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Preface

Preface

This document provides information about the features supported by Java Virtual
Machine technology.

Audience

This document is intended for experienced developers who build applications using
the Java HotSpot technology.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See JDK 15 Documentation for other JDK 15 guides.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
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Java Virtual Machine Technology Overview

ORACLE

This chapter describes the implementation of the Java Virtual Machine (JVM) and the
main features of the Java HotSpot technology:

« Adaptive compiler: A standard interpreter is used to launch the applications.
When the application runs, the code is analyzed to detect performance
bottlenecks, or hot spots. The Java HotSpot VM compiles the performance-critical
portions of the code for a boost in performance, but does not compile the seldom-
used code (most of the application). The Java HotSpot VM uses the adaptive
compiler to decide how to optimize compiled code with techniques such as
inlining.

* Rapid memory allocation and garbage collection: Java HotSpot technology
provides rapid memory allocation for objects and fast, efficient, state-of-the-art
garbage collectors.

» Thread synchronization: Java HotSpot technology provides a thread-handling
capability that is designed to scale for use in large, shared-memory multiprocessor
servers.

In Oracle Java Runtime Environment (JRE) 8 and earlier, different implementations
of the JVM, (the client VM, server VM, and minimal VM) were supported for
configurations commonly used as clients, as servers, and for embedded systems.
Because most systems can now take advantage of the server VM, only that VM
implementation is provided in later versions.
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Compiler Control

Compiler Control provides a way to control Java Virtual Machine (JVM) compilation
through compiler directive options. The level of control is runtime-manageable and
method specific.

A compiler directive is an instruction that tells the JVM how compilation should occur.
A directive provides method-context precision in controlling the compilation process.
You can use directives to write small, contained, JVM compiler tests that can run
without restarting the entire JVM. You can also use directives to create workarounds
for bugs, in the JVM compilers.

You can specify a file that contains compiler directives when you start a program
through the command line. You can also add or remove directives from an already
running program by using diagnostic commands.

Compiler Control supersedes and is backward compatible with CompileCommand.

Topics:
e Writing Directives
— Writing a Directive File
— Writing a Compiler Directive
— Writing a Method Pattern in a Compiler Directive
— Writing an Inline Directive Option
— Preventing Duplication with the Enable Option
* Understanding Directives
— What Is the Default Directive?
— How Directives are Applied to Code?
— Compiler Control and Backward Compatibility
*  Commands for Working with Directive Files
— Compiler Directives and the Command Line
— Compiler Directives and Diagnostic Commands

— How Directives Are Ordered in the Directives Stack?

Writing Directives

ORACLE

This topic examines Compiler Control options and steps for writing directives from
those options.

Topics:

e Compiler Control Options
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Writing Directives

*  Writing a Directive File

*  Writing a Compiler Directive

*  Writing a Method Pattern in a Compiler Directive
*  Writing an Inline Directive Option

*  Preventing Duplication with the Enable Option

Compiler Control Options

Options are instructions for compilation. Options provide method-context precision.
Available options vary by compiler and require specific types of values.

Table 2-1 Common Options
|

Option Description Value Type Default Value
Enabl e Hides a directive and  bool true

renders it unmatchable

ifitis set to

f al se. This option is
useful for preventing
option duplication. See
Preventing Duplication
with the Enable
Option.

Excl ude Excludes methods bool fal se
from compilation.

Br eak At Execut e Sets a breakpoint bool fal se
to stop execution
at the beginning of
the specified methods
when debugging the
JVM.

Br eak At Conpi | e Sets a breakpoint bool fal se
to stop compilation
at the beginning of
the specified methods
when debugging the
JVM.

Log Places only the bool fal se
specified methods in a
log. You must first set
the command-line
option -
XX: +LogConpi |l ati o
Nn. The default value
f al se places all
compiled methods in a
log.

Print Assenbly Prints assembly code  bool fal se
for bytecoded and
native methods by
using the external
di sassenbl er. so
library.
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Table 2-1 (Cont.) Common Options

Option

Description Value Type Default Value

Printlnlining

Prints which methods bool fal se

are inlined, and where.

Pri nt NMet hods

Prints nmethods as bool fal se

they are generated.

Backgr oundConpi | a
tion

Compiles methods bool true
as a background

task. Methods run

in interpreter mode

until the background

compilation finishes.

The value f al se

compiles methods as

a foreground task.

Repl ayl nli ne

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

DurmpRepl ay

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

Dunpl nl i ne

Enables the same bool fal se
Cl Repl ay functionality

as the corresponding

global option, but on a

per-method basis.

Conpi lerDirective
sl gnor eConpi | eCom
mands

Disregards all bool fal se

CompileCommands.

Di sabl el ntrinsic

Disables the use cestr No default value.
of intrinsics based
on method-matching

criteria.

inline

Forces or prevents No default value.
inlining of a method

based on method-

matching criteria. See

Writing an Inline

Directive Option.

cestr[]

Table 2-2 C2 Exclusive Options
|

Option

Description Value Type Default Value

Bl ockLayout ByFr eq
uency

Moves infrequent bool true
execution branches

from the hot path.
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Table 2-2 (Cont.) C2 Exclusive Options

_________________________________________________________________________|
Option Description Value Type Default Value

Print Opt 0Assenbl y Prints generated bool fal se
assembly code
after compilation by
using the external
di sassenbl er. so
library. This requires a
debugging build of the

JVM.
PrintlIntrinsics Prints which intrinsic ~ bool fal se
methods are used,
and where.
TraceQpt oPi pel i ni  Traces pipelining bool fal se
ng information, similar

to the corresponding
global option, but

on a per-method
basis. This is intended
for slow and fast
debugging builds.

TraceOpt oQut put Traces pipelining bool fal se
information, similar
to the corresponding
global option, but
on a per-method
basis. This is intended
for slow and fast
debugging builds.

TraceSpilling Traces variable bool fal se
spilling.
Vectori ze Performs calculations  bool fal se

in parallel, across
vector registers.

Vect ori zeDebug Performs calculations i nt x 0
in parallel, across
vector registers. This
requires a debugging
build of the JVM.

Q oneMapDebug Enables you bool fal se
to examine the
Q oneMap generated
from vectorization.
This requires a
debugging build of the
JVM.
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Table 2-2 (Cont.) C2 Exclusive Options

_________________________________________________________________________|
Option Description Value Type Default Value

| GVPri nt Level Specifies the points i ntx 0

where the compiler
graph is printed in
Oracle’s Hotspot Ideal
Graphic Visualizer
(IGV). A higher

value means higher
granularity.

MaxNodeLi m t Sets the maximum i ntx 80000

number of nodes to
use during a single
method’s compilation.

A ccstr value type is a method pattern. See Writing a Method Pattern in a Compiler
Directive.

The default directive supplies default values for compiler options. See What Is the
Default Directive?

Writing a Directive File

Individual compiler directives are written in a directives file. Only directive files, not
individual directives, can be added to the stack of active directives.

ORACLE

1.

Create a file with a . | son extension. Directive files are written using a subset of
JSON syntax with minor additions and deviations.

Add the following syntax as a template you can work from:

[ //Array of Directives
{ [/l/Drective Block
[IDirective 1

{ [/l/Drective Block
[IDirective 2

The components of this template are:
Array of Directives

e Adirectives file stores an array of directive blocks, denoted with a pair of
brackets ([]).

* The brackets are optional if the file contains only a single directive block.
Directive Block

* Ablock is denoted with a pair of braces ({}).

* A block contains one individual directive.

» Adirectives file can contain any number of directive blocks.
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* Blocks are separated with a comma (, ).

e A comma is optional following the final block in the array.
Directive

» Each directive must be within a directive block.

e Adirectives file can contain multiple directives when it contains multiple
directive blocks.

Comments
e Single-line comments are preceded with two slashes (/ /).
*  Multiline comments are not allowed.

3. Add or remove directive blocks from the template to match the number of
directives you want in the directives file.

4. In each directive block, write one compiler directive. See Writing a Compiler
Directive.

5. Reorder the directive blocks if necessary. The ordering of directives in a file is
significant. Directives written closer to the beginning of the array receive higher
priority. For more information, see How Directives Are Ordered in the Directives
Stack? and How Directives are Applied to Code?

[ //Array of directives
{ [/l/Drective Block

[IDirective 1

match: ["java*.*", "oracle*.*"],

cl: {
Enabl e: true,
Excl ude: true,
Br eakAt Execut e: true,

2
c2: {
Enabl e: fal se,
MaxNodeLi m t: 1000,
2

Br eakAt Conpi | e: true,
DunpRepl ay: true,

{ [/l/Drective Block
[IDirective 2
match: ["*Concurrent.*"],
c2: {
Excl ude: t rue,

b
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Writing a Compiler Directive

ORACLE

You must write a compiler directive within a directives file. You can repeat the following
steps for each individual compiler directive that you want to write in a directives file.

An individual compiler directive is written within a directive block in a directives file.
See Writing a Directive File.

1. Insert the following block of code, as a template you can work from, to write an
individual compiler directive. This block of code is a directive block.

{
match: [],
cl: {
/1cl directive options
b
c2: {
/1c2 directive options
3
//Directive options applicable to all conpilers
1

2. Provide the mat ch attribute with an array of method patterns. See Writing a Method
Pattern in a Compiler Directive.

For example:
match: ["java*.*", "oracle*.*"],

3. Provide the c1 attribute with a block of comma-separated directive options. Ensure
that these options are valid for the c1 compiler.

For example:

cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execute: true,

b

4. Provide the c2 attribute with a block of comma-separated directive options. This
block can contain a mix of common and c2-exclusive compiler options.

For example:

c2: {
Enabl e: fal se,
MaxNodeLi m t: 1000,

} il
5. Provide, at the end of the directive, options you want applicable to all compilers.

These options are considered written within the scope of the common block.
Options are comma-separated.
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For example:

Br eakAt Conpi | e: true,
DunpRepl ay: true,

6. Clean up the file by completing the following steps.

a. Check for the duplication of directive options. If a conflict occurs, then the last
occurrence of an option takes priority. Conflicts typically occur between the
common block and the c1 or c2 blocks, not between the c1 and c2 blocks.

b. Avoid writing c2-exclusive directive options in the common block. Although
the common block can accept a mix of common and c2-exclusive options, it's
pointless to structure a directive this way because c2-exclusive options in the
common block have no effect on the c1 compiler. Write c2-exclusive options
within the ¢2 block instead.

c. Ifthe cl or c2 attribute has no corresponding directive options, then omit the
attribute-value syntax for that compiler.

The following example shows the resulting directive, based on earlier examples, is:

{
match: ["java*.*", "oracle*.*"],
cl: {
Enabl e: true,
Excl ude: true,
Br eak At Execut e: true,
¥
c2: {
Enabl e: fal se,
MaxNodeLi mit: 1000,
¥
Br eakAt Conpi | e: true,
DunpRepl ay: true,
¥

The JSON format of directive files allows the following deviations in syntax:
» Extra trailing commas are optional in arrays and objects.

e Attributes are strings and are optionally placed within quotation marks.
» If an array contains only one element, then brackets are optional.

Therefore, the following example shows a valid compiler directive:

{
"“match": "*Concurrent.*",
c2: {
"Exclude": true,
}
b
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Writing a Method Pattern in a Compiler Directive

ORACLE

A ccstr is a method pattern that you can write precisely or you can generalize with
wildcard characters. You can specify what best-matching Java code should have
accompanying directive options applied, or what Java code should be inlined.

To write a method pattern:

1.

Use the following syntax to write your method pattern: package/
cl ass. net hod(paranmeter _|ist). To generalize a method pattern with wildcard
characters, see Step 2.

The following example shows a method pattern that uses this syntax:

javallang/ String.index ()

Other formatting styles are available. This ensures backward compatibility with
earlier ways of method matching such as CompileCommand. Valid formatting
alternatives for the previous example include:

e javal/lang/ String.indexOf()

e javal/lang/String,indexO()

e javal/lang/ String indexO()

e java.lang. String::indexOf()

The last formatting style matches the HotSpot output.

Insert a wildcard character (*) where you want to generalize part of the method
pattern.

The following examples are valid generalizations of the method pattern example in
Step 1:

e javallang/String.indexO*
* *lang/ String.index(k*

e *vallang*.*dex*

° javallang/String.*

Increased generalization leads to decreased precision. More Java code becomes
a potential match with the method pattern. Therefore, it's important to use the
wildcard character (*) judiciously.

Modify the signature portion of the method pattern, according to the Java
Specifications. A signature match must be exact, otherwise the signature defaults
to a wildcard character (*). Omitted signatures also default to a wildcard character.
Signatures cannot contain the wildcard character.

Optional: If you write a method pattern to accompany the i nl i ne directive option,
then you must prefix the method pattern with additional characters. See Writing an
Inline Directive Option.
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Preventing Duplication with the Enable Option
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The attribute for an i nl i ne directive option requires an array of method patterns with
special commands prefixed. This indicates which method patterns should or shouldn't

inline.
1. Writeinline:
2.
array are ignored.
3. Prefix a + to force inlining of any matching Java code.
4. Prefix a- to prevent inlining of any matching Java code.
5.

The following examples show the i nl i ne directive options:

in the common block, c1 block , or c2 block of a directive.

Add an array of carefully ordered method patterns. The prefixed command on the
first matching method pattern is executed. The remaining method patterns in the

Optional: If you need inlining behavior applied to multiple method patterns, then
repeat Steps 1 to 4 to write multiple i nl i ne statements. Don’t write a single array

that contains multiple method patterns.

inline: ["+ avallang*.*", "-sun*.*"]

inline: "+javal/lang*.*"

You can use the Enabl e option to hide aspects of directives and prevent duplication
between directives.

In the following example, the clattribute of the compiler directives are identical.:

[

match: ["java*.*"],

cl:

{
Br eak At Execut e: true,

Br eakAt Conpi l e: true,
DunpRepl ay: true,
Dunpl nline: true,

MaxNodeLi mit: 1000,

match: ["oracle*.*"],

cl:

{
Br eak At Execut e: true,

Br eakAt Conpi l e: true,
DunpRepl ay: true,
Dunpl nline: true,

MaxNodeLi mit: 2000,
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The following example shows how the undesirable code duplication is resolved with
the Enabl e option. Enabl e hides the block directives and renders them unmatchable.

[

{
match: ["java*.*"],
cl: {
Enabl e: fal se,
b
c2: {
MaxNodeLi m t: 1000,
b
1
{
match: ["oracle*.*"],
cl: {
Enabl e: fal se,
b
c2: {
MaxNodeLi m t: 2000,
b
1
{
match: ["java*.*", "oracle*.*"],
cl: {
Br eak At Execut e: true,
Br eakAt Conpi l e: true,
DunpRepl ay: true,
Dunpl nline: true,
b
c2: {
[ I'Unr eachabl e code
b
¥

Typically, the first matching directive is applied to a method’s compilation. The Enabl e
option provides an exception to this rule. A method that would typically be compiled
by c1 in the first or second directive is now compiled with the c1 block of the third
directive. The c2 block of the third directive is unreachable because the c2 blocks in
the first and second directive take priority.

