about what you would do if the application runs into an

Qut O Menor yEr r or . Would you want to inspect the heap at the time of the error? In
that case, turn flag by default so that you get this data if the application runs into
an unexpected Cut Of Menor yErr or .

3. Run a continuous flight recording: Set up Java to run with a continuous flight
recording.

Continuous flight recordings are a circular buffer of Flight Recorder events. If the
application runs into an issue, you can dump the data from the last hour of the run.
The Flight Recorder events can be helpful to debug a wide range of issues from
memory leaks to network errors, high CPU usage, thread blocks, and so on.

The overhead of running with a continuous flight recording is very low. See
Produce a Flight Recording.

4. Add -verbosegc to the JVM command-line: The flag - ver bosegc logs basic
information about Java Garbage Collector. This log helps you find the following:

» Does garbage collection run for a long time?
* Does the free memory decrease over time?

The garbage collector log helps diagnose issues when the application throws an
Qut OFMenor yEr ror or the application runs into performance issues; therefore,
turning on the - ver bosegc flag by default helps troubleshoot issues.

ORACLE 1-2

Chapter 1
Gather Relevant Data

< Note:

Use log rotation so that an application restart doesn't delete the previous
logs. Since JDK7, the flags UseGCl ogFi | eRot ati on and

Nurmber OF GCLogFi | es can be used to set up for log rotation. For a
description of these flags, see Debugging Options for Java HotSpot VM.

Print Java version and JVM flags: Before filing a bug on Java or seeking help
from a forum, have the basic information handy in the log files. For example, it's
helpful to print the Java version and the JVM flags used.

If your application starts with a script, run j ava - versi on to print the Java version
and print the command line before executing it. Another alternative is to add - XX
+Pri nt CommandLi neFl ags and - showver si on to the JVM arguments.

Set up JMX for remote monitoring: JMX can be used to connect to a Java
application remotely using tools such Visual VM. Unless you can run these tools
on the same machine that is running your application, setting this up can be
helpful later on to monitor the application, send diagnostic commands, manage
flight recordings, and so on. There is no performance overhead if you enable JMX.

Another alternative, is to enable JMX after a Java application has started is to use
the diagnostic command Managenent Agent . start. Runjcnd <pid> hel p
Managenent Agent . start for a list of flags that can be sent with the command.

See The jemd Utility.

Gather Relevant Data

If your application runs into a problem and you want to debug the problem further,
ensure that you collect any relevant data before restarting the system, especially if
restarting will remove previous files.

It is important to gather the following files:

— Core files for crash issues.

— hs_err printed text file for Java crashes.

— Log files: Java and application logs.

— Java heap dumps for - XX: +HeapDunpOnQut Of Menor yEr r or .

— Flight recordings (if enabled). If the problem didn't terminate the application,
dump the continuous recordings.

If the application stopped responding, then gather the following files:

— Stack traces: Take several stack traces using j cmd <pi d> Thread. print
before restarting the system.

— Dump flight recordings (if enabled).

— Force a core file: If the application can't be closed properly, then stop the
application, and force a core file using ki | | -6 <pi d> on Linux systems.

Make a Java Application Easier to Debug

Using a logging framework is a good way to enable future debugging.

ORACLE

1-3

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Chapter 1
Gather Relevant Data

If you run into problems in a specific module, you should be able to enable logging in
that module. It is also good to specify different levels of logging, for example info,
debug, and trace.

ORACLE 1-4

Diagnostic Tools

The Java Development Kit (JDK) provides diagnostic tools and troubleshooting tools
specific to various operating systems. Custom diagnostic tools can also be developed
using the APIs provided by the JDK.

This chapter contains the following sections:

« Diagnostic Tools Overview

e Flight Recorder

e The jemd Utility

e Native Memory Tracking

« JConsole

¢ The jdb Utility

e The jinfo Utility

e The jmap Utility

e The jps Utility

e The jrunscript Utility

e The jstack Utility

e The jstat Utility

e The visualgc Tool

» Control+Break Handler

* Native Operating System Tools
e Custom Diagnostic Tools

e Postmortem Diagnostic Tools

e Hung Processes Tools

e Monitoring Tools

e Other Tools, Options, Variables, and Properties

e The jstatd Daemon

Diagnostic Tools Overview

ORACLE

Most of the command-line utilities described in this section are either included in the
JDK or native operating system tools and utilities.

JDK command-line utilities can be used to diagnose issues and monitor applications
that are deployed in the Java runtime environment.

In general, the diagnostic tools and options use various mechanisms to get the
information they report. The mechanisms are specific to the virtual machine (VM)
implementation, operating systems, and release. Frequently, only a subset of the tools

2-1

Chapter 2
Flight Recorder

is applicable to a given issue at a particular time. Command-line options that are
prefixed with - XX are specific to Java HotSpot VM. See Java HotSpot VM Command-
Line Options.

Note:

The - XX options are not part of the Java APl and can vary from one release
to the next.

The tools and options are divided into several categories, depending on the type of
problem that you are troubleshooting. Certain tools and options might fall into more
than one category.

* Postmortem diagnostics These tools and options can be used to diagnose a
problem after an application crashes. See Postmortem Diagnostic Tools.

* Hung processes These tools can be used to investigate a hung or deadlocked
process. See Hung Processes Tools.

* Monitoring These tools can be used to monitor a running application. See
Monitoring Tools.

» Other These tools and options can be used to help diagnose other issues. See
Other Tools, Options, Variables, and Properties.

Note:

Some command-line utilities described in this section are experimental. The
j stack, jinfo,andjmap utilities are examples of utilities that are
experimental. It is suggested to use the latest diagnostic utility, j cnd instead
of the earlier j st ack, j i nfo, and j map utilities.

Flight Recorder

Flight Recorder is a framework for collecting diagnostic and profiling data about a
running Java application and the HotSpot JVM.

Flight Recorder is included in the JDK. Recordings can be started when the application
is started or after the application is running. The recorded data can help with
troubleshooting problems.

The following topics describe how to generate and review flight recordings:

e About Flight Recordings
e Produce a Flight Recording
e Inspect a Flight Recording

ORACLE 2-2

Chapter 2
Flight Recorder

About Flight Recordings

ORACLE

Flight Recorder records detailed information about the Java runtime and the Java
application running in the Java runtime, depending on the events that are enabled.

The recording process is done with little overhead. The data is recorded as time-
stamped data points called events. Typical events can be threads waiting for locks,
garbage collections, periodic CPU usage data, etc.

The data recorded is determined by the events that are enabled in a recording
template. Some templates only save very basic events and have virtually no impact
on performance. Other templates may come with slight performance overhead, and
may also trigger GCs to gather additional information. In general, it is rare to see more
than a few percentage of overhead. The following templates are provided with Flight
Recorder in the j ava- hone/ | i b/ j fr directory:

e« default.jfc: Collects a predefined set of information with low overhead

« profile.jfc:Provides more data than the def aul t . j f c template, but with
more overhead and impact on performance.

Flight recordings can be used to debug a wide range of issues from performance
problems to memory leaks or heavy lock contention.

Flight Recorder produces the following types of recordings:

* Continuous recordings: A continuous recording is a recording that is always on
and saves, for example, the last 6 hours of data. If your application runs into any
issues, then you can dump the data from, for example, the last hour and see what
happened at the time of the problem.

The default setting for a continuous recordings is to use a recording template with
low overhead. This template does not get heap statistics or allocation profiling, but
still gathers a lot of useful data.

A continuous recording is great to always have running, and is very helpful when
debugging issues that happen rarely. The recording can be dumped manually
using j cnd.

* Profiling recordings: A profiling recording is a recording that is turned on, runs
for a set amount of time, and then stops. Usually, a profiling recording has more
events enabled and may have a slightly bigger performance effect. The events
that are turned on can be modified depending on your use of profiling recording.

Typical use cases for profiling recordings are as follows:
— Profile which methods are run the most and where most objects are created.

— Look for classes that use more and more heap, which indicates a memory
leak.

— Look for bottlenecks due to synchronization and many more such use cases.

A profiling recording will give a lot of information even though you are not
troubleshooting a specific issue. A profiling recording will give you a good view of
the application and can help you find any bottlenecks or areas that need
improvement.

2-3

Chapter 2
Flight Recorder

Produce a Flight Recording

Use startup flags to start recording when the application is started. If the application is
already running, use the j cnd utility to start recording.

ORACLE

Use the following methods to generate a flight recording:

Generate a profiling recording when an application is started.

You can configure a time fixed recording at the start of the application using the -
XX: St art Fl i ght Recor di ng option. The following example shows how to run
the MyApp application and start a 60-second recording 20 seconds after starting
the JVM, which will be saved to a file named myrecording. jfr:

java -
XX: Start Fl i ght Recor di ng=del ay=20s, dur at i on=60s, nane=nyr ecordi ng, fi | ena
me=nyrecording.jfr,settings=profile MyApp

The settings parameter takes the name of a template. Include the path if the
template is not in the j ava- home/ I i b/ j f r directory, which is the location of the
default templates. The standard templates are: pr of i | e, which gathers more
data and is primarily for profiling recordings, and def aul t , which is a low
overhead setting made primarily for continuous recordings.

For a complete description of Flight Recorder flags for the j ava command, see
Advanced Runtime Options for Java in the Java Development Kit Tool
Specifications.

Generate a continuous recording when an application is started.

You can start a continuous recording from the command line using the -

XX: Start Fl i ght Recor di ng option. The - XX: Fl i ght Recor der Opti ons
provides additional settings for managing the recording. These flags start a
continuous recording that can later be dumped if needed. The following example
shows how to run the MyApp application with a continuous recording that saves 6
hours of data to disk. The temporary data will be saved to the / t np folder.

java - XX: Start Fl i ght Recor di ng=di sk=t r ue, naxage=6h, setti ngs=defaul t -
XX: Fl i ght Recor der Opti ons=reposi tory=/tnmp M/App

< Note:

When you actually dump the recording, you specify a new location for
the dumped file, so the files in the repository are only temporary.

Generate a recording using diagnostic commands.

For a running application, you can generate recordings by using Java command-
line diagnostic commands. The simplest way to execute a diagnostic command is
to use the j cnd tool located in the j ava- hone/ bi n directory. For more details
see, The jemd Utility.

The following example shows how to start a recording for the MyApp application
with the process ID 5361. 30 minutes of data is recorded and writen to / usr/
recordi ng/ myapp-recordingl.jfr.

2-4

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=java_advanced_runtime_tool_reference

Chapter 2
Flight Recorder

jecmd 5361 JFR start duration=30m fil ename=/usr/recordings/ nyapp-
recordingl.jfr

Inspect a Flight Recording

To access the information in a recording from Flight Recorder, use the j fr tool to print
event information, or use the Flight Recorder API to programmatically process the

ORACLE

data.

Flight Recorder provides the following methods for reviewing the information that was
recorded:

e jfr tool - Use this command-line tool to print event data from a recording. The tool
is located in the j ava- home/ bi n directory. For details about this tool, see jfr in
the Java Development Kit Tool Specifications

e Flight Recorder API - Use the j dk. j fr. consuner API to extract and format the
information in a recording.

The events in a recording can be used to investigate the following areas:

e General information

Number of events recorded at each time stamp
Maximum heap usage
CPU usage over time, application's CPU usage, and total CPU usage

Watch for CPU usage spiking near 100 percent or the CPU usage is too low or
too long garbage collection pauses.

GC pause time

JVM information and system properties set

e Memory

Memory usage over time

Typically, temporary objects are allocated all the time. When a condition is
met, a Garbage Collection (GC) is triggered and all of the objects no longer
used are removed. Therefore, the heap usage increases steadily until a GC is
triggered, then it drops suddenly. Watch for a steadily increasing heap size
over time that could indicate a memory leak.

Information about garbage collections, including the time spent doing them
Memory allocations made

The more temporary objects the application allocates, the more the application
must perform garbage collection. Reviewing memory allocations helps you find
the most allocations and reduce the GC pressure in your application.

Classes that have the most live set

Watch how each object type increases in size during a flight recording. A
specific object type that increases a lot in size indicates a memory leak;
however, a small variance is normal. Especially, investigate the top growers of
non-standard Java classes.

e Code

Packages and classes that used the most execution time

2-5

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jfr_tool_reference
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jfr/jdk/jfr/consumer/package-summary.html

Chapter 2
The jemd Utility

Watch where methods are being called from to identify bottlenecks in your
application.

— Exceptions thrown
— Methods compiled over time as the application was running

— Number of loaded classes, actual loaded classes and unloaded classes over
time

e Threads

— CPU usage and the number of threads over time

— Threads that do most of the code execution

— Objects that are the most waited for due to synchronization
- 10

— Information about file reads, file writes, socket reads, and socket writes
e System

— Information about the CPU, memory and OS of the machine running the
application

— Environment variables and any other processes running at the same time as
the JVM

e Events

— All of the events in the recording

The jemd Utility

ORACLE

The j cmd utility is used to send diagnostic command requests to the JVM. These
requests are useful for managing recordings from Flight Recorder, troubleshooting,
and diagnosing JVM and Java applications.

j cmd must be used on the same machine where the JVM is running, and have the
same effective user and group identifiers that were used to launch the JVM.

A special command j cnd <process id/ min class> PerfCounter.print prints all
performance counters in the process.

The command j cnd <process id/ main class> <command> [options] sends the
command to the JVM.

The following example shows diagnostic command requests to the JVM using j cnd
utility.

>jcmd
5485 sun.tool s.jcnd. JCnd
2125 MyProgram

> jemd MyProgramhel p (or "jcnd 2125 hel p")
2125:

The foll owing conmands are avail abl e:

JFR. configure

JFR stop

JFR start

2-6

ORACLE

JFR. dunp

JFR check

VM | og

VM native_nenory

VM check _conmercial _features
VM unl ock_commerci al _features
Managenent Agent . st at us
Managenent Agent . st op
Managenent Agent . start _| ocal
Managenent Agent . start

Conpi l er. directives_clear
Conpi l er. directives_remve
Conpi l er. directives_add
Conpi l er. directives_print
VM print_touched_met hods
Conpi | er. codecache

Conpi | er. codel i st

Conpi | er. queue

VM cl assl oader _stats
Thread. print

JVMII . dat a_dunp

JVMII . agent _| oad

VM stringtable

VM synbol t abl e

VM cl ass_hi erarchy

VM syst emdi cti onary

CC. class_stats

GC. cl ass_hi st ogram

GC. heap_dunp

CC. finalizer_info
GC. heap_info
CC.run_finalization
GC. run

VM info

VM upt i me

VM dynl i bs

VM set _flag

WM fl ags

VM syst em properties
VM command_| i ne

VM ver si on

hel p

Chapter 2
The jemd Utility

For more information about a specific conmand use 'hel p <conmmand>'.

> jcmd MyProgram hel p Thread. print

2125:

Thread. print

Print all threads with stacktraces.

I mpact: Medium Depends on the nunber of threads.

Perm ssion: java.lang. managenent . Managenent Per ni ssi on(moni t or)

Syntax : Thread. print [options]

2-7

Chapter 2
The jemd Utility

Options: (options nust be specified using the <key> or <key>=<val ue>
synt ax)
-1 : [optional] print java.util.concurrent |ocks (BOOLEAN, false)

> jcmd MyProgram Thread. print

2125:

2018-07-06 12:43:46

Full thread dunp Java Hot Spot(TM 64-Bit Server VM (10.0.1+10 mi xed node):

The following sections describe some useful commands and troubleshooting
techniques with the j cnd utility:

* Useful Commands for the jcmd Utility

e Troubleshoot with the jcmd Utility

Useful Commands for the jcmd Utility

ORACLE

The available diagnostic commands depend on the JVM being used. Use j cnd
<process id/main class> hel pto see all available options.

The following are some of the most useful commands of the j cnd tool:

e Print full HotSpot and JDK version ID.
jcmd <process id/main class> VM version

* Print all the system properties set for a VM.
There can be several hundred lines of information displayed.
jcmd <process id/main class> VM system properties

e Print all the flags used for a VM.

Even if you have provided no flags, some of the default values will be printed, for
example initial and maximum heap size.

jcmd <process id/main class> VM flags
e Print the uptime in seconds.

jend <process id/main class> VM uptine
e Create a class histogram.

The results can be rather verbose, so you can redirect the output to a file. Both
internal and application-specific classes are included in the list. Classes taking the
most memory are listed at the top, and classes are listed in a descending order.

jcmd <process id/main class> CC. class_hi stogram
e Create a heap dump.
jcmd GC. heap_dunp fil ename=Myheapdunp

This is the same as using j map -dunp: file=<file> <pi d>, butjcnd is the
recommended tool to use.

* Create a heap histogram.

2-8

Chapter 2
Native Memory Tracking

jcmd <process id/main class> CC. class_hi stogram
fil ename=Myheaphi st ogram

This is the same as using j map - hi sto <pi d>, butj cnd is the recommended tool
to use.

Print all threads with stack traces.

jcmd <process id/main class> Thread. print

Troubleshoot with the jcmd Utility

Use the j cnd to send diagnostic command requests to a running Java Virtual Machine
(JVM) or Java application.

The j cmd utility provides the following troubleshooting options:

Start recording with Flight Recorder.

For example, to start a 2-minute recording on the running Java process with the
identifier 7060 and save it to C: \ TEMP\ nyr ecor di ng. j f r, use the following:

jemd 7060 JFR start nane=MyRecording settings=profile del ay=20s
duration=2m fil ename=C:\ TEMP\ nyrecording.jfr

Check a recording.

The JFR check diagnostic command checks a running recording. For example:
jcmd 7060 JFR check

Stop a recording.

The JFR. st op diagnostic command stops a running recording and has the option
to discard the recording data. For example:

jcmd 7060 JFR stop
Dump a recording.

The JFR. dunp diagnostic command stops a running recording and has the option
to dump recordings to a file. For example:

jcmd 7060 JFR dunp name=MyRecording filenane=C:\ TEMP\ nyrecording.jfr
Create a heap dump.

The preferred way to create a heap dump is

jcmd <pi d> GC. heap_dunp fil enane=Myheapdunp

Create a heap histogram.

The preferred way to create a heap histogram is

jend <pid> GC. class_histogram fil ename=Myheaphi st ogram

Native Memory Tracking

The Native Memory Tracking (NMT) is a Java HotSpot VM feature that tracks internal
memory usage for a Java HotSpot VM.

ORACLE

Since NMT doesn't track memory allocations by non-JVM code, you may have to use
tools supported by the operating system to detect memory leaks in native code.

2-9

Chapter 2
Native Memory Tracking

The following sections describe how to monitor VM internal memory allocations and
diagnose VM memory leaks.

* Use NMT to Detect a Memory Leak
* How to Monitor VM Internal Memory

NMT Memory Categories

Use NMT to Detect a Memory Leak

Procedure to use Native Memory Tracking to detect memory leaks.
Follow these steps to detect a memory leak:

1. Start the JVM with summary or detail tracking using the command line option: -
XX: Nat i veMenor yTr acki ng=summary or - XX: Nat i veMenor yTr acki ng=det ai | .

2. Establish an early baseline. Use NMT baseline feature to get a baseline to
compare during development and maintenance by running: j cmd <pi d>
VM native_nenory baseline.

3. Monitor memory changes using: j cmd <pi d> VM native nmenory detail.diff.

4. If the application leaks a small amount of memory, then it may take a while to
show up.

How to Monitor VM Internal Memory

Native Memory Tracking can be set up to monitor memory and ensure that an
application does not start to use increasing amounts of memory during development or
maintenance.

See Table 2-1 for details about NMT memory categories.

The following sections describe how to get summary or detail data for NMT and
describes how to interpret the sample output.

* Interpret sample output: From the following sample output, you will see
reserved and committed memory. Note that only committed memory is actually
used. For example, if you run with - Xns100m - Xmx1000m then the JVM will reserve
1000 MB for the Java heap. Because the initial heap size is only 100 MB, only 100
MB will be committed to begin with. For a 64-bit machine where address space is
almost unlimited, there is no problem if a JVM reserves a lot of memory. The
problem arises if more and more memory gets committed, which may lead to
swapping or native out of memory (OOM) situations.

An arena is a chunk of memory allocated using malloc. Memory is freed from
these chunks in bulk, when exiting a scope or leaving an area of code. These
chunks can be reused in other subsystems to hold temporary memory, for
example, pre-thread allocations. An arena malloc policy ensures no memory
leakage. So arena is tracked as a whole and not individual objects. Some initial
memory cannot be tracked.

ORACLE 2-10

ORACLE

Chapter 2
Native Memory Tracking

Enabling NMT will result in a 5-10 percent JVM performance drop, and memory
usage for NMT adds 2 machine words to all malloc memory as a malloc header.
NMT memory usage is also tracked by NMT.

Total : reserved=664192KB,
conmi tt ed=253120KB <--- total
menory tracked by Native Menory Tracking

- Java Heap (reserved=516096KB,

commi t t ed=204800KB) <--- Java Heap
(mmap: reserved=516096KB,

conmi t t ed=204800KB)

- Cl ass (reserved=6568KB,

commi tt ed=4140KB) <--- class netadata
(cl asses
#665) <--- nunber of
| oaded cl asses
(mal | oc=424KB,
#1000) <--- malloc'd nenory,

#nunber of malloc
(mmap: reserved=6144KB, conmitted=3716KB)

- Thread (reserved=6868KB, comitted=6868KB)
(thread

#15) <--- nunber of

t hr eads
(stack: reserved=6780KB,

conmi t t ed=6780KB) <--- menory used by thread stacks
(mal [0c=27KB, #66)
(arena=61KB,

#30) <--- resource and

handl e areas

- Code (reserved=102414KB, committed=6314KB)
(mal | 0c=2574KB, #74316)
(rmmap: reserved=99840KB, committed=3740KB)

- GC (reserved=26154KB, conmitted=24938KB)
(mal | 0oc=486KB, #110)
(mmap: reserved=25668KB, committed=24452KB)

- Conpi | er (reserved=106KB, comitted=106KB)
(mal [oc=7KB, #90)
(arena=99KB, #3)

- Internal (reserved=586KB, conmitted=554KB)
(mal | oc=554KB, #1677)
(mmap: reserved=32KB, committed=0KB)
- Synbol (reserved=906KB, conmitted=906KB)
(mal I oc=514KB, #2736)
(arena=392KB, #1)

- Menory Tracking (reserved=3184KB, conmmitted=3184KB)

2-11

ORACLE

Chapter 2
Native Memory Tracking

(mal | 0c=3184KB, #300)

Pool ed Free Chunks (reserved=1276KB, conmitted=1276KB)
(mal | 0c=1276KB)

Unknown (reserved=33KB, conmitted=33KB)
(arena=33KB, #1)

Get detail data: To get a more detailed view of native memory usage, start the
JVM with command line option: - XX: Nat i veMenor yTr acki ng=det ai | . This will
track exactly what methods allocate the most memory. Enabling NMT will result in
5-10 percent JVM performance drop and memory usage for NMT adds 2 words to
all malloc memory as malloc header. NMT memory usage is also tracked by NMT.

The following example shows a sample output for virtual memory for track level set
to detail. One way to get this sample output is to run; j cnd <pi d>
VM native_nenory detail.

Virtual menory map:

[0x8f 1c1000 - 0x8f467000] reserved 2712KB for Thread Stack
from[Thread::record_stack base and_size()+0xca]
[0x8f 1c1000 - 0x8f 467000] committed 2712KB from
[Thread: : record_stack_base and_si ze()+0xca]

[0x8f 585000 - 0x8f 729000] reserved 1680KB for Thread Stack
from[Thread::record_stack base and_size()+0xca]
[0x8f 585000 - 0x8f 729000] conmitted 1680KB from
[Thread: : record_stack_base and_si ze()+0xca]

[0x8f 930000 - 0x90100000] reserved 8000KB for GC
from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x555]
[0x8f 930000 - 0x90100000] committed 8000KB from
[PSVi rtual Space: : expand_by(unsi gned int)+0x95]

[0x902dd000 - 0x9127d000] reserved 16000KB for GC
from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x555]
[0x902dd000 - 0x9127d000] committed 16000KB from
[os::pd_comit_menory(char*, unsigned int, unsigned int, bool)+0x36]

[0x9127d000 - 0x91400000] reserved 1548KB for Thread Stack
from[Thread::record_stack base and_size()+0xca]
[0x9127d000 - 0x91400000] conmitted 1548KB from
[Thread: :record_stack base and_si ze()+0xca]

[0x91400000 - 0xb0c00000] reserved 516096KB for Java
Heap

<--- reserved nenory range

from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x190] <--- callsite
that reserves the nenory

[0x91400000 - 0x93400000] committed 32768KB from

[Virtual Space::initialize(ReservedSpace, unsigned int)

2-12

ORACLE

Chapter 2
Native Memory Tracking

+0x3e8] <--- conmmitted menory range and its callsite
[0xa6400000 - 0xb0c00000] committed 172032KB from
[PSVi rtual Space: : expand_by(unsi gned int)
+0x95] <--- committed menory range and its
callsite

[0xb0c61000 - 0xb0ce2000] reserved 516KB for Thread Stack
from[Thread::record_stack base and_size()+0xca]
[0xb0c61000 - 0xb0ce2000] committed 516KB from
[Thread: : record_stack_base and_si ze()+0xca]

[0xb0ce2000 - 0xb0eB83000] reserved 1668KB for GC
from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x555]
[0xb0ce2000 - 0xb0Ocf0000] committed 56KB from
[PSVi rtual Space: : expand_by(unsi gned int)+0x95]
[0xb0d88000 - 0xb0d96000] committed 56KB from
[Car dTabl eModRef BS: : resi ze_covered_regi on(MenRegi on) +0xebf |
[0xb0e2e000 - 0xb0e83000] committed 340KB from
[Car dTabl eModRef BS: : resi ze_covered_regi on(MenRegi on) +0xebf |

[0xb0e83000 - 0xb7003000] reserved 99840KB for Code
from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x555]
[0xb0e83000 - 0xb0e92000] committed 60KB from
[Virtual Space::initialize(ReservedSpace, unsigned int)+0x3e8]
[0xb1003000 - 0xb139b000] committed 3680KB from
[Virtual Space::initialize(ReservedSpace, unsigned int)+0x37a]

[0xb7003000 - 0xb7603000] reserved 6144KB for C ass
from[ReservedSpace::initialize(unsigned int, unsigned int,
bool, char*, unsigned int, bool)+0x555]
[0xb7003000 - 0xb73a4000] committed 3716KB from
[Virtual Space::initialize(ReservedSpace, unsigned int)+0x37a]

[0xb7603000 - 0xb760b000] reserved 32KB for Internal
from[PerfMenory::create_nemory_region(unsigned int)+0x8ba]

[0xb770b000 - 0xb775c000] reserved 324KB for Thread Stack
from[Thread::record_stack base and_size()+0xca]
[Oxb770b000 - 0xb775c000] committed 324KB from
[Thread: : record_stack_base and_si ze()+0xca]

Get diff from NMT baseline: For both summary and detail level tracking, you can
set a baseline after the application is up and running. Do this by running j cmd

<pi d> VM native_menory basel i ne after the application warms up. Then, you can
runj cnd <pi d> VM native_nenory summary.diff orjcmd <pid>

VM native_nenory detail.diff.

The following example shows sample output for the summary difference in native
memory usage since the baseline was set and is a great way to find memory
leaks.

Total: reserved=664624KB -20610KB, conmmitted=254344KB
-20610KB <--- total nenory changes vs. earlier

2-13

ORACLE

Chapter 2
Native Memory Tracking

baseline. '+ =increase '-'=decrease
- Java Heap (reserved=516096KB, conmitted=204800KB)
(rmmap: reserved=516096KB

conmi t t ed=204800KB)

- C ass (reserved=6578KB +3KB, committed=4530KB
+3KB)

(cl asses #668
+3) <--- 3 nore classes
| oaded

(mal | 0c=434KB +3KB, #930
-7) <--- malloc'd nenory increased by
3KB, but nunber of malloc count decreased by 7

(rmmap: reserved=6144KB, conmitted=4096KB)

- Thread (reserved=60KB -1129KB, committed=60KB
-1129KB)
(thread #16
+1) <--- one nore thread
(stack: reserved=7104KB +324KB
commi tt ed=7104KB +324KB)
(mal | 0c=29KB +2KB, #70 +4)
(arena=31KB -1131KB, #32
+2) <--- 2 nore arenas (one nore
resource area and one more handl e area)

- Code (reserved=102328KB +133KB, conmitted=6640KB
+133KB)

(mal | 0c=2488KB +133KB, #72694 +4287)

(rmmap: reserved=99840KB, committed=4152KB)

- GC (reserved=26154KB, committed=24938KB)
(mal | oc=486KB, #110)
(mmap: reserved=25668KB, committed=24452KB)

- Conpi | er (reserved=106KB, conmitted=106KB)
(mal 1 oc=7KB, #93)
(arena=99KB, #3)

- Internal (reserved=590KB +35KB, conmitted=558KB
+35KB)

(mal | oc=558KB +35KB, #1699 +20)

(mmap: reserved=32KB, committed=0KB)

- Symbol (reserved=911KB +5KB, comitted=911KB +5KB)
(mal | 0c=519KB +5KB, #2921 +180)
(arena=392KB, #1)

- Menory Tracking (reserved=2073KB -887KB, conmitted=2073KB

- 887KB)
(mal | 0c=2073KB - 887KB, #84 -210)

- Pool ed Free Chunks (reserved=2624KB - 15876KB, committed=2624KB

2-14

Chapter 2
Native Memory Tracking

- 15876KB)
(mal | 0c=2624KB - 15876KB)

The following example is a sample output that shows the detail difference in
native memory usage since the baseline and is a great way to find memory leaks.

Detai |l s:

[0x01195652] ChunkPool ::al | ocate(unsi gned int)+0xe2
(mal | 0c=482KB - 481KB, #8 -8)

[0x01195652] ChunkPool ::al | ocate(unsi gned int)+0xe2
(mal | 0c=2786KB - 19742KB, #134 -618)

[0x013bd432] CodeBl ob: : set _oop_maps(OCopMapSet *) +0xa2
(mal | 0c=591KB +6KB, #681 +37)

[0x013c12bl] CodeBuffer::block conment(int, char const*)

+0x21 <--- [callsite address] method name + of f set
(mal | oc=562KB +33KB, #35940
+2125) <--- malloc'd anmount, increased by 33KB #mall oc

count, increased by 2125

[0x0145f 172] Const ant Pool : : Const ant Pool (Array<unsi gned char >*) +0x62
(mal | 0c=69KB +2KB, #610 +15)

[0x0laa3ee2] Thread::allocate(unsigned int, bool, unsigned short)+0x122
(mal 0oc=21KB +2KB, #13 +1)

[0x0laa73ca] Thread::record stack base and_size()+0xca
(mmap: reserved=7104KB +324KB,
commi tt ed=7104KB +324KB)

NMT Memory Categories

List of native memory tracking memory categories used by NMT.

Table 2-1 describes native memory categories used by NMT. These categories may
change with a release.

Table 2-1 Native Memory Tracking Memory Categories

Category Description

Java Heap The heap where your objects live

Class Class meta data

Code Generated code

GC Data use by the GC, such as card table

Compiler Memory tracking used by the compiler when generating code
Symbol Symbols

ORACLE 2-15

JConsole

Chapter 2
JConsole

Table 2-1 (Cont.) Native Memory Tracking Memory Categories
|

Category Description
Memory Tracking Memory used by NMT.
Pooled Free Chunks Memory used by chunks in the arena chunk pool

Shared space for classes Memory mapped to class data sharing archive

Thread Memory used by threads, including thread data structure,
resource area, handle area, and so on.

Thread stack Thread stack. It is marked as committed memory, but it might
not be completely committed by the OS.

Internal Memory that does not fit the previous categories, such as the
memory used by the command line parser, JVMTI, properties,
and so on.

Unknown When the memory category cannot be determined.

Arena: When the arena is used as a stack or value object

Virtual Memory: When the type information has not yet arrived

Another useful tool included in the JDK download is the JConsol e monitoring tool. This
tool is compliant with IMX. The tool uses the built-in IMX instrumentation in the JVM
to provide information about the performance and resource consumption of running
applications.

The JConsol e tool can attach to any Java application in order to display useful
information such as thread usage, memory consumption, and details about class
loading, runtime compilation, and the operating system.

This output helps with the high-level diagnosis of problems such as memory leaks,
excessive class loading, and running threads. It can also be useful for tuning and heap
sizing.

In addition to monitoring, JConsol e can be used to dynamically change several
parameters in the running system. For example, the setting of the - ver bose: gc option
can be changed so that the garbage collection trace output can be dynamically
enabled or disabled for a running application.

The following sections describe troubleshooting techniques with the JConsole tool.

e Troubleshoot with the JConsole Tool

e Monitor Local and Remote Applications with JConsole

Troubleshoot with the JConsole Tool

ORACLE

Use the JConsol e tool to monitor data.

The following list provides an idea of the data that can be monitored using the
JConsol e tool. Each heading corresponds to a tab pane in the tool.

Overview

2-16

ORACLE

Chapter 2
JConsole

This pane displays graphs that shows the heap memory usage, number of
threads, number of classes, and CPU usage over time. This overview allows you
to visualize the activity of several resources at once.

Memory

For a selected memory area (heap, non-heap, various memory pools):
* Graph showing memory usage over time

* Current memory size

* Amount of committed memory

* Maximum memory size

Garbage collector information, including the number of collections performed,
and the total time spent performing garbage collection

Graph showing the percentage of heap and non-heap memory currently used

In addition, on this pane you can request garbage collection to be performed.

Threads

Graph showing thread usage over time.
Live threads: Current number of live threads.
Peak: Highest number of live threads since the JVM started.

For a selected thread, the name, state, and stack trace, as well as, for a
blocked thread, the synchronizer that the thread is waiting to acquire, and the
thread that ownsthe lock.

The Deadlock Detection button sends a request to the target application to
perform deadlock detection and displays each deadlock cycle in a separate
tab.

Classes

Graph showing the number of loaded classes over time
Number of classes currently loaded into memory

Total number of classes loaded into memory since the JVM started, including
those subsequently unloaded

Total number of classes unloaded from memory since the JVM started

VM Summary

General information, such as the JConsole connection data, uptime for the
JVM, CPU time consumed by the JVM, complier name, total compile time, and
S0 on.

Thread and class summary information

Memory and garbage collection information, including number of objects
pending finalization, and so on

Information about the operating system, including physical characteristics, the
amount of virtual memory for the running process, and swap space

Information about the JVM itself, such as the arguments and class path

MBeans

2-17

Chapter 2
JConsole

This pane displays a tree structure that shows all platform and application MBeans
that are registered in the connected JMX agent. When you select an MBean in the
tree, its attributes, operations, notifications, and other information are displayed.

— You can invoke operations, if any. For example, the operation dunpHeap for the
Hot Spot Di agnosti ¢ MBean, which is in the com sun. nenagenent domain,
performs a heap dump. The input parameter for this operation is the path
name of the heap dump file on the machine where the target VM is running.

— You can set the value of writable attributes. For example, you can set, unset,
or change the value of certain VM flags by invoking the set VMOpt i on operation
of the Hot Spot Di agnosti ¢ MBean. The flags are indicated by the list of values
of the Di agnosti cOpt i ons attribute.

— You can subscribe to notifications, if any, by using the Subscribe and
Unsubscribe buttons.

Monitor Local and Remote Applications with JConsole

ORACLE

JConsole can monitor both local applications and remote applications. If you start the
tool with an argument specifying a JMX agent to connect to, then the tool will
automatically start monitoring the specified application.

To monitor a local application, execute the command j consol epi d , where pi d is the
process ID of the application.

To monitor a remote application, execute the command j consol ehost nane:
portnumber, where host name is the name of the host running the application, and
por t number is the port number you specified when you enabled the JMX agent.

If you execute the j consol e command without arguments, the tool will start by
displaying the New Connection window, where you specify the local or remote
process to be monitored. You can connect to a different host at any time by using the
Connection menu.

With the latest JDK releases, no option is necessary when you start the application to
be monitored.

As an example of the output of the monitoring tool, Figure 2-1 shows a chart of the
heap memory usage.

2-18

Chapter 2

The jdb Utility
Figure 2-1 Sample Output from JConsole
| £ Java Monitoring & Management Console - pid: 5500 sun.Tools. jconsole. JConsole u@
|£] Conrmection ‘Window Help - a8 x
CrEryig ||""|El'ﬂ':'r':"| Threads | Classes || %M Summary || MBeans ==
Chart: |Hea|:u Mermory Usage [V] Time Range: m
50 Mb 4
40 Mb +
30Mb
20Mb Used
4 17,909,624
10 Mb-L
15:05 15:08 15:07 15:08
Details
Time: 2006-10-02 15:02:24 100% --
Used: 15, 234 kbytes _—
Committed: 40, 456 kbytes
Max: 65,088 Kaytes =% -
GC time: 0.70% seconds on Copy (194 collections) 259 -
1.272 seconds on MalkSweepCompact (12 collections) 0% -
Heap | |Non-Hea|:| |

The jdb Utility
The j db utility is included in the JDK as an example command-line debugger. The j db

utility uses the Java Debug Interface (JDI) to launch or connect to the target JVM.

The JDI is a high-level Java API that provides information useful for debuggers and
similar systems that need access to the running state of a (usually remote) virtual
machine. JDI is a component of the Java Platform Debugger Architecture (JPDA). See
Java Platform Debugger Architecture.

The following section provides troubleshooting techniques for j db utility.

e Troubleshoot with the jdb Utility

Troubleshoot with the jdb Utility

The jdb utility is used to monitor the debugger connectors used for remote debugging.

ORACLE 2-19

Chapter 2
The jinfo Utility

In JDI, a connector is the way that the debugger connects to the target JVM. The JDK
traditionally ships with connectors that launch and establish a debugging session with

a target JVM, as well as connectors that are used for remote debugging (using TCP/IP
or shared memory transports).

These connectors are generally used with enterprise debuggers, such as the
NetBeans integrated development environment (IDE) or commercial IDEs.

The command j db -|istconnectors prints a list of the available connectors. The
command j db - hel p prints the command usage help.

See The jdb Command in the Java Development Kit Tool Specifications

The jinfo Utility

ORACLE

The j i nf o command-line utility gets configuration information from a running Java
process or crash dump, and prints the system properties or the command-line flags
that were used to start the JVM.

Flight Recorde, and j cnd utility can be used for diagnosing problems with JVM and
Java applications. Use the latest utility, j cnd, instead of the previous j i nf o utility for
enhanced diagnostics and reduced performance overhead.

With the - f| ag option, the j i nf o utility can dynamically set, unset, or change the value
of certain JVM flags for the specified Java process. See Java HotSpot VM Command-
Line Options.

The output for the j i nf o utility for a Java process with PID number 29620 is shown in
the following example.

c:\Program Fil es\ Java\j dk- 13\ bi n>j i nfo 19256

Java System Properties:

j ava. speci fication. versi on=13

sun. cpu. i sal i st =and64

sun. j nu. encodi ng=Cp1252

sun. awt . enabl eExt r aMouseBut t ons=t r ue

j ava. cl ass. pat h=C\: \\ sanpl eApps\\ Dynani cTr eeDeno\ \ di st\\ Dynani cTr eeDeno. j ar
java.vm vendor=Oracl e Corporation

sun. ar ch. dat a. model =64

user.variant=

java.vendor.url=https\://java. oracl e. conf

0s. name=W ndows 10

java.vm speci fication. versi on=13

sun. j ava. | auncher =SUN_STANDARD

user. count ry=US

sun. boot . library. path=C :\\Program Fil es\\ Java\\j dk-13\\ bi n
sun. j ava. command=C\ : \\ sanpl eApps\\ Dynani cTr eeDeno\ \ di st \
\ Dynami cTr eeDeno. j ar

j dk. debug=r el ease

sun. cpu. endian=little

user. home=C\:\\ Users\\user1l

user. | anguage=en

j ava. speci fication.vendor=0racl e Corporation

j ava. versi on. dat e=2019- 09- 17

j ava. home=Q\:\\ Program Fi | es\\ Java\\j dk- 13
file.separator=\\

2-20

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jdb_tool_reference

Chapter 2
The jinfo Utility

j ava. vm conpr essedOopshbde=Zer o based

line.separator=\r\n

java. specification. nane=Java Pl atform APl Specification
java.vm speci fication. vendor=0Oracl e Corporation
user.script=

sun. managenent . conpi | er =Hot Spot 64-Bit Tiered Conpilers
java.runtime. versi on=13- ea+29

user. name=user1

pat h. separ at or =

0s.version=10.0

java.runtime. name=Java(TM SE Runtime Environnent
file.encodi ng=Cp1252

j ava. vm name=Java Hot Spot (TM 64-Bit Server VM

j ava.vendor. url . bug=https\://bugreport.java.com bugreport/
java.io.tnpdir=C:\\Users\\user1\\ AppDat a\\ Local \\ Tenp\\

j ava. versi on=13- ea

user. di r=C :\\ sanpl eApps\\ Dynami cTr eeDeno\ \ di st\\

0s. ar ch=ami64

java.vm speci fication.nane=Java Virtual Machine Specification
sun. os. pat ch. | evel =
java.library.path=C :\\Program Fi | es\\ Java\\j dk-13\\bin;....
java.vminfo=mi xed node, sharing

j ava. vendor =Oracl e Corporation

j ava.vm ver si on=13- ea+29

sun. i o. uni code. encodi ng=Uni codeLittle

java. cl ass. versi on=57.0

VM Fl ags:

The following topic describes the troubleshooting technique with j i nf o utility.

e Troubleshooting with the jinfo Utility

Troubleshooting with the jinfo Utility

ORACLE

The output from j i nf o provides the settings for j ava. cl ass. pat h and
sun. boot . cl ass. pat h.

If you start the target JVM with the - cl asspat h and - Xboot cl asspat h arguments, then
the output from j i nf o provides the settings for j ava. cl ass. pat h and

sun. boot . cl ass. pat h. This information might be needed when investigating class
loader issues.

In addition to getting information from a process, the j hsdb j i nf o tool can use a core
file as input. On the Linux operating system, for example, the gcor e utility can be used
to get a core file of the process in the preceding example. The core file will be named

core. 19256 and will be generated in the working directory of the process. The path to

the Java executable file and the core file must be specified as arguments to the j hsdb
j 1 nf o utility, as shown in the following example.

$ jhsdb jinfo --exe java-home/bin/java --core core. 19256

2-21

The jmap

Chapter 2
The jmap Utility

Sometimes, the binary name will not be j ava. This happens when the VM is created
using the JNI invocation API. The j hsdb ji nf o tool requires the binary from which the
core file was generated.

Utility

The j mp command-line utility prints memory-related statistics for a running VM or core
file. For a core file, use j hsdb j nap.

Flight Recorder and j cnd utility can be used for diagnosing problems with JVM and
Java applications. It is suggested to use the latest utility, j cnd instead of the previous
j map utility for enhanced diagnostics and reduced performance overhead.

If j map is used with a process or core file without any command-line options, then it
prints the list of shared objects loaded. For more specific information, you can use the
options - heap, - hi sto, or - cl st at s. These options are described in the subsections
that follow.

In addition, the JDK 7 release introduced the - dunp: f or mat =b, fi | e=fi | enane option,
which causes j map to dump the Java heap in binary format to a specified file.

If the j map pi d command does not respond because of a hung process, then use the
j hsdb | map utility to run the Serviceability Agent.

The following sections describe troubleshooting techniques with examples that print
memory-related statistics for a running VM or a core file.

* Heap Configuration and Usage
* Heap Histogram

¢ Class Loader Statistics

Heap Configuration and Usage

ORACLE

Use the j hsdb jmap --heap command to get the Java heap information.
The - - heap option is used to get the following Java heap information:

e Information specific to the garbage collection (GC) algorithm, including the name
of the GC algorithm (for example, parallel GC) and algorithm-specific details (such
as the number of threads for parallel GC).

e Heap configuration that might have been specified as command-line options or
selected by the VM based on the machine configuration.

e Heap usage summary: For each generation (area of the heap), the tool prints the
total heap capacity, in-use memory, and available free memory. If a generation is
organized as a collection of spaces (for example, the new generation), then a
space-specific memory size summary is included.

The following example shows output from the j hsdb j map - - heap command.

c:\Program Fi | es\ Java\j dk- 13\ bi n>j hsdb jmap --heap --pid 19256
Attaching to process ID 19256, please wait...

Debugger attached successful ly.

Server conpiler detected.

JVM version is 13-ea+29

2-22

Chapter 2
The jmap Utility

using thread-1ocal object allocation.
Garbage-First (Gl) GCwith 4 thread(s)

Heap Configuration:
M nHeapFreeRati 0
MaxHeapFreeRati 0

40
70

MaxHeapSi ze 4253024256 (4056. OMB)

NewSi ze 1363144 (1.2999954223632812MB)
MaxNewSi ze 2551185408 (2433. 0MB)

a dSi ze 5452592 (5.1999969482421875MB)
NewRat i 0 2

SurvivorRatio 8

Met aspaceSi ze

Conpr essedd assSpaceSi ze
MaxMet aspaceSi ze
GlHeapRegi onSi ze

17592186044415 NB
1048576 (1. OMB)

Heap Usage:
Gl Heap:
regions = 4056
capacity = 4253024256 (4056.0M)
used = 7340032 (7.0MB)
free = 4245684224 (4049. 0MB)

0. 17258382642998027% used
Gl Young Generati on:

Eden Space:
regions =17
capacity = 15728640 (15.0MB)
used = 7340032 (7.0MB)
free = 8388608 (8.0MB)

46. 666666666666664% used
Survivor Space:

regions =0
capacity = 0 (0.0MB)
used = 0 (0.0MB)
free =0 (0.0MB)
0. 0% used
GL A d Ceneration:
regions =0
capacity = 250609664 (239. 0MB)
used =0 (0.0MB)
free = 250609664 (239. 0MB)
0. 0% used

Heap Histogram

The j mp command with the - hi st o option or the j hsdb j map -- hi st o command can

ORACLE

be used to get a class-specific histogram of the heap.

