
Java Platform, Standard Edition
Java Language Updates

Release 15
F31046-01
September 2020

Java Platform, Standard Edition Java Language Updates, Release 15

F31046-01

Copyright © 2017, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Java Language Changes

Java Language Updates for Java SE 15 1-1

Java Language Changes for Java SE 14 1-1

Java Language Changes for Java SE 13 1-2

Java Language Changes for Java SE 12 1-2

Java Language Changes for Java SE 11 1-3

Java Language Changes for Java SE 10 1-3

Java Language Changes for Java SE 9 1-3

More Concise try-with-resources Statements 1-4

@SafeVarargs Annotation Allowed on Private Instance Methods 1-5

Diamond Syntax and Anonymous Inner Classes 1-5

Underscore Character Not Legal Name 1-5

Support for Private Interface Methods 1-5

2 Preview Features

3 Sealed Classes

4 Pattern Matching for instanceof

5 Record Classes

iii

6 Switch Expressions

7 Text Blocks

8 Local Variable Type Inference

iv

Preface

This guide describes the updated language features in Java SE 9 and subsequent
releases.

Audience
This document is for Java developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 15 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase15&id=homepage

1
Java Language Changes

This section summarizes the updated language features in Java SE 9 and subsequent
releases.

Java Language Updates for Java SE 15

Feature Description JEP

Sealed Classes Introduced as a preview feature for this release.

Sealed classes and interfaces restrict which other
classes or interfaces may extend or implement them.

JEP 360: Sealed Classes
(Preview)

Record Classes Preview feature from Java SE 14 re-previewed for this
release. It has been enhanced with support for local
records.

Records are classes that act as transparent carriers for
immutable data.

JEP 384: Records (Second
Preview)

Pattern Matching for
instanceof

Preview feature from Java SE 14 re-previewed for this
release. It is unchanged between Java SE 14 and this
release.

Pattern matching allows common logic in a program,
namely the conditional extraction of components from
objects, to be expressed more concisely and safely.

JEP 375: Pattern Matching
for instanceof (Second
Preview)

Text Blocks

See also Programmer's
Guide to Text Blocks

First previewed in Java SE 13, this feature is permanent
in this release. This means that it can be used in any
program compiled for Java SE 15 without needing to
enable preview features.

A text block is a multiline string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over the format when desired.

JEP 378: Text Blocks

Java Language Changes for Java SE 14

Feature Description JEP

Pattern Matching for the
instanceof Operator

Introduced as a preview feature for this release.

Pattern matching allows common logic in a program,
namely the conditional extraction of components from
objects, to be expressed more concisely and safely.

JEP 305: Pattern
Matching for instanceof
(Preview)JEP 305: Pattern
Matching for instanceof
(Preview)

Records Introduced as a preview feature for this release.

Records provide a compact syntax for declaring classes
which are transparent holders for shallowly immutable
data.

JEP 359: Records
(Preview)

1-1

http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-0C709461-CC33-419A-82BF-61461336E65F
https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-6699E26F-4A9B-4393-A08B-1E47D4B2D263
https://openjdk.java.net/jeps/384
https://openjdk.java.net/jeps/384
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=GUID-221D06A2-FF54-4DB3-A6DA-179B8F76DB05
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=text_blocks
https://openjdk.java.net/jeps/378
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-843060B5-240C-4F47-A7B0-95C42E5B08A7
https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-6699E26F-4A9B-4393-A08B-1E47D4B2D263
https://openjdk.java.net/jeps/359
https://openjdk.java.net/jeps/359

Feature Description JEP

Text Blocks

See also Programmer's
Guide to Text Blocks

Preview feature from Java SE 13 re-previewed for this
release. It has been enhanced with support for more
escape sequences.

A text block is a multiline string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over the format when desired.

JEP 375: Pattern Matching
for instanceof (Second
Preview)

Switch Expressions First previewed in Java SE 12, this feature is permanent
in this release. This means that it can be used in any
program compiled for Java SE 14 without needing to
enable preview features.

This feature extends switch so it can be used as
either a statement or an expression, and so that both
forms can use either traditional case ... : labels (with
fall through) or new case ... -> labels (with no fall
through), with a further new statement for yielding a
value from a switch expression.

JEP 361: Switch
Expressions (Standard)

Java Language Changes for Java SE 13

Feature Description JEP

Text Blocks, see
Programmer's Guide to
Text Blocks

Introduced as a preview feature for this release.

A text block is a multi-line string literal that avoids the
need for most escape sequences, automatically formats
the string in a predictable way, and gives the developer
control over format when desired.

JEP 355: Text Blocks
(Preview)

Switch Expressions Preview feature from Java SE 12 re-previewed for this
release. It has been enhanced with one change: To
specify the value of a switch expression, use the new
yield statement instead of the break statement.

This feature extends switch so it can be used as
either a statement or an expression, and so that both
forms can use either traditional case ... : labels (with
fall through) or new case ... -> labels (with no fall
through), with a further new statement for yielding a
value from a switch expression. .

JEP 354: Switch
Expressions (Second
Preview)

Java Language Changes for Java SE 12

Feature Description JEP

Switch Expressions Introduced as a preview feature for this release.

This feature extends the switch statement so that it can
be used as either a statement or an expression, and that
both forms can use either a "traditional" or "simplified"
scoping and control flow behavior.

