
Java Platform, Standard Edition
Java Accessibility Guide

Release 15
F32124-01
September 2020

Java Platform, Standard Edition Java Accessibility Guide, Release 15

F32124-01

Copyright © 1993, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Resources v

Conventions v

1 Java Accessibility Overview

2 Java Access Bridge Overview

3 Enabling and Testing Java Access Bridge

Enabling Java Access Bridge Through the Command Line 3-1

Disabling Java Access Bridge 3-1

Testing Java Access Bridge 3-1

Java Access Bridge Tools 3-2

Minimum Version Requirements of Assistive Technologies 3-2

4 Java Access Bridge Architecture

5 Java Access Bridge API

Java Access Bridge API Files 5-1

Java Access Bridge API Calls 5-1

Java Access Bridge API Data Structures 5-11

Java Access Bridge API Callbacks 5-14

Troubleshooting Java Access Bridge 5-17

iii

6 Accessibility Properties

7 Java Accessibility Utilities Overview

iv

Preface

This document describes Java Access Bridge, Java Accessibility API (JAAPI), and
Java Accessibility Utilities, which enable you to create accessible applications.

Audience
This document is intended for developers who want to create Java applications
that are accessible to persons with disabilities. Accessible Java applications are
compatible with assistive technologies, such as screen readers, screen magnifiers,
speech recognition systems, and refreshable braille displays.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
• javax.accessibility package

• How to Support Assistive Technologies in The Java Tutorials (Java SE 8 and
earlier)

• com.sun.java.accessibility.util package

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/package-summary.html
https://docs.oracle.com/javase/tutorial/uiswing/misc/access.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.accessibility/com/sun/java/accessibility/util/package-summary.html

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Java Accessibility Overview

Java SE provides Java Access Bridge, Java Accessibility API (JAAPI), and Java
Accessibility Utilities to enable you to create accessible applications.

Topics

• Java Access Bridge

• Java Accessibility API

• Java Accessibility Utilities

• Pluggable Look and Feel

Java Access Bridge

Java Access Bridge enables certain Java applications to be visible to assistive
technologies on Microsoft Windows. See Enabling and Testing Java Access Bridge.

Java Accessibility API

The Java Accessibility API (JAAPI), contained in the javax.accessibility
package, is one of the core parts of the Java Foundation Classes (JFC). The JFCs are
a comprehensive set of graphical user interface components and foundation services
designed to simplify deployment of Internet, intranet and desktop applications. JAAPI
enables you to create Java applications that are accessible to persons with disabilities.
Accessible Java applications are compatible with assistive technologies, such as
screen readers, screen magnifiers, speech recognition systems, and refreshable
braille displays. The JAAPI makes GUI component information available to assistive
technologies, giving users alternative presentation and control of Java applications.

Support for JAAPI is built into Swing components; see How to Support Assistive
Technologies in The Java Tutorials (Java SE 8 and earlier).

Java Accessibility Utilities

Java Accessibility Utilities, which is contained in the package
com.sun.java.accessibility.util, is a set of utility classes that help assistive
technologies provide access to GUI toolkits that implement the Java Accessibility API.
Java Accessibility Utilities monitor events related to UI components. They also help
assistive technologies get additional information about a GUI, such as the current
position of the mouse, or the window that currently has focus. See Java Accessibility
Utilities Overview.

Pluggable Look and Feel

The Java Foundation Classes implement a Pluggable Look and Feel architecture.
This architecture allows non-visual manifestations of a user interface to replace or
enhance the visual presentation of an application. The expression of the user interface
is separated from the underlying structure and data of each individual component. This
is accomplished by separating the user interface of the component from its model. The
model of a component is the structure which encapsulates the state and information

1-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/package-summary.html
https://docs.oracle.com/javase/tutorial/uiswing/misc/access.html
https://docs.oracle.com/javase/tutorial/uiswing/misc/access.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.accessibility/com/sun/java/accessibility/util/package-summary.html

that is presented to the user by the user interface. For more information on this
architecture, see About the JFC and Swing in The Java Tutorials (Java SE 8 and
earlier).

Chapter 1

1-2

https://docs.oracle.com/javase/tutorial/uiswing/start/about.html

2
Java Access Bridge Overview

Java Access Bridge is a technology that enables Java applications that implement the
Java Accessibility API to be visible to assistive technologies on Microsoft Windows
systems.

Java Access Bridge is a technology that exposes the Java Accessibility API in
a Microsoft Windows dynamic-link library (DLL), enabling Java applications that
implement the Java Accessibility API to be visible to assistive technologies on
Microsoft Windows systems.

In order for existing assistive technologies available on Microsoft Windows systems to
provide access to Java applications, they need some way to communicate with Java
Accessibility API. Java Access Bridge supports this communication.

An assistive technology application running on Microsoft Windows (for example
a screen reader) communicates with Java Access Bridge DLLs, which in turn
communicates with the Java Virtual Machine through Java Access Bridge Java
libraries. These Java libraries communicate with Java Accessibility API. Java
Accessibility API collects information about what is happening in the Java application,
which it forwards to the screen reader through Java Access Bridge.

2-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/package-summary.html

3
Enabling and Testing Java Access Bridge

By default, Java Access Bridge is not enabled. Enable it either through the command
line or the Windows Control Panel. Test it by running a Java application that uses the
Accessibility API.

Topics

• Enabling Java Access Bridge Through the Command Line

• Disabling Java Access Bridge

• Testing Java Access Bridge

• Java Access Bridge Tools

• Minimum Version Requirements of Assistive Technologies

Enabling Java Access Bridge Through the Command Line
Enable Java Access Bridge with the jabswitch command.