21807104 (20.796875MB)
1073741824 (1024. 0MB)

The j map - hi st o command can print the heap histogram for a running process. Use

jhsdb jmap --histo to print the heap histogram for a core file.

When the j map - hi st o command is executed on a running process, the tool prints the
number of objects, memory size in bytes, and fully qualified class name for each class.

2-23

ORACLE

Chapter 2
The jmap Utility

Internal classes in the Java HotSpot VM are enclosed within angle brackets. The
histogram is useful to understand how the heap is used. To get the size of an object,
you must divide the total size by the count of that object type.

The following example shows output from the j map - hi st o command when it is
executed on a process with PID number 19256.

c:\Program Fil es\Java\j dk- 13\ bi n> map -histo 19256
No dunp file specified

num #i nstances #bytes class nanme (nodul e)
1 20913 1658720 [B (java. base@3-ea)
2 3647 1516888 [I (java.base@3-ea)
3: 12321 492840 java.security.AccessControl Cont ext
(java. base@a3-ea)
4: 14806 355344 java.lang.String (java.base@a3-ea)
5: 2441 298464 java.lang.C ass (java.base@3-ea)
6: 5169 289464
jdk.internal. org. obj ect web. asm Synbol Tabl e$Entry (java. base@L3- ea)
7 5896 284216 [Ljava.lang. Object; (java.base@3-ea)
8: 6887 220384 java.util.HashMap$Node (] ava. base@3-
ea)
9: 237 194640
[Ljdk.internal.org.objectweb. asm Synbol Tabl e$Entry; (java. base@3-ea)
10: 5119 163808 java.util.ArrayList$ltr (java.base@s3-
ea)
11: 1922 153760 java.awt.event. MuseEvent
(java. deskt op@3- ea)
12: 672 139776 sun.java2d. SunG aphi cs2D
(java. deskt op@3- ea)
13: 4101 131232 java.lang.ref. WeakRef erence
(java. base@a3-ea)
14: 655 101848 [Ljava.util.HashMap$Node;
(java. base@a3-ea)
15: 3915 93960 sun.awt . Event Queuel tem
(java. deskt op@3- ea)
16: 367 89008 [C (java. base@3-ea)
17: 3708 88992 java.awt.Point (java.desktop@3-ea)
18: 2158 86320 java.lang.invoke. Met hodType
(java. base@a3-ea)
19: 3026 81832 [Ljava.lang.Cass; (java.base@3-ea)
20: 348 77952
jdk.internal.org.objectweb. asm MethodWiter (java. base@s3-ea)
21: 1016 73152 java.awt.geom AffineTransform
(java. deskt op@3- ea)
22: 1017 65088 java.awt .event.lnvocationEvent
(java. deskt op@3- ea)
23: 2013 64416 java.aw.Rectangle (java.desktop@a3-ea)
24: 1341 64368 java.lang.invoke. Menber Nane
(java. base@a3-ea)
25: 1849 59168

java.util.concurrent. Concurrent HishMap$Node (j ava. base@3- ea)
. more lines renoved here to reduce output...
1414: 1 16
sun. util.resources. Local eDat a$Local eDat aStrategy (j ava. base@3-ea)

2-24

Chapter 2
The jmap Utility

1415: 1 16

sun. util.resources. provider. NonBaseLocal eDat aMet al nfo (j dk. | ocal edat a@3-
ea)

Tot al 145508 8388608

When the j hsdb jmap --hi st o command is executed on a core file, the tool prints the
serial number, number of instances, bytes, and class name for each class. Internal
classes in the Java HotSpot VM are prefixed with an asterisk (*).

The following example shows output of the j hsdb j map --hi st o command when it is
executed on a core file.

& jhsdb jmap --exe /usr/javal/jdk_12/bin/java --core core. 16395 --histo
Attaching to core core. 16395 from executabl e /usr/javal/jdk_12/bin/java
pl ease wait...

Debugger attached successful ly.

Server conpiler detected.

JVMversion is 12-ea+30

Iterating over heap. This may take a while...

(oj ect Hi stogram

num #i nstances #bytes O ass description

1. 11102 564520 byte[]

2 10065 241560 java.lang.String

3: 1421 163392 java.lang.d ass

4: 26403 2997816 * Const Met hodKl ass

5: 26403 2118728 * MethodKl ass

6: 39750 1613184 * Synbol Kl ass

7 2011 1268896 * Const ant Pool Kl ass

8: 2011 1097040 * InstanceKl assKl ass

9: 1906 882048 * Const ant Pool CacheKl ass

10: 1614 125752 java.lang. Qbject[]

11 1160 64960 jdk.internal.org.objectweb.asmltem
12: 1834 58688 java.util.HashMap$Node

13: 359 40880 java.util.HashMap$Nodel]

14: 1189 38048 java.util.concurrent. Concurrent HashMap$Node
15: 46 37280 jdk.internal.org.objectweb.asmlten]]
16: 29 35600 char[]

17: 968 32320 int[]

18: 650 26000 java.lang.invoke. Met hodType

19: 475 22800 java.lang.invoke. Menber Nane

Class Loader Statistics

ORACLE

Use the j map command with the - ¢l st at s option to print class loader statistics for the
Java heap.

The j mp command connects to a running process using the process ID and prints
detailed information about classes loaded in the Metaspace:

* Index - Unique index for the class

e Super - Index number of the super class

2-25

Chapter 2
The jmap Utility

* InstBytes - Number of bytes per instance

» KlassBytes - Number of bytes for the class

* annotations - Size of annotations

* CpAll - Combined size of the constants, tags, cache, and operands per class
* MethodCount - Number of methods per class

* Bytecodes - Number of bytes used for byte codes

* MethodAll - Combined size of the bytes per method, CONSTMETHOD, stack
map, and method data

* ROAII - Size of class metadata that could be put in read-only memory
* RWAII - Size of class metadata that must be put in read/write memory
* Total - Sum of ROAIl + RWAII

* ClassName - Name of the loaded class

The following example shows a subset of the output from the j map -cl stats
command when it is executed on a process with PID number 14400.

c:\Program Fi | es\ Java\j dk-13\bi n>j map -cl stats 11848
I ndex Super InstBytes Kl assBytes annotations CpAll MethodCount Bytecodes

ORACLE

Met hodAl | ROA! | RWA! | Total O assName

1 -1 313192 512 0 0 0
0 0 24 624 648 [B

2 51 287648 784 0 23344 147
5815 52456 28960 50248 79208 java.l ang. d ass

3 -1 259936 512 0 0 0
0 0 24 624 648 [|

4 51 171000 680 136 16304 120
4831 48024 22408 44680 67088 java.lang. String

5 -1 147200 512 0 0 0
0 0 24 624 648 [Ljava.lang. Ooj ect;

6 51 123680 600 0 1384 7
149 1888 1200 3024 4224 java.util.HashMap$Node

7 51 53440 608 0 1360 9
213 2472 1632 3184 4816
java.util.concurrent. Concurrent HashMap$Node

8 -1 51832 512 0 0 0
0 0 24 624 648 [C

9 -1 49904 512 0 0 0
0 0 32 624 656 [Ljava.util.HashMap$Node

10 51 31200 624 0 1512 8
240 2224 1472 3256 4728 java.util.Hashtabl e$Entry

11 51 25536 592 0 11520 89
4365 48344 16696 45480 62176 java.l ang.invoke. Menber Name

12 1614 19296 1024 0 7904 51
4071 30304 14664 25760 40424 java.util.HashMap

13 -1 18368 512 0 0 0
0 0 32 624 656
[Ljava.util.concurrent. Concurrent HashMap$Node

14 51 17504 544 120 5464 37
1783 14968 7416 14392 21808 java. | ang. i nvoke. LanbdaFor nNane

15 -1 16680 512 0 0 0

2-26

Chapter 2
The jps Utility

0 0 80 624 704 [Ljava.lang. d ass;
...lines renmoved to reduce output... 2342 1972 0
560 0 1912 7 170 1520 1312
3016 4328 sun. util.logging.internal.Loggi ngProviderl npl
2343 51 0 528 0 232 1
0 144 128 936 1064
sun. util .l ogging.internal.Loggi ngProviderl|nmpl $LogManager Access
2081120 1635072 10680 5108776 27932
1288637 7813992 5420704 10014136 15434840 Tot al
13. 5% 10. 6% 0.1% 33.1% -

8.3% 50.6% 35.1% 64.9% 100.0%
I ndex Super InstBytes Kl assBytes annotations CpAll MethodCount Bytecodes
Met hodAl | ROA! | RWA! | Total O assName

The Jps Utility
The j ps utility lists every instrumented Java HotSpot VM for the current user on the

target system.

The utility is very useful in environments where the VM is embedded, that is, where it
is started using the JNI Invocation API rather than the j ava launcher. In these
environments, it is not always easy to recognize the Java processes in the process list.

The following example shows the use of the j ps utility.
$ jps

16217 MyApplication
16342 jps

The j ps utility lists the virtual machines for which the user has access rights. This is
determined by access-control mechanisms specific to the operating system.

In addition to listing the PID, the utility provides options to output the arguments
passed to the application's mai n method, the complete list of VM arguments, and the
full package name of the application's nai n class. The j ps utility can also list
processes on a remote system if the remote system is running the j st at d daemon.

The jrunscript Utility

The j runscri pt utility is a command-line script shell.

It supports script execution in both interactive mode and in batch mode. By default, the
shell uses JavaScript, but you can specify any other scripting language for which you
supply the path to the script engine JAR file of . cl ass files.

Thanks to the communication between the Java language and the scripting language,
the jrunscript utility supports an exploratory programming style.

The jstack Utility

Use the j cnd or j hsdb j st ack utility, instead of the j st ack utility to diagnose problems
with JVM and Java applications.

ORACLE 2-27

Chapter 2
The jstack Utility

Flight Recorder and j cnd utility can be used to diagnose problems with JVM and Java
applications. It is suggested to use the latest utility, j cnd, instead of the previous
j st ack utility for enhanced diagnostics and reduced performance overhead.

The following sections describe troubleshooting techniques with the j st ack and j hsdb
j stack utilites.

e Troubleshoot with the jstack Utility
e Stack Trace from a Core Dump
* Mixed Stack

Troubleshoot with the jstack Utility

The j st ack command-line utility attaches to the specified process, and prints the stack
traces of all threads that are attached to the virtual machine, including Java threads
and VM internal threads, and optionally native stack frames. The utility also performs
deadlock detection. For core files, use j hsdb j st ack.

A stack trace of all threads can be useful in diagnosing a number of issues, such as
deadlocks or hangs.

The -1 option instructs the utility to look for ownable synchronizers in the heap and
print information about j ava. util . concurrent. | ocks. Without this option, the thread
dump includes information only on monitors.

The output from the j st ack pi d option is the same as that obtained by pressing Ctrl+\
at the application console (standard input) or by sending the process a quit signal. See
Control+Break Handler for an example of the output.

Thread dumps can also be obtained programmatically using the
Thread. get Al | St ackTr aces method, or in the debugger using the debugger option to
print all thread stacks (the wher e command in the case of the j db sample debugger).

Stack Trace from a Core Dump

Use the j hsdb j st ack command to obtain stack traces from a core dump.

To get stack traces from a core dump, execute the j hsdb j st ack command on a core
file, as shown in the following example.

$ jhsdb jstack --exe java-hone/bin/java --core core-file

Mixed Stack

ORACLE

The j hsdb j st ack utility can also be used to print a mixed stack; that is, it can print
native stack frames in addition to the Java stack. Native frames are the C/C++ frames
associated with VM code and JNI/native code.

To print a mixed stack, use the - - ni xed option, as shown in the following example.
$ jhsdb jstack --mixed --pid 21177
Attaching to process ID 21177, please wait...

Debugger attached successful ly.
Client conpiler detected.

2-28

ORACLE

Chapter 2
The jstack Utility

JVMversion is 12-30+ea
Deadl| ock Detection:

Found one Java-|evel deadl ock

"Threadl":

waiting to [ock Monitor@x0005¢750 (CObject @xd4405938, a javal/lang/
String)

which is held by "Thread2"
"Thread2":

waiting to [ock Monitor @x0005c6e8 (Object @xd4405900, a javallang/
String)

which is held by "Threadl"

Found a total of 1 deadl ock

................. P@ ----mcmmmmmmmee-
0xf f2c0f bc _lwp wait + 0x4

0xf f 2bc9bc _thrp_join + 0x34

0xf f 2bch28 thr_join + 0x10

0x00018a04 Cont i nuel nNewThr ead + 0x30

0x00012480 main + Oxeb0

0x000111a0 _start + 0x108

................. t@ ~---mcmmmmmmmen-

0xff2c1070 ___lwp_cond_wait + 0x4

0xfec03638 bool Monitor::wait(bool,long) + 0x420
Oxfec9e2c8 bool Threads::destroy _vm) + Oxa4

0xf e93ad5c jni _DestroyJavaVM + 0x1bc

0x00013ac0 JavaMain + 0x1600

0xf f 2bf d9c _lwp_start
................. t@ ----mmmmmmm e
0xff2c1070 ___lwp_cond_wait + 0x4
0xff2ac104 _lwp_cond_tinedwait + Oxlc

Oxfec034f 4 bool Monitor::wait(bool,long) + 0x2dc
0xf ece60bc voi d VMrhread: :1oop() + 0x1b8

0xf e8b66a4 voi d VMrhread: :run() + 0x98
Oxfecl139f4 java_start + 0x118

Oxf f 2bf d9c _lwp_start
................. P@ --m-mmmmmmm e
0xff2c1070 ___lwp_cond_wait + 0x4

Oxfec195e8 void os::PlatfornkEvent::park() + 0xf0O

Oxfec88464 voi d ObjectMnitor::wait(long |ong,bool, Thread*) + 0x548

Oxfe8ch974 voi d Qbj ect Synchroni zer::wait(Handl e, ong | ong, Thread*) +

0x148

0xf e8ch508 JVM MonitorWait + 0x29c

0xfc40e548 * java.lang. Qbject.wait(long) bci:0 (Interpreted frame)

Oxfc40e4f 4 * java.lang. Qbject.wait(long) bci:0 (Interpreted frame)

0xfc405a10 * java.lang. Qoject.wait() bci:2 line: 485 (Interpreted frane)
more lines removed here to reduce output..

----------------- t@2 --------e - -

Oxf f 2bf e3c __lwp_park + 0x10

0xf e9925e4 AttachQperation*AttachListener::dequeue() + 0x148

0xfe99115¢c voi d attach_listener_thread _entry(JavaThread*, Thread*) +

Ox1fc

2-29

Chapter 2
The jstat Utility

0xfec99ad8 voi d JavaThread: :thread_main_inner() + 0x48
Oxfecl139f4 java_start + 0x118

Oxf f 2bf d9c _lwp_start
----------------- t@3 -----me e
0xff2c1500 _door _return + 0xc
----------------- t@4 -~

0xff2c1500 _door _return + 0xc

Frames that are prefixed with an asterisk (*) are Java frames, whereas frames that are
not prefixed with an asterisk are native C/C++ frames.

The output of the utility can be piped through c++fi |t to demangle C++ mangled
symbol names. Because the Java HotSpot VM is developed in the C++ language, the
j hsdb j st ack utility prints C++ mangled symbol names for the Java HotSpot internal
functions.

The c++fi |t utility is delivered with the native C++ compiler suite gnu on Linux.

The jstat Utility

ORACLE

The j st at utility uses the built-in instrumentation in the Java HotSpot VM to provide
information about performance and resource consumption of running applications.

The tool can be used when diagnosing performance issues, and in particular issues
related to heap sizing and garbage collection. The j st at utility does not require the
VM to be started with any special options. The built-in instrumentation in the Java
HotSpot VM is enabled by default. This utility is included in the JDK download for all
operating system platforms supported by Oracle.

¢ Note:

The instrumentation is not accessible on a FAT32 file system.

See The jstat Command in the Java Development Kit Tool Specifications.

The j st at utility uses the virtual machine identifier (VMID) to identify the target
process. The documentation describes the syntax of the VMID, but its only required
component is the local virtual machine identifier (LVMID). The LVMID is typically (but
not always) the operating system's PID for the target JVM process.

The j st at utility provides data similar to the data provided by the vinst at and i ost at
on Linux operating systems.

For a graphical representation of the data, you can use the vi sual gc tool. See The
visualgc Tool.

The following example illustrates the use of the - gcuti | option, where the j st at utility
attaches to LVMID number 2834 and takes 7 samples at 250-millisecond intervals.

$ jstat -gcutil 2834 250 7

SO S1 E 0] M YGC YCCT FGC FGCT CCT
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124

2-30

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jstat_tool_reference

ORACLE

Chapter 2
The jstat Utility

0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124
0.00 99.74 13.49 7.86 95.82 3 0.124 0 0. 000 0.124

The output of this example shows you that a young generation collection occurred
between the third and fourth samples. The collection took 0.017 seconds and
promoted objects from the eden space (E) to the old space (O), resulting in an
increase of old space utilization from 46.56% to 54.60%.

The following example illustrates the use of the - gcnew option where the j st at utility
attaches to LVMID number 2834, takes samples at 250-millisecond intervals, and
displays the output. In addition, it uses the - h3 option to display the column headers
after every 3 lines of data.

$ jstat -gcnew -h3 2834 250

S0C S1C SoU SIU TT MIT DSS EC EU YCC YCCT
192.0 192.0 0.0 0.0 15 15 96.0 1984.0 942.0 218 1.999
192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1024.8 218 1.999
192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1068.1 218 1.999
S0C S1C SoU SIU TT MIT DSS EC EU YCC YCCT
192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1109.0 218 1.999
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 0.0 219 2.019
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 71.6 219 2.019
S0C S1C SoU SIU TT MIT DSS EC EU YCC YCCT
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 73.7 219 2.019
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 78.0 219 2.019
192.0 192.0 0.0 103.2 1 15 96.0 1984.0 116.1 219 2.019

In addition to showing the repeating header string, this example shows that between
the fourth and fifth samples, a young generation collection occurred, whose duration
was 0.02 seconds. The collection found enough live data that the survivor space 1
utilization (S1U) would have exceeded the desired survivor size (DSS). As a result,
objects were promoted to the old generation (not visible in this output), and the
tenuring threshold (TT) was lowered from 15 to 1.

The following example illustrates the use of the - gcol dcapaci ty option, where the

j st at utility attaches to LVMID number 21891 and takes 3 samples at 250-millisecond
intervals. The -t option is used to generate a time stamp for each sample in the first
column.

$ jstat -gcoldcapacity -t 21891 250 3

Ti mest anp OGCWN OCWX ocC oC YL F&C FGCT
- 150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874
§ 79£iSO. 4 1408.0 60544.0 13820.0 13820.0 194 81 2.938
§ 86iSO. 7 1408.0 60544.0 13820.0 13820.0 194 81 2.938
3. 863

2-31

Chapter 2
The visualgc Tool

The Timestamp column reports the elapsed time in seconds since the start of the
target JVM. In addition, the - gcol dcapaci t y output shows the old generation capacity
(OGC) and the old space capacity (OC) increasing as the heap expands to meet the
allocation or promotion demands. The OGC has grown from 11696 KB to 13820 KB
after the 815t full generation capacity (FGC). The maximum capacity of the generation
(and space) is 60544 KB (OGCMX), so it still has room to expand.

The visualgc Tool

ORACLE

The vi sual gc tool provides a graphical view of the garbage collection (GC) system.

The vi sual gc tool is related to the j st at tool. See The jstat Utility. The vi sual gc tool
provides a graphical view of the garbage collection (GC) system. As with j st at , it uses
the built-in instrumentation of the Java HotSpot VM.

The vi sual gc tool is not included in the JDK release, but is available as a separate
download from the j vnst at technology page.

Figure 2-2 shows how the GC and heap are visualized.

Figure 2-2 Sample Output from vi sual gc

Compile Time: 939 compiles - 2.321s

B | SRl EEm | S—

Class Loader Time: 1636 loaded, 0 unloaded - 7

’—GC Time: 100 collections, 3.877s

o -

Eden Space (7.125M, 7.125M): 1.379M, 89 collections, 6

Survivor 0 (448.000K, 448.000K): 0

Survivor 1 (448.0

Perm Gen (64.000M, 7.000M); 6.810M

2-32

http://www.oracle.com/technetwork/java/jvmstat-142257.html

Chapter 2
Control+Break Handler

Control+Break Handler

On Linux operating systems, the combination of pressing the Control key and the
backslash (\) key at the application console (standard input) causes the Java HotSpot
VM to print a thread dump to the application’'s standard output. On Windows, the
equivalent key sequence is the Control and Break keys. The general term for these
key combinations is the Control+Break handler.

On Linux operating systems, a thread dump is printed if the Java process receives a
quit signal. Therefore, the ki || -QU T pi d command causes the process with the ID
pi d to print a thread dump to standard output.

The following sections describe the data traced by the Control+Break handler:
e Thread Dump

* Thread States for a Thread Dump

* Detect Deadlocks

e Heap Summary

Thread Dump

ORACLE

The thread dump consists of the thread stack, including the thread state, for all Java
threads in the virtual machine.

The thread dump does not terminate the application: it continues after the thread
information is printed.

The following example illustrates a thread dump.

Full thread dunp Java Hot Spot(TM Cient VM (1.6.0-rc-b100 m xed node):

"DestroyJavaVM' prio=10 tid=0x00030400 ni d=0x2 waiting on condition
[0x00000000. . Oxf e77f bf 0]
java.lang. Thread. State: RUNNABLE

"Thread2" prio=10 ti d=0x000d7c00 ni d=0xb waiting for nonitor entry
[Oxf 36f f 000. . Oxf 36f f 8¢0]
java.lang. Thread. State: BLOCKED (on object nonitor)
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to [ock <Oxf819a938> (a java.lang. String)
- locked <0xf819a970> (a java.lang. String)

"Threadl" prio=10 ti d=0x000d6c00 ni d=Oxa waiting for nonitor entry
[0xf 37ff000. . Oxf 37f f bcO]
java.lang. Thread. State: BLOCKED (on object nonitor)
at Deadl ock$Deadl ockMaker Thr ead. r un(Deadl ock. j ava: 32)
- waiting to [ock <Oxf819a970> (a java.lang. String)
- locked <Oxf819a938> (a java.lang. String)

"Low Menory Detector" daenon prio=10 tid=0x000c7800 ni d=0x8 runnabl e

[0x00000000. . 0x00000000]
java.lang. Thread. State: RUNNABLE

2-33

Chapter 2
Control+Break Handler

" Conpi | er Thread0" daemon prio=10 ti d=0x000c5400 ni d=0x7 waiting on
condi tion [0x00000000. .0x00000000]
java.lang. Thread. State: RUNNABLE

"Signal Dispatcher" daemon prio=10 tid=0x000c4400 ni d=0x6 waiting on
condi tion [0x00000000. .0x00000000]
java.lang. Thread. State: RUNNABLE

"Finalizer" daemon prio=10 ti d=0x000b2800 ni d=0x5 in Cbject.wait()
[Oxf 3f 7f 000. . Oxf 3f 7f 9¢0]
java.lang. Thread. State: WAITING (on object nonitor)

at java.lang. Qbject.wait(Native Method)
- waiting on <0xf4000b40> (a java.lang.ref. ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue. remove(Ref erenceQueue. j ava: 116)
- locked <Oxf4000b40> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref. ReferenceQueue. remove(Ref erenceQueue. j ava: 132)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java: 159)

"Ref erence Handl er” daenon prio=10 tid=0x000ae000 ni d=0x4 in Chject.wait()
[0xf e57f 000. . Oxf e57f 940]
java.lang. Thread. State: WAITING (on object nonitor)
at java.lang. bject.wait(Native Method)
- waiting on <0xf4000a40> (a java.lang.ref. Reference$Lock)
at java.lang. Object.wait(Qbject.java: 485)
at java.lang.ref.Reference$Ref erenceHandl er. run(Reference.java: 116)
- locked <Oxf4000a40> (a java.lang.ref.Reference$Lock)

"VM Thread" prio=10 ti d=0x000ab000 ni d=0x3 runnabl e

"VM Periodic Task Thread" prio=10 tid=0x000c8c00 ni d=0x9 waiting on
condition

The output consists of a number of thread entries separated by an empty line. The
Java Threads (threads that are capable of executing Java language code) are printed
first, and these are followed by information about VM internal threads. Each thread
entry consists of a header line followed by the thread stack trace.

The header line contains the following information about the thread:

e Thread name.

* Indication if the thread is a daemon thread.

e Thread priority (prio).

e Thread ID (tid), which is the address of a thread structure in memory.
e |D of the native thread (nid).

e Thread state, which indicates what the thread was doing at the time of the thread
dump. See Table 2-2 for more details.

e Address range, which gives an estimate of the valid stack region for the thread.

Thread States for a Thread Dump

List of possible thread states for a thread dump.

ORACLE 2-34

Chapter 2
Control+Break Handler

Table 2-2 lists the possible thread states for a thread dump using the Control+Break
Handler.

Table 2-2 Thread States for a Thread Dump
|

Thread State Description

NEW The thread has not yet started.

RUNNABLE The thread is executing in the JVM.

BLOCKED The thread is blocked, waiting for a monitor lock.

WAITING The thread is waiting indefinitely for another thread to perform a
particular action.

TIMED_WAITING The thread is waiting for another thread to perform an action for
up to a specified waiting time.

TERMINATED The thread has exited.

Detect Deadlocks

The Control+Break handler can be used to detect deadlocks in threads.

In addition to the thread stacks, the Control+Break handler executes a deadlock
detection algorithm. If any deadlocks are detected, then the Control+Break handler, as
shown in the following example, prints additional information after the thread dump
about each deadlocked thread.

Found one Java-|evel deadl ock:

"Thread2":
waiting to lock monitor 0x000af330 (object Oxf819a938, a java.lang.String),
which is held by "Threadl"

"Threadl":
waiting to lock monitor 0x000af398 (object Oxf819a970, a java.lang.String),
which is held by "Thread2"

Java stack information for the threads |isted above:

"Thread2":
at Deadl ock$Deadl ockMaker Thread. run(Deadl ock. j ava: 32)
- waiting to lock <Oxf819a938> (a java.lang. String)
- locked <0xf819a970> (a java.lang. String)

"Threadl":
at Deadl ock$Deadl ockMaker Thread. run(Deadl ock. j ava: 32)
- waiting to lock <Oxf819a970> (a java.lang. String)
- locked <0xf819a938> (a java.lang. String)

Found 1 deadl ock.

If the JVM flag - XX: +Pri nt Concur r ent Locks is set, then the Control+Break handler will
also print the list of concurrent locks owned by each thread.

Heap Summary

The Control+Break handler can be used to print a heap summary.

ORACLE 2-35

Chapter 2
Native Operating System Tools

The following example shows the different generations (areas of the heap), with the
size, the amount used, and the address range. The address range is especially useful
if you are also examining the process with tools such as pmap.

Heap
def new generation total 1152K, used 435K [0x22960000, 0x22a90000,
0x22e40000
)
eden space 1088K, 40% used [0x22960000, 0x229ccd40, 0x22a70000)
fromspace 64K, 0% used [0x22a70000, 0x22a70000, 0x22a80000)
to space 64K, 0% used [0x22a80000, 0x22a80000, 0x22a90000)
tenured generation total 13728K, used 6971K [0x22e40000, 0x23ba8000,

0x269600
00)

the space 13728K, 50% used [0x22e40000, 0x2350ech0, 0x2350ee00,
0x23ba8000)
conpacting permgen total 12288K, used 1417K [0x26960000, 0x27560000,
0x2a9600
00)

the space 12288K, 11% used [0x26960000, Ox26ac24f8, 0x26ac2600,
0x27560000)

ro space 8192K, 62% used [0x2a960000, 0x2ae5bad8, 0x2ae5bc00,
0x2b160000)

rw space 12288K, 52% used [0x2b160000, 0x2b79e410, 0x2b79e600,
0x2bd60000)

If the JVM flag - XX: +Pri nt Cl assHi st ogr amis set, then the Control+Break handler
will produce a heap histogram.

Native Operating System Tools

Windows and Linux operating systems provide native tools that are useful for
troubleshooting or monitoring purposes.

A brief description is provided for each tool. For further details, see the operating
system documentation or man pages for the Linux operating system.

The format of log files and output from command-line utilities depends on the release.
For example, if you develop a script that relies on the format of the fatal error log, then
the same script may not work if the format of the log file changes in a future release.

You can also search for Windows-specific debug support on the MSDN developer
network.

The following sections describe troubleshooting techniques and improvements to a
few native operating system tools.

» Troubleshooting Tools Based on the Operating System

* Probe Providers in Java HotSpot VM

Troubleshooting Tools Based on the Operating System

List of native Windows tools that can be used for troubleshooting problems.

Table 2-3 lists the troubleshooting tools available on the Windows operating system.

ORACLE 2-36

http://msdn.microsoft.com
http://msdn.microsoft.com

Chapter 2
Native Operating System Tools

Table 2-3 Native Troubleshooting Tools on Windows

Tool

Description

dunpchk

msdev debugger

user dunp

wi ndbg

/ Ml and / Mid compiler
options

Command-line utility to verify that a memory dump file was
created correctly. This tool is included in the Debugging Tools
for Windows download available from the Microsoft website. See
Collect Crash Dumps on Windows.

Command-line utility that can be used to launch Visual C++ and
the Win32 debugger

The User Mode Process Dumper is included in the OEM Support
Tools download available from the Microsoft website. See
Collect Crash Dumps on Windows.

Windows debugger can be used to debug Windows applications
or crash dumps. This tool is included in the Debugging Tools for
Windows download available from the Microsoft website. See
Collect Crash Dumps on Windows.

Compiler options that automatically include extra support for
tracking memory allocations

Table 2-4 describes some troubleshooting tools introduced or improved in the Linux
operating system version 10.

Table 2-4 Native Troubleshooting Tools on Linux

ntrace and muntrace

| proc filesystem

strace
top
vt at

Tool Description

cH+filt Demangle C++ mangled symbol names. This utility is delivered
with the native C++ compiler suite: gcc on Linux.

gdb GNU debugger

['i bnj and Memory allocation tracking

| sstack Print thread stack
Not all distributions provide this tool by default; therefore, you
might have to download it from Open Source downloads.

[trace Library call tracer

Not all distributions provide this tool by default; therefore, you
might have to download it from Open Source downloads.

GNU nal | oc tracer

Virtual filesystem that contains information about processes and
other system information

System call tracer
Display most CPU-intensive processes.

Report information about processes, memory, paging, block I/O,
traps, and CPU activity.

Probe Providers in Java HotSpot VM

The Java HotSpot VM contains two built-in probe providers hot spot and hot spot _j ni .

ORACLE

2-37

http://sourceforge.net
http://sourceforge.net

Chapter 2
Custom Diagnostic Tools

These providers deliver probes that can be used to monitor the internal state and
activities of the VM, as well as the Java application that is running.

The JVM probe providers can be categorized as follows:

e VM lifecycle: VM initialization begin and end, and VM shutdown
e Thread lifecycle: thread start and stop, thread name, thread ID, and so on
e Class-loading: Java class loading and unloading

e Garbage collection: Start and stop of garbage collection, systemwide or by
memory pool

e Method compilation: Method compilation begin and end, and method loading and
unloading

e Monitor probes: Wait events, notification events, contended monitor entry and exit
e Application tracking: Method entry and return, allocation of a Java object

In order to call from native code to Java code, the native code must make a call
through the JNI interface. The hot spot _j ni provider manages DTrace probes at the
entry point and return point for each of the methods that the JNI interface provides for
invoking Java code and examining the state of the VM.

At probe points, you can print the stack trace of the current thread using the ust ack
built-in function. This function prints Java method names in addition to C/C++ native
function names. The following example is a simple D script that prints a full stack trace
whenever a thread calls the r ead system call.

#!/usr/sbin/dtrace -s

syscal | ::read:entry

Ipid==81 && tid == 1/ {
ust ack(50, 0x2000);

}

The script in the previous example is stored in a file named r ead. d and is run by
specifying the PID of the Java process that is traced as shown in the following
example.

read. d pid

If your Java application generated a lot of /O or had some unexpected latency, then
the DTrace tool and its ust ack() action can help you to diagnose the problem.

Custom Diagnostic Tools

ORACLE

The JDK has extensive APIs to develop custom tools to observe, monitor, profile,
debug, and diagnose issues in applications that are deployed in the Java runtime
environment.

The development of new tools is beyond the scope of this document. Instead, this
section provides a brief overview of the APIs available.

All the packages mentioned in this section are described in the Java SE API
specification.

2-38

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

Chapter 2
Custom Diagnostic Tools

See the example and demonstration code that is included in the JDK download.

The following sections describe packages, interface classes, and the Java debugger
that can be used as custom diagnostic tools for troubleshooting.

e The java.lang.management Package
e The java.lang.instrument Package

e Thejava.lang.Thread Class

* JVM Tool Interface

e Java Platform Debugger Architecture

The java.lang.management Package

The j ava. | ang. managenent package provides the management interface for the
monitoring and management of the JVM and the operating system.

Specifically, it covers interfaces for the following systems:

* Class loading

e Compilation

* Garbage collection
* Memory manager
* Runtime

e Threads

In addition to the j ava. | ang. managenent package, the JDK release includes platform
extensions in the com sun. managenment package. The platform extensions include a
management interface to get detailed statistics from garbage collectors that perform
collections in cycles. These extensions also include a management interface to get
additional memory statistics from the operating system.

The java.lang.instrument Package

The java.l ang.instrunment package provides services that allow the Java
programming language agents to instrument programs running on the JVM.

Instrumentation is used by tools such as profilers, tools for tracing method calls, and
many others. The package facilitates both load-time and dynamic instrumentation. It
also includes methods to get information about the loaded classes and information
about the amount of storage consumed by a given object.

The java.lang.Thread Class

ORACLE

The j ava. | ang. Thr ead class has a static method called get Al | St ackTr aces, which
returns a map of stack traces for all live threads.

The Thr ead class also has a method called get St at e, which returns the thread state;
states are defined by the j ava. | ang. Thr ead. St at e enumeration. These methods can
be useful when you add diagnostic or monitoring capabilities to an application.

2-39

Chapter 2
Postmortem Diagnostic Tools

JVM Tool Interface

The JVM Tool Interface (JVM TI) is a native (C/C++) programming interface that can
be used by a wide range of development and monitoring tools.

JVM TI provides an interface for the full breadth of tools that need access to the VM
state, including but not limited to profiling, debugging, monitoring, thread analysis, and
coverage analysis tools.

Some examples of agents that rely on JVM TI are the following:
» Java Debug Wire Protocol (JDWP)
 Thejava.lang.instrunent package

The specification for JVM Tl can be found in the JVM Tool Interface documentation.

Java Platform Debugger Architecture

The Java Platform Debugger Architecture (JPDA) is the architecture designed for use
by debuggers and debugger-like tools.

The Java Platform Debugger Architecture consists of two programming interfaces and
a wire protocol:

e The Java Virtual Machine Tool Interface (JVM TI) is the interface to the virtual
machine. See JVM Tool Interface.

e The Java Debug Interface (JDI) defines information and requests at the user code
level. It is a pure Java programming language interface for debugging Java
programming language applications. In JPDA, the JDI is a remote view in the
debugger process of a virtual machine in the process being debugged. It is
implemented by the front end, where as a debugger-like application (for example,
IDE, debugger, tracer, or monitoring tool) is the client. See the module j dk. j di .

e The Java Debug Wire Protocol (JDWP) defines the format of information and
requests transferred between the process being debugged and the debugger front
end, which implements the JDI.

The j db utility is included in the JDK as an example command-line debugger. The | db
utility uses the JDI to launch or connect to the target VM. See The jdb Utility.

In addition to traditional debugger-type tools, the JDI can also be used to develop tools
that help in postmortem diagnostics and scenarios where the tool needs to attach to a
process in a noncooperative manner (for example, a hung process).

Postmortem Diagnostic Tools

ORACLE

List of tools and options available for post-mortem diagnostics of problems between
the application and the Java HotSpot VM.

Table 2-5 summarizes the options and tools that are designed for postmortem
diagnostics. If an application crashes, then these options and tools can be used to get
additional information, either at the time of the crash or later using information from the
crash dump.

2-40

https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.jdi/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jdwp/jdwp-spec.html

Chapter 2
Hung Processes Tools

Table 2-5 Postmortem Diagnostics Tools

Tool or Option

Description and Usage

Fatal Error Log

- XX
+HeapDumpOnQut OF Menor y
Error option

- XX: OnError option

- XX
+ShowMessageBox OnEr r or
option

Other - XX options

j hsdb jinfo utility

j hsdb | map utility

j stack utility

Native tools

When an irrecoverable (fatal) error occurs, an error log is
created. This file contains information obtained at the time of the
fatal error. In many cases, it is the first item to examine when a
crash occurs. See Fatal Error Log.

This command-line option specifies the generation of a heap
dump when the VM detects a native out-of-memory error. See
The -XX:HeapDumpOnOutOfMemoryError Option.

This command-line option specifies a sequence of user-supplied
scripts or commands to be executed when a fatal error occurs.
For example, on Windows, this option can execute a command
to force a crash dump. This option is very useful on systems
where a postmortem debugger is not configured. See The -
XX:OnError Option.

This command-line option suspends a process when a fatal error
occurs. Depending on the user response, the option can launch
the native debugger (for example, dbx, gdb, msdev) to attach to
the VM. See The -XX:ShowMessageBoxOnError Option.

Several other - XX command-line options can be useful in
troubleshooting. See Other -XX Options.

This utility can get configuration information from a core file
obtained from a crash or from a core file obtained using the
gcor e utility. See The jinfo Utility.

This utility can get memory map information, including a heap
histogram, from a core file obtained from a crash or from a core
file obtained using the gcor e utility. See The jmap Utility.

This utility can get Java and native stack information from a Java
process. On the Linux operating system, the utility can also get
the information from a core file or a remote debug server. See
The jstack Utility.

Each operating system has native tools and utilities that can be
used for postmortem diagnosis. See Native Operating System
Tools.

Hung Processes Tools

Tools and options for diagnosing problems between the application and the Java
HotSpot VM in a hung process are available in the JDK and in the operating system.

ORACLE

Table 2-6 summarizes the options and tools that can help in scenarios involving a
hung or deadlocked process. These tools do not require any special options to start

the application.

Flight Recorder and the j cnd utility can be used to diagnose problems with JVM and
Java applications. It is suggested to use the latest utility, j cnd, instead of the previous
j stack,jinfo, andjmap utilities for enhanced diagnostics and reduced performance

overhead.

2-41

Chapter 2
Monitoring Tools

Table 2-6 Hung ProcessTools

Tool or Option

Description and Usage

Ctrl+Break handler This key combination performs a thread dump and deadlock
(Control+\ orki Il -QUI T detection. The Ctrl+Break handler can optionally print a list of

pi d on the and Linux

concurrent locks and their owners, as well as a heap histogram.
See Control+Break Handler.

operating system, and
Control+Break on Windows)

j cmd utility

i db utility

j i nfo utility

j map utility

j st ack utility

Native tools

This utility is used to send diagnostic command requests to the
JVM, where these requests are useful for controlling recordings
from Flight Recorder. The recordings are used to troubleshoot
and diagnose flight recording events. See The jemd Utility.

Debugger support includes attaching connectors, which allow

j db and other Java language debuggers to attach to a process.
This can help show what each thread is doing at the time of a
hang or deadlock. See The jdb Utility.

This utility can get configuration information from a Java
process. See The jinfo Utility.

This utility can get memory map information, including a heap
histogram, from a Java process. The j hsdb j map utility can be
used if the process is hung. See The jmap Utility.

This utility can obtain Java and native stack information from a
Java process. See The jstack Utility.

Each operating system has native tools and utilities that can be
useful in hang or deadlock situations. See Native Operating
System Tools.

Monitoring Tools

Tools and options for monitoring running applications and detecting problems are
available in the JDK and in the operating system.

The tools listed in the Table 2-7 are designed for monitoring applications that are

running.

Flight Recorder and the j cnd utility can be used to diagnose problems with JVM and
Java applications. It is suggested to use the latest utility, j cnd, instead of the previous

j stack,jinfo,
overhead.

Table 2-7 Monitoring Tools

and j nap utilities for enhanced diagnostics and reduced performance

Tool or Option

Description and Usage

jemd utility

JConsole utility

ORACLE

This utility is used to send diagnostic command requests to the JVM, where
these requests are useful for controlling recordings from Flight Recorder. The
recordings are used to troubleshoot and diagnose JVM and Java applications
with flight recording events. See The jemd Utility.

This utility is a monitoring tool that is based on Java Management Extensions
(IMX). The tool uses the built-in IMX instrumentation in the Java Virtual
Machine to provide information about the performance and resource
consumption of running applications. See JConsole.

2-42

Chapter 2
Other Tools, Options, Variables, and Properties

Table 2-7 (Cont.) Monitoring Tools
]

Tool or Option

Description and Usage

j map utility

j ps utility

j stack utility

j stat utility

j st at d daemon

vi sual gc utility

Native tools

This utility can get memory map information, including a heap histogram, from
a Java process or a core file. See The jmap Utility.

This utility lists the instrumented Java HotSpot VMs on the target system. The
utility is very useful in environments where the VM is embedded, that is, it is
started using the JNI Invocation API rather than the j ava launcher. See The
jps Utility.

This utility can get Java and native stack information from a Java process or a
core file. See The jstack Utility.

This utility uses the built-in instrumentation in Java to provide information
about performance and resource consumption of running applications. The
tool can be used when diagnosing performance issues, especially those
related to heap sizing and garbage collection. See The jstat Utility.

This tool is a Remote Method Invocation (RMI) server application that
monitors the creation and termination of instrumented Java Virtual Machines
and provides an interface to allow remote monitoring tools to attach to VMs
running on the local host. See The jstatd Daemon.

This utility provides a graphical view of the garbage collection system. As with
j st at, it uses the built-in instrumentation of Java HotSpot VM. See The
visualgc Tool.

Each operating system has native tools and utilities that can be useful for
monitoring purposes. See Native Operating System Tools.

Other Tools, Options, Variables, and Properties

ORACLE

General troubleshooting tools, options, variables, and properties that can help to
diagnose issues are available in the JDK and in the operating system.

In addition to the tools that are designed for specific types of problems, the tools,
options, variables, and properties listed in Table 2-8 can help in diagnosing other
issues.

Flight Recorder and the j cnd utility can be used for diagnosing problems with JVM and
Java applications. It is suggested to use the latest utility, j cnd, instead of the previous
j stack,jinfo, and|jmap utilities for enhanced diagnostics and reduced performance
overhead.

Table 2-8 General Troubleshooting Tools and Options

e
Tool or Option Description and Usage

j cmd utility This utility is used to send diagnostic command requests to the
JVM, where these requests are useful for controlling recordings
from Flight Recorder. The recordings are used to troubleshoot
and diagnose JVM and Java applications with flight recording
events.

j i nfo utility This utility can dynamically set, unset, and change the values of
certain JVM flags for a specified Java process. On Linux
operating systems, it can also print configuration information.

2-43

Chapter 2
The jstatd Daemon

Table 2-8 (Cont.) General Troubleshooting Tools and Options

Tool or Option

Description and Usage

jrunscript utility

- Xcheck: j ni option

-verbose: cl ass option
-ver bose: gc option
-verbose: jni option

JAVA _TOOL_OPTI ONS
environment variable

j ava. security. debug
system property

This utility is a command-line script shell, which supports both
interactive and batch-mode script execution.

This option is useful in diagnosing problems with applications
that use the Java Native Interface (INI) or that employ third-
party libraries (some JDBC drivers, for example). See The -
Xcheck:jni Option.

This option enables logging of class loading and unloading. See
The -verbose:class Option.

This option enables logging of garbage collection information.
See The -verbose:gc Option.

This option enables logging of JNI. See The -verbose:jni Option.

This environment variable allows you to specify the initialization
of tools, specifically the launching of native or Java programming
language agents using the - agent | i b or - j avaagent options.
See Environment Variables and System Properties.

This system property controls whether the security checks in the
Java runtime environment print trace messages during
execution. See The java.security.debug System Property.

The jstatd Daemon

The j st at d daemon is an RMI server application that monitors the creation and
termination of each instrumented Java HotSpot, and provides an interface to allow
remote monitoring tools to attach to JVMs running on the local host.

For example, this daemon allows the j ps utility to list processes on a remote system.

" Note:

The instrumentation is not accessible on FAT32 file system.

ORACLE

2-44

Troubleshoot Memory Leaks

This chapter provides some suggestions for diagnosing problems involving possible
memory leaks.

If your application's execution time becomes longer and longer, or if the operating
system seems to be performing slower and slower, this could be an indication of a
memory leak. In other words, virtual memory is being allocated but is not being
returned when it is no longer needed. Eventually the application or the system runs out
of memory, and the application terminates abnormally.