JEP 325: Switch
Expressions (Preview)

Chapter 1
Java Language Changes for Java SE 13

1-2

http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-221D06A2-FF54-4DB3-A6DA-179B8F76DB05
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=text_blocks
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
http://www.oracle.com/pls/topic/lookup?ctx=javase14&id=GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/361
https://openjdk.java.net/jeps/361
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=text_blocks
https://openjdk.java.net/jeps/355
https://openjdk.java.net/jeps/355
http://www.oracle.com/pls/topic/lookup?ctx=javase13&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC#GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/354
https://openjdk.java.net/jeps/354
https://openjdk.java.net/jeps/354
http://www.oracle.com/pls/topic/lookup?ctx=javase12&id=JSLAN-GUID-BA4F63E3-4823-43C6-A5F3-BAA4A2EF3ADC
https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/325

Java Language Changes for Java SE 11

Feature Description JEP

Local Variable Type
Inference

See also Local Variable
Type Inference: Style
Guidelines

Introduced in Java SE 10. In this release, it has been
enhanced with support for allowing var to be used
when declaring the formal parameters of implicitly typed
lambda expressions.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

• JEP 286: Local-
Variable Type
Inference

• JEP 323: Local-
Variable Syntax for
Lambda Parameters

Java Language Changes for Java SE 10

Feature Description JEP

Local Variable Type
Inference

See also Local Variable
Type Inference: Style
Guidelines

Introduced in this release.

Local-Variable Type Inference extends type inference to
declarations of local variables with initializers.

JEP 286: Local-Variable
Type Inference

Java Language Changes for Java SE 9

Feature Description JEP

Java Platform module
system, see Project
Jigsaw on OpenJDK.

Introduced in this release.

The Java Platform module system introduces
a new kind of Java programing component,
the module, which is a named, self-describing
collection of code and data. Its code is
organized as a set of packages containing
types, that is, Java classes and interfaces; its
data includes resources and other kinds of
static information. Modules can either export
or encapsulate packages, and they express
dependencies on other modules explicitly.

Java Platform Module
System (JSR 376)

• JEP 261: Module
System

• JEP 200: The
Modular JDK

• JEP 220: Modular
Run-Time Images

• JEP 260:
Encapsulate Most
Internal APIs

Chapter 1
Java Language Changes for Java SE 11

1-3

http://www.oracle.com/pls/topic/lookup?ctx=javase11&id=GUID-D2C58FE6-1065-4B50-9326-57DD8EC358AC
http://www.oracle.com/pls/topic/lookup?ctx=javase11&id=GUID-D2C58FE6-1065-4B50-9326-57DD8EC358AC
http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
https://openjdk.java.net/jeps/323
http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html
https://openjdk.java.net/jeps/286
https://openjdk.java.net/jeps/286
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/projects/jigsaw/spec/
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/200
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/260

Feature Description JEP

Small language
enhancements
(Project Coin):

• More Concise
try-with-resources
Statements

• @SafeVarargs
Annotation
Allowed on
Private Instance
Methods

• Diamond Syntax
and Anonymous
Inner Classes

• Underscore
Character Not
Legal Name

• Support for
Private Interface
Methods

Introduced in Java SE 7 as Project Coin. It has
been enhanced with a few amendments.

JEP 213: Milling
Project Coin

JSR 334: Small
Enhancements to the
Java Programming
Language

More Concise try-with-resources Statements
If you already have a resource as a final or effectively final variable, you can use
that variable in a try-with-resources statement without declaring a new variable. An
"effectively final" variable is one whose value is never changed after it is initialized.

For example, you declared these two resources:

 // A final resource
 final Resource resource1 = new Resource("resource1");
 // An effectively final resource
 Resource resource2 = new Resource("resource2");

In Java SE 7 or 8, you would declare new variables, like this:

 try (Resource r1 = resource1;
 Resource r2 = resource2) {
 ...
 }

In Java SE 9, you don’t need to declare r1 and r2:

// New and improved try-with-resources statement in Java SE 9
 try (resource1;
 resource2) {
 ...
 }

There is a more complete description of the try-with-resources statement in The Java
Tutorials (Java SE 8 and earlier).

Chapter 1
Java Language Changes for Java SE 9

1-4

http://openjdk.java.net/projects/coin/
https://openjdk.java.net/jeps/213
https://openjdk.java.net/jeps/213
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://jcp.org/en/jsr/detail?id=334
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

@SafeVarargs Annotation Allowed on Private Instance Methods
The @SafeVarargs annotation is allowed on private instance methods. It can be
applied only to methods that cannot be overridden. These include static methods,
final instance methods, and, new in Java SE 9, private instance methods.

Diamond Syntax and Anonymous Inner Classes
You can use diamond syntax in conjunction with anonymous inner classes. Types
that can be written in a Java program, such as int or String, are called denotable
types. The compiler-internal types that cannot be written in a Java program are called
non-denotable types.

Non-denotable types can occur as the result of the inference used by the diamond
operator. Because the inferred type using diamond with an anonymous class
constructor could be outside of the set of types supported by the signature attribute in
class files, using the diamond with anonymous classes was not allowed in Java SE 7.

Underscore Character Not Legal Name
If you use the underscore character ("_") as an identifier, your source code can no
longer be compiled.

Support for Private Interface Methods
Private interface methods are supported. This support allows nonabstract methods of
an interface to share code between them.

Chapter 1
Java Language Changes for Java SE 9

1-5

2
Preview Features

A preview feature is a new feature whose design, specification, and implementation
are complete, but which is not permanent, which means that the feature may exist in a
different form or not at all in future JDK releases.

Introducing a feature as a preview feature in a mainline JDK release enables the
largest developer audience possible to try the feature out in the real world and provide
feedback. In addition, tool vendors are encouraged to build support for the feature
before Java developers use it in production. Developer feedback helps determine
whether the feature has any design mistakes, which includes hard technical errors
(such as a flaw in the type system), soft usability problems (such as a surprising
interaction with an older feature), or poor architectural choices (such as one that
forecloses on directions for future features). Through this feedback, the feature's
strengths and weaknesses are evaluated to determine if the feature has a long-term
role in the Java SE Platform, and if so, whether it needs refinement. Consequently, the
feature may be granted final and permanent status (with or without refinements), or
undergo a further preview period (with or without refinements), or else be removed.

