
Java Platform, Standard Edition
Packaging Tool User's Guide

Release 14
E90665-01
March 2020

Java Platform, Standard Edition Packaging Tool User's Guide, Release 14

E90665-01

Copyright © 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Packaging Overview

Packaging Pre-Reqs 1-2

Application Preparation 1-2

Generated Application Image 1-2

Java Runtime Requirements 1-3

2 Basic Packaging

Defaults for Options Not Specified 2-1

Package a Non-Modular Application 2-3

Package a Modular Application 2-3

Identify Your Application with Package Metadata 2-4

3 Support Application Requirements

Set Default Command-Line Arguments 3-1

Set JVM Options 3-2

Set File Associations 3-3

Add Launchers 3-4

Sign the Application Package (macOS) 3-6

4 Manage the Installation of Your Application

Include a License 4-1

Create a Shortcut 4-1

Set the Installation Directory 4-2

iii

Add the Application to a Menu 4-2

Launch in Console 4-3

5 Image and Runtime Modifications

Application Image Modifications 5-1

Java Runtime Modifications 5-1

6 Override jpackage Resources

Resources Used in Packaging 6-1

View Resources 6-3

iv

Preface

This guide provides information about using jpackage, the packaging tool provided
with the JDK for generating installable packages for self-contained Java applications.

Audience
This guide is intended for developers interested in creating self-contained Java
applications that provide native packaging formats, which give the end user a natural
installation experience.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 14 Documentation.

Conventions
The following conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase14&id=homepage

1
Packaging Overview

The packaging tool jpackage enables you to generate installable packages for
modular and non-modular Java applications. Platform-specific packages for Linux,
macOS and Windows provide your users with a familiar way to install and launch your
applications.

Note:

The jpackage tool is included in the JDK as an incubator module named
jdk.incubator.jpackage. As a feature delivered in an incubator module, the
tool's command line options, application layout, and other exported
interfaces are not guaranteed to be stable. The jdk.incubator.jpackage
module is not resolved by default, and produces a warning when it is
resolved. A warning is also issued when jpackage is run. For information
about incubator modules, see JEP 11: Incubator Modules.

The simplest form of packaging takes a pre-built Java application as input and
generates an installable package in a platform-dependent default format. The
packaging tool generates a runtime for your application using the jlink command.

For applications that require more advanced capabilities, command line options are
available for features such as the following:

• Provide a custom icon

• Install the application in a specific location

• Specify JVM options and application arguments to be used when launching the
application

• Set file associations to launch the application when an associated file type is
opened

• Launch the application from a platform-specific menu group

• Set up multiple launchers for the application

• Sign the bundle (macOS only)

For a description of jpackage and its options, see The jpackage Command in the Java
Development Kit Tool Specifications.

Topics:

• Packaging Pre-Reqs

• Application Preparation

• Java Runtime Requirements

1-1

https://openjdk.java.net/jeps/11
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=jpackage_tool_reference

Packaging Pre-Reqs
Application packages must be built on the target platform. The system used for
packaging must contain the application, a JDK, and software needed by the packaging
tool.

To package your application for multiple platforms, you must run the packaging tool on
each platform. If you want more than one format for a platform, you must run the tool
once for each format.

The following platforms and formats are supported with the required software:

• Linux: deb, rpm:

– For Red Hat Linux, the rpm-build package is required.

– For Ubuntu Linux, the fakeroot package is required.

• macOS: pkg, app in a dmg

Xcode command line tools are required when the --mac-sign option is used to
request that the package be signed, and when the --icon option is used to
customize the DMG image.

• Windows: exe, msi

WiX 3.0 or later is required.

Application Preparation
To package your application, you must first build it and create the necessary JAR or
module files. Resources needed by your application must also be available on the
system used for packaging.

The following application-related information and resources are used for packaging:

• JAR or module files for the application

• Application metadata, for example, name, version, description, copyright, license
file

• Installation options, for example, shortcut, menu group, additional launchers, file
associations

• Launch options, for example, application arguments, JVM options

As part of the packaging process, an application image based on the files in the input
directory is created. This image is described in Generated Application Image. To test
your application before creating an installable package, use the --type app-image
option to create only the application image.

Generated Application Image
The packaging tool creates an application image based on the input to the tool.

The following example shows the application image created for a simple Hello World
application for each platform. Files that are considered implementation details are
subject to change and are not shown.