This chapter contains the following sections:

* Debug a Memory Leak Using Flight Recorder

e Understand the OutOfMemoryError Exception

e Troubleshoot a Crash Instead of OutOfMemoryError
» Diagnose Leaks in Java Language Code

» Diagnose Leaks in Native Code

Debug a Memory Leak Using Flight Recorder

ORACLE

Flight Recorder records detailed information about the Java runtime and the Java
application running in the Java runtime. This information can be used to identify
memory leaks.

Detecting a slow memory leak can be hard. A typical symptom is that the application
becomes slower after running for a long time due to frequent garbage collections.
Eventually, Qut Of Menor yErr or s may be seen.

To detect a memory leak, Flight Recorder must be running at the time that the leak
occurs. The overhead of Flight Recorder is very low, less than 1%, and it has been
designed to be safe to have always on in production.

Start a recording when the application is started using the j ava command as shown in
the following example:

$ java - XX StartFlight Recording

When the JVM runs out of memory and exits due to an Qut Menor yEr ror, a recording
with the prefix hs_oom pi d is often, but not always, written to the directory in which
the JVM was started. An alternative way to get a recording is to dump it before the
application runs out of memory using the j cnd tool, as shown in the following example:

$ jcmd pid JFR dunp filenane=recording.jfr path-to-gc-roots=true

When you have a recording, use the j fr tool located in the j ava- homne/ bi n directory
to print Old Object Sample events that contain information about potential memory

3-1

ORACLE

Chapter 3
Debug a Memory Leak Using Flight Recorder

leaks. The following example shows the command and an example of the output from
a recording for an application with the pid 16276:

jfr print --events O dObject Sanpl e pi d16276.fr

j dk. O dj ect Sanpl e {
startTine = 18:32:52.192
duration = 5.317 s
al locationTime = 18:31:38.213
| ast KnownHeapUsage = 63.9 MB
object = |
java.util.HashMap$Node
[15052855] : java.util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000
map : java.util.HashSet
users : java.lang.dass Cass Nane: Application
]
arrayEl enents
root = {
description = "Thread Nanme: main"
system = "Threads"
type = "Stack Variabl e"
}

event Thread = "main" (javaThreadl d = 1)

N A

j dk. O dj ect Sanpl e {
startTinme = 18:32:52.192
duration = 5.317 s
al locationTime = 18:31: 38. 266
| ast KnownHeapUsage = 84.4 MB
object = |
java.util.HashMap$Node
[8776975] : java.util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000
map : java.util.HashSet
users : java.lang.dass Cass Nane: Application
]
arrayEl enents
root = {
description = "Thread Nanme: main"
system = "Threads"
type = "Stack Variable"
}

event Thread = "main" (javaThreadld = 1)

N A

j dk. O dnj ect Sanpl e {
startTinme = 18:32:52.192
duration = 5.317 s

3-2

ORACLE

Chapter 3
Debug a Memory Leak Using Flight Recorder

al locationTime = 18: 31: 38. 540
| ast KnownHeapUsage = 121.7 MB
object = |
java. util.HashMap$Node
[393162] : java.util.HashMap$Node[33554432]
table : java.util.HashMap Size: 15000000
map : java.util.HashSet
users : java.lang.d ass Cass Name: Application
]
arrayEl ements = N A
root = {
description = "Thread Nanme: main"
system = "Threads"
type = "Stack Variabl e"
}

event Thread = "main" (javaThreadld = 1)

To identify a possible memory leak, review the following elements in the recording:

First, notice that the | ast KnownHeapUsage element in the Old Object Sample
events is increasing over time, from 63.9 MB in the first event in the example to
121.7 MB in the last event. This increase is an indication that there is a memory
leak. Most applications allocate objects during startup and then allocate temporary
objects that are periodically garbage collected. Objects that are not garbage
collected, for whatever reason, accumulate over time and increases the value of

| ast KnownHeapUsage.

Next, look at the al | ocati onTi me element to see when the object was allocated.
Objects that are allocated during startup are typically not memory leaks, neither
are objects allocated close to when the dump was taken. The start Ti ne element
shows the time when then dump was taken, and the dur ati on element shows how
long it took.

Then look at the obj ect element to see the memory leak candidate; in this
example, an object of type j ava. uti | . HashiMap$Node. Itis held by the t abl e
field in the j ava. uti | . HashMap class, which is held by j ava. uti | . HashSet
which in turn is held by the user s field of the Appl i cat i on class.

The root element contains information about the GC root. In this example, the
Appl i cati on class is held by a stack variable in the main thread. The

event Thr ead element provides information about the thread that allocated the
object.

If the application is started with the - XX: St art Fl i ght Recor di ng: settings=profile
option, then the recording also contains the stack trace from where the object was
allocated, as shown in the following example:

stackTrace = [

java.util.HashMap. newNode(i nt, oject, Cbject, HashMap$Node) |ine: 1885
java.util.HashMap. putVal (int, Cbject, Object, bool ean, bool ean) line:

631

java. util.HashMap. put (Gbject, bject) line: 612
java.util.HashSet.add(oject) line: 220

3-3

Chapter 3
Understand the OutOfMemoryError Exception

Application.storeUser(String, String) line: 53
Application.validate(String, String) line: 48
Application.login(String, String) line: 44
Application. main(String[]) line: 30

In this example we can see that the object was put in the HashSet when the
storeUser(String, String) method was called. This suggests that the cause of the
memory leak might be objects that were not removed from the HashSet when the user
logged out.

It is not recommended to always run all applications with the -

XX: Start Fl i ght Recordi ng: settings=profil e option due to overhead in certain
allocation-intensive applications, but is typically OK when debugging. Overhead is
usually less than 2%.

Setting pat h-t 0- gc-r oot s=t r ue creates overhead, similar to a full garbage collection,
but also provides reference chains back to the GC root, which is usually sufficient
information to find the cause of a memory leak.

Understand the OutOfMemoryError Exception

ORACLE

j ava. l ang. Qut Of Menor yError error is thrown when there is insufficient space to
allocate an object in the Java heap.

One common indication of a memory leak is the j ava. | ang. Qut O Menor yEr r or
exception. In this case, The garbage collector cannot make space available to
accommodate a new object, and the heap cannot be expanded further. Also, this error
may be thrown when there is insufficient native memory to support the loading of a
Java class. In a rare instance, a j ava. | ang. Qut Of Menor yErr or can be thrown when an
excessive amount of time is being spent doing garbage collection, and little memory is
being freed.

When aj ava. | ang. Qut OF Menor yEr r or exception is thrown, a stack trace is also
printed.

The j ava. |l ang. Qut O Menor yError exception can also be thrown by native library code
when a native allocation cannot be satisfied (for example, if swap space is low).

An early step to diagnose an Cut Of Menor yEr r or exception is to determine the cause of
the exception. Was it thrown because the Java heap is full, or because the native heap
is full? To help you find the cause, the text of the exception includes a detail message
at the end, as shown in the following exceptions.

Exception in thread thread_name: java.lang.OutOfMemoryError: Java heap
space

Cause: The detailed message Java heap space indicates that an object could not be
allocated in the Java heap. This error does not necessarily imply a memory leak. The
problem can be as simple as a configuration issue, where the specified heap size (or
the default size, if it is not specified) is insufficient for the application.

In other cases, and in particular for a long-lived application, the message might be an
indication that the application is unintentionally holding references to objects, and this
prevents the objects from being garbage collected. This is the Java language
equivalent of a memory leak. Note: The APIs that are called by an application could
also be unintentionally holding object references.

3-4

ORACLE

Chapter 3
Understand the OutOfMemoryError Exception

One other potential source of this error arises with applications that make excessive
use of finalizers. If a class has a fi nal i ze method, then objects of that type do not
have their space reclaimed at garbage collection time. Instead, after garbage
collection, the objects are queued for finalization, which occurs at a later time. In the
Oracle Sun implementation, finalizers are executed by a daemon thread that services
the finalization queue. If the finalizer thread cannot keep up with the finalization
gueue, then the Java heap could fill up, and this type of Qut O Menor yEr ror exception
would be thrown. One scenario that can cause this situation is when an application
creates high-priority threads that cause the finalization queue to increase at a rate that
is faster than the rate at which the finalizer thread is servicing that queue.

Action: To know more about how to monitor objects for which finalization is pending
Monitor the Objects Pending Finalization.

Exception in thread thread_name: java.lang.OutOfMemoryError: GC Overhead
limit exceeded

Cause: The detail message "GC overhead limit exceeded" indicates that the garbage
collector is running all the time, and the Java program is making very slow progress.
After a garbage collection, if the Java process is spending more than approximately
98% of its time doing garbage collection and if it is recovering less than 2% of the
heap and has been doing so for the last 5 (compile time constant) consecutive
garbage collections, then a j ava. | ang. Qut Of Menor yEr r or is thrown. This exception is
typically thrown because the amount of live data barely fits into the Java heap having
little free space for new allocations.

Action: Increase the heap size. The j ava. | ang. Qut Of Menor yEr r or exception for GC
Overhead limit exceeded can be turned off with the command-line flag - XX: -
UseGCOver headLinit.

Exception in thread thread_name: java.lang.OutOfMemoryError: Requested
array size exceeds VM limit

Cause: The detail message "Requested array size exceeds VM limit" indicates that
the application (or APIs used by that application) attempted to allocate an array that is
larger than the heap size. For example, if an application attempts to allocate an array
of 512 MB, but the maximum heap size is 256 MB, then Qut O Menor yEr r or will be
thrown with the reason “Requested array size exceeds VM limit."

Action: Usually the problem is either a configuration issue (heap size too small) or a
bug that results in an application attempting to create a huge array (for example,
when the number of elements in the array is computed using an algorithm that
computes an incorrect size).

Exception in thread thread_name: java.lang.OutOfMemoryError: Metaspace
Cause: Java class metadata (the virtual machines internal presentation of Java class)
is allocated in native memory (referred to here as metaspace). If metaspace for class
metadata is exhausted, a j ava. | ang. Qut Of Menor yEr r or exception with a detail

Met aSpace is thrown. The amount of metaspace that can be used for class metadata
is limited by the parameter MaxMet aSpaceSi ze, which is specified on the command
line. When the amount of native memory needed for a class metadata exceeds
MaxMet aSpaceSi ze, aj ava. | ang. Qut O Menor yEr ror exception with a detail

Met aSpace is thrown.

Action: If MaxMet aSpaceSi ze, has been set on the command-line, increase its value.

Met aSpace is allocated from the same address spaces as the Java heap. Reducing
the size of the Java heap will make more space available for Met aSpace. This is only a

3-5

ORACLE

Chapter 3
Understand the OutOfMemoryError Exception

correct trade-off if there is an excess of free space in the Java heap. See the following
action for Out of swap space detailed message.

Exception in thread thread_name: java.lang.OutOfMemoryError: request size
bytes for reason. Out of swap space?

Cause: The detail message "request size bytes for reason. Out of swap space?"
appears to be an Qut O0f Menor yEr r or exception. However, the Java HotSpot VM code
reports this apparent exception when an allocation from the native heap failed and the
native heap might be close to exhaustion. The message indicates the size (in bytes)
of the request that failed and the reason for the memory request. Usually the reason
is the name of the source module reporting the allocation failure, although sometimes
it is the actual reason.

Action: When this error message is thrown, the VM invokes the fatal error handling
mechanism (that is, it generates a fatal error log file, which contains useful information
about the thread, process, and system at the time of the crash). In the case of native
heap exhaustion, the heap memory and memory map information in the log can be
useful. See Fatal Error Log.

If this type of the Qut Of Menor yEr r or exception is thrown, you might need to use
troubleshooting utilities on the operating system to diagnose the issue further. See
Native Operating System Tools.

Exception in thread thread _name: java.lang.OutOfMemoryError: Compressed
class space

Cause: On 64-bit platforms, a pointer to class metadata can be represented by 32-bit
offset (with UseConpr essedQops). This is controlled by the command line flag
UseConpr essedd assPoi nt er s (on by default). If the UseConpr essedC assPoi nters is
used, the amount of space available for class metadata is fixed at the amount

Conpr essedCl assSpaceSi ze. If the space needed for UseConpr essedCl assPoi nters
exceeds ConpressedC assSpaceSi ze, aj ava. | ang. Qut Of Menor yEr r or with detail
Compressed class space is thrown.

Action: Increase Conpr essedC assSpaceSi ze to turn off

UseConpr essedd assPoi nt er s. Note: There are bounds on the acceptable size of
Conpr essedC assSpaceSi ze. For example - XX: Conpr essedC assSpaceSi ze=4g,
exceeds acceptable bounds will result in a message such as

Conpr essedCl assSpaceSi ze of 4294967296 is invalid; must be between 1048576 and
3221225472.

" Note:

There is more than one kind of class metadata, -kl ass metadata, and other
metadata. Only kl ass metadata is stored in the space bounded by
Conpr essedd assSpaceSi ze. The other metadata is stored in Met aspace.

Exception in thread thread_name: java.lang.OutOfMemoryError: reason
stack_trace_with_native_method

Cause: If the detail part of the error message is "reason
stack_trace_with_native_method, and a stack trace is printed in which the top frame
is a native method, then this is an indication that a native method, has encountered an
allocation failure. The difference between this and the previous message is that the
allocation failure was detected in a Java Native Interface (JNI) or native method rather
than in the JVM code.

3-6

Chapter 3
Troubleshoot a Crash Instead of OutOfMemoryError

Action: If this type of the Qut Of Menor yEr r or exception is thrown, you might need to
use native utilities of the OS to further diagnose the issue. See Native Operating
System Tools.

Troubleshoot a Crash Instead of OutOfMemaoryError

Diagnose

ORACLE

Use the information in the fatal error log or the crash dump to troubleshoot a crash.

Sometimes an application crashes soon after an allocation from the native heap fails.
This occurs with native code that does not check for errors returned by the memory
allocation functions.

For example, the mal | oc system call returns nul | if there is no memory available. If
the return from mal | oc is not checked, then the application might crash when it
attempts to access an invalid memory location. Depending on the circumstances, this
type of issue can be difficult to locate.

However, sometimes the information from the fatal error log or the crash dump is
sufficient to diagnose this issue. The fatal error log is covered in detail in Fatal Error
Log. If the cause of the crash is an allocation failure, then determine the reason for the
allocation failure. As with any other native heap issue, the system might be configured
with the insufficient amount of swap space, another process on the system might be
consuming all memory resources, or there might be a leak in the application (or in the
APIs that it calls) that causes the system to run out of memory.

Leaks in Java Language Code

Use the NetBeans profiler to diagnose leaks in the Java language code.

Diagnosing leaks in the Java language code can be difficult. Usually, it requires very
detailed knowledge of the application. In addition, the process is often iterative and
lengthy. This section provides information about the tools that you can use to diagnose
memory leaks in the Java language code.

Note:

Beside the tools mentioned in this section, a large number of third-party
memory debugger tools are available. The Eclipse Memory Analyzer Tool
(MAT), and YourKit (www.yourkit.com) are two examples of commercial tools
with memory debugging capabilities. There are many others, and no specific
product is recommended.

The following utilities used to diagnose leaks in the Java language code.

® The NetBeans Profiler: The NetBeans Profiler can locate memory leaks very
quickly. Commercial memory leak debugging tools can take a long time to locate a
leak in a large application. The NetBeans Profiler, however, uses the pattern of
memory allocations and reclamations that such objects typically demonstrate. This
process includes also the lack of memory reclamations. The profiler can check
where these objects were allocated, which often is sufficient to identify the root
cause of the leak.

See NetBeans Profiler.

3-7

http://profiler.netbeans.org

Chapter 3
Diagnose Leaks in Java Language Code

The following sections describe the other ways to diagnose leaks in the Java language
code.

Get a Heap Histogram

Monitor the Objects Pending Finalization

Get a Heap Histogram

Get a heap histogram to identify memory leaks using the different commands and
options available.

ORACLE

You can try to quickly narrow down a memory leak by examining the heap histogram.
You can get a heap histogram in several ways:

If the Java process is started with the - XX: +Pri nt C assHi st ogr amcommand-
line option, then the Control+Break handler will produce a heap histogram.

You can use the j map utility to get a heap histogram from a running process:

It is recommended to use the latest utility, j cnd, instead of j map utility for
enhanced diagnostics and reduced performance overhead. See Useful
Commands for the jcmd Utility. The command in the following example creates a
heap histogram for a running process using j cnd and results similar to the
following j map command.

jemd <process id/main class> GC. class_histogram fil ename=Myheaphi st ogram

jmap -histo pid

The output shows the total size and instance count for each class type in the heap.
If a sequence of histograms is obtained (for example, every 2 minutes), then you
might be able to see a trend that can lead to further analysis.

You can use the j hsdb j map utility to get a heap histogram from a core file, as
shown in the following example.

jhsdb jmap --histo --exe jdk-home/bin/java --core core_file

For example, if you specify the - XX: +Cr ashOnQut O Menor yErr or command-
line option while running your application, then when an Qut Of Menor yEr r or
exception is thrown, the JVM will generate a core dump. You can then execute

j hsdb j map on the core file to get a histogram, as shown in the following example.

$ jhsdb jmap --histo --exe /usr/javaljdk-11/bin/java --core core.
21844

Attaching to core core. 21844 from executable /usr/javaljdk-11/bin/java,
pl ease wait...

Debugger attached successful ly.

Server conpiler detected.

JVMversion is 11-ea+24

Iterating over heap. This may take a while...

Obj ect Histogram

num #i nst ances #bytes O ass description

3-8

Chapter 3
Diagnose Leaks in Native Code

1 2108 112576 byt e[]

2: 546 66112 java.lang. C ass

3 1771 56672 java. util.HashMap$Node
4: 574 53288 java.lang. Qbject[]

5: 1860 44640 java.lang. String

6. 349 40016 java. util.HashMap$Node[]
7 16 33920 char[]

8: 977 31264

java.util.concurrent. Concurrent HashMap$Node

9: 327 15696 java. util.HashMap

10: 266 13800 java.lang. String[]

11: 485 12880 int[]

Total : 14253 633584
Heap traversal took 1.15 seconds.

The above example shows that the Qut O Menor yEr r or exception was caused by
the number of byt e arrays (2108 instances in the heap). Without further analysis it
is not clear where the byte arrays are allocated. However, the information is still
useful.

Monitor the Objects Pending Finalization

Different commands and options available to monitor the objects pending finalization.

When the Qut Of Menor yEr r or exception is thrown with the "Java heap space" detalil
message, the cause can be excessive use of finalizers. To diagnose this, you have
several options for monitoring the number of objects that are pending finalization:

* The JConsole management tool can be used to monitor the number of objects that
are pending finalization. This tool reports the pending finalization count in the
memory statistics on the Summary tab pane. The count is approximate, but it can
be used to characterize an application and understand if it relies a lot on
finalization.

e On Linux operating systems, the j map utility can be used with the - final i zerinfo
option to print information about objects awaiting finalization.

* An application can report the approximate number of objects pending finalization
using the get Cbj ect Pendi ngFi nal i zat i onCount method of the
j ava. | ang. managenent . Menor yMXBean class. Links to the API documentation and
example code can be found in Custom Diagnostic Tools. The example code can
easily be extended to include the reporting of the pending finalization count.

Diagnose Leaks in Native Code

ORACLE

Several technigues can be used to find and isolate native code memory leaks. In
general, there is no ideal solution for all platforms.

The following are some techniques to diagnose leaks in native code.

e Track All Memory Allocation and Free Calls

3-9

Chapter 3
Diagnose Leaks in Native Code

e Track All Memory Allocations in the JNI Library
e Track Memory Allocation with Operating System Support

Track All Memory Allocation and Free Calls

Tools available to track all memory allocation and use of that memory.

A very common practice is to track all allocation and free calls of the native allocations.
This can be a fairly simple process or a very sophisticated one. Many products over
the years have been built up around the tracking of native heap allocations and the
use of that memory.

Tools like IBM Rational Purify can be used to find these leaks in normal native code
situations and also find any access to native heap memory that represents
assignments to un-initialized memory or accesses to freed memory.

Not all these types of tools will work with Java applications that use native code, and
usually these tools are platform-specific. Because the virtual machine dynamically
creates code at runtime, these tools can incorrectly interpret the code and fail to run at
all, or give false information. Check with your tool vendor to ensure that the version of
the tool works with the version of the virtual machine you are using.

See sourceforge for many simple and portable native memory leak detecting
examples. Most libraries and tools assume that you can recompile or edit the source of
the application and place wrapper functions over the allocation functions. The more
powerful of these tools allow you to run your application unchanged by interposing
over these allocation functions dynamically.

Track All Memory Allocations in the JNI Library

ORACLE

If you write a JNI library, then consider creating a localized way to ensure that your
library does not leak memory, by using a simple wrapper approach.

The procedure in the following example is an easy localized allocation tracking
approach for a NI library. First, define the following lines in all source files.

#include <stdlib.h>
#define malloc(n) debug_malloc(n, _FILE , _LINE)
#define free(p) debug_free(p, __FILE , _LINE)

Then, you can use the functions in the following example to watch for leaks.

[* Total bytes allocated */
static int total _allocated;
[* Memory alignnent is inportant */
typedef union { double d; struct {size_t n; char *file; int line;} s; }
Site;
void *
debug_mal I oc(size_t n, char *file, int line)
{
char *rp;
rp = (char*)mal | oc(sizeof (Site)+n);
total allocated += n;
((Site*)rp)->s.n = n;

3-10

http://sourceforge.net/

Chapter 3
Diagnose Leaks in Native Code

((Site*)rp)->s.file = file;
((Site*)rp)->s.line = line;
return (void*)(rp + sizeof(Site));

}
voi d
debug_free(void *p, char *file, int line)
{
char *rp;
rp = ((char*)p) - sizeof(Site);
total allocated -= ((Site*)rp)->s.n;
free(rp);
}

The JINI library would then need to periodically (or at shutdown) check the value of the
total _all ocat ed variable to verify that it made sense. The preceding code could also
be expanded to save in a linked list the allocations that remained, and report where
the leaked memory was allocated. This is a localized and portable way to track
memory allocations in a single set of sources. You would need to ensure that
debug free() was called only with the pointer that came from debug_nmal | oc(),
and you would also need to create similar functions for r eal 1 oc(), cal | oc(),

st rdup(), and so forth, if they were used.

A more global way to look for native heap memory leaks involves interposition of the
library calls for the entire process.

Track Memory Allocation with Operating System Support

ORACLE

Tools available for tracking memory allocation in an operating system.
Most operating systems include some form of global allocation tracking support.

* On Windows, search the MSDN library for debug support. The Microsoft C++
compiler has the / Md and / Mdd compiler options that will automatically include
extra support for tracking memory allocation.

* Linux systems have tools such as ntrace and | i bnj and to help in dealing with
allocation tracking.

3-11

http://msdn.microsoft.com/library

Troubleshoot Performance Issues Using
Flight Recorder

Identify performance issues with a Java application and debug these issues using
recordings from Flight Recorder.

To learn more about creating a recording with Flight Recorder, see Produce a Flight
Recording.

The data provided by Flight Recorder helps you investigate performance issues. No
other tool gives as much profiling data without skewing the results with its own
performance overhead. This chapter provides information about performance issues
that you can identify and debug using data from Flight Recorder.

This chapter contains the following sections:

* Flight Recorder Overhead

* Find Bottlenecks

» Garbage Collection Performance
e Synchronization Performance

* /O Performance

 Code Execution Performance

Flight Recorder Overhead

ORACLE

When you measure performance, it is important to consider any performance
overhead added by Flight Recorder. The overhead differs depending on the
application. If you have any performance tests set up, you can measure if there is any
noticeable overhead on your specific application.

The overhead for recording a standard profiling recording using the default settings is
less than 2 percent for most applications. Running with a standard continuous
recording generally has no measurable performance effect.

One major contributor to the overhead is the Heap Statistics events, which is disabled
by default. Enabling Heap Statistics triggers an old garbage collection at the beginning
and the at end of the test run. These old GCs give some extra pause times to the
application, so if you are measuring latency or if your environment is sensitive to
pause times, don't run with Heap Statistics enabled. To debug memory leaks, a better
option than heap statistics is the O dObj ect Sanpl e event and the pat h-t o-gc-roots
option . See Debug a Memory Leak Using Flight Recorder.

" Note:

For performance profiling use cases, heap statistics may not be necessary.

4-1

Chapter 4
Find Bottlenecks

Find Bottlenecks

ORACLE

Different applications have different bottlenecks. For some applications, a bottleneck

may be waiting for 1/0O or networking, it may be synchronization between threads, or it
may be actual CPU usage. For others, a bottleneck may be garbage collection times.
It is possible that an application has more than one bottleneck.

One way to find the application bottlenecks is to look at the following events in your
flight recording. Make sure that all of these events are enabled in the recording
template that you are using:

* jdk.FileRead

* jdk.Filewite

*] dk. Socket Read

* jdk.SocketWite

» jdk.JavaErrorThrow
+ jdk.JavaExceptionThrow
« jdk. Javahbni tor Ent er
* jdk.JavahMbnitor Wi t
e jdk.ThreadStart

* jdk. ThreadEnd

» jdk. ThreadSl eep

* jdk. ThreadPark

The selected Java Application events all have the important property that they are all
thread-stalling events. Thread stalling indicates that the thread was not running your
application during the event, and they are all duration events. The duration event
measures the duration the application was not running.

Use the j fr tool to print the events that were recorded and look for the following
information:

« jdk.JavahonitorWit events show how much time a thread spends waiting for a
monitor.

e jdk. ThreadSl eep and j dk. Thr eadPar k events show when a thread is sleeping or
parked.

* Read and write events show how much time is spent in I/O.

If your Java application's important threads spend a lot of time being blocked, then that
means that a critical section of the application is single threaded, which is a bottleneck.
If the Java application spends a lot of time waiting for sockets, then the main
bottleneck may be in the network or with the other machines that the application
communicates with. If your Java application's important threads are spending a lot of
time without generating any application events, then the bottleneck in the application is
the time spent executing code or the CPU itself. Each of these bottlenecks can be
further investigated within the flight recording.

4-2

Chapter 4
Garbage Collection Performance

< Note:

For most Java Application event types, only events longer than 20 ms are
recorded. (This threshold can be modified when starting the flight recording.)
To summarize, the areas may not have recorded events because the
application is doing a lot of short tasks, such as writing to a file (a small part
at a time) or spending time in synchronization for very short amounts of time.

Garbage Collection Performance

ORACLE

Recordings from Flight Recorder can help diagnose Java application issues with
garbage collections.

Tuning the HotSpot Garbage Collector can have a big effect on performance. See
Introduction to Garbage Collection Tuning in the Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection Tuning Guide for information.

To investigate garbage collection issues, take a profiling flight recording of your
application while it is running. Do not include the heap statistics, because that triggers
extra old collections. To get a good sample, take a longer recording, for example, 1
hour.

Use the j fr tool to print the j dk. GCPhasePause events that were recorded. The
following example shows the information contained in the event:

c:\Program Fil es\Java\j dk-13\bin>jfr print --events "jdk. GCPhasePause"
gctest.jfr
j dk. GCPhasePause {

startTime = 11:19:13.779

duration = 3.419 ns

geld =1

nane = "GC Pause"

event Thread = "VM Thread" (osThreadld = 17528)

Using the information from the j dk. GCPhasePause events, you can calculate the
average sum of pauses for each GC, the maximum sum of pauses, and the total
pause time. The sum of pauses is the total amount of time that the application was
paused during a GC. Many GCs do most of their work in the background. In those
cases, the length of the GC does not matter and what matters is how long the
application actually had to stop. Therefore, the sum of pauses is a good measure for
the GC effect.

The main performance problems with garbage collections are usually either that
individual GCs take too long, or that too much time is spent in paused GCs (total GC
pauses).

When an individual GC takes too long, you may need to change the GC strategy.
Different GCs have different trade-offs when it comes to pause times verses
throughput performance. For example, you may also need to fix your application so
that it makes less use of finalizers or semireferences. See Behavior-Based Tuning in
the Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection
Tuning Guide.

4-3

Chapter 4
Synchronization Performance

When the application spends too much time paused, there are different ways to work
around that:

* Increase the Java heap size. The bigger the Java heap, the longer time it is
between GCs. Watch out for any memory leaks in the Java application, because
that may cause more and more frequent GCs until an Qut Of Menor yErr or is
thrown. For more information, see Debug a Memory Leak Using Flight Recorder.

* To reduce the number of GCs, allocate fewer temporary objects. Small objects are
allocated inside TLABSs, and large objects are allocated outside TLABs. Often, the
majority of allocations happen inside TLABs. The
j dk. Obj ect Al | ocat i onl nNewTLAB and j dk. Cbj ect Al | ocat i onQut si deTLAB events
provide information about the allocation of temporary objects.

e To reduce the need of GCs, decrease the allocation rate. The
j dk. ThreadAl | ocati onStati stics event provides information about the
allocations per thread.

Some other settings may also increase GC performance of the Java application. See
Garbage-First Garbage Collection in the Java Platform, Standard Edition HotSpot
Virtual Machine Garbage Collection Tuning Guide for more information about GC
performance.

Synchronization Performance

To debug Java Application synchronization issues, which is where the application
threads spend a lot of time waiting to enter a monitor, look at the
j dk. Javahbni t or Wi t events in a recording from Flight Recorder.

Look at the locks that are contended the most and the stack trace of the threads
waiting to acquire the lock. Typically, look for contention that you did not think would
be an issue. Logging is a common area that can be an unexpected bottleneck in some
applications.

When you see performance degradation after a program update or at any specific
times in the Java application, take a flight recording when things are good, and take
another one when things are bad to look for a synchronization site that increases a lot.

" Note:

By default, contention events with a duration longer than 20 ms are recorded.
This threshold can be modified when starting the flight recording. Shorter
thresholds give more events and also potentially more overhead. If you
believe contention is an issue, then you could take a shorter recording with a
very low threshold of only a few milliseconds. When this is done on a live
application, make sure to start with a very short recording, and monitor the
performance overhead.

ORACLE 4-4

Chapter 4
I/0 Performance

/0O Performance

When a Java application spends a lot of time reading or writing sockets or files, then
I/O or networking may be the bottleneck. Recordings from Flight Recorder can help
identify problem areas.

To diagnose I/0 issues in applications, look at the following events in your flight
recording. Make sure that all of these events are enabled in the recording template
that you are using:

e jdk.SocketWite
e jdk. Socket Read
e jdk.Filewite
e jdk.FileRead

Use the socket read and write information in your flight recording to calculate the
number of reads from a specific remote address, the total number of bytes read, and
the total time spent waiting. Look at each event to analyze the time spent and data
read.

File or networking 1/O issues are diagnosed in a similar fashion. Look at the files read
to or written to the most, then see each file read/write and the time spent on I/O.

By default, only events with a duration longer than 20 ms are recorded. When starting
a flight recording, you can lower the file I/O threshold or the socket I/O threshold to
gather more data, potentially with a higher performance effect.

Code Execution Performance

ORACLE

When there are not a lot of Java Application events, it could be that the main
bottleneck of your application is the running code. Recordings from Flight Recorder
can help identify problem areas.

Look at the j dk. CPULoad events and review the CPU usage over time. This shows the
CPU usage of the JVM being recorded and the total CPU usage on the machine. If the
JVM CPU usage is low, but the CPU usage of the machine is high, then some other
application is likely taking a lot of CPU. In that case, look at the other applications
running on the system using OS tools such as Top or the task manager to find out
which processes are using a lot of CPU.

In case your application is using a lot of CPU time, look at j dk. Thr eadCPULoad events
and identify the threads that use the most CPU time. This information is based on
method sampling, so it may not be 100% accurate if the sample count is low. When a
recording is running, the JVM samples the threads. By default, a continuous recording
does only some method sampling, while a profiling recording does as much as
possible. The method sampling gathers data from only those threads running code.
The threads waiting for I/O, sleeping, waiting for locks, and so on are not sampled.
Therefore, threads with a lot of method samples are the ones using the most CPU
time; however, how much CPU is used by each thread is not known.

The Hot Methods tab in the Code tab group helps find out where your application
spends most of the execution time. This tab shows all the samples grouped by top
method in the stack. Use the Call Tree tab to start with the lowest method in the stack

4-5

Chapter 4
Code Execution Performance

traces and then move upward. starts with Thr ead. r un, and then looks at the calls that
have been most sampled.

ORACLE 4-6

Debug JVM Issues

ORACLE

Various debugging techniques to debug JVM issues.

This part describes causes and various debugging techniques for the following topics.

Troubleshoot System Crashes
Provides guidance about specific procedures for troubleshooting system crashes.
Troubleshoot Process Hangs and Loops

Provides guidance about specific procedures for troubleshooting hanging or
looping processes.

Handle Signals and Exceptions

Provides guidance about signal and exception handling by Java HotSpot Server
VM.

Troubleshoot System Crashes

Information and guidance about some specific procedures for troubleshooting system
crashes.

A crash, or fatal error, causes a process to terminate abnormally. There are various
possible reasons for a crash. For example, a crash can occur due to a bug in the Java
HotSpot VM, in a system library, in a Java SE library or an API, in application native
code, or even in the operating system (OS). External factors, such as resource
exhaustion in the OS can also cause a crash.

Crashes caused by bugs in the Java HotSpot VM or in the Java SE library code are
rare. This chapter provides suggestions about how to examine a crash and work
around some of the issues (if possible) until the cause of the bug is diagnosed and
fixed.

In general, the first step with any crash is to locate the fatal error log. This is a text file
that the Java HotSpot VM generates in the event of a crash. See Fatal Error Log for an
explanation of how to locate this file, as well as a detailed description of the file.

This chapter contains the following sections:
» Determine Where the Crash Occurred
* Find a Workaround

* Microsoft Visual C++ Version Considerations

Determine Where the Crash Occurred

Examples that demonstrate how the error log can be used to find the cause of the
crash, and suggests some tips for troubleshooting the problem depending on the
cause.

The error log header indicates the type of error and the problematic frame, while the
thread stack indicates the current thread and stack trace. See Header Format.

The following are possible causes for the crash.
* Crash the Native Code

e Crash in the Compiled Code

e Crash in the HotSpot Compiler Thread

e Crashin the VM Thread

e Crash Due to Stack Overflow

ORACLE 5-1

Chapter 5
Determine Where the Crash Occurred

Crash the Native Code

ORACLE

Analyze the crash dump file or core file to identify if the crash occurred in the native
code or the Java Native Interface (JINI) library code.

If the fatal error log indicates the problematic frame to be a native library, then there
might be a bug in the native code or the Java Native Interface (INI) library code. The
crash could be caused by something else, but analysis of the library and any core file
or crash dump is a good starting place. Consider the extract in the following example
from the header of a fatal error log.

An unexpected error has been detected by Hot Spot Virtual Machine:
#

SIGSEGV (0Oxb) at pc=0x417789d7, pid=21139, tid=1024

#

Java VM Java Hot Spot (TM Server VM (6-beta2-b63 mi xed node)

Problematic frane:

C [libApplication. so+0x9d7]

In this case a SI GSEGV occurred with a thread executing in the library
I'i bApplication. so.

In some cases a bug in a native library manifests itself as a crash in Java VM code.
Consider the crash in the following example where a JavaThr ead fails while in the
_thread_i n_vmstate (meaning that it is executing in Java VM code).

An unexpected error has been detected by Hot Spot Virtual Machine:

#

EXCEPTI ON_ACCESS_VI OLATI ON (0xc0000005) at pc=0x08083d77, pi d=3700,
ti d=2896

#

Java VM Java Hot Spot(TM Cient VWM (1.5-internal nixed node)

Problematic frane:

#V [jvmdl|+0x83d77]

--------------- THREAD -----vemmmmmn
Current thread (0x00036960): JavaThread "nmain" [_thread in_ vm id=2896]

Stack: [0x00040000, 0x00080000), sp=0x0007f9f8, free space=254k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

V [jvmdl | +0x83d77]

C [App.dl|+0x1047] <========= (Jnative frane

Test. foo() V+0

Test. main([Ljaval/lang/ String;)V+0
~StubRoutines::call _stub
[jvmdll+0x80f 13]
[jvmdll+0xd3842]
[jvmdll+0x80de4]
[jvmdll+0x87cd2]

[java. exe+0x14c0]

[java. exe+0x64cd]

oo<<< << <™T7T

5-2

Chapter 5
Determine Where the Crash Occurred

C [kernel 32.dl | +0x214c7]

In this case, although the problematic frame is a VM frame, the thread stack shows
that a native routine in App. dl | has called into the VM (probably with JNI).

The first step to solving a crash in a native library is to investigate the source of the
native library where the crash occurred.

» If the native library is provided by your application, then investigate the source
code of your native library. A significant number of issues with JNI code can be
identified by running the application with the - Xcheck: j ni option added to the
command line. See The -Xcheck:jni Option.

» If the native library has been provided by another vendor and is used by your
application, then file a bug report against this third-party application and provide
the fatal error log information.

» If the native library where the crash occurred is part of the JDK (for example
awt . dl |, net. dl I, and so forth), then it is possible that you encountered a
library or API bug. If so, gather as much data as possible, and submit a bug or
report, indicating the library name. You can find JDK libraries in the <j ava-
hone>/1i b or <j ava- hone>/ bi n directories of the JDK distribution. See Submit
a Bug Report.

You can troubleshoot a crash in a native application library by attaching the native
debugger to the core file or crash dump, if it is available. Depending on the OS, the
native debugger is dbx, gdb, or wi ndbg. See Native Operating System Tools.

Crash in the Compiled Code

ORACLE

Analyze the fatal error log to identify if the crash occurred in the compiled code.

If the fatal error log indicates that the crash occurred in compiled code, then it is
possible that you encountered a compiler bug that resulted in incorrect code
generation. You can recognize a crash in compiled code if the type of the problematic
frame is J (meaning a compiled Java frame). The following example shows such a
crash.

An unexpected error has been detected by HotSpot Virtual Machine:

SI GSEGV (0xb) at pc=0x0000002a99eb0c10, pi d=6106, tid=278546

Probl ematic frane:

#
#
#
#
Java VM Java Hot Spot (TM 64-Bit Server VM (1.6.0-beta-b51 nmixed node)
#
J org.foobar.Scanner. body()V

#

Stack: [0x0000002aea560000, 0x0000002aea660000), sp=0x0000002aea65ddf O
free space=1015k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native

code)

J org.foobar. Scanner. body()V

[error occurred during error reporting, step 120, id Oxb]

5-3

Chapter 5
Determine Where the Crash Occurred

< Note:

A complete thread stack is not available. The output line "error occurred
during error reporting” means that a problem arose trying to get the stack
trace (this might indicate stack corruption).

It might be possible to temporarily work around the issue by switching the compiler or
by excluding from compilation the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Crash in the HotSpot Compiler Thread

Analyze the fatal error log to identify if the crash occurred in the HotSpot compiler
thread.

If the fatal error log output shows that the current thread is a JavaThr ead named

Conpi | er Thr ead0Q, Conpi | er Threadl, or Adapt er Conpi | er, then it is possible that you
encountered a compiler bug. In this case, it might be necessary to temporarily work
around the issue by switching the compiler (for example, by using the HotSpot Client
VM instead of the HotSpot Server VM, or vice versa), or by excluding from compilation
the method that provoked the crash.

See Working Around Crashes in the HotSpot Compiler Thread or Compiled Code.

Crash in the VM Thread

Analyze the fatal error log to identify if the crash occurred in the VMTIhr ead.

If the fatal error log output shows that the current thread is a VMrhr ead, then look for
the line containing VM _Oper at i on in the THREAD section. A VMThr ead is a special thread
in the HotSpot VM. It performs special tasks in the VM such as garbage collection
(GC). If the VM Qper at i on suggests that the operation is a GC, then it is possible that
you encountered an issue such as heap corruption.

Beside a GC issue, it could be something else (such as a compiler or runtime bug) that
leaves object references in the heap in an inconsistent or incorrect state. In this case,
collect as much information as possible about the environment and try possible
workarounds. If the issue is related to GC, then you might be able to temporarily work
around the issue by changing the GC configuration.

See Working Around Crashes During Garbage Collection.

Crash Due to Stack Overflow

ORACLE

A stack overflow in the Java language code will normally result in the offending thread
throwing the j ava. | ang. St ackOver f | owEr r or exception.

On the other hand, C and C++ write beyond the end of the stack and cause a stack
overflow. This is a fatal error that causes the process to terminate.

In the HotSpot implementation, Java methods share stack frames with C/C++ native
code, namely user native code and the virtual machine itself. Java methods generate
code that checks whether the stack space is available at a fixed distance towards the

5-4

ORACLE

Chapter 5
Determine Where the Crash Occurred

end of the stack so that the native code can be called without exceeding the stack
space. The distance toward the end of the stack is called shadow pages. The size of
the shadow pages is between 3 and 20 pages, depending on the platform. This
distance is tunable, so that applications with native code needing more than the
default distance can increase the shadow page size. The option to increase shadow
pages is - XX: St ackShadowPages=n, where n is greater than the default stack
shadow pages for the platform.

If your application gets a segmentation fault without a core file or fatal error log file,
see Fatal Error Log. Or if you application gets a STACK_OVERFLON ERROR on Windows
or the message "An irrecoverable stack overflow has occurred," then this indicates that
the value of St ackShadowPages was exceeded, and more space is needed.

If you increase the value of St ackShadowPages, you might also need to increase the
default thread stack size using the - Xss parameter. Increasing the default thread stack
size might decrease the number of threads that can be created, so be careful in
choosing a value for the thread stack size. The thread stack size varies by platform
from 256 KB to 1024 KB.

An unexpected error has been detected by Hot Spot Virtual Machine:

#

EXCEPTI ON_STACK_OVERFLOW (0xc00000fd) at pc=0x10001011, pi d=296,
tid=2940

#

Java VM Java Hot Spot(TM Cient VM (1.6-internal mxed node, sharing)
Probl ematic frane:

C [App.dlI+0x1011]

--------------- THREAD -ccreeemmmannn-

Current thread (0x000367c0): JavaThread "main" [_thread_in_native,
i d=2940]

Stack: [0x00040000, 0x00080000), sp=0x00041000, free space=4k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

C [App.dll+0x1011]

C [App.dll+0x1020]

C [App.dll+0x1020]

C [App.dll+0x1020]
C [App.dll+0x1020]
..<more franes>...

Java frames: (J=conpiled Java code, j=interpreted, W=VM code)
j Test.foo()V+0

j Test.main([Ljava/lang/String;)V+0

v ~StubRoutines::call_stub

You can interpret the following information from the above example.

* The exception is EXCEPTI ON_STACK_OVERFLON

* Thethread state is _thread_i n_native, which means that the thread is executing
native or JNI code.

5-5

Chapter 5
Find a Workaround

* Inthe stack information, the free space is only 4 KB (a single page on a Windows
system). In addition, the stack pointer (sp) is at 0x00041000, which is close to the
end of the stack at 0x00040000.

* The printout of the native frames shows that a recursive native function is the
issue in this case. The output notation . . . <nore franmes>. .. indicates that
additional frames exist but were not printed. The output is limited to 100 frames.

Find a Workaround

Possible workarounds if a crash occurs with a critical application.

If a crash occurs with a critical application, and the crash appears to be caused by a
bug in the HotSpot VM, then it might be desirable to quickly find a temporary
workaround. If the crash occurs with an application that is deployed with the most
recent release of the JDK, then the crash should be reported to Oracle.

@ Important:

Even if a workaround in this section successfully eliminates a crash, the
workaround is not a fix for the problem, but merely a temporary solution.
Place a support call or file a bug report with the original configuration that
demonstrated the issue.

The following are three scenarios to find workarounds for system crashes.

e Working Around Crashes in the HotSpot Compiler Thread or Compiled Code
e Working Around Crashes During Garbage Collection

e Working Around Crashes Caused by Class Data Sharing

Working Around Crashes in the HotSpot Compiler Thread or Compiled

Code

ORACLE

Possible workarounds if the crash occurred in the hotspot compiler thread.

If the fatal error log indicates that the crash occurred in a compiler thread, then it is
possible (but not always the case) that you encountered a compiler bug. Similarly, if
the crash is in compiled code, then it is possible that the compiler generated incorrect
code.

In the case of the HotSpot Client VM (- cl i ent option), the compiler thread appears in
the error log as Conpi | er Thr ead0. With the HotSpot Server VM, there are multiple
compiler threads, and these appear in the error log file as Conpi | er Thr ead0,

Conpi | er Thr eadl, and Adapt er Thr ead.

Since the JDK 7u5 release, the HotSpot compiler is ignored by default. A command-
line option is available to simulate the old behavior, which is useful when multiple
methods were excluded. See notable bug fixes in JDK 7ub.

To exclude methods from being compiled by using a JVM flag instead of
the . hot spot _conpi | e file, see the - XX: Conpi | eComrand option in Advanced JIT
Compiler Options for java in the Java Development Kit Tool Specifications.

5-6

http://www.oracle.com/technetwork/java/javase/7u5-relnotes-1653274.html
https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=java_advanced_jit_tool_reference
https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=java_advanced_jit_tool_reference

ORACLE

Chapter 5
Find a Workaround

The following example shows a fragment of an error log for a compiler bug that was
encountered and fixed during development. The log file shows that the HotSpot Server
VM is used, and the crash occurred in Conpi | er Thr eadl. In addition, the log file shows
that the current Conpi | eTask was the compilation of the

java.lang. Thread. set Priority method.