Every preview feature is described by a JDK Enhancement Proposal (JEP) that
defines its scope and sketches its design. For example, JEP 325 describes the JDK 12
preview feature for switch expressions. For background information about the role and
lifecycle of preview features, see JEP 12.

Using Preview Features

To use preview language features in your programs, you must explicitly enable them in
the compiler and the runtime system. If not, you'll receive an error message that states
that your code is using a preview feature and preview features are disabled by default.

To compile source code with javac that uses preview features from JDK release n,
use javac from JDK release n with the --enable-preview command-line option in
conjunction with either the --release n or -source n command-line option.

For example, suppose you have an application named MyApp.java that uses the JDK
12 preview language feature switch expressions. Compile this with JDK 12 as follows:

javac --enable-preview --release 12 MyApp.java

2-1

https://openjdk.java.net/jeps/325
https://openjdk.java.net/jeps/12

Note:

When you compile an application that uses preview features, you'll receive a
warning message similar to the following:

Note: MyApp.java uses preview language features.
Note: Recompile with -Xlint:preview for details

Remember that preview features are subject to change and are intended to
provoke feedback.

To run an application that uses preview features from JDK release n, use java from
JDK release n with the --enable-preview option. To continue the previous example, to
run MyApp, run java from JDK 12 as follows:

java --enable-preview MyApp

Note:

Code that uses preview features from an older release of the Java SE
Platform will not necessarily compile or run on a newer release.

The tools jshell and javadoc also support the --enable-preview command-line
option.

Sending Feedback

You can provide feedback on preview features, or anything else about the Java SE
Platform, as follows:

• If you find any bugs, then submit them at Java Bug Database.

• If you want to provide substantive feedback on the usability of a preview feature,
then post it on the OpenJDK mailing list where the feature is being discussed. To
find the mailing list of a particular feature, see the feature's JEP page and look
for the label Discussion. For example, on the page JEP 325: Switch Expressions
(Preview), you'll find "Discussion amber dash dev at openjdk dot java dot net" near
the top of the page.

• If you are working on an open source project, then see Quality Outreach on the
OpenJDK Wiki.

Chapter 2

2-2

https://bugs.java.com/bugdatabase/
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

3
Sealed Classes

Sealed classes and interfaces restrict which other classes or interfaces may extend or
implement them.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future Java SE releases.
To compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about sealed classes and interfaces, see JEP
360.

One of the primary purposes of inheritance is code reuse: When you want to create a
new class and there is already a class that includes some of the code that you want,
you can derive your new class from the existing class. In doing this, you can reuse
the fields and methods of the existing class without having to write (and debug) them
yourself.

However, what if you want to model the various possibilities that exist in a domain by
defining its entities and determining how these entities should relate to each other?
For example, you're working on a graphics library. You want to determine how your
library should handle common geometric primitives like circles and squares. You've
created a Shape class that these geometric primitives can extend. However, you're not
interested in allowing any arbitrary class to extend Shape; you don't want clients of
your library declaring any further primitives. By sealing a class, you can specify which
classes are permitted to extend it and prevent any other arbitrary class from doing so.

Defining Sealed Classes

To seal a class, add the sealed modifier to its declaration. Then, after any extends and
implements clauses, add the permits clause. This clause specifies the classes that
may extend the sealed class.

For example, the following declaration of Shape specifies three permitted subclasses,
Circle, Square, and Rectangle:

Figure 3-1 Shape.java

public sealed class Shape
 permits Circle, Square, Rectangle {
}

3-1

https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360

Define the following three permitted subclasses, Circle, Square, and Rectangle, in
the same module or in the same package as the sealed class:

Figure 3-2 Circle.java

public final class Circle extends Shape {
 public float radius;
}

Figure 3-3 Square.java

public non-sealed class Square extends Shape {
 public double side;
}

Figure 3-4 Rectangle.java

public sealed class Rectangle extends Shape permits FilledRectangle {
 public double length, width;
}

Rectangle has a further subclass, FilledRectangle:

Figure 3-5 FilledRectangle.java

public final class FilledRectangle extends Rectangle {
 public int red, green, blue;
}

Alternatively, you can define permitted subclasses in the same file as the sealed class.
If you do so, then you can omit the permits clause:

package com.example.geometry;

public sealed class Figure
 // The permits clause has been omitted
 // as its permitted classes have been
 // defined in the same file.
{ }

final class Circle extends Figure {
 float radius;
}
non-sealed class Square extends Figure {
 float side;

Chapter 3

3-2

}
sealed class Rectangle extends Figure {
 float length, width;
}
final class FilledRectangle extends Rectangle {
 int red, green, blue;
}

Constraints on Permitted Subclasses

Permitted subclasses have the following constraints:

• They must be accessible by the sealed class at compile time.

For example, to compile Shape.java, the compiler must be able to access
all of the permitted classes of Shape: Circle.java, Square.java, and
Rectangle.java. In addition, because Rectangle is a sealed class, the compiler
also needs access to FilledRectangle.java.

• They must directly extend the sealed class.

• They must have exactly one of the following modifiers to describe how it continues
the sealing initiated by its superclass:

– final: Cannot be extended further

– sealed: Can only be extended by its permitted subclasses

– non-sealed: Can be extended by unknown subclasses; a sealed class cannot
prevent its permitted subclasses from doing this

For example, the permitted subclasses of Shape demonstrate each of these three
modifiers: Circle is final while Rectangle is sealed and Square is non-sealed.