Run the following command (where %JAVA_HOME% is the directory of your JDK):

%JAVA_HOME%\bin\jabswitch -enable

Disabling Java Access Bridge
Disable Java Access Bridge with the jabswitch command.

Run the following command:

%JAVA_HOME%\bin\jabswitch -disable

Note:

You cannot disable Java Access Bridge through the Windows Ease of
Access Center.

Testing Java Access Bridge
Test Java Access Bridge by first installing a supported assistive technology then
running a Java application that uses the Accessibility API.

1. Ensure that Java Access Bridge is enabled.

3-1

2. Install an assistive technology product that supports Java Access Bridge such as
one of the following products:

• JAWS

• ZoomText

• Dolphin ScreenReader

3. Run a Java application that uses the javax.accessibility package and ensure
that your assistive technology product works properly with it.

Java Access Bridge Tools
Use the jaccessinspector and jaccesswalker tools, which are part of the JDK,
to test Java Access Bridge.

The jaccessinspector tool uses the Java Accessibility Utilities API to examine
accessible information about the objects in the Java Virtual Machine. The
jaccesswalker tool walks through the component trees in a particular Java Virtual
Machine and presents the accessibility hierarchy in a tree view. Find these tools in the
JDK's bin directory.

Minimum Version Requirements of Assistive Technologies
This topic lists the minimum version requirements of some assistive technologies.

• JAWS: Version 13 and later

• SuperNova: Version 13 and later

• Window-Eyes: Version 8.2 and later

• ZoomText: Version 10.1.5 and later

Chapter 3
Java Access Bridge Tools

3-2

https://www.freedomscientific.com/Products/Blindness/JAWS
https://www.zoomtext.com/
https://yourdolphin.com/screenreader
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/package-summary.html

4
Java Access Bridge Architecture

Java Access Bridge consists of a package of classes and DLLs, which enable
communication among assistive technologies and Java applications.

The following figure shows how Java Access Bridge and Java Accessibility Utilities
components interact with each other:

Figure 4-1 Java Access Bridge Architecture Diagram

Java Runtime

Native

Assistive

Technology

Java Access Bridge for Windows

Runtime

DLL

Java Application

UI Toolkit

JAAPI

Java

Accessibility

Utilities

Windows

DLL

Java Access Bridge provides a subset of the Java Accessibility API through the
Windows\System32\windowsaccessbridge-64.dll Windows DLL. Assistive
technologies on Microsoft Windows load and link to this DLL. Java Access Bridge
also provides javaaccessbridge.dll, which the Java runtime loads. This DLL
communicates with the application through the Java Accessibility API and through
it, the user interface toolkit and components. The DLL also communicates with
the application through Java Accessibility Utilities, a collection of classes that
coalesce events and provide application lifecycle functionality to assistive technologies
(and to Java Access Bridge, which acts as an assistive technology); see Java
Accessibility Utilities Overview. The Java component of Java Access Bridge, manages
communication between the DLL loaded into the Java runtime and the other Java
code in the Java runtime. The Java component of Java Access Bridge is loaded
into the Java SE runtime through what is specified in the assistive_technologies
property (see Accessibility Properties) and in turn loads the Java-side DLL through
Java Native Interfaces (JNI). The communication that Java Access Bridge enables
between assistive technologies and Java applications through Java Accessibility
Utilities is called interprocess communication.

4-1

5
Java Access Bridge API

The Java Access Bridge API enables you to develop assistive technology applications
for the Microsoft Windows operating system that work with Java applications. It
contains native methods that enable you to view and manipulate information about
GUI elements in a Java application, which is forwarded to your assistive technology
application through Java Access Bridge.

Topics

• Java Access Bridge API Files

• Java Access Bridge API Calls

• Java Access Bridge API Data Structures

• Java Access Bridge API Callbacks

• Troubleshooting Java Access Bridge

Java Access Bridge API Files
The Java Access Bridge API can be found in four files: AccessBridgeCalls.h and
AccessBridgeCalls.c (API calls), AccessBridgePackages.h (data structures),
and AccessBridgeCallbacks.h (callbacks).

Location of Java Access Bridge API Files

Find the following Java Access Bridge API include (header) files in %JAVA_HOME%
\include\win32\bridge:

• AccessBridgeCallbacks.h

• AccessBridgeCalls.h

• AccessBridgePackages.h

Find the file AccessBridgeCalls.c, which defines some key interfaces, in the JDK
source code repository.

Java Access Bridge API Calls
The file AccessBridgeCalls.h contains the Java Access Bridge API calls. To use
them, compile the file AccessBridgeCalls.c. The Java Access Bridge API calls act as
the interface between your application and WindowsAccessBridge.dll.

Initialization/Shutdown Functions

These two functions start and shut down Java Access Bridge.

• BOOL initializeAccessBridge();

5-1

Starts Java Access Bridge. You can't use any part of the Java Access Bridge API
until you call this function.

• BOOL shutdownAccessBridge();

Shuts down Java Access Bridge. It's important to call this function when your
application is finished using Java Access Bridge (before your application exists) so
that Java Access Bridge can properly perform memory cleanup.

Note: Calling the function shutdownAccessBridge is not a substitute for
releasing any data structures that are maintained by the JVM; do this by calling the
function ReleaseJavaObject.

Gateway Functions

You typically call these functions before calling any other Java Access Bridge API
function:

• BOOL IsJavaWindow(HWND window);

Checks to see if the given window implements the Java Accessibility API.