An unexpected error has been detected by Hot Spot Virtual Machine:
#

Java VM Java Hot Spot (TM Server VM (1.5-internal -debug mxed node)
--------------- THREAD ---------mm----

Current thread (0x001e9350): JavaThread "Conpil er Threadl" daenon
[_thread_in_vm id=20]

Stack: [0xb2500000, 0xb2580000), sp=0xb257e500, free space=505k

Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

V [libjvm so+0xc3bl3c]

Current Conpil eTask:
opto: 11 java.lang. Thread. setPriority(l)V (53 bytes)

--------------- PROCESS --ersmmmnnnnnns

Java Threads: (=> current thread)

0x00229930 JavaThread "Low Menory Detector" daemon [_thread_bl ocked,
i d=21]
=>0x001e9350 JavaThread "Conpil er Threadl" daenmon [_thread_in_vm id=20]

In this case, there are two potential workarounds:

* The brute force approach: Change the configuration so that the application is run
with the - cl i ent option to specify the HotSpot Client VM.

* The subtle approach: Assume that the bug only occurs during the compilation of
the java. |l ang. Thread. set Pri ori ty method, and exclude this method from
compilation.

The first approach (to use the - cl i ent option) might be trivial to configure in some
environments. In others, it might be more difficult if the configuration is complex or if
the command line to configure the VM is not readily accessible. In general, switching
from the HotSpot Server VM to the HotSpot Client VM also reduces the peak
performance of an application. Depending on the environment, this might be
acceptable until the issue is diagnosed and fixed.

The second approach (exclude the method from compilation) requires creating the
file . hot spot _conpi | er in the working directory of the application. The following
example shows this approach.

exclude javal/lang/ Thread setPriority

5-7

Chapter 5
Find a Workaround

In general, the format of this file is excl udecl assmet hod, where cl ass is the class (fully
qualified with the package name) and net hod is the name of the method. Constructor
methods are specified as <i ni t > and static initializers are specified as <cl i ni t>.

< Note:

The. hot spot _conpi | er file is an unsupported interface. It is documented
here solely for the purposes of troubleshooting and finding a temporary
workaround.

After the application is restarted, the compiler will not attempt to compile any of the
methods excluded in the . hot spot _conpi | er file. In some cases this can provide
temporary relief until the root cause of the crash is diagnosed and the bug is fixed.

In order to verify that the HotSpot VM correctly located and processed
the . hot spot _conpi | er file that is shown in the previous example from the second
approach, look for the log information at runtime.

¢ Note:

The file name separator is a dot, not a slash.

Working Around Crashes During Garbage Collection

ORACLE

Possible workaround if the crash occurs during garbage collection.

If a crash occurs during garbage collection (GC), then the fatal error log reports that a
VM Qper at i on is in progress. For the purpose of this discussion, assume that the

mostly concurrent GC (- XX: +UseConcMar kSweep) is not in use. The VM (Oper ati on
is shown in the THREAD section of the log and indicates one of the following situations:

» Generation collection for allocation

* Full generation collection

e Parallel GC failed allocation

e Parallel GC failed permanent allocation
e Parallel GC system GC

Most likely, the current thread reported in the log is the VMrhr ead. This is the special
thread used to execute special tasks in the HotSpot VM. The following example is a
fragment of the fatal error log from a crash in the serial garbage collector.

--------------- THREAD ---------mm----
Current thread (0x002ch720): VMrhread [id=3252]
si ginfo: ExceptionCode=0xc0000005, reading address 0x00000000

Regi sters:
EAX=0x0000000a, EBX=0x00000001, ECX=0x00289530, EDX=0x00000000

5-8

ORACLE

Chapter 5
Find a Workaround

ESP=0x02aef c2c, EBP=0x02aefc44, ESI=0x00289530, EDI =0x00289530
El P=0x0806d17a, EFLAGS=0x00010246

Top of Stack: (sp=0x02aefc2c)

0x02aefc2c: 00289530 081641e8 00000001 0806e4b8

0x02aef c3c: 00000001 00000000 02aefc9c 0806e4c5

0x02aefc4c: 081641e8 081641c8 00000001 00289530

0x02aefc5c: 00000000 00000000 00000001 00000001

0x02aefc6c: 00000000 00000000 00000000 08072a9e

0x02aefc7c: 00000000 00000000 00000000 00035378

0x02aefc8c: 00035378 00280d88 00280d88 147feel0

0x02aefc9c: 02aefce8 0806e0f5 00000001 00289530
Instructions: (pc=0x0806d17a)

0x0806d16a: 15 08 83 3d cO be 15 08 05 53 56 57 8b f1 75 Of
0x0806d17a: Of be 05 00 00 00 00 83 c0 05 a3 c0O he 15 08 8b

Stack: [0x02ab0000, 0x02af 0000), sp=0x02aefc2c, free space=255k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

[jvmdl | +0x6d17a]

[jvmdl | +0x6e4c5]

[jvmdl | +0x6e0f 5]

[jvmdl | +0x71771]

[jvmdll+0xfd1d3]

[jvmdl | +0x6cd99]

[jvmdll+0x504bf]

[jvmdl | +0x6cf 4b]

[jvmdll+0x1175d5]

[jvmdll+0x1170a0]

[jvmdl | +0x11728f]

[jvmdl | +0x116f d5]

[MBVCRT. dI | +0x27f b8]

[kernel 32. dl | +0x1d33b]

NDo<< <K<K <K<K <K<K <K<K <K<

VM Operation (0x0373f71c): generation collection for allocation, node:
saf epoi nt, requested by thread 0x02db7108

Note:

A crash during garbage collection does not suggest a bug in the garbage
collection implementation. It could also indicate a compiler or runtime bug, or
some other issue.

You can try the following workarounds if you repeatedly get a crash during garbage
collection:

» Switch GC configuration. For example, if you are using the serial collector, then try
the throughput collector, or vice versa.

» If you are using the HotSpot Server VM, then try the HotSpot Client VM.

If you are not sure which garbage collector is in use, then you can use the j map utility
on the Linux operating system. See The jmap Utility to get the heap information from

5-9

Chapter 5
Microsoft Visual C++ Version Considerations

the core file, if the core file is available. In general, if the GC configuration is not
specified on the command line, then the serial collector will be used on Windows. On
the Linux operating system, it depends on the machine configuration. If the machine
has at least 2 GB of memory and has at least 2 CPUs, then the throughput collector
(Parallel GC) will be used. For smaller machines, the serial collector is the default. The
option to select the serial collector is - XX: +UseSer i al GC and the option to select the
throughput collector is - XX: +UsePar al | el GC. If, as a workaround, you switch from
the throughput collector to the serial collector, then you might experience some
performance degradation on multiprocessor systems. This might be acceptable until
the root issue is diagnosed and fixed.

Working Around Crashes Caused by Class Data Sharing

When the JDK is installed, the installer loads a set of classes from the system JAR file
into a private internal representation and dumps that representation to a file called a
shared archive. When the JVM starts, the shared archive is memory-mapped to allow
sharing of read-only JVM metadata for these classes among multiple JVM processes.
The startup time is reduced thus saving the cost because restoring the shared archive
is faster than loading the classes. Class data sharing is supported with the Java
HotSpot VM. The G1, serial, parallel, and parallelOIdGC garbage collectors are
supported. The shared string feature (part of class data sharing) supports only the G1
garbage collector on non-Windows platforms.

The fatal error log prints the version string in the header of the log. If sharing is
enabled, it is indicated by the text "sharing,” as shown in the following example.

An unexpected error has been detected by Hot Spot Virtual Machine:

#

EXCEPTI ON_ACCESS_VI OLATI ON (0xc0000005) at pc=0x08083d77, pid=3572,
tid=784

#

Java VM Java Hot Spot (TM Cient VM (1.5-internal nixed node, sharing)
Problematic frame:

V [jvmdll+0x83d77]

CDS can be disabled by providing the - Xshar e: of f option on the command line. If
the crash only occurs with sharing enabled, then it is possible that you encountered a
bug in this feature. In that case, gather as much information as possible and submit a
bug report.

Microsoft Visual C++ Version Considerations

ORACLE

The JDK software is built on Windows using Microsoft Visual Studio 2013.

If you experience a crash with a Java application and if you have native or JNI libraries
that are compiled with a different release of the compiler, then you must consider
compatibility issues between the runtimes. Specifically, your environment is supported
only if you follow the Microsoft guidelines when dealing with multiple runtimes. For
example, if you allocate memory using one runtime, then you must release it using the
same runtime. Unpredictable behavior or crashes can happen if you release a
resource using a different library than the one that allocated the resource.

5-10

Troubleshoot Process Hangs and Loops

Diagnose

ORACLE

This chapter provides information and guidance about some specific procedures for
troubleshooting hanging or looping processes.

Problems can occur that involve hanging or looping processes. A hang can occur for
many reasons, but often stems from a deadlock in an application code, API code, or
library code. A hang can be due to a bug in the Java HotSpot VM.

Sometimes an apparent hang turns out to be, in fact, a loop. For example, a bug in a
VM process that causes one or more threads to go into an infinite loop can consume
all available CPU cycles.

The initial step when you diagnose a hang is to find out if the VM process is idle or
consuming all available CPU cycles. You can do this using a native operating system
(OS) utility. If the process appears to be busy and is consuming all available CPU
cycles, then it is likely that the issue is a looping thread rather than a deadlock.

This chapter contains the following sections:

» Diagnose a Loop Process

o Diagnose a Hung Process

a Loop Process

If a VM process appears to be looping, try to get a thread dump. A thread dump will
often make it clear which thread is looping, and the trace stack in the thread dump can
provide the direction on where (and maybe why) the thread is looping.

If the application console (standard input/output) is available, then press the Control+\
key combination (on Linux) or the Control+Break key combination (on Windows) to
cause the HotSpot VM to print a thread dump, including thread state. On Linux
operating systems the thread dump can also be obtained by sending a SI GQUI T to the
process (command ki I | -QUI T pi d). In this case, the thread dump is printed to the
standard output of the target process. The output might be directed to a file, depending
on how the process was started.

If the Java process is started with the - XX: +Pri nt O assHi st ogr amcommand-line
option, then the Control+Break handler will produce a heap histogram.

If a thread dump can be obtained, then a good place to start is the thread stacks of the
threads that are in the RUNNABLE state. See Thread Dump, for more information about
the format of the thread dump, as well as a table of the possible thread states in the
thread dump. In some cases, it might be necessary to get a sequence of thread dumps
in order to determine which threads appear to be continuously busy.

If the application console is not available (for example, the process is running in the
background, or the VM output is directed to an unknown location), then the j st ack
utility or the j hsdb j st ack utility can be used to get the stack thread. See The jstack
Utility or the j st ack mode of jhsdb for more about the output of these utilities. The

6-1

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jhsdb_tool_reference

Diagnose

Chapter 6
Diagnose a Hung Process

j stack utility or the j hsdb j st ack utility should also be used if the thread dump does
not provide any evidence that a Java thread is looping.

When reviewing the output of the j st ack utility, focus initially on the threads that are in
the RUNNABLE state. This is the most likely state for threads that are busy and possibly
looping. It might be necessary to execute j st ack a number of times to get a better
idea of which threads are looping. If a thread appears to be always in the RUNNABLE
state, then use j hsdb | st ack with the - - m xed option to print the native frames and
provide a further hint about what the thread is doing. If a thread appears to be looping
continuously while in the RUNNABLE state, then this situation can indicate a potential
HotSpot VM bug that needs further investigation.

If the VM does not respond to Control+\, then this could indicate a VM bug rather than
an issue with the application or library code. In this case, use j hsdb j st ack with the

- - m xed option to get a thread stack for all threads. The output will include the thread
stacks for VM internal threads. In this stack trace, identify threads that do not appear
to be waiting. If it appears that the looping is caused by a VM bug, then collect as
much data as possible and submit a bug report. See Submit a Bug Report for more
about data collection.

a Hung Process

Use the thread dump to diagnose a hung process.

If the application appears to be hung and the process appears to be idle, then the first
step is to try to get a thread dump. If the application console is available, then press
Control+\ (on Linux), or Control+Break (on Windows) to cause the HotSpot VM to print
a thread dump. On the Linux operating system, the thread dump can also be obtained
by sending a SI GQUI T to the process (command kil l -QU T pi d). If the hung process
can generate a thread dump, then the output is printed to the standard output of the
target process.

After printing the thread dump, the HotSpot VM executes a deadlock detection
algorithm.

The following sections describe various situations for a hung process.

e Deadlock Detected
¢ Deadlock Not Detected
* No Thread Dump

Deadlock Detected

ORACLE

If a deadlock is detected, then it will be printed along with the stack trace of the
threads involved in the deadlock.

The following example shows the stack trace for this situation.

Found one Java-|evel deadl ock:

" AWT- Event Queue-0":

waiting to lock nonitor 0x000ffbf8 (object Oxf0c30560, a
j ava. awt . Component SAWITr eeLock) ,

which is held by "main"
"main":

6-2

ORACLE

Chapter 6
Diagnose a Hung Process

waiting to lock nonitor 0x000ffe38 (object OxfOc4lec8, a
java.util.Vector),
which is held by "AW-Event Queue-0"

Java stack information for the threads |isted above:

" AWT- Event Queue- 0":

at java.aw . Contai ner.renoveNotify(Container.java: 2503)

- waiting to lock <0xf0c30560> (a java.awt .Conponent $AWITr eeLock)

at java.awt. Wndow$1Di sposeActi on. run(W ndow. j ava: 604)

at java.aw . W ndow. doDi spose(W ndow. j ava: 617)

at java.awt . Dial og. doDi spose(Di al og. j ava: 625)

at java.awt . W ndow. di spose(W ndow. j ava: 574)

at java.aw . W ndow. di sposel npl (W ndow. j ava: 584)

at java.awt. Wndow$1Di sposeActi on. run(W ndow. j ava: 598)

- locked <0xfOc4lec8> (a java.util.Vector)

at java.aw . W ndow. doDi spose(W ndow. j ava: 617)

at java.awt . Wndow. di spose(W ndow. j ava: 574)

at
javax. swing. Swi ngUtilities$Shar edOaner Frane. di spose(Swi ngUtilities.java:
1743)

at
javax. swing. Swi ngUtilities$Shar edOaner Franme. wi ndowC osed(SwingUtilities.jav
a: 1722)

at java.aw . W ndow. processW ndowEvent (W ndow. j ava: 1173)

at javax.sw ng.JDi al og. processW ndowEvent (JDi al og. j ava: 407)

at java.awt . W ndow. processEvent (W ndow. j ava: 1128)

at java.aw . Conponent . di spat chEvent | npl (Conponent . j ava: 3922)

at java.aw . Cont ai ner. di spat chEvent | npl (Cont ai ner . j ava: 2009)

at java.aw . W ndow. di spat chEvent | npl (W ndow. j ava: 1746)

at java.aw . Conponent . di spat chEvent (Conponent . j ava: 3770)

at java.aw . Event Queue. di spat chEvent (Event Queue. j ava: 463)

at
j ava. awt . Event Di spat chThr ead. punpOneEvent For Hi er ar chy(Event Di spat chThr ead. j
ava: 214)

at

j ava. awt . Event Di spat chThr ead. punpEvent sFor H er ar chy(Event Di spat chThr ead. j av
a: 163)
at
j ava. awt . Event Di spat chThr ead. punpEvent s(Event Di spat chThr ead. j ava: 157)
at
j ava. awt . Event Di spat chThr ead. punpEvent s(Event Di spat chThr ead. j ava: 149)
at java.aw . Event Di spat chThr ead. run(Event Di spat chThr ead. j ava: 110)

n "

main":
at java.aw . W ndow. get OnnedW ndows(W ndow. j ava: 844)
- waiting to lock <OxfOc4lec8> (a java.util.Vector)
at
javax. swing. Swi ngUtilities$SharedOmner Frane.installListeners(Swngltilities
.java: 1697)
at

javax. swing. SwingUtilities$Shar edOaner Franme. addNotify(Swi ngUtilities.java:
1690)

at java.awt . Dial og. addNoti fy(Di al og. j ava: 370)

- locked <0xf0c30560> (a java.aw . Conponent $AWITr eeLock)

at java.awt . Dial og. conditional Show(D al og. j ava: 441)

6-3

Chapter 6
Diagnose a Hung Process

- locked <0xf0c30560> (a java.aw . Conponent $AWITr eeLock)
at java.awt . Dial og. show Di al og. j ava: 499)

at java.aw . Conponent . show(Conponent . j ava: 1287)

at java.aw . Conponent . set Vi si bl e(Conponent . j ava: 1242)

at test01.main(test01.]java: 10)

Found 1 deadl ock.

The default deadlock detection works with locks that are obtained using the
synchronized keyword, as well as with locks that are obtained using the

java. util.concurrent package. If the Java VM flag - XX:

+Pri nt Concurr ent Locks is set, then the stack trace also shows a list of lock
owners.

If a deadlock is detected, then you must examine the output in more detail in order to
understand the deadlock. In the previous example, the thread mai n is locking object
0xf 0c30560 and is waiting to enter Oxf Oc41ec8, which is locked by thread AWT-

Event Queue- 0. However, thread AWT- Event Queue- 0 is waiting to enter 0xf 0¢30560,
which is locked by nai n.

The detail in the stack traces provides information to help you find the deadlock.

Deadlock Not Detected

If the thread dump is printed and no deadlocks are found, then the issue might be a
bug in which a thread is waiting for a monitor that is never notified. This could be a
timing issue or a general logic bug.

To find out more about the issue, examine each of the threads in the thread dump and
each thread that is blocked in Cbj ect . wai t () . The caller frame in the stack trace
indicates the class and method that is invoking the wai t () method. If the code was
compiled with line number information (the default), then this provides a direction as to
the code to examine. In most cases, you must have some knowledge of the
application logic or library in order to diagnose this issue further. In general, you must
understand how the synchronization works in the application and the details and
conditions for when and where the monitors are notified.

No Thread Dump

ORACLE

If the VM is deadlocked or hung, use the j st ack orj hsdb j st ack command.

If the VM does not respond to Control+\ or Control+Break, then it is possible that the
VM is deadlocked or hung for some other reason. In that case, use The jstack Utility or
the j st ack mode of jhsdb to get a thread dump. This also applies in the case when the
application is not accessible, or the output is directed to an unknown location.

In the thread dump, examine each of the threads in the BLOCKED state. The top frame
can sometimes indicate why the thread is blocked (for example, Obj ect . wai t or
Thread. sl eep). The rest of the stack will give an indication of what the thread is doing.
This is particularly true when the source is compiled with line number information (the
default), and you can cross-reference the source code.

If a thread is in the BLOCKED state and the reason is not clear, then use j hsdb j stack
--m xed to get a mixed stack. With the mixed stack output, it should be possible to
identify why the thread is blocked. If a thread is blocked trying to enter a synchronized

6-4

https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jhsdb_tool_reference

ORACLE

Chapter 6
Diagnose a Hung Process

method or block, then you will see frames such as Qbj ect Moni tor: : ent er near the top
of the stack. The following example shows a sample, mixed-stack output.

----------------- t@3 ---------eeeee -
Oxff31e8h8 ___lwp_cond_wait + 0x4
Oxf ea8c810 voi d ObjectMnitor::Enterl(Thread*) + 0x2b8

Oxf eac86h8 voi d ObjectMnitor::enter2(Thread*) + 0x250

Threads in the RUNNABLE state might also be blocked. The top frames in the mixed
stack should indicate what the thread is doing.

One specific thread to check is VMrhr ead. This is the special thread used to execute
operations like garbage collection (GC). It can be identified as the thread that is
executing VMThr ead: : run() in its initial frames. On Linux, it should be identifiable
using the C++ mangled name _ZN8VMrhr ead4l oopEv.

In general, the VM thread is in one of three states: waiting to execute a VM operation,
synchronizing all threads in preparation for a VM operation, or executing a VM
operation. If you suspect that a hang is a HotSpot VM bug rather than an application or
class library deadlock, then pay special attention to the VM thread.

If the VM thread appears to be stuck in Saf epoi nt Synchr oni ze: : begi n, then this could
indicate an issue bringing the VM to a safepoint. A safepoint indicates that all threads
executing in the VM are blocked and waiting for a special operation, such as GC, to
complete.

If the VM thread appears to be stuck in f uncti on, where functi on ends in doi t, then
this could also indicate a VM problem.

In general, if you can execute the application from the command line, and you get to a
state where the VM does not respond to Control+\ or Control+Break, it is more likely
that you have uncovered a VM bug, a thread library issue, or a bug in another library.
When this occurs, get a crash dump. See Collect Core Dumps for instructions about
gathering as much information as possible, and submit a bug report or call support.

One other tool to mention in the context of hung processes on Linux is | sst ack. This
utility is included in some distributions and otherwise obtained from sourceforge. At the
time of this writing, | sst ack reported native frames only.

6-5

http://sourceforge.net

Handle Signals and Exceptions

This chapter provides information about how signals and exceptions are handled by
the Java HotSpot Virtual Machine. It also describes the signal chaining facility,
available on the Linux and macOS operating systems, which facilitates writing
applications that must install their own signal handlers.

This chapter contains the following sections:

» Handle Signals on Linux and macOS

e Handle Exceptions on Windows

e Signal Chaining

» Handle Exceptions Using the Java HotSpot VM
* Console Handlers

e Signals Used in Linux and macOS

Handle Signals on Linux and macOS

The Java HotSpot VM installs signal handlers to implement various features and to
handle fatal error conditions.

For example, in an optimization to avoid explicit null checks in cases where
java.lang. Nul | Poi nt er Except i on will be thrown rarely, the SI GSEGV signal is caught
and handled, and the Nul | Poi nt er Excepti on is thrown.

In general, there are two categories where signal/traps happen:

e When signals are expected and handled, like implicit null-handling. Another
example is the safepoint polling mechanism, which protects a page in memory
when a safepoint is required. Any thread that accesses that page causes a
SI GSEGV, which results in the execution of a stub that brings the thread to a
safepoint.

* Unexpected signals. This includes a S| GSEGY when executing in VM code, Java
Native Interface (JNI) code, or native code. In these cases, the signal is
unexpected, so fatal error handling is invoked to create the error log and terminate
the process.

Table 7-2 lists the signals that are currently used on the Linux and macOS operating
systems.

Handle Exceptions on Windows

ORACLE

On Windows, an exception is an event that occurs during the execution of a program.

There are two kinds of exceptions: hardware exceptions and software exceptions.
Hardware exceptions are comparable to signals such as S| GSEGY and SI &KI LL on the
Linux operating system. Software exceptions are initiated explicitly by applications or
the operating system using the Rai seExcepti on() API.

7-1

ORACLE

Chapter 7
Handle Exceptions on Windows

On Windows, the mechanism for handling both hardware and software exceptions is
called structured exception handling (SEH). This is stack frame-based exception
handling similar to the C++ and Java exception handling mechanism. In C++, the
__try and __except keywords are used to guard a section of code that might result in
an exception, as shown in the following example.

_try{
/] guarded body of code

} __except (filter-expression) {
/1 exception-handl er bl ock

}

The __except block is filtered by a filter expression that uses the integer exception
code returned by the Get Except i onCode() API, exception information returned by
the Get Excepti onl nf or mati on() API, or both.

The filter expression should evaluate to one of the following values:

- EXCEPTI ON_CONTI NUE_EXECUTI ON = -1

The filter expression repaired the situation, and execution continues where the
exception occurred. Unlike some exception schemes, SEH supports the
resumption model as well. This is much like the UNIX signal handling in the
sense that after the signal handler finishes, the execution continues where the
program was interrupted. The difference is that the handler in this case is just the
filter expression itself and not the __except block. However, the filter expression
might also involve a function call.

- EXCEPTI ON_CONTI NUE_SEARCH = 0

The current handler cannot handle this exception. Continue the handler search for
the next handler. This is similar to the cat ch block not matching an exception type
in C++ and Java.

* EXCEPTI ON_EXECUTE_HANDLER = 1

The current handler matches and can handle the exception. The __except block is
executed.

The try and __ finally keywords are used to construct a termination handler, as
shown in the following example.

_try {
/1 guarded body of code

}_finally {
/I __finally block
}

When control leaves the __try block (after an exception or without an exception), the
__finally block is executed. Inside the _ fi nal | y block, the

Abnor mal Ter mi nati on() API can be called to test whether control continued after
the exception or not.

Windows programs can also install a top-level unhandled exception filter function to
catch exceptions that are not handled in the __try/ except block. This function is
installed on a process-wide basis using the Set Unhandl edExcepti onFilter ()
API. If there is no handler for an exception, then Unhandl edExcepti onFilter() is

7-2

Chapter 7
Signal Chaining

called, and this will call the top-level unhandled exception filter function, if any, to catch
that exception. This function also shows a message box to notify the user about the
unhandled exception.

Windows exceptions are comparable to Unix synchronous signals that are attributable
to the current execution stream. In Windows, asynchronous events such as console
events (for example, the user pressing Control+C at the console) are handled by the
console control handler registered using the Set Consol eCt | Handl er () API.

If an application uses the si gnal () API on Windows, then the C runtime library
(CRT) maps both Windows exceptions and console events to appropriate signals or C
runtime errors. For example, CRT maps Control+C to SI G NT and all other console
events to SI GBREAK. Similarly, if you register the S| GSEGV handler, CRT translates the
corresponding exception to a signal. CRT startup code implements a __try/ _except
block around the mai n() function. The CRT's exception filter function (hamed

_Xcpt Fil ter) maps the Win32 exceptions to signals and dispatches signals to their
appropriate handlers. If a signal's handler is set to SI G_DFL (default handling), then
_XcptFilter calls Unhandl edExceptionFilter.

The vectored exception handling mechanism can also be used. Vectored handlers
are not frame-based handlers. A program can register zero or more vectored
exception handlers using the AddVect or edExcept i onHandl er API. Vectored
handlers are invoked before structured exception handlers, if any, are invoked,
regardless of where the exception occurred.

vectored exception handler returns one of the following values:

e EXCEPTI ON_CONTI NUE_EXECUTI ON: Skip the next vectored and SEH handlers.
e EXCEPTI ON_CONTI NUE_SEARCH: Continue to the next vectored or SEH handler.

Signal Chaining

ORACLE

Signal chaining enables you to write applications that need to install their own signal
handlers. This facility is available on Linux and macOS.

The signal chaining facility has the following features:

» Support for preinstalled signal handlers when you create Oracle’'s HotSpot Virtual
Machine.

When the HotSpot VM is created, the signal handlers for signals that are used by
the HotSpot VM are saved. During execution, when any of these signals are raised
and are not to be targeted at the HotSpot VM, the preinstalled handlers are
invoked. In other words, preinstalled signal handlers are chained behind the
HotSpot VM handlers for these signals.

e Support for the signal handlers that are installed after you create the HotSpot VM,
either inside the Java Native Interface code or from another native thread.

Your application can link and load the | i bj si g. so shared library before the | i bc/
|'i bt hread/ i bpthread library. This library ensures that calls such as si gnal (),
sigset (), and si gaction() are intercepted and don't replace the signal handlers
that are used by the HotSpot VM, if the handlers conflict with the signal handlers
that are already installed by HotSpot VM. Instead, these calls save the new signal
handlers. The new signal handlers are chained behind the HotSpot VM signal
handlers for the signals. During execution, when any of these signals are raised
and are not targeted at the HotSpot VM, the preinstalled handlers are invoked.

7-3

ORACLE

Chapter 7
Signal Chaining

If support for signal handler installation after the creation of the VM is not required,
then the | i bj si g. so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the
|'i bj si g.so shared library:

— Link the I'i bj si g. so shared library with the application that creates or embeds
the HotSpot VM:

cc -L libjvmso-directory -lIjsig -l1jvmjava_application.c

— Use the LD _PRELOAD environment variable:
* Korn shell (ksh):

export LD PRELOAD=Iibjvm so-directory/libjsig.so;
java_application

* C shell (csh):

setenv LD PRELOAD |ibjvm so-directory/libjsig.so;
java_application

The interposed si gnal () , sigset() , and si gaction() calls return the saved
signal handlers, not the signal handlers installed by the HotSpot VM and are seen
by the operating system.

¢ Note:

The SI GQUI T, SI GTERM SI G NT, and S| GHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xr s option.

Enable Signal Chaining in macOS
To enable signal chaining in macOS, set the following environment variables:

e DYLD I NSERT_LI BRARI ES: Preloads the specified libraries instead of the
LD_PRELQAD environment variable available on Linux.

» DYLD FORCE_FLAT_NAMESPACE: Enables functions in the | i bj si g library and
replaces the OS implementations, because of macOS'’s two-level namespace (a
symbol's fully qualified name includes its library). To enable this feature, set this
environment variable to any value.

The following command enables signal chaining by preloading the | i bj si g library:

$ DYLD_FORCE_FLAT_NAVMESPACE=0 DYLD | NSERT_LI BRARI ES="JAVA HOVE/ | i b/
libjsig.dylib" java MySpiffyJlavaApp

Note:

The library file name on macOS is|ibjsig.dylibnotlibjsig.soasitison
Linux.

7-4

Chapter 7
Handle Exceptions Using the Java HotSpot VM

Handle Exceptions Using the Java HotSpot VM

The HotSpot VM installs a top-level exception handler during initialization using the
AddVect or edExcept i onHandl er API for 64-bit systems.

It also installs the Win32 SEH usinga __try /__except block in C++ around the thread
(internal) start function call for each thread created.

Finally, it installs an exception handler around JNI functions.

If an application must handle structured exceptions in JNI code, then it can use __try /
__except statements in C++. However, if it must use the vectored exception handler in
JNI code, then the handler must return EXCEPTI ON_CONTI NUE_SEARCH to continue to the
VM's exception handler.

In general, there are two categories in which exceptions happen:

* When exceptions are expected and handled. Examples include the implicit null
handling cited, previously where accessing a null causes an
EXCEPTI ON_ACCESS_VI OLATI ON, which is handled.

* Unexpected exceptions. An example is an EXCEPTI ON_ACCESS VI OLATI ON when
executing in VM code, in JNI code, or in native code. In these cases, the signal is
unexpected, and fatal error handling is invoked to create the error log and
terminate the process.

Console Handlers

This topic describes a list of console events that are registered with the Java HotSpot
VM.

The Java HotSpot VM registers console events, as shown in Table 7-1.

Table 7-1 Console Events

__|
Console Event Signal Usage

CTRL_C _EVENT SIGNT This event and signal is used to terminate a
process. (Optional)

CTRL_CLOSE_EVENTCTRL_L SI GTERM This event and signal is used by the shutdown

OGOFF EVENTCTRL SHUTDO hook mechanism when the VM is terminated
WN EVENT - abnormally. (Optional)
CTRL_BREAK_EVENT SI GBREAK This event and signal is used to dump Java stack

traces at the standard error stream. (Optional)

If an application must register its own console handler, then the - Xr s option can be
used. With this option, shutdown hooks are not run on SI GTERM (with the previously
shown mapping of events), and thread dump support is not available on SI GBREAK
(with the above mapping of the Control+Break event).

Signals Used in Linux and macOS

This topic describes a list of signals that are used on Linux and macOS

ORACLE e

ORACLE

Chapter 7
Signals Used in Linux and macOS

Table 7-2 Signals Used on Linux and macOS

Signal Description

S| GSEGV, SI GBUS, SI GFPE, These signals are used in the implementation for implicit null
SIGPI PE, SI G LL check, and so forth.

SIGQUIT This signal is used to dump Java stack traces to the standard

error stream. (Optional)

SI GTERM SI G NT, SI GHUP These signals are used to support the shutdown hook
mechanism (j ava. | ang. Runt i me. addShut downHook) when
the VM is terminated abnormally. (Optional)

Sl GUSR2 This signal is used internally on Linux and macOS.

SI GABRT The HotSpot VM does not handle this signal. Instead, it calls the
abort function after fatal error handling. If an application uses
this signal, then it should terminate the process to preserve the
expected semantics.

Signals tagged as "optional" are not used when the - Xr s option is specified to reduce
signal usage. With this option, fewer signals are used, although the VM installs its own
signal handler for essential signals such as SI GSEGV. Specifying this option means that
the shutdown hook mechanism will not execute if the process receives a SI GQUI T,

SI GTERM SI G NT, or SI GHUP. Shutdown hooks will execute, as expected, if the VM
terminates normally (that is, when the last non-daemon thread completes or the

Syst em exi t method is invoked).

SI GQUSR2 is used to implement, suspend, and resume on Linux and macOS. However,
it is possible to specify an alternative signal to be used instead of S| GUSR2. This is
done by specifying the _JAVA SR_SI GNUMenvironment variable. If this environment
variable is set, then it must be set to a value larger than the maximum of S| GSEGV and
Sl GBUS.

7-6

Debug Core Library Issues

This part describes issues and troubleshooting techniques that arise with time zone
settings and contains the following topic.

e Time Zone Settings in the JRE

Describes some issues that arise with time zone settings with the Java Runtime
Environment (JRE) and troubleshooting techniques to resolve these issues.

ORACLE

Time Zone Settings in the JRE

This chapter describes some issues that can arise with time zone settings with the
Java Runtime Environment (JRE) on the Windows operating system. It further
describes troubleshooting techniques and workarounds to solve these issues.
This chapter contains the following sections:

e Native Time Zone Information and the JRE

e Determine the Default Time Zone on Windows

Native Time Zone Information and the JRE

ORACLE

The Java Runtime Environment (JRE) reads the native time zone information to
determine your default time zone.

For example, on Windows, the JRE queries the registry to determine the default time
zone.

However, the JRE also maintains its own time zone database. This provides cross-
platform support because the different operating system APIs are not sufficient to
support the Java APIs. The Java time zone database supports time zone IDs and
determines daylight saving time rules for all the time zones that the JRE supports. The
t zupdat er tool is available for download from the Java SE Download Page.

Modifications to the JRE for each specific operating system are necessary so that the
operating system can deliver the system time to the JRE. Then, if a Java application
requests the system date by calling date and time related constructors, the system
time is returned.

Examples of such constructors are:

java.util.Date()
java. util. G egorianCal endar ()

Constructors related to date and time include:

SystemcurrentTimeM I 1is()
Syst em nanoTi me()

Operating system-specific patches might be required to ensure that the correct system
time is delivered to the JRE.

The following sections describe troubleshooting techniques for time zone settings.

e Determine the Time Zone Data Version in Use

e Troubleshoot Problems with TZupdater

8-1

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 8
Native Time Zone Information and the JRE

Determine the Time Zone Data Version in Use

The time zone database version that ships in any Java runtime from Oracle is
documented in the release notes. However, the actual version can be different from
the version mentioned there if the Java runtime was patched using the Java time zone
updater tool called t zupdat er .

To determine the current time zone data version of your Java runtime using the
t zupdat er tool, run the tool with the Version option as shown in the following example:

java -jar tzupdater.jar -V

Here is a typical output from running the t zupdat er tool.

tzupdater version 2.2.0-b01
JRE tzdata version: tzdata2018g

You can download the t zupdat er tool from this web page: Timezone Updater Tool.

Troubleshoot Problems with TZupdater

ORACLE

Sometimes, when you run t zupdat er, it quits with the message: “There's no tzdata
available for this Java runtime." The following are two examples.

$ java -jar tzupdater.jar -V

tzupdater version 2.1.1-b01

JRE tzdata version: tzdata2017b

There's no tzdata available for this Java runtine.

The likely cause is that you are using a Java runtime that is not from Oracle. Oracle
provides a Java runtime for Linux (x64), Microsoft Windows (x64), and macOS (x64).
The j ava. vendor property value for these is Sun Microsystems Inc., Oracle
Corporation, or BEA Systems, Inc. Oracle does not provide the Java runtime for other
platforms.

The output of running the j ava - ver si on command does not provide enough
information to determine the actual vendor of a Java runtime. However, running

t zupdat er in update mode with the - v option does print out the j ava. vendor property.
The following example shows the result of running t zupdat er when the environment is
HP_UX from Hewlett Packard.

root @y_server:/opt/java6/bin> uname -a

HP-UX my_server B.11.23 U ia64 1114591084 unlinited-user |icense

root @y_server:/opt/java6/bin> ./java -version

java version "1.6.0.05"

Java(TM SE Runtinme Environment (build 1.6.0.05-jinteg_14 oct_2009 01_44-
b00)

Java Hot Spot (TM) Server VM (build 14.2-b01-jrel.6.0.05-rc5, nixed node)
root @y_server:/opt/java6/bin> ./java -jar tzupdater.jar -v -I

java. horme: /opt/java6l/jre

java.vendor: Hew ett-Packard Co.

java.version: 1.6.0.05

8-2

http://www.oracle.com/technetwork/java/javase/tzupdater-readme-136440.html

Chapter 8
Determine the Default Time Zone on Windows

JRE tzdata version: tzdata20009i
There's no tzdata available for this Java runtine.

In the previous example, j ava. vendor is set to “Hewlett-Packard Co." The Java
runtime that you are trying to update using t zupdat er is not supported by Oracle.

A possible solution is to visit the website of your Java runtime vendor and determine
whether a time zone updater tool is available.

Determine the Default Time Zone on Windows

This section clarifies how the Java runtime determines the default time zone on
Windows 10 and later operating systems. If the expected time zone isn't reported, then
use the troubleshooting techniques provided in the following sections:

e Check the Default Time Zone Java Runtime Reports

* Determine the Setting in the Control Panel

* Check for Automatic Daylight Saving Time Adjustment
* Set the Default Time Zone in Windows Settings

* Check -Duser.timezone System Property

e Special Tool in Windows

* Internal Representation of Time Zone Mappings

Check the Default Time Zone Java Runtime Reports

ORACLE

You can write a simple program to determine which time zone the Java runtime
reports as the default time zone-based on a check with the native operating system.

The Java program in the following example returns the default time zone:

public class Defaul t Ti meZone {
public static void main(String[] args) {
Systemout. println(java.util.TimeZone.getDefault().getlX());
}

}

You can save the code snippet in the previous example to a file named
Def aul t Ti neZone. j ava and compile it using the j avac command. Then, you can run
the compiled Def aul t Ti meZone class, as shown in the following example.

c:\tztest> javac Defaul t Ti meZone. j ava
c:\tztest> java Defaul t Ti meZone
Europe/ Berlin

In the previous example, the default time zone is Europe/Berlin. Running the program

should display your local time zone. If the output is not the expected time zone, then
continue with the following troubleshooting steps.

8-3

Chapter 8
Determine the Default Time Zone on Windows

Determine the Setting in the Control Panel

You can change or examine the system's default time zone using Windows Settings or
the Windows Control Panel. For example, you can select this time zone setting in
Windows 10:

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

The corresponding value for the Registry key Ti meZoneKeyNane is “W. Europe
Standard Time."

Check for Automatic Daylight Saving Time Adjustment

You can check whether the automatic adjustment of daylight saving time is enabled
through the graphical user interface (GUI) or through the Windows registry.

¢ GUI Method: To use the Control Panel to check whether automatic adjustment of
daylight saving time is enabled:.

1.
2
3.
4

5.

Click the Windows Start button and then click Control Panel.
Click Date and Time.
Click the Change Time Zone button.

There is a check box labeled “Automatically adjust time for Daylight Savings
Time. “See if this check box is selected, and change the setting if you want.

Click OK. This returns you to the Date and Time dialog box.

¢ Windows Registry Method: You can run Windows Registry Editor to check
whether automatic adjustment of daylight saving time is enabled.

Note:

It is a good practice to back up the Windows registry before reviewing or
editing it. If you make a mistake, you can damage the Windows registry.

To enable the automatic adjustment of daylight saving time from the Windows

registry:

1. Click the Windows Start button.

2. Inthe Search programs and files field, enterregedit and then press Enter to
open the Registry Editor.

3. Inthe Registry Editor, search for the key DynamicDaylightTimeDisabled and

look at the setting.
If the registry setting is 1, then dynamic daylight time is disabled.
If the registry setting is 0, then dynamic daylight time is enabled.

If you prefer, you can access the Windows registry from the Windows command
window.

In the following example, the registry setting is 1. With this setting, the clock is not
automatically adjusted for daylight saving time.

ORACLE

8-4

Chapter 8
Determine the Default Time Zone on Windows

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Ti meZonel nf or mat i on]
"Dynani cDayl i ght Ti neDi sabl ed" =dwor d: 00000001

If you disable the Dynami cDayl i ght Ti meDi sabl ed option, then Java returns a GMT
(Greenwich Mean Time) offset and not a time zone ID that is compatible with the
uniform naming convention (such as “Europe/Berlin"). For example, the offset will be
expressed as GMT+01 and not “Europe/Berlin."

Set the Default Time Zone in Windows Settings

You can change or review the system's default time zone by using Windows Settings.
To set the system's default time zone from Windows Settings:

1. Click the Windows Start button.

2. Click Settings.

3. Click Time & Language.

4. From the Time zone drop-down list, select your preferred time zone.

For example, you can select this time zone in Windows 10:

(UTC)+1: 00) Ansterdam Berlin, Bern, Rone, Stockholm Vienna.

The corresponding value for the Registry key Ti meZoneKeyNane is “W. Europe
Standard Time."

Check -Duser.timezone System Property

You can explicitly set a default time zone on the command line by using the Java
system property called user. ti mezone. This bypasses the settings in the Windows
operating system and can be a workaround. For instance, this setting is useful if you
want daylight saving time (DST) only for a single Java program running on the system.

The following example shows the system property - Duser . ti mezone by running a Java
program called DefaultTimeTestZone from the Windows Command Prompt window.

c:\tztest> java -Duser.timezone=Anerical/ New York Defaul t Ti meZone America/
New_Yor k

If setting a default time zone explicitly by specifying - Duser . ti mezone works for the

Def aul t Ti meTest Zone program, but does not work for your program, you should check
whether your code overwrites the default Java time zone during runtime with a method
call such as this:

Ti meZone. set Def aul t (Ti neZone zone)

Special Tool in Windows

The Windows operating system provides a tool called t zut i | . exe. With this tool, you
can request the current time zone ID abbreviation without manually reading the
registry.

ORACLE 8-5

Chapter 8
Determine the Default Time Zone on Windows

Here is an example of running t zut i | . exe. The first line is the command that you
enter in the Windows Command Prompt window. The second line is the system
response.

tzutil /g

W Europe Standard Tine

Internal Representation of Time Zone Mappings

ORACLE

On Windows, the Java runtime uses a file <j ava- honme>\1i b\t znappi ngs to
represent the mapping between Windows and Java time zones. Each line in the file
has three tokens. The first token is the Windows time zone registry key called

Ti meZoneKeyNane. See Determine the Setting in the Control Panel.

The second token is a country code or the default code 001, which is the UN M49 code
meaning "World". The third token represents the Java time zone ID.

If you select the time zone called (UTC+01: 00) Ansterdam Berlin, Bern, Rome,
St ockhol m Vi enna in the Windows Control Panel, then the relevant lines in the file
t zmappi ngs are:

Europe Standard Ti ne: AD: Eur ope/ Andorra:
Europe Standard Ti ne: AT: Eur ope/ Vi enna:
Europe Standard Tinme: CH: Eur ope/ Zuri ch:
Europe Standard Ti ne: DE: Eur ope/ Berl i n:
Europe Standard Tine: G : Europe/ Gbraltar:
Europe Standard Tine: | T: Eur ope/ Rone:
Europe Standard Tine: LI : Eur ope/ Vaduz:
Europe Standard Ti ne: LU Eur ope/ Luxenbour g:
Europe Standard Ti me: MC: Eur ope/ Monaco:
Europe Standard Ti ne: MT: Eur ope/ Mal t a:
Europe Standard Ti me: NL: Eur ope/ Anst er dam
Europe Standard Ti me: NO Eur ope/ Gsl o:
Europe Standard Ti ne: SE: Eur ope/ St ockhol m
Europe Standard Tine: SJ: Arctic/ Longyear byen:
Europe Standard Ti me: SM Eur ope/ San_Mar i no:
Europe Standard Ti ne: VA: Eur ope/ Vati can:
Europe Standard Ti ne: 001: Europe/ Berlin:

===z x=

In this example, the Java runtime recognizes your default time zone (token number
three) based on your country. For example, if your country code is AD, then your
default time zone is "Europe/Andorra”.

If there is no appropriate mapping entry in the t zmappi ngs file, then it is possible that
Microsoft introduced a new time zone in a Windows update and that the new time
zone is not available to the Java runtime. In this situation, you can file a bug report,
and request a new entry in the t zmappi ngs file from Oracle Java bugs website.

A similar disconnect between the operating system and the Java runtime is possible if
you ran the tool t zedi t . exe. This tool is posted by Microsoft on the Internet, and
allows users to add new time zones. The Java runtime is unlikely to have a time zone
introduced into the system by this tool. Again, the solution is to file a bug to request
that a new entry be added to the t zmappi ngs file.

8-6

http://bugs.java.com

Debug Client Issues

ORACLE

This part describes Java client issues, troubleshooting techniques, and debugging tips
for client issues. The following topics are included.

Introduction to Client Issues

Provides an overview of Java client technologies, describes Java client issues,
and troubleshooting tips.

AWT

Provides guidance on specific procedures for debugging issues that occur with
Java SE Abstract Windows Toolkit (AWT).

Java 2D Pipeline Rendering and Properties

Provides information and guidance for troubleshooting some of the most common
issues that might be found in the Java 2D API when changing pipeline rendering
and properties.