• They must be in the same module as the sealed class (if the sealed class is in
a named module) or in the same package (if the sealed class is in the unnamed
module, as in the Shape.java example).

For example, in the following declaration of com.example.graphics.Shape, its
permitted subclasses are all in different packages. This example will compile only
if Shape and all of its permitted subclasses are in the same named module.

package com.example.graphics;

public sealed class Shape
 permits com.example.polar.Circle,
 com.example.quad.Rectangle,
 com.example.quad.simple.Square { }

Defining Sealed Interfaces

Like sealed classes, to seal an interface, add the sealed modifier to its declaration.
Then, after any extends clause, add the permits clause, which specifies the classes
that can implement the sealed interface and the interfaces that can extend the sealed
interface.

Chapter 3

3-3

The following example declares a sealed interface named Expr. Only the classes
ConstantExpr, PlusExpr, TimesExpr, and NegExpr may implement it:

package com.example.expressions;

public class TestExpressions {
 public static void main(String[] args) {
 // (6 + 7) * -8
 System.out.println(
 new TimesExpr(
 new PlusExpr(new ConstantExpr(6), new ConstantExpr(7)),
 new NegExpr(new ConstantExpr(8))
).eval());
 }
}

sealed interface Expr
 permits ConstantExpr, PlusExpr, TimesExpr, NegExpr {
 public int eval();
}

final class ConstantExpr implements Expr {
 int i;
 ConstantExpr(int i) { this.i = i; }
 public int eval() { return i; }
}

final class PlusExpr implements Expr {
 Expr a, b;
 PlusExpr(Expr a, Expr b) { this.a = a; this.b = b; }
 public int eval() { return a.eval() + b.eval(); }
}

final class TimesExpr implements Expr {
 Expr a, b;
 TimesExpr(Expr a, Expr b) { this.a = a; this.b = b; }
 public int eval() { return a.eval() * b.eval(); }
}

final class NegExpr implements Expr {
 Expr e;
 NegExpr(Expr e) { this.e = e; }
 public int eval() { return -e.eval(); }
}

Record Classes as Permitted Subclasses

You can name a record class in the permits clause of a sealed class or interface. See
Record Classes for more information.

Record classes are implicitly final, so you can implement the previous example with
record classes instead of ordinary classes:

package com.example.records.expressions;

Chapter 3

3-4

public class TestExpressions {
 public static void main(String[] args) {
 // (6 + 7) * -8
 System.out.println(
 new TimesExpr(
 new PlusExpr(new ConstantExpr(6), new ConstantExpr(7)),
 new NegExpr(new ConstantExpr(8))
).eval());
 }
}

sealed interface Expr
 permits ConstantExpr, PlusExpr, TimesExpr, NegExpr {
 public int eval();
}

record ConstantExpr(int i) implements Expr {
 public int eval() { return i(); }
}

record PlusExpr(Expr a, Expr b) implements Expr {
 public int eval() { return a.eval() + b.eval(); }
}

record TimesExpr(Expr a, Expr b) implements Expr {
 public int eval() { return a.eval() * b.eval(); }
}

record NegExpr(Expr e) implements Expr {
 public int eval() { return -e.eval(); }
}

APIs Related to Sealed Classes and Interfaces

The class java.lang.Class has two new methods related to sealed classes and
interfaces:

• java.lang.constant.ClassDesc[] permittedSubclasses(): Returns
an array containing java.lang.constant.ClassDesc objects representing all
the permitted subclasses of the class if it is sealed; returns an empty array if the
class is not sealed

• boolean isSealed(): Returns true if the given class or interface is sealed

Chapter 3

3-5

4
Pattern Matching for instanceof

Pattern matching involves testing whether an object has a particular structure, then
extracting data from that object if there's a match. You can already do this with Java;
however, pattern matching introduces new language enhancements that enable you to
conditionally extract data from objects with code that's more concise and robust.

More specifically, JDK 15 extends the instanceof operator: you can specify a binding
variable; if the result of the instanceof operator is true, then the object being tested is
assigned to the binding variable.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future Java SE releases.
To compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about pattern matching for the instaceof
operator, see JEP 375.

Consider the following code the calculates the perimeter of certain shapes:

public interface Shape { }

final class Rectangle implements Shape {
 final double length;
 final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return length; }
 double width() { return width; }
}

public class Circle implements Shape {
 final double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 double radius() { return radius; }

4-1

https://openjdk.java.net/jeps/375

}

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle) {
 Rectangle s = (Rectangle) shape;
 return 2 * s.length() + 2 * s.width();
 } else if (shape instanceof Circle) {
 Circle s = (Circle) shape;
 return 2 * s.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

The method getPerimeter performs the following:

1. A test to determine the type of the Shape object

2. A conversion, casting the Shape object to Rectangle or Circle, depending on the
result of the instanceof operator

3. A destructuring, extracting either the length and width or the radius from the Shape
object

Pattern matching enables you to remove the conversion step by changing the second
operand of the instanceof operator with a type test pattern, making your code shorter
and easier to read:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 return 2 * s.length() + 2 * s.width();
 } else if (shape instanceof Circle s) {
 return 2 * s.radius() * Math.PI;
 } else {
 throw new IllegalArgumentException("Unrecognized shape");
 }
 }

Note:

Removing this conversion step also makes your code safer. Testing an
object's type with the instanceof, then assigning that object to a new
variable with a cast can introduce coding errors in your application. You
might change the type of one of the objects (either the tested object or the
new variable) and accidentally forget to change the type of the other object.

A pattern is a combination of a predicate that can be applied to a target and a set of
binding variables that are extracted from the target only if the predicate successfully
matches it. The predicate is a Boolean-valued function of one argument; in this case,
it’s the instanceof operator testing whether the Shape argument is a Rectangle or a
Circle. The target is the argument of the predicate, which is the Shape argument. The

Chapter 4

4-2

binding variables are those that store data from the target only if the predicate returns
true, which is the variable s.