Chapter 1
Packaging Pre-Reqs

1-2

• Linux:

myapp/
 bin/ // Application launchers
 HelloWorld
 lib/
 app/
 HelloWorld.cfg // Configuration info, created by jpackage
 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

• macOS:

HelloWorld.app/
 Contents/
 Info.plist
 MacOS/ // Application launchers
 HelloWorld
 Resources/ // Icons, etc.
 app/
 HelloWorld.cfg // Configuration info, created by jpackage
 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

• Windows:

HelloWorld/
 HelloWorld.exe // Application launchers
 app/
 HelloWorld.cfg // Configuration info, created by jpackage
 HelloWorld.jar // JAR file, copied from the --input directory
 runtime/ // Java runtime image

The application image generated by the tool works for most applications. However,
you can make changes before packaging the image for distribution, if needed.

Java Runtime Requirements
To eliminate the need for users to install a Java runtime, one is packaged with your
applications. The packaging tool generates a runtime image based on the packages or
modules that your application needs.

If no Java runtime image is passed to the packaging tool, then jpackage, uses the
jlink tool to create a runtime for the application. Runtime images created by the
packaging tool do not contain debug symbols, the usual JDK commands, man pages,
or the src.zip file.

• For non-modular applications composed of JAR files, the generated runtime image
contains the same set of JDK modules that is provided to class-path applications
in the unnamed module by the regular java launcher. It doesn't include the
available service providers, but these can be added using the --bind-services
option for the jpackage tool. To add additional modules, use the --add-modules
option for the jpackage tool.

Chapter 1
Java Runtime Requirements

1-3

• For modular applications composed of modular JAR files and JMOD files, the
generated runtime image contains the application's main module and the transitive
closure of all of its dependencies. It doesn't include the available service providers,
but these can be added using the --bind-services option for the jpackage tool.
To add additional modules, use the --add-modules option.

The runtime image generated by the tool works for most applications. However, you
can create a custom runtime to package with your application, if needed.

Chapter 1
Java Runtime Requirements

1-4

2
Basic Packaging

If your application doesn't require customizations or support for features such as
multiple launchers or file associations, then only a couple of options are needed for
packaging.

The simplest form of packaging requires the location of the application to package and
the name of the JAR or module that contains the main class.

• The following example packages a non-modular application:

jpackage --input app-directory --main-jar jar-file [--main-class main-
class]

app-directory is the name of the directory that contains the files for your
application. The path can be absolute or relative to the current directory. jar-file is
the name of the JAR file that contains the main class for the application. main-
class is the name of the main class and is only required if the main class is not
identified in the MANIFEST.MF file. Tool and platform defaults are used as needed
to complete the package.

• The following example packages a modular application:

jpackage --module-path module-path --module main-module[/class]

module-path is the path to either a directory of modules or to a modular JAR file.
The path can be absolute or relative to the current directory. For more than one
path, separate the paths with a colon (:) on Linux and macOS or a semi-colon (;)
on Windows, or use multiple instances of the --module-path option. main-module/
class is the name of the module that contains the main class and the name of the
main class for the application. The name of the main class is only required if the
main module does not identify the main class. Tool and platform defaults are used
as needed to complete the package.

Topics:

• Defaults for Options Not Specified

• Package a Non-Modular Application

• Package a Modular Application

• Identify Your Application with Package Metadata

Defaults for Options Not Specified
Options are available to control the name of the application, type of package created,
installation location, and other characteristics of the package. If an option is not
provided, a default values is used.

2-1

The following defaults apply to options that are not specified when running jpackage:

• The package type is platform-dependent:

– On Linux, the default is deb for Debian Linux and rpm for other versions of
Linux.

– On macOS, the default is dmg.

– On Windows, the default is exe.

To generate a different type of package, use the --type option.

• The generated package is written to the current working directory. To write the
package to a different location, use the --dest option.

• The name of the package is generated from the name of the application and the
application version. If no application name is provided, the name of the main JAR
or module is used, followed by the version, which defaults to 1.0, for example
HelloWorld-1.0.exe. To change the name of the application, use the --name
option. To change the version, use the --app-version option.

• The Java runtime is generated during the packaging process using the jlink
command. The --add-modules and --bind-services options can be used to add
items to the runtime as part of the packaging process. To package a custom
runtime, use the --runtime-image option.

• The installation directory is platform-specific:

– On Linux, the default is /opt/application-name

– On macOS, the default is /Applications/application-name

– On Windows, the default is c:\Program Files\application-name; if the
--win-per-user-install option is used, the default is C:\Users\user-
name\AppData\Local\application-name

The name of the application directory defaults to the name of the application. To
give the directory a different name, use the --install-dir option.