Understanding Directives

The following topics examine how directives behave and interact.

Topics:
¢« What Is the Default Directive?

*  How Directives are Applied to Code?
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e Compiler Control and Backward Compatibility

What Is the Default Directive?

ORACLE

The default directive is a compiler directive that contains default values for all possible
directive options. It is the bottom-most directives in the stack and matches every
method submitted for compilation.

When you design a new compiler directive, you specify how the new directive differs
from the default directive. The default directive becomes a template to guide your
design decisions.

Directive Option Values in the Default Directive

You can print an empty directive stack to reveal the matching criteria and the values
for all directive options in the default compiler directive:

Directive: (default)
matching: *.*
cl directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline:fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceQOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
O oneMapDebug: fal se | G/Print Level : 0 MaxNodeLi mi t: 80000

c2 directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline:fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
O oneMapDebug: fal se | GVPrint Level : 0 MaxNodeLi mit: 80000

¢ Note:

Certain options are applicable exclusively to the c2 compiler. For a complete
list, see Table 2-2.

Directive Option Values in New Directives

In a new directives, you must specify how the directive differs from the default
directive. If you don't specify a directive option, then that option retains the value from
the default directive.
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Example:

[

match: ["*Concurrent.*"],
c2: {

MaxNodeLi mit: 1000,
}v

Excl ude: true,

When you add a new directive to the directives stack, the default directive becomes
the bottom-most directive in the stack. See How Directives Are Ordered in the
Directives Stack? for a description of this process. For this example, when you print
the directives stack, it shows how the directive options specified in the new directive
differ from the values in the default directive:

Directive:
mat chi ng: *Concurrent.*
cl directives:

inline: -

Enabl e: true Exclude: true BreakAt Execute:fal se BreakAt Conpile:fal se
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
Printintrinsics:false TraceOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
O oneMapDebug: fal se | GVPrint Level : 0 MaxNodeLi nit: 80000

c2 directives:

inline: -

Enabl e: true Exclude: true BreakAt Execute:fal se BreakAt Conpile:fal se
Log:fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline:fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
O oneMapDebug: fal se | G/Print Level : 0 MaxNodeLi nit: 1000

Directive: (default)
matching: *.*
cl directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:false
Log: fal se PrintAssenbly:false Printlnlining:false PrintNVethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eConmands: fal se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly:fal se
PrintIntrinsics:false TraceOptoPipelining:false TraceOptoQutput:false
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
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C oneMapDebug: fal se | G/Print Level : 0 MaxNodeLi mit: 80000

c2 directives:

inline: -

Enabl e: true Exclude: fal se BreakAt Execute: fal se BreakAt Conpile:fal se
Log: fal se PrintAssenbly:false Printlnlining:false PrintNwethods:false
Backgr oundConpi | ation:true Replaylnline:fal se DunpRepl ay: fal se
Dunpl nline: fal se ConpilerDirectiveslgnoreConpi | eCommands: f al se
Di sabl el ntrinsic: Bl ockLayout ByFrequency:true Print Opt oAssenbly: fal se
PrintIntrinsics:false TraceOptoPipelining:fal se TraceOpt oQutput:fal se
TraceSpilling:false Vectorize:fal se VectorizeDebug: 0
C oneMapDebug: fal se | G/Print Level : 0 MaxNodeLi mi t: 80000

How Directives are Applied to Code?

ORACLE

A directive is applied to code based on a method matching process. Every method
submitted for compilation is matched with a directive in the directives stack.

The process of matching a method with a directive in the directives stack is performed
by the CompilerBroker.

The Method Matching Process

When a method is submitted for compilation, the fully qualified name of the method

is compared with the matching criteria in the directives stack. The first directive in the
stack that matches is applied to the method. The remaining directives in the stack are
ignored. If no match is found, then the default directive is applied.

This process is repeated for all methods in a compilation. More than one directive
can be applied in a compilation, but only one directive is applied to each method. All
directives in the stack are considered active because they are potentially applicable.
The key differences between active and applied directives are:

« Adirective is active if it's present in the directives stack.
« Adirective is applied if it's affecting code.

Example 2-1 When a Match Is Found

The following example shows a method submitted for compilation:

public int exanpl eMethod(int x){
return x;
}

Based on method-matching criteria, Di rective 2 is applied from the following
example directive stack:

Directive 2:

mat chi ng: *.*exanpl e*
Directive 1:

mat chi ng: *.*exanpl eMet hod*
Directive 0: (default)

mat ching: *.*
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Example 2-2 When No Match Is Found

The following example shows a method submitted for compilation:

public int otherMthod(int y){
return y;
}

Based on method-matching criteria, Di rective 0 (the default directive) is applied from
the following example directive stack:

Directive 2:

mat chi ng: *.*exanpl e*
Directive 1:

mat chi ng: *.*exanpl eMet hod*
Directive 0: (default)

matching: *.*

Guidelines for Writing a New Directive

* No feedback mechanism is provided to verify which directive is applied to a given
method. Instead, a profiler such as Java Management Extensions (JMX) is used to
measure the cumulative effects of applied directives.

»  The CompilerBroker ignores directive options that create bad code, such as
forcing hardware instructions on a platform that doesn't offer support. A warning
message is displayed.

» Directive options have the same limitations as typical command-line flags. For
example, the instructions to inline code are followed only if the Intermediate
Representation (IR) doesn’t become too large.

Compiler Control and Backward Compatibility

ORACLE

CompileCommand and command-line flags can be used alongside Compiler Control
directives.

Although Compiler Control can replace CompileCommand, backward compatibility is
provided. It's possible to utilize both at the same time. Compiler Control receives
priority. Conflicts are handled based on the following prioritization:

1. Compiler Control
2. CompileCommand
3. Command-line flags
4. Default values
Example 2-3 Mixing Compiler Control and CompileCommand
The following list shows a small number of compilation options and values:
e Compiler Control:
— Exclude: true
— BreakAt Execute: false

e CompileCommand:
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— BreakAt Execute: true

— BreakAt Conpile: true
o Default values:

— Exclude: false

— BreakAt Execute: false

— BreakAt Conpile: false

— Log: false

For the options and values in this example, the resulting compilation is determined by
using the rules for handling backward compatibility conflicts:

e Exclude: true
e BreakAt Execute: false
e BreakAt Conpile: true

 Log: false

Commands for Working with Directive Files

This topic examines commands and the effects of working with completed directive
files.

e Compiler Directives and the Command Line
*  Compiler Directives and Diagnostic Commands

» How Directives Are Ordered in the Directives Stack?

Compiler Directives and the Command Line

ORACLE

You can use the command-line interface to add and print compiler directives while
starting a program.

You can specify only one directives file at the command line. All directives within that
file are added to the directives stack and are immediately active when the program
starts. Adding directives at the command line enables you to test the performance
effects of directives during a program'’s early stages. You can also focus on debugging
and developing your program.

Adding Directives Through the Command Line

The following command-line option specifies a directives file:

XX: ConpilerDirectivesFile=file

Include this command-line option when you start a Java program. The following
example shows this option, which starts Test Progr am

java - XX +Unl ockDi agnosti cVMXptions -
XX: Conpil erDirectivesFile=File_A. json TestProgram

In the example:
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e - XX +Unl ockDi agnosti cVMDpt i ons enables diagnostic options. You must enter
this before you add directives at the command line.

e -XX: ConpilerDirectivesFil e is atype of diagnostic option. You can use it to
specify one directives file to add to the directives stack.

* File_A jsonis adirectives file. The file can contain multiple directives, all of which
are added to the stack of active directives when the program starts.

e If File_A json contains syntax errors or malformed directives, then an error
message is displayed and Test Progr amdoes not start.

Printing Directives Through the Command Line

You can automatically print the directives stack when a program starts or
when additional directives are added through diagnostic commands. The following
command-line option to enables this behavior:

-XX: +Conpi | erDirectivesPrint

The following example shows how to include this diagnostic command at the
command line:

java - XX: +Unl ockDi agnosti cVMDpti ons - XX: +Conpi | erDirectivesPrint -
XX: Conpil erDirectivesFile=File_ A json TestProgram

Compiler Directives and Diagnostic Commands

You can use diagnostic commands to manage which directives are active at runtime.
You can add or remove directives without restarting a running program.

Crafting a single perfect directives file might take some iteration and experimentation.
Diagnostic commands provide powerful mechanisms for testing different configurations
of directives in the directives stack. Diagnostic commands let you add or remove
directives without restarting a running program’s JVM.

Getting Your Java Process Identification Number

To test directives you must find the processor identifier (PID) number of your running
program.

1. Open aterminal.
2. Enter the j cnd command.

The j cnd command returns a list of the Java process that are running, along with their
PID numbers. In the following example, the information returned about Test Progr am:

11084 Test Program
Adding Directives Through Diagnostic Commands

You can add all directives in a file to the directives stack through the following
diagnostic command.

ORACLE 2-17



Chapter 2
Commands for Working with Directive Files

Syntax:

jemd pid Conpiler.directives add file

The following example shows a diagnostic command:

jcmd 11084 Conpiler.directives _add File B.json

The terminal reports the number of individual directives added. If the directives file
contains syntax errors or malformed directives, then an error message is displayed,
and no directives from the file are added to the stack, and no changes are made to the
running program.

Removing Directives Through Diagnostic Commands

You can remove directives by using diagnostic commands.

To remove the top-most, individual directive from the directive stack, enter:

jemd pid Conpiler.directives renove

To clear every directive you added to the directives stack, enter:

jemd pid Conpiler.directives clear

It's not possible to specify an entire file of directives to remove, nor is any other way
available to remove directives in bulk.

Printing Directives Through Diagnostic Commands

You can use diagnostic commands to print the directives stack of a running program.

To print a detailed description of the full directives stack, enter:

jemd pid Conpiler.directives print

Example output is shown in What Is the Default Directive?

How Directives Are Ordered in the Directives Stack?

ORACLE

The order of the directives in a directives file, and in the directives is very important.
The top-most, best-matching directive in the stack receives priority and is applied to
code compilation.

The following examples illustrate the order of directive files in an example directives
stack. The directive files in the examples contain the following directives :

e File AcontainsDirective LandDirective 2.
e File BcontainsDirective 3.

e File_CcontainsDirective 4andDirective 5.
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Starting an Application With or Without Directives

You can start the Test Progr amwithout specifying the directive files.

e To start Test Pr ogr amwithout adding any directives, at the command line, enter the
following command:

java Test Program

e Test Programstarts without any directives file specified.

e The default directive is always the bottom-most directive in the directives stack.
Figure 2-1 shows the default directive as Di rective 0. When you don't specify
a directives file, the default directive is also the top-most directive and it receives
priority.

Figure 2-1 Starting a Program Without Directives

I Directives Stack
java TestProgram

Bk

File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 ] Directive 5

Directive 0O

You can start an application and specify directives.

» To start the Test Progr amapplication and add the directives from Fil e_A. j son to
the directives stack, at the command line, enter the following command:

java - XX: +Unl ockDi agnosti cVMpti ons -
XX: Conpi l erDirectivesFile=File_A json TestProgram

e Test Programstarts and the directives in Fi | e_A are added to the stack. The top-
most directive in the directives file becomes the top-most directive in the directives
stack.

*  Figure 2-2 shows that the order of directives in the stack, from top to bottom,
becomes is [1, 2, 0].
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Figure 2-2 Starting a Program with Directives

T > Directives Stack
-XX: CompilerDirectivesFile=File A.json

r— r—
File_A File_B File_C
D!rect!ve 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Adding Directives to a Running Application

You can add directives to a running application through diagnostic commands.

» Toto add all directives from Fi | e_B to the directives stack, enter the following
command:

jcmd 11084 Conpiler.directives_add File_B.json

The directive in Fi | e_B is added to the top of the stack.

»  Figure 2-3 shows that the order of directives in the stack becomes is [3, 1, 2, 0].

Figure 2-3 Adding a Directive to a Running Program

T > Directives Stack
Compiler.directives_add File B.json

[
File_A File_B File_C

Directive 1 Directive 3 Directive 4

Directive 2 Directive 5

Directive 0

You can add directive files through diagnostic commands to the Test Pr ogr amwhile it is
running:

* To add all directives from Fi | e_Cto the directives stack, enter the following
command.

jcmd 11084 Conpiler.directives_add File_C.json

*  Figure 2-4 shows that the order of directives in the stack becomesis [4, 5, 3, 1, 2,
0].
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Figure 2-4 Adding multiple Directives to a Running Program

———> Directives Stack

Compiler.directives_add File C.json

|
r— r—
File_A File_B File_C
D!rect!ve 1 Directive 3 Directive 4
Directive 2 Directive 5 Directive 0

Removing Directives from the Directives Stack

You can remove the top-most directive from the directive stacks through diagnostic
commands.

 Toremove Directive 4 from the stack, enter the following command:

jcmd 11084 Conpiler.directives_renove

* To remove more, repeat this diagnostic command until only the default directive
remains. You can’t remove the default directive.

»  Figure 2-5 shows that the order of directives in the stack becomes is [5, 3, 1, 2, 0].

Figure 2-5 Removing One Directive from the Stack

I > Directives Stack

Compiler.directives remove . .
- Directive 4 (X

=

File_A File_B File_C
Directive 1 Directive 3 Directive 4
Directive 2 Directive 5

Directive 0

You can remove multiple directives from the directives stack.

e To clear the directives stack, enter the following command:
jcmd 11084 Conpiler.directives_clear

» All directives are removed except the default directive. You can’t remove the
default directive.

2-21



Chapter 2
Commands for Working with Directive Files

* Figure 2-6 shows that only Di rective 0 remains in the stack.

Figure 2-6 Removing All Directives from the Stack

I Directives Stack
Compiler.directives_clear

[N F F ; ;
k Directive 5 (X
Directive 1 (X
FleA | |FileB | [Filec | Directive 1 (%)
[ [
Directive 1 Directive 3 Directive 4
Directive 2 | Directive 5
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ORACLE

Oracle’s HotSpot VM includes several garbage collectors that you can use to help
optimize the performance of your application. A garbage collector is especially helpful
if your application handles large amounts of data (multiple gigabytes), has many
threads, and has high transaction rates.

For descriptions on the available garbage collectors, see Garbage Collection
Implementation in the Java Platform, Standard Edition HotSpot Virtual Machine
Garbage Collection Tuning Guide.

3-1



Class Data Sharing

This chapter describes the class data sharing (CDS) feature that can help reduce the
startup time and memory footprints for Java applications.

Topics:
e Class Data Sharing

* Regenerating the Shared Archive

*  Manually Controlling Class Data Sharing

Class Data Sharing

ORACLE

The Class data sharing (CDS) feature helps reduce the startup time and memory
footprint between multiple Java Virtual Machines (JVM).