• BOOL GetAccessibleContextFromHWND(HWND target, long *vmID,
AccessibleContext *ac);

Gets the AccessibleContext and vmID values for the given window. Many Java
Access Bridge functions require the AccessibleContext and vmID values.

Event Handling Functions

These take a function pointer to the function that will handle the event type. When
you no longer are interested in receiving those types of events, call the function again,
passing in the NULL value. Find prototypes for the function pointers you need to pass
into these functions in the file AccessBridgeCallbacks.h. Java Access Bridge API
Callbacks describes these prototypes.

General Functions

• void ReleaseJavaObject(long vmID, Java_Object object);

Release the memory used by the Java object object, where object is an
object returned to you by Java Access Bridge. Java Access Bridge automatically
maintains a reference to all Java objects that it returns to you in the JVM so they
are not garbage collected. To prevent memory leaks, call ReleaseJavaObject on
all Java objects returned to you by Java Access Bridge once you are finished with
them.

• BOOL GetVersionInfo(long vmID, AccessBridgeVersionInfo *info);

Gets the version information of the instance of Java Access Bridge instance
your application is using. You can use this information to determine the available
functionality of your version of Java Access Bridge.

Chapter 5
Java Access Bridge API Calls

5-2

Note:

To determine the version of the JVM, you need to pass in a
valid vmID; otherwise all that is returned is the version of the
WindowsAccessBridge.DLL file to which your application is connected.

Accessible Context Functions

These functions provide the core of the Java Accessibility API that is exposed by Java
Access Bridge.

The functions GetAccessibleContextAt and GetAccessibleContextWithFocus
retrieve an AccessibleContext object, which is a magic cookie (a Java Object
reference) to an Accessible object and a JVM cookie. You use these two cookies to
reference objects through Java Access Bridge. Most Java Access Bridge API functions
require that you pass in these two parameters.

Note:

AccessibleContext objects are 64-bit references under 64-bit interprocess
communication (which uses the windowsaccessbridge-64.dll file).
However, prior to JDK 9, AccessibleContext objects are 32-bit
references under 32-bit interprocess communication (which uses the
windowsaccessbridge.dll file without -32 or -64 in the file name).
Consequently, if you are converting your assistive technology applications to
run on 64-bit Windows systems, then you need to recompile your assistive
technology applications.

The function GetAccessibleContextInfo returns detailed information about an
AccessibleContext object belonging to the JVM. In order to improve performance,
the various distinct methods in the Java Accessibility API are collected together into
a few routines in the Java Access Bridge API and returned in struct values. The file
AccessBridgePackages.h defines these struct values and Java Access Bridge
API Callbacks describes them.

The functions GetAccessibleChildFromContext and
GetAccessibleParentFromContext enable you to walk the GUI component hierarchy,
retrieving the nth child, or the parent, of a particular GUI object.

• BOOL GetAccessibleContextAt(long vmID, AccessibleContext acParent,
jint x, jint y, AccessibleContext *ac)

Retrieves an AccessibleContext object of the window or object that is under the
mouse pointer.

• BOOL GetAccessibleContextWithFocus(HWND window, long *vmID,
AccessibleContext *ac);

Retrieves an AccessibleContext object of the window or object that has the focus.

Chapter 5
Java Access Bridge API Calls

5-3

• BOOL GetAccessibleContextInfo(long vmID, AccessibleContext ac,
AccessibleContextInfo *info);

Retrieves an AccessibleContextInfo object of the AccessibleContext object ac.

• AccessibleContext GetAccessibleChildFromContext(long vmID,
AccessibleContext ac, jint index);

Returns an AccessibleContext object that represents the nth child of the object
ac, where n is specified by the value index.

• AccessibleContext GetAccessibleParentFromContext(long vmID,
AccessibleContext ac);

Returns an AccessibleContext object that represents the parent of object ac.

• HWND getHWNDFromAccessibleContext(long vmID, AccessibleContext ac);

Returns the HWND from the AccessibleContextof a top-level window.

Accessible Text Functions

These functions get AccessibleText information provided by the Java Accessibility
API, broken down into seven chunks for efficiency. An AccessibleContext has
AccessibleText information contained within it if you set the flag accessibleText in
the AccessibleContextInfo data structure to TRUE. The file AccessBridgePackages.h
defines the struct values used in these functions Java Access Bridge API Callbacks
describes them.

• BOOL GetAccessibleTextInfo(long vmID, AccessibleText at,
AccessibleTextInfo
*textInfo, jint x, jint y);

• BOOL GetAccessibleTextItems(long vmID, AccessibleText at,
AccessibleTextItemsInfo
*textItems, jint index);

• BOOL GetAccessibleTextSelectionInfo(long vmID, AccessibleText
at, AccessibleTextSelectionInfo *textSelection);

• char *GetAccessibleTextAttributes(long vmID, AccessibleText
at, jint index, AccessibleTextAttributesInfo *attributes);

• BOOL GetAccessibleTextRect(long vmID, AccessibleText at,
AccessibleTextRectInfo
*rectInfo, jint index);

• BOOL GetAccessibleTextRange(long vmID, AccessibleText at, jint
start, jint end, wchar_t *text, short len);

Chapter 5
Java Access Bridge API Calls

5-4

• BOOL GetAccessibleTextLineBounds(long vmID, AccessibleText
at, jint index, jint *startIndex, jint *endIndex);

Additional Text Functions

• BOOL selectTextRange(const long vmID, const AccessibleContext
accessibleContext, const int startIndex, const int endIndex);

Selects text between two indices. Selection includes the text at the start index and
the text at the end index. Returns whether successful.