• The name of the application launcher defaults to the name of the application. If
your application has more than one launcher, use the --add-launcher option to
identify them.

• No default command line arguments or Java runtime options are passed to the
application when it is started. The user can pass application arguments from the
command line when launching the application, but not Java runtime options.

• A default icon for the application is used. For a different icon, use the --icon
option.

• For Linux, the name of the package defaults to the application name. To give the
package a different name, use the --linux-package-name option.

• For macOS:

– The application identifier defaults to the main class name. To use a different
identifier, use the --mac-package-identifier option.

– The name of the application shown in the menu bar defaults to the main class
name of the application. To use a different name, use the --mac-package-
name option.

Chapter 2
Defaults for Options Not Specified

2-2

Package a Non-Modular Application
A non-modular application package can be packaged by providing just the location of
the files to package and the name of the main JAR file. Defaults are used for other
options that describe the package and the application.

The following command when run on a Windows system packages the non-modular
application in the mySamples\hwapp directory with the main class in the
HelloWorld.jar file.

jpackage --input mySamples\hwapp --main-jar HelloWorld.jar

Because no other options are used, the following defaults are applied:

• The default type of package generated is exe.

• The name of the package generated is HelloWorld-1.0.exe.

• The package is written to the current directory.

• The runtime packaged with the application is generated as part of the packaging
process.

• The application is installed in the c:\Program Files\HelloWorld directory.

• The name of the launcher is HelloWorld.exe.

• The default icon is used for the application.

• No shortcut is created, and the application is not added to any menu. The user
must go to the directory in which the application is installed to run it.

• No default arguments or Java runtime options are passed to the application when
it is started.

Package a Modular Application
A modular application package can be packaged by providing just the location of the
modules to package and the name of the main module. Defaults are used for other
options that describe the package and the application.

The following command when run on a Debian Linux system packages the modular
application in the myModApps directory with the main class in the modhw/
modhw.HelloWorldMod module

jpackage --module-path myModApps --module modhw/modhw.HelloWorldMod

Because no other options are used, the following defaults are applied:

• The default type of package generated is deb for Debian systems

• The name of the package generated is HelloWorldMod-1.0.deb.

• The package is written to the current directory.

• The runtime packaged with the application is generated as part of the packaging
process.

Chapter 2
Package a Non-Modular Application

2-3

• The application is installed the /opt/HelloWorldMod directory.

• The name of the launcher is HelloWorldMod.

• The default icon is used for the application.

• No shortcut is created, and the application is not added to any menu. The user
must go to the directory in which the application is installed to run it.

• No default arguments or Java runtime options are passed to the application when
it is started.

Identify Your Application with Package Metadata
As you create the package, you might want to provide information about the
application, such as a description, the vendor name, or perhaps a copyright statement.

To add information about your application to the package, use the relevant jpackage
options to set the package metadata. The following examples are for a Windows
system.

• Set the name of the application.

Use the --name option to give the application the name that you want users to see.
If no name is provided, it defaults to the name of the main JAR file or module.

The following command creates a package for the Dynamic Tree application
named DynamicTreeDemo-1.0.exe:

jpackage --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar

• Set the application version.

Use the --app-version option to identify the version of your application. If no
application version is specified, the version defaults to 1.0.

The following command customizes the version part of the package name and
creates the package DynamicTreeDemo-2.0.exe:

jpackage --name DynamicTreeDemo --app-version 2.0 \
 --input myApps --main-jar DynamicTree.jar

• Describe the application.

Use the --description option to include a brief description of your application. No
default description is provided.

The following command describes the Dynamic Tree application to users; note
that quotes are required if the description includes spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality"

• Set the vendor for the application.

Use the --vendor option to identify yourself or your company as the creator of
your application. No default vendor is provided.

Chapter 2
Identify Your Application with Package Metadata

2-4

The following command identifies the vendor of the Dynamic Tree application as
Small, Inc; note that quotes are required if the vendor name includes spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality" \
 --vendor "Small, Inc"

• Set the copyright for the application.

Use the --copyright option to provide a copyright for your application. No default
copyright is provided.