Starting from JDK 12, a default CDS archive is pre-packaged with the Oracle
JDK binary. The default CDS archive is created at the JDK build time by running
- Xshar e: dunp, using G1 GC and 128M Java heap. It uses a built-time generated
default class list that contains the selected core library classes. The default CDS
archive resides in the following location:

e On Linux and macOS platforms, the shared archive is stored in /I i b/ [ arch]/
server/cl asses. jsa

*  On Windows platforms, the shared archive is stored in / bi n/ server/
cl asses.jsa

By default, the default CDS archive is enabled at the runtime. Specify - Xshar e: of f

to disable the default shared archive. See Regenerating the Shared Archive to create
a customized shared archive. Use the same Java heap size for both dump time and
runtime while creating and using a customized shared archive.

When the JVM starts, the shared archive is memory-mapped to allow sharing of
read-only JVM metadata for these classes among multiple JVM processes. Because
accessing the shared archive is faster than loading the classes, startup time is
reduced.

Class data sharing is supported with the ZGC, G1, serial, and parallel garbage
collectors. The shared Java heap object feature (part of class data sharing) supports
only the G1 garbage collector on 64-bit non-Windows platforms.

The primary motivation for including CDS in Java SE is to decrease in startup time.
The smaller the application relative to the number of core classes it uses, the larger
the saved fraction of startup time.

The footprint cost of new JVM instances has been reduced in two ways:

1. A portion of the shared archive on the same host is mapped as read-only and
shared among multiple JVM processes. Otherwise, this data would need to be
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replicated in each JVM instance, which would increase the startup time of your
application.

2. The shared archive contains class data in the form that the Java Hotspot VM

uses it. The memory that would otherwise be required to access the original class
information in the runtime modular image, is not used. These memory savings
allow more applications to be run concurrently on the same system. In Windows
applications, the memory footprint of a process, as measured by various tools,
might appear to increase, because more pages are mapped to the process’s
address space. This increase is offset by the reduced amount of memory (inside
Windows) that is needed to hold portions on the runtime modular image. Reducing
footprint remains a high priority.

Application Class-Data Sharing

To further reduce the startup time and the footprint, Application Class-Data Sharing
(AppCDS) is introduced that extends the CDS to include selected classes from the
application class path.

This feature allows application classes to be placed in a shared drive. The common
class metadata is shared across different Java processes. AppCDS allows the built-in
system class loader, built-in platform class loader, and custom class loaders to load
the archived classes. When multiple JVMs share the same archive file, memory is
saved and the overall system response time improves.

See Application Class Data Sharing in Java Development Kit Tool Specifications.

Dynamic CDS Archive

Dynamic CDS archive extends application class-data sharing (AppCDS) to allow
dynamic archiving of classes when a Java application exits.

It simplifies AppCDS usage by eliminating the trial runs to create a class list for each
application. The archived classes include all loaded application classes and library
classes that are not present in the default CDS archive.

To create a dynamic CDS archive, run the Java application with the following
command:

java - XX: Archived assesAt Exi t =<dynami ¢ archive> -cp <app jar> MApp

See Dynamic CDS Archive in Java Development Kit Tool Specifications.

Regenerating the Shared Archive

ORACLE

You can regenerate the shared archive for all supported platforms.

The default class list that is installed with the JDK contains only a small set of core
library classes. You might want to include other classes in the shared archive. To
create a dynamic CDS archive with the default CDS archive as the base archive, add
the following option in the command line:

java - XX: Archi veC assesAt Exi t =<dynami ¢ ar chi ve>
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A separate dynamically-generated archive is created on top of the default system for
each application. You can specify the name of the dynamic archive as an argument to
the - XX: Archi ved assesAt Exi t option.

To regenerate the archive file log in as the administrator. In networked situations, log
in to a computer of the same architecture as the Java SE installation. Ensure that you
have permissions to write to the installation directory.

To regenerate the shared archive by using a user defined class list, enter the following
command:

java - XX: Sharedd assListFile=<class_list_file> -Xshare: dunp

Diagnostic information is printed when the archive is generated.

Manually Controlling Class Data Sharing

ORACLE

Class data sharing is enabled by default. You can manually enable and disable this
feature.

You can use the following command-line options for diagnostic and debugging
purposes.

- Xshare: of f
To disable class data sharing.

- Xshare: on
To enable class data sharing. If class data sharing can't be enabled, print an error
message and exit.

¢ Note:

The - Xshar e: on is for testing purposes only and may cause intermittent
failures due to the use of address space layout randomization by

the operating system. This option should not be used in production
environments.

- Xshare: auto
To enable class data sharing by default. Enable class data sharing whenever
possible.
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Java HotSpot Virtual Machine Performance
Enhancements

This chapter describes the performance enhancements in the Oracle’s HotSpot Virtual
Machine technology.

Topics:

e Compact Strings

e Tiered Compilation

e Compressed Ordinary Object Pointer

* Graal : a Java-Based JIT Compiler

*  Ahead-of-Time Compilation

e Zero-Based Compressed Ordinary Object Pointers

*  Escape Analysis

Compact Strings

ORACLE

The compact strings feature introduces a space-efficient internal representation for
strings.

Data from different applications suggests that strings are a major component of Java
heap usage and that most j ava. | ang. St ri ng objects contain only Latin-1 characters.
Such characters require only one byte of storage. As a result, half of the space in

the internal character arrays of j ava. | ang. St ri ng objects are not used. The compact
strings feature, introduced in Java SE 9 reduces the memory footprint, and reduces
garbage collection activity. This feature can be disabled if you observe performance
regression issues in an application.

The compact strings feature does not introduce new public APIs or interfaces. It
modifies the internal representation of the j ava. | ang. Stri ng class from a UTF-16
(two bytes) character array to a byte array with an additional field to identify
character encoding. Other string-related classes, such as Abst ract Stri ngBui | der,
StringBuil der, and StringBuffer are updated to use a similar internal
representation.

In Java SE 9, the compact strings feature is enabled by default. Therefore, the
java.lang. String class stores characters as one byte for each character, encoded
as Latin-1. The additional character encoding field indicates the encoding that is used.
The HotSpot VM string intrinsics are updated and optimized to support the internal
representation.

You can disable the compact strings feature by using the - XX: - Conpact St ri ngs flag
with the j ava command line. When the feature is disabled, the j ava. | ang. String
class stores characters as two bytes, encoded as UTF-16, and the HotSpot VM string
intrinsics to use UTF-16 encoding.
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Tiered Compilation

Tiered compilation, introduced in Java SE 7, brings client VM startup speeds to

the server VM. Without tired compilation, a server VM uses the interpreter to

collect profiling information about methods that is sent to the compiler. With tiered
compilation, the server VM also uses the client compiler to generate compiled versions
of methods that collect profiling information about themselves. The compiled code

is substantially faster than the interpreter, and the program executes with greater
performance during the profiling phase. Often, startup is faster than the client VM
startup speed because the final code produced by the server compiler might be
available during the early stages of application initialization. Tiered compilation can
also achieve better peak performance than a regular server VM, because, the faster
profiling phase allows a longer period of profiling, which can yield better optimization.

Tiered compilation is enabled by default for the server VM. The 64-bit mode
and Compressed Ordinary Object Pointer are supported. You can disable tiered
compilation by using the - XX: - Ti er edConpi | ati on flag with the j ava command.

To accommodate the additional profiling code that is generated with tiered compilation,
the default size of code cache is multiplied by 5x. To organize and manage the larger
space effectively, segmented code cache is used.

Segmented Code Cache

ORACLE

The code cache is the area of memory where the Java Virtual Machine stores
generated native code. It is organized as a single heap data structure on top of a
contiguous chunk of memory.

Instead of having a single code heap, the code cache is divided into segments,

each containing compiled code of a particular type. This segmentation provides better
control of the JVM memory footprint, shortens scanning time of compiled methods,
significantly decreases the fragmentation of code cache, and improves performance.

The code cache is divided into the following three segments:

Table 5-1 Segmented Code Cache

Code Cache Description JVM Command-Line Arguments
Segments
Non-method This code heap contains - XX: NonMet hodCodeHeapSi ze

non-method code such

as compiler buffers and
bytecode interpreter. This
code type stays in the code
cache forever. The code
heap has a fixed size of

3 MB and remaining code
cache is distributed evenly
among the profiled and
non-profiled code heaps.

Profiled This code heap contains ~ —XX: Prof i | edCodeHeapSi ze
lightly optimized, profiled
methods with a short
lifetime.
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Table 5-1 (Cont.) Segmented Code Cache

Code Cache Description JVM Command-Line Arguments
Segments
Non-profiled This code heap contains - XX: NonPr of i | edCodeHeapSi ze

fully optimized, non-
profiled methods with a
potentially long lifetime.

Graal : a Java-Based JIT Compiler

Graal is a high-performance, optimizing, just-in-time compiler written in Java that
integrates with Java HotSpot VM. It's a customizable dynamic compiler that you can
invoke from Java.

Some of the features and benefits of Graal include:

e Flexible speculative optimizations

e Betterinlining

e Partial escape analysis

« Benefits from Java tooling and IDE support

e Metacircular approach that allows for tighter code generation control

You can use Graal in the static context as well. The static Ahead of Time Compiler is
based on the Graal framework.

Graal is part of the JDK build and it is delivered as an internal module,
jdk.internal.vm conpil er. It communicates with the JVM using the JVM Compiler
Interface (JVMCI). The JVMClI is also part of the JDK build and it is contained within
the internal module: j dk.internal .vmci .

To enable Graal as the JIT compiler, use the following option on the j ava command
line:

- XX: +Unl ockExperi ment al VMOpt i ons - XX: +UseJVMCI Conpi | er

" Note:

Graal is an experimental feature and is supported only on Linux-x64.

Ahead-of-Time Compilation

ORACLE

Ahead-of-time (AOT) compilation improves the startup time of small and large Java
applications by compiling the Java classes to native code before launching the virtual
machine.

Though just-in-time (JIT) compilers are fast, it takes time to compile large Java
programs. Also, when certain Java methods that are not compiled are interpreted
repeatedly, performance is affected. AOT addresses these issues.
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A new tool j aot ¢ is used for AOT compilation. The syntax of the j aot ¢ tool is as
follows:

jaotc <options> <list of classes or jar files>
jaotc <options> <--nodul e name>

For example:

jaotc --output |ibHelloWwrld.so HelloWrld.class
jaotc --output |ibjava.base.so --nodul e java. base
The j aot ¢ tool is part of Java installation, similar to j avac.

Specify the generated AOT library while application execution:

java - XX: AOTLi brary=./1ibHel | oWorl d. so,./libjava. base.so Hel | oWorld

When JVM startup, the AOT initialization code looks for the libraries specified using
the ACTLi brary flag. If the libraries are not found, then the AOT is turned off for that
JVM instance.

See Java Development Kit Tool Specifications for details on j aot ¢ tool.

¢ Note:

Ahead-of-Time (AOT) compilation is an experimental feature and is
supported only on Linux-x64.

Compressed Ordinary Object Pointer

ORACLE

An ordinary object pointer (oop) in Java Hotspot parlance, is a managed pointer to
an object. Typically, an oop is the same size as a native machine pointer, which is
64-bit on an LP64 system. On an ILP32 system, maximum heap size is less than 4
gigabytes, which is insufficient for many applications. On an LP64 system, the heap
used by a given program might have to be around 1.5 times larger than when it is
run on an ILP32 system. This requirement is due to the expanded size of managed
pointers. Memory is inexpensive, but these days bandwidth and cache are in short
supply, so significantly increasing the size of the heap and only getting just over the 4
gigabyte limit is undesirable.

Managed pointers in the Java heap point to objects that are aligned on 8-byte address
boundaries. Compressed oops represent managed pointers (in many but not all places
in the Java Virtual Machine (JVM) software) as 32-bit object offsets from the 64-bit
Java heap base address. Because they're object offsets rather than byte offsets, oops
can be used to address up to four billion objects (not bytes), or a heap size of up to
about 32 gigabytes. To use them, they must be scaled by a factor of 8 and added to
the Java heap base address to find the object to which they refer. Object sizes using
compressed oops are comparable to those in ILP32 mode.
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The term decode refer to the operation by which a 32-bit compressed oop is converted
to a 64-bit native address and added into the managed heap. The term encode refers
to that inverse operation.

Compressed oops is supported and enabled by default in Java SE 6u23 and later.
In Java SE 7, compressed oops is enabled by default for 64-bit JVM processes
when - Xmx isn't specified and for values of - Xnx less than 32 gigabytes. For JDK
releases earlier than 6u23 release, use the - XX: +UseConpr essedQops flag with the
j ava command to enable the compressed oops.

Zero-Based Compressed Ordinary Object Pointers

When the JVM uses compressed ordinary object pointers (oops) in a 64-bit JVM
process, the JVM software sends a request to the operating system to reserve
memory for the Java heap starting at virtual address zero. If the operating system
supports such a request and can reserve memory for the Java heap at virtual address
zero, then zero-based compressed oops are used.

When zero-based compressed oops are used, a 64-bit pointer can be decoded from a
32-bit object offset without including the Java heap base address. For heap sizes less
than 4 gigabytes, the JVM software can use a byte offset instead of an object offset
and thus also avoid scaling the offset by 8. Encoding a 64-bit address into a 32-bit
offset is correspondingly efficient.

For Java heap sizes up to 26 gigabytes, the Linux and Windows operating systems
typically can allocate the Java heap at virtual address zero.

Escape Analysis

ORACLE

Escape analysis is a technique by which the Java HotSpot Server Compiler can
analyze the scope of a new object's uses and decide whether to allocate the object on
the Java heap.

Escape analysis is supported and enabled by default in Java SE 6u23 and later.

The Java HotSpot Server Compiler implements the flow-insensitive escape analysis
algorithm described in:

[ Choi 99] Jong- Deok Choi, Manish Gupta, Mauricio Seffano,
Vugranam C. Sreedhar, Sam M dki ff,
"Escape Analysis for Java", Procedings of ACM SI GPLAN
OOPSLA Conference, Novenber 1, 1999

An object's escape state, based on escape analysis, can be one of the following
states:

* ({ obal Escape: The object escapes the method and thread. For example, an object
stored in a static field, stored in a field of an escaped object, or returned as the
result of the current method.

e ArgEscape: The object is passed as an argument or referenced by an argument
but does not globally escape during a call. This state is determined by analyzing
the bytecode of the called method.
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* NoEscape: The object is a scalar replaceable object, which means that its
allocation could be removed from generated code.

After escape analysis, the server compiler eliminates the scalar replaceable object
allocations and the associated locks from generated code. The server compiler also
eliminates locks for objects that do not globally escape. It does not replace a heap
allocation with a stack allocation for objects that do not globally escape.