Java 2D

Provides guidance about troubleshooting some common issues found in Java 2D
API.

Swing

Provides guidance about troubleshooting some common issues found in Java SE
Swing API.

Internationalization

Provides guidance about troubleshooting some issues found in Java
Internationalization.

Java Sound

Describes some issues and causes that happen with Java Sound technology and
suggests workarounds.

Introduction to Client Issues

This chapter explains how the different Java SE Desktop technologies interact with

each other. In addition, the chapter helps you to pinpoint the technology from which

you might start troubleshooting your problem and provides general troubleshooting
tips.

This chapter contains the following sections:

Java SE Desktop Technologies

General Steps to Troubleshoot an Issue

Identify the Type of Issue

Basic Tools

Java Debug Wire Protocol

Java SE Desktop Technologies

Java SE Desktop consists of several technologies used to create rich client
applications.

ORACLE

The desktop tools and libraries provide an interface between the Java application and
the core tools and libraries of the platform, as shown in Figure 9-1.

Figure 9-1 Overview of the Java SE Desktop

User Application

Desktop Technologies

Deployment

Swing

Media APls

AWT Java 2D

Core Tools and Libraries

To know more about the desktop technologies available in Java SE, visit the Java SE
Desktop Overview documentation.

9-1

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142216.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-142216.html

ORACLE

Chapter 9
Java SE Desktop Technologies

This topic describes troubleshooting techniques for the following Java SE dsktop
technologies:

Abstract Window Toolkit (AWT) provides a set of application programming
interfaces (APIs) for constructing graphical user interface (GUI) components such
as menus, buttons, text fields, dialog boxes, checkboxes, and for handling user
input through those components. In addition, AWT allows for rendering of simple
shapes such as ovals and polygons and enables developers to control the
interface layout and fonts used by their applications. It also includes data transfer
classes (including drag and drop) that allow cut and paste through the native
platform clipboard.

The classes of this API are at the bottom of the software stack (closest to the
underlying operating and desktop system).

AWT also provides a set of heavyweight components.

Purely AWT applications are usually not related to Swing. If an AWT application
does custom rendering, it uses Java 2D.

Java 2D is a set of classes for advanced 2D graphics and imaging. It
encompasses line art, text, and images in a single comprehensive model. The API
provides extensive support for image compositing and alpha channel images, a
set of classes to provide accurate color space definition and conversion, and a rich
set of display-oriented imaging operators. These classes are provided as additions
to the j ava. awt and j ava. awt . i mage packages.

Like AWT, Java 2D is also at the bottom of the software stack (closest to the
underlying operating and desktop system).

Swing provides a comprehensive set of GUI components and services which
enables the development of commercial-quality desktop and Internet/Intranet
applications.

Swing is built on top of many of the other Java SE Desktop technologies, including
AWT, Java2D and Internationalization. In most cases the Swing high-level
components are recommended instead of those in AWT. However, there are many
APIs in AWT that are important to understand when programming in Swing.

Since Swing is a lightweight toolkit, it has very little interaction with the native
platform. Swing uses Java 2D for rendering, and AWT provides creation and
manipulation of top-level components, such as Windows, Frames, and Dialogs.

Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, cost-effectively, and in
particular without engineering changes to the software. Localization is performed
by simply adding locale-specific components, such as translated text, data
describing locale-specific behavior, fonts, and input methods.

In Java SE, internationalization support is fully integrated into the classes and
packages that provide language-dependent or culture-dependent functionality.

To know more about internationalization APls and features of Java SE, see
Internationalization documentation.

Java Sound provides low-level support for audio operations such as audio
playback and capture (recording), mixing, musical instrument digital interface
(MIDI) sequencing, and MIDI synthesis in an extensible, flexible framework. This
API is supported by an efficient sound engine which guarantees high-quality audio
mixing and MIDI synthesis capabilities for the platform.

9-2

Chapter 9
General Steps to Troubleshoot an Issue

The better you understand the relationships between these technologies, the more
quickly you can pinpoint the area your problem falls into.

General Steps to Troubleshoot an Issue

General steps to troubleshoot problems in your application.

When you experience problems running your application, follow the steps below for
troubleshooting the issue.

1.

Identify the symptom:

Identify the Type of Issue.
Find the problem area.

Note the vant configuration information.

Eliminate non-issues:

Ensure that the correct patches, drivers, and operating systems are installed.
Try earlier releases (back-tracing).
Minimize the test. Restrict the test to as few issues at a time as possible.

Minimize the hardware and software configuration. Determine if the problem is
reproducible on a single system and on multiple systems. Determine if the
problem changes with the browser version.

Determine if the problem depends on whether multiple VMs are installed.

Find the cause:

Check for typical causes in the area.
Use flags to change defaults.
Use tracing.

In exceptional cases, use system properties to temporarily change the
behavior of the painting system.

Find the fix:

Find a possible workaround.
File a bug.

For guidance about how to submit a bug report and suggestions about what
data to collect for the report, see Submit a Bug Report.

Fix the setup.

Fix the application.

Identify the Type of Issue

Guidance about identifying the problem you are experiencing, and finding the cause
and solution.

ORACLE

First of all, take a moment to categorize the problem you are experiencing. This will
help you to identify the specific area of the problem, find the cause, and ultimately
determine a solution or a workaround.

9-3

Chapter 9
Identify the Type of Issue

The following subsections below provide information about common issue types:

e Java Client Crashes
* Performance Problems
* Behavior Problems

Some of these might seem obvious, but it is always helpful to consider every
possibility and to eliminate what is not an issue.

Java Client Crashes

An error log is created that contains information and the state obtained at the time of
the fatal error, when the Java client crashes.

The default name of the error log file is hs_err_pid.log where pid is the process
identifier (PID) of the process that crashed. For a standalone Java application this file
is created in the current directory.

To know more about the fatal error log, see Fatal Error Log.

A line near the top of the header section indicates the library where the error occurred.
The following example shows that the crash was related to the AWT library.

Java VM Java Hot Spot(TM Cient VM (1.6.0-beta2-b76 mixed node, sharing)
Problematic frane:
C [awt.dl|+0x123456]

If the crash occurred in the Java Native Interface (JNI), it was likely to have been
caused by the desktop libraries. A crash in a native library typically means a problem
in Java 2D or AWT, because Swing does not have much native code. The small
amount of native code in Swing is then concerned with the native look and feel, and if
your application is using native look and feel, then the crash may be related to this
area.

The error log usually shows the exact library where the crash occurred, and this can

give you a good idea of the cause. Crashes in libraries which are not part of the Java
Development Kit (JDK) usually indicate problems with the environment, for example,

bad video drivers or desktop managers.

Performance Problems

Performance problems are harder to diagnose because you generally do not have as
much information.

First, you must determine which technology has the problem. For example, rendering
performance problems are probably in Java 2D, and responsiveness issues can be
Swing-related.

Performance-related problems can be divided into the following categories:

e Startup
How long does the application take to start up and become useful to the user?

* Footprint

ORACLE 9-4

Chapter 9
Identify the Type of Issue

How much memory does the application take? This can be measured by tools
such as Task Manager on Windows or t op and pr st at on the Linux operating
system.

Runtime

How fast does the application complete the task it is designed to perform? For
example, if the application computes something, how long does it take to finish the
computations? In the case of a game, is the frame rate acceptable, and does the
animation look smooth?

Note: This is not the same as responsiveness, which is the next topic.
Responsiveness

How fast does the application respond to user interaction? If the user clicks a
menu, how long does it take for the menu to appear? Can a long-running task be
interrupted? Does the application repaint fast enough so that it does not appear to
be slow?

Behavior Problems

Guidance about dealing with various problems in the application.

In addition to crashes, various behavior-related problems can occur. Some of these
problems are listed below. Their descriptions can guide you to the Java SE Desktop
technology to troubleshoot.

ORACLE

Hangs occur when the application stops responding to user input. See
Troubleshoot Process Hangs and Loops .

Exceptions in Java code are visibly thrown to the console or the application log
files. An examination of this output will guide you to the problem area.

Rendering and repainting issues indicate a problem in Java 2D or in Swing. For
example, the application’s appearance is incorrect after a repaint that was caused
by another application being dragged over it. Other examples are incorrect font,
wrong colors, scrolling, damaging the application's frame by dragging another
window over it, and updating a damaged area.

A quick test is the following: If the problem is reproducible on a different platform
(for example, the problem was originally seen on Windows, and it is also present
on Linux), it is very likely to be a Swing Pai nt Manager problem.

For the ways to change the Java 2D rendering pipelines with some flags, see Java
2D. This can also help determine if the problem is related to Java 2D or to Swing.

Multiscreen-related repainting issues belong to Java 2D (for example, repainting
problems when moving a window from one screen to another, or other unusual
behavior caused by the interaction with a non-default screen device).

Issues related to desktop interaction indicate a problem in AWT. Some
examples of such issues occur when moving, resizing, minimizing and maximizing
windows, handling focus, enumerating multiple screens, using modality, interacting
with the notification area (system tray), and viewing splash screens.

Drag-and-drop problems are related to AWT.

Printing problems could be related either to Java 2D or AWT depending on the
API that is used.

9-5

Basic Tools

Chapter 9
Basic Tools

Text-rendering issues in AWT applications might be a problem in font properties
or in internationalization.

However, if your application is purely AWT, text rendering problems might also be
caused by Java 2D. On Linux, text rendering is performed by Java 2D.

Text rendering in Swing is performed by Java 2D. Therefore, if your application
uses Swing and you have text rendering problems (such as missing glyphs,
incorrect rendering of glyphs, incorrect spacing between lines or characters, bad
quality of font rendering), then the problem is likely to be in Java 2D.

Painting problems are most likely a Swing issue.
Full-screen issues are related to the Java 2D API.

Encoding and locales issues (for example, no locale-specific characters
displayed) indicate internalization problems.

List of basic tools that can help troubleshoot certain types of issues.

This section lists a few tools that can help you troubleshoot certain types of issues.

Performance: Benchmarks, profilers, DTrace, Java probe.
FootPrint: | nap, profilers

Crashes: Native debuggers

Hangs: JConsole, j st ack, Control+Break

Font-rendering: Font2DTest (delivered with the JDK 8 demos and samples
bundle in the deno/ j f ¢/ Font 2DTest directory)

Java Debug Wire Protocol

The Java Debug Wire Protocol (JDWP) is very useful for debugging applications.

ORACLE

To debug an application using JDWP:

1.

Open the command line, and set the PATH environment variable to j dk/ bi n
where j dk is the installation directory of the JDK.

Use the following command to run the application (called Test in this example)
that you want to debug:

« On Windows:

java - Xdebug -
Xrunj dwp: t ransport=dt _shmem addr ess=debug, server =y, suspend=y Test

e Onthe Linux operating system:

java - Xdebug -
Xrunj dwp: transport=dt _socket, addr ess=8888, server=y, suspend=y Test

The Test class will start in the debugging mode and wait for a debugger to attach
to it at address debug (on Windows) or 8888 (on the Linux operating system).

9-6

ORACLE

Chapter 9
Java Debug Wire Protocol

Open another command line, and use the following command to run j db and
attach it to the running debug server:

« On Windows:

jdb -attach 'debug'

e Onthe Linux operating system:
jdb -attach 8888

After j db initializes and attaches to Test, you can perform Java-level debugging.

Set your breakpoints and run the application. For example, to set the breakpoint at
the beginning of the mai n method in Test, run the following command:

stop in Test.main run

When the j db utility hits the breakpoint, you will be able to inspect the environment
in which the application is running and see if it is functioning as expected.

(Optional) To perform native-level debugging along with Java-level debugging, use
native debuggers to attach to the Java process running with JDWP.

* On Linux, you can use the gdb utility.
* On Windows, you can use Visual Studio for native-level debugging as follows:
a. Open Visual Studio.

b. On the Debug menu, select Attach to Process. Select the Java process
that is running with JDWP.

c. Onthe Project menu, select Settings, and open the Debug tab. In the
Category drop-down list, select Additional DLLs and add the native DLL
that you want to debug (for example, Test . dl).

d. Open the source file (one or more) of Test . dl | and set your breakpoints.

e. Enter cont in the j db window. The process will hit the breakpoint in Visual
Studio.

9-7

AWT

This chapter provides information and guidance about some specific procedures for
troubleshooting common issues that might occur in the Java SE Abstract Window
Toolkit (AWT).

This chapter contains the following sections:

e Debug Tips for AWT

e Layout Manager Issues
 Key Events

e Modality Issues

* AWT Crashes

e Focus Events

» Data Transfer

* Other Issues

* Heavyweight or Lightweight Components Mix

Debug Tips for AWT

ORACLE

Helpful tips to debug issues related to AWT.
To dump the AWT component hierarchy, press Control+Shift+F1.

If the application hangs, get a stack trace by pressing Control+Break on Windows
(which sends the SIGBREAK signal) or Control+\ on the Linux operating system
(which sends the SIGQUIT signal).

To trace X11 errors on the Linux operating system, set the
sun. awt . noi syerror handl er system property to t rue. In Java SE 6 and earlier
releases, the NO SY_AWT environment variable was used for this purpose.

Before Java SE 8, exceptions thrown in the AWT Event Dispatch Thread (EDT) could
be caught by setting the system property sun. awt . excepti on. handl er to the name of
the class that implements the publ i ¢ voi d handl e(Thr owabl €) method. This
mechanism was updated in Java SE 8 to use the standard

Thr ead. Uncaught Except i onHandl er interface.

Loggers can produce helpful output when debugging AWT problems. See
java. util .l oggi ng package description.

The following loggers are available:

j ava. awt

java. awt . focus
java. awt . event
java. awt . mi xi ng

10-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.UncaughtExceptionHandler.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

Chapter 10
Layout Manager Issues

sun. awt
sun. awt . wi ndows
sun. awt . X11

Layout Manager Issues

Possible problems with layout managers and provides workarounds when available.

The following problems occur with layout managers and workarounds:
1. Calltoinvalidate() and validate() increases component size

Cause: Due to some specifics of the G i dBagLayout layout manager, if i padx or
i pady is set, and i nval i dat e() and val i dat e() are called, then the size of
the component increases to the value of i padx or i pady. This happens because
the Gi dBagLayout layout manager iteratively calculates the amount of space
needed to store the component within the container.

Workaround: The JDK does not provide a reliable and simple way to detect if the
layout manager should rearrange components or not in such a case, but there is a
simple workaround. Use components with the overridden method

get Pref erredSi ze(), which returns the current size needed, as shown in the
following example.

public Dinmension getPreferredSize(){
return new Di mension(si zetxpad*2+1, size+ypad*2+1);

}

2. Infinite recursion with val i dat e() from any Container.doLayout() method

Cause: Invoking val i dat e() from any Cont ai ner. doLayout () method can
lead to infinite recursion because AWT itself invokes doLayout () from
val i date().

Key Events

Some issues related to handling key events do not have a solution in the current
release.

The following keyboard issues are currently unresolved:

* On some non-English keyboards, certain accented keys are engraved on the key
and therefore are primary layer characters. Nevertheless, they cannot be used for
mnemonics because there is no corresponding Java keycode.

» Changing the default locale at runtime does not change the text that is displayed
for the menu accelerator keys.

* On a standard 109-key Japanese keyboard, the yen key and the backslash key
both generate a backslash, because they have the same character code for the
WM _CHAR message. AWT should distinguish them.

ORACLE 10-2

Chapter 10
Modality Issues

Modality Issues

Information about issues related to using modality.

With the Java SE 6 release, many problems were fixed and many improvements were
implemented in the area of AWT modality.

Some of the problems that were fixed in Java SE 6 are the following:

A modal dialog box goes behind a blocked frame.

Two modal dialog boxes with the same parent window opened at the same time.

The section addresses the following issues.

UNIX window managers:

Many of the modality improvements are unavailable in some Linux environments,
for example, when using Common Desktop Environment (CDE) window
managers. With Java SE 6 and later releases, to see if a modality type or modal
exclusion type is supported in a particular configuration, use the following
methods:

— Tool kit.isMdalityTypeSupported()
— Tool ki t.isMdal Excl usi onTypeSupported()

When a modal dialog box appears on the screen, the window manager might hide
some of the Java top-level windows in the same application from the taskbar. This
can confuse end users, but it does not affect their work much, because all the
hidden windows are modal blocked and cannot be operated.

Other modality problems:

For more information about modality-related features and how to use them, see
the AWT Modality specification.

One of the sections in that specification describes some AWT features that might
be related to or affected by modal dialog boxes: always-on-top property, focus
handling, window states, and so on. Application behavior in such cases is usually
unspecified or depends on the platform; therefore, do not rely on any particular
behavior.

AWT Crashes

Identify and troubleshoot crashes related to AWT.

ORACLE

Distinguish an AWT crash:

When a crash occurs, an error log is created with information and the state
obtained at the time of the crash. See Fatal Error Log.

A line near the top of the file indicates the library where the error occurred. The
following example shows part of the error log file in the case when the crash was
related to the AWT library.

Java VM Java Hot Spot (TM Cient VM (1.6.0-beta2-b76 mi xed node,
shari ng)

10-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/doc-files/Modality.html

ORACLE

Chapter 10
AWT Crashes

Probl ematic frane:
C [awt.dl|+0x123456]

However, the crash can happen somewhere deep in the system libraries, although
still caused by AWT. In such cases, the indication awt . dl | does not appear as a
problematic frame, and you need to look further in the file, in the section St ack:
Native franmes: Java franes as shown in the following example.

Stack: [0x0aeb0000, OxOaef 0000), sp=0xOaeefadd, free space=254k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code,
C=native code)

0x00abc751

[USER32. dI | +0x3a5f]

[USER32. dI | +0x3b2e]

[USER32. dI | +0x5874]

[USER32. dI | +0x58a4]

[ntdll.dll+0x108f]

[USER32. dI | +0x5e7e]

[awt . dl | +Oxec889]

[awt. dl | +Oxf 877d]

sun. awt . wi ndows. Wrool ki t . event Loop() V+0
sun. awt . wi ndows. Wrool ki t. run() V+69
java.lang. Thread. run() v+11

~St ubRoutines::call _stub

[jvmdl | +0x83c86]

[jvmdl | +0xd870f]

[jvmdl | +0x83b48]

[jvmdl|+0x838a5]

[jvmdl | +0x9ebc8]

[jvmdl|+0x108bal]

[jvmdl|+0x108b6f]

[MBVCRT. dI | +0x27f b8]

[kernel 32. dI | +0x202ed]

OO0OO0O0O0O0O0O0O0OO0

oo<< << <K<K < <TT7T™T™

Java frames: (J=conpiled Java code, j=interpreted, W=VM code)
j sun.awt.w ndows. Wrool ki t. event Loop() V+0

j sun.awt.w ndows. Wrool kit . run() V+69

j java.lang. Thread. run()V+11

v ~StubRoutines::call_stub

If the text awt . dI | appears somewhere in the native frames, then the crash might
be related to AWT.

Troubleshoot an AWT crash:

Most of the AWT crashes occur on the Windows platform and are caused by
thread traces. Many of these problems were fixed in Java SE 6, so if your crash
occurred in an earlier release, then first try to determine if the problem is already
fixed in the latest release.

One of the possible causes of crashes is that many AWT operations are
asynchronous. For example, if you show a frame with a call to

frane. set Vi si bl e(true), then you cannot be sure that it will be the active
window after the return from this call.

10-4

Chapter 10
Focus Events

Another example concerns native file dialogs. It takes some time for the operating
system to initialize and show these dialogs, and if you dispose of them
immediately after the call to set Vi si bl e(true), then a crash might occur.
Therefore, if your application contains some AWT calls running simultaneously or
immediately one after another, it is a good idea to insert some delays between
them or add some synchronization.

Focus Events

Troubleshooting issues related to focus events.

The following sections discuss the troubleshooting issues related to focus events:
* How to Trace Focus Events

* Native Focus System

* Focus Models Supported by X Window Managers

* Miscellaneous Problems with Focus

How to Trace Focus Events

ORACLE

Troubleshoot problems with focus.

You can trace focus events by adding a focus listener to the toolkit, as shown in the
following example.

Tool ki t. get Def aul t Tool kit (). addAWIEvent Li st ener (new AWTEvent Li st ener (
public void eventDi spat ched(AWTEvent e) {
Systemerr.printin(e);
}

), FocusEvent.FOCUS_EVENT_MASK | W ndowEvent. W NDON FOCUS_EVENT_MASK |
W ndowEvent . W NDON EVENT_MASK) ;

The System err stream is used here because it does not buffer the output.

10-5

Chapter 10
Focus Events

NOT_SUPPORTED:

The correct order of focus events is the following:

e FOCUS_LGST on component losing focus

e W NDOW LOST_FQOCUS on top-level losing focus

e W NDOW DEACTI VATED on top-level losing activation

e W NDOW ACTI VATED on top-level becoming active widow

e W NDOW GAI NED_FOCUS on top-level becoming focused window
e FOCUS_GAI NED on component gaining focus

When focus is transferred between components inside the focused window,
only FOCUS_LOST and FOCUS_GAI NED events should be generated. When
focus is transferred between owned windows of the same owner or between
an owned window and its owner, then the following events should be
generated:

« FOCUS LOST

< W NDOW LOST_FOCUS
W NDOW GAI NED_FOCUS
.+ FOCUS_GAl NED

¢ Note:

The events losing focus or activation should come first.

Native Focus System

ORACLE

Sometimes, a problem can be caused by the native platform. To check this,
investigate the native events that are related to focus.

Ensure that the window you want to be focused gets activated and that the component
you want to focus receives the native focus event.

On the Windows platform, the native focus events are the following:

* WM ACTI VATE for a top-level. WPARAMis WA_ACTI VE when activating and
WA_| NACTI VE when deactivating.

e WM SETFOCUS and WM KI LLFOCUS for a component.

On the Windows platform, a concept of synthetic focus was implemented. It means
that a focus owner component only emulates its focusable state, whereas real native
focus is set to a focus proxy component. This component receives key and input
method native messages and dispatches them to a focus owner. Before JDK7, a focus
proxy component was a dedicated hidden child component inside a frame or dialog
box. In the latest JDK releases a frame or dialog box serves as a focus proxy. Now, it
proxies focus not only for components in an owned window but for all child
components as well. A simple window never receives native focus and relies on the

10-6

Chapter 10
Focus Events

focus proxy of its owner. This mechanism is transparent for a user but should be taken
into account when debugging.

On the Linux operating system, XToolkit uses a focus model that allows AWT to
manage focus itself. With this model the window manager does not directly set input
focus on a top-level window, but instead it sends only the WM TAKE_FOCUS client
message to indicate that focus should be set. AWT then explicitly sets focus on the
top-level window if it is allowed.

¢ Note:

The X server and some window managers may send focus events to a
window. However, these events are discarded by AWT.

AWT does not generate the hierarchical chains of focus events when a component
inside a top-level gains focus. Moreover, the native window mapped to the component
does not get a native focus event. On the Linux platform, as well as on the Windows
platform, AWT uses the focus proxy mechanism. Therefore, focus on the component is
set by synthesizing a focus event, whereas the invisible focus proxy has native focus.

A native window that is mapped to a W ndow object (not a Fr ane or Di al og object) has
the overri de-redirect flag set. Thus, the window manager does not notify the
window about the focus change. Focus is requested on the window only in response to
a mouse click. This window will not receive native focus events at all. Therefore, you
can trace only Focusl n or FocusQut events on a frame or dialog box. Because the
major processing of focus occurs at the Java level, debugging focus with XToolkit is
simpler than with WToolkit.

Focus Models Supported by X Window Managers

List of focus models supported by X window managers.
The following focus models are supported by X window managers:

* Click-to-focus is a commonly used focus model. (For example, Microsoft
Windows uses this model.)

* Focus-follows-mouse is a focus model in which focus goes to the window that
the mouse hovers over.

The focus-follows-mouse model is not detected in XAWT in Java SE 7, and this
causes problems for simple windows (objects of j ava. awt . W ndow class). Such
windows have the overri de-redi rect property, which means that they can be
focused only when the mouse button is pressed, and not by hovering over the window.
As a workaround, set MouseLi st ener on the window, and request focus on it when
mouse crosses the window borders.

Miscellaneous Problems with Focus

Issues related to focus in AWT that can occur and suggested solutions.

1. Linux + KDE, XToolkit cannot be switched between two frames when a
frame's title is clicked.

Clicking a component inside a frame causes the focus to change.

ORACLE 10-7

ORACLE

Chapter 10
Focus Events

Solution: Check the version of your window manager and upgrade it to 3.0 or
greater.

You want to manage focus using KeyLi st ener to transfer the focus in
response to Tab/Shift+Tab, but the key event doesn’t appear.

Solution: To catch traversal key events, you must enable them by calling
Conponent . set FocusTr aver sal KeysEnabl ed(true).

A window is set to modal excluded with
W ndow. set Mbdal Excl usi onType(Modal Excl usi onType).

The frame, its owner, is modal blocked. In this case, the window will also remain
modal blocked.

Solution: A window cannot become the focused window when its owner is not
allowed to get focus. The solution is to exclude the owner from modality.

On Windows, a component requests focus and is concurrently removed
from its container.

Sometimes j ava. | ang. Nul | Poi nt er Exception: null pData is thrown.

Solution: The easiest way to avoid throwing the exception is to do the removal
along with requesting focus on EDT. Another, more complicated approach is to
synchronize the requesting focus and removal if you need to perform these actions
on different threads.

When focus is requested on a component and the focus owner is
immediately removed, focus goes to the component after the removed
component.

For example, Component A is the focus owner. Focus is requested on Component
B, and immediately after this Component A is removed from its container.
Eventually, focus goes to Component C, which is located after Component A in the
container, but not to Component B.

Solution: In this case, ensure that the requesting focus is executed after
Component A is removed, not before.

On Windows, when a window is set to al waysOnTop in an inactive frame, the
window cannot receive key events.

For example, a frame is displayed with a window that it owns. The frame is
inactive, so the window is not focused. Then, the window is set to al waysOnTop.
The window gains focus, but its owner remains inactive. Therefore, the window
cannot receive key events.

Solution: Bring the frame to the front (the Fr ane. t oFr ont () method) before
setting the window to al waysOnTop.

When a splash screen is shown and a frame is shown after the splash
screen window closes, the frame does not get activated.

Solution: Bring the frame to the front (the Fr are. t oFr ont () method) after
showing it (the Fr ane. set Vi si bl e(true) method).

The W ndowFocusLi st ener. wi ndowGai nedFocus(W ndowEvent) method
does not return the frame's most-recent focus owner.

For example, a frame is the focused window, and one of its components is the
focus owner. Another window is clicked, and then the frame is clicked again.
W NDOW GAI NED_FOCUS comes to the frame and the

W ndowFocusLi st ener. wi ndowGai nedFocus(W ndowEvent) method is

10-8

Chapter 10
Data Transfer

called. However, inside of this callback, you cannot determine the frame's most-
recent focus owner, because Fr ane. get Most Recent FocusOaner () returns
null .

Solution: You can get the frame's most recent focus owner inside the

W ndowLi st ener. wi ndowAct i vat ed(W ndowEvent) callback. However, by
this time, the frame will have become the focused window only if it does not have
owned windows.

< Note:

This approach does not work for the window, only for the frame or dialog
box.

9. A window is disabled with Conponent . set Enabl ed(f al se), but is not get
completely unfocusable.

Solution: Do not assume that the condition set by calling

Conponent . set Enabl ed(f al se) or Conponent . set Focusabl e(f al se)
will be maintained unfocusable along with all its content. Instead, use the

W ndow. set Focusabl eW ndowSt at e(bool ean) method.

Data Transfer

Possible problems with data transfer features, which allows you to add drag-and-drop
(DnD) and cut, copy, and paste (CCP) operations to the application.

The following sections discuss possible problems with data transfer features:
e Debug Drag-and-Drop Applications

* Frequent Issues with Data Transfer

Debug Drag-and-Drop Applications

Methods that can be used to troubleshoot issues with drag-and-drop (DnD)
applications.

It is difficult to use a debugger to troubleshoot DnD features, because during the drag-
and-drop operation all input is grabbed. Therefore, if you place a breakpoint during
DnD, you might need to restart your X server. Try to use remote debugging instead.

Two simple methods can be used to troubleshoot most issues with DnD:

e Printing all Dat aFl avor instances
* Printing received data

An alternative to remote debugging is the System err. pri ntl n() function,
which prints output without delay.

Frequent Issues with Data Transfer

Issues that frequently happen with data transfer operations in AWT and suggested
troubleshooting solutions.

ORACLE 10-9

Chapter 10
Data Transfer

1. Pasting a large amount of data from the clipboard takes too much time.

Using the Cl i pboar d. get Cont ent s() function for a paste operation
sometimes causes the application to hang for a while, especially if a rich
application provides the data to paste.

The d i pboar d. get Cont ent s() function fetches clipboard data in all available
types (for example, some text and image types), and this can be expensive and
unnecessary.

Solution: Use the C i pboar d. get Dat a() method to get only specific data from
the clipboard. If data in only one or a few types are needed, then use one of the
following C i pboar d methods instead of get Cont ent s() :

- DataFlavor[] getAvail abl eDat aFl avor s()
* bool ean isDat aFl avor Avai | abl e(Dat aFl avor fl avor)
e (bject getData(DataFl avor flavor)

2. When a Java application uses Tr ansf er abl e. get Tr ansf er Dat a() for DnD
operations, the drag seems to take a long time.

In order to initialize transferred data only if it is needed, the initialization code was
putin Tr ansf er abl e. get Transfer Dat a() .

Transf er abl e data is expensive to generate, and during a DnD operation
Tr ansf er abl e. get Tr ansf er Dat a() is invoked more than once, causing a
slowdown.

Solution: Cache the Transf er abl e data so that it is generated only once.

3. Files cannot be transferred between a Java application and the GNOME/KDE
desktop and file browser.

On Windows and some window managers, transferred file lists can be represented
as the Dat aFl avor. j avaFi | eLi st Fl avor data tyoe. But, not all window managers
represent lists of files in this format. For example, the GNOME window manager
represents a file list as a list of URIs.

Workaround: To get files, request data of type St ri ng, and then translate the
string to a list of files according to thetext/uri-list format described in RFC 2483. To
enable dropping files from a Java application to GNOME/KDE desktop and file
browser, export data in the text/uri-list format. For an example, see the Work
Around section from the RFE.

Solution: Move a window with an image rendered on it as the mouse cursor
moves during a DnD operation. See the code example in the Work Around section
from the RFE.

4. Animage is passed to one of the st art Dr ag() methods of
DragGest ur eEvent or DragSour ce, but the image is not displayed during the
subsequent DnD operation.

5. There is no way to transfer an array using DnD.

ORACLE 10-10

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4899516

Chapter 10
Data Transfer

The Dat aFl avor class has no constructor that handles arrays. The mime type for
an array contains characters that escapes. The code in the following example
throws an | | | egal Ar gunent Excepti on.

new Dat aFl avor (Dat aFl avor . j avaJVM.ocal Obj ect M meType +
", class=" +
(new String[0]).getC ass().getNane())

Solution: “Quote” the value of the representation class parameter, as shown in
the following example, where the quotation marks escape:

new Dat aFl avor (Dat aFl avor . j avaJVM.ocal bj ect M meType +
", class=" +

ll\ nn +

(new String[0]).getC ass().getNane() +

ll\ n II)

See bug report.
6. There are problems using AWT DnD support with Swing components.

Various problems can happen, for example, odd events are fired during a DnD
operation, multiple items cannot be dragged and dropped, an
I nval i dDnDOper at i onExcept i on is thrown.

Solution: Use Swing's DnD support with Swing components. Although the Swing
DnD implementation is based on the AWT DnD implementation, you cannot mix
Swing and AWT DnD. See DnD section of the Swing Tutorial documentation.

7. There is no way to change the state of the source to depend on the target.

In order to change the state of the source to depend on the target, you must have
references to the source and target components in the same area of code, but this
is not currently implemented in the DnD API.

Workaround: One workaround is to add flags to the transferable object that allow
you to determine the context of the event.

For the transfer of data within one Java VM, the following workaround is proposed:
* Implement your target component as Dr agSour ceLi st ener .

* InDragGest ureRecogni zer. dr agGest ur eRecogni zed() , add the
target at the drag source listener, as shown in the following example.

public void dragCestureRecogni zed(DragGest ureEvent dge) {
dge.startDrag(null, new
StringSel ection("SomeTransferedText"));

dge. get DragSour ce() . addDr agSour ceLi st ener (target);
* Now you can get the target and the source in the dr agEnt er (),

dragOver (), dropActi onChanged(), and dr agDr opEnd() methods of
Dr agSour celLi st ener ().

8. Transferring objects in an application takes a long time.

ORACLE 10-11

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4276926
http://docs.oracle.com/javase/tutorial/uiswing/dnd/

Chapter 10
Other Issues

The transferring of a big bundle of data or the creation of transferred objects takes
too long. The user must wait a long time for the data transfer to complete.

This expensive operation makes transferring too long because you must wait until
Tr ansf er abl e. get Tr ansf er Dat a() finishes.

Solution: This solution is valid only for transferring data within one Java VM.
Create or get expensive resources before the drag operation. For example, get the
file content when you create a transferable data, so that

Tr ansf er abl e. get Tr ansf er Dat a() will not be too long.

Other Issues

Troubleshoot other issues such as splash screen issues, pop-up menu issues, and
background color inheritance with AWT and provide information for troubleshooting
them.

The following subsections discuss troubleshooting tips for other issues:

* Splash Screen Issues

e Tray Icon Issues

e Pop-up Menu Issues

* Background or Foreground Color Inheritance

* AWT Panel Size Restriction

* Hangs During Debugging of Pop-up Menus and Similar Components on X11
* Window.toFront()/toBack() Behavior on X11

Splash Screen Issues

ORACLE

Issues that can happen with splash screen AWT and solutions.
This section describes some issues that can happen with the splash screen in AWT:

1. The user specified a JAR file with an appropriate MANI FEST. M- in - ¢l asspat h,
but the splash screen does not work.

Solution: See the solution for the next issue.

2. Itis not clear which of several JAR files in an application should contain the
splash screen image.

Solution: The splash screen image will be picked from a JAR file only if the file is
used with the - j ar command-line option. This JAR file should contain both the
"SplashScreen-Image" manifest option and the image file. JAR files in - ¢l asspat h
will never be checked for splash screens in MANI FEST. M. If you do not use -j ar,
you can still use - spl ash to specify the splash screen image in the command line.

3. Translucent PNG splash screens do not work on the Linux operating
system.

Solution: This is a native limitation of X11. On the Linux operating system, the
alpha channel of a translucent image will be compared with the 50% threshold.
Alpha values above 0.5 will make opaque pixels, and pixels with alpha values
below 0.5 will be completely transparent.

10-12

Chapter 10
Other Issues

Tray Icon Issues

Issues that can occur with the tray icon.

With the Java SE 6 release on Windows 98, the method
Trayl con. di spl ayMessage() is not supported because the native service to
display a balloon is not supported on Windows 98.

If a SecurityManager is installed, then the value of AWIPer i ssi on must be set to
accessSyst enilray in order to create a Trayl con object.

Pop-up Menu Issues

Issues that can occur in the popup menu.

In the JPopupMenu. set | nvoker () method, the invoker is the component in which
the pop-up menu is to be displayed. If this property is set to nul | , then the pop-up
menu does not function correctly.

The solution is to set the pop-up's invoker to itself.

Background or Foreground Color Inheritance

To ensure the consistency of your application on every platform, use explicit color
assignment (both foreground and background) for every component or container.

Many AWT components use their own defaults for background and foreground colors
instead of using parent colors.

This behavior is platform-dependent; the same component can behave differently on
different platforms. In addition, some components use the default value for one of the
background or foreground colors, but take the value from the parent for another color.

AWT Panel Size Restriction

The AWT container has a size limitation. On most platforms, this limit is 32,767 pixels.

This means that, for example, if the canvas objects are 25 pixels high, then a Java
AWT panel cannot display more than 1310 objects.

Unfortunately, there is no way to change this limit, neither with Java code nor with
native code. The limit depends on what data type the operating system uses to store
the widget size. For example, the Windows 2000/XP operating system and the Linux X
operating system use the i nt eger type, and are therefore limited to the maximum size
of an integer. Other operating systems might use different types, such as | ong, and in
this case, the limit could be higher.

See the documentation for your platform.
The following are examples of workarounds for this limit that might be helpful:
e Display components, page by page.

e Use tabs to display a few components at a time.

ORACLE 10-13

Chapter 10
Other Issues

Hangs During Debugging of Pop-up Menus and Similar Components

on X11

Set the - Dsun. awt . di sabl egr ab=t r ue system property during the debugging of certain
graphical user interface (GUI) components.

Certain graphical user interface (GUI) actions require grabbing all the input events in
order to determine when the action should terminate (for example, navigating pop-up
menus). While the grab is active, no other applications receive input events. If a Java
application is being debugged, and a breakpoint is reached while the grab is active,
then the operating system appears to hang. This happens because the Java
application holding the grab is stopped by the debugger and cannot process any input
events, and other applications do not receive the events due to the installed grab. In
order to allow debugging such applications, the following system property should be
set when running the application from the debugger:

-Dsun. awt . di sabl egrab=true

This property effectively turns off setting the grab, and does not hang the system.
However, with this option set, in some cases, this can lead to the inability to terminate
a GUI actions that would normally be terminated. For example, pop-up menus may not
be dismissed when clicking a window's title bar.

Window.toFront()/toBack() Behavior on X11

ORACLE

Due to restrictions enforced by third-party software (in particular, by window managers
such as the Metacity), the t oFr ont () /t oBack() methods may not work as expected
and cause the window to not change its stacking order in relation to other top-level
windows.

More details are available in the CR 6472274.

If an application wants to bring a window to the top, it can try to workaround the issue
by calling W ndow. set Al waysOnTop(true) totemporarily make the window always
stay on top and then calling set Al waysOnTop(f al se) to reset the "always on top"
state.

< Note:

This workaround is not guaranteed to work because window managers can
enforce more restrictions. Also, setting a window to "always on top" is
available to trusted applications only.

However, native applications experience similar issues, and this peculiarity
makes Java applications behave similar to native applications.

10-14

Chapter 10
Heavyweight or Lightweight Components Mix

Heavyweight or Lightweight Components Mix

Issues with the heavyweight or lightweight (HW/LW) component mixing feature.

ORACLE

The following issues are addressed in the heavyweight or lightweight (HW/LW)
component mixing feature:

Validate the component hierarchy:

Changing any layout-related properties of a component, such as its size, location,
or font, invalidates the component as well as its ancestors. In order for the HW/LW
Mixing feature to function correctly, the component hierarchy must be validated
after making such changes. By default, invalidation stops on the top-most
container of the hierarchy (for example, a Fr ane object). Therefore, to restore the
validity of the hierarchy, the application should call the Frane. val i dat e() method.
For example:

conponent . set Font (myFont) ;
frame.validate();

frame refers to a frame that contains conponent .

¢ Note:

Swing applications and the Swing library often use the following pattern:

conponent . set Font (myFont) ;
conponent . reval i date();

The reval i dat e() call is not sufficient because it validates the
hierarchy starting from the nearest validate root of the component only,
thus leaving the upper containers invalid. In that case, the HW/LW
feature may not calculate correct shapes for the HW components, and
visual artifacts may be seen on the screen.

To verify the validity of the whole component hierarchy, a user can use
the key combination Control+Shift+F1, as described in Debug Tips for
AWT. A component marked 'invalid' may indicate a missing

val i dat e() call somewhere.

Validate roots:

The concept of validate roots mentioned in Validate the component hierarchy
was introduced in Swing in order to speed up the process of validating component
hierarchies because it may take a significant amount of time. While such
optimization leaves upper parts of hierarchies invalid, this did not create any
issues because the layout of components inside a validate root does not affect the
layout of the outside component hierarchy (that is, the siblings of the validate root).
However, when HW and LW components are mixed together in a hierarchy, this
statement is no longer true. That is why the feature requires the whole component
hierarchy to be valid.

10-15

Chapter 10
Heavyweight or Lightweight Components Mix

Calling f r ane. val i dat e() may be inefficient, and AWT supports an alternative,
optimized way of handling invalidation/validation of component hierarchies. This
feature is enabled with a system property:

-Djava. awt . smart | nval i dat e=true

Once this property is specified, the i nval i dat e() method will stop invalidation
of the hierarchy when it reaches the nearest validate root of a component on which
the i nval i dat e() method has been invoked. Afterwards, to restore the validity
of the component hierarchy, the application should simply call:

conponent . reval i date();

Note:

In this case, calling f r ane. val i dat e() would be effectively a no-op (a
statement that does nothing) because f r ane is still valid. Since some
applications rely on calling val i dat e() directly on a component upper
than the validate root of the hierarchy (for example, a frame), this new
optimized behavior may cause incompatibility issues, and hence it is
available only when specifying the system property.

If an application experiences any difficulties running in this new optimized mode, a
user can use the key combination Control+Shift+F1 as described in Debug Tips for
AWT to investigate what parts of the component hierarchy are left invalid, and thus
possibly cause the problems.

* Swing painting optimization:

By default, the Swing library assumes that there are no HW components in the
component hierarchy, and therefore uses optimized drawing techniques to boost
performance of the Swing GUI. If a component hierarchy contains HW
components, the optimizations must be turned off. This is relevant for Swing
JScrol | Panes in the first place. You can change the scrolling mode by using the
JVi ewPort . set Scrol | Mode(i nt) method.

* Non-opaque LW components:

Non-opaque LW components are not supported by the HW/LW mixing feature
implementation by default. In order to enable mixing non-rectangular LW
components with HW components, the application must use the

com sun.awm . AWUtilities.set Conponent M xi ngCut out Shape() non-
public API.

< Note:

The non-rectangular LW components should still paint themselves using
either opaque (alpha = 1.0) or transparent (alpha = 0.0) colors. Using
translucent colors (with 0.0 < alpha < 1.0) is not supported.

* Disable the default HW/LW mix feature:

ORACLE 10-16

Chapter 10
Heavyweight or Lightweight Components Mix

In the past, some developers have implemented their own support for cases when
HW and LW components must be mixed together. The built-in implementation of
the feature available since JDK 6 and JDK 7 may cause problems with custom
workarounds. In order to disable the built-in feature the application must be started

with the following system property:

- Dsun. awt . di sabl eM xi ng=t r ue

ORACLE 10-17

Java 2D Pipeline Rendering and Properties

This chapter provides information and guidance for troubleshooting some of the most
common issues that might be found in the Java 2D APl when changing pipeline
rendering and properties.

For a summary of Java 2D properties, see Java 2D Properties.

By choosing a different pipeline, or manipulating the properties of a pipeline, you might
be able to determine the cause of the problem, and often find a workaround.

In general, you can troubleshoot Java 2D pipeline issues by determining the default
pipeline used in your configuration. Then, either change the pipeline to another one, or
modify the properties of the default pipeline.

If the problem disappears, then you found a workaround. If the problem persists, then
try changing another property or pipeline.

Java 2D uses a set of pipelines, which can be roughly defined as different ways of
rendering the primitives. These pipelines are as follows:

e Linux: X11 Pipeline is the default for the Linux operating system.
e Windows OS - DirectDraw/GDI Pipeline is the default on Windows

e Windows OS - Direct3D Pipeline in Full-Screen Mode is an alternative on
Windows.

e OpenGL Pipeline in Linux and Windows is an alternative on the Linux operating
system, as well as Windows.

Linux: X11 Pipeline

ORACLE

On the Linux operating system, the default pipeline is the X11 pipeline. This pipeline
uses the X protocol for rendering to the screen or to certain types of offscreen images,
such as Vol ati | el nages, or "compatible" images (images that are created with the

G aphi csConfi guration. creat eConpati bl el mage() method).

These types of images can be put into X11 pixmaps for improved performance,
especially in the case of the Remote X server.

In addition, in certain cases, Java 2D uses X server extensions, for example, the MIT
X shared memory extension, or Direct Graphics Access extension, Double-buffer
extension for double-buffering when using the Buf f er St rat egy API.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are X11 pipeline properties to troubleshoot.

e X11 Pipeline Pixmaps Properties
e X11 Pipeline MIT Shared Memory Extension

11-1

Chapter 11
Linux: X11 Pipeline

X11 Pipeline Pixmaps Properties

ORACLE

Java 2D by default uses X11 pixmaps for storing or caching certain types of offscreen
images.

Only the following types of images can be stored in pixmaps:

e Opaque images, in which case Col or Model . get Tr anspar ency() returns
Transpar ency. OPAQUE

* 1-bit transparent images (also known as sprites, Tr anspar ency. Bl TMASK)

The advantage of using pixmaps for storing images is that they can be put into the
framebuffer's video memory at the driver's discretion, which improves the speed at
which these pixmaps can be copied to the screen or another pixmap.

The use of pixmaps typically results in better performance. However, in certain cases,
the opposite is true. These cases typically involve the use of operations that cannot be
performed using the X protocol, such as antialiasing, alpha compositing, and
transforms that are more complex than simple translation transforms.

For these operations, the X11 pipeline must do the rendering using the built-in
software renderer. In most cases, this includes reading the contents of the pixmap to
system memory (over the network in the case of remote X server), performing the
rendering, and then sending the pixels back to the pixmap. These operations could
result in extremely poor performance, especially if the X server is remote.

The following are two cases to disable the use of X11 pipeline:
e Disable X11 pipeline pixmaps:

To disable the use of pixmaps by Java2D, pass the following property to the Java
VM: - Dsun. j ava2d. pnof f scr een=f al se.