• BOOL getTextAttributesInRange(const long vmID, const
AccessibleContext accessibleContext, const int startIndex, const
int endIndex, AccessibleTextAttributesInfo *attributes, short *len);

Get text attributes between two indices. The attribute list includes the text at the
start index and the text at the end index. Returns whether successful.

• BOOL setCaretPosition(const long vmID, const AccessibleContext
accessibleContext, const int position);

Set the caret to a text position. Returns whether successful.

• BOOL getCaretLocation(long vmID, AccessibleContext ac,
AccessibleTextRectInfo *rectInfo, jint index);

Gets the text caret location.

• BOOL setTextContents (const long vmID, const AccessibleContext
accessibleContext, const wchar_t *text);

Sets editable text contents. The AccessibleContext must implement
AccessibleEditableText and be editable. The maximum text length that can
be set is MAX_STRING_SIZE - 1. Returns whether successful.

Accessible Table Functions

• BOOL getAccessibleTableInfo(long vmID, AccessibleContext acParent,
AccessibleTableInfo *tableInfo);

Returns information about the table, for example, caption, summary, row and
column count, and the AccessibleTable.

• BOOL getAccessibleTableCellInfo(long vmID, AccessibleTable
accessibleTable, jint row, jint column, AccessibleTableCellInfo
*tableCellInfo);

Returns information about the specified table cell. The row and column specifiers
are zero-based.

Chapter 5
Java Access Bridge API Calls

5-5

• BOOL getAccessibleTableRowHeader(long vmID, AccessibleContext
acParent, AccessibleTableInfo *tableInfo);

Returns the table row headers of the specified table as a table.

• BOOL getAccessibleTableColumnHeader(long vmID, AccessibleContext
acParent, AccessibleTableInfo *tableInfo);

Returns the table column headers of the specified table as a table.

• AccessibleContext getAccessibleTableRowDescription(long vmID,
AccessibleContext acParent, jint row);

Returns the description of the specified row in the specified table. The row
specifier is zero-based.

• AccessibleContext getAccessibleTableColumnDescription(long vmID,
AccessibleContext acParent, jint column);

Returns the description of the specified column in the specified table. The column
specifier is zero-based.

• jint getAccessibleTableRowSelectionCount(long vmID, AccessibleTable
table);

Returns how many rows in the table are selected.

• BOOL isAccessibleTableRowSelected(long vmID, AccessibleTable table,
jint row);

Returns true if the specified zero based row is selected.

• BOOL getAccessibleTableRowSelections(long vmID, AccessibleTable
table, jint count, jint *selections);

Returns an array of zero based indices of the selected rows.

• jint getAccessibleTableColumnSelectionCount(long vmID,
AccessibleTable table);

Returns how many columns in the table are selected.

• BOOL isAccessibleTableColumnSelected(long vmID, AccessibleTable
table, jint column);

Returns true if the specified zero based column is selected.

• BOOL getAccessibleTableColumnSelections(long vmID, AccessibleTable
table, jint count, jint *selections);

Chapter 5
Java Access Bridge API Calls

5-6

Returns an array of zero based indices of the selected columns.

• jint getAccessibleTableRow(long vmID, AccessibleTable table, jint
index);

Returns the row number of the cell at the specified cell index. The values are zero
based.

• jint getAccessibleTableColumn(long vmID, AccessibleTable table,
jint index);

Returns the column number of the cell at the specified cell index. The values are
zero based.

• jint getAccessibleTableIndex(long vmID, AccessibleTable table, jint
row, jint column);

Returns the index in the table of the specified row and column offset. The values
are zero based.

Accessible Relation Set Function

• BOOL getAccessibleRelationSet(long vmID, AccessibleContext
accessibleContext, AccessibleRelationSetInfo *relationSetInfo);

Returns information about an object's related objects.

Accessible Hypertext Functions

• BOOL getAccessibleHypertext(long vmID, AccessibleContext
accessibleContext, AccessibleHypertextInfo *hypertextInfo);

Returns hypertext information associated with a component.

• BOOL activateAccessibleHyperlink(long vmID, AccessibleContext
accessibleContext, AccessibleHyperlink accessibleHyperlink);

Requests that a hyperlink be activated.

• jint getAccessibleHyperlinkCount(const long vmID, const
AccessibleHypertext hypertext);

Returns the number of hyperlinks in a component. Maps to
AccessibleHypertext.getLinkCount. Returns -1 on error.

• BOOL getAccessibleHypertextExt(const long vmID, const
AccessibleContext accessibleContext, const jint nStartIndex,
AccessibleHypertextInfo *hypertextInfo);

Iterates through the hyperlinks in a component. Returns hypertext information
for a component starting at hyperlink index nStartIndex. No more than

Chapter 5
Java Access Bridge API Calls

5-7

MAX_HYPERLINKS AccessibleHypertextInfo objects will be returned for
each call to this method. Returns FALSE on error.

• jint getAccessibleHypertextLinkIndex(const long vmID, const
AccessibleHypertext hypertext, const jint nIndex);

Returns the index into an array of hyperlinks that is associated with a character
index in document. Maps to AccessibleHypertext.getLinkIndex. Returns
-1 on error.

• BOOL getAccessibleHyperlink(const long vmID, const
AccessibleHypertext hypertext, const jint nIndex,
AccessibleHypertextInfo *hyperlinkInfo);

Returns the nth hyperlink in a document. Maps to
AccessibleHypertext.getLink. Returns FALSE on error.