The following command provides an example of a copyright statement for the
Dynamic Tree application; note that quotes are required if the copyright includes
spaces:

jpackage --dest packages --name DynamicTreeDemo \
 --app-version 2.0 --input myApps --main-jar DynamicTree.jar \
 --description "Demo application for testing functionality" \
 --vendor "Small, Inc" --copyright "Copyright 2020, All rights
reserved"

Chapter 2
Identify Your Application with Package Metadata

2-5

3
Support Application Requirements

The packaging tool provides support for application requirements such as default
arguments, JVM options, file associations, multiple launchers, and signing.

Topics:

• Set Default Command-Line Arguments

• Set JVM Options

• Set File Associations

• Add Launchers

• Sign the Application Package (macOS)

Set Default Command-Line Arguments
If your application accepts command-line arguments, use the --arguments option to
define default values. Users can override these values when they start the application.

If you package your application with default command-line arguments, these values
are passed to the main class when the user starts your application without providing
arguments. The [ArgOptions] section of the app-name.cfg file in the /app directory
of the application image generated by jpackage shows any default arguments that are
defined. You can check this file to ensure that the values are defined correctly.

The following examples show some of the ways to set up default arguments:

• Set the default value for a single argument.

The following command defines the value for a single argument for the MyApp
application.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1

• Set the default value for more than one argument.

Use a space to separate arguments and enclose the entire string in quotes, or use
multiple instances of the --arguments option. The following commands show
alternate ways to define three default command-line arguments for the MyApp
application.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "arg1 arg2 arg3"

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1 --arguments "arg2 arg3"

3-1

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments arg1 --arguments arg2 --arguments arg3

• Set a default value that contains spaces.

If an argument contains a space, two sets of quotes are needed to ensure that
jpackage treats the spaces as part of the value and not as delimiters between
values. Enclose the argument in single quotes, or double quotes preceded by the
escape character, then enclose the quoted string in quotes. The following
commands show alternate ways to define two arguments that contain spaces.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "\"String 1\" \"String 2\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "\"String 1\"" --arguments "\"String 2\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --arguments "'String 1'" --arguments "'String 2'"

Set JVM Options
If you want options passed to the JVM when your application is started, use the --
java-options option when you package your application. Users can't provide JVM
options to the application.

To set up the JVM as needed to run your application, define the JVM options to pass
when a user starts your application. Use the $APPDIR macro to reference resources
included with the application. The resource file must be in the input directory when the
application is packaged.

The [JavaOptions] section of the app-name.cfg file in the /app directory of the
application image generated by jpackage shows any default arguments that are
defined. You can check this file to ensure that the values are defined correctly.

The following examples show some of the ways to pass JVM options to your
application:

• Set a single JVM option.

The following command sets the initial size of the heap for the MyApp application
to 2 megabytes.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options Xms2m

• Set more than one JVM option.

To provide more than one JVM option, use a space to separate arguments and
enclose the entire string in quotes, or use multiple instances of the --jvm-options
option. The following commands show alternate ways to set the initial size and the
maximum size for the heap.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "Xms2m Xmx10m"

Chapter 3
Set JVM Options

3-2

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options Xms2m --java-options Xmx10m

• Set a JVM option that contains a space.

If a JVM option contains a space, two sets of quotes are needed to ensure that
jpackage treats the spaces as part of the option and not as delimiters between
options. Enclose the argument in single quotes, or double quotes preceded by the
escape character, then enclose the quoted string in quotes. The following
commands show alternate ways to define an option that contain spaces.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "\"-DAppOption=text string\""

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "'-DAppOption=text string'"

• Set a JVM option that contains quotes.

If a JVM option contains quotes, escape characters must be used for the quotes.
The following command passes the JVM option -XX:OnError="userdump.exe %p"
to jpackage.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "-XX:OnError=\"\\\"userdump.exe %p\\\"\""

• Use the $APPDIR macro with a JVM option.

To use the image myAppSplash.jpg from the application directory as the splash
screen for your application, use the $APPDIR macro as shown in the following
example. The image file must be in the input directory when the application is
packaged. Note that in some shells the dollar sign needs to be escaped, for
example, \$APPDIR.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --java-options "-splash:\$APPDIR/myAppSplash.jpg"

Set File Associations
If you want your application to be started when a user opens a specific type of file, use
the --file-associations option when you package your application.

To have your application started when a user opens a file that your application can
handle, define the file associations that you want created when the application is
installed. Associations are defined in properties files that are passed to jpackage. For
each association, a separate file and a separate instance of the --file-associations
option is required. The following properties define an association, which must include
either mime-type or extension:

• mime-type - MIME type for files that your application can process.

• extension - File extension for files that your application can process.