» Disable X11 pipeline shared memory pixmaps:

To minimize the effect of operations that require reading pixels from a pixmap on
overall performance, the X11 pipeline uses shared memory pixmaps for storing
images that are often read from.

" Note:

The shared memory pixmaps can only be used in the case of a local X
server.

The advantage of using shared memory pixmaps is that the pipeline can get direct
access to the pixels in the pipeline bypassing the X11 protocol, which results in
better performance.

By default, an image is stored in a normal X server pixmap, but it can be later
moved to a shared memory pixmap if the pipeline detects excessive reading from
such an image. The image can be moved back to a server pixmap if it is copied
from often enough.

The pipeline allows two ways of controlling the use of shared memory pixmaps:
either disabling them or forcing all images to be stored in shared memory pixmaps.

11-2

Chapter 11
Windows OS - DirectDraw/GDI Pipeline

First, try forcing the shared memaory pixmaps because it often improves
performance. However, with certain video board/driver configurations, it may be
necessary to disable the shared memory pixmaps to avoid rendering artifacts or
crashes.

— To disable shared memory pixmaps, set the J2D_PlI XMAPS environment
variable to server. This is the default in remote X server case.

— To force all pixmaps to be created in shared memory, set J2D_PlI XMAPS to
shar ed.

X11 Pipeline MIT Shared Memory Extension

The Java 2D X11 pipeline uses the MIT Shared Memory Extension (MIT SHM), which
allows a faster exchange of data between the client and the X server. This can
significantly improve the performance of Java applications.

The following are two ways to improve the performance of the Java application.

* Increase X Server and Java 2D shared memory:

It is sometimes necessary to increase the amount of shared memory available to
the system (and to X server in particular) because the default is too low, resulting
in poor rendering performance. Increasing the amount of shared memory and
shared memory segments can result in better performance.

On Linux, this setting can be configured by editing the / pr oc/ sys/ ker nel /
shnr files.

* Disable X11 pipeline shared memory extension:

In case of problems (such as crashes, or rendering artifacts) with older X servers
and the Shared Memory Extension, it is useful to be able to disable the extension.
To disable the use of MIT SHM, set the J2D_USE_M TSHMenvironment variable to
fal se.

Windows OS - DirectDraw/GDI Pipeline

ORACLE

The default pipeline on the Windows platform is a mixture of the DirectDraw pipeline
and the GDI pipeline, where some operations are performed with the DirectDraw
pipeline and others with the GDI pipeline. DirectDraw and GDI APIs are used for
rendering to accelerated offscreen and onscreen surfaces.

Starting with the Java SE 6 release, when the application enters full-screen mode, the
new Direct3D pipeline can be used, if the drivers satisfy the requirements. The
possible issues with the Direct3D pipeline include rendering artifacts, crashes, and
performance related problems.

An additional pipeline, the OpenGL pipeline, might offer greater performance in some
configurations.

The following are three cases to troubleshoot issues with the Direct3D pipeline such
as rendering artifacts, crashes, and performance related problems:

e Disable the DirectDraw pipeline:

When DirectDraw is disabled, all operations are performed with GDI. Provide the
following flag to disable the use of DirectDraw: - Dsun. j ava2d. noddr aw=t r ue.
In this case, all offscreen images will be created in the Java heap, and rendered

11-3

ORACLE

Chapter 11
Windows OS - DirectDraw/GDI Pipeline

with the default software pipeline. All onscreen rendering, as well as copies of
offscreen images to the screen, will be performed using GDI.

Enable the DirectDraw pipeline:

If the pipeline was disabled by default for some reason, then it can be enabled by
providing the - Dsun. j ava2d. noddr aw=f al se flag to the VM.

However, typically there was a reason why it was disabled in the first place, so it is
better not to force it.

Disable the built-in punting mechanism:

In general, the DirectDraw pipeline attempts to place the offscreen surfaces in the
framebuffer's video memory, which provides the fast copies from these surfaces to
the screen or other accelerated surfaces, as well as hardware accelerated
rendering of certain graphics operations.

To limit the effect of unaccelerated rendering to VRAM-based surfaces, there
exists a punting mechanism, which moves the surface that is detected to be often
read from to the system memory. If the surface is found to be copied from often
enough, it may be promoted back to video memory.

However, if the pipeline cannot perform an operation using the DirectDraw API
(operations using, for example, alpha compositing, or transforms, or antialiasing),
then endering is performed using the software pipeline. In some cases, his means
that the pixels of the destination surface, which resides in VRAM, must be read
into system memory, which is a very expensive operation.

On certain video boards/drivers combinations, the system-memory-based
DirectDraw surfaces are known to cause rendering artifacts and other issues. The
DirectDraw pipeline provides a way to disable the punting mechanism so that the
system memory surfaces are not used.

To defeat the built-in surface punting mechanism, provide the following flag to the
Java VM: - Dsun. j ava2d. ddf or cevr an¥t r ue.

" Note:

This mechanism can result in performance degradation because the
software loops may be reading pixels from VRAM on each operation. In
this case, consider disabling the DirectDraw pipeline.

Disable the DirectDraw BILT operations:

In a Bit Block Transfer (BILT) operation, two bitmap patterns are combined. This
operation corresponds to a call to the Gr aphi cs. dr awl mage() API.

In some cases, it is possible to avoid rendering problems by disabling the
DirectDraw BLIT operations. GDI BLITs will be used instead.

" Note:

This operation might result in bad performance. Consider disabling the
DirectDraw pipeline instead.

11-4

Chapter 11
Windows OS - Direct3D Pipeline in Full-Screen Mode

To disable the use of DirectDraw BLIT operations, pass the parameter -
Dsun. j ava2d. ddbl i t =f al se to the Java VM.

Windows OS - Direct3D Pipeline in Full-Screen Mode

ORACLE

Starting with the Java SE 6 release, the Direct3D pipeline uses the Direct3D API for
rendering. This pipeline is enabled in full-screen mode by default, if the drivers support
the required features and the level of rendering quality.

It is possible to enable the Direct3D pipeline or to force its use, as described in the
following sections:

Consider enabling the Direct3D pipeline for your application if it heavily uses rendering
operations such as alpha compositing, antialiasing, and transforms.

However, use caution when deciding to enable this pipeline in your application. For
example, some built-in video chipsets (which are used in most notebooks) do not
perform well using Direct3D, even if they satisfy the quality requirements for Java 2D
pipelines.

The following are three cases to troubleshoot problems with Direct3D API.

1. Disable the Direct3D pipeline:

Some older video boards/drivers combinations are known to cause issues (both
rendering and performance) with the Direct3D pipeline. To disable the pipeline in
these cases, with Java SE 5 and later releases, pass the parameter -

Dsun. j ava2d. d3d=f al se to the Java VM, or set the J2D_D3D environment
variable to f al se.

2. Enable the Direct3D pipeline:

With Java SE 5 and later releases, to enable the Direct3D pipeline in both
windowed and full-screen mode, use the parameter - Dsun. j ava2d. d3d=t r ue,
or set the J2D_D3D environment variable to t r ue.

¢ Note:

The pipeline is enabled only if the drivers support the minimum required
features.

3. Diagnose the Direct3D pipeline rendering problems:

With the Java SE 8 release, some rendering issues (like missing pixels, garbled
rendering) can be diagnosed by forcing different Direct3D rasterizers. Set the
J2D D3D RASTERI ZER environment variable to one of the following: ref , rgb, hal ,
ortnl.

See the Direct3D documentation for a description of these rasterizers. By default,
the best rasterizer is chosen based on its advertised capabilities. In particular, the
ref rasterizer forces the use of the reference Direct3D rasterizer from Microsoft. If
a rendering problem is not reproducible with this rasterizer, then it is likely to be a
video driver bug.

The r gb rasterizer is available only if the Direct3D SDK is installed. This SDK can
be obtained from Microsoft Game Technologies Center.

11-5

http://msdn.microsoft.com/directx/

Chapter 11
OpenGL Pipeline in Linux and Windows

For performance or quality problems with text rendering with the Direct3D pipeline,
you can force the use of the ARGB texture instead of the default Alpha texture for
the Direct3D pipeline's glyph cache. To do this, set the J2D_D3D_NOALPHATEXTURE
environment variable to t r ue.

OpenGL Pipeline in Linux and Windows

The OpenGL pipeline is available on Linux and Windows.

This alternate pipeline uses the hardware-accelerated, cross-platform OpenGL API
when rendering to Vol ati | el nages, to backbuffers created with Buf f er St r at egy API,
and to the screen.

This pipeline can offer great performance advantages over the default (X11 or GDI/
DirectDraw) pipelines for certain applications. Consider enabling the pipeline for your
application if it heavily uses of rendering operations like alpha compositing,
antialiasing, and transforms.

The following are use cases for troubleshooting problems in OpenGL pipeline

* Enable OpenGL Pipeline

* Minimum Requirements

» Diagnose Startup Issues

» Diagnose Rendering and Performance Issues

e Latest OpenGL Drivers

Enable OpenGL Pipeline

The OpenGL pipeline is disabled by default.
To attempt to enable the OpenGL pipeline, provide the following option to the JVM:
-Dsun. j ava2d. opengl =t rue

To receive verbose console output about whether the OpenGL pipeline is initialized
successfully for a particular screen, set the option to True (note the uppercase T).

Minimum Requirements

ORACLE

The OpenGL pipeline will not be enabled if the hardware or drivers do not meet the
minimum requirements.

If one of the following requirements is not met, Java 2D will fall back and use the
default pipeline (X11 on Linux or GDI/DirectDraw on Windows), which means your
application will continue to work correctly, but without the OpenGL acceleration.

The minimum requirements for the Linux operating system are the following:

e Hardware accelerated OpenGL/GLX libraries installed and configured properly
e OpenGL version 1.2 or higher

e GLX version 1.3 or higher

e Atleast one TrueColor visual with an available depth buffer

The minimum requirements for Windows OS are the following:

11-6

Chapter 11
OpenGL Pipeline in Linux and Windows

* Hardware accelerated drivers supporting the extensions WG_._ARB_pbuf fer,
WGL_ARB render _texture, and W&L_ARB pi xel _for nat

* OpenGL version 1.2 or higher

* At least one pixel format with an available depth buffer

Diagnose Startup Issues

You can get detailed information about the startup procedures of the OpenGL-based
Java 2D pipeline by using the J2D_TRACE_LEVEL environment variable.

As previously mentioned, the OpenGL pipeline might not be enabled on certain
machines for various reasons. For example, the drivers might not be properly installed
and might report an insufficient version number. Alternatively, your machine might
have an older graphics card that does not support the appropriate OpenGL version or
extensions.

In the Java SE 6 and later releases, you can get detailed information about the startup
procedures of the OpenGL-based Java 2D pipeline by using the J2D_TRACE_LEVEL
environment variable, as shown in the following examples.

Set the J2D TRACE LEVEL environment variable on Windows.

set J2D TRACE LEVEL=4
java -Dsun.java2d. opengl =True Your App

Set the J2D TRACE _LEVEL environment variable on Linux.

export J2D TRACE LEVEL=4
java -Dsun.java2d. opengl =True Your App

The output will be different depending on your platform and the installed graphics
hardware, but it can give you some insight into the reasons why the OpenGL pipeline
is not being successfully enabled for your configuration.

Note:

This output is especially useful when filing bug reports intended for the Java
2D team.

Diagnose Rendering and Performance Issues

ORACLE

Diagnose if rendering or performance issues are being caused by Java 2D or by the
OpenGL drivers.

Because the OpenGL pipeline relies so heavily on the underlying graphics hardware
and drivers, it might sometimes be difficult to determine whether rendering or
performance issues are being caused by Java 2D or by the OpenGL drivers.

One feature new to the OpenGL pipeline in the Java SE 6 release is the use of the
GL_EXT _framebuf f er _obj ect extension, which provides better performance for
rendering and reduced VRAM consumption when using Vol at i | el mages. This "FBO"

11-7

Chapter 11
OpenGL Pipeline in Linux and Windows

codepath is enabled by default when the OpenGL pipeline is enabled, but only if your
graphics hardware and driver support this OpenGL extension. This extension is
generally available on Nvidia GeForce/Quadro FX series and later, and on ATI
Radeon 9500 and later. If you suspect that the "FBO" codepath is causing problems in
your application, then you can disable it by setting the following system property:

- Dsun. j ava2d. opengl . f bobj ect =f al se

Setting this property will cause Java 2D to fall back on the older pbuf f er - based
codepath.

If you find that a certain Java 2D operation causes different visual results with the
OpenGL pipeline enabled than without, then it probably indicates a graphics driver
bug. Similarly, if the performance of Java 2D rendering is significantly worse with the
OpenGL pipeline enabled than without, then it is most likely caused by a driver or
hardware problem.

In either case, file a detailed bug report through the normal bug reporting channels.
See Submit a Bug Report. When filing bug reports, be as detailed as possible, and
include the following information:

e Operating system (for example, Ubuntu Linux 6.06, Windows XP SP2)

« Name of graphics hardware manufacturer and device (for example, Nvidia
GeForce 2 MX 440)

e Exact driver version (for example, ATl Catalyst 6.8, Nvidia 91.33)

e Output when J2D TRACE LEVEL=4 is specified on the command line (as described
in the previous section)

e The output of the gl xi nf o command if you are on Linux

Latest OpenGL Drivers

List of graphics card manufacturers with their corresponding websites, supported
platforms, and some examples of cards.

Because the OpenGL pipeline relies heavily on the OpenGL API and the underlying
graphics hardware and drivers, it is very important to ensure that you have the latest
graphics drivers installed on your machine. Drivers can be downloaded from your
graphics card manufacturer's web site, as shown in the following table.

Manufacturer Platforms Cards Known to Work

ATI Linux, Windows Radeon 8500 and later, FireGL
series

Nvidia Linux, Windows GeForce 2 series and later, Quadro

FX series and later

Xi Graphics Linux Various (check with Xi Graphics)

ORACLE 11-8

http://ati.com
http://nvidia.com
http://xig.com

Java 2D

Information and guidance for troubleshooting some of the most common issues that
might be found in the Java 2D API.

This chapter contains the following sections:
* Generic Performance Issues

* Text-Related Issues

e Java 2D Printing

For a summary of Java 2D properties, see Java 2D Properties.

Generic Performance Issues

Generic performance issues related to Java 2D hardware-accelerated rendering
primitives, and how to detect primitive tracing and avoid non-accelerated rendering.

There could be many causes for poor rendering performance. The following topics
identify the cause for your applications poor rendering performance and suggests
some approaches to improve performance of software-only rendering.

This topic contains the following subsections:

e Hardware-Accelerated Rendering Primitives

e Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
e Causes of Poor Rendering Performance

e Improve Performance of Software-only Rendering

Hardware-Accelerated Rendering Primitives

ORACLE

In order to better understand what could be causing performance problems, take a
look at what hardware acceleration means.

In general, hardware-accelerated rendering could be divided into two categories.

* Hardware-accelerated rendering to an "accelerated" destination. Examples of
rendering destinations that can be hardware-accelerated are Vol ati | el mage,
screen and Buf f er St r at egy. If a destination is accelerated, then rendering goes to
a surface may be performed by video hardware. So, if you issue a dr awRect call,
Java 2D redirects this call to the underlying native API (such as GDI, DirectDraw,
Direct3D or OpenGL, or X11), which performs the operation using hardware.

* Caching images in accelerated memory (video memory or pixmaps) so that they
can be copied very fast to another accelerated surface. These images are known
as managed images.

Ideally, all operations performed on an accelerated surface are hardware-accelerated.
In this case, the application takes full advantage of what is offered by the platform.

12-1

Chapter 12
Generic Performance Issues

Unfortunately in many cases the default pipelines are not able to use the hardware for
rendering. This can happen due to the pipeline limitations, or the underlying native
API. For example, most X servers do not support rendering antialiased primitives, or
alpha compositing.

One cause of performance issues is when operations performed are not hardware-
accelerated. Even in cases when a destination surface is accelerated, some primitives
may not be.

It is important to know how to detect the cases when hardware acceleration is not
being used. Knowing this may help in improving performance.

Primitive Tracing to Detect and Avoid Non-Accelerated Rendering

ORACLE

To detect a non-accelerated rendering, you can use Java 2D primitive tracing.
Java 2D has built-in primitive tracing.

Run your application with - Dsun. j ava2d. t race=count . When the application exits, a
list of primitives and their counts is printed to the console.

Any time you see a MaskBl i t or any of the Gener al * primitives, it typically means that
some of your rendering is going through software loops. Here is the output from
performing dr awl mage on a translucent Buf f er edl nage to a Vol ati | el nage on Linux:

sun. j ava2d. | oops. Bl i t $General MaskBlit::Blit(IntArgb, SrcOverNoEa, "Integer
BGR Pi xmap")sun. j ava2d. | oops. MaskBlit:: MaskBlit(IntArgh, SrcOver, IntBgr)

Here are some of the common non-accelerated primitives in the default pipelines, and
their signatures in the tracing output.

Note:
Most of this tracing was taken on Linux; you may see some differences

depending on your platform and configuration.

e Translucent images (images with Col or Mbdel . get Transl ucency()
returnTr ansl ucency. TRANSLUCENT), or images with Al phaConposi ti ng. Sample
primitive tracing output:

sun. java2d. | oops. Bl i t $Gener al MaskBlit::Blit(IntArgh, SrcOver NoEa,
"I'nteger BGR Pixmap")sun.java2d. | oops. MaskBlit::MaskBlit(IntArgb,
SrcOver, IntBgr)

» Use of antialiasing (by setting the antialiasing hint). Sample primitive tracing
output:

sun. j ava2d. | oops. MaskFi | | :: MaskFi || (AnyCol or, Src, IntBgr)

* Rendering antialiased text (setting the text antialising hint). Sample output can be
one of the following:

12-2

Chapter 12
Generic Performance Issues

— sun.java2d. | oops. Drawd yphLi st AA: : Drawd yphLi st AA(OpaqueCol or,
SrcNoEa, Anylnt)

— sun.java2d. | oops. Drawd yphLi st LCD: : Dr aw@ yphLi st LCD(AnyCol or,
SrcNoEa, |ntBgr)

» Alpha compositing, either by rendering with translucent color (a color with an alpha
value that is not Oxf f) or by setting a non-default Al phaConposi ti ng mode with
G aphi cs2D. set Composi te():

sun. j ava2d. | oops. Bl i t $General MaskBlit::Blit(IntArgh, SrcOver,
I nt Rgb) sun. j ava2d. | oops. MaskBl i t:: MaskBlit(IntArgb, SrcOver, |ntRgh)
]

e Non-trivial transforms (if the transform is more than only translation). Rendering a
transformed opaque image to a Vol ati | el mage:

sun. j ava2d. | oops. Transf or nHel per: : Transf or mHel per (I nt Bgr, SrcNoEa,
I nt ArgbPre)

* Rendering a rotated line:

sun. j ava2d. | oops. DrawPat h: : DrawPat h(AnyCol or, SrcNoEa, Anylnt)

Run your application with tracing and ensure that you do not use unaccelerated
primitives unless they are needed.

Causes of Poor Rendering Performance

Poor rendering performance can have different causes and possible remedies.

Some of the possible causes of poor rendering performance and possible alternatives
are described as follows:

* Mixing accelerated and non-accelerated rendering:

A situation when only part of the primitives rendered by an application could be

accelerated by the particular pipeline when rendering to an accelerated surface

can cause thrashing, because the pipelines will be constantly trying to adjust for
better rendering performance but with possibly little success.

If it is known beforehand that most of the rendering primitives will not be
accelerated, then it could be better to either render to a Buf f er edl mage and then
copy it to the back buffer or the screen, or switch to a nhon-hardware accelerated
pipeline using one of the flags discussed.

¢ Note:

This approach may limit your application's ability to take advantage of
future improvements in Java 2D's use of hardware acceleration.

ORACLE 12-3

ORACLE

Chapter 12
Generic Performance Issues

For example, if your application is often used in remote X server cases, but it
heavily uses antialiasing, alpha compositing, and so forth, then the performance
can be severely degraded. To avoid this, disable the use of pixmaps by setting the
- Dsun. j ava2d. pnof f scr een=f al se property either by passing it to the Java
runtime, or by setting it programmatically using the Syst em set Property()
API.

" Note:

This property must be set before any GUI-related operations because it
is read only once.

Non-optimal rendering primitives:

It is preferable to use the simplest primitive possible to achieve the desired visual
effect.

For example, use Gr aphi ¢s. dr awLi ne() instead of new Li ne2D() . draw() .
The result looks the same. However, the second operation is much more
computationally intensive because it is rendered as a generic shape, which is
typically much more expensive to render. Shapes show up in different ways in the
primitive tracing, depending on antialiasing settings and the specific pipeline, but
most likely they will show up as many *Fi | | Spans or Dr awPat h primitives.

Another example of complicated attributes is G- adi ent Pai nt . Although it may be
hardware accelerated by some of the non-default pipelines (such as OpenGL), it is
not hardware accelerated by the default pipelines. Therefore, you can restrict the
use of Gradi ent Pai nt if it causes performance problems.

Heap-based destination surface Buf f er edl mage:
Rendering to a Buf f er edl mage almost always uses software loops.

To ensure that the rendering has the opportunity of being hardware accelerated,
choose a Buf fer Strat egy or a Vol ati | el mage object as the rendering destination.

Defeat built-in acceleration mechanism:

Java 2D attempts to accelerate certain types of images. The contents of images
can be cached in video memory for faster copying to accelerated destinations
such as Vol ati | el nages. These mechanisms can be unknowingly defeated by the
application.

Get direct access to pixels with get Dat aBuffer():

If an application gets access to Buf f er edl nage pixels by using the

get Rast er (). get Dat aBuf f er () API, then Java 2D will not be able to
guarantee that the data in the cache is up to date, so it will disable any
acceleration attempts of this type of image.

To avoid this, do not call get Dat aBuf f er () . Instead, work with
Wit eabl eRast er, which can be obtained with the
Buf f er edl mage. get Rast er () method.

If you need to modify the pixels directly, then you can manually cache your image
in video memory by maintaining the cached copy of your image in a
Vol ati | el mage, and updating the cached data when the original image is touched.

Render to a sprite before every copy:

12-4

Chapter 12
Generic Performance Issues

If an application renders to an image before copying it to an accelerated surface
(Vol ati | el mage, Buf f er St rat egy), then the image cannot take advantage of being
cached in accelerated memory. This is because the cached copy must be updated
every time the original image is updated, and therefore only the default system-
memory-based surface is used, and this means no acceleration.

Exhausted accelerated memory resources:

If the application uses many images, then it can exhaust the available accelerated
memory. If this is the cause of performance issues for your application, then you
might need to handle the resources.

The following API can be used to request the amount of available accelerated
memory: Gr aphi csDevi ce. get Avai | abl eAccel er at edMenory().

In addition, the following APl can be used to determine if your image is being
accelerated: | mage. get Capabilities().

If you determined that your application is exhausting the resources, you can
handle the problem by not holding images you no longer need. For example, if
your game advanced to the next level, release all images from the previous levels.
You can also release accelerated resources associated with an image by using
the | mage. f 1 ush() API.

You can also use the acceleration priority API

| mage. get Accel erationPriority() andsetAccel erationPriority()
to specify the acceleration priority for your images. It is a good idea to make sure
that at least your back-buffer is accelerated, so create it first, and with acceleration
priority of 1 (default). You can also prohibit certain images from being accelerated
if needed by setting the acceleration priority to 0.0.

Improve Performance of Software-only Rendering

Methods to improve performance of software-only rendering.

ORACLE

If your application relies on software-only rendering (by only rendering to a

Buf f er edl mage, or changing the default pipeline to an unaccelerated one), or even if it
does mixed rendering, then the following are certain approaches to improving
performance:

1.

Image types or operations with optimized support:

Due to overall platform size constraints, Java 2D has a limited number of
optimized routines for converting from one image format to another. In situations
where an optimized direct loop can not be found, Java 2D will do the conversion
through an intermediate image format (I nt Ar gb). This results in performance
degradation.

Java 2D primitive tracing can be used for detecting such situations.

For each drawl mage call there will be two primitives: the first one converting the
image from the source format to an intermediate | nt Ar gb format and the second
one converting from intermediate | nt Ar gb to the destination format.

Here are two ways to avoid such situations:
» Use a different image format if possible.

e Convert your image to an intermediate image of one of the better-supported
formats, such as | NT_RGB or | NT_ARGB. In this way the conversion from the
custom image format will happen only once instead of on every copy.

12-5

Chapter 12
Text-Related Issues

2. Transparency vs translucency:

Consider using 1-bit transparent (Bl TMASK) images for your sprites as opposed to
images with full translucency (such as | NT_ARGB) if possible.

Processing images with full alpha is more CPU-intensive.

You can get a 1-bit transparent image using a call to
Graphi csConfi gurati on. creat eConpati bl el mage(w, h,
Transpar ency. Bl TMASK) .

Text-Related Issues

Possible issues and crashes that are related to text rendering and describes tips to
overcome such issues.

This section contains the following subsections:

* Application Crash During Text Rendering
» Differences in Text Appearance

e Metrics

Application Crash During Text Rendering

ORACLE

If an application crashes during text rendering, first check the fatal error log file.

See Fatal Error Log for detailed information about this error log file. If the crash
occurred in f ont manager . dl | or if f ont manager is present in the stack, then the
crash occurred in the font processing code. The following example shows typical
native stack frames (excerpt from the full log file).

Stack: [0x008a0000, 0x008f 0000), sp=0x008ef52c, free space=317k
Native frames: (J=conpiled Java code, j=interpreted, W=VM code, C=native
code)

[ntdll.dll+0x1888f]

[ntdll.dll+0x18238]

[ntdll.dll+0x11c76]

[MBVCR71. dI | +0x16b3]

[MBVCR71. dI | +0x16db]

[font manager . dl | +0x21f 9a]

[font manager . dl | +0x22876]

[font manager . dl | +0x1de40]

[font manager . dl | +0x1da94]

[font manager . dl | +0x48abb]

sun. font. Fi |l eFont. get @ yphl mage(JI) J+0

sun. font. Fil eFont Strike. getd yphl magePtrs([1[JI)V+92

sun. font. d yphLi st. mapChar s(Lsun/j ava2d/ | oops/ Font I nfo; |') Z+37
j sun.font.d yphList.setFronString(Lsun/java2d/| oops/ Fontlnfo;Ljavallang/
String; FF) Z+71

j sun.java2d. pi pe. @ yphLi st Pi pe. drawst ri ng(Lsun/j ava2d/

SunG aphi cs2D; Lj aval | ang/ Stri ng; DD) V+148

j sun.java2d. SunG aphi cs2D. drawsString(Ljava/lang/ String;I1)V+60
j FontCrasher.tryFont(Ljaval/lang/String;)V+138

[eNoNoNONONONONONONG!

12-6

Chapter 12
Text-Related Issues

j FontCrasher.main([Ljaval/lang/String;)V+20
v ~StubRoutines::call_stub

In this case, a particular font is probably the problem. If so, then removing this font
from the system will likely resolve the problem.

To identify the font file, execute the application with -
Dsun. j ava2d. debugf ont s=t r ue. The font that is mentioned last is usually the one
that is causing problems, as shown in the following example.

INFO. Registered file C\WNDOWS\ Font s\ WNGDI NG TTF as font ** TrueType
Font: Fam | y=W ngdi ngs

Name=W ngdi ngs styl e=0 fil eNane=C.\ W NDOWB\ Font s\ WNGDI NG. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO. Opening deferred font file SYMBOL. TTF

Aug 16, 2006 10:59:06 PM sun.font. Font Manager addToFont Li st

INFO Add to Family Synbol, Font Symbol rank=2

Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile

INFO. Registered file C\WNDOWS\ Font s\ SYMBCL. TTF as font ** TrueType
Font: Fani | y=Synbol

Name=Synbol style=0 fileName=C.\ W NDOAB\ Font s\ SYMBCL. TTF rank=2

Aug 16, 2006 10:59:06 PM sun.font. Font Manager findFont2D

INFO Search for font: Dialog

Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO. Opening deferred font file ARIALBD. TTF

Aug 16, 2006 10:59:06 PM sun.font. Font Manager addToFont Li st

INFO Add to Family Arial, Font Arial Bold rank=2

Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile

INFO. Registered file C\WNDOWS\ Font s\ ARI ALBD. TTF as font ** TrueType
Font: Fam|y=Arial

Name=Arial Bold style=1 fileName=C:\ W NDOAS\ Font s\ ARI ALBD. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO Opening deferred font file WNGDI NG TTF

Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO. Opening deferred font file SYMBOL. TTF

Aug 16, 2006 10:59:06 PM sun.font. Font Manager findFont2D

INFO Search for font: Dialog

Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO. Opening deferred font file ARIAL. TTF
Aug 16, 2006 10:59:06 PM sun.font. Font Manager addToFont Li st

INFO Add to Family Arial, Font Arial rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager registerFontFile

INFO. Registered file C\WNDOWS\ Font s\ ARIAL. TTF as font ** TrueType Font:
Fami | y=Ari al

Name=Arial style=0 fil eName=C.\ WNDOWS\ Font s\ ARI AL. TTF rank=2
Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFG Opening deferred font file WNGDI NG TTF
Aug 16, 2006 10:59:06 PM sun.font. Font Manager initialiseDeferredFont
INFO. Opening deferred font file SYMBOL. TTF

ORACLE 12-7

Chapter 12
Text-Related Issues

< Note:

In some cases, the font that is last mentioned might not be the problem. Font
names are printed when they are first used and subsequent uses are not
shown.

To verify that this particular font is causing the problem, you can temporarily remove it
from your system. You can easily find the file name associated with this particular
family name from the output.

Another verification approach is to use the Font2DTest tool to test fonts that you
suspect. You can specify a particular font size, style, and rasterization mode. If the
process of viewing a particular font with Font2DTest causes the JDK to crash, then it is
very likely that it is the font that is causing the problems.

If you found a font causing the JDK to crash, it is very important to report this problem,
including the particular font and the operating system in the Bugs Database. See
Submit a Bug Report.

Differences in Text Appearance

Java has its own font rasterizer, and you can expect some small differences between
the appearance of text in a Java application and in a native application.

One of the typical sources of these differences is that the antialiasing settings can be
different. In particular, a Swing application sometimes ignores the Linux desktop font
antialiasing settings.

There are several likely reasons for this behavior:

» Over the remote X11 antialiasing is not enabled by default for performance
reasons. See Font and Test questions in the Java 2D FAQ.

» CJK fonts that use embedded bitmaps may render using the bitmaps instead of
subpixel text.

* Some variants of unsupported desktops do not report their font smoothing settings
properly. For example, KDE is unsupported but should generally work; however,
some problem seems to prevent JDK from picking up the setting.

The best way to ensure that the configuration is what you expect is to run Font2DTest,
explicitly select the font used by the native application, and set other parameters as
appropriate. Figure 12-1 is a sample screen from the Font2DTest tool.

ORACLE 12-8

http://bugs.java.com
http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions

Metrics

ORACLE

Chapter 12
Text-Related Issues

Figure 12-1 Sample Screen from Font2DTest Tool

B Font2DTest E||E|E|

Fliz Optian
Fant | Microsaft Sans Senf 'v. Bize 12 | Fant Transfarm |Huna |'"
Range: | [~ se (Flain ' Graghics Transfarm [Mane _I'-
Welhod |— 1 Tad 1o use i Glyphs | -
LCD cardrast 2 it L i Antalasing: OFF J-_'r- Fractional medrics: aFF l:
1 Vit # s s &l O xt] |- fjoj1 (2|3 |4|5]|6|7|8|8]: < > |@ i
A|IBICID|E|F|G|H|T|JIK|JLIM|N[O|F|Q(R|S| TV |V]|WwW|X|Y|Z|TI |1 "[|=a]|b|[a]|d =
efflafhlifilk |l |m|njolpfafrfz]|tjulvlwlix|[v]z] (]I [F]["]|A 3 G E[Ff |G ERERE]
A|s &g |e|e|e|&il|i|T|i|f|le|a|ala|d|dja|ala|t]| " |e|E |5 |0|8[&|&]™"]" -
Elgln e |s]z|v|unlalzininlr|2|e|0le|aleclil|-|4|if]la]|8]=]> ALA D |E | -1"

r ey m e dnln]s] . (m|AE|A|EJEfT|[T]T)T [d]a|afa|0]d]

=z N P N R A A A AR N A E R E A L L A R A A A AR R AR N i

cflfelal |- |A|s|ala|D|d|B[E |a|E|a LT |[Lfr|M|a|R|a|d|a|A[f|R]F|[S[]|T
vt ofa]olalzls]zlelrlole]|alale|alclal|{m]"[m ilnl |- s]le{afs .
Displaying Ghyah Code D000 ta 0143

Q Tip:

You can input your own string by choosing User Text in the drop-down list
labeled Text to use.

The size of the font in the Java language is always expressed with 72 dpi. A native OS
can use a different screen dpi, and therefore an adjustment must be made. Matching
Java font size can be calculated as Tool ki t. get Scr eenResol uti on() divided by 72
multiplied by the size of the native font.

In all native Swing look and feel, such as the Windows look and feel or the GTK look
and feel for the Linux operating system, Swing components perform this adjustment
automatically, but if you are running Font2DTest, the text display area will always use
72 dpi.

On operating systems other than Windows, the general recommendation is to use
TrueType fonts instead of Typel fonts. The easiest way to figure out the type of font is
to look at the file extension: extensions pfa and pfb indicate Typel fonts, and ttf, ttc,
and tte represent TrueType fonts.

If you find that text bounds are different from what you expect, then ensure that you
are using the appropriate way to calculate them. For example, the height obtained
from a Font Met ri cs is not specific to a particular piece of text, and the stri ngWdt h
indicates logical advance, which is not the same thing as wide. For more details, see
the Font and Text questions in the Java 2D FAQ.

12-9

http://www.oracle.com/technetwork/java/index-137037.html#Font_and_Text_questions

Chapter 12
Java 2D Printing

Java 2D Printing

This section describes some issues that can happen with Java 2D printing and
suggests causes and solutions.

ORACLE

See Printing questions in the Java 2D FAQ for additional help.

1.

Java runtime crashes during printing on Windows.

Cause: The Java runtime uses Windows printer drivers, and they might have
problems.

Solution: Upgrade the Windows printer driver for the printer that is being used.
The printing seems to be successful, but the job does not print on Windows.
Cause: Some jobs fail to properly spool to the printer.

Solution: In the printer driver properties, disable Advanced Printing Options.

The print dialog box takes a long time to appear on Windows.

Cause: Applications might cause the Java runtime to probe all printers, including
those that are disconnected.

Solution: Look for disconnected or unreachable network printers and remove
them from the list of printers.

PrintJob.printDialog() shows no service found error on Linux.
Cause: The cause is one of the following:

e Thel pc utility is not in the / usr/ sbi n directory.

 Thel pstat utility is notin the / usr/ sbi n directory.

Solution: Install | pc and | pst at in the standard location, as previously
mentioned.

12-10

http://www.oracle.com/technetwork/java/index-137037.html#Printing_questions

Swing

This chapter provides information and guidance on some specific procedures for
troubleshooting some of the most common issues that might be found in the Java SE
Swing API.

This chapter contains the following sections:

e General Debug Tips for Swing
» Specific Debug Tips for Swing

General Debug Tips for Swing

ORACLE

Swing's painting infrastructure changed quite extensively in Java SE 6. If you notice
painting artifacts specific in Java SE 6 or later releases, you can try turning off the new
functionality. This can be done with the property swi ng. buf f er Per W ndow.

When you are debugging the Swing code which is executed while any menu is popped
up, it is recommended to use the debugger remotely. Otherwise, the debugging
process and the application execution block each other, and this prevents further work
with the system. If that happens, the only action that can be taken is to kill the X server
for Linux.

The following are some common Swing problems:

* Painting.

* Renderers.

» Updating models from wrong thread.

* Hangs.

* Responsiveness.

* Repainting issues.

* isOpaque usage.

e Startup: could be caused by small heap, loading unnecessary classes.

The following are some things to consider:

* Buffer-per-window feature.

* Native look-and-feel fidelity: Gnome vs Windows

* Footprint of Swing applications.

« JTabl e, JTree, and JLi st all use renderers.

* Make sure that custom renderers do as little as possible.

* Update models only from event dispatch thread. Otherwise the display will not
reflect the state of the model.

The following identify bad renderers:

13-1

Chapter 13
Specific Debug Tips for Swing

Sluggish application, especially when scrolling.

Use an optimizer to watch painting calls, look for calls to
get Tabl eCel | TRender er Conponent .

Specific Debug Tips for Swing

Specific debugging tips for Swing and provides examples for possible issues and
workarounds.

The following topics describe problems in Swing and troubleshooting techniques:

Incorrect Threading

JComponent Children Overlap

Display Update

Model Change

Add or Remove Components

Opague Override

Permanent Changes to Graphics

Custom Painting and Double Buffering
Opaque Content Pane

Renderer Call for Each Cell Performance
Possible Leaks

Mix Heavyweight and Lightweight Components
Use Synth

Track Activity on Event Dispatch Thread
Specify Default Layout Manager

Listener Object Dispatched to Incorrect Component
Add a Component to Content Pane

Drag and Drop Support

One Parent for a Component

JFileChooser Issues with Windows Shortcuts

Incorrect Threading

Random exceptions and painting problems are usually the result of incorrect threading
usage by Swing.

ORACLE

All access to Swing components, unless specifically noted in the javadoc, must be
done on the event dispatch thread. This includes any models (Tabl eModel , Li st Model ,
and others) that are attached to Swing components.

13-2

ORACLE

Chapter 13
Specific Debug Tips for Swing

The best way to check for bad usage of Swing is by using instrumented
Repai nt Manager, as illustrated in the following example.

public class CheckThreadViol ati onRepai nt Manager extends Repai nt Manager {

i nt

h) {

[/ it is recomrended to pass the conplete check
private bool ean conpl et eCheck = true;

public bool ean isConpl et eCheck() {
return conpl et eCheck;

}

public void setConpl et eCheck(bool ean conpl et eCheck) {
this. conpl et eCheck = conpl et eCheck;

}

public synchroni zed void addl nval i dConponent (JConponent conponent) {
checkThreadVi ol ati ons(conponent);
super . addl nval i dConponent (conponent) ;

}

public void addDirtyRegi on(JConponent conponent, int x, int vy, int w,

checkThreadVi ol ati ons(conponent);
super . addDi rt yRegi on(conponent, X, y, W, h);
}

private void checkThreadViol ati ons(JConponent c¢) {
if (!SwingWilities.isEventDispatchThread() && (conpleteCheck ||

c.isShowing())) {

Exception exception = new Exception();
bool ean repaint = fal se;
bool ean fronBwing = fal se;
StackTraceEl enent[] stackTrace = exception. get StackTrace();
for (StackTraceEl ement st : stackTrace) {
if (repaint &&

st.get O assNane().startsWth("javax.swing.")) {

fronBwing = true;

}
if ("repaint".equal s(st.getMthodName())) {

repaint = true;
}
}
if (repaint & !fronBwing) {

[Ino problems here, since repaint() is thread safe
return;

}

exception. printStackTrace();

13-3

Chapter 13
Specific Debug Tips for Swing

JComponent Children Overlap

Another possible source of painting problems can occur if you allow children of a
JConponent to overlap.

In this case, the parent must override i sOpt i m zedDr awi ngEnabl ed to return f al se. If
you do not override i sOpti m zedDr awi ngEnabl ed, then components can randomly
appear on top of others, depending upon which component repaint was invoked on.

Display Update

Another source of painting problems can occur if you do not invoke repaint correctly
when you need to update the display.

Changing a visible property of a Swing component, such as the font, will trigger a
repaint or revalidate. If you are writing a custom component, then you must invoke
repaint and possibly revalidate whenever the display or sizing information is updated.
If you do not, the display will only update the next time someone triggers a repaint.

A good way to diagnose this is to resize the window. If the content appears after a
resize, then that implies that the component did not invoke repaint or revalidate
correctly.

Model Change

Invoke repaint when you change a visible property of a Swing component, you also
need not invoke repaint when your model changes.

If your model sends out the correct change notification, the JConponent will invoke
repaint or revalidate as appropriate.

However, if you change your model but do not send out a notification, then a repaint
event may not even work. In particular this will not work with JTr ee. The correct thing
to do is to send the appropriate model notification. This can usually be diagnosed by
resizing the window and noticing that the display did not update correctly.

Add or Remove Components

When you add or remove components, you must manually invoke repaint or revalidate
Swing and AWT.

Opaque Override

ORACLE

Another possible area of painting problems is if a component does not override
opaque.

Further, if you do not invoke implementation you must honor the opaque property, that
is, if this component is opaque, you must completely fill in the background with a non-
opaque color. If you do not honor the opaque property, then you will likely see visual
artifacts.

The only way to check for this is to look for consistent visual artifacts when the
component invokes repaint.

13-4

Chapter 13
Specific Debug Tips for Swing

Permanent Changes to Graphics

Do not make any permanent changes to a G aphi ¢cs passed to pai nt,
pai nt Conponent , or pai nt Chi | dren.

" Note:

If you override the graphics in a a subclass, then you should not make
permanent changes to the pai nt, pai nt Conponent, or pai nt Chi | dren
passed in Graphi ¢s. For example, you should not alter the clip Rect angl e or
modify the transform. If you need to do these operations you may find it
easier to create a new G aphi cs from the passed in G aphi cs and
manipulate it.

If you ignore this restriction, then the result will be clipping or other weird visual
artifacts.

Custom Painting and Double Buffering

Although you can override pai nt and do custom painting in the override, you should
instead override pai nt Conponent .

The JConponent . pai nt method ensures that painting happens to the double buffer. If
you override pai nt directly, then you may lose double buffering.

Opaque Content Pane

Swing's painting architecture requires an opaque content pane.

The painting architecture of Swing requires an opaque JConponent to exist in the
containment hierarchy above all other components. This is typically provided by using
the content pane. If you replace the content pane, it is recommended that you make
the content pane opaque by using set Opaque(t r ue) . Additionally, if the content
pane overrides pai nt Conponent , then it will need to completely fill in the background in
an opaque color in pai nt Conrponent .

Renderer Call for Each Cell Performance

Renderers are painted for each cell, so ensure that the renderer does as little as
possible.

Any slowdown in the renderer is magnified across all cells. For example, if you repaint
the visible region of a table with 50x20 visible cells, then there will be 1000 calls to the
renderer.

ORACLE 13-5

Chapter 13
Specific Debug Tips for Swing

Possible Leaks

If the life cycle of your model is longer than that of a window with a component using
the model, you must explicitly set the model of the Swing component to null.

If you do not set the model to null, your model will retain a reference to the Conponent ,
which will keep all components in the window from being garbage-collected. Take a
look at the following example.

Tabl eMbdel nyModel = ...;

JFranme frame = new JFrane();

frane. set Cont ent Pane(new JScrol | Pane(new JTabl e(myMbdel)));
frane. di spose();

If your application still holds a reference to nyMdel , then f rame and all its children will
still be reachable by way of the listener JTabl e installations on nyMdel . The solution is
to invoke t abl e. set Mbdel (new Def aul t Tabl eModel ()) .

Mix Heavyweight and Lightweight Components

Use Synth

Mixing heavyweight and lightweight components can work in certain scenarios, as long
as the heavyweight component does not overlap with any existing Swing components.

For example, a heavyweight will not work in an internal frame, because when the user
drags around the internal frame it will overlap with other internal frames. If you use
heavyweights, then invoke the following methods:

e JPopupMenu. set Def aul t Li ght Wi ght PopupEnabl ed(f al se)

* Tool Ti pManager . shar edl nst ance() . set Li ght Wei ght PopupEnabl ed(f a
| se)

Synt h is an empty canvas.

To use Synt h, you must either provide a complete XML file that configures the look
and feel, or extend Synt hLookAndFeel and provide your own Synt hSt yl eFact ory.

Track Activity on Event Dispatch Thread

ORACLE

If a Swing application tries to do too much on the event dispatch thread, then the
application will appear sluggish and unresponsive.

One way to detect this situation is to push a new Event Queue that can output logging
information if an event takes too long to process. This approach is not perfect in that it
has problems with focus events and modality, but it is good for ad-hoc testing.

13-6

Chapter 13
Specific Debug Tips for Swing

Specify Default Layout Manager

Problems can be caused by differing default layout manager classes on a Swing
component.

For example, the default for the JPanel class is Fl owLayout , but the default for the
JFrane class is Bor der Layout . This situation is easily fixed by specifying a
Layout Manager .

Listener Object Dispatched to Incorrect Component

MouselLi st ener objects are dispatched to the deepest component that has
MouselLi st ener objects (or has enabled MbuseEvent objects).

A ramification of this is that if you attach a MbuseLi st ener to a component whose
descendants have MuselLi st ener objects, your MuseLi st ener object will never get
called.

This is easily reproduced with a composite component, like an editable JConboBox.
Because a JConboBox has child components that have a MuseLi st ener, a
MouseLi st ener attached to an editable JComboBox will never get notified.

If your MouselLi st ener suddenly stops getting events, then it could be the result of a
change in the application whereby a descendant component now has a

MouselLi st ener . A good way to check for this is to iterate over the descendants asking
if they have any mouse listeners.

A similar scenario occurs with the KeyLi st ener class. A KeyLi st ener objectis
dispatched only to the focused component.