A type test pattern consists of a predicate that specifies a type, along with a single
binding variable. In this example, the type test pattens are Rectangle s and Circle s.

Scope of Binding Variables

The scope of a binding variable are the places where the program can reach only if the
instanceof operator is true:

 public static double getPerimeter(Shape shape) throws
IllegalArgumentException {
 if (shape instanceof Rectangle s) {
 // You can use the binding variable s (of type Rectangle)
here.
 } else if (shape instanceof Circle s) {
 // You can use the binding variable s of type Circle here
 // but not the binding variable s of type Rectangle.
 } else {
 // You cannot use either binding variable here.
 }
 }

The scope of a binding variable can extend beyond the statement that introduced it:

 public static boolean bigEnoughRect(Shape s) {
 if (!(s instanceof Rectangle r)) {
 // You cannot use the binding variable r here.
 return false;
 }
 // You can use r here.
 return r.length() > 5;
 }

You can use a binding variable in the expression of an if statement:

 if (shape instanceof Rectangle s && s.length() > 5) {
 // ...
 }

Because the conditional-AND operator (&&) is short-circuiting, the program can reach
the s.length() > 5 expression only if the instanceof operator is true.

Conversely, you can't pattern match with the instanceof operator in this situation:

 if (shape instanceof Rectangle s || s.length() > 0) { // error
 // ...
 }

The program can reach the s.length() || 5 if the instanceof is false; thus, you
cannot use the binding variable s here.

Chapter 4

4-3

5
Record Classes

Introduced as a preview feature in Java SE 14, record classes help to model plain data
aggregates with less ceremony than normal classes. Java SE 15 extends the preview
feature with additional capabilities such as local record classes.

Note:

This is a preview feature, which is a feature whose design, specification, and
implementation are complete, but is not permanent, which means that the
feature may exist in a different form or not at all in future Java SE releases.
To compile and run code that contains preview features, you must specify
additional command-line options. See Preview Features.

For background information about record classes, see JEP 384.

A record class declares a sequence of fields, and then the appropriate accessors,
constructors, equals, hashCode, and toString methods are created automatically. The
fields are final because the class is intended to serve as a simple "data carrier".

For example, here is a record class with two fields:

record Rectangle(double length, double width) { }

This concise declaration of a rectangle is equivalent to the following normal class:

public final class Rectangle {
 private final double length;
 private final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return this.length; }
 double width() { return this.width; }

 // Implementation of equals() and hashCode(), which specify
 // that two record objects are equal if they
 // are of the same type and contain equal field values.
 public boolean equals...
 public int hashCode...

 // An implementation of toString() that returns a string
 // representation of all the record class's fields,
 // including their names.

5-1

https://openjdk.java.net/jeps/384

 public String toString() {...}
}

A record class declaration consists of a name, a header (which lists the fields of the
class, known as its "components"), and a body.

A record class declares the following members automatically:

• For each component in the header, the following two members:

– A private final field.

– A public accessor method with the same name and type of the
component; in the Rectangle record class example, these methods are
Rectangle::length() and Rectangle::width().

• A canonical constructor whose signature is the same as the header. This
constructor assigns each argument from the new expression that instantiates the
record class to the corresponding private field.

• Implementations of the equals and hashCode methods, which specify that two
record classes are equal if they are of the same type and contain equal
component values.

• An implementation of the toString method that includes the string representation
of all the record class's components, with their names.

You create a record object (an instance of a record class) with the new keyword, for
example:

Rectangle r = new Rectangle(4,5);

The Canonical Constructor of a Record Class

The following example explicitly declares the canonical constructor for the Rectangle
record class. It verifies that length and width are greater than zero. If not, it throws an
IllegalArgumentException:

record Rectangle(double length, double width) {
 public Rectangle(double length, double width) {
 if (length <= 0 || width <= 0) {
 throw new java.lang.IllegalArgumentException(
 String.format("Invalid dimensions: %f, %f", length,
width));
 }
 this.length = length;
 this.width = width;
 }
}

Repeating the record class's components in the signature of the canonical constructor
can be tiresome and error-prone. To avoid this, you can declare a compact constructor
whose signature is implicit (derived from the components automatically).

Chapter 5

5-2

For example, the following compact constructor declaration validates length and
width in the same way as in the previous example:

record Rectangle(double length, double width) {
 public Rectangle {
 if (length <= 0 || width <= 0) {
 throw new java.lang.IllegalArgumentException(
 String.format("Invalid dimensions: %f, %f", length,
width));
 }
 }
}

This succinct form of constructor declaration is only available in a record class. Note
that the statements this.length = length; and this.width = width; which appear
in the canonical constructor do not appear in the compact constructor. At the end of a
compact constructor, its implicit formal parameters are assigned to the record class's
private fields corresponding to its components.

Explicit Declaration of Record Class Members

You can explicitly declare any of the members derived from the header, such as
the public accessor methods that correspond to the record class's components, for
example:

record Rectangle(double length, double width) {

 // Public accessor method
 public double length() {
 System.out.println("Length is " + length);
 return length;
 }
}

If you implement your own accessor methods, then ensure that they have the same
characteristics as implicitly derived accessors (for example, they're declared public
and have the same return type as the corresponding record class component).
Similarly, if you implement your own versions of the equals, hashCode, and toString
methods, then ensure that they have the same characteristics and behavior as those
in the java.lang.Record class, which is the common superclass of all record classes.