• icon - Icon to use for the type of files that your application can process. The icon
must be in the input directory when the application is packaged. If no icon is
specified, the default icon is used.

Chapter 3
Set File Associations

3-3

• description - Short description of the association.

To set up file associations, first create the properties files. The following two files set
up an association for JavaScript files and for Groovy files.

FAjavascript.properties:

mime-type=text/javascript
extension=js
description=JavaScript Source

FAgroovy.properties:

mime-type=text/x-groovy
extension=groovy
description=Groovy Source

The following command packages the application FADemo and sets up file
associations using the properties files just created. When a user opens a .js
or .groovy file, FADemo is started.

jpackage --name FADemo --input FADemo \
 --main-jar ScriptRunnerApplication.jar \
 --file-associations FAjavascript.properties \
 --file-associations FAgroovy.properties

Add Launchers
If you have more than one way start your application, use the --add-launcher option
to describe the additional launchers that you want created.

You might want an additional launcher if your application has different default values
for arguments or can run with or without the Windows console, or if you package
multiple apps together to share a runtime. The format for the option is --add-launcher
launcher-name=properties-file, where launcher-name is the named used for the
additional launcher. Use quotes if the name contains spaces.

The launchers are defined in properties files that are passed to jpackage. For each
launcher, a separate file and a separate instance of the --add-launcher option is
required. The following properties define a launcher, at least one option must be set:

• module - Name of the module that contains the main class for the launcher. If the
main module does not identify the main class, include it in the format
module=main-module/class.

• main-jar - Name of the JAR file that contains the main class for the launcher.

• main-class - Name of the main class.

• arguments - Default arguments, separated by spaces. If an argument contains
spaces, enclose the argument in quotes, for example, arguments=arg1 "arg 2"
arg3

• app-version - Version number.

Chapter 3
Add Launchers

3-4

• java-options - Options to pass to the JVM, separated by spaces. If an argument
contains spaces, enclose the argument in quotes.

• icon - Icon used for the additional launcher

• win-console - Set to true to start the console with the application.

To define additional launchers, first create the properties files. The following examples
show some of the ways to set up a launcher:

• Add a launcher with different application arguments.

Create the following properties files that define different default arguments to use
when the application is launched. The first file defines 3 arguments to pass. The
second file defines two arguments to pass.

MLAppArgs1.properties:

arguments=arg1 arg2 arg3

MLAppArgs2.properties:

arguments="String 1" "String 2"

The following command packages the application MyApp with two additional
launchers using the properties files just created.

jpackage --name MyApp --input samples/myapp --main-jar MyApp.jar \
 --add-launcher MyApp1=MLAppArgs1.properties \
 --add-launcher MyApp2=MLAppArgs2.properties

• Add a launcher to start the Windows console.

To provide the user with the option of running your application with or without the
console, create the following properties file that defines a launcher that uses the
Windows console.

MLConsole.properties:

win-console=true

The following command packages the HelloWorld application with an additional
launcher that runs the application with the Windows console.

jpackage --name HelloWorld --input helloworld \
 --main-jar HelloWorld.jar \
 --add-launcher HWConsole=MLConsole.properties

• Add a launcher for a second entry point.

When more than one application is included in the same package, each
application can be started independently by adding additional launchers. If the
FADemo and the Dynamic Tree applications are packaged together and the main

Chapter 3
Add Launchers

3-5

launcher is for the FADemo application, create the following properties file to
define an additional launcher for the Dynamic Tree application.

MLDynamicTree.properties

main-jar=DynamicTree.jar
main-class=webstartComponentArch.DynamicTreePanel
icon=DTDemo.ico

The following command packages the two applications together and sets up the
additional launcher using the properties file just created.

jpackage --name MLDemo --input MLDemo \
 --main-jar ScriptRunnerApplication.jar \
 --add-launcher "Dynamic Tree"=MLDynamicTree.properties

Sign the Application Package (macOS)
For an application that runs on macOS, use the --mac-sign and supporting options
when you package your application.

In addition to the --mac-sign option that requests signing, you also need to provide
the signing prefix with the --mac-package-signing-prefix option and key user name
with the --mac-signing-key-user-name option. If a keychain other than the standard
keychain is used, you also need to provide that keychain file with the --mac-signing-
keychain option.

The following command requests that the prefix xxxxxx and the "Developer ID
Application: developer.example.com" certificate be used to sign the package. Quotes
are required if a string includes spaces.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --mac-sign --mac-package-signing-prefix xxxxxx \
 --mac-signing-key-user-name developer.example.com

Chapter 3
Sign the Application Package (macOS)

3-6

4
Manage the Installation of Your Application

You have some control over how your application is installed and launched on the
user's system. Using options provided by the packaging tool, you can specify such
things as the license to be accepted, where to install the application, and if a console
is needed.