The following examples describe some scenarios for escape analysis:

*  The server compiler might eliminate certain object allocations. For example, a
method makes a defensive copy of an object and returns the copy to the caller.

public class Person {
private String nane;
private int age;
public Person(String personName, int personAge) {
name = per sonNane;
age = personAge;
1

public Person(Person p) { this(p.getNane(), p.getAge()); }
public int getNane() { return name; }
public int getAge() { return age; }

}

public class Enployee {
private Person person;

/1 makes a defensive copy to protect against nodifications
by caller
public Person getPerson() { return new Person(person) };

public void printEnpl oyeeDetail (Enpl oyee enmp) {
Person person = enp. get Person();
/1 this caller does not nmodify the object, so defensive
copy was unnecessary
Systemout.println ("Enpl oyee's name: " +
person.getNane() + "; age: " + person.getAge());

}
}

The method makes a copy to prevent modification of the original object by the
caller. If the compiler determines that the get Per son method is being invoked in a
loop, then the compiler inlines that method. By using escape analysis, when the
compiler determines that the original object is never modified, the compiler can
optimize and eliminate the call to make a copy.

*  The server compiler might eliminate synchronization blocks (lock elision) if it

determines that an object is thread local. For example, methods of classes such
as StringBuffer and Vect or are synchronized because they can be accessed
by different threads. However, in most scenarios, they are used in a thread local
manner. In cases where the usage is thread local, the compiler can optimize and
remove the synchronization blocks.
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The JVM Constants API is defined in the package j ava. | ang. const ant s, which
contains the nominal descriptors of various types of loadable constants. These
nominal descriptors are useful for applications that manipulate class files and compile-
time or link-time program analysis tools.

A nominal descriptor is not the value of a loadable constant but a description of its
value, which can be reconstituted given a class loading context. A loadable constant
is a constant pool entry that can be pushed onto the operand stack or can appear in
the static argument list of a bootstrap method for the i nvokedynamni ¢ instruction. The
operand stack is where JVM instructions get their input and store their output. Every
Java class file has a constant pool, which contains several kinds of constants, ranging
from numeric literals known at compile-time to method and field references that must
be resolved at run-time.

The issue with working with non-nominal loadable constants, such as a O ass objects,
whose references are resolved at run-time, is that these references depend on the
correctness and consistency of the class loading context. Class loading may have side
effects, such as running code that you don't want run and throwing access-related and
out-of-memory exceptions, which you can avoid with nominal descriptions. In addition,
class loading may not be possible at all.

See the package j ava. | ang. const ant .
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Support for Non-Java Languages

This chapter describes the Non-Java Language features in the Java Virtual Machine.

Topics:

* Introduction to Non-Java Language Features

e Static and Dynamic Typing

e The Challenge of Compiling Dynamically-Typed Languages

*  The invokedynamic Instruction

Introduction to Non-Java Language Features

The Java Platform, Standard Edition (Java SE) enables the development of
applications that have the following features:

e They can be written once and run anywhere
e They can be run securely because of the Java sandbox security model
e They are easy to package and deliver

The Java SE platform provides robust support in the following areas:

e Concurrency
*  Garbage collection
» Reflective access to classes and objects

e JVM Tool Interface (JVM TI): A native programming interface for use by tools.
It provides both a way to inspect the state and to control the execution of
applications running in the JVM.

Oracle's HotSpot JVM provides the following tools and features:

» DTrace: A dynamic tracing utility that monitors the behavior of applications and the
operating system.

*  Performance optimizations

*  PrintAssembly: A Java HotSpot option that prints assembly code for bytecoded
and native methods.

The Java SE 7 platform enables non-Java languages to use the infrastructure
and potential performance optimizations of the JVM. The key mechanism is the
i nvokedynami ¢ instruction, which simplifies the implementation of compilers and
runtime systems for dynamically-typed languages on the JVM.
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Static and Dynamic Typing

ORACLE

A programming language is statically-typed if it performs type checking at compile
time. Type checking is the process of verifying that a program is type safe. A program
is type safe if the arguments of all of its operations are the correct type.

Java is a statically-typed language. Type information is available for class and instance
variables, method parameters, return values, and other variables when a program is
compiled. The compiler for the Java programming language uses this type information
to produce strongly typed bytecode, which can then be efficiently executed by the JVM
at runtime.

The following example of a Hello World program demonstrates static typing. Types are
shown in bold.

import java.util.Date;

public class HelloWrld {
public static void main(String[] argv) {
String hello = "Hello ";
Date currDate = new Date();
for (String a : argv) {
Systemout.printin(hello + a);
Systemout.println("Today's date is: " + currDate);

A programming language is dynamically-typed if it performs type checking at runtime.
JavaScript and Ruby are examples of dynamically typed languages. These languages
verify at runtime, rather than at compile time, that values in an application conform to
expected types. Typically, type information for these languages is not available when
an application is compiled. The type of an object is determined only at runtime. In the
past, it was difficult to efficiently implement dynamically-typed languages on the JVM.

The following is an example of the Hello World program written in the Ruby
programming language:

#!/usr/bin/env ruby
require 'date'

hello = "Hello "
currDate = DateTine. now
ARGV. each do| a|
puts hello + a
puts "Date and time: " + currDate.to_s
end

In the example, every name is introduced without a type declaration. The main
program is not located inside a holder type (the Java class Hel | oWor | d). The Ruby
equivalent of the Java f or loop is inside the dynamic type ARGV variable. The body
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of the loop is contained in a block called a closure, which is a common feature in
dynamic languages.

Statically-Typed Languages Are Not Necessarily Strongly-Typed

Languages

Statically-typed programming languages can employ strong typing or weak typing. A
programming language that employs strong typing specifies restrictions on the types
of values supplied to its operations, and it prevents the execution of an operation if its
arguments have the wrong type. A language that employs weak typing would implicitly
convert (or cast) arguments of an operation if those arguments have the wrong or
incompatible types.

Dynamically-typed languages can employ strong typing or weak typing. For example,
the Ruby programming language is dynamically-typed and strongly-typed. When a
variable is initialized with a value of some type, the Ruby programming language does
not implicitly convert the variable into another data type.

In the following example, the Ruby programming language does not implicitly cast the
number 2, which has a Fi xnumtype, to a string.

n 40"
a+ 2

o)

The Challenge of Compiling Dynamically-Typed Languages

ORACLE

Consider the following dynamically-typed method, addt wo, which adds any two
numbers (which can be of any numeric type) and returns their sum:

def addtwo(a, b)
a+ b;
end

Suppose your organization is implementing a compiler and runtime system for the
programming language in which the method addt wo is written. In a strongly-typed
language, whether typed statically or dynamically, the behavior of + (the addition
operator) depends on the operand types. A compiler for a statically-typed language
chooses the appropriate implementation of + based on the static types of a and b. For
example, a Java compiler implements + with the i add JVM instruction if the types of
aandb are i nt. The addition operator is compiled to a method call because the JVM
i add instruction requires the operand types to be statically known.

A compiler for a dynamically-typed language must defer the choice until runtime. The
statementa + b is compiled as the method call +(a, b), where + is the method
name. A method named + is permitted in the JVM but not in the Java programming
language. If the runtime system for the dynamically-typed language is able to identify
that a and b are variables of integer type, then the runtime system would prefer to call
an implementation of + that is specialized for integer types rather than arbitrary object

types.
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The challenge of compiling dynamically-typed languages is how to implement a
runtime system that can choose the most appropriate implementation of a method

or function — after the program has been compiled. Treating all variables as objects
of bj ect type would not work efficiently; the Cbj ect class does not contain a method
named +.

In Java SE 7 and later, the i nvokedynani c instruction enables the runtime system

to customize the linkage between a call site and a method implementation. In this
example, the i nvokedynani ¢ call site is +. An i nvokedynamni ¢ call site is linked to

a method by means of a bootstrap method, which is a method specified by the
compiler for the dynamically-typed language that is called once by the JVM to link the
site. Assuming the compiler emitted an i nvokedynani ¢ instruction that invokes +, and
assuming that the runtime system knows about the method adder (I nt eger, | nt eger),
the runtime can link the i nvokedynani c call site to the adder method as follows:

IntegerOps.java

class IntegerOps {

public static Integer adder(Integer x, Integer y) {
return x +vy;

}
}

Example.java

inport java.util.*;

i mport java.lang.invoke.*;

inport static java.lang.invoke. MethodType. *;

i mport static java.lang.invoke. Met hodHandl es. *;

cl ass Exanpl e {

public static CallSite mybsm
Met hodHandl es. Lookup cal l erCl ass, String dynMet hodNanme, Met hodType
dynMet hodType)
throws Throwabl e {

Met hodHandl e mh =
callerCass.findStatic(
Exanpl e. cl ass,
"I nt eger Ops. adder ",
Met hodType. net hodType(I nt eger. cl ass, |nteger.class,
I nteger.class));

i f (!dynMet hodType. equal s(nmh.type())) {
mh = mh. asType(dynMet hodType);
}

return new ConstantCal |l Site(nh);

}
}
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In this example, the | nt eger Ops class belongs to the library that accompanies runtime
system for the dynamically-typed language.

The Exanpl e. nybsmmethod is a bootstrap method that links the i nvokedynani c call
site to the adder method.

The cal | er d ass object is a | ookup object, which is a factory for creating method
handles.

The Met hodHandl es. Lookup. fi ndSt ati ¢ method (called from the cal | er O ass | ookup
object) creates a static method handle for the method adder .

Note: This bootstrap method links an i nvokedynam ¢ call site to only the code

that is defined in the adder method. It assumes that the arguments given to the

i nvokedynami c call site are | nt eger objects. A bootstrap method requires additional
code to properly link i nvokedynani c call sites to the appropriate code to execute if the
parameters of the bootstrap method (in this example, cal | er d ass, dynMet hodNanre,
and dynMet hodType) vary.

The j ava. | ang. i nvoke. Met hodHandl es class and j ava. | ang. i nvoke. Met hodHand| e
class contain various methods that create method handles based on existing method
handles. This example calls the asType method if the method type of the mh method
handle does not match the method type specified by the dynMet hodType parameter.
This enables the bootstrap method to link i nvokedynani ¢ call sites to Java methods
whose method types don’t exactly match.

The Const ant Cal | Si t e instance returned by the bootstrap method represents a call
site to be associated with a distinct i nvokedynami ¢ instruction. The target for a

Const ant Cal | Si t e instance is permanent and can never be changed. In this case,
one Java method, adder, is a candidate for executing the call site. This method does
not have to be a Java method. Instead, if several such methods are available to the
runtime system, each handling different argument types, the nybsmbootstrap method
could dynamically select the correct method based on the dynMet hodType argument.

The invokedynamic Instruction

ORACLE

You can use the i nvokedynani c instruction in implementations of compilers and
runtime systems for dynamically typed languages on the JVM. The i nvokedynani ¢
instruction enables the language implementer to define custom linkage. This contrasts
with other JVM instructions such as i nvokevi rt ual , in which linkage behavior specific
to Java classes and interfaces is hard-wired by the JVM.

Each instance of an i nvokedynani ¢ instruction is called a dynamic call site. When an
instance of the dynamic call site is created, it is in an unlinked state, with no method
specified for the call site to invoke. The dynamic call site is linked to a method by
means of a bootstrap method. A dynamic call site's bootstrap method is a method
specified by the compiler for the dynamically-typed language. The method is called
once by the JVM to link the site. The object returned from the bootstrap method
permanently determines the call site's activity.

The i nvokedynani ¢ instruction contains a constant pool index (in the same

format as for the other i nvoke instructions). This constant pool index references

a CONSTANT _I nvokeDynani ¢ entry. This entry specifies the bootstrap method (a
CONSTANT _Met hodHandl e entry), the name of the dynamically-linked method, and the
argument types and return type of the call to the dynamically-linked method.
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In the following example, the runtime system links the dynamic call site specified by
the i nvokedynam c instruction (which is +, the addition operator) to the IntegerOps.adder
method by using the Example.mybsm bootstrap method. The adder method and mybsm
method are defined in The Challenge of Compiling Dynamically Typed Languages (line
breaks have been added for clarity):

i nvokedynam ¢ | nvokeDynanic
REF_i nvokeStati c:
Exanpl e. mybsm
“(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Ljava/lang/ String;
Lj ava/l ang/ i nvoke/ Met hodType; )
Ljava/l ang/invoke/Cal I Site;":
+:
“(Ljavall ang/ I nteger;
Ljava/l ang/ | nt eger;)
Ljava/l ang/ I nteger;";

# Note:

The bytecode examples use the syntax of the ASM Java bytecode
manipulation and analysis framework.

Invoking a dynamically-linked method with the i nvokedynani ¢ instruction involves the
following steps:

1. Defining the Bootstrap Method
2. Specifying Constant Pool Entries

3. Using the i nvokedynani c Instruction

Defining the Bootstrap Method

ORACLE

At runtime, the first time the JVM encounters an i nvokedynani ¢ instruction, it calls
the bootstrap method. This method links the name that the i nvokedynani ¢ instruction
specifies with the code to execute the target method, which is referenced by a method
handle. The next time the JVM executes the same i nvokedynani c instruction, it does
not call the bootstrap method; it automatically calls the linked method handle.

The bootstrap method's return type must be j ava. | ang. i nvoke. Cal | Site. The
Cal | Si t e object represents the linked state of the i nvokedynani ¢ instruction and the
method handle to which it is linked.

The bootstrap method takes three or more of the following parameters:

e Mt hodHandl es. Lookup object: A factory for creating method handles in the
context of the i nvokedynani ¢ instruction.

e String object: The method name mentioned in the dynamic call site.

» MethodType object: The resolved type signature of the dynamic call site.
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* One or more additional static arguments to the i nvokedynami ¢ instruction:
Optional arguments, drawn from the constant pool, are intended to help language
implementers safely and compactly encode additional metadata useful to the
bootstrap method. In principle, the name and extra arguments are redundant
because each call site could be given its own unique bootstrap method. However,
such a practice is likely to produce large class files and constant pools

See The Challenge of Compiling Dynamically Typed Languages for an example of a
bootstrap method.

Specifying Constant Pool Entries

The i nvokedynani ¢ instruction contains a reference to an entry in the constant pool
with the CONSTANT_I nvokeDynani ¢ tag. This entry contains references to other entries
in the constant pool and references to attributes. See j ava. | ang. i nvoke package
docunent at i on and The Java Virtual Machine Specification.

Example Constant Pool

ORACLE

The following example shows an excerpt from the constant pool for the class Exanpl e,
which contains the bootstrap method Exanpl e. nybsmthat links the method + with the
Java method adder :

class #159; /| #47

Uf8 "adder"; // #83

Uf8 "(Ljavallang/Integer;Ljavallang/lnteger;)Ljavallang/
Integer;"; [/ #84

Uf8 "mybsnt'; // #87

U f8 "(Ljavallang/invoke/ Met hodHandl es/ Lookup; Lj ava/ |l ang/
String; Ljavall ang/invoke/ Met hodType;)

javallang/invoke/CallSite;"; [/ #88
Uf8 "Exanple"; // #159
Uf8 "+"; [/ #166

...