Accessible Key Binding Function

• BOOL getAccessibleKeyBindings(long vmID, AccessibleContext
accessibleContext, AccessibleKeyBindings *keyBindings);

Returns a list of key bindings associated with a component.

Accessible Icon Function

• BOOL getAccessibleIcons(long vmID, AccessibleContext
accessibleContext, AccessibleIcons *icons);

Returns a list of icons associate with a component.

Accessible Action Functions

• BOOL getAccessibleActions(long vmID, AccessibleContext
accessibleContext, AccessibleActions *actions);

Returns a list of actions that a component can perform.

• BOOL doAccessibleActions(long vmID, AccessibleContext
accessibleContext, AccessibleActionsToDo *actionsToDo, jint
*failure);

Request that a list of AccessibleActions be performed by a component.
Returns TRUE if all actions are performed. Returns FALSE when the first requested
action fails in which case "failure" contains the index of the action that failed.

Utility Functions

• BOOL IsSameObject(long vmID, JOBJECT64 obj1, JOBJECT64 obj2);

Returns whether two object references refer to the same object.

Chapter 5
Java Access Bridge API Calls

5-8

• AccessibleContext getParentWithRole (const long vmID, const
AccessibleContext accessibleContext, const wchar_t *role);

Returns the AccessibleContext with the specified role that is the ancestor of a
given object. The role is one of the role strings defined in Java Access Bridge API
Data Structures. If there is no ancestor object that has the specified role, returns
(AccessibleContext)0.

• AccessibleContext getParentWithRoleElseRoot (const long vmID, const
AccessibleContext accessibleContext, const wchar_t *role);

Returns the AccessibleContext with the specified role that is the ancestor of a
given object. The role is one of the role strings defined in Java Access Bridge API
Data Structures. If an object with the specified role does not exist, returns the top
level object for the Java window. Returns (AccessibleContext)0 on error.

• AccessibleContext getTopLevelObject (const long vmID, const
AccessibleContext accessibleContext);

Returns the AccessibleContext for the top level object in a
Java window. This is same AccessibleContext that is obtained
from GetAccessibleContextFromHWND for that window. Returns
(AccessibleContext)0 on error.

• int getObjectDepth (const long vmID, const AccessibleContext
accessibleContext);

Returns how deep in the object hierarchy a given object is. The top most object in
the object hierarchy has an object depth of 0. Returns -1 on error.

• AccessibleContext getActiveDescendent (const long vmID, const
AccessibleContext accessibleContext);

Returns the AccessibleContext of the current ActiveDescendent of an
object. This method assumes the ActiveDescendent is the component that
is currently selected in a container object. Returns (AccessibleContext)0 on
error or if there is no selection.

• BOOL requestFocus(const long vmID, const AccessibleContext
accessibleContext);

Request focus for a component. Returns whether successful.

• int getVisibleChildrenCount(const long vmID, const
AccessibleContext accessibleContext);

Returns the number of visible children of a component. Returns -1 on error.

Chapter 5
Java Access Bridge API Calls

5-9

• BOOL getVisibleChildren(const long vmID, const AccessibleContext
accessibleContext, const int startIndex, VisibleChildrenInfo
*visibleChildrenInfo);

Gets the visible children of an AccessibleContext. Returns whether
successful.

• int getEventsWaiting();

Gets the number of events waiting to fire.

Accessible Value Functions

These functions get AccessibleValue information provided by the Java Accessibility
API. An AccessibleContext object has AccessibleValue information contained within
it if the flag accessibleValue in the AccessibleContextInfo data structure is set to
TRUE. The values returned are strings (char *value) because there is no way to tell
in advance if the value is an integer, a floating point value, or some other object that
subclasses the Java language construct java.lang.Number.

• BOOL GetCurrentAccessibleValueFromContext(long vmID,
AccessibleValue av, wchar_t *value, short len);

• BOOL GetMaximumAccessibleValueFromContext(long vmID,
AccessibleValue av, wchar_ *value, short len);

• BOOL GetMinimumAccessibleValueFromContext(long vmID,
AccessibleValue av, wchar_ *value, short len);

Accessible Selection Functions

These functions get and manipulate AccessibleSelection information provided by the
Java Accessibility API. An AccessibleContext has AccessibleSelection information
contained within it if the flag accessibleSelection in the AccessibleContextInfo
data structure is set to TRUE. The AccessibleSelection support is the first place where
the user interface can be manipulated, as opposed to being queries, through adding
and removing items from a selection. Some of the functions use an index that is in
child coordinates, while other use selection coordinates. For example, add to remove
from a selection by passing child indices (for example, add the fourth child to the
selection). On the other hand, enumerating the selected children is done in selection
coordinates (for example, get the AccessibleContext of the first object selected).

• void AddAccessibleSelectionFromContext(long vmID,
AccessibleSelection
as, int i);

• void ClearAccessibleSelectionFromContext(long vmID,
AccessibleSelection
as);

Chapter 5
Java Access Bridge API Calls

5-10

• jobject GetAccessibleSelectionFromContext(long vmID,
AccessibleSelection
as, int i);

• int GetAccessibleSelectionCountFromContext(long vmID,
AccessibleSelection
as);

• BOOL IsAccessibleChildSelectedFromContext(long vmID,
AccessibleSelection
as, int i);

• void RemoveAccessibleSelectionFromContext(long vmID,
AccessibleSelection
as, int i);

• void SelectAllAccessibleSelectionFromContext(long vmID,
AccessibleSelection
as);

Java Access Bridge API Data Structures
The Java Access Bridge API data structures are contained in the file
AccessBridgePackages.h.