Topics:

• Include a License

• Set the Installation Directory

• Create a Shortcut

• Add the Application to a Menu

• Launch in Console

Include a License
If you have terms and conditions that you want users to accept to install your
application on Windows or macOS, use the --license-file option when you package
your application.

If the directory that contains your application also includes a license file, that file is
installed on the user's machine with the application. If you want to require the user to
accept the license before installing on Windows or macOS, use the --license-file
option. Be aware that if you provide a license file that is not in the application directory,
the user is shown the license when installing, but the file is not installed with the
application. Also, for silent and other types of installs, the license file is not shown.

The following command adds the license file myApps/myLicense.txt to the
package for the Dynamic Tree application.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --license-file myApps/myLicense.txt

Create a Shortcut
To have a shortcut created when users install your application, use the --linux-
shortcut or --win-shortcut option when you package your application. To show a
custom icon for your application, use the --icon option.

Shortcuts are supported for Linux and Windows platforms. If you don't provide an icon,
a default icon is used. If you provide a custom icon on Linux, a shortcut is
automatically created and the --linux-shortcut option is not needed. Custom icons
must be in a format that meets the requirements of the platform.

4-1

The following command creates a shortcut with the default icon for the Dynamic Tree
application when it is installed on Linux.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --linux-shortcut

The following command creates a desktop shortcut with a custom icon for the Dynamic
Tree application when it is installed on Windows.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --icon DTDemo.ico --win-shortcut

Set the Installation Directory
If you want the name of the installation directory to be different than the name of the
package, use the --install-dir option. On Windows you can let the user choose
where to install your application by using the --win-dir-chooser option.

Your application is installed in the default platform-specific installation directory
described in Defaults for Options Not Specified. The directory name for the application
defaults to the package name, but this can be changed with the --install-dir option
when you package the application.

On Windows, you also have the option to enable the user to choose the installation
location. The dialog shown defaults to a directory with the package name.

The following command installs the Dynamic Tree application in c:\Program Files
\DTDemo. instead of c:\Program Files\DynamicTreeDemo.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --install-dir DTDemo

The following command lets the user choose the directory where the application is
installed.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --win-dir-chooser

Add the Application to a Menu
To let users access your application from a menu, use the --linux-menu-group
option, or the --win-menu and --win-menu-group options when you package your
application.

On the Linux platform, if the --linux-menu-group option is not used, your application
is added to the Unknown group in a menu specific to the windows manager being
used.

On the Windows platform, you can have your application added to the Start menu in
the group of your choosing. If the group doesn't exist, it is created. If you don't provide
a group name, the application is added to the Unknown group. The --win-menu-group
option is only meaningful if the --win-menu option is used.

Chapter 4
Set the Installation Directory

4-2

The following command adds the Dynamic Tree application to the Windows Start
menu in the "Small, Inc" group. Quotes are needed only if the name includes spaces.

jpackage --type exe --name DynamicTreeDemo --input myApps \
 --main-jar DynamicTree.jar --win-menu --win-menu-group "Small, Inc"

On macOS, the application is shown in the menu bar. The name shown defaults to the
name of the package. The following command uses the --mac-package-name option to
show DTDemo in the menu bar.

jpackage --name DynamicTreeDemo --input myApps --main-jar DynamicTree.jar \
 --mac-package-name DTDemo

Launch in Console
If your application runs from the command line or requires console interaction, use the
--win-console option to let Windows know to start the application in a console
window.

The following command tells Windows to start the Hello World application with a
console window.

jpackage --input mySamples\hwapp --main-jar HelloWorld.jar --win-console

Chapter 4
Launch in Console

4-3

5
Image and Runtime Modifications

The application image and Java runtime generated by the packaging tool work well for
most applications. However, you can make changes to the image and runtime for any
custom requirements that you might have, and then use the modified version when
packaging your application.

Topics:

• Application Image Modifications

• Java Runtime Modifications

Application Image Modifications
If needed, you can modify the application image that the packaging tool creates and
then package the modified image for distribution.