You can declare static fields, static initializers, and static methods in a record class,
and they behave as they would in a normal class, for example:

record Rectangle(double length, double width) {

 // Static field
 static double goldenRatio;

 // Static initializer
 static {
 goldenRatio = (1 + Math.sqrt(5)) / 2;
 }

Chapter 5

5-3

 // Static method
 public static Rectangle createGoldenRectangle(double width) {
 return new Rectangle(width, width * goldenRatio);
 }
}

You cannot declare instance variables (non-static fields) or instance initializers in a
record class.

For example, the following record class declaration doesn't compile:

record Rectangle(double length, double width) {

 // Field declarations must be static:
 BiFunction<Double, Double, Double> diagonal;

 // Instance initializers are not allowed in records:
 {
 diagonal = (x, y) -> Math.sqrt(x*x + y*y);
 }
}

You can declare instance methods in a record class, independent of whether you
implement your own accessor methods. You can also declare nested classes and
interfaces in a record class, including nested record classes (which are implicitly
static). For example:

record Rectangle(double length, double width) {

 // Nested record class
 record RotationAngle(double angle) {
 public RotationAngle {
 angle = Math.toRadians(angle);
 }
 }

 // Public instance method
 public Rectangle getRotatedRectangleBoundingBox(double angle) {
 RotationAngle ra = new RotationAngle(angle);
 double x = Math.abs(length * Math.cos(ra.angle())) +
 Math.abs(width * Math.sin(ra.angle()));
 double y = Math.abs(length * Math.sin(ra.angle())) +
 Math.abs(width * Math.cos(ra.angle()));
 return new Rectangle(x, y);
 }
}

You cannot declare native methods in a record class.

Features of Record Classes

A record class is implicitly final, so you cannot explicitly extend a record class.
However, beyond these restrictions, record classes behave like normal classes:

Chapter 5

5-4

• You can create a generic record class, for example:

record Triangle<C extends Coordinate> (C top, C left, C right) { }

• You can declare a record class that implements one or more interfaces, for
example:

record Customer(...) implements Billable { }

• You can annotate a record class and its individual components, for example:

record Rectangle(
 @GreaterThanZero double length,
 @GreaterThanZero double width) { }

If an annotation is applied to the record class's components, then it also applies
to the numerous members in the record class that are declared automatically. In
this example, the @GreaterThanZero annotation applies not only to the length and
width components, but also to:

– The parameters of the canonical constructor

– The record class's components

– The private fields length and width

– The accessor methods length() and width()

You can specify the members to which an annotation applies with the @Target
meta-annotation. For example, if @GreaterThanZero is applicable to only field
declarations:

import java.lang.annotation.*;
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface GreaterThanZero { }

Then the previous record class declaration would be equivalent to the following
normal class declaration:

public final class Rectangle {
 private final @GreaterThanZero double length;
 private final @GreaterThanZero double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }

 double length() { return this.length; }
 double width() { return this.width; }
}

Chapter 5

5-5

Record Classes and Sealed Classes and Interfaces

Record classes work well with sealed classes and interfaces. See Record Classes as
Permitted Subclasses for an example.

Local Record Classes

A local record class is similar to a local class; it's a record class you can define in the
body of a method.

In the following example, a merchant is modeled with a record class, Merchant. A
sale made by a merchant is also modeled with a record class, Sale. Both Merchant
and Sale are top-level record classes. The aggregation of a merchant and their total
monthly sales is modeled with a local record class, MonthlySales, which is declared
inside the findTopMerchants method. This local record class improves the readability
of the stream operations that follow:

import java.time.*;
import java.util.*;
import java.util.stream.*;

record Merchant(String name) { }

record Sale(Merchant merchant, LocalDate date, double value) { }

public class MerchantExample {

 List<Merchant> findTopMerchants(
 List<Sale> sales, List<Merchant> merchants, int year, Month
month) {

 // Local record class
 record MerchantSales(Merchant merchant, double sales) {}

 return merchants.stream()
 .map(merchant -> new MerchantSales(
 merchant, this.computeSales(sales, merchant, year,
month)))
 .sorted((m1, m2) -> Double.compare(m2.sales(), m1.sales()))
 .map(MerchantSales::merchant)
 .collect(Collectors.toList());
 }

 double computeSales(List<Sale> sales, Merchant mt, int yr, Month
mo) {
 return sales.stream()
 .filter(s -> s.merchant().name().equals(mt.name()) &&
 s.date().getYear() == yr &&
 s.date().getMonth() == mo)
 .mapToDouble(s -> s.value())
 .sum();
 }

 public static void main(String[] args) {

Chapter 5

5-6

 Merchant sneha = new Merchant("Sneha");
 Merchant raj = new Merchant("Raj");
 Merchant florence = new Merchant("Florence");
 Merchant leo = new Merchant("Leo");

 List<Merchant> merchantList = List.of(sneha, raj, florence,
leo);

 List<Sale> salesList = List.of(
 new Sale(sneha, LocalDate.of(2020, Month.NOVEMBER, 13),
11034.20),
 new Sale(raj, LocalDate.of(2020, Month.NOVEMBER, 20),
8234.23),
 new Sale(florence, LocalDate.of(2020, Month.NOVEMBER, 19),
10003.67),
 // ...
 new Sale(leo, LocalDate.of(2020, Month.NOVEMBER, 4),
9645.34));

 MerchantExample app = new MerchantExample();

 List<Merchant> topMerchants =
 app.findTopMerchants(salesList, merchantList, 2020,
Month.NOVEMBER);
 System.out.println("Top merchants: ");
 topMerchants.stream().forEach(m ->
System.out.println(m.name()));
 }
}

Like nested record classes, local record classes are implicitly static, which means that
their own methods can't access any variables of the enclosing method, unlike local
classes, which are never static.