Important Data Structures

There are data structures in this file that you do not need (and can ignore); they are
used as part of the inter-process communication mechanism of the two Java Access
Bridge DLLs. The data structures of importance are as follows:

#define MAX_STRING_SIZE 1024
#define SHORT_STRING_SIZE 256

typedef struct AccessibleContextInfoTag {
 wchar_ name[MAX_STRING_SIZE]; // the AccessibleName of the
object
 wchar_ description[MAX_STRING_SIZE]; // the AccessibleDescription of
the object
 wchar_ role[SHORT_STRING_SIZE]; // localized AccesibleRole string
 wchar_ states[SHORT_STRING_SIZE]; // localized AccesibleStateSet
string
 // (comma separated)
 jint indexInParent // index of object in parent
 jint childrenCount // # of children, if any
 jint x; // screen x-axis co-ordinate in
pixels
 jint y; // screen y-axis co-ordinate in
pixels
 jint width; // pixel width of object
 jint height; // pixel height of object

Chapter 5
Java Access Bridge API Data Structures

5-11

 BOOL accessibleComponent; // flags for various additional
 BOOL accessibleAction; // Java Accessibility interfaces
 BOOL accessibleSelection; // FALSE if this object doesn't
 BOOL accessibleText; // implement the additional
interface
 BOOL accessibleInterfaces; // new bitfield containing
additional
 // interface flags
} AccessibleContextInfo;

typedef struct AccessibleTextInfoTag {
 jint charCount; // # of characters in this text object
 jint caretIndex; // index of caret
 jint indexAtPoint; // index at the passsed in point
} AccessibleTextInfo;

typedef struct AccessibleTextItemsInfoTag {
 wchar_t letter;
 wchar_t word[SHORT_STRING_SIZE];
 wchar_t sentence[MAX_STRING_SIZE];
} AccessibleTextItemsInfo;

typedef struct AccessibleTextSelectionInfoTag {
 jint selectionStartIndex;
 jint selectionEndIndex;
 wchar_t selectedText[MAX_STRING_SIZE];
} AccessibleTextSelectionInfo;

typedef struct AccessibleTextRectInfoTag {
 jint x; // bounding rectangle of char at index, x-axis co-
ordinate
 jint y; // y-axis co-ordinate
 jint width; // bounding rectangle width
 jint height; // bounding rectangle height
} AccessibleTextRectInfo;

typedef struct AccessibleTextAttributesInfoTag {
 BOOL bold;
 BOOL italic;
 BOOL underline;
 BOOL strikethrough;
 BOOL superscript;
 BOOL subscript;
 wchar_t backgroundColor[SHORT_STRING_SIZE];
 wchar_t foregroundColor[SHORT_STRING_SIZE];
 wchar_t fontFamily[SHORT_STRING_SIZE];
 jint fontSize;
 jint alignment;
 jint bidiLevel;
 jfloat firstLineIndent;
 jfloat leftIndent;
 jfloat rightIndent;
 jfloat lineSpacing;
 jfloat spaceAbove;
 jfloat spaceBelow;

Chapter 5
Java Access Bridge API Data Structures

5-12

 wchar_t fullAttributesString[MAX_STRING_SIZE];
} AccessibleTextAttributesInfo;

typedef struct AccessibleTableInfoTag {
 JOBJECT64 caption; // AccesibleContext
 JOBJECT64 summary; // AccessibleContext
 jint rowCount;
 jint columnCount;
 JOBJECT64 accessibleContext;
 JOBJECT64 accessibleTable;
} AccessibleTableInfo;

typedef struct AccessibleTableCellInfoTag {
 JOBJECT64 accessibleContext;
 jint index;
 jint row;
 jint column;
 jint rowExtent;
 jint columnExtent;
 jboolean isSelected;
} AccessibleTableCellInfo;

typedef struct AccessibleRelationSetInfoTag {
 jint relationCount;
 AccessibleRelationInfo relations[MAX_RELATIONS];
} AccessibleRelationSetInfo;

typedef struct AccessibleRelationInfoTag {
 wchar_t key[SHORT_STRING_SIZE];
 jint targetCount;
 JOBJECT64 targets[MAX_RELATION_TARGETS]; // AccessibleContexts
} AccessibleRelationInfo;

typedef struct AccessibleHypertextInfoTag {
 jint linkCount; // number of
hyperlinks
 AccessibleHyperlinkInfo links[MAX_HYPERLINKS]; // the hyperlinks
 JOBJECT64 accessibleHypertext; //
AccessibleHypertext object
} AccessibleHypertextInfo;

typedef struct AccessibleHyperlinkInfoTag {
 wchar_t text[SHORT_STRING_SIZE]; // the hyperlink text
 jint startIndex; // index in the hypertext document
where the link begins
 jint endIndex; // index in the hypertext document
where the link ends
 JOBJECT64 accessibleHyperlink; // AccessibleHyperlink object
} AccessibleHyperlinkInfo;

typedef struct AccessibleKeyBindingsTag {
 int keyBindingsCount; // number of key bindings
 AccessibleKeyBindingInfo keyBindingInfo[MAX_KEY_BINDINGS];
} AccessibleKeyBindings;