The JConboBox case is another example of this situation. In the editable JConboBox
case the editor gets focus, not the JConboBox. As a result, a KeyLi st ener attached to
an editable JConboBox will never get natified.

Add a Component to Content Pane

ORACLE

You must add a JFrame, JW ndow, or JDi al og component to the content pane.

A component added to a top-level Swing component must go to the content pane, but
the add method (and a couple of other methods) on the JFrane, JW ndow, and JDi al og
classes redirect to the content pane. In other words,

frane. get Cont ent Pane() . add(conponent) is the same as

frane. add(conponent) .

The following methods redirect to the content pane for you: add (and its variants),
r enove (and its variants), and set Layout .

This is purely a convenience, but can cause confusion. In particular, get Chi | dren,
get Layout , and various others do not redirect to the content pane.

This change affects Layout Manager s that only work with one component, such as
G oupLayout and BoxLayout . For example, new Gr oupLayout (f r ane) will not work;
instead, you must use Gr oupLayout (f rane. get Cont ent Pane()) .

13-7

Chapter 13
Specific Debug Tips for Swing

Drag and Drop Support

When using Swing you should use Swing's drag-and-drop support as provided by
Transf er Handl er.

One Parent for a Component

Remember that a component can only exist in one parent at a time.

Problems occur when you share menu items between menus. For example, JMenul t em
is a component, and therefore can exist in only one menu at a time.

JFileChooser Issues with Windows Shortcuts

ORACLE

The JFi | eChooser class does not support shortcuts on Windows OS (.Ink files).

Unlike the standard Windows file choosers, JFi | eChooser does not allow the user to
follow Windows shortcuts when browsing the file system, because it does not show the
correct path to the file.

To reproduce the problem, follow these steps:

1. Create a text file on the Desktop called, for example, MyFi | e. t xt . Open the text
file and type some text, for example: This is the contents of MFile.txt.

2. Create a shortcut to the new text file in the following way: Drag the file with the
right mouse button to another location on the Desktop and choose Create
Shortcut(s) here.

3. Runthe Jfil eChooser test application, browse the Desktop, select Shortcut to
MyFi | e. t xt and click Open.

4. The result file is Pat hToDeskt op\ Short cut to MyFi | e. t xt . | nk, but it should
be Pat hToDeskt op\ MyFi | e. t xt .

5. In addition, the contents of the result file in the text area shows the contents of the
file shortcut to MyFi | e. t xt . | nk, but the contents should be This is the
contents of MyFile.txt, which was typed in step 1.

13-8

Internationalization

Information and guidance about troubleshooting issues that might be found in the area
of internationalization support.

For detailed information, visit the Java Internationalization site.

This chapter describes troubleshooting techniques for internationalization and
localization.

Troubleshoot Internationalization and Localization

Troubleshoot Internationalization and Localization

Troubleshooting the difference between internationalization and localization.

ORACLE

Before troubleshooting, ensure that you understand the difference between
internationalization and localization:

Internationalization is the process of designing software so that it can be adapted
(localized) to various languages and regions easily, in a cost-effective way, and
without changes to the software. This process generally involves isolating the
parts of a program that are dependent on language and culture. For example, the
text of error messages are kept separate from the program source code because
the messages must be translated during localization.

Localization is the process of adapting a program for use in a specific locale. A
locale is a geographic or political region that shares the same language and
customs. Localization includes the translation of text such as user interface labels,
error messages, and online help. It also includes the culture-specific formatting of
data items such as monetary values, times, dates, and numbers.

The user interface libraries in the Java SE platform enable the development of rich
interactive applications. The internationalization aspects include text input, text display,
and user interface layout. The following descriptions show the relationship between
internationalization and the functionality provided by the AWT, Java 2D, and Swing
APlIs:

Text input is the process of entering new text into a document, whether by typing
on a keyboard or through front-end software such as input methods, handwriting
recognition, or speech input.

Text display is a multistep process that includes selecting a font, arranging text
into paragraphs and lines, selecting glyphs for characters or character sequences,
and rendering these glyphs. Some writing systems require bidirectional text layout
or complex character-to-glyph mappings. Text display is handled by the Java 2D
graphics system and the Swing toolkit for lightweight user interface components
and by AWT for peered user interface components.

User interface layout needs to accommodate text expansion or shrinkage caused
by localization, and match the direction of the user's writing system.

14-1

http://www.oracle.com/technetwork/java/javase/tech/intl-139810.html

Java Sound

This chapter describes some issues that can arise with the Java sound technology and
suggests causes and workarounds.

The following topic describes scenarios to troubleshoot Java sound problems.

Troubleshoot Java Sound Issues

Troubleshoot Java Sound Issues

Troubleshoot Java sound issues such as system sound configuration, audio file
format, audio format, and overrun and underrun conditions.

ORACLE

System sound configuration:

Ensure that your audio system is correctly configured (sound card driver/
DirectSound for Windows, ALSA for Linux). In addition, ensure that your speakers
are connected and that your sound card volume and mute state are adjusted to
the appropriate value. To test your sound configuration, run any native sound
application and play some sound through it.

On the Linux operating system, you might be unable to play sounds because an
application (or sound daemon, such as esd or art sd) opens the audio device
exclusively, thereby denying Java Sound access to the device.

Audio file formats:

Java Sound supports a set of audio file formats, for example AU, AlF, and WAYV.
Most of the file formats are only containers and can contain audio data in various
compressed audio formats. Java Sound file readers support some formats
(uncompressed PCM, a-law, mu-law), but do not support ADPCM, MP3, and
others.

Java Sound also supports plug-ins for file readers and writers through the service
provider interface (SPI). You can use Sun, third-party, or your own plug-ins to read
various audio files. In any case, you must handle the presence of the plug-in, for
example, by distributing the required plug-ins with your application or by requiring
plug-ins to be installed in the client Java environment.

Audio formats:

Java Sound supports various audio formats, but their availability depends on the
operating system. To use some audio format for recording or playing, the format
must be supported by your system (sound card drivers). Use supported formats as
much as possible: PCM; 8 or 16 bits; 8000, 11025, 22050, 44100 Hz. The formats
are supported by most sound cards. Most sound cards support only PCM formats,
and even if the driver supports mu-law, then it requires some modification to the
software. If you need to play or record mu-law data, then the preferred way is to
convert it to PCM format through a format converter.

See Audi 0Syst em get Audi ol nput St r eamdocumentation for details about format
conversion.

15-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/sound/sampled/AudioSystem.html

ORACLE

Chapter 15
Troubleshoot Java Sound Issues

Overrun and underrun conditions:

Recorded data is kept in a Dat aLi ne buffer. If you did not read from the line for a
long time, then an overrun condition will occur, and older data will be replaced with
new data. This will produce artifacts in the recorded audio data.

A similar situation occurs with playing. If all data from the buffer has been played
and no new data is written to the line, then an underrun condition will occur, and
silence will be played until you write a new portion of audio data to the line.

The preferred way to record is to read data in a separate thread to prevent the
possible influence of other tasks (for example, Ul handling). If you use

Sour ceDat aLi ne for playing, then a separate thread for writing data into the line is
also the preferred method to use. If you use d i p for playing, then the O i p
implementation creates this type of thread itself.

15-2

Submit Bug Reports

Recommendation on testing with the latest update release to see if the problem
persists. Guidance about submitting a bug report, and suggests ways to collect data
for a bug report.

* Submit a Bug Report

ORACLE

Submit a Bug Report

Guidance about how to submit a bug report. It includes suggestions about what to try
before submitting a report and which data to collect for the report.

This chapter contains the following sections:
* Check for Fixes in Update Releases

* Prepare to Submit a Bug Report

e Collect Data for a Bug Report

e Collect Core Dumps

Check for Fixes in Update Releases

Regularly scheduled updates to each release contain fixes for a set of critical bugs
identified since the initial release of the platform.

When an update release becomes available, it becomes the default download at the
Java SE Downloads site.

The download site includes release notes that list the bug fixes in the release. Each
bug in the list is linked to the bug description in the bug database. The release notes
also includes the list of fixes in previous update releases. If you encounter an issue, or
suspect a bug, then, as an early step in the diagnosis, check the list of fixes that are
available in the most-recent update release.

Sometimes, it is not obvious if an issue is a duplicate of a bug was already fixed. It is
always recommended to test with the available latest update release to see if the
issue persists.

Prepare to Submit a Bug Report

ORACLE

Recommended procedure to submit a bug report.
Before submitting a bug report, consider the following recommendations:

» First, test with the latest update release to see if the issue persists.
Frequently, if a bug report is submitted for an older release, then test with
the available latest available update release or even a latest available early
access (EA) release. The EA release may contain new features and bug
fixes.

* Collect as much relevant data as possible. For example, generate a thread dump
in the case of a deadlock, or locate the core file (where applicable) and hs_err file
in the case of a crash. In every case, it is important to document the environment
and the actions performed just before the problem happened.

* Where applicable, try to restore the original state and reproduce the problem using
the documented steps. This helps to determine if the problem is reproducible or an
intermittent issue.

16-1

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 16
Collect Data for a Bug Report

» If the issue is reproducible, try to narrow down the problem. In some cases, a bug
can be demonstrated with a small standalone test case. Bugs that are
demonstrated by small test cases will typically be easy to diagnose as compared
to test cases that consist of a large complex application.

» Search the bug database to see if this bug or a similar bug was reported. If the
bug has already been reported, then the bug report might have further information,
such as the following:

— If the bug was already fixed, then the release in which it was fixed is given.
— A workaround for the problem.

— Comments in the evaluation that explain, in further detail, the circumstances
that cause the bug to happen.

* If you conclude that the bug was already reported, then submit a new bug.

Before submitting a bug, verify that the environment where the problem happens is a
supported configuration. See the Supported System Configurations.

In addition to the system configurations, check the list of supported locales. See the
Supported Locales web page.

Collect Data for a Bug Report

In general, it is recommended to test with the latest update release or even a latest
available early access (EA) release to see if the issue persists , and then collect
as much relevant data as possible when you create a bug report or submit a support
call.

The following sections suggest the data to collect and, where applicable, it provides
recommendations for the commands or a general procedure for getting the data.

* Hardware Details

* Operating System Details

e Java SE Version

* Command-Line Options

* Environment Variables

* Fatal Error Log

e Core and Crash Dump

» Detailed Description of the Problem
* Logs and Traces

* Results from Troubleshooting Steps

Hardware Detalls

ORACLE

The hardware details are stored in the error logs when a fatal error occurs.

Sometimes, a bug happens or can be reproduced only on certain hardware
configurations. If a fatal error occurs, then the error log might contain the hardware
details. If an error log is not available, then document in the bug report the number and
the type of processors in the machine, the clock speed, and, where applicable and if

16-2

http://bugs.java.com/bugdatabase/index.jsp
https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=latest_certified_system_configurations
https://www.oracle.com/pls/topic/lookup?ctx=javase13&id=jdk_supported_locales

Chapter 16
Collect Data for a Bug Report

known, some details on the features of that processor. For example, in the case of
Intel processors, it might be relevant that hyper-threading is available.

Operating System Details

Operating systems provide commands that you can use to get the operating system
details.

On Linux, it is important to know which distribution and version is used. Sometimes
the / et ¢/ *r el ease file indicates the release information, but because components
and packages can be upgraded independently, it is not always a reliable indication of
the configuration. Therefore, in addition to the information from the *r el ease file,
collect the following information:

* The kernel version. This can be obtained using the uname -a command.

e Theglibc version. The rpm -qg gl i bc command indicates the patch level of
glibc.

e The thread library. There are two thread libraries for Linux, namely Li nuxThr eads
and NPTL. The Li nuxThr eads library is used on 2.4, and earlier kernels and has
fixed stack and floating stack variants. The Native POSIX Thread Library (NPTL) is
used on the 2.6 kernel. Some Linux releases (such as RHEL3) include backports
of NPTL to the 2.4 kernel. Use the command get conf GNU_LI BPTHREAD VERSI ONto
determine which thread library is used. If the get conf command returns an error to
say that the variable does not exist, then it is likely that you are using an old kernel
with the Li nuxThr eads library.

Java SE Version

The Java SE version string can be obtained using the j ava - ver si on command.

Multiple versions of Java SE may be installed on the same machine. Therefore,
ensure that you use the appropriate version of the j ava command by verifying that the
installation bi n directory appears in your PATH environment variable before other
installations.

Command-Line Options

ORACLE

If the bug report does not include a fatal error log then, it is important to document the
full command line and all its options. This includes any options that specify heap
settings (for example, the - mxoption) or any - XX options that specify HotSpot specific
options.

One of the features in Java SE is garbage collector ergonomics. On server-class
machines, the j ava command launches the HotSpot Server VM and a parallel garbage
collector. A machine is considered to be a server machine if it has at least two
processors and 2GB or more of memory.

The - XX: +Pri nt CommandLi neFl ags option can be used to verify the command-line
options. This option prints all command-line flags to the VM. The command-line
options can also be obtained for a running VM or core file using the j map utility.

16-3

Chapter 16
Collect Data for a Bug Report

Environment Variables

Sometimes problems arise due to environment variable settings. When creating the
bug report, indicate the values of the following Java environment variables (if set).

JAVA_TOOL_CPTI ONS
_JAVA_OPTI ONS
CLASSPATH

JAVA COVPI LER
PATH

USERNANE

In addition, collect the following operating-system-specific environment variables.

On the Linux operating system, collect the values of the following environment
variables.

LD LI BRARY_PATH
— LD _PRELOAD
SHELL

DI SPLAY
HOSTTYPE
OSTYPE

— ARCH

— MACHTYPE

On Linux, also collect the values of the following environment variables.
— LD ASSUME_KERNEL

— _JAVA SR SI G\UM

On Windows, collect the values of the following environment variables.
- s

— PROCESSCR | DENTI FI ER

— _ALT_JAVA HOME DIR

Fatal Error Log

The fatal error log is created when a fatal error occurs.

ORACLE

It is recommended to test with the latest update release to see if the problem
persists.

When a fatal error occurs, an error log is created. See Fatal Error Log.

The error log contains information obtained at the time of the fatal error, such as
version and environment information, details about the threads that provoked the
crash, and so forth.

16-4

Chapter 16
Collect Data for a Bug Report

If the fatal error log is generated, then be sure to include it in the bug report or report it
during a support call.

Core and Crash Dump

Core and crash dumps can be very useful when trying to diagnose a system crash or
hung process.

The procedure for generating a dump is described in Collect Core Dumps.

Detailed Description of the Problem

When creating a problem description, try to include as much relevant information as
possible.

Describe the application, the environment, and most important the events leading up
to the time when the problem happened.

Sometimes, the problem can be reproduced only in a complex application
environment. In this case, the description, coupled with logs, core file, and other
relevant information, might be the only way to diagnose the issue. In these situations,
the description should indicate if the submitter is willing to run further diagnosis or run
test binaries on the system where the issue occurs.

» If the problem is reproducible, then list the steps that are required to demonstrate
the problem.

» If the problem can be demonstrated with a small test case, then include the test
case and the commands to compile and execute the test case.

» If the test case or problem requires third-party code (for example, a commercial or
open source library or package), then provide then details about where and how to
obtain the library.

Logs and Traces

Log or trace output can help to quickly determine the cause of a problem.

For example, in the case of a performance issue, the output of the - ver bose: gc
option can help in diagnosing the problem. (This is the option to enable output from the
garbage collector.)

In other cases, the output from the j st at command can be used to capture statistical
information over the time period leading up to the problem.

In the case of a deadlock or a hung VM (for example, due to a loop), the thread stacks
can help diagnose the problem. The thread stacks are obtained by pressing Cont r ol
+\ on Linux, and Control+Break on Windows.

In general, provide all relevant logs, traces, and other output in the bug report or
during the support call.

ORACLE 16-5

Chapter 16
Collect Core Dumps

Results from Troubleshooting Steps

Report all troubleshooting steps and results that have already occurred

Prerequisites: Before submitting the bug report, be sure to document any
troubleshooting steps that were performed.

For example, if the problem is a crash and the application has native libraries, then
you might have already run the application with the - Xcheck: j ni option to reduce
the likelihood that the bug is in the native code. Another case could be a crash that
occurs with the HotSpot Server VM (- ser ver option). If you have also tested with the
HotSpot Client VM (- cl i ent option) and the problem does not occur, then this is an
indication that the bug might be specific to the HotSpot Server VM.

In general, include in the bug report all troubleshooting steps and results that have
already occurred. This type of information can often reduce the time that is required to
diagnose an issue.

Collect Core Dumps

Procedure to generate and collect core dumps (also known as crash dumps). A core
dump or a crash dump is a memory snapshot of a running process.

A core dump can be automatically created by the operating system when a fatal or
unhandled error (for example, signal or system exception) occurs. Alternatively, a core
dump can be forced by using system-provided command-line utilities. Sometimes, a
core dump is useful when diagnosing a process that appears to be hung; the core
dump may reveal information about the cause of the hang.

When collecting a core dump, be sure to gather other information about the
environment so that the core file can be analyzed (for example, OS version, patch
information, and the fatal error log).

Core dumps do not usually contain all the memory pages of the crashed or hung
process. With each of the operating systems discussed here, the text (or code) pages
of the process are not included in core dumps. But, to be useful, a core dump must
consist of pages of heap and stack at as a minimum. Collecting non-truncated good
core dump files is essential for postmortem analysis of the crash.

The following sections describe scenarios for collecting core dumps.

* Collect Core Dumps on Linux
* Reasons for Not Getting a Core File

e Collect Crash Dumps on Windows

Collect Core Dumps on Linux

ORACLE

On the Linux operating system, unhandled signals such as segmentation violation,
illegal instruction, and so forth, result in a core dump.

By default, the core dump is created in the current working directory of the process
and the name of the core dump file is cor e. pi d, where pi d is the process ID of the
crashed Java process.

16-6

ORACLE

Chapter 16
Collect Core Dumps

The ul i m t utility is used to get or set the limitations on the system resources
available to the current shell and its descendants. Use the ulimt -c¢ command to
check or set the core file size limit. Ensure that the limit is set to unl i m t ed; otherwise,
the core file could be truncated.

< Note:

ulimt is a Bash shell built-in command; on a C shell, use the | i mi t
command.

Ensure that any scripts that are used to launch the VM or your application do not
disable core dump creation.

You can use the gcor e command in the gdb (GNU debugger) interface to get a core
image of a running process. This utility accepts the pi d of the process for which you
want to force the core dump.

To get the list of Java processes running on the machine, you can use any of the
following commands:

e ps -ef | grep java
° pgrep java

* jps

" Note:

The j ps command-line utility does not perform name matching (that is,
looking for "java" in the process command name) and so it can list Java
VM embedded processes as well as the Java processes.

The following is one option to collect core dumps on Linux.
* ShowMessageBoxOnError option in Linux:

A Java process can be started with the - XX: +ShowivessageBoxOnEr r or
command-line option. When a fatal error occurs, the process prints a message to
standard error and waits for a yes or no response from standard input. The
following example shows the output when an unexpected signal occurs.

Unexpected Error

SI GSEGV (0xb) at pc=0x06232e5f, pid=11185, tid=8194

Do you want to debug the problen?

To debug, run 'gdb /proc/11185/exe 11185'; then switch to thread 8194
Enter 'yes' to launch gdb automatically (PATH nust include gdb)

O herwi se, press RETURN to abort...

16-7

Chapter 16
Collect Core Dumps

Enter yes to launch the gdb (GNU Debugger) interface, as suggested by the error
report shown. In the gdb prompt, you can give the gcor e command. This command
creates a core dump of the debugged process with the name core.pi d, where pi d
is the process ID of the crashed process. Ensure that the gdb gcore command is
supported in your versions of gdb. Look for hel p gcor e in the gdb command
prompt.

Reasons for Not Getting a Core File

List of reasons that a core file might not be generated.

This list pertains to the Linux operating system.

The user does not have permission to write in the current working directory of the
process.

The user has write permission on the current working directory, but there is
already a file named cor e that has read-only permission.

The current directory does not have enough space or there is no space left.
The current directory has a subdirectory named cor e.

The current working directory is remote. It might be mapped by a Network File
System (NFS), and NFS failed at the time the core dump was about to be created.

The core file size limit is too low. Check your core file size limit using theul imt -
¢ command (Bash shell) orthe linit -c command (C shell). If the output from
this command is not unlimited, then the core dump file size might not be large
enough. If this is the case, then you will get truncated core dumps or no core dump
at all. In addition, ensure that any scripts that are used to launch the VM or your
application do not disable core dump creation.

The process is running a set ui d program, and therefore the operating system will
not dump the core unless it is configured explicitly.

Java specific: If the process received SI GSEGV or SI G LL but no core dump, it is
possible that the process handled it. For example, HotSpot VM uses the S| GSEGV
signal for legitimate purposes, such as throwing Nul | Poi nt er Except i on,
deoptimization, and so forth. The signal is unhandled by the Java VM only if the
current instruction (PC) falls outside the Java VM generated code. These are the
only cases in which HotSpot dumps the core.

Java specific: The INI Invocation APl was used to create the VM. The standard
Java launcher was not used. The custom Java launcher program handled the
signal by consuming it and produced the log entry silently. This situation has
occurred with certain application servers and web servers. These Java VM
embedding programs transparently attempt to restart (fail over) the system after an
abnormal termination. In this case, the fact that a core dump is not produced is a
feature and not a bug.

Collect Crash Dumps on Windows

In the Windows operating system there are three types of crash dumps: Dr. Watson
log file, user minidump, and Dr. Watson full dump.

ORACLE

Dr. Watson log file, which is a text error log file that includes faulting stack trace
and a few other details.

16-8

ORACLE

Chapter 16
Collect Core Dumps

» User minidump, which is considered a partial core dump. It is not a complete core
dump, because it does not contain all the useful memory pages of the process.

e Dr. Watson full dump, which is equivalent to a UNIX core dump. This dump
contains most memory pages of the process (except for code pages).

When an unexpected exception occurs on Windows, the action taken depends on two
values in the following registry key:

\\ HKEY_LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ Wndows NT\ Current Ver si on\ AeDebug

The two values are named Debugger and Aut 0. The Aut o value indicates if the
debugger specified in the value of the Debugger entry starts automatically when an
application error occurs.

* Avalue of 0 for Aut o means that the system displays a message box notifying the
user when an application error occurs.

* Avalue of 1 for Aut o means that the debugger starts automatically.

The value of Debugger is the debugger command that is to be used to debug program
errors.

When a program error occurs, Windows examines the Aut o value, and if the value is 0
then it executes the command in the Debugger value. If the value for Debugger is a
valid command, then a message box is created with two buttons: OK and Cancel. If
the user clicks OK, then the program is terminated. If the user clicks Cancel, then the
specified debugger is started. If the value for the Aut o entry is set to 1 and the value
for the Debugger entry specifies the command for a valid debugger, then the system
automatically starts the debugger and does not generate a message box.

The following are two ways to collect crash dump on Windows.

* Configure Dr.Watson:

The Dr. Watson debugger is used to create crash dump files. By default, the Dr.
Watson debugger (dr wt sn32. exe) is installed in the Windows system folder
(%8yst enRoot % Syst enB2).

To install Dr. Watson as the postmortem debugger, run the following command:

drwtsn32 -i

To configure the name and location of crash dump files, run drwt sn32 without any
options.

In the Dr. Watson GUI window, ensure that the Create Crash Dump File check
box is selected and that the crash dump file path and log file path are configured in
their respective text fields.

Dr. Watson can be configured to create a full dump using the registry. The registry
key is shown in the following example.

System Key: [HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t\ Dr Wat son]
Entry Name: CreateCrashDunp
Value: (0 = disabled, 1 = enabled)

16-9

Chapter 16
Collect Core Dumps

< Note:

If the application handles the exception, then the registry-configured
debugger is not invoked. In that case, it might be appropriate to use the
- XX: +ShowMvessageBoxOnEr r or command-line option to force the
process to wait for user intervention on fatal error conditions.

e Force a crash dump:

On the Windows operating system, the user dunp command-line utility can be used
to force a Dr. Watson dump of a running process. The user dunp utility does not
ship with Windows. It is released as a component of the OEM Support Tools
package.

An alternative way to force a crash dump is to use the wi ndbg debugger. The main
advantage of using wi ndbg is that it can attach to a process in a hon-invasive
manner (that is, read-only). Usually, Windows terminates a process after a crash
dump is obtained, but with the noninvasive attach, it is possible to obtain a crash
dump and let the process continue. To attach the debugger check box requires
selecting the Attach to Process option and the Noninvasive checkbox.

When the debugger is attached, a crash dump can be obtained using the
command shown in the following example.

.dunp /f crash. dnp

The wi ndbg debugger is included in the Debugging Tools for Windows download.

An additional utility in this download is the dunpchk. exe utility, which can verify that
a memory dump file was created correctly.

Both user dunp. exe and wi ndbg require the pi d of the process. The userdunp -p
command lists the process and program for all processes. This is useful if you
know that the application is started with the j ava. exe launcher. However, if a
custom launcher is used (embedded VM), then it might be difficult to recognize the
process. In that case, you can use the | ps command-line utility because it lists the
PIDS of the Java processes only.

As with the Linux operating system, you can also use the - XX:
+ShowMessageBoxOnEr r or command-line option on Windows. When a fatal
error occurs, the process shows a message box and waits for a yes or no
response from the user.

Before clicking Yes or No, you can use the user dunp. exe utility to generate the Dr.
Watson dump for the Java process. This utility can also be used in cases when the
process appears to be hung.

ORACLE 16-10

Appendices

This part contains the following topics.

Fatal Error Log

Describes fatal error log contents and location

Java 2D Properties

Describes properties that are useful in troubleshooting issues with Java 2D
Environment Variables and System Properties

Describes environment variables and system properties that are useful when
troubleshooting issues with Java HotSpot Server VM

Command-Line Options

Describes command-line options that are useful when diagnosing issues with Java
HotSpot Server VM

Summary of Tools in This Release

Provides a summary of the tools available in the current and previous releases of
the JDK.

Fatal Error Log

Describes the fatal error log, its location, and contents.

The fatal error log is created when a fatal error occurs. It contains information and the
state obtained at the time of the fatal error.

Note:

The format of this file can change slightly in update releases.

This appendix contains the following sections:

* Location of Fatal Error Log

» Description of Fatal Error Log
* Header Format

e Thread Section Format

* Process Section Format

e System Section Format

Location of Fatal Error Log

ORACLE

To specify where the log file will be created, use the product flag -
XX: ErrorFil e=file, wherefile represents the full path for the log file location.

The substring %%in the file variable is converted to % and the substring % is converted
to the PID of the process.

In the following example, the error log file will be written to the directory / var /| og/
j ava and will be named j ava_errorpid. | og:

java - XX ErrorFile=/var/log/javaljava_error%.log

If the - XX: Error Fi | e=fi | e flag is not specified, then the default log file name is
hs_err_pi d. | og, where pi d is the PID of the process.

In addition, if the - XX: Err or Fi | e=fi | e flag is not specified, the system attempts to
create the file in the working directory of the process. In the event that the file cannot
be created in the working directory (insufficient space, permission problem, or other
issue), the file is created in the temporary directory for the operating system. On the
Linux operating system, the temporary directory is / t np. On Windows, the temporary
directory is specified by the value of the TMP environment variable. If that environment
variable is not defined, then the value of the TEMP environment variable is used.

A-1

Appendix A
Description of Fatal Error Log

Description of Fatal Error Log

Description of the fatal error log file and the sections that contain information obtained
at the time of the fatal error.

The error log contains information obtained at the time of the fatal error, including the
following information, where possible:

e The operating exception or signal that provoked the fatal error

e Version and configuration information

e Details about the thread that provoked the fatal error and the thread's stack trace
e List of running threads and their states

e Summary information about the heap

o List of native libraries loaded

e Command-line arguments

* Environment variables

e Details about the operating system and CPU

¢ Note:

In some cases only a subset of this information is output to the error log. This
can happen when a fatal error is of such severity that the error handler is
unable to recover and report all the details.

The error log is a text file consisting of the following sections:

* A header that provides a brief description of the crash. See Header Format.
* A section with thread information. See Thread Section Format.

* A section with process information. See Process Section Format.

* A section with system information. See System Section Format.

¢ Note:

The format of the fatal error log described here is based on Java SE 6. The
format might be different with other releases.

Header Format

ORACLE

The header section at the beginning of every fatal error log file contains a brief
description of the problem.

The header is also printed to standard output and may show up in the application's
output log.

A-2

ORACLE

Appendix A
Header Format

The header includes a link to the HotSpot Virtual Machine Error Reporting Page,
where the user can submit a bug report.

#

A fatal error has been detected by the Java Runtime Environment:

#

SIGSEGV (0xb) at pc=0x00007f0f 159f 857d, pi d=18240, tid=18245

#

JRE version: Java(TM SE Runtime Environment (9.0+167) (build 9-ea+167)

Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, nixed node,

tiered, conpressed oops, gl gc, |inux-and64)

Problematic franme:

C [libMApp. so+0x57d] Java M/App_readDat a+0x11

#

Core dump will be witten. Default |ocation: /cores/core.18240)

#

If you would like to subnit a bug report, please visit:
http://bugreport.java.cont bugreport/crash.jsp

The crash happened outside the Java Virtual Mchine in native code.

See problematic frame for where to report the bug.

#
#
#
#
The example shows that the VM crashed on an unexpected signal.

The next line describes the signal type, program counter (pc) that caused the signal,
process ID, and thread ID, as shown in the following example.

SIGSEGV (0Oxb) at pc=0x00007f Of 159f 857d, pi d=18240, tid=18245
| | | | +--- thread id
| | | D R process id
| | R LT LR R TP program count er
| | (instruction pointer)
| o signal number
R signal name

The next line contains the VM version (client VM or server VM), an indication of
whether the application was run in mixed or interpreted mode, and an indication of
whether class file sharing was enabled, as shown in the following line.

Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, nixed node,
tiered, conpressed oops, gl gc, |inux-and64)

The next information is the function frame that caused the crash, as shown in the
following example.

Problematic frane:
C [libMApp. so+0x57d] Java M/App_readDat a+0x11
| +-- Same as pc, but represented as library nane and
of fset.
| For position-independent libraries (JVM and nost
shar ed
| libraries), it is possible to inspect the instructions
| that caused the crash without a debugger or core file

A-3

ORACLE

Appendix A
Header Format

| by using a disassenbler to dunp instructions near the
| of fset.
oo Frame type

In this example, the "C" frame type indicates a native C frame. Table A-1 shows the
possible frame types.

Table A-1 Frame Types
|

Frame Type Description

C Native C frame
i Interpreted Java frame
\Y VM frame

s VM-generated stub frame

Other frame types, including compiled Java frames

Internal errors will cause the VM error handler to generate a similar error dump.
However, the header format is different. Examples of internal errors are guar ant ee()
failure, assertion failure, Shoul dNot ReachHer e() , and so forth. The following example
shows the header format for an internal error.

#
An unexpected error has been detected by Hot Spot Virtual Machine:

#

Internal Error (4F533F4C494E55583F491418160E43505000F5), pi d=10226,
tid=16384

#

Java VM Java Hot Spot(TM Cient VM (1.6.0-rc-b63 nixed node)

In the above header, there is no signal name or signal number. Instead the second line
now contains I nternal Error and a long hexadecimal string. This hexadecimal string
encodes the source module and line number where the error was detected. In general
this "error string” is useful only to engineers working on the HotSpot Virtual Machine.

The error string encodes a line number and therefore it changes with each code
change and release. A crash with a given error string in one release (for example,
1.6.0) might not correspond to the same crash in an update release (for example,
1.6.0_01), even if the strings match.

A-4

Appendix A
Thread Section Format

< Note:

Do not assume that a workaround or solution that worked in one situation
associated with a given error string will work in another situation associated
with that same error string. Note the following facts:

< Errors with the same root cause might have different error strings.

e Errors with the same error string might have completely different root
causes.

Therefore, the error string should not be used as the sole criterion when
troubleshooting bugs.

Thread Section Format

ORACLE

The thread section of the log contains information about the thread that crashed.

If multiple threads crash at the same time, then only one thread is printed.

Thread Information

The first part of the thread section shows the thread that caused the fatal error, as
shown in the following example.

Current thread (0x00007f102c013000): JavaThread "main"
[_thread_in_native, id=18245, stack(0x00007f10345c0000, 0x00007f10346c0000)]

| | + stack

I I I
| o ID

I I I
LT TP LT TP state

I I
e L name

I
R e R type

--- pointer

The thread pointer is the pointer to the Java VM internal thread structure. It is
generally of no interest unless you are debugging a live Java VM or core file.

The following list shows possible thread types.
« JavaThread

e VMrhread

e Conpil er Thread

e (GCTaskThread

e \Mtcher Thread

A-5

ORACLE

Appendix A
Thread Section Format

e Concurrent Mar kSweepThr ead

Table A-2 shows the important thread states.

Table A-2 Thread States

|
Thread State Description

_thread_uninitializ Threadis not created. This occurs only in the case of memory
ed corruption.

_thread_new Thread was created, but it has not yet started.
_thread_in_native Thread is running native code. The error is probably a bug in the
native code.
_thread_in_vm Thread is running VM code.
_thread_in_Java Thread is running either interpreted or compiled Java code.
_thread_bl ocked Thread is blocked.
.. _trans If any of the previous states is followed by the string _t r ans, then

that means that the thread is changing to a different state.

The thread ID in the output is the native thread identifier.

If a Java thread is a daemon thread, then the string daemon is printed before the
thread state.

Signal Information

The next information in the error log describes the unexpected signal that caused the
VM to terminate. On a Windows system the output appears as shown in the following
example.

si ginfo: ExceptionCode=0xc0000005, reading address Oxd8ffecfl

In the above example, the exception code is 0xc0000005 (ACCESS_VI OLATI ON), and the
exception occurred when the thread attempted to read address 0xd8f f ecf 1.

On the Linux operating system, the signal number (si _si gno) and signal code
(si _code) are used to identify the exception, as follows:

siginfo: si_signo: 11 (SIGSEGV), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000

Register Context

The next information in the error log shows the register context at the time of the fatal
error. The exact format of this output is processor-dependent. The following example
shows output for the Intel(R) Xeon(R) processor.

Regi sters:

RAX=0x0000000000000000, RBX=0x00007f 0f 17af f 300, RCX=0x0000000000000001,
RDX=0x00007f 1033880358

RSP=0x00007f 10346be930, RBP=0x00007f 10346be930, RSI =0x00007f 10346be9a0,
RDI =0x00007f 102c013218

R8 =0x00007f Of 17af f 3b0, R9 =0x0000000000000008, R10=0x00007f1011bblde9,

A-6

ORACLE

Appendix A
Thread Section Format

R11=0x0000000101cf c5e0

R12=0x0000000000000000, R13=0x00007f Of 17af f 3b0, R14=0x00007f 10346he9a8,
R15=0x00007f 102c013000

RI P=0x00007f Of 159f 857d, EFLAGS=0x0000000000010283,
CSGSFS=0x0000000000000033, ERR=0x0000000000000004

The register values might be useful when combined with instructions, as described
below.

Machine Instructions

After the register values, the following example shows the error log that contains the
top of stack followed by 32 bytes of instructions (opcodes) near the program counter
(PC) when the system crashed. These opcodes can be decoded with a disassembler
to produce the instructions around the location of the crash. Note: IA32 and AMD64
instructions are variable in length, and so it is not always possible to reliably decode
instructions before the crash PC.

Top of Stack: (sp=0x00007f10346be930)

0x00007f 10346be930: 00007f 10346be990 00007f 1011bblel5
0x00007f 10346be940: 00007f 1011bb1b33 00007f 10346be948
0x00007f 10346be950: 00007f Of 17af f 3b0 00007f 10346be9a8
0x00007f 10346be960: 00007f Of 17af f 520 0000000000000000

Instructions: (pc=0x00007f0f 159f 857d)

0x00007f Of 159f 855d: 3d e6 08 20 00 ff e0 Of 1f 40 00 5d c3 90 90 55
0x00007f Of 159f 856d: 48 89 e5 48 89 7d f8 48 89 75 f0 b8 00 00 00 00
0x00007f 0f 159f 857d: 8b 00 5d ¢3 90 90 90 90 90 90 90 90 90 90 90 90
0x00007f 0f 159f858d: 90 90 90 55 48 89 e5 53 48 83 ec 08 48 8b 05 88

Thread Stack

Where possible, the next output in the error log is the thread stack, as shown in the
following example. This includes the addresses of the base and the top of the stack,
the current stack pointer, and the amount of unused stack available to the thread. This
is followed, where possible, by the stack frames, and up to 100 frames are printed. For
C/C++ frames, the library name may also be printed. Note: In some fatal error
conditions, the stack may be corrupt, and this detail may not be available.

Stack: [0x00007f10345¢0000, 0x00007f 10346¢0000], sp=0x00007f 10346be930,
free space=1018k

Native frames: (J=conpiled Java code, A=aot conpiled Java code,
j=interpreted, W=VM code, C=native code)

C [libMApp.so+0x57d] Java_My/App_readDat a+0x11

i MApp.readData()!+0

j MyApp. mai n([Ljaval/lang/ String;)V+15

v ~StubRoutines::call_stub

V [libjvmso+0x839eea] JavaCalls::call_hel per(JavaVal ue*, methodHandl e
const & JavaCal | Argunents*, Thread*)+0x47a

V' [libjvmso+0x896fcf] jni_invoke static(JN Env_*, JavaVal ue*,
_jobject*, JN CallType, _jnmethodl D*, JNI _Argunent Pusher*, Thread*)
[clone .isra.90]+0x21f

V [libjvmso+0x8a7fle] jni_CallStaticVoi dvet hod+0x14e

C [libjli.sot0x4142] JavaMai n+0x812

A-7

Appendix A
Process Section Format

C [libpthread.so.0+0x7e9a] start_thread+Oxda

Java frames: (J=conpiled Java code, j=interpreted, W=VM code)
| MyApp.readData()!l+0

j MyApp. mai n([Ljaval/lang/ String;)V+15

v ~StubRoutines::call_stub

The log contains two thread stacks.

e The first thread stack is Nati ve franes, which prints the native thread showing all
function calls. However, this thread stack does not take into account the Java
methods that are inlined by the runtime compiler; if methods are inlined, then they
appear to be part of the parent's stack frame.

The information in the thread stack for native frames provides important
information about the cause of the crash. By analyzing the libraries in the list from
the top down, you can generally determine which library might have caused the
problem and report it to the appropriate organization responsible for that library.

* The second thread stack is Java franes, which prints the Java frames including
the inlined methods, skipping the native frames. Depending on the crash, it might
not be possible to print the native thread stack, but it might be possible to print the
Java frames.

Further Details

If the error occurred in the VM thread or in a compiler thread, then further details may
be seen from the following example. For example, in the case of the VM thread, the
VM operation is printed if the VM thread is executing a VM operation at the time of the
fatal error. In the following output example, the compiler thread caused the fatal error.
The task is a compiler task, and the HotSpot Client VM is the compiling method
hs101t 004Thr ead. acker mann.

Current Conpil eTask:
Hot Spot Cient Conpiler:754 b
nsk.jvnti.scenarios. hot swap. HS101. hs101t 004Thr ead. acker mann(1J)J (42 bytes)

For the HotSpot Server VM, the output for the compiler task is slightly different but will
also include the full class name and method.

Process Section Format

ORACLE

The process section is printed after the thread section and contains information about
the whole process, including the thread list and memory usage of the process.

Thread List

The thread list includes the threads that the VM is aware of, as shown in the following
example.

=>0x0805ac88 JavaThread "main" [_thread_in_native, id=21139,
st ack(0x00007f 10345¢0000, 0x00007f 10346¢0000)]

| + stack

A-8

ORACLE

Appendix A
Process Section Format

This includes all Java threads and some VM internal threads, but does not include any
native threads created by the user application that have not attached to the VM, as
shown in the following example.

Java Threads: (=> current thread)
0x00007f 102¢469800 JavaThread "C2 Conpil er Thread0" daenon

[_thread_bl ocked, id=18302, stack(0x00007f0f 16f31000, 0x00007f 0f 17032000)]
0x00007f 102c468000 JavaThread "Si gnal Dispatcher" daenon

[_thread_bl ocked, id=18301, stack(0x00007f0f 17032000, 0x00007f 0f 17133000)]
0x00007f 102¢450800 JavaThread "Finalizer" daenon [_thread bl ocked

i d=18298, stack(0x00007f 0f 173f c000, 0x00007f Of 174f d000)]
0x00007f 102c448800 JavaThread "Reference Handl er" daenon

[_thread_bl ocked, id=18297, stack(0x00007f0f 174fd000, 0x00007f Of 175f €000)]

=>0x00007f 102c013000 JavaThread "main" [_thread_in_native, id=18245

st ack(0x00007f 10345¢0000, 0x00007f 10346¢0000)]

Ot her Threads:
0x00007f 102c43f 000 VMThread "VM Thread" [stack:
0x00007f Of 175f f 000, 0x00007f Of 176f f 000] [i d=18296]
0x00007f 102c54b000 Wat cher Thread [st ack:
0x00007f Of 15bf b000, 0x00007f Of 15¢f b000] [i d=18338]

The thread type and thread state are described in Thread Section Format.

VM State

The next information is the VM state, which indicates the overall state of the virtual
machine. Table A-3 describes the general states.

Table A-3 VM States

| General VM State Description |

not at a Normal execution. |

saf epoi nt

A-9

ORACLE

Appendix A
Process Section Format

Table A-3 (Cont.) VM States

General VM State Description

at saf epoi nt All threads are blocked in the VM waiting for a special VM operation to
complete.

synchroni zi ng A special VM operation is required, and the VM is waiting for all

threads in the VM to block.

The VM state output is a single line in the error log, as follows:

VM state:not at safepoint (normal execution)

Mutexes and Monitors

The next information in the error log is a list of mutexes and monitors that are currently
owned by a thread, as shown in the following example. These mutexes are VM
internal locks rather than monitors associated with Java objects. The following is an
example to show how the output might look when a crash happens when VM locks are
held. For each lock, the log contains the name of the lock, its owner, and the
addresses of a VM internal mutex structure and its OS lock. In general, this
information is useful only to those who are very familiar with the HotSpot VM. The
owner thread can be cross-referenced to the thread list.

VM Mut ex/ Monitor currently owned by a thread:

([rut ex/ 1 ock_event])[0x007357b0/ 0x0000031c] Threads_| ock - owner thread:
0x00996318

[0x00735978/ 0x000002e0] Heap_l| ock - owner thread: 0x00736218

Heap Summary

The next information is a summary of the heap, as shown in the following example.
The output depends on the garbage collection (GC) configuration. In this example, the
serial collector is used, class data sharing is disabled, and the tenured generation is
empty. This probably indicates that the fatal error occurred early or during startup, and
a GC has not yet promoted any objects into the tenured generation.

Heap
def new generation total 576K, used 161K [0x46570000, 0x46610000,
0x46a50000)
eden space 512K, 31% used [0x46570000, 0x46598768, 0x465f0000)
fromspace 64K, 0% used [0x465f0000, 0x465f0000, 0x46600000)
to space 64K, 0% used [0x46600000, 0x46600000, 0x46610000)
tenured generation total 1408K, used OK [0x46a50000, 0x46bb0000,
0x4a570000)
the space 1408K, 0% used [0x46a50000, 0x46a50000, 0x46a50200,
0x46bb0000)
conpacting permgen total 8192K used 1319K [0x4a570000, 0x4ad70000,
0x4e570000)
the space 8192K, 16% used [0x4a570000, Ox4a6b9d48, 0x4a6h9e00,
0x4ad70000)
No shared spaces confi gured.

A-10

ORACLE

Appendix A
Process Section Format

Memory Map

The next information in the log is a list of virtual memory regions at the time of the
crash. This list can be long if the application is large. The memory map can be very
useful when debugging some crashes, because it can tell you which libraries are
actually being used, their location in memory, as well as the location of the heap,
stack, and guard pages.

The format of the memory map is operating system-specific. On the Linux system, the
process memory map (/ pr oc/ pi d/ maps) is printed. On the Windows system, the
base and end addresses of each library are printed. The following example shows the
output generated on Linux/x86.

Note:

Most of the lines were omitted from the example for the sake of brevity.

Dynamc libraries:

00400000- 00401000 r-xp 00000000 00: 47 1374716350 /
export/java_reljdk/ 9/ eal 167/ bi naries/|inux-x64/bin/java
00601000- 00602000 rwp 00001000 00: 47 1374716350 /

export/java_reljdk/ 9/ eal 167/ bi naries/|inux-x64/bin/java
016¢6000-016€7000 rw p 00000000 00:00 O

[heap]

82000000- 102000000 rwp 00000000 00:00 O

102000000- 800000000 ---p 00000000 00: 00 O

40014000- 40015000 r--p 00000000 00:00 O

Li nes omitted.

7f Of 159f 8000- 7f 0f 159f 9000 r-xp 00000000 08: 11 116808980 /
export/users/ dh198349/tests/ hs-err/ i bMApp. so
7f 0f 159f 9000- 7f Of 15bf 8000 ---p 00001000 08: 11 116808980 /
export/users/ dh198349/tests/ hs-err/ i bMApp. so
7f Of 15bf 8000- 7f Of 15bf 9000 r--p 00000000 08: 11 116808980 /
export/users/ dh198349/tests/ hs-err/li bMApp. so
7f Of 15bf 9000- 7f Of 15bf a000 rwp 00001000 08: 11 116808980 /

export/users/ dh198349/tests/ hs-err/li bMApp. so
Li nes omitted.