NaneAndType #83 #84; [/ #228

Met hod #47 #228; ] #229

Met hodHandl e 6b #229; // #230
NaneAndType #87 #88; // #231

Met hod #47 #231; /] #232

Met hodHandl e 6b #232; // #233
NaneAndType #166 #84; [/ #234

Ut f8 "BootstrapMethods"; // #235
I nvokeDynani ¢ Os #234; [/ #236

The constant pool entry for the i nvokedynani ¢ instruction in this example contains the
following values:

e CONSTANT_I nvokeDynami ¢ tag
e Unsigned short of value 0

e Constant pool index #234.
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The value, 0, refers to the first bootstrap method specifier in the array of specifiers that
are stored in the Boot st r apMet hods attribute. Bootstrap method specifiers are not in
the constant pool table. They are contained in this separate array of specifiers. Each
bootstrap method specifier contains an index to a CONSTANT _Met hodHandl e constant
pool entry, which is the bootstrap method itself.

The following example shows an excerpt from the same constant pool that shows the
Boot st r apMet hods attribute, which contains the array of bootstrap method specifiers:

[3] { /] Attributes

...

Attr(#235, 6) { // BootstrapMethods at 0xO0F63
[1] { /I bootstrap_nethods
{ I/ bootstrap_nethod
#233; |/ bootstrap_nethod_ref
[0] { // bootstrap_arguments
} I/ bootstrap_arguments
} I/ bootstrap_nethod
}
} 1/ end Boot strapMet hods
} Il Attributes

The constant pool entry for the bootstrap method nybsmmethod handle contains the
following values:

e CONSTANT_Met hodHandl e tag
e Unsigned byte of value 6
* Constant pool index #232.

The value, 6, is the REF i nvokeSt at i ¢ subtag. See, Using the invokedynamic
Instruction, for more information about this subtag.

Using the invokedynamic Instruction

ORACLE

The following example shows how the bytecode uses the i nvokedynani ¢ instruction
to call the mybsmbootstrap method, which links the dynamic call site (+, the addition

operator) to the adder method. This example uses the + method to add the numbers
40 and 2 (line breaks have been added for clarity):

bi push 40;
i nvokestatic Met hod javall ang/ I nteger.val ued:"(1)Ljavall ang/
I nteger;",;
i const_2;
i nvokestatic Met hod javall ang/ I nteger.val ued:"(1)Ljavall ang/
I nteger;",;
i nvokedynami ¢ | nvokeDynanmic
REF i nvokeStatic:
Exanpl e. mybsm
"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
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Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType; )
Lj ava/l ang/invoke/Cal I Site;":
+:
"(Ljavall ang/ I nteger;
Lj ava/l ang/ I nt eger;)
Lj ava/l ang/ I nteger;";

The first four instructions put the integers 40 and 2 in the stack and boxes them in the
j ava. l ang. I nt eger wrapper type. The fifth instruction invokes a dynamic method. This
instruction refers to a constant pool entry with a CONSTANT _| nvokeDynani ¢ tag:

REF_i nvokeStati c:
Exanpl e. nybsm
"(Lj avall ang/ i nvoke/ Met hodHand! es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType; )
Ljava/l ang/invoke/ Cal | Site;":
+:
"(Ljavall ang/ I nteger;
Lj ava/l ang/ I nt eger;)
Ljava/l ang/ I nteger;";

Four bytes follow the CONSTANT_I nvokeDynani ¢ tag in this entry.

*  The first two bytes form a reference to a CONSTANT_Met hodHandl e entry that
references a bootstrap method specifier:

REF i nvokeStati c:
Exanpl e. mybsm
"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Lj ava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType; )
Ljava/l ang/invoke/Cal | Site;"

This reference to a bootstrap method specifier is not in the constant pool

table. It is contained in a separate array defined by a class file attribute

named Boot st r apMet hods. The bootstrap method specifier contains an index to a
CONSTANT _Met hodHandl e constant pool entry, which is the bootstrap method itself.

Three bytes follow this CONSTANT_Met hodHandl e constant pool entry:

— The first byte is the REF_i nvokeSt at i ¢ subtag. This means that this bootstrap
method will create a method handle for a static method; note that this
bootstrap method is linking the dynamic call site with the static Java adder
method.

— The next two bytes form a CONSTANT_Met hodr ef entry that represents the
method for which the method handle is to be created:

Exanpl e. mybsm
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"(Ljavall ang/i nvoke/ Met hodHandl es/ Lookup;
Ljava/l ang/ String;
Lj ava/l ang/ i nvoke/ Met hodType; )

Ljava/l ang/invoke/ Call Site;"

In this example, the fully qualified name of the bootstrap method is
Exanpl e. mybsm. The argument types are Met hodHandl es. Lookup, Stri ng, and
Met hodType. The return type is Cal | Site.

* The next two bytes form a reference to a CONSTANT _NaneAndType entry:

+:
"(Lj avallang/ I nteger;
Lj ava/l ang/ I nteger;)
Lj ava/l ang/ I nt eger;"

This constant pool entry specifies the method name (+), the argument types (two
I nt eger instances), and return type of the dynamic call site (I nt eger).

In this example, the dynamic call site is presented with boxed integer values,

which exactly match the type of the eventual target, the adder method. In practice,
the argument and return types don’t need to exactly match. For example, the

i nvokedynami ¢ instruction could pass either or both of its operands on the JVM stack
as primitive i nt values. Either or both operands could be untyped (bj ect values.
The i nvokedynani ¢ instruction could receive its result as a primitive i nt value, or an
untyped Qbj ect value. In any case, the dynMet hodType argument to mybsmaccurately
describes the method type that is required by the i nvokedynani c instruction.

The adder method could be given primitive or untyped arguments or return values.
The bootstrap method is responsible for making up any difference between the
dynMet hodType and the type of the adder method. As shown in the code, this is easily
done with an asType call on the target method.
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Signal chaining enables you to write applications that need to install their own signal
handlers. This facility is available on Linux and macOS.

The signal chaining facility has the following features:

Support for preinstalled signal handlers when you create Oracle’s HotSpot Virtual
Machine.

When the HotSpot VM is created, the signal handlers for signals that are used
by the HotSpot VM are saved. During execution, when any of these signals are
raised and are not to be targeted at the HotSpot VM, the preinstalled handlers
are invoked. In other words, preinstalled signal handlers are chained behind the
HotSpot VM handlers for these signals.

Support for the signal handlers that are installed after you create the HotSpot VM,
either inside the Java Native Interface code or from another native thread.

Your application can link and load the | i bj si g. so shared library before the | i bc/
I'ibthread/|ibpthread library. This library ensures that calls such as si gnal (),
sigset(), and sigaction() are intercepted and don't replace the signal handlers
that are used by the HotSpot VM, if the handlers conflict with the signal handlers
that are already installed by HotSpot VM. Instead, these calls save the new signal
handlers. The new signal handlers are chained behind the HotSpot VM signal
handlers for the signals. During execution, when any of these signals are raised
and are not targeted at the HotSpot VM, the preinstalled handlers are invoked.

If support for signal handler installation after the creation of the VM is not required,
then the | i bj si g. so shared library is not needed.

To enable signal chaining, perform one of the following procedures to use the
I'i bj si g.so shared library:

— Link the I'i bj si g. so shared library with the application that creates or embeds
the HotSpot VM:

cc -L libjvmso-directory -ljsig -ljvmjava_ application.c

— Use the LD_PRELOAD environment variable:
*  Korn shell (ksh):

export LD PRELQAD=I i bjvm so-directory/libjsig.so;
java_application

*  C shell (csh):

setenv LD PRELOAD |ibjvmso-directory/libjsig.so;
java_application
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The interposed si gnal () , sigset() , and si gaction() calls return the saved
signal handlers, not the signal handlers installed by the HotSpot VM and are seen
by the operating system.

# Note:

The SI GQUI T, SI GTERM SI G NT, and Sl GHUP signals cannot be chained. If the
application must handle these signals, then consider using the —Xr s option.

Enable Signal Chaining in macOS

To enable signal chaining in macOS, set the following environment variables:

DYLD_I NSERT_LI BRARI ES: Preloads the specified libraries instead of the
LD PRELQAD environment variable available on Linux.

DYLD _FORCE_FLAT NAMESPACE: Enables functions in the | i bj si g library and
replaces the OS implementations, because of macOS'’s two-level namespace (a
symbol's fully qualified name includes its library). To enable this feature, set this
environment variable to any value.

The following command enables signal chaining by preloading the | i bj si g library:

$ DYLD FORCE_FLAT_NAMESPACE=0 DYLD | NSERT LI BRARI ES="JAVA HOVE/ | i b/
libjsig.dylib" java MySpiffyJavaApp

" Note:

The library file name on macOS is|ibjsig.dylibnotlibjsig.soasitison
Linux.
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Native Memory Tracking

This chapter describes the Native Memory Tracking (NMT) feature. NMT is a Java
Hotspot VM feature that tracks internal memory usage for a HotSpot VM. You can
access NMT data by using the j cnd utility. NMT does not track memory allocations for
third-party native code and Oracle Java Development Kit (JDK) class libraries. NMT
does not include NMT MBean in HotSpot for Java Mission Control (JMC).
Topics:
 Key Features
* Using Native Memory Tracking

— Enabling NMT

— Accessing NMT Data using jcmd

e Obtaining NMT Data at VM Exit

Key Features

When you use Native Memory Tracking with j cnd, you can track Java Virtual Machine
(JVM) or HotSpot VM memory usage at different levels. NMT tracks only the memory
that the JVM or HotSpot VM uses, not the user's native memory. NMT doesn't give
complete information for the memory used by the class data sharing (CDS) archive.

NMT for HotSpot VM is turned off by default. You can turn on NMT by using the JVM
command-line option. See java in the Java Development Kit Tool Specifications for
information about advanced runtime options.

You can access NMT using the j cnd utility. See Use jemd to Access NMT Data. You
can stop NMT by using the j cnd utility, but you can't start or restart NMT by using the
j cnd utilty.

NMT supports the following features:
* Generate summary and detail reports.

» Establish an early baseline for later comparison.

* Request a memory usage report at JVM exit with the JVM command-line option.
See NMT at VM exit.

Using Native Memory Tracking

You must enable NMT and then use the j cnd utility to access the NMT data.

Enabling NMT

ORACLE

To enable NMT, use the following command-line options:
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- XX: Nat i veMenor yTracki ng=[of f | summary | detail]

# Note:
Enabling NMT causes a 5% -10% performance overhead.
The following table describes the NMT command-line usage options:

Table 9-1 NMT Usage Options

NMT Options Description

of f NMT is turned of f by default.

sunmary Collect only memory usage aggregated by subsystem.
det ai | Collect the memory usage by individual call sites.

Accessing NMT Data using jcmd

Use j cnmd to dump the data that is collected and optionally compare the data to the last
baseline.

jemd <pid> VM native nenory [sumary | detail | baseline | summary.diff |
detail.diff | shutdown] [scale= KB| MB | GB]

Table 9-2 jecmd NMT Options
. _________________________________________________________________________________]

jcmd NMT Option Description
sunmary Print a summary, aggregated by category.
det ai | «  Print memory usage, aggregated by category

e Print virtual memory map
e Print memory usage, aggregated by call site

basel i ne Create a new memory usage snapshot for comparison.
sunmary. di f f Print a new summary report against the last baseline.
detail.diff Print a new detail report against the last baseline.

shut down Stop NMT.

Obtaining NMT Data at VM Exit

To obtain data for the last memory usage at VM exit, when Native Memory Tracking is
enabled, use the following VM diagnostic command-line options. The level of detail is
based on tracking level.

- XX: +Unl ockDi agnosti cVMXptions - XX: +Print NMISt ati stics

See Native Memory Tracking in the Java Platform, Standard Edition Troubleshooting
Guide for information about how to monitor VM internal memory allocations and
diagnose VM memory leaks.
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DTrace Probes in HotSpot VM

This chapter describes DTrace support in Oracle’s HotSpot VM. The hotspot and
hotspot_jni providers let you access probes that you can use to monitor the Java
application that is running together with the internal state and activities of the Java
Virtual Machine (JVM). All of the probes are USDT probes and you can access them
by using the process-id of the JVM process.

Topics:
* Using the hotspot Provider
— VM Lifecycle Probes
— Thread Lifecycle Probes
— Classloading Probes
— Garbage Collection Probes
— Method Compilation Probes
— Monitor Probes
— Application Tracking Probes
* Using the hotspot_jni Provider

e Sample DTrace Probes

Using the hotspot Provider

The hotspot provider lets you access probes that you can use to track the lifespan

of the VM, thread start and stop events, garbage collector (GC) and memory

pool statistics, method compilations, and monitor activity. A startup flag can enable
additional probes that you can use to monitor the running Java program, such as
object allocations and method enter and return probes. The hotspot probes originate in
the VM library (libjym.so), so they are provided from programs that embed the VM.

Many of the probes in the provider have arguments for providing further details on the
state of the VM. Many of these arguments are opaque IDs which can be used to link
probe firings to each other. However, strings and other data are also provided. When
string values are provided, they are always present as a pair: a pointer to unterminated
modified UTF-8 data (see the JVM Specification) , and a length value which indicates
the extent of that data. The string data is not guaranteed to be terminated by a NUL
character, and it is necessary to use the length-terminated copyi nstr () intrinsic to
read the string data. This is true even when none of the characters are outside the
ASCII range.

VM Lifecycle Probes

The following probes are available for tracking VM lifecycle activities. None have any
arguments.
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Table 10-1 VM Lifecycle Probes
]

Probe Description
vminit-begin Probe that starts when the VM initialization begins
vminit-end Probe that starts when the VM initialization finishes, and

the VM is ready to start running application code

vm shut down Probe that starts as the VM is shuts down due to
program termination or an error

Thread Lifecycle Probes

The following probes are available for tracking thread start and stop events.

Probe Description
thread-start Probe that starts when a thread starts.
t hread- st op Probe that starts when the thread has completed.

The following argument are available for the thread lifecycle probes:

Probe Arguments Description

args[ 0] A pointer to UTF-8 string data that contains the thread
name.

args[ 1] The length of the thread name data (in bytes).

args[ 2] The Java thread ID. This value matches other HotSpot
VM probes that contain a thread argument.

args[ 3] The native or OS thread ID. This ID is assigned by the
host operating system.

args[ 4] A boolean value that indicates whether this thread is a
daemon or not. A value of 0 indicates a non-daemon
thread.

Classloading Probes

The following probes are available for tracking class loading and unloading activity.

Probe Description

cl ass- | oaded Probe that fires when a class is loaded

cl ass-unl oaded Probe that fires when a class is unloaded from the
system

The following arguments are available for the cl assl oadi ng probes:

Probe Arguments Description

args[ 0] A pointer to UTF-8 string data that contains the name of
the class that is loaded
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Probe Arguments

Description

args[ 1] The length of the class name data (in bytes)

args[ 2] The class loader ID, which is a unique identifier for a
class loader in the VM. (This is the class loader that
loaded the class.)

args[ 3] A boolean value that indicates whether the class is a

shared class (if the class was loaded from the shared
archive)

Garbage Collection Probes

Probes are available that you can use to measure the duration of a system-wide
garbage collection cycle (for those garbage collectors that have a defined begin and
end). Each memory pool is tracked independently. The probes for individual pools
pass the memory manager's hame, the pool name, and pool usage information at both
the beginning and ending of pool collection.

