
Java Platform, Standard Edition
Oracle JDK Migration Guide

Release 16
F40378-01
March 2021

Java Platform, Standard Edition Oracle JDK Migration Guide, Release 16

F40378-01

Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

1 Getting Started

2 Significant Changes in the JDK

Significant Changes in JDK 16 Release 2-1

Significant Changes in JDK 15 Release 2-2

Significant Changes in JDK 14 Release 2-3

Significant Changes in JDK 13 Release 2-4

Significant Changes in JDK 12 Release 2-5

Significant Changes in JDK 11 Release 2-5

3 Security Updates

Security Updates in JDK 16 3-1

Security Updates in JDK 15 3-1

Security Updates in JDK 14 3-1

Security Updates in JDK 13 3-1

Security Updates in JDK 11 and JDK 12 3-2

Security Updates in JDK 9 and JDK 10 3-2

JCE Jurisdiction Policy File Default is Unlimited 3-2

Create PKCS12 Keystores 3-3

4 Removed APIs

API Removed in Java SE 16 4-1

APIs Removed in Java SE 15 4-1

iii

APIs Removed in Java SE 14 4-1

APIs Removed in Java SE 13 4-2

APIs Removed in Java SE 12 4-2

APIs Removed in JDK 11 4-2

APIs Removed in JDK 10 4-3

APIs Removed JDK 9 4-3

Removed java.* APIs 4-3

Removal and Future Removal of sun.misc and sun.reflect APIs 4-3

java.awt.peer Not Accessible 4-4

Removed com.sun.image.codec.jpeg Package 4-4

Removed Tools Support for Compact Profiles 4-5

Use CLDR Locale Data by Default 4-5

5 Removed Tools and Components

Tools and Components Removed in JDK 16 5-1

Tools and Components Removed and Deprecated in JDK 15 5-2

Features and Components Removed in JDK 14 5-2

Tools and Components Removed in JDK 13 5-2

Tools and Components Removed in JDK 12 5-3

Tools and Components Removed in JDK 11 5-3

Tools and Components Removed in JDK 9 and JDK 10 5-5

Removed Native-Header Generation Tool (javah) 5-5

Removed JavaDB 5-5

Removed the JVM TI hprof Agent 5-5

Removed the jhat Tool 5-6

Removed java-rmi.exe and java-rmi.cgi Launchers 5-6

Removed Support for the IIOP Transport from the JMX RMIConnector 5-6

Dropped Windows 32–bit Client VM 5-6

Removed Java VisualVM 5-6

Removed native2ascii Tool 5-7

6 Preparing For Migration

Download the Latest JDK 6-1

Run Your Program Before Recompiling 6-1

Update Third-Party Libraries 6-2

Compile Your Application if Needed 6-2

Run jdeps on Your Code 6-3

iv

7 Migrating From JDK 8 to Later JDK Releases

Illegal Reflective Access 7-1

--add-exports 7-2

--add-opens 7-3

New Version-String Scheme 7-4

Changes to the Installed JDK/JRE Image 7-4

Changed JDK and JRE Layout 7-5

New Class Loader Implementations 7-5

Removed rt.jar and tools.jar 7-6

Removed Extension Mechanism 7-7

Removed Endorsed Standards Override Mechanism 7-7

Removed macOS-Specific Features 7-8

Platform-Specific Desktop Features 7-8

Removed AppleScript Engine 7-8

Windows Registry Key Changes 7-8

Deployment 7-9

Removed Launch-Time JRE Version Selection 7-9

Removed Support for Serialized Applets 7-9

JNLP Specification Update 7-9

Changes to Garbage Collection 7-10

Make G1 the Default Garbage Collector 7-10

Removed GC Options 7-10

Changes to GC Log Output 7-11

8 Next Steps

v

Preface

The purpose of this guide is to help you identify potential issues and give you
suggestions on how to proceed as you migrate your existing Java application to JDK
16.

Audience
This guide is intended for experienced users of the Java language, such as systems
administrators and software developers, for whom the performance of the Java
platform and their applications is of vital importance.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 16 Documentation for other JDK 16 guides.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase16&id=homepage

1
Getting Started

The guide highlights the significant changes and enhancements done in JDK 16.

This guide contains the following sections:

• Significant Changes in the JDK

• Security Updates

• Removed APIs

• Removed Tools and Components

• Preparing For Migration

• Migrating From JDK 8 to Later JDK Releases

• Next Steps

Note:

• Check the Oracle JDK Certified System Configurations for the latest
supported platforms and operating system versions.

• See Removed APIs, Tools, and Components before you start the
migration process.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=latest_certified_system_configurations

2
Significant Changes in the JDK

Before migrating your application to the latest JDK release, you must understand what
the updates and changes are between it and the previous JDK release. If you are
migrating from JDK 8, you should also be familiar with the differences between JDK 8
and later releases that are described in Migrating From JDK 8 to Later JDK Releases.

See the following sections to learn about some of the significant changes in latest JDK
releases.

Significant Changes in JDK 16 Release
See JDK 16 Release Notes for additional descriptions of the new features and
enhancements, and API specification in JDK 16.

The following are some of the updates in Java SE 16 and JDK 16:

• The Java programming language is enhanced with pattern matching for the
instanceof operator. This feature allows common logic in a program, namely the
conditional extraction of components from objects, to be expressed more concisely
and safely. See JEP 394: Pattern Matching for instanceof and Pattern Matching for
instanceof in Java Platform, Standard Edition Java Language Updates guide.

• Records, first previewed in Java SE 14, is a permanent feature in this release.
The earlier restrictions have been relaxed whereby the inner classes can declare
members that are either explicitly or implicitly static. This includes record class
members, which are implicitly static. See JEP 395: Records and Record Classes
in Java Platform, Standard Edition Java Language Updates guide.

• By default, all internal elements of the JDK are strongly encapsulated, except for
critical internal APIs such as sun.misc.Unsafe. You can choose the relaxed strong
encapsulation that has been the default since JDK 9. See JEP 396: Strongly
Encapsulate JDK Internals by Default and Illegal Reflective Access.

• UNIX domain socket channels have been integrated into JDK 16. See JEP 380:
Unix-Domain Socket Channels and Internet Protocol and UNIX Domain Sockets
NIO Example in Java Platform, Standard Edition Core Libraries.

• The Z Garbage Collector processes the thread stacks concurrently. This allows all
roots in the JVM to be processed by ZGC in a concurrent phase. See JEP 376:
ZGC: Concurrent Thread-Stack Processing and The Z Garbage Collector in Java
Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning
Guide.

• The jpackage tool, which was incubated in JDK 14, is now a permanent feature.
The tool packages a Java application into a platform-specific package that
includes the necessary dependencies. See JEP 392: Packaging Tool and Java
Platform, Standard Edition Packaging Tool User's Guide.

• Elastic metaspace overhauls the VM-internal metaspace- and class-space-
implementation. The unused HotSpot class-metadata (that is metaspace) memory
is returned to the operating system. It reduces the metaspace footprint and

2-1

https://www.oracle.com/java/technologies/javase/16-relnotes.html#NewFeature
http://openjdk.java.net/jeps/394
http://openjdk.java.net/jeps/395
http://openjdk.java.net/jeps/396
http://openjdk.java.net/jeps/396
http://openjdk.java.net/jeps/380
http://openjdk.java.net/jeps/380
https://openjdk.java.net/jeps/376
https://openjdk.java.net/jeps/376
https://openjdk.java.net/jeps/392

simplify the metaspace code in order to reduce maintenance costs. See JEP 387:
Elastic Metaspace.

Preview Features and Incubator Modules

See Java Language Preview Feature for more information about preview features.

• Sealed classes, a preview feature from JDK 15, is re-previewed in this release.
Sealed classes and interfaces restrict which other classes or interfaces may
extend or implement them. There has been several refinements in this release,
including the introduction of character sequences sealed, non-sealed, and
permits as contextual keywords. See JEP 397: Sealed Classes (Second Preview)
and Sealed Classes in Java Platform, Standard Edition Java Language Updates
guide.

• Initial iteration of an incubator module, jdk.incubator.vector, is provided to
express vector computations. It reliably compiles at runtime to optimal vector
hardware instructions on supported CPU architectures and thus achieve superior
performance to equivalent scalar computations. See JEP 338: Vector API
(Incubator).

• Foreign Linker API is introduced that offers statically-typed, pure-Java access to
native code. This API, along with the Foreign-Memory Access API (JEP 393), will
simplify the otherwise error-prone process of binding to a native library. See JEP
389: Foreign Linker API (Incubator).

• Foreign-Memory Access API allows Java programs to safely and efficiently access
foreign memory outside of the Java heap. See JEP 393: Foreign-Memory Access
API (Third Incubator).

Removed APIs, Tools, and Components

See:

• API Removed in Java SE 16

• Tools and Components Removed in JDK 16

In addition, there are security related updates that you need to be aware of. See:
Security Updates in JDK 16.

Significant Changes in JDK 15 Release
See JDK 15 Release Notes for the complete list of new features and enhancements in
JDK 15.

The following are some of the updates in Java SE 15 and JDK 15:

• Text Blocks, first previewed in Java SE 13, is a permanent feature in this release
and can be used without enabling preview features.
Text blocks are multiline string literals that avoid the need for most escape
sequences, automatically format the string in a predictable way, and give the
developer control over the format when desired. See JEP 378: Text Blocks and
Programmer's Guide to Text Blocks.

• The Z Garbage Collector (ZGC) is ready to use in production and no longer
an experimental feature. Enable ZGC by using the command-line option -
XX:+UseZGC. See JEP 377: ZGC: A Scalable Low-Latency Garbage Collector
(Production).

Chapter 2
Significant Changes in JDK 15 Release

2-2

https://openjdk.java.net/jeps/387
https://openjdk.java.net/jeps/387
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/397
http://www.oracle.com/pls/topic/lookup?ctx=javase16&id=GUID-0C709461-CC33-419A-82BF-61461336E65F
https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/338
https://openjdk.java.net/jeps/389
https://openjdk.java.net/jeps/389
https://openjdk.java.net/jeps/393
https://openjdk.java.net/jeps/393
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html#NewFeature
https://openjdk.java.net/jeps/378
https://docs.oracle.com/en/java/javase/15/text-blocks/index.html
https://openjdk.java.net/jeps/377
https://openjdk.java.net/jeps/377

• Hidden classes are classes that cannot be used directly by the bytecode of other
classes. Hidden classes are intended for use by frameworks that generate classes
at run time and use them indirectly through reflection. See JEP 371: Hidden
Classes.

Preview and Incubator Features

See Java Language Preview Feature for more information about preview features.

• Sealed Classes is a Java language preview feature. Sealed classes and interfaces
restrict which other classes or interfaces may extend or implement them. See JEP
360: Sealed Classes (Preview) and Sealed Classes in Java Platform, Standard
Edition Java Language Updates guide.

• Pattern Matching for instanceof, a preview feature from Java SE 14, is re-
previewed for this release. This feature allows common logic in a program, namely
the conditional extraction of components from objects, to be expressed more
concisely and safely. See JEP 375: Pattern Matching for instanceof (Second
Preview) and Pattern Matching for the instanceof in Java Platform, Standard
Edition Java Language Updates guide.

• Records, a preview feature from Java SE 14, is re-previewed for this release.
Records are classes that act as transparent carriers for immutable data. See JEP
384: Records (Second Preview) and Record Classes in Java Platform, Standard
Edition Java Language Updates guide.

• The Foreign Memory Access API allows Java programs to efficiently and safely
access foreign memory outside of the Java heap. See JEP 383: Foreign-Memory
Access API (Second Incubator).

Removed APIs, Tools, and Components

See:

• APIs Removed in Java SE 15

• Tools and Components Removed and Deprecated in JDK 15

In addition, there are security related updates that you need to be aware of. See:
Security Updates in JDK 15.

Significant Changes in JDK 14 Release
The following are some of the changes in Java SE 14 and JDK 14:

• Switch is extended so it can be used as either a statement or an expression,
so that both forms can use either traditional case ... : labels (with fall through)
or new case ... -> labels (with no fall through), with a further new statement
for yielding a value from a switch expression. See JEP 361: Switch Expressions
(Standard) and Java Language Changes.

• G1 is enhanced to improve allocation performance on non-uniform memory
access (NUMA) memory systems. See JEP 345: NUMA-Aware Memory Allocation
for G1.

• JDK Flight Recorder data is now available as a data stream allowing for
continuous monitoring. See JEP 349: JFR Event Streaming.

Chapter 2
Significant Changes in JDK 14 Release

2-3

https://openjdk.java.net/jeps/371
https://openjdk.java.net/jeps/371
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/360
https://openjdk.java.net/jeps/360
https://docs.oracle.com/en/java/javase/15/language/sealed-classes-and-interfaces.html
https://openjdk.java.net/jeps/375
https://openjdk.java.net/jeps/375
https://docs.oracle.com/en/java/javase/15/language/pattern-matching-instanceof-operator.html
https://openjdk.java.net/jeps/384
https://openjdk.java.net/jeps/384
https://docs.oracle.com/en/java/javase/15/language/records.html
https://openjdk.java.net/jeps/383
https://openjdk.java.net/jeps/383
https://openjdk.java.net/jeps/361
https://openjdk.java.net/jeps/361
http://openjdk.java.net/jeps/345
http://openjdk.java.net/jeps/345
https://openjdk.java.net/jeps/349

• New JDK-specific file mapping modes have been added so that the FileChannel
API can be used to create MappedByteBuffer instances that refer to non-volatile
(NVM) memory. See JEP 352: Non-Volatile Mapped Byte Buffers.

• Allows currencies to be formatted with locale-specific accounting formats, for
example, ($3.27) instead of -$3.27. See Accounting Currency Format Support.

• Enhanced com.sun.management.OperatingSystemMXBean to ensure that it reports
values based on the current operating environment, such as a container
environment. The MXBean for tools to get information on the operating system has
been improved for container environments. See OperatingSystemMXBean made
container aware.

Experimental, Preview, and Incubator Features

• Records is a Java language preview feature, which provides a compact syntax for
declaring classes that are transparent holders for shallowly immutable data. See
JEP 359: Records (Preview).

• Pattern Matching for instanceof is a Java language preview feature that simplifies
the instanceof-and-cast idiom. See JEP 305: Pattern Matching for instanceof
(Preview).

• Text blocks are multi-line string literals that avoids the need for most escape
sequences, automatically formats the string in a predictable way, and gives the
developer control over the format when desired. Text Blocks were introduced in
JDK 13 as a Preview Feature. Text Blocks is being previewed again in JDK 14 with
the addition of two new escape sequences. See JEP 368: Text Blocks (Second
Preview).

• jpackage, a simple tool for packaging self-contained Java applications. See JEP
343: Packaging Tool (Incubator).

• An API that allows Java programs to efficiently access foreign memory outside
of the Java heap is introduced. See JEP 370: Foreign-Memory Access API
(Incubator).

• The Z Garbage Collector (ZGC), previously available only for Linux, is introduced
as an experimental feature on Windows and macOS. See JEP 364: ZGC on
macOS and JEP 365: ZGC on Windows.

Removed APIs, Tools, and Components

See:

• APIs Removed in Java SE 14

• Features and Components Removed in JDK 14

In addition, there are security related updates that you need to be aware of. See:
Security Updates in JDK 14.

Significant Changes in JDK 13 Release
The following were some of the important enhancements in Java SE 13 and JDK 13:

• Dynamic CDS Archiving extends application class-data sharing (ApsCDS), which
allows dynamic archiving of classes when the Java application exits. See JEP 350:
Dynamic CDS Archives.

Chapter 2
Significant Changes in JDK 13 Release

2-4

https://openjdk.java.net/jeps/352
https://bugs.openjdk.java.net/browse/JDK-8229146
https://bugs.openjdk.java.net/browse/JDK-8226575
https://bugs.openjdk.java.net/browse/JDK-8226575
http://openjdk.java.net/jeps/12
http://openjdk.java.net/jeps/359
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/305
https://openjdk.java.net/jeps/305
http://openjdk.java.net/jeps/355
http://openjdk.java.net/jeps/355
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/368
https://openjdk.java.net/jeps/368
https://openjdk.java.net/jeps/343
https://openjdk.java.net/jeps/343
https://openjdk.java.net/jeps/370
https://openjdk.java.net/jeps/370
http://openjdk.java.net/jeps/12
http://openjdk.java.net/jeps/364
http://openjdk.java.net/jeps/364
http://openjdk.java.net/jeps/365
http://openjdk.java.net/jeps/350
http://openjdk.java.net/jeps/350

• Text blocks were added to Java language, which provide developers with control
over the format when desired. This is a preview language feature. See JEP 355
Text Blocks (Preview) and JEP 12: Preview Language and VM Features.

• The switch expression, a preview language feature, was extended to be used as
either a statement or an expression, so that both forms can use either traditional
labels (with fall through) or new labels (with no fall through). It is used with a
further new statement for yielding a value from a switch expression. See JEP 354:
Switch Expressions (Preview) and JEP 12: Preview Language and VM Features.

• The implementation used by java.net.Socket and java.net.ServerSocket APIs
was replaced with a simpler and more modern implementation that is easy to
maintain and debug. See JEP 353: Reimplement the Legacy Socket API.

• Support for Unicode 12.1. See Unicode 12.1.

• ZGC was enhanced to return unused heap memory to the operating system, which
enhances the memory footprint of the applications. See JEP 351 ZGC Uncommit
Unused Memory.

Significant Changes in JDK 12 Release
The following were some of the important additions and updates in Java SE 12 and
JDK 12:

• JVM Constants API was introduced to model nominal descriptions of key class-file
and run-time artifacts, in particular constants that were loadable from the constant
pool. See JVM Constant API.

• The switch statement was extended so that it can be used either as a statement
or an expression. This is a preview language feature. See JEP 325: Switch
Expressions (Preview) and JEP 12: Preview Language and VM Features.

• Support for Unicode 11.0. See Unicode 11.0.

• Square character support was provided for the Japanese Reiwa Era, which began
on May, 2019. See Square character support.

• The NumberFormat added support for formatting a number in its compact form. See
Compact Number Formatting Support .

Significant Changes in JDK 11 Release
JDK 11 had some significant changes too. As JDK 11 is a long term support (LTS)
release, you should be familiar with the following important changes in JDK 11 release:

• Oracle no longer offers JRE and Server JRE downloads; consequently, Auto-
Update is not available anymore.

• Java Web Start, Java Plugin, and Java Control Panel are not available in JDK.
See Removal of the Deployment Stack.

• JavaFX is no longer included in the JDK. It is now available as a separate
download from https://openjfx.io/.

• JAXB and JAX-WS are no longer bundled with JDK. See Removal of Java EE and
CORBA Modules.

Chapter 2
Significant Changes in JDK 12 Release

2-5

http://openjdk.java.net/jeps/355
http://openjdk.java.net/jeps/355
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/354
https://openjdk.java.net/jeps/354
http://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/353
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8221431
http://openjdk.java.net/jeps/351
http://openjdk.java.net/jeps/351
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#JDK-8203252
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/325
http://openjdk.java.net/jeps/12
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#JDK-8209923
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#JDK-8211398
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#JDK-8177552
https://openjfx.io/

3
Security Updates

This section provides details on the security updates in JDK releases.

Security Updates in JDK 16
The following are the notable security updates in JDK 16:

• Signed JAR support for RSASSA-PSS and EdDSA

• SUN, SunRsaSign, and SunEC providers support SHA-3-based signature
algorithms

• The SunPKCS11 provider now supports SHA-3-related algorithms

• TLS support for the EdDSA signature algorithm

See Release Notes for additional information on security-related changes.

Security Updates in JDK 15
The following are the noteable security updates in JDK 15:

• A new signature scheme Edwards-Curve Digital Signature Algorithm (EdDSA) is
implemented, which is a modern elliptic curve signature scheme that has several
advantages over the existing signature schemes in the JDK. This new signature
scheme does not replace ECDSA. See JEP 339: Edwards-Curve Digital Signature
Algorithm (EdDSA).

• SunJCE provider now supports SHA-3 based Hmac algorithms

• New System Properties to Configure the TLS Signature Schemes

• Support the certificate_authorities extension

See Release Notes for additional information on security related changes.

Security Updates in JDK 14
The following are the noteable security updates in JDK 14:

• Exact Match Required for Trusted TLS Server Certificate

• New Checks on Trust Anchor Certificates

See Release Notes for additional information on security related changes.

Security Updates in JDK 13
The following were removed from JDK 13:

• Experimental FIPS 140 compliant mode from SunJSSE provider

3-1

https://www.oracle.com/java/technologies/javase/16-relnotes.html#JDK-8242068
https://www.oracle.com/java/technologies/javase/16-relnotes.html#JDK-8172366
https://www.oracle.com/java/technologies/javase/16-relnotes.html#JDK-8172366
https://www.oracle.com/java/technologies/javase/16-relnotes.html#JDK-8242332
https://www.oracle.com/java/technologies/javase/16-relnotes.html#JDK-8166596
https://www.oracle.com/java/technologies/javase/16-relnotes.html
https://openjdk.java.net/jeps/339
https://openjdk.java.net/jeps/339
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html#JDK-8172680
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html#JDK-8242141
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html#JDK-8206925
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html
https://www.oracle.com/java/technologies/javase/14-relnote-issues.html#JDK-8227758
https://www.oracle.com/java/technologies/javase/14-relnote-issues.html#JDK-8230318
https://www.oracle.com/java/technologies/javase/14-relnote-issues.html
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8217835

• Duplicated RSA services no longer supported by SunJSSE provider

Removal of Security Certificates

The following root certificates were removed from the keystore in JDK 13:

• T-Systems Deutsche Telekom Root CA 2 certificate

• Two DocuSign Root CA certificates

• Two Comodo Root CA certificates

Security Updates in JDK 11 and JDK 12
The following security updates were made in JDK 11 and JDK 12:

The JDK 11 release included an implementation of the Transport Layer Security (TLS)
1.3 specification (RFC 8446).

TLS 1.3 is the latest iteration (August 2018) of the Transport Layer Security (TLS)
protocol and is enabled by default in JDK 11. This version focuses not only on speed
improvements, but also updates the overall security of the protocol by emphasizing
modern cryptography practices, and disallows outdated or weak crypto algorithms.
(For example, RSA key exchange and plain DSA signatures are no longer allowed.)

Several features were added to the TLS 1.3 protocol to improve backwards
compatibility, but there are several issues of which you need to be aware of. For
details, see JEP 332.

Removal of Security Certificates

The following root certificate was removed from the keystore in JDK 12:

• Removal of GTE CyberTrust Global Root

The following root certificates were removed from the truststore in JDK 11:

• Several Symantec Root CAs

• Baltimore Cybertrust Code Signing CA

• SECOM Root Certificate

• AOL and Swisscom root certificates

Products that use certificates that have been removed may no longer work. If these
certificates are required, then you must configure and populate the cacerts with the
missing certs. To add certs to the truststore, see keytool in Java Development Kit Tool
Specifications guide.

Security Updates in JDK 9 and JDK 10
Some security-related defaults have changed, starting from JDK 9.

JCE Jurisdiction Policy File Default is Unlimited
If your application previously required the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files, then you no longer need to download or
install them. They are included in the JDK and are activated by default.

Chapter 3
Security Updates in JDK 11 and JDK 12

3-2

https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8220016
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8222137
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8223499
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#JDK-8222136
https://www.rfc-editor.org/info/rfc8446
http://openjdk.java.net/jeps/332
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#JDK-8195793
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8191031
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8189949
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8191844
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8203230
http://www.oracle.com/pls/topic/lookup?ctx=javase12&id=keytool_tool_reference

If your country or usage requires a more restrictive policy, the limited Java
cryptographic policy files are still available.

If you have requirements that are not met by either of the policy files provided by
default, then you can customize these policy files to meet your needs.

See the crypto.policy Security property in the <java-home>/conf/security/
java.security file, or Cryptographic Strength Configuration in the Java Platform,
Standard Edition Security Developer's Guide.

You are advised to consult your export/import control counsel or attorney to determine
the exact requirements.

Create PKCS12 Keystores
We recommend that you use the PKCS12 format for your keystores. This format,
which is the default keystore type, is based on the RSA PKCS12 Personal Information
Exchange Syntax Standard.

See Creating a Keystore to Use with JSSE in Java Platform, Standard Edition Security
Developer's Guide and keytool in Java Development Kit Tool Specifications.

Chapter 3
Security Updates in JDK 9 and JDK 10

3-3

https://docs.oracle.com/pls/topic/lookup?ctx=javase10&id=keytool_tool_reference

4
Removed APIs

This section provides details about Java SE APIs that were removed in JDK 16, JDK
15, JDK 14, JDK 13, JDK 12, and JDK 11 releases.

Run jdeprscan --release 16 -l --for-removal to get the list of APIs that are
marked for removal in JDK 16.

Note:

The jdeprscan tool is available since JDK 9. If you want to print the list of
APIs for a different JDK version, then replace the release number with 9 or
later.

API Removed in Java SE 16
Constructor

javax.tools.ToolProvider.<init>()

APIs Removed in Java SE 15
The following APIs have been removed in Java SE 15.

Fields

java.management.rmi.RMIConnectorServer.CREDENTIAL_TYPES

Constructors

java.lang.invoke.ConstantBootstraps.<init>
 java.lang.reflect.Modifier.<init>

APIs Removed in Java SE 14
The following APIs have been removed in Java SE 14.

Packages

java.security.acl

4-1

Interfaces

java.security.acl.Acl
java.security.acl.AclEntry
java.security.acl.Group
java.security.acl.Owner
java.security.acl.Permission
java.util.jar.Pack200.Packer
java.util.jar.Pack200.Unpacker

Classes

java.util.jar.Pack200

APIs Removed in Java SE 13
The following APIs were removed in Java SE 13. Both of these APIs were deprecated
and marked for removal with JDK 9. Both have been superseded by JVM-specific
tracing mechanisms. See JVMTM Tool Interface specification.

java.lang.Runtime.traceInstructions(boolean)
java.lang.Runtime.traceMethodCalls(boolean)

APIs Removed in Java SE 12
The following APIs were removed in Java SE 12.

 java.io.FileInputStream.finalize()
 java.io.FileOutputStream.finalize()
 java.util.zip.Deflater.finalize()
 java.util.zip.Inflater.finalize()
 java.util.zip.ZipFile.finalize()

APIs Removed in JDK 11
The following APIs were removed in JDK 11. Many of these APIs were deprecated in
previous releases and have been replaced by newer APIs.

javax.security.auth.Policy
java.lang.Runtime.runFinalizersOnExit(boolean)
java.lang.SecurityManager.checkAwtEventQueueAccess()
java.lang.SecurityManager.checkMemberAccess(java.lang.Class,int)
java.lang.SecurityManager.checkSystemClipboardAccess()
java.lang.SecurityManager.checkTopLevelWindow(java.lang.Object)
java.lang.System.runFinalizersOnExit(boolean)

Chapter 4
APIs Removed in Java SE 13

4-2

https://docs.oracle.com/en/java/javase/13/docs/specs/jvmti.html

java.lang.Thread.destroy()
java.lang.Thread.stop(java.lang.Throwable)

APIs Removed in JDK 10
The following common DOM APIs were removed in JDK 10.

com.sun.java.browser.plugin2.DOM

sun.plugin.dom.DOMObject

APIs Removed JDK 9
The following are some important APIs that have been removed from JDK 10 and JDK
9 releases.

Removed java.* APIs
The Java team is committed to backward compatibility. If an application runs in JDK 8,
then it will run on JDK 9 and later releases as long as it uses APIs that are supported
and intended for external use.

These include:

• JCP standard, java.*, javax.*

• JDK-specific APIs, some com.sun.*, some jdk.*

Supported APIs can be removed from the JDK, but only with notice. Find out if your
code is using deprecated APIs by running the static analysis tool jdeprscan.

java.* APIs that were removed in JDK 9 include the previously deprecated methods
from the java.util.logging.LogManager and java.util.jar.Pack200
packages:

java.util.logging.LogManager.addPropertyChangeListener
java.util.logging.LogManager.removePropertyChangeListener
java.util.jar.Pack200.Packer.addPropertyChangeListener
java.util.jar.Pack200.Packer.removePropertyChangeListener
java.util.jar.Pack200.Unpacker.addPropertyChangeListener
java.util.jar.Pack200.Unpacker.removePropertyChangeListener

Removal and Future Removal of sun.misc and sun.reflect APIs
Unlike the java.* APIs, almost all of the sun.* APIs are unsupported, JDK-internal
APIs, and may go away at any time.

A few sun.* APIs were removed in JDK 9. Notably, sun.misc.BASE64Encoder
and sun.misc.BASE64Decoder were removed. Instead, use the supported
java.util.Base64 class, which was added in JDK 8.

If you use these APIs, you may wish to migrate to their supported replacements:

Chapter 4
APIs Removed in JDK 10

4-3

https://docs.oracle.com/pls/topic/lookup?ctx=javase9&id=jdeprscan_tool_reference
https://docs.oracle.com/javase/9/docs/api/java/util/Base64.html

• sun.misc.Unsafe
The functionality of many of the methods in this class is available by using variable
handles, see JEP 193: Variable Handles.

• sun.reflect.Reflection::getCallerClass(int)
Instead, use the stack-walking API, see JEP 259: Stack-Walking API.

See JEP 260: Encapsulate Most Internal APIs.

java.awt.peer Not Accessible
The java.awt.peer and java.awt.dnd.peer packages aren’t accessible,
starting in JDK 9. The packages were never part of the Java SE API, despite being in
the java.* namespace.

All methods in the Java SE API that refer to types defined in these packages were
removed from JDK 9. Code that calls a method that previously accepted or returned a
type defined in these packages no longer compiles or runs.

There are two common uses of the java.awt.peer classes. You should replace
them as follows:

• To see if a peer has been set yet:

if (component.getPeer() != null) { .. }

Replace this with Component.isDisplayable() from the JDK 1.1 API:

public boolean isDisplayable() {
 return getPeer() != null;

• To test if a component is lightweight:

if (component.getPeer() instanceof LightweightPeer) ..

Replace this with Component.isLightweight() from the JDK 1.2 API:

public boolean isLightweight() {
 return getPeer() instanceof LightweightPeer;

Removed com.sun.image.codec.jpeg Package
The nonstandard package com.sun.image.codec.jpeg has been removed. Use
the Java Image I/O API instead.

The com.sun.image.codec.jpeg package was added in JDK 1.2 as a
nonstandard way of controlling the loading and saving of JPEG format image files.
It has never been part of the platform specification.

In JDK 1.4, the Java Image I/O API was added as a standard API, residing in
the javax.imageio package. It provides a standard mechanism for controlling the
loading and saving of sampled image formats and requires all compliant Java SE
implementations to support JPEG based on the Java Image I/O specification.

Chapter 4
APIs Removed JDK 9

4-4

http://openjdk.java.net/jeps/193
http://openjdk.java.net/jeps/259
http://openjdk.java.net/jeps/260

Removed Tools Support for Compact Profiles
Starting in JDK 9, you can choose to build and run your application against any subset
of the modules in the Java runtime image, without needing to rely on predefined
profiles.

Profiles, introduced in Java SE 8, define subsets of the Java SE