Chapter 5
Java Access Bridge API Data Structures

5-13

typedef struct AccessibleKeyBindingInfoTag {
 jchar character; // the key character
 jint modifiers; // the key modifiers
} AccessibleKeyBindingInfo;

typedef struct AccessibleIconsTag {
 jint iconsCount; // number of icons
 AccessibleIconInfo iconInfo[MAX_ICON_INFO]; // the icons
} AccessibleIcons;

typedef struct AccessibleIconInfoTag {
 wchar_t description[SHORT_STRING_SIZE]; // icon description
 jint height; // icon height
 jint width; // icon width
} AccessibleIconInfo;

typedef struct AccessibleActionsTag {
 jint actionsCount; // number of actions
 AccessibleActionInfo actionInfo[MAX_ACTION_INFO]; // the action
information
} AccessibleActions;

typedef struct AccessibleActionInfoTag {
 wchar_t name[SHORT_STRING_SIZE]; // action name
} AccessibleActionInfo;

typedef struct AccessibleActionsToDoTag {
 jint actionsCount; // number of actions
to do
 AccessibleActionInfo actions[MAX_ACTIONS_TO_DO]; // the accessible
actions to do
} AccessibleActionsToDo;

typedef struct VisibleChildenInfoTag {
 int returnedChildrenCount; // number of
children returned
 AccessibleContext children[MAX_VISIBLE_CHILDREN]; // the visible
children
} VisibleChildenInfo;

Java Access Bridge API Callbacks
The Java Access Bridge API callbacks are contained in the file
AccessBridgeCallbacks.h. Your event handling functions must match these
prototypes.

You must call the function ReleaseJavaObject on every JOBJECT64 returned through
these event handlers once you are finished with them to prevent memory leaks in the
JVM.

If you are using legacy APIs, then define ACCESSBRIDGE_ARCH_LEGACY.

Chapter 5
Java Access Bridge API Callbacks

5-14

JOBJECT64 is defined as jlong on 64-bit systems and jobject on legacy versions of
Java Access Bridge. For definitions, see the section ACCESSBRIDGE_ARCH_LEGACY in the
AccessBridgePackages.h header file.

• typedef void (*AccessBridge_FocusGainedFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_FocusLostFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_CaretUpdateFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_MouseClickedFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_MouseEnteredFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_MouseExitedFP) (long vmID, JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_MousePressedFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_MouseReleasedFP) (long vmID, JOBJECT64 event,
JOBJECT64 source);

• typedef void (*AccessBridge_MenuCanceledFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_MenuDeselectedFP) (long vmID, JOBJECT64 event,
JOBJECT64 source);

• typedef void (*AccessBridge_MenuSelectedFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_PopupMenuCanceledFP) (long vmID JOBJECT64 event,
JOBJECT64 source);

• typedef void (*AccessBridge_PopupMenuWillBecomeInvisibleFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_PopupMenuWillBecomeVisibleFP) (long vmID,

Chapter 5
Java Access Bridge API Callbacks

5-15

JOBJECT64
event, JOBJECT64 source);

• typedef void (*AccessBridge_PropertyNameChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, wchar_t *oldName,
wchar_t
*newName);

• typedef void (*AccessBridge_PropertyDescriptionChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, wchar_t
*oldDescription,
wchar_t *newDescription);

• typedef void (*AccessBridge_PropertyStateChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, wchar_t *oldState,
wchar_t *newState);

• typedef void (*AccessBridge_PropertyValueChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, wchar_t *oldValue,
wchar_t *newValue);

• typedef void (*AccessBridge_PropertySelectionChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_PropertyTextChangeFP) (long vmID, JOBJECT64
event,
JOBJECT64 source);

• typedef void (*AccessBridge_PropertyCaretChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, int oldPosition, int
newPosition);

• typedef void (*AccessBridge_PropertyVisibleDataChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source);

• typedef
void (*AccessBridge_PropertyChildChangeFP) (long vmID, JOBJECT64
event,
JOBJECT64 source, JOBJECT64 oldChild, JOBJECT64 newChild);

• typedef void (*AccessBridge_PropertyActiveDescendentChangeFP)
(long vmID, JOBJECT64 event, JOBJECT64 source, JOBJECT64
oldActiveDescendent,
JOBJECT64 newActiveDescendent);

Chapter 5
Java Access Bridge API Callbacks

5-16

Troubleshooting Java Access Bridge
This topic describes known problems and usage tips for those developing Assistive
Technology applications for Java Access Bridge.

Known Problems

Re-Registering Menu Events Generates Duplicate Copies: If you register a menu
event, unregister it, and then register it again, then Java Access Bridge generates
duplicate copies of the menu event.

MenuDeselected Events Generated When Menu is Closed: You are not receiving
MenuCanceled (or PopupMenuCanceled) events. To determine that a menu has
been closed, look for MenuDeselected events.

Usage Tips

Determining Changes in Menu Item Selection: Use State PropertyChange events to
determine changes in menu item selection (for example, when the user uses the arrow
buttons or keys to go up or down within a menu).

Tracking Values of GUI Elements: Use the AccessibleValue support and Value
PropertyChange events to track the values of GUI elements like sliders and scroll bars.

Determining Selected Items: Use the AccessibleSelection support to determine
which items are selected in containers that contain items such as lists and tables. This
is more efficient than enumerating all of the children and examining their StateSet
attribute to see if the Selected value is among them.

Java Access Bridge Testing Tools: The Java Access Bridge testing tools
jaccessinspector and jaccesswalker are located in the Java bin directory.

Chapter 5
Troubleshooting Java Access Bridge

5-17

6
Accessibility Properties

The javax.accessibility package provides the following properties:
assistive_technologies and screen_magnifier_present.