Possible reasons for modifying the image include, adding removing files, adding
resources, or changing the runtime. If you need to modify the image, run the
packaging tool twice. The first time you run it, use the --type app-image option to
create only the application image:

jpackage --type app-image --name HelloWorld --input helloworld \
 --main-jar HelloWorld.jar

A directory named HelloWorld is created in the current directory and contains the
application image. An installable bundle is not created. After you make the necessary
changes to the application image, run the packaging tool again to create an installable
bundle with the modified image:

jpackage --type msi --app-image HelloWorld --name HelloWorld

Notes:

• The --name option is required when packaging an application image.

• The --runtime-image option is not allowed with --type app-image. If you want to
use a different runtime, pass it in when you create the application image that you
plan to modify.

Java Runtime Modifications
When you want more control over the Java runtime that is packaged with your
application, you can create a custom runtime.

To create a custom Java runtime image for your application, run jlink before you
package your application. Then pass the image produced to the packaging tool using
the --runtime-image option. Reasons you might want to use a custom runtime image:

5-1

• Have more control over the options that are used to create the runtime

• Package your application with a different version of Java than the version used to
run jpackage

• Use the same runtime for more than one application.

For example, the following commands create a JDK 14 runtime that includes JavaFX
13 modules, and then package that runtime with an application:

jlink --output jdk-14+fx --module path javafx-jmods-13 \
 --add modules javafx.web,javafx.media,javafx.fxml,java.logging

jpackage --name myapp --input lib --main-jar myApp.jar \
 --runtime-image jdk-14+fx

If you are using JDK 14 to package an application that requires an earlier version of
the Java runtime, use the --runtime-image option The following command packages
the JDK 11 runtime with your application:

jpackage --name myapp --input lib --main-jar myApp.jar \
 --runtime-image jdk-11.0.5

If your application requires a custom runtime based on an earlier version of the JDK,
use the earlier version to run jlink and create the runtime image. Then use current
JDK to run jpackage and pass it the custom runtime. The following commands create
a custom runtime using JDK 11.0.5 and package it using JDK 14:

c:\Program Files\Java\jdk-11.0.5\bin\jlink output my-jdk11 \
 --add-modules java.desktop,java.datatransfer

c:\Program Files\Java\jdk-14\bin\jpackage --name myapp --input lib \
 --main-jar myApp.jar --runtime-image my-jdk11

Chapter 5
Java Runtime Modifications

5-2

6
Override jpackage Resources

Advanced customization of the package generated is possible by overriding resources
used by jpackage, such as background images and template files for properties and
scripts. The --resource-dir option is used to provide the overrides to the tool.

If the default resources that jpackage uses when packaging an application don't meet
your needs, create a directory and add your customized files to it. If you override a file,
your custom file must contain all of the properties that the default contains. Pass the
path to the directory to jpackage using the --resource-dir option. The path can be
absolute or relative to the current directory.

Note:

Resources such as icons, application version, application description,
copyright, and others can be overridden from the command line. Use of the
command line options is recommended when available.

The topics that follow describe the resources that you can override and explain how
you can find out what the defaults are.

Topics:

• Resources Used in Packaging

• View Resources

Resources Used in Packaging
The packaging tool has default templates and other resources that it uses when it
generates the package for your application.

The resources vary by platform and are described in the following sections. In most
cases, resources overridden with command line options take precedence over
resources in the resource directory. To override resources that can't be overridden
from the command line, add your customized files to the resource directory that you
pass to jpackage. Use the --verbose option described in View Resources to verify the
name of the override file for each resource.

Linux (all versions)

• Icon file, launcher.png, for the main launcher and any additional launchers.
Each launcher can have a separate icon. The file name must match the name of
the application or the name of a launcher. If an icon file is not provided for a
launcher, the default icon is used.

• Desktop shortcut file, launcher.desktop, for the main launcher and any
additional launchers The file name must match the name of the application or the
name of a launcher.

6-1

Linux DEB

• Control template, control. File that contains information about the application.

• Pre-installation script, preinst. Script that is run before the application is
installed.

• Pre-removal script, prerm. Script that is run before the application is uninstalled.

• Post-installation script, postinst. Script that is run after installation completes.

• Post-removal script, postrm. Script that is run after the application is uninstalled.

• Copyright file, copyright. File that contains copyright and license information.

Linux RPM

• Specification for packaging, package-name.spec. Instructions for packaging the
application.

macOS (all formats)

• Icon file, launcher.icns, for the main launcher and any additional launchers.
More than one file can be provided. The file name must match the name of the
application or the name of a launcher. If an icon file is not provided for a launcher,
the default icon is used.

• Runtime properties list, Runtime-Info.plist.