Record Serialization

You can serialize and deserialize instances of record classes, but you can't customize
the process by providing writeObject, readObject, readObjectNoData,
writeExternal, or readExternal methods. The components of a record class
govern serialization, while the canonical constructor of a record class governs
deserialization. See Serializable Records for more information and an extended
example. See also the section Serialization of Records in the Java Object Serialization
Specification.

APIs Related to Record Classes

The abstract class java.lang.Record is the common superclass of all record
classes.

You might get a compiler error if your source file imports a class named Record from
a package other than java.lang. A Java source file automatically imports all the types
in the java.lang package though an implicit import java.lang.*; statement. This
includes the java.lang.Record class, regardless of whether preview features are
enabled or disabled.

Chapter 5

5-7

Consider the following class declaration of com.myapp.Record:

package com.myapp;

public class Record {
 public String greeting;
 public Record(String greeting) {
 this.greeting = greeting;
 }
}

The following example, org.example.MyappPackageExample, imports
com.myapp.Record with a wildcard but doesn't compile in Java SE 15:

package org.example;
import com.myapp.*;

public class MyappPackageExample {
 public static void main(String[] args) {
 Record r = new Record("Hello world!");
 }
}

The compiler generates an error message similar to the following:

./org/example/MyappPackageExample.java:6: error: reference to Record is
ambiguous
 Record r = new Record("Hello world!");
 ^
 both class com.myapp.Record in com.myapp and class java.lang.Record
in java.lang match

./org/example/MyappPackageExample.java:6: error: reference to Record is
ambiguous
 Record r = new Record("Hello world!");
 ^
 both class com.myapp.Record in com.myapp and class java.lang.Record
in java.lang match

Both Record in the com.myapp package and Record in the java.lang package are
imported with a wildcard. Consequently, neither class takes precedence, and the
compiler generates an error when it encounters the use of the simple name Record.

To enable this example to compile, change the import statement so that it imports the
fully qualified name of Record:

import com.myapp.Record;

Chapter 5

5-8

Note:

The introduction of classes in the java.lang package is rare but necessary
from time to time, such as Enum in Java SE 5, Module in Java SE 9, and
Record in Java SE 14.

The class java.lang.Class has two new methods related to record classes:

• RecordComponent[] getRecordComponents(): Returns an array of
java.lang.reflect.RecordComponent objects, which correspond to the
record class's components.

• boolean isRecord(): Similar to isEnum() except that it returns true if the
class was declared as a record class.

Chapter 5

5-9

6
Switch Expressions

Like all expressions, switch expressions evaluate to a single value and can be used
in statements. They may contain "case L ->" labels that eliminate the need for break
statements to prevent fall through. You can use a yield statement to specify the value
of a switch expression.

For background information about the design of switch expressions, see JEP 361.

"case L ->" Labels

Consider the following switch statement that prints the number of letters of a day of
the week:

public enum Day { SUNDAY, MONDAY, TUESDAY,
 WEDNESDAY, THURSDAY, FRIDAY, SATURDAY; }

// ...

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 }
 System.out.println(numLetters);

It would be better if you could "return" the length of the day's name instead of storing
it in the variable numLetters; you can do this with a switch expression. Furthermore,
it would be better if you didn't need break statements to prevent fall through; they are
laborious to write and easy to forget. You can do this with a new kind of case label.

6-1

https://openjdk.java.net/jeps/361

The following is a switch expression that uses the new kind of case label to print the
number of letters of a day of the week:

 Day day = Day.WEDNESDAY;
 System.out.println(
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 case THURSDAY, SATURDAY -> 8;
 case WEDNESDAY -> 9;
 default -> throw new IllegalStateException("Invalid day: "
+ day);
 }
);

The new kind of case label has the following form:

case label_1, label_2, ..., label_n -> expression;|throw-statement;|
block

When the Java runtime matches any of the labels to the left of the arrow, it runs the
code to the right of the arrow and does not fall through; it does not run any other code
in the switch expression (or statement). If the code to the right of the arrow is an
expression, then the value of that expression is the value of the switch expression.

You can use the new kind of case label in switch statements. The following is like the
first example, except it uses "case L ->" labels instead of "case L:" labels:

 int numLetters = 0;
 Day day = Day.WEDNESDAY;
 switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> numLetters = 6;
 case TUESDAY -> numLetters = 7;
 case THURSDAY, SATURDAY -> numLetters = 8;
 case WEDNESDAY -> numLetters = 9;
 default -> throw new IllegalStateException("Invalid day: " +
day);
 };
 System.out.println(numLetters);

A "case L ->" label along with its code to its right is called a switch labeled rule.

"case L:" Statements and the yield Statement

You can use "case L:" labels in switch expressions; a "case L:" label along with its
code to the right is called a switch labeled statement group:

 Day day = Day.WEDNESDAY;
 int numLetters = switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 System.out.println(6);

Chapter 6

6-2

 yield 6;
 case TUESDAY:
 System.out.println(7);
 yield 7;
 case THURSDAY:
 case SATURDAY:
 System.out.println(8);
 yield 8;
 case WEDNESDAY:
 System.out.println(9);
 yield 9;
 default:
 throw new IllegalStateException("Invalid day: " + day);
 };
 System.out.println(numLetters);

The previous example uses yield statements. They take one argument, which is the
value that the case label produces in a switch expression.

The yield statement makes it easier for you to differentiate between switch
statements and switch expressions. A switch statement, but not a switch expression,
can be the target of a break statement. Conversely, a switch expression, but not a
switch statement, can be the target of a yield statement.

Chapter 6

6-3

Note:

It's recommended that you use "case L ->" labels. It's easy to forget to insert
break or yield statements when using "case L:" labels; if you do, you might
introduce unintentional fall through in your code.