The following probes are available for garbage collecting activities:

Probe Description

gc-begin Probe that starts when a system-wide collection starts.
The one argument available for this probe, (ar g[ 0] ), is
a boolean value that indicates whether to perform a Full
GC.

gc-end Probe that starts when a system-wide collection is

completed. No arguments.

mem pool - gc- begin

Probe that starts when an individual memory pool is
collected.

mem pool - gc- end

Probe that starts after an individual memory pool is
collected.

The following arguments are available for the memory pool probes:

Probe Arguments

Description

args[ 0] A pointer to the UTF-8 string data that contains the
name of the manager that manages this memory pool.

args[ 1] The length of the manager name data (in bytes).

args[ 2] A pointer to the UTF-8 string data that contains the
name of the memory pool.

argsj 3] The length of the memory pool name data (in bytes).

argsj 4] The initial size of the memory pool (in bytes).

args[ 5] The amount of memory in use in the memory pool (in
bytes).

argsj 6] The number of committed pages in the memory pool.

args[ 7] The maximum size of the memory pool.
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Probes are available to indicate which methods are being compiled and by which
compiler, and to track when the compiled methods are installed or uninstalled.

The following probes are available to mark the beginning and ending of method

compilation:

Probe

Description

met hod- conpi | e- begi n

Probe that starts when the method compilation begins.

met hod- conpi | e- end

Probe that starts when method compilation is
completed. In addition to the following arguments, the
ar gv[ 8] argument is a boolean value that indicates
whether the compilation was successful.

The following arguments are available for the method compilation probes:

Probe Arguments

Description

args[ 0] A pointer to UTF-8 string data that contains the name of
the compiler that is compiling this method.
args[ 1] The length of the compiler name data (in bytes).
args[ 2] A pointer to UTF-8 string data that contains the name of
the class of the method being compiled.
argsf 3] The length of the class name data (in bytes).
argsj 4] A pointer to UTF-8 string data that contains the name of
the method being compiled.
args[ 5] The length of the method name data (in bytes).
argsj 6] A pointer to UTF-8 string data that contains the
signature of the method being compiled.
args[ 7] The length of the signature data (in bytes).
The following probes are available when compiled methods are installed for execution
or uninstalled:
Probe Description

conpi | ed- met hod- | oad

Probe that starts when a compiled method is installed.
The additional argument, ar gv[ 6] contains a pointer to
the compiled code, and the ar gv[ 7] is the size of the
compiled code.

conpi | ed- met hod- unl oad

Probe that starts when a compiled method is uninstalled.

The following arguments are available for the compiled method loading probe:

Probe Arguments

Description

args[ 0] A pointer to UTF-8 string data that contains the name of
the class of the method being installed.

args[ 1] The length of the class name data (in bytes).
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Probe Arguments Description

args| 2]

A pointer to UTF-8 string data that contains the name of
the method being installed.

argsj 3] The length of the method name data (in bytes).

argsj 4] A pointer to UTF-8 string data that contains the
signature of the method being installed.

args[ 5] The length of the signature data (in bytes).

Monitor Probes

When your Java application runs, threads enter and exit monitors, wait on monitors,
and perform notifications. Probes are available for all wait and notification events, and
for contended monitor entry and exit events.

A contended monitor entry occurs when a thread attempts to enter a monitor while
another thread is in the monitor. A contended monitor exit event occurs when a
thread leaves a monitor while other threads are waiting to enter to the monitor. The
contended monitor entry and contended monitor exit events might not match each
other in relation to the thread that encounters these events, athough a contended exit
from one thread is expected to match up to a contended enter on another thread (the
thread waiting to enter the monitor).

Monitor events provide the thread ID, a monitor ID, and the type of the class of the
object as arguments. The thread ID and the class type can map back to the Java
program, while the monitor ID can provide matching information between probe firings.

The existence of these probes in the VM degrades performance and they start only
when the - XX: +Ext endedDTr acePr obes flag is set on the Java command line. This flag
is turned on and off dynamically at runtime by using the j i nf o utility.

If the flag is off, the monitor probes are present in the probe listing that is obtainable
from Dtrace, but the probes remain dormant and don’t start. Removal of this restriction
is planned for future releases of the VM, and these probes will be enabled with no
impact to performance.

The following probes are available for monitoring events:

Probe Description

moni t or - cont ended- ent er Probe that starts when a thread attempts to enter a
contended monitor

nmoni t or - cont ended- ent er ed Probe that starts when a thread successfully enters the
contended monitor

noni t or - cont ended- exi t Probe that starts when a thread leaves a monitor and

other threads are waiting to enter

noni tor-wai t

Probe that starts when a thread begins a wait on a
monitor by using the Gbj ect . wai t () . The additional
argument, ar gs[ 4] is a long value that indicates the
timeout being used.

moni tor-wai t ed

Probe that starts when a thread completes an
oj ect . wai t () action.

ORACLE
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Probe

Description

moni tor-notify

Probe that starts when a thread calls
oj ect. notify() to notify waiters on a monitor.

moni tor - noti fyAl |

Probe that starts when a thread calls
oj ect. notifyAll () to notify waiters on a monitor.

The following arguments are available for the monitor:

Probe Arguments

Description

args[ 0] The Java thread identifier for the thread performing the
monitor operation.

args[ 1] A unique, but opaque identifier for the specific monitor
that the action is performed upon.

args| 2] A pointer to UTF-8 string data which contains the class
name of the object being acted upon.

argsj 3] The length of the class name data (in bytes).

Application Tracking Probes

You can use probes to allow fine-grained examination of Java thread execution.
Application tracking probes start when a method is entered or returned from, or when

a Java object has been allocated.

The existence of these probes in the VM degrades performance and they start only
when the VM has the Ext endedDTr acePr obes flag enabled. By default, the probes are
present in any listing of the probes in the VM, but are dormant without the appropriate
flag. Removal of this restriction is planned in future releases of the VM, and these
probes will be enabled no impact to performance.

The following probes are available for the method entry and exit:

Probe

Description

met hod-entry

Probe that starts when a method is being entered.

met hod-ret urn

Probe that starts when a method returns, either normally
or due to an exception.

The following arguments are available for the method entry and exit:

Probe Arguments

Description

args[ 0] The Java thread ID of the thread that is entering or
leaving the method.

args[ 1] A pointer to UTF-8 string data that contains the name of
the class of the method.

args| 2] The length of the class name data (in bytes).

args[ 3] A pointer to UTF-8 string data that contains the name of
the method.

argsj 4] The length of the method name data (in bytes).
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Probe Arguments

Description

args[ 5] A pointer to UTF-8 string data that contains the
signature of the method.
ar gsj 6] The length of the signature data (in bytes).
The following probe is available for the object allocation:
Probe Description

object-alloc

Probe that starts when any object is allocated, provided
that the Ext endedDTr acePr obes flag is enabled.

The following arguments are available for the object allocation probe:

Probe Arguments

Description

args[ 0] The Java thread ID of the thread that is allocating the
object.

args[ 1] A pointer to UTF-8 string data that contains the class
name of the object being allocated.

args| 2] The length of the class name data (in bytes).

argsj 3] The size of the object being allocated.

Using the

hotspot_jni Provider

In order to call from native code to Java code, due to embedding of the VM in an
application or execution of native code within a Java application, the native code must
make a call through the Java Native Interface (JNI). The JNI provides a number of
methods for invoking Java code and examining the state of the VM. DTrace probes are
provided at the entry point and return point for each of these methods. The probes are
provided by the hotspot_jni provider. The name of the probe is the name of the JNI
method, appended with - ent ry for entry probes, and - r et ur n for return probes. The
arguments available at each entry probe are the arguments that were provided to the
function, with the exception of the | nvoke* methods, which omit the arguments that
are passed to the Java method. The return probes have the return value of the method
as an argument (if available).

Sample DTrace Probes

ORACLE

provi der hotspot {
probe vminit-begin();
probe vminit-end();
probe vm shut down();
probe cl ass-1 oaded(
char* class_nane, uintptr_t class_nane_len, uintptr t
class_| oader _id, bool is_shared);
probe cl ass-unl oaded(
char* class_nane, uintptr_t class_nane_len, uintptr t
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cl ass_| oader _id, bool is_shared);
probe gc-begin(bool is full);
probe gc-end();
probe mem pool - gc- begi n(
char* mgr_nane, uintptr_t ngr_name_l en, char* pool _nane,
uintptr_t pool _nane_| en
uintptr_t initial _size, uintptr_t used, uintptr_t conmitted,
uintptr_t max_size);
probe mem pool - gc- end(
char* mgr_nane, uintptr_t ngr_name_l en, char* pool _nane,
uintptr_t pool _nane_| en
uintptr_t initial _size, uintptr_t used, uintptr_t conmitted,
uintptr_t max_size);
probe thread-start(
char* thread_name, uintptr_t thread_nane_| ength
uintptr_t java_ thread_id, uintptr_t native_ thread_id, boo
i s_daenon);
probe thread-stop(
char* thread _name, uintptr_t thread_nane_| ength
uintptr_t java thread_id, uintptr_t native_ thread_id, boo
i s_daenon);
probe met hod- conpi | e- begi n(
char* class_nane, uintptr_t class_nane_|en
char* method_name, uintptr_t nethod_nane_|en
char* signature, uintptr_t signature_|en)
probe net hod- conpi | e- end(
char* class_nane, uintptr_t class_nane_|en
char* method_name, uintptr_t nethod_nane_|en
char* signature, uintptr_t signature_len
bool is_success);
probe conpi | ed- et hod- | oad(
char* class_nane, uintptr_t class_nane_|en
char* method_name, uintptr_t nethod_nane_|en
char* signature, uintptr_t signature_len
voi d* code, uintptr_t code_size);
probe conpi | ed- et hod- unl oad(
char* class_nane, uintptr_t class_nane_|en
char* method_name, uintptr_t nethod_nane_|en
char* signature, uintptr_t signature_|en)
probe nonitor-cont ended- ent er(
uintptr_t java_ thread_id, uintptr_t monitor_id
char* class_nane, uintptr_t class_nane_len);
probe nonitor-cont ended- ent er ed(
uintptr_t java_ thread_id, uintptr_t monitor_id
char* class_nane, uintptr_t class_nane_len);
probe nonitor-contended-exit(
uintptr_t java_ thread_id, uintptr_t monitor_id
char* class_nane, uintptr_t class_nane_len);
probe nonitor-wait(
uintptr_t java_ thread_id, uintptr_t monitor_id
char* class_nane, uintptr_t class_nane_|en
uintptr_t timeout);
probe nonitor-waited(
uintptr_t java_ thread_id, uintptr_t monitor_id
char* class_nane, uintptr_t class_nane_len);
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probe monitor-notify(
uintptr_t java thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe nonitor-notifyAll(
uintptr_t java thread_id, uintptr_t nonitor_id,
char* class_nane, uintptr_t class_nane_len);
probe met hod-entry(
uintptr_t java_thread_ id, char* class_nane, uintptr_t
cl ass_nare_| en,
char* method_name, uintptr_t nethod_name_|en,
char* signature, uintptr_t signature_len);
probe met hod-ret urn(
uintptr_t java_thread_ id, char* class_nane, uintptr_t
cl ass_nare_| en,
char* method_name, uintptr_t nethod_name_len,
char* signature, uintptr_t signature_len);
probe object-all oc(
uintptr_t java_thread_ id, char* class_nane, uintptr_t
cl ass_nare_| en,
uintptr_t size);

b

provider hotspot_jni {
probe All ocQbject-entry(void*, void*);
probe All ocQbj ect-return(void*);
probe AttachCurrent ThreadAsDaenmon-entry(voi d*, void**, void*);
probe AttachCurrent ThreadAsDaenon-return(uint32_t);
probe AttachCurrent Thread-entry(void*, void**, void*);
probe AttachCurrent Thread-return(uint32_t);
probe Cal | Bool eanMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hodA-return(uintptr _t);
probe Cal | Bool eanMet hod- entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hod-return(uintptr_t);
probe Cal | Bool eanMet hodV-entry(voi d*, void*, uintptr_t);
probe Cal | Bool eanMet hodV-return(uintptr _t);
probe Cal | Byt eMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Byt eMet hodA-return(char);
probe Cal | Byt eMet hod-entry(void*, void*, uintptr_t);
probe Cal | Byt eMet hod-return(char);
probe Cal | Byt eMet hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Byt eMet hodV-return(char);

probe Cal | Char Met hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Char Met hodA-return(uint16_t);

probe Cal | Char Met hod-entry(void*, void*, uintptr_t);
probe Cal | Char Met hod-return(uint16_t);

probe Cal | Char Met hodV-entry(voi d*, void*, uintptr_t);
probe Cal | Char Met hodV-return(uint16_t);

probe Cal | Doubl eMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | Doubl eMet hodA-ret urn(doubl e);

probe Cal | Doubl eMet hod-entry(voi d*, void*, uintptr_t);
probe Cal | Doubl eMet hod-r et ur n( doubl e) ;

probe Cal | Doubl eMet hodV-entry(voi d*, void*, uintptr_t);
probe Cal | Doubl eMet hodV-r et urn(doubl e);

probe Cal | Fl oat Met hodA-entry(voi d*, void*, uintptr_t);
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probe Cal | Fl oat Met hodA-return(float);
probe Cal | Fl oat Met hod-entry(voi d*, void*, uintptr_t);
probe Cal | Fl oat Met hod-return(float);
probe Cal | Fl oat Met hodV-entry(voi d*, void*, uintptr_t);
probe Cal | Fl oat Met hodV-return(float);
probe Cal || nt Met hodA-entry(void*, void*, uintptr_t);
probe Cal || nt Met hodA-return(uint32_t);
probe Cal || nt Method-entry(void*, void*, uintptr_t);
probe CalllntMethod-return(uint32_t);
probe Cal || nt Met hodV-entry(void*, void*, uintptr_t);
probe Cal || nt Met hodV-return(uint32_t);
probe Cal | LongMet hodA-entry(voi d*, void*, uintptr_t);
probe Cal | LongMet hodA-return(uintptr_t);
probe Cal | LongMet hod-entry(void*, void*, uintptr_t);
probe Cal | LongMet hod-return(uintptr_t);
probe Cal | LongMet hodV-entry(voi d*, void*, uintptr_t);
probe Cal | LongMet hodV-return(uintptr_t);
probe Cal | Nonvi rtual Bool eanMet hodA- entry(voi d*, voi d*, void*,
ntptr_t);
probe Cal | Nonvi rtual Bool eanMet hodA-return(uintptr_t);
probe Cal | Nonvi rt ual Bool eanMet hod- ent ry(voi d*, voi d*, void*,
ntptr_t);
probe Cal | Nonvi rtual Bool eanMet hod-return(ui ntptr_t);
probe Cal | Nonvi rtual Bool eanMet hodV-ent ry(voi d*, void*, void*,
ntptr_t);
probe Cal | Nonvi rtual Bool eanMet hodV-return(uintptr_t);
probe Cal | Nonvi rtual Byt eMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Byt eMet hodA-return(char);
probe Cal | Nonvi rtual Byt eMet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Byt eMet hod-return(char);
probe Cal | Nonvi rtual Byt eMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Byt eMet hodV-return(char);
probe Cal | Nonvi rtual Char Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Char Met hodA-return(uint16 t);
probe Cal | Nonvi rtual Char Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Char Met hod-return(uint16_t);
probe Cal | Nonvi rtual Char Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Char Met hodV-return(uint16 t);
probe Cal | Nonvi rtual Doubl eMet hodA- ent ry(voi d*, voi d*, void*,
uintptr_t);
probe Cal | Nonvi rt ual Doubl eMet hodA-r et urn(doubl e);
probe Cal | Nonvi rt ual Doubl eMet hod-entry(voi d*, void*, void*,
uintptr_t);
probe Cal | Nonvi rt ual Doubl eMet hod- r et ur n(doubl e) ;
probe Cal | Nonvi rtual Doubl eMet hodV- ent ry(voi d*, voi d*, void*,
uintptr_t);
probe Cal | Nonvi rt ual Doubl eMet hodV-r et urn(doubl e);
probe Cal | Nonvi rtual Fl oat Met hodA-entry(voi d*, void*, void*,
uintptr_t);
probe Cal | Nonvirtual Fl oat Met hodA-return(float);
probe Cal | Nonvirtual Fl oat Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Fl oat Met hod-return(float);
probe Cal | Nonvirtual Fl oat Met hodV-entry(voi d*, void*, void*,
uintptr_t);
probe Cal | Nonvirtual Fl oat Met hodV-return(float);