7f Of 15df c000- 7f 0f 15e00000 ---p 00000000 00:00 0
7f 0f 15e00000- 7f Of 15ef dO0O rw-p 00000000 00:00 0

7f Of 15ef d00O- 7f Of 15f 13000 r-xp 00000000 00: 47 1374714565 /
export/java_reljdk/ 9/ eal 167/ binaries/|inux-x64/1ib/libnet.so
7f Of 15f 13000- 7f 0f 16113000 ---p 00016000 00: 47 1374714565 /
export/java_reljdk/ 9/ eal 167/ binaries/|inux-x64/1ib/libnet.so
7f 0f 16113000~ 7f 0f 16114000 rwp 00016000 00: 47 1374714565 /
export/java_reljdk/ 9/ eal 167/ binaries/|inux-x64/1ib/libnet.so
7f 0f 16114000- 7f 0f 16124000 r-xp 00000000 00: 47 1374714619 /

export/java_reljdk/ 9/ eal 167/ binaries/|inux-x64/1ib/libnio.so
Lines omtted.

7f 0f 17032000- 7f 0f 17036000 ---p 00000000 00:00 0

7f 0f 17036000- 7f 0f 17133000 rwp 00000000 00:00 0

7f 0f 17133000- 7f 0f 173f c000 r--p 00000000 08: 02

2102853 lusr/libl/local ellocal e-archive

A-11

ORACLE

Appendix A
Process Section Format

7f 0f 173f c000- 7f 0f 17400000 ---p 00000000 00:00 O
Li nes ontted.

The following is a format of memory map in the error log.

40049000- 4035c000 r-xp 00000000 03:05 824473 /jdk1.5/jrel/libli386/client/
['ibjvmso
[<--mmmmmmeee-- > A A A A |

Menory region |

I

I

Permssion --- + |
r: read |
W owite |
X: execute |
p: private |
s: share |
I

File of fset

Major ID and minor |ID of
the device where the file
is located (i.e. /dev/hdab)

i node nunber

File name

The example shows the memory map output and each library has two virtual memory
regions: one for code and one for data. The permission for the code segment is
marked with r - xp (readable, executable, private), and the permission for the data
segment is r w- p (readable, writable, private).

The Java heap is already included in the heap summary earlier in the output, but it can
be useful to verify that the actual memory regions reserved for the heap match the
values in the heap summary and that the attributes are set to r wxp.

Thread stacks usually show up in the memory map as two back-to-back regions, one
with permission - - - p (guard page) and one with permission rwxp (actual stack space).
In addition, it is useful to know the guard page size or stack size. For example, in this
memory map, the stack is located from 4127b000 to 412fb000.

On a Windows system, the memory map output is the load and end address of each
loaded module, as shown in the following example.

Dynamic libraries:

0x00400000 - 0x0040c000 c:\j dk6\ bi n\j ava. exe

0x77f50000 - Ox77ff7000 C:\ W NDOAB\ Syst enB2\ ntdl | . dl |
0x77e60000 - 0x77f46000 C: \ W NDOAB\ syst enB2\ ker nel 32. dI |
0x77dd0000 - 0x77e5d000 C: \ W NDOAB\ syst enB2\ ADVAPI 32. dI |
0x78000000 - 0x78087000 C: \ W NDOAB\ syst enB2\ RPCRT4. dI |
0x77¢10000 - 0x77c63000 C: \ W NDOAB\ syst enB2\ MSVCRT. dI |
0x08000000 - 0x08183000 c:\jdké\jre\binlclient\jvmadll
0x77d40000 - 0x77dcc000 C: \ W NDOAB\ syst enB2\ USER32. dI |
0x7e090000 - 0x7e0d1000 C: \ W NDOAB\ syst enB2\ GDI 32. d |

A-12

Appendix A
Process Section Format

0x76b40000 - 0x76b6c000 C: \ W NDOAB\ Syst enB2\ W NWM dl |
0x6d2f 0000 - 0x6d2f 8000 c:\jdk6\jre\bin\hpi.dll

0x76bf 0000 - 0x76bfb000 C: \ W NDOAB\ Syst enB2\ PSAPI . DLL
0x6d680000 - 0x6d68c000 c:\jdké\jre\bin\verify.dll
0x6d370000 - 0x6d38d000 c:\jdké\jre\bin\java.dll
0x6d6a0000 - 0x6d6af 000 c:\jdké\jre\bin\zip.dll
0x10000000 - 0x10032000 C:\ bugs\ crash2\ App. dl |

VM Arguments and Environment Variables

The next information in the error log is a list of VM arguments, followed by a list of
environment variables, as shown in the following example.

VM Argunent s:

jvmargs:

java_comand: MApp

java _class path (initial):
Launcher Type: SUN STANDARD

Loggi ng:

Log output configuration:

#0: stdout all=warning uptine,level,tags
#1. stderr all=off uptine,level,tags

Environnment Vari abl es:

PATH=/ usr/ 1 ocal / shin:/usr/local /bin:/usr/sbin:/usr/bin:/shin:/bin
SHELL=/ bi n/ bash

DI SPLAY=I ocal host: 10. 0

ARCH=i 386

Note:

The list of environment variables is not the full list but rather a subset of the
environment variables that are applicable to the Java VM.

Signal Handlers

On the Linux operating system, the next information in the error log is the list of signal
handlers, as shown in the following example.

Si gnal Handl ers:

SI GSEGV: [bj vm so+0xd48840],

sa_mask[0]=11111111011111111101111111111110, sa_f|ags=SA RESTART| SA S| G NFO
SIGBUS: [Iibjvm so+0xd48840], sa mask[0]=11111111011111111101111111111110,
sa_fl ags=SA_RESTART| SA_SI G NFO

SIGFPE: [Ilibjvm so+0xd48840], sa nmask[0]=11111111011111111101111111111110,
sa_fl ags=SA_RESTART| SA_SI G NFO

SIGPI PE: [libjvm so+0xh60080],

sa_mask[0]=11111111011111111101111111111110, sa_f|ags=SA RESTART| SA S| G NFO
SI GXFSZ: [1ibjvm so+0xbh60080],

sa_mask[0]=11111111011111111101111111111110, sa_f|ags=SA RESTART| SA S| G NFO
SIGLL: [libjvm so+0xd48840], sa nmask[0]=11111111011111111101111111111110,

ORACLE A-13

Appendix A
System Section Format

sa_flags=SA_RESTART| SA_SI G NFO

SI GUSR2: [1ibjvm so+0xb5f f 40],

sa_mask[0] =00000000000000000000000000000000, sa_f|ags=SA RESTART| SA S| G NFO
SIGHUP: [libjvm so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART| SA_SI G NFO

SIGNT: [libjvm so+0xb60150], sa_mask[0]=11111111011111111101111111111110,
sa_flags=SA_RESTART| SA_SI G NFO

SI GTERM [1i bj vm so+0xb60150],

sa_mask[0]=11111111011111111101111111111110, sa_flags=SA RESTART| SA S| G NFO
SIGQUIT: [libjvm so+0xb60150],

sa_mask[0]=11111111011111111101111111111110, sa_flags=SA RESTART| SA S| G NFO

System Section Format

ORACLE

The final section in the error log is the system information. The output is operating-
system-specific but in general includes the operating system version, CPU information,
and summary information about the memory configuration.

The following example shows output on a Linux operating system.

SYSTEM

CS: DI STRI B_I D=Ubunt u

DI STRI B_RELEASE=12. 04

DI STRI B_CODENAME=pr eci se

DI STRI B_DESCRI PTI ON="Ubunt u 12.04 LTS

unane: Li nux 3. 2. 0-24-generic #39-Ubuntu SVMP Mon May 21 16:52:17 UTC 2012
x86_64

libc:glibc 2.15 NPTL 2.15

rlimt: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS infinity
| oad average:0.46 0.33 0.27

[proc/ mem nf o:

MenTot al : 148545440 kB
MenFr ee: 1020964 kB
Buf fers: 29600728 kB
Cached: 86607768 kB
SwapCached: 16112 kB
Active: 52272944 kB
I nactive: 64862992 kB
Active(anon): 314080 kB
I nactive(anon): 616296 kB

Active(file): 51958864 kB
Inactive(file): 64246696 kB
Unevi ct abl e: 16 kB
M ocked: 16 kB
SwapTot al : 1051644 kB
SwapFr ee: 976092 kB
Dirty: 40 kB
Wit eback: 0 kB
AnonPages: 912404 kB
Mapped: 95804 kB
Shmem 2936 kB
Sl ab: 28625980 kB

A-14

Appendix A
System Section Format

SRecl ai mabl e: 28337400 kB

SUnrecl ai m 288580 kB
Ker nel St ack: 6040 kB
PageTabl es: 42524 kB
NFS_Unst abl e: 0 kB
Bounce: 0 kB
WitebackTnp: 0 kB
CommitLimt: 75324364 kB

Conmitted AS: 6172612 kB
Vmal | ocTot al : 34359738367 kB

Vimal | ocUsed: 681668 kB
Vimal | ocChunk: 34282379392 kB
Har dwar eCor r upt ed: 0 kB
AnonHugePages: 0 kB
HugePages_Tot al : 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Sur p: 0
Hugepagesi ze: 2048 kB
Di rect Map4k: 171520 kB
Di rect Map2M 8208384 kB

Di rect MaplG 142606336 kB

CPU:total 24 (initial active 24) (6 cores per cpu, 2 threads per core)
famly 6 nodel 44 stepping 2, cnov, cx8, fxsr, mmx, sse, sse2, sse3,
ssse3, sse4d.l, ssed.2, popent, aes, clnmul, ht, tsc, tscinvbit, tscinv
CPU Model and flags from/proc/cpuinfo:

model name : Intel (R) Xeon(R) CPU X5675 @3.07GH

flags : fpu vme de pse tsc nsr pae ncte cx8 apic sep ntrr pge nta
cnov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tmpbe syscall nx
pdpelgb rdtscp | mconstant _tsc arch_perfmon pebs bts rep_good nopl

xt opol ogy nonstop_tsc aperfnperf pni pclmlqdg dtes64 nonitor ds_cpl vnx
smx est tn? ssse3 cx16 xtpr pdcmpcid dca ssed 1 ssed 2 popcnt aes |ahf _Im
ida arat epb dts tpr_shadow vnm flexpriority ept vpid

Menory: 4k page, physical 148545440k(1020964k free), swap 1051644k(976092k
free)

vminfo: Java Hot Spot (TM 64-Bit Server VM (9-ea+167) for |inux-and64 JRE
(9-ea+167), built on Apr 27 2017 00:28:45 by "javare" with gcc 4.9.2

On the Linux, the operating system, information is in the file / et ¢/ *r el ease. This file
describes the kind of system the application is running on, and in some cases, the
information string might include the patch level. Some system upgrades are not
reflected in the / et c/ *r el ease file. This is especially true on the Linux system,
where the user can rebuild any part of the system.

On the Linux system, the unane system call is used to get the kernel name. The | i bc
version and the thread library type are also printed, as shown in the following example.

uname: Li nux 3. 2.0-24-generic #39-Ubuntu SMP Mon May 21 16:52:17 UTC 2012
x86_64

ORACLE A-15

ORACLE

Appendix A
System Section Format

libc:glibc 2.15 NPTL 2.15
| <- glibc version -><-- pthread type --3

On Linux, there are three possible thread types, namely | i nuxt hreads (fi xed
stack), l'i nuxthreads (floating stack), and NPTL. They are normally installed in /
lib,/lib/i686,and/lib/tls.

It is useful to know the thread type. For example, if the crash appears to be related to
pt hr ead, then you might be able to work around the issue by selecting a different

pt hread library. A different pt hr ead library (and | i bc) can be selected by setting
LD LI BRARY_PATH or LD_ASSUME_KERNEL.

The gl i bc version usually does not include the patch level. The command rpm -q
gl i bc might provide more detailed version information.

On the Linux operating system, the next information is the rli m t information.

" Note:

The default stack size of the VM is usually smaller than the system limit, as
shown in the following example.

rlimt: STACK 8192k, CORE infinity, NPROC 1160369, NOFILE 4096, AS
infinity
| | | |

virtual menory (-v)

| | | +--- max
open files (ulimt -n)

| | Hommme e max user
processes (ulimt -u)

| 5 55500000000500000000006500060 core dunp
size (ulimt -c)

o m e e e e e stack size

(ulimt -s)
| oad average: 0.04 0.05 0.02

rlimt: STACK 8192k, CORE Ok, NPROC 4092, NOFILE 1024, AS infinity

| | | | virtual
menory (-v)

| | | +--- max open files
(ulimt -n)

| | Fomee - max user processes
(ulimt -u)

| e R E T LR core dunp size
(ulimt -c)

T T T stack size
(ulimt -s)
| oad average:0.04 0.05 0.02

A-16

ORACLE

Appendix A
System Section Format

The next information specifies the CPU architecture and capabilities identified by the
VM at startup, as shown in the following example.

CPU.total 24 (initial active 24) (6 cores per cpu, 2 threads per core)
famly 6 nodel 44 stepping 2, cnov, cx8, fxsr, mx

| | | <----- CPU features ---->

| -
processor fanily (1A32 only):
| 3.
i 386
| 4 -
i 486
| 5 .
Pentium
| 6 -
PentiunmPro, PIl, PIII
| 15 -
Pentium 4

Fom e Total nunmber of CPUs

Table A-4 shows the possible CPU features on a SPARC system.

Table A-4 SPARC Features
-

SPARC Feature Description

has_v8 Supports v8 instructions.

has_v9 Supports v9 instructions.

has_vi sl Supports visualization instructions.

has_vis2 Supports visualization instructions.

is ultra3 UltraSparc Il1.

no-nul di v No hardware integer multiply and divide.

no-f snul d No multiply-add and multiply-subtract instructions.

Table A-5 shows the possible CPU features on an Intel/lA32 system.

Table A-5 Intel/lA32 Features

| IntelllA32 Feature Description |

| cnov Supports cmov instruction. |

A-17

ORACLE

Appendix A
System Section Format

Table A-5 (Cont.) Intel/lA32 Features

IntelllA32 Feature Description

cx8 Supports cmpxchg8b instruction.

fxsr Supports fxsave and fxrstor.

mx Supports MMX.

sse Supports SSE extensions.

sse2 Supports SSE2 extensions.

ht Supports Hyper-Threading Technology.

Table A-6 shows the possible CPU features on an AMD64/EM64T system.

Table A-6 AMDG64/EM64T Features
]

AMDG64/EM64T Feature Description

and64 AMD Opteron, Athlon64, and so forth.
enb4t Intel EM64T processor.

3dnow Supports 3DNow extension.

ht Supports Hyper-Threading Technology.

The next information in the error log is memory information, as shown in the following
example.

unused swap space
total amount of swap space |
unused physical nenory | |
total amount of physical nenory | | |
page size | | | |
v v v v v
Menory: 4k page, physical 513604k(11228k free), swap 530104k(497504k free)

Some systems require swap space to be at lease twice the size of real physical
memory, whereas other systems do not have any requirements. As a general rule, if
both physical memory and swap space are almost full, then there is good reason to
suspect that the crash was due to insufficient memory.

On Linux system, the kernel may convert most of unused physical memory to file
cache. When there is a need for more memory, the Linux kernel will give the cache
memory back to the application. This is handled transparently by the kernel, but it
means that the amount of unused physical memory reported by the fatal error handler
could be close to zero when there is still sufficient physical memory available.

The final information in the SYSTEM section of the error log is vm i nf 0, which is a
version string embedded in | i bj vm so/j vm dl | . Every Java VM has its own unique
vm i nf o string. If you are in doubt about whether the fatal error log was generated by a
particular Java VM, check the version string.

A-18

Java 2D Properties

This appendix presents properties that can be useful in troubleshooting Java 2D.

This appendix contains the following sections:

Properties

Properties on Linux

Properties on Windows

on Linux

List of Java 2D properties on Linux.

Table B-1 describes the default values of some useful properties on the Linux
platform.

Table B-1 Default Java 2D Properties on Linux

Setup DGA SHM Pixmaps OnScreen OffScreen

Linux, SunRay, VNC Off On On X11/MITSHM Shared/Server
Pixmaps

J2SE 1.4 or greater: Remote X Off Off On X11 Server Pixmaps

server, ssh

J2SE 1.3.1 or less: Remote X Off Off Off X11 Software

server, ssh

The following list explains how to change the defaults.

ORACLE

The X11 pipeline is the default pipeline for Linux. Change this default as follows:
— -Dsun.java2d. opengl =t r ue — Attempt to enable the OpenGL pipeline.
The use of DGA is controlled as follows:
— NO J2D DGA unset — Use DGA, if available.
— NO_J2D DGA set — Disable the use of DGA.
MIT Shared Memory Extension (SHM) is controlled as follows:
— To use SHM, if available, specify either one of the following properties:
NO J2D_M TSHM unset
J2D_USE_M TSHWEt T ue
— To not use SHM, specify either one of the following properties:
NO J2D_M TSHM set
J2D USE_M TSHMEf al se

The general use of pixmaps is controlled as follows:

B-1

Appendix B
Properties on Windows

— -Dsun.java2d. pnof f screen unset — Use pixmaps if DGA is not available.
— -Dsun.java2d. pnof f screen=t r ue — Force the use of pixmaps.
— -Dsun.java2d. pnof f scr een=f al se — Disable the use of pixmaps.
* The use of Shared and Server pixmaps is controlled as follows:
— J2D PI XMAPS unset — Use both types.
— J2D Pl XMAPS=shar ed — Use only shared memory pixmaps.
— J2D_PI XMAPS=sser ver — Use only server-side pixmaps.
* The choice of default visual is controlled as follows:
— FORCEDEFVI S unset (default) — Use the best visual available.

— FORCEDEFVI S set to a hexadecimal value — Use the visual whose ID is the
hexadecimal value.

— FORCEDEFVI S set to any other value — Use the default visual.

Properties on Windows

List of useful properties on Windows.
The following list describes some useful properties on Windows platforms.

* The DirectDraw/GDI pipeline is the default pipeline for Windows. Change this
default as follows:

- Dsun. j ava2d. noddr aw=t r ue — Disable the use of the DirectDraw pipeline.
GDI will be used instead.

— -Dsun.java2d. noddr aw=f al se — Enable the use of the DirectDraw pipeline.

-Dsun. j ava2d. d3d=f al se — Disable the use of the Direct3D pipeline.
— J2D D3D=f al se — Disable the use of the Direct3D pipeline.

-Dsun. j ava2d. d3d=t r ue — Enable the use of the Direct3D pipeline.
— J2D _D3D=t rue — Enable the use of the Direct3D pipeline.
e Control the use of the built-in surface punting mechanism as follows:
— -Dsun.java2d. ddf or cedr amrt r ue — Keep volatile images in VRAM.
* Control the use of DirectDraw blit operations as follows:

— -Dsun.java2d. ddbl it =f al se — Disable the use of DirectDraw blit operations.
GDI blits will be used instead.

ORACLE B-2

Environment Variables and System
Properties

This appendix describes environment variables and system properties that can be
useful for troubleshooting problems with the Java HotSpot VM.

Submit a Bug Report contains information on collecting environment variables in
Environment Variables.

This appendix contains the following sections:

e The JAVA_TOOL_OPTIONS Environment Variable
* The java.security.debug System Property

The JAVA _TOOL_OPTIONS Environment Variable

In many environments, the command line is not readily accessible to start the
application with the necessary command-line options.

This often happens with applications that use embedded VMs (meaning they use the
Java Native Interface (JNI) Invocation API to start the VM), or where the startup is
deeply nested in scripts. In these environments the JAVA TOOL_OPTI ONS environment
variable can be useful to augment a command line.

Note:

In some cases, this option is disabled for security reasons.

This environment variable allows you to specify the initialization of tools, specifically
the launching of native or Java programming language agents using the - agent|ib or
-j avaagent options.

This variable can also be used to augment the command line with other options for
diagnostic purposes. For example, you can supply the - XX: OnEr r or option to specify a
script or command to be executed when a fatal error occurs.

Because this environment variable is examined at the time, that the JNI _Cr eat eJavaVM
function is called, it cannot be used to augment the command line with options that
would normally be handled by the launcher, for example, VM selection using the -
client option or the - server option.

ORACLE C-1

Appendix C
The java.security.debug System Property

The java.security.debug System Property

ORACLE

This system property controls whether the security system of the Java runtime prints
trace messages during execution.

This option can be useful when diagnosing issues involving the security libraries in the
JDK.

To learn more about the j ava. security. debug system property, see Troubleshooting
Security in the Java Platform, Standard Edition Security Developer's Guide.

C-2

Command-Line Options

This appendix describes some command-line options that can be useful when
diagnosing problems with the Java HotSpot VM.

This appendix contains the following sections:

« Java HotSpot VM Command-Line Options

e Other Command-Line Options

Java HotSpot VM Command-Line Options

ORACLE

Command-line options that are prefixed with - XX are specific to the Java HotSpot
Virtual Machine. Many of these options are important for performance tuning and
diagnostic purposes, and are therefore described in this appendix.

To know more about all possible - XX options, see the Java HotSpot VM Options.

You can dynamically set, unset, or change the value of certain Java VM flags for a
specified Java process using the jinfo -fl ag command. See The jinfo Utility and the
JConsole utility.

For a complete list of these flags, use the MBeans tab of the JConsole utility. See the
list of values for the Di agnost i cOpt i ons attribute of the Hot Spot Di agnosti ¢ MBean,
which is in the com sun. managenent domain. The following are the flags:

e HeapDunpOnQut OF Menor yEr r or
* HeapDunpPat h

e PrintGC

* PrintGCDetails

e PrintGCTi meSt anps

e PrintC assH stogram

e PrintConcurrentLocks

The -XX:HeapDumpOnOutOfMemoryError Option

This option tells the Java HotSpot VM to generate a heap dump when an allocation
from the Java heap or the permanent generation cannot be satisfied. There is no
overhead in running with this option, so it can be useful for production systems where
the Qut Of Menor yEr r or exception takes a long time to appear.

You can also specify this option at runtime with the MBeans tab in the JConsole utility.
The following example shows the result of running out of memory with this flag set.
$ java - XX +HeapDunpOnQut OF Meror yError - m256m - mk512m ConsuneHeap

java.lang. Qut O MenoryError: Java heap space
Dunping heap to java_pid2262. hprof ...

D-1

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Appendix D
Java HotSpot VM Command-Line Options

Heap dump file created [531535128 bytes in 14.691 secs]

Exception in thread "main" java.lang. Qut Of MenoryError: Java heap space
at ConsunmeHeap$Bi gbj ect . (ConsuneHeap. j ava: 22)
at ConsumeHeap. mai n(ConsuneHeap. j ava: 32)

The ConsuneHeap fills the Java heap and runs out of memory. When the

j ava. | ang. Qut Of Menor yError exception is thrown, a heap dump file is created. In this
case the file is 507 MB and is created with the name j ava_pi d2262. hpr of in the
current directory.

By default, the heap dump is created in a file called j ava_pi dpi d. hpr of in the working
directory of the VM, as in the example above. You can specify an alternative file name
or directory with the - XX: HeapDunpPat h= option. For example - XX: HeapDunpPat h=/

di sk2/ dunps will cause the heap dump to be generated in the / di sk2/ dunps
directory.

The -XX:OnError Option

When a fatal error occurs, the Java HotSpot VM can optionally execute a user-
supplied script or command. The script or command is specified using the -

XX: OnError =st ri ng command-line option, where string is a single command, or a list
of commands separated by semicolons. Within this string, all occurrences of % are
replaced with the current PID, and all occurrences of %%are replaced by a single %
The following examples demonstrate how this option can be used when launching a
Java application named MyApp with the j ava launcher.

e java -XXOnError="cat hs_err_pid%.log | mail support@xanple.con
My App

In the example above, the contents of the fatal error log file are mailed to a support
alias when a fatal error occurs.

* java -XX OnError="gdb - %" MApp

On Linux, the gdb command launches the debugger. In the example above, the
gdb debugger is launched and attached to the current process when an
unexpected error is encountered.

e java - XX OnError="userdunp. exe %" MApp

On Windows, the user dunp. exe utility creates a crash dump of the specified
process. The utility does not ship with Windows and should be downloaded from
the Microsoft website as a part of the Microsoft OEM Support Tools package.

In the example, the user dunp. exe utility is executed to create a core dump of the
current process in case of a fatal error.

Note:

The example assumes that the path to the user dunp. exe utility is defined
in the PATH variable.

To know more about creating crash dumps on Windows, see Collect Crash Dumps on
Windows.

ORACLE D-2

Appendix D
Java HotSpot VM Command-Line Options

The -XX:ShowMessageBoxOnError Option

When this option is set and a fatal error occurs, the HotSpot VM will display
information about the fatal error and prompt the user to specify whether the native
debugger is to be launched. In the case of the Linux operating system, the output and
prompt are sent to the application console (standard input and standard output). In the
case of Windows, a Windows message box pops up.

The following example shows a fatal error on a Linux system.

Unexpected Error

SI GSEGV (0xb) at pc=0x2000000001164dbl, pid=10791, tid=1026
Do you want to debug the problenf
To debug, run 'gdb /proc/ 10791/ exe 10791"; then switch to thread 1026

Enter 'yes' to launch gdb automatically (PATH nust include gdb)
O herwi se, press RETURN to abort. ..

In this case, a SI GSEGV error occurred, and the user is prompted to specify whether the
gdb debugger is to be launched to attach to the process. If the user entersy or yes,
thengdb will be launched (assuming it is set in the PATH variable).

On Windows a message box is displayed. If the user clicks Yes, the VM will attempt to
start the default debugger. This debugger is configured by a registry setting which is
described in Collect Crash Dumps on Windows. If Microsoft Visual Studio is installed,
the default debugger is typically configured to be nsdev. exe.

In the above example, the output includes the PID (pi d=10791) and also the thread ID
(tid=1026). If the debugger is launched, one of the initial steps in the debugger might
be to select the thread and get its stack trace.

When the process is waiting for a response, it is possible to use other tools to get a
crash dump or query the state of the process.

On Windows, a Dr. Watson crash dump can be obtained using the user dunp or wi ndbg
programs. The wi ndbg utility is included in Microsoft's Debugging Tools for Windows
and is described in Collect Crash Dumps on Windows. In wi ndbg, select the Attach to
a Process menu option, which displays the list of processes and prompts for the PID.
The HotSpot VM displays a message box, which includes the PID. After you selected
the PID, the . dunp /f command can be used to force a crash dump. Figure D-1 is an
example crash dump created in a file named cr ash. dunp.

ORACLE D-3

Appendix D
Java HotSpot VM Command-Line Options

Figure D-1 Example of a Crash Dump Created by windbg

Pad 2012 - Wbt A 001 1S ;

[Hedload . 77440000 77dec00d ©. elNCOWS~systanii~UZERI2, dll
Hodload . Fe 50000 7e0d1000 € FINDOWSoyotewilGDIi2 diL
HodLosd © 7ELAD0D0D 7ob&c000 C© SVINDOFSSoratanIWVINEN d1L
HedLoad© EAI{0000 €425000 ogdkl, Sgeerbinthpi £1]
Wodloed - PELEQDO0 PEREBOD0 O ~WINDORS Serstenii~FSAPI.DLL
fedlaad - &d6E0000 Edéde0d a:widkl. Svivesbinwverify dll
HedLosd . EA)T0000 6402000 o pdkl, Sgeerbintjava dll
Medload - GEFADDOD fARafOOD = “jdkl. Sngrenbinssip. dil
HodLoad: 670000 dids000 Cohjdkl. Svjrenbintavi.dil
HedLazad: 7HO0000 73023000 C: SINDORS SersranITVIRSPOOL DRV
lcaload © FRI30000 FRA4c0DD © “FINDOTSSyetaniiINMIZ 411
[Hedload: F7150000 77244000 Co FINDORS-systendl-cled2 41l
Hedload: S1OCO000 51044000 C.WINDORS Swstendl ddray d11
HedLoad © 7Ibc0000 73bet00D COFINDOWSSrstendl DOIMANIZ 411
HedLoad: ScdB0000 Sclci0Dd CoWINDOWS Sysvew i DIDINTO0 DLL
HedLead . SJ0C0000 E30L4000 O WINDORS Srstendl SynTlFos dll
Hedload o FredOp00 77o07000 COAFINDORS-arstenii VERSIOK 411
[Medload: 77360009 PPbcalld CoFINDORS.oystendlehelldd. dl1
[WedLaad : 70470000 Thadd00N O SINDORS arsran ISHLTIPT 411
fHodload: F1950009 Tlad4Q9D o SWINDOWS-HiaSuSxbé_Miceosolt. Windors Conmon-Controle o5Ribalddcctildi_&.0, J600. 1505 x-
[Hedlead: 77140000 ?’?]rbﬁl:m CONINDOR s ven 3 nconon 12 . d11

HedToad . E4IB0000 &d Cnfilk], Svjratbinslontransgar dlL

Hodload: 64430004 $dufﬁtu.‘| Cingdkl, Sngverbinvipeg. 41l

HodLoad : 64530000 €4543000 Cougdil, Sviperbintaat il

[Hodload: 7labf000 Tlaci00) o FINDOFS-Srsvendi=VE2 32

Hedload: Flashi0d 7lsadtdd \?Iﬂm%miz““ﬁﬂi dll

[WedLowd: 6d530000 £d4553000 \;d.'kl. 5\3“\11111‘;:& gil

{fac.Jac): Eveak instyuctios = code SI000002 [first chamca)

l-a:-?‘lﬂﬂll)ﬂ ebua=E0000001 ecx=000 U‘JN educ L0000 eea~(R00000L #.-ﬁﬂ&ﬁﬂﬂﬂs

ips 77175858 epsd336iTos ebpalIBEEdEd joplsD rv up &l pl Trona po nc

=eeJ0LlE cee 0023 dee0023 es~0033 Lov00)E gue(000 et LeQQC0024E

waw EREOR: Smbol file cculd not be found, Defanlted to expore synbols for CoVIRDINE Systemdirandll 411 -

nidll ! [bgSreakFoiat

TIETRAGE o int 3

0:613

0:013 .dunp A user disp

® duap “ma iz the recomwnend neilod of creating & coaplets memory dusp "
|* of a woor mode procoss.
.."I"‘I'-t.-'..I....t“i.""-.I"..""'".‘...'...."'"'*'..IIll.'.“t-f'...‘.
Creating weer duep = wmar [wll duap

upp successiully viitten

i | J _'IE

s

In general, the - XX: +ShowMessageBoxOnErr or option is more useful in a development
environment where the debugger tools are available. The - XX: OnEr r or option is more
suitable for production environments where a fixed sequence of commands or scripts
are executed when a fatal error occurs.

Other -XX Options
Several other - XX command-line options can be useful when troubleshooting:

o - XX OnQut Of MenoryError=string

This option can be used to specify a command or script to execute when an
Qut OF Menor yErr or exception is thrown.

e -XX ErrorFile=filename

This option can be used to specify a location for the fatal error log file. See
Location of Fatal Error Log.

e -XxX: HeapDunpPat h=pat h

This option can be used to specify a location for the heap dump. See The -
XX:HeapDumpOnOutOfMemoryError Option.

e - XX MaxPer nfSi ze=si ze

This option can be used to specify the size of the permanent generation memory.
See Understand the OutOfMemoryError Exception.

e - XX: +Print CommandLi neFl ags

ORACLE"

D-4

Appendix D
Other Command-Line Options

This option can be used to print all the VM command-line flags. See Collect Data
for a Bug Report.

e - XX +Print Concurrent Locks

This option can be used to cause the Control+Break handler to print a list of
concurrent locks owned by each thread.

e -XX +Printd assHi st ogram

This option can be used to cause the Control+Break handler to print a heap
histogram.

o -XX +Print GCDetails and- XX +Print GCTi meSt anps

These options can be used to print detailed information about garbage collection.
See The -verbose:gc Option.

e - XX: +UseConcMar kSweepGC , - XX: +UseSeri al GCand - XX: +UseParal | el GC

These options can be used to specify the garbage collection policy to be used.
See Working Around Crashes During Garbage Collection.

Other Command-Line Options

In addition to the - XX options, many other command-line options can provide
troubleshooting information.

This section describes a few of these options.

The -Xcheck:jni Option

This option is useful when diagnosing problems with applications that use the Java
Native Interface (JNI). Sometimes, bugs in the native code can cause the HotSpot VM
to crash or behave incorrectly.

The - Xcheck: j ni option is added to the command line that starts the application, as in
the following example:

java - Xcheck:jni M/App

The - Xcheck: j ni option causes the VM to do additional validation on the arguments
passed to JNI functions.

Note:

The option is not guaranteed to find all invalid arguments or diagnose logic
bugs in the application code, but it can help diagnose a large humber of such
problems.

When an invalid argument is detected, the VM prints a message to the application
console or to standard output, prints the stack trace of the offending thread, and stops
the VM.

ORACLE D-5

ORACLE

Appendix D
Other Command-Line Options

The following example shows a nul | value was incorrectly passed to a JNI function
that does not allow a nul | value.

FATAL ERROR in native nmethod: Null object passed to JNI

at java.net.PlainSocket | npl.socket Accept (Native Method)

at java.net.PlainSocket | npl.accept (Pl ai nSocket | npl . j ava: 343)

- locked <0x450b9f 70> (a java. net. Pl ai nSocket | npl)

at java.net. ServerSocket.inpl Accept (Server Socket . j ava; 439)

at java.net. ServerSocket.accept (Server Socket . j ava: 410)

at org.apache. tontat. servi ce. Pool TcpEndpoi nt. accept Socket
(Pool TcpEndpoi nt . j ava; 286)

at org.apache. tontat. service. Tcp\Wr ker Thread. runl t
(Pool TcpEndpoi nt . j ava; 402)

at org.apache.toncat.util. ThreadPool $Control Runnabl e. run
(ThreadPool . j ava: 498)

at java.lang. Thread. run(Thread. j ava: 536)

The following example shows an incorrect argument that was provided to a JNI
function that expects a j fi el dl Dargument.

FATAL ERROR in native nethod: Instance field not found in JNI get/set

field operations
at java.net.PlainSocket | npl.socketBind(Native Mt hod)
at java.net.PlainSocket | npl.bind(PlainSocket!npl.java: 359)
- locked <Oxf082f290> (a java.net.PlainSocket | npl)
at java.net. Server Socket . bi nd(Server Socket . j ava: 318)
at java.net. Server Socket . <init>(Server Socket.java: 185)
at jvnD03a. <init>(jvn003.java: 190)
at jvnD03a. <init>(jvnd03.java: 151)
at jvn003. run(jvn003.java: 51)
at jvn003. mai n(j vnDO03. j ava: 30)

The following are examples of other problems that the - Xcheck: j ni option can help
diagnose:

Cases where the JNI environment for the wrong thread is used
Cases where an invalid JNI reference is used

Cases where a reference to a non-array type is provided to a function that requires
an array type

Cases where a non-static field ID is provided to a function that expects a static
field ID

Cases where a JNI call is made with an exception pending

In general, all errors detected by the - Xcheck: j ni option are fatal errors (that is, the
error is printed and the VM is stopped). There is one exception to this behavior, when
a JNI call is made within a JNI critical region. In this case, the following non-fatal
warning message is printed, as shown in the following example.

VWarning: Calling other JNI functions in the scope of
Get/Rel easePrimtiveArrayCritical or CGet/ReleaseStringCritical

D-6

ORACLE

Appendix D
Other Command-Line Options

A JINI critical region is created when native code uses the JNI functions
CetPrimtiveArrayCritical orGetStringCritical to obtain a reference to an array
or string in the Java heap. The reference is held until the native code calls the
corresponding release function. The code between the get and release is called a JNI
critical section, and during that time, the HotSpot VM cannot bring the VM to a state
that allows garbage collection to occur. The general recommendation is not to use
other JNI functions within a JNI critical section, and in particular any JNI function that
could potentially cause a deadlock. The warning printed above by the - Xcheck: j ni
option is thus an indication of a potential issue; it does not always indicate an
application bug.

The -verbose:class Option

This option enables logging of class loading and unloading.

The -verbose:gc Option

This option enables logging of garbage collection (GC) information. It can be combined
with other HotSpot VM-specific options such as - XX: +Pri nt GCDet ai | s and - XX:
+Pr i nt GCTi meSt anps to get further information about GC. The information output
includes the size of the generations before and after each GC, total size of the heap,
the size of objects promoted, and the time taken.

More information about these options, along with detailed information about GC
analysis and tuning are described in the GC Portal article.

The - ver bose: gc option can be dynamically enabled at runtime using the
management APl or JVM TI. See Custom Diagnostic Tools.

The JConsole monitoring and management tool can also enable or disable the option
when the tool is attached to a management VM. See JConsole.

The -verbose:jni Option

This option enables the logging of JNI. When a JNI or native method is resolved, the
HotSpot VM prints a trace message to the application console (standard output). It
also prints a trace message when a native method is registered using the JNI

Regi ster Nat i ve function. The - ver bose: j ni option can be useful when diagnosing
issues with applications that use native libraries.

D-7

http://www.oracle.com/technetwork/articles/javase/gcportal-136937.html

Summary of Tools in This Release

ORACLE

This appendix prvoides a summary of tools available in the current release of the JDK.

All of the JDK troubleshooting tools that are described in this document are available
on Linux.

The following JDK troubleshooting tools are also available on Windows:

Flight Recorder
jcmd

JConsole

Java Virtual Machine
jdb

jinfo

j map

ips

jrunscript

j stack

j stat

jstatd

vi sual gc

E-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I General Java Troubleshooting
	1 Prepare Java for Troubleshooting
	Set Up Java for Troubleshooting
	Enable Options and Flags for JVM Troubleshooting
	Gather Relevant Data
	Make a Java Application Easier to Debug

	2 Diagnostic Tools
	Diagnostic Tools Overview
	Flight Recorder
	About Flight Recordings
	Produce a Flight Recording
	Inspect a Flight Recording

	The jcmd Utility
	Useful Commands for the jcmd Utility
	Troubleshoot with the jcmd Utility

	Native Memory Tracking
	Use NMT to Detect a Memory Leak
	How to Monitor VM Internal Memory
	NMT Memory Categories

	JConsole
	Troubleshoot with the JConsole Tool
	Monitor Local and Remote Applications with JConsole

	The jdb Utility
	Troubleshoot with the jdb Utility

	The jinfo Utility
	Troubleshooting with the jinfo Utility

	The jmap Utility
	Heap Configuration and Usage
	Heap Histogram
	Class Loader Statistics

	The jps Utility
	The jrunscript Utility
	The jstack Utility
	Troubleshoot with the jstack Utility
	Stack Trace from a Core Dump
	Mixed Stack

	The jstat Utility
	The visualgc Tool
	Control+Break Handler
	Thread Dump
	Thread States for a Thread Dump
	Detect Deadlocks
	Heap Summary

	Native Operating System Tools
	Troubleshooting Tools Based on the Operating System
	Probe Providers in Java HotSpot VM

	Custom Diagnostic Tools
	The java.lang.management Package
	The java.lang.instrument Package
	The java.lang.Thread Class
	JVM Tool Interface
	Java Platform Debugger Architecture

	Postmortem Diagnostic Tools
	Hung Processes Tools
	Monitoring Tools
	Other Tools, Options, Variables, and Properties
	The jstatd Daemon

	3 Troubleshoot Memory Leaks
	Debug a Memory Leak Using Flight Recorder
	Understand the OutOfMemoryError Exception
	Troubleshoot a Crash Instead of OutOfMemoryError
	Diagnose Leaks in Java Language Code
	Get a Heap Histogram
	Monitor the Objects Pending Finalization

	Diagnose Leaks in Native Code
	Track All Memory Allocation and Free Calls
	Track All Memory Allocations in the JNI Library
	Track Memory Allocation with Operating System Support

	4 Troubleshoot Performance Issues Using Flight Recorder
	Flight Recorder Overhead
	Find Bottlenecks
	Garbage Collection Performance
	Synchronization Performance
	I/O Performance
	Code Execution Performance

	Part II Debug JVM Issues
	5 Troubleshoot System Crashes
	Determine Where the Crash Occurred
	Crash the Native Code
	Crash in the Compiled Code
	Crash in the HotSpot Compiler Thread
	Crash in the VM Thread
	Crash Due to Stack Overflow

	Find a Workaround
	Working Around Crashes in the HotSpot Compiler Thread or Compiled Code
	Working Around Crashes During Garbage Collection
	Working Around Crashes Caused by Class Data Sharing

	Microsoft Visual C++ Version Considerations

	6 Troubleshoot Process Hangs and Loops
	Diagnose a Loop Process
	Diagnose a Hung Process
	Deadlock Detected
	Deadlock Not Detected
	No Thread Dump

	7 Handle Signals and Exceptions
	Handle Signals on Linux and macOS
	Handle Exceptions on Windows
	Signal Chaining
	Handle Exceptions Using the Java HotSpot VM
	Console Handlers
	Signals Used in Linux and macOS

	Part III Debug Core Library Issues
	8 Time Zone Settings in the JRE
	Native Time Zone Information and the JRE
	Determine the Time Zone Data Version in Use
	Troubleshoot Problems with TZupdater

	Determine the Default Time Zone on Windows
	Check the Default Time Zone Java Runtime Reports
	Determine the Setting in the Control Panel
	Check for Automatic Daylight Saving Time Adjustment
	Set the Default Time Zone in Windows Settings
	Check -Duser.timezone System Property
	Special Tool in Windows
	Internal Representation of Time Zone Mappings

	Part IV Debug Client Issues
	9 Introduction to Client Issues
	Java SE Desktop Technologies
	General Steps to Troubleshoot an Issue
	Identify the Type of Issue
	Java Client Crashes
	Performance Problems
	Behavior Problems

	Basic Tools
	Java Debug Wire Protocol

	10 AWT
	Debug Tips for AWT
	Layout Manager Issues
	Key Events
	Modality Issues
	AWT Crashes
	Focus Events
	How to Trace Focus Events
	Native Focus System
	Focus Models Supported by X Window Managers
	Miscellaneous Problems with Focus

	Data Transfer
	Debug Drag-and-Drop Applications
	Frequent Issues with Data Transfer

	Other Issues
	Splash Screen Issues
	Tray Icon Issues
	Pop-up Menu Issues
	Background or Foreground Color Inheritance
	AWT Panel Size Restriction
	Hangs During Debugging of Pop-up Menus and Similar Components on X11
	Window.toFront()/toBack() Behavior on X11

	Heavyweight or Lightweight Components Mix

	11 Java 2D Pipeline Rendering and Properties
	Linux: X11 Pipeline
	X11 Pipeline Pixmaps Properties
	X11 Pipeline MIT Shared Memory Extension

	Windows OS - DirectDraw/GDI Pipeline
	Windows OS - Direct3D Pipeline in Full-Screen Mode
	OpenGL Pipeline in Linux and Windows
	Enable OpenGL Pipeline
	Minimum Requirements
	Diagnose Startup Issues
	Diagnose Rendering and Performance Issues
	Latest OpenGL Drivers

	12 Java 2D
	Generic Performance Issues
	Hardware-Accelerated Rendering Primitives
	Primitive Tracing to Detect and Avoid Non-Accelerated Rendering
	Causes of Poor Rendering Performance
	Improve Performance of Software-only Rendering

	Text-Related Issues
	Application Crash During Text Rendering
	Differences in Text Appearance
	Metrics

	Java 2D Printing

	13 Swing
	General Debug Tips for Swing
	Specific Debug Tips for Swing
	Incorrect Threading
	JComponent Children Overlap
	Display Update
	Model Change
	Add or Remove Components
	Opaque Override
	Permanent Changes to Graphics
	Custom Painting and Double Buffering
	Opaque Content Pane
	Renderer Call for Each Cell Performance
	Possible Leaks
	Mix Heavyweight and Lightweight Components
	Use Synth
	Track Activity on Event Dispatch Thread
	Specify Default Layout Manager
	Listener Object Dispatched to Incorrect Component
	Add a Component to Content Pane
	Drag and Drop Support
	One Parent for a Component
	JFileChooser Issues with Windows Shortcuts

	14 Internationalization
	Troubleshoot Internationalization and Localization

	15 Java Sound
	Troubleshoot Java Sound Issues

	Part V Submit Bug Reports
	16 Submit a Bug Report
	Check for Fixes in Update Releases
	Prepare to Submit a Bug Report
	Collect Data for a Bug Report
	Hardware Details
	Operating System Details
	Java SE Version
	Command-Line Options
	Environment Variables
	Fatal Error Log
	Core and Crash Dump
	Detailed Description of the Problem
	Logs and Traces
	Results from Troubleshooting Steps

	Collect Core Dumps
	Collect Core Dumps on Linux
	Reasons for Not Getting a Core File
	Collect Crash Dumps on Windows

	Part VI Appendices
	A Fatal Error Log
	Location of Fatal Error Log
	Description of Fatal Error Log
	Header Format
	Thread Section Format
	Process Section Format
	System Section Format

	B Java 2D Properties
	Properties on Linux
	Properties on Windows

	C Environment Variables and System Properties
	The JAVA_TOOL_OPTIONS Environment Variable
	The java.security.debug System Property

	D Command-Line Options
	Java HotSpot VM Command-Line Options
	Other Command-Line Options

	E Summary of Tools in This Release