Topics

• Loading Assistive Technologies

• Indicating the Presence of a Screen Magnifier

• Setting Properties

Loading Assistive Technologies

The assistive_technologies property specifies the assistive technologies
to load into the JVM. It takes a comma-delimited list of
service provider names. See the javax.accessibility package, the
javax.accessibility.AccessibilityProvider abstract class, and the
java.awt.Toolkit.getDefaultToolkit method.

Indicating the Presence of a Screen Magnifier

When the screen_magnifier_present property is set to true, it lets the Java platform
libraries know that a screen magnifier is present on the system. Application developers
can check this property, and if a screen magnifier is present, developers should make
sure their applications are compatible with screen magnification. For example, on
Microsoft Windows operating systems, the reference implementation of the Java 2D
API checks this property and if true, turns off Microsoft DirectDraw to avoid problems
with the screen magnifier. (Some screen magnifiers may not be able to magnify
DirectDraw graphics.)

Setting Properties

Set a property at run time with the following command:

java -Djavax.accessibility.assistive_technologies=ServiceProviderName

ServiceProvicerName is the name of a service provider
that adds an assistive technology feature; see the
javax.accessibility.AccessibilityProvider.getName method.

You can also specify properties in a file named .accessibility.properties
in the user's home directory or a file named accessibility.properties in
the $JAVA_HOME/conf directory. In the former case, the properties are used for the
current user, and in the latter case, the properties are used for all users of that Java
installation. The properties set for the current user take precedence over the properties
set for the Java installation.

6-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/AccessibilityProvider.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Toolkit.html#getDefaultToolkit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/accessibility/AccessibilityProvider.html#getName()

Set a property in the accessibility.properties file by adding line or lines as
follows:

assistive_technologies=ServiceProviderName
screen_magnifier_present=true

Note:

You can specify more than one service provider in the
assistive_technologies property with a comma-delimited list.

Chapter 6

6-2

7
Java Accessibility Utilities Overview

To provide access to a Java application, an assistive technology requires more
than the Java Accessibility API; it also requires support for locating user interface
(UI) objects that implement the Java Accessibility API, loading assistive technology
support into the JVM, and tracking events. The Java Accessibility Utilities provide this
assistance.

The Java Accessibility Utilities, which is contained in the package
com.sun.java.accessibility.util, provide the necessary support for assistive
technologies to locate and query UI objects inside a Java application running in a JVM.
It also provides support for installing event listeners into these objects. These event
listeners enable UI objects to learn about specific events occurring in other UI objects
using the peer-to-peer approach defined by the delegation event model. This package
is made up of the following major pieces:

• Key Information about Java Applications

• Automatic Loading of Assistive Technologies

• Event Support

Key Information about Java Applications

The com.sun.java.accessibility.util package contains methods for
retrieving key information about Java applications running in a JVM. This support
provides a list of the top-level windows of all of the Java applications; an event listener
architecture to be informed when top-level windows appear (and disappear); and
means for locating the window that has the input focus, locating the mouse position,
and inserting events into the system event queue.

Automatic Loading of Assistive Technologies

For an assistive technology to work with a Java application, load it into the same JVM
as the Java application to which it is providing access. This is done through the use
of the assistive_technologies property; see Loading Assistive Technologies. This
support is in the class EventQueueMonitor.

Event Support

The Java Accessibility Utilities include three classes for monitoring events in the
Java Virtual Machine. The first class, AWTEventMonitor, provides a way to
monitor all AWT events in all AWT components running in the JVM. This class
essentially provides system-wide monitoring of AWT events, registering an individual
listener for each AWT event type on each AWT component that supports that type
of listener. Thus, an assistive technology can register a "Focused listener" with
AWTEventMonitor, which will in turn register a "Focused listener" with each and
every AWT component in each and every Java application in the JVM. Those
individual listeners will funnel the events that they hear about to the assistive
technology that registered the listener with AWTEventMonitor in the first place. Thus,
whenever a component gains or loses focus (for example, the user presses the Tab
key), the assistive technology will be notified.

7-1

https://docs.oracle.com/en/java/javase/11/docs/api/jdk.accessibility/com/sun/java/accessibility/util/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.accessibility/com/sun/java/accessibility/util/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.accessibility/com/sun/java/accessibility/util/EventQueueMonitor.html

The second class, SwingEventMonitor, extends AWTEventMonitor to provide
additional support for monitoring the Swing events supported by the Swing
components. Since SwingEventMonitor extends AWTEventMonitor, there is no
need to use both classes if you are using SwingEventMonitor in your assistive
technology.

The third class, AccessibilityEventMonitor, provides support for
property change events on Accessible objects. When an assisitive
technology requests notification of Accessible property change events
using AccessibilityEventMonitor, the AccessibilityEventMonitor will
automatically register Accessible property change listeners on all the
components. In addition, it will detect when components are added and removed
from the component hierarchy and add and remove the property change listeners
accordingly. When an Accessible property change occurs in any of the
components, the AccessibilityEventMonitor will notify the assistive technology.

Chapter 7

7-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Java Accessibility Overview
	2 Java Access Bridge Overview
	3 Enabling and Testing Java Access Bridge
	Enabling Java Access Bridge Through the Command Line
	Disabling Java Access Bridge
	Testing Java Access Bridge
	Java Access Bridge Tools
	Minimum Version Requirements of Assistive Technologies

	4 Java Access Bridge Architecture
	5 Java Access Bridge API
	Java Access Bridge API Files
	Java Access Bridge API Calls
	Java Access Bridge API Data Structures
	Java Access Bridge API Callbacks
	Troubleshooting Java Access Bridge

	6 Accessibility Properties
	7 Java Accessibility Utilities Overview