u

u

u
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probe Cal | Nonvirtual I nt Met hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual I nt Met hodA-return(uint32_t);

probe Cal | Nonvirtual I nt Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual I nt Met hod-return(uint3t);

probe Cal | Nonvirtual I nt Met hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual I nt Met hodV-return(uint32_t);

probe Cal | Nonvirtual LonghMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LongMet hodA-return(uintptr_t);

probe Cal | Nonvirtual Longhet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LongMet hod-return(uintptr_t);

probe Cal | Nonvirtual LonghMet hodV-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual LongMet hodV-return(uintptr_t);

probe Cal | Nonvi rtual Obj ect Met hodA-entry(voi d*, void*, void*,
ntptr_t);

probe Cal | Nonvi rtual Obj ect Met hodA-ret urn(voi d*);

probe Cal | Nonvi rtual Obj ect Met hod-entry(voi d*, void*, void*,

ntptr_t);

probe Cal | Nonvirtual Qbj ect Met hod-ret urn(voi d*);

probe Cal | Nonvi rtual Obj ect Met hodV- entry(voi d*, void*, void*,
ntptr_t);

probe Cal | Nonvi rtual Obj ect Met hodV-ret urn(voi d*);

probe Cal | Nonvi rtual Short Met hodA-entry(voi d*, void*, void*,

ntptr_t);

probe Cal | Nonvirtual Short Met hodA-return(uint16_t);

probe Cal | Nonvirtual Short Met hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvirtual Short Met hod-return(uint16_t);

probe Cal | Nonvi rtual Short Met hodV-entry(voi d*, void*, void*,

ntptr_t);

probe Cal | Nonvi rtual Short Met hodV-return(uint16_t);

probe Cal | Nonvi rtual Voi dMet hodA-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Voi dMet hodA-return();

probe Cal | Nonvi rtual Voi dvet hod-entry(voi d*, void*, void*, uintptr_t);
probe Cal | Nonvi rtual Voi dMet hod-return();

probe Cal | Nonvi rtual Voi dMet hodV-entry(voi d*, void*, void*,

ntptr_t);

probe Cal | Nonvi rtual Voi dMet hodV-return();

probe Cal | Qbj ect Met hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Qbj ect Met hodA-return(voi d*);

probe Cal | Qbj ect Met hod-entry(voi d*, void*, uintptr_t);

probe Cal | Qbj ect Met hod-r et urn(voi d*);

probe Cal | Qbj ect Met hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Qbj ect Met hodV-return(voi d*);

probe Cal | Short Met hodA-entry(voi d*, void*, uintptr_t);

probe Cal | Short Met hodA-return(uint16_t);

probe Cal | Short Met hod-entry(voi d*, void*, uintptr_t);

probe Cal | Short Met hod-return(uintl16_t);

probe Cal | Short Met hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Short Met hodV-return(uint16_t);

probe Cal | StaticBool eanMet hodA-entry(voi d*, void*, uintptr_t);

probe Cal | StaticBool eanMet hodA-return(uintptr_t);

probe Cal | StaticBool eanMet hod-entry(voi d*, void*, uintptr_t);

probe Cal | StaticBool eanMet hod-return(uintptr_t);

probe Cal | StaticBool eanMet hodV-entry(voi d*, void*, uintptr_t);

probe Cal | StaticBool eanMet hodV-return(uintptr_t);

probe Cal | StaticByteMethodA-entry(void*, void*, uintptr_t);
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Cal | Stati cByt eMet hodA-return(char);

Cal | StaticByt eMet hod-entry(void*, void*, uintptr_t);
Cal | Stati cByt eMet hod-return(char);

Cal | Stati cByt eMet hodV-entry(void*, void*, uintptr_t);
Cal | StaticByt eMet hodV-return(char);

Cal | Stati cChar Met hodA-entry(voi d*, void*, uintptr_t);
Cal | StaticChar Met hodA-return(uint16_t);

Cal | Stati cChar Met hod-entry(voi d*, void*, uintptr_t);
Cal | StaticChar Met hod-return(uint16_t)

Cal | Stati cChar Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cChar Met hodV-return(uint16_t);

Cal | Stati cDoubl eMet hodA-entry(voi d*, void*, uintptr_t);
Cal | St ati cDoubl eMet hodA-ret urn(doubl e);

Cal | Stati cDoubl eMet hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cDoubl eMet hod-r et urn(doubl e);

Cal | Stati cDoubl eMet hodV-entry(voi d*, void*, uintptr_t);
Cal | St ati cDoubl eMet hodV-ret urn(doubl e);

Cal | Stati cFl oat Met hodA-entry(voi d*, void*, uintptr_t);
Cal | Stati cFl oat Met hodA-return(float);

Cal | Stati cFl oat Met hod- entry(voi d*, void*, uintptr_t);
Cal | StaticFl oat Met hod-return(float);

Cal | Stati cFl oat Met hodV-entry(voi d*, void*, uintptr_t);
Cal | Stati cFl oat Met hodV-return(float);

Cal | Staticlnt Met hodA-entry(void*, void*, uintptr_t);
Cal | Staticlnt MethodA-return(uint32_t);

Cal | Staticlnt Method-entry(void*, void*, uintptr_t);
Cal | StaticlntMethod-return(uint32_t);

Cal | Staticlnt Met hodentry(voi d*, void*, uintptr_t);

Cal | Staticlnt MethodV-return(uint32_t);

Cal | Stati cLongMet hodA-entry(void*, void*, uintptr_t);
Cal | StaticLongMet hodA-return(uintptr_t);

Cal | StaticLongMet hod-entry(void*, void*, uintptr_t);
Cal | StaticLongMet hod-return(uintptr_t);

Cal | Stati cLongMet hodV-entry(void*, void*, uintptr_t);
Cal | StaticLongMet hodV-return(uintptr_t);

Cal | StaticQoj ect Met hodA-entry(void*, void*, uintptr_t);
Cal | StaticQoj ect Met hodA-return(void*);

Cal | StaticQoj ect Met hod-entry(voi d*, void*, uintptr_t);
Cal | Stati cQoj ect Met hod-return(voi d*);

Cal | StaticQoj ect Met hodV-entry(void*, void*, uintptr_t);
Cal | StaticQoj ect Met hodV-return(void*);

Cal | StaticShort Met hodA-entry(void*, void*, uintptr_t);
Cal | StaticShort Met hodA-return(uint16_t);

Cal | StaticShort Met hod-entry(void*, void*, uintptr_t);
Cal | StaticShortMethod-return(uintl16 t);

Cal | StaticShort Met hodV-entry(voi d*, void*, uintptr_t);
Cal | StaticShort Met hodV-return(uint16_t);

Cal | Stati cVoi dMet hodA-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hodA-return();

Cal | StaticVoi dMet hod-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hod-return();

Cal | Stati cVoi dMet hodV-entry(voi d*, void*, uintptr_t);
Cal | StaticVoi dMet hodV-return();

Cal | Voi dMvet hodA-entry(voi d*, void*, uintptr_t);

Cal | Voi dMvet hodA-return();
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probe Cal | Voi dMet hod-entry(void*, void*, uintptr_t);

probe Cal | Voi dMet hod-return();

probe Cal | Voi dMet hodV-entry(voi d*, void*, uintptr_t);

probe Cal | Voi dMet hodV-return();

probe CreateJavaVM entry(voi d**, void**, void*);

probe CreateJavaVM return(uint32_t);

probe Defined ass-entry(voi d*, const char*, void*, char, uintptr_t);
probe Defined ass-return(void*);

probe Del et ed obal Ref - entry(voi d*, void*);

probe Del et ed obal Ref -return();

probe Del et eLocal Ref-entry(voi d*, void*);

probe Del etelLocal Ref-return();

probe Del et eWeakd obal Ref -entry(voi d*, void*);

probe Del et eWeakd obal Ref -return();

probe DestroyJavaVM entry(voi d*);

probe DestroyJavaVMreturn(uint32_t);

probe DetachCurrent Thread-entry(voi d*);

probe DetachCurrent Thread-return(uint32_t);

probe Ensurelocal Capacity-entry(void*, uint32_t);

probe Ensurelocal Capacity-return(uint32_t);

probe ExceptionCheck-entry(void*);

probe ExceptionCheck-return(uintptr_t);

probe ExceptionC ear-entry(void*);

probe ExceptionC ear-return();

probe ExceptionDescribe-entry(void*);

probe ExceptionDescribe-return();

probe ExceptionQccurred-entry(void*);

probe ExceptionQccurred-return(void*);

probe Fatal Error-entry(void* env, const char*);

probe FindC ass-entry(void*, const char*);

probe Fi ndd ass-return(void*);

probe FronRefl ect edFi el d-entry(voi d*, void*);

probe FronRefl ectedFiel d-return(uintptr_t);

probe FronRefl ect edMet hod-entry(void*, void*);

probe FronRefl ectedMet hod-return(uintptr_t);

probe GetArraylLength-entry(void*, void*);

probe GetArraylLength-return(uintptr_t);

probe GetBool eanArrayEl enents-entry(voi d*, void*, uintptr_t*);
probe GetBool eanArrayEl enents-return(uintptr_t*);

probe Get Bool eanArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
ntptr_t*);

probe Get Bool eanArrayRegi on-return();

probe GetBool eanFi el d-entry(voi d*, void*, uintptr_t);

probe GetBool eanFiel d-return(uintptr_t);

probe GetByteArrayEl enents-entry(void*, void*, uintptr_t*);
probe GetByteArrayEl enents-return(char*);

probe GetByteArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,

char*);

probe Get Byt eArrayRegi on-return();

probe GetByteField-entry(void*, void*, uintptr_t);

probe GetByteField-return(char);

probe Get Char ArrayEl enents-entry(voi d*, void*, uintptr_t*);

probe Get Char ArrayEl enents-return(uint16 t*);

probe Get Char ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,

uint16_t*);
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probe Get Char ArrayRegi on-return();
probe GetCharField-entry(void*, void*, uintptr_t);
probe GetCharField-return(uint16_t);
probe Get CreatedJavaVMs-eintptr_t*);
probe GetCreatedJavaVMs-return(uintptr_t);
probe GetCreatelJavaVMs-entry(void*, uintptr_t, uintptr_t*);
probe GetCreatelJavaVMs-return(uint32_t);
probe Get Def aul t JavavM ni t Args-entry(voi d*);
probe Get Defaul t JavaVM nit Args-return(uint32_t);
probe GetDirectBufferAddress-entry(void*, void*);
probe GetDirectBufferAddress-return(voi d*);
probe GetDirectBufferCapacity-entry(void*, void*);
probe GetDirectBufferCapacity-return(uintptr_t);
probe GetDoubl eArrayEl ements-entry(voi d*, void*, uintptr_t*);
probe Get Doubl eArrayEl ement s-return(doubl e*);
probe GetDoubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
doubl e*);
probe Get Doubl eArrayRegi on-return();
probe GetDoubl eFi el d-entry(void*, void*, uintptr_t);
probe Get Doubl eFi el d-ret urn(doubl e);
probe GetEnv-entry(void*, void*, void*);
probe GetEnv-return(uint32_t);
probe GetFieldl D-entry(void*, void*, const char*, const char*);
probe GetFieldlD-return(uintptr_t);
probe GetFl oat ArrayEl ements-entry(void*, void*, uintptr_t*);
probe GetFl oat ArrayEl ements-return(float*);
probe GetFl oat ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
float*);
probe GetFl oat ArrayRegi on-return();
probe GetFl oatField-entry(void*, void*, uintptr_t);
probe GetFl oatField-return(float);
probe GetlntArrayEl ements-entry(void*, void*, uintptr_t*);
probe GetlntArrayEl ements-return(uint32_t*);
probe GetlntArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
nt32_t*);
probe GetlntArrayRegion-return();
probe GetlntField-entry(void*, void*, uintptr_t);
probe GetlntField-return(uint32_t);
probe GetJavaVM entry(void*, void**);
probe GetJavaVMreturn(uint32_t);
probe GetLongArrayEl enents-entry(void*, void*, uintptr_t*);
probe GetLongArrayEl enents-return(uintptr_t*);
probe GetLongArrayRegion-entry(void*, void*, uintptr_t, uintptr_t,
ntptr_t*);
probe GetLongArrayRegion-return();
probe GetlLongField-entry(void*, void*, uintptr_t);
probe GetlLongField-return(uintptr_t);
probe Get Met hodl D-entry(voi d*, void*, const char*, const char*);
probe GetMethodl D-return(uintptr_t);
probe Get Qbject ArrayEl enent-entry(void*, void*, uintptr_t);
probe Get Qbj ect ArrayEl enent -return(voi d*);
probe Get bjectC ass-entry(void*, void*);
probe Get Qbjectd ass-return(void*);
probe Get QbjectField-entry(void*, void*, uintptr_t);
probe Get QbjectFi el d-return(void*);

u

u
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Get bj ect Ref Type-ent ry(voi d*, void*);

CGet bj ect Ref Type-return(voi d*);

GetPrimtiveArrayCritical -entry(void*, void*, uintptr_t*);
GetPrimtiveArrayCritical -return(void*);

Get Short ArrayEl enent s-entry(voi d*, void*, uintptr_t*);

Get Short ArrayEl enents-return(uint16_t*);

Get Short ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,

nt16_t*);

CGet Short ArrayRegi on-return();

Get Short Fi el d-entry(void*, void*, uintptr_t);