• Information properties list, Info.plist.

• Post-image script, application-name-post-image.sh. Custom script that is
executed after the application image is created and before the DMG or PKG
installer is built. No default script is provided.

macOS DMG

• DMG setup script, application-name-dmg-setup.scpt.

• Applications license properties list, application-name-license.plist.

• Background file, application-name-background.tiff.

• Drive icon, application-name-volume.icns.

macOS PKG

• Pre-installation script, preinstall. Script that is run before the application is
installed.

• Post-installation script, postinstall. Script that is run after installation
completes.

• Background image for Light Mode, application-name-background.png.

• Background image for Dark Mode, application-name-background-
darkAqua.png.

Chapter 6
Resources Used in Packaging

6-2

Windows

• Post-image script, application-name-post-image.wsf. Custom script that is
executed after the application image is created and before the MSI installer is built
for both .msi and .exe packages. No default script is provided.

• Main WiX source file, main.wxs.

• WiX source file with WiX variables overrides, overrides.wxi. Values in this file
override values in the main WiX file.

• Icon file, launcher.ico, for the main launcher and any additional launchers.
More than one file can be provided. The file name must match the name of the
application or the name of a launcher. If an icon file is not provided for a launcher,
the default icon is used.

• Launcher properties file, launcher.properties.

View Resources
You can use the --verbose and --temp options for jpackage to get information about
the resources used to package your application.

To decide if you need to override the jpackage resources, review the current defaults:

• Use the --verbose option to see what is currently used.

The --verbose option provides detailed information about the process of creating
the package. The information also includes instructions for customizing the
resource, such as the name of the file to add to the resource directory.

The following example shows the jpackage command run on Windows to package
the Dynamic Tree application, followed by snippets of the output from the --
verbose option that show the default resources used. Note that to override the
WinLauncher.template resource, a file named DynamicTree.properties
is needed; to override the main.wxs resource, a file named main.wxs is needed

jpackage --input DynamicTree --main-jar DynamicTree.jar --verbose
WARNING: Using incubator modules: jdk.incubator.jpackage
Running [candle.exe, /?]
Running [C:\Program Files (x86)\WiX Toolset v3.11\bin\candle.exe, /?]
Windows Installer XML Toolset Compiler version 3.11.1.2318

 ...

Using default package resource java48.ico [icon] (add DynamicTree.ico
to the resource-dir to customize).
Using default package resource WinLauncher.template [Template for
creating executable properties file]
(add DynamicTree.properties to the resource-dir to customize).

 ...

Using default package resource main.wxs [Main WiX project file] (add
main.wxs to the resource-dir to
customize).
Using default package resource overrides.wxi [Overrides WiX project

Chapter 6
View Resources

6-3

file] (add overrides.wxi to the
resource-dir to customize).

 ...

• Use the --temp option to keep temporary files for review.

The --temp option provides jpackage with the name of a new or empty directory
where temporary files are written during the packaging process. The path passed
to jpackage can be absolute or relative to the current directory. When this option is
used, the directory is not deleted at the end of the process.

Review this directory to see the resources that were used to package your
application. Review each file to identify the properties and values that you might
want to override. If you override a file, your custom file must contain all of the
properties that the default contains.

The following example shows the directory created on Windows. The /config
directory contains resources that you can override.

jpackage --input DynamicTree --main-jar DynamicTree.jar \
 --temp DTtempfiles

\DTtempfiles
 \config
 DynamicTree.ico
 DynamicTree.properties
 main.wxs
 MsiInstallerStrings_en.wxl
 MsiInstallerStrings_ja.wxl
 MsiInstallerStrings_zh.wxl
 overrides.wxi
 \images
 \wixobj

Chapter 6
View Resources

6-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Packaging Overview
	Packaging Pre-Reqs
	Application Preparation
	Generated Application Image

	Java Runtime Requirements

	2 Basic Packaging
	Defaults for Options Not Specified
	Package a Non-Modular Application
	Package a Modular Application
	Identify Your Application with Package Metadata

	3 Support Application Requirements
	Set Default Command-Line Arguments
	Set JVM Options
	Set File Associations
	Add Launchers
	Sign the Application Package (macOS)

	4 Manage the Installation of Your Application
	Include a License
	Create a Shortcut
	Set the Installation Directory
	Add the Application to a Menu
	Launch in Console

	5 Image and Runtime Modifications
	Application Image Modifications
	Java Runtime Modifications

	6 Override jpackage Resources
	Resources Used in Packaging
	View Resources