For "case L ->" labels, to specify multiple statements or code that are not
expressions or throw statements, enclose them in a block. Specify the value
that the case label produces with the yield statement:

 int numLetters = switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> {
 System.out.println(6);
 yield 6;
 }
 case TUESDAY -> {
 System.out.println(7);
 yield 7;
 }
 case THURSDAY, SATURDAY -> {
 System.out.println(8);
 yield 8;
 }
 case WEDNESDAY -> {
 System.out.println(9);
 yield 9;
 }
 default -> {
 throw new IllegalStateException("Invalid day: " +
day);
 }
 };

Exhaustiveness

Unlike switch statements, the cases of switch expressions must be exhaustive, which
means that for all possible values, there must be a matching switch label. Thus,
switch expressions normally require a default clause. However, for enum switch
expressions that cover all known constants, the compiler inserts an implicit default
clause.

In addition, a switch expression must either complete normally with a value or
complete abruptly by throwing an exception. For example, the following code doesn't
compile because the switch labeled rule doesn't contain a yield statement:

int i = switch (day) {
 case MONDAY -> {
 System.out.println("Monday");
 // ERROR! Block doesn't contain a yield statement
 }
 default -> 1;
};

Chapter 6

6-4

The following example doesn't compile because the switch labeled statement group
doesn't contain a yield statement:

i = switch (day) {
 case MONDAY, TUESDAY, WEDNESDAY:
 yield 0;
 default:
 System.out.println("Second half of the week");
 // ERROR! Group doesn't contain a yield statement
};

Because a switch expression must evaluate to a single value (or throw an exception),
you can't jump through a switch expression with a break, yield, return, or continue
statement, like in the following example:

z:
 for (int i = 0; i < MAX_VALUE; ++i) {
 int k = switch (e) {
 case 0:
 yield 1;
 case 1:
 yield 2;
 default:
 continue z;
 // ERROR! Illegal jump through a switch expression
 };
 // ...
 }

Chapter 6

6-5

7
Text Blocks

See Programmer's Guide to Text Blocks for more information about this language
feature. For background information about text blocks, see JEP 378.

7-1

https://openjdk.java.net/jeps/378

8
Local Variable Type Inference

In JDK 10 and later, you can declare local variables with non-null initializers with the
var identifier, which can help you write code that’s easier to read.

Consider the following example, which seems redundant and is hard to read:

URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

You can rewrite this example by declaring the local variables with the var identifier.
The type of the variables are inferred from the context:

var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

var is a reserved type name, not a keyword, which means that existing code that uses
var as a variable, method, or package name is not affected. However, code that uses
var as a class or interface name is affected and the class or interface needs to be
renamed.

var can be used for the following types of variables:

• Local variable declarations with initializers:

var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var path = Paths.get(fileName); // infers Path
var bytes = Files.readAllBytes(path); // infers bytes[]

• Enhanced for-loop indexes:

List<String> myList = Arrays.asList("a", "b", "c");
for (var element : myList) {...} // infers String

• Index variables declared in traditional for loops:

for (var counter = 0; counter < 10; counter++) {...} // infers
int

8-1

• try-with-resources variable:

try (var input =
 new FileInputStream("validation.txt")) {...} // infers
FileInputStream

• Formal parameter declarations of implicitly typed lambda expressions: A lambda
expression whose formal parameters have inferred types is implicitly typed:

BiFunction<Integer, Integer, Integer> = (a, b) -> a + b;

In JDK 11 and later, you can declare each formal parameter of an implicitly typed
lambda expression with the var identifier:

(var a, var b) -> a + b;

As a result, the syntax of a formal parameter declaration in an implicitly typed
lambda expression is consistent with the syntax of a local variable declaration;
applying the var identifier to each formal parameter in an implicitly typed lambda
expression has the same effect as not using var at all.

You cannot mix inferred formal parameters and var-declared formal parameters
in implicitly typed lambda expressions nor can you mix var-declared formal
parameters and manifest types in explicitly typed lambda expressions. The
following examples are not permitted:

(var x, y) -> x.process(y) // Cannot mix var and inferred
formal parameters
 // in implicitly typed lambda
expressions
(var x, int y) -> x.process(y) // Cannot mix var and manifest types
 // in explicitly typed lambda
expressions

Local Variable Type Inference Style Guidelines

Local variable declarations can make code more readable by eliminating redundant
information. However, it can also make code less readable by omitting useful
information. Consequently, use this feature with judgment; no strict rule exists about
when it should and shouldn't be used.

Local variable declarations don't exist in isolation; the surrounding code can affect or
even overwhelm the effects of var declarations. Style Guidelines for Local Variable
Type Inference in Java examines the impact that surrounding code has on var
declarations, explains tradeoffs between explicit and implicit type declarations, and
provides guidelines for the effective use of var declarations.

Chapter 8

8-2

http://openjdk.java.net/projects/amber/LVTIstyle.html
http://openjdk.java.net/projects/amber/LVTIstyle.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Language Changes
	Java Language Updates for Java SE 15
	Java Language Changes for Java SE 14
	Java Language Changes for Java SE 13
	Java Language Changes for Java SE 12
	Java Language Changes for Java SE 11
	Java Language Changes for Java SE 10
	Java Language Changes for Java SE 9
	More Concise try-with-resources Statements
	@SafeVarargs Annotation Allowed on Private Instance Methods
	Diamond Syntax and Anonymous Inner Classes
	Underscore Character Not Legal Name
	Support for Private Interface Methods

	2 Preview Features
	3 Sealed Classes
	4 Pattern Matching for instanceof
	5 Record Classes
	6 Switch Expressions
	7 Text Blocks
	8 Local Variable Type Inference