CGet ShortField-return(uint16_t);

Get St at i cBool eanFi el d-entry(voi d*, void*, uintptr_t);
Get St ati cBool eanFi el d-return(uintptr_t);

CGet Stati cByteField-entry(void*, void*, uintptr_t);
Get St ati cByt eFi el d-return(char)

CGet StaticCharField-entry(void*, void*, uintptr_t);
GetStaticCharField-return(uint16_t);

Get St ati cDoubl eFi el d-entry(voi d*, void*, uintptr_t);
Get St ati cDoubl eFi el d-return(doubl e);

CGet StaticFieldl D-entry(void*, void*, const char*, const char*);
CGetStaticFieldlD-return(uintptr_t);

Get StaticFl oat Fiel d-entry(void*, void*, uintptr_t);
Get StaticFloatField-return(float);
GetStaticlntField-entry(void*, void*, uintptr_t);
CGetStaticlntField-return(uint32_t);

Get StaticLongFi el d-entry(voi d*, void*, uintptr_t);
Get StaticlLongField-return(uintptr_t);

Get St ati cMet hodl D-entry(voi d*, void*, const char*, const char*);
Get StaticMethodl D-return(uintptr_t);

Get StaticCbjectField-entry(void*, void*, uintptr_t);
CGet Stati cObj ectFi el d-return(voi d*);

Get StaticShortField-entry(void*, void*, uintptr_t);
Get StaticShortField-return(uintl16_t);

pro GetStringChars-entry(void*, void*, uintptr_t*);

probe
probe
probe
probe
probe
probe

u
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probe
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char*);
probe
probe
probe
probe
probe
probe
probe

Get StringChars-return(const uint16 t*);

GetStringCritical -entry(void*, void*, uintptr_t*);
GetStringCritical-return(const uint16_t*);

Get StringlLengt h-entry(voi d*, void*);

Get Stringlength-return(uintptr_t);

Get StringRegi on-entry(void*, void*, uintptr_t, uintptr_t,

nt16_t*);

Get StringRegi on-return();

Get StringUTFChar s-entry(voi d*, void*, uintptr_t*)

Get StringUTFChar s-return(const char*);

Get StringUTFLengt h-entry(voi d*, voi d*);

Get StringUTFLengt h-return(uintptr_t);

Get St ri ngUTFRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,

Get StringUTFRegi on-return();

Get Super cl ass-entry(voi d*, void*);

Get Super cl ass-return(voi d*);

Get Ver si on-entry(voi d*);

Get Version-return(uint32_t);

| sAssi gnabl eFrom entry(voi d*, void*, void*);
| sAssi gnabl eFromreturn(uintptr_t)
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probe Islnstanced -entry(void*, void*, void*);

probe IslnstanceC -return(uintptr_t);

probe | sSamehj ect-entry(void*, void*, void*);

probe |sSame(hj ect-return(uintptr_t);

probe MonitorEnter-entry(void*, void*);

probe MonitorEnter-return(uint32_t);

probe MnitorExit-entry(void*, void*);

probe MonitorExit-return(uint32_t);

probe NewBool eanArray-entry(void*, uintptr_t);

probe NewBool eanArray-return(voi d*);

probe NewByteArray-entry(void*, uintptr_t);

probe NewByt eArray-return(void*);

probe NewChar Array-entry(void*, uintptr_t);

probe NewChar Array-return(void*);

probe NewDirect Byt eBuffer-entry(void*, void*, uintptr_t);
probe NewDirect Byt eBuffer-return(void*);

probe NewDoubl eArray-entry(void*, uintptr_t);

probe NewDoubl eArray-return(void*);

probe Newrl oat Array-entry(void*, uintptr_t);

probe Newrl oat Array-return(void*);

probe Newd obal Ref -entry(voi d*, void*);

probe Newd obal Ref-return(void*);

probe New nt Array-entry(void*, uintptr_t);

probe New nt Array-return(void*);

probe NewlLocal Ref-entry(void*, void*);

probe NewlLocal Ref-return(void*);

probe NewLongArray-entry(void*, uintptr_t);

probe NewLongArray-return(void*);

probe New(bj ect A-entry(voi d*, void*, uintptr_t);

probe New(bj ect A-return(voi d*);

probe New(bj ect Array-entry(void*, uintptr_t, void*, void*);
probe New(bj ect Array-return(void*);

probe New(bject-entry(void*, void*, uintptr_t);

probe New(bj ect-return(void*);

probe New(bj ect V-entry(voi d*, void*, uintptr_t);

probe New(bj ect V-return(voi d*);

probe NewShortArray-entry(void*, uintptr_t);

probe NewShortArray-return(void*);

probe NewString-entry(void*, const uintl6_t*, uintptr_t);
probe NewsString-return(void*);

probe NewsStringUTF-entry(void*, const char*);

probe NewsStringUTF-return(void*);

probe NewWakd obal Ref -entry(voi d*, void*);

probe NewWakd obal Ref -return(voi d*);

probe PoplLocal Frame-entry(void*, void*);

probe PopLocal Frame-return(void*);

probe PushLocal Frame-entry(void*, uint32_t);

probe PushLocal Frame-return(uint32_t);

probe Regi sterNatives-entry(void*, void*, const void*, uint32_t);
probe RegisterNatives-return(uint32_t);

probe Rel easeBool eanArrayEl enent s-entry(voi d*, void*, uintptr_t*,
nt32_t);

probe Rel easeBool eanArrayEl enents-return();

probe Rel easeByteArrayEl ements-entry(void*, void*, char*, uint32_t);
probe Rel easeByteArrayEl ements-return();

u
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probe Rel easeChar ArrayEl ement s-entry(voi d*, void*, uintl6 t*,
uint32_t);

probe Rel easeChar ArrayEl ements-return();

probe Rel easeDoubl eArrayEl ements-entry(voi d*, void*, double*,
uint32_t);

probe Rel easeDoubl eArrayEl ements-return();

probe Rel easeFl oat ArrayEl enent s-entry(voi d*, void*, float*, uint32_t);

probe Rel easeFl oat ArrayEl enents-return();

probe Rel easel nt ArrayEl enent s-entry(voi d*, void*, uint32_t*,
uint32_t);

probe Rel easel nt ArrayEl ements-return();

probe Rel easelLongArrayEl ements-entry(void*, void*, uintptr_t*,
uint32_t);

probe Rel easeLongArrayEl ements-return();

probe Rel easeObj ect ArrayEl ements-entry(void*, void*, void**,
uint32_t);

probe Rel easeObj ect ArrayEl ements-return();

probe Rel easey(void*, void*, void*, uint32_t);

probe Rel easePrimtiveArrayCritical-return();

probe Rel easeShort ArrayEl enents-entry(voi d*, void*, uintl6_t*,
uint32_t);

probe Rel easeShort ArrayEl enents-return();

probe Rel easeStringChars-entry(void*, void*, const uintl6 t*);

probe Rel easeStringChars-return();

probe Rel easeStringCritical-entry(void*, void*, const uintl6_t*);

probe Rel easeStringCritical-return();

probe Rel easeStringUTFChars-entry(voi d*, void*, const char*);

probe Rel easeStringUTFChars-return();

probe Set Bool eanArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
const uintptr_t*);

probe Set Bool eanArrayRegi on-return();

probe SetBool eanFi el d-entry(void*, void*, uintptr_t, uintptr_t);

probe SetBool eanFi el d-return();

probe SetByteArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
const char*);

probe Set Byt eArrayRegi on-return();

probe SetByteField-entry(void*, void*, uintptr_t, char);

probe SetByteField-return();

probe Set Char ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
const uintl16_t*);

probe Set Char ArrayRegi on-return();

probe Set CharField-entry(void*, void*, uintptr_t, uintl6_t);

probe SetCharField-return();

probe SetDoubl eArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
const doubl e*);

probe Set Doubl eArrayRegi on-return();

probe SetDoubl eFi el d-entry(void*, void*, uintptr_t, double);

probe SetDoubl eFi el d-return();

probe SetFl oat ArrayRegi on-entry(voi d*, void*, uintptr_t, uintptr_t,
const float*);

probe SetFl oat ArrayRegi on-return();

probe SetFl oatField-entry(void*, void*, uintptr_t, float);

probe SetFloatField-return();

probe Setlnt ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
const uint32_t*);
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probe SetlntArrayRegion-return();

probe SetlntField-entry(void*, void*, uintptr_t, uint32_t);

probe SetlntField-return();

probe SetlLongArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
const uintptr_t*);

probe SetLongArrayRegion-return();

probe SetlLongField-entry(void*, void*, uintptr_t, uintptr_t);

probe SetlLongField-return();

probe Set Qbj ect ArrayEl enent-entry(void*, void*, uintptr_t, void*);

probe Set Cbject ArrayEl ement-return();

probe Set QbjectField-entry(void*, void*, uintptr_t, void*);

probe Set CbjectField-return();

probe Set Short ArrayRegi on-entry(void*, void*, uintptr_t, uintptr_t,
const uintl16_t*);

probe Set Short ArrayRegion-return();

probe Set ShortFiel d-entry(void*, void*, uintptr_t, uintl6 t);

probe Set ShortField-return();

probe Set StaticBool eanFi el d-entry(void*, void*, uintptr_t, uintptr_t);

probe Set StaticBool eanFi el d-return();

probe SetStaticByteField-entry(void*, void*, uintptr_t, char);

probe SetStaticByteField-return();

probe Set StaticCharField-entry(void*, void*, uintptr_t, uintl6_t);

probe SetStaticCharField-return();

probe Set StaticDoubl eFiel d-entry(void*, void*, uintptr_t, double);

probe Set StaticDoubl eField-return();

probe SetStaticFloatField-entry(void*, void*, uintptr_t, float);

probe SetStaticFloatField-return();

probe SetStaticlntField-entry(void*, void*, uintptr_t, uint32_t);

probe SetStaticlntField-return();

probe Set StaticlLongFiel d-entry(void*, void*, uintptr_t, uintptr_t);

probe Set StaticLongField-return();

probe SetStaticObjectField-entry(void*, void*, uintptr_t, void*);

probe SetStaticObjectField-return();

probe SetStaticShortField-entry(void*, void*, uintptr_t, uint16_t);

probe SetStaticShortField-return();

probe Throw entry(void*, void*);

probe ThrowmNew entry(voi d*, void*, const char*);

probe ThrowNewreturn(uint32_t);

probe Throwreturn(uint32_t);

probe ToRefl ectedFiel d-entry(void*, void*, uintptr_t, uintptr_t);

probe ToRefl ectedFi el d-return(void*);

probe ToRefl ect edMet hod-entry(voi d*, void*, uintptr_t, uintptr_t);

probe ToRefl ect edMet hod-return(void*);

probe Unregi sterNatives-entry(void*, void*);

probe UnregisterNatives-return(uint32_t);
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Fatal Error Reporting

Fatal errors are errors such as native memory exhaustion, memory access errors,

or explicit signals directed to the process. Fatal errors can be triggered by native
code within the application (for example, developer-written Java Native Interface (JNI)
code), by third-party native libraries that the are used by application or the JVM, or by
native code in the JVM. If a fatal error causes the process that is hosting the JVM to
terminate, the JVM gathers information about the error and writes a crash report.

The JVM tries to identify the nature and location of the error. If possible, the JVM
writes detailed information about the state of the JVM and the process, at the time of
the crash. The details that are available can depend on the platform and the nature
of the crash. The information that is provided by this error-reporting mechanism lets
you debug your application more easily and efficiently, and helps you identify issues
in third-party code. When an error message indicates a problem in the JVM code,
you can submit a more accurate and helpful bug report. In some cases, crash report
generation causes secondary errors that prevent full details from being reported.

Error Report Example

ORACLE

The following example shows the start of an error report (file
hs_err _pi d18240. | og) for a crash in the native JNI code for an application:

#

# A fatal error has been detected by the Java Runtime Environnent:
#

# SIGSEGV (0xb) at pc=0x00007f Of 159f 857d, pi d=18240, tid=18245

#

# JRE version: Java(TM SE Runtine Environnent (9.0+167) (build 9-
ea+167)

# Java VM Java Hot Spot (TM 64-Bit Server VM (9-ea+167, m xed node,
tiered, conpressed oops, gl gc, |inux-and64)

# Problematic frane:

C [libMApp.so+0x57d] Java_ M/App_readDat a+0x11

Core dunp will be witten. Default location: /cores/core. 18240)

If you would like to submit a bug report, please visit:
http://bugreport.java. com bugreport/crash.jsp

The crash happened outside the Java Virtual Machine in native code.

See problematic frane for where to report the bug.

HOoHHH R

--------------- SUMMARY ---cnammann--
Command Line: M/App

Host: Intel (R) Xeon(R) CPU X5675 @3.07GHz, 24 cores, 141G
Ubuntu 12.04 LTS
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Chapter 11
Error Report Example

Time: Fri Apr 28 02:57:13 2017 EDT el apsed tinme: 2 seconds (0d Oh Om 2s)
--------------- THREAD ---------------

Current thread (0x00007f102c013000):
JavaThread "main" [_thread_in_native, id=18245,
st ack(0x00007f 10345c0000, 0x00007f 10346¢c0000) ]

Stack: [0x00007f10345c0000, 0x00007f 10346c0000] ,

sp=0x00007f 10346be930, free space=1018k

Native frames: (J=conpiled Java code, A=aot conpiled Java code,
j=interpreted, W=VM code, C=native code)

C [libMApp.so+0x57d] Java_MyApp_readDat a+0Ox11

j  MyApp.readData()!+0

j  MyApp. mai n([Ljavallang/ String;)V+15

v ~StubRoutines::call_stub

V [libjvmso+0x839eea] JavaCalls::call _hel per(JavaVal ue*,

met hodHandl e const & JavaCal | Argunent s*, Thread*)+0x47a

V [libjvmso+0x896fcf] |ni_invoke static(JN Env_*, JavaVal ue*,
_jobject*, JNCall Type, _jnethodlD*, JN _Argunent Pusher*, Thread*)
[clone .isra.90] +0x21f

V [libjvmso+0x8a7fle] jni_CallStaticVoi dMet hod+0x14e

C [libjli.so+0x4142] JavaMai n+0x812

C [libpthread.so.0+0x7e9a] start_thread+0Oxda

Java frames: (J=conpiled Java code, j=interpreted, W=VM code)

j  MyApp.readData()!+0
j  MyApp. mai n([Ljavallang/ String;)V+15
v ~StubRoutines::call_stub

siginfo: si_signo: 11 (SIGSEGVY), si_code: 1 (SEGV_MAPERR), si_addr:
0x0000000000000000
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Java Virtual Machine Related Resources

The following related links are related to the JVM.

e java.lang.invoke package docunentation

*  The Da Vinci Machine Project

Tools

You can control some operating characteristics of the Java HotSpot VM by using
command-line flags. For more information about the Java application launcher, see
The java Command in the Java Development Kit Tool Specifications.
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https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/invoke/package-summary.html
http://openjdk.java.net/projects/mlvm/
http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=java_tool_reference
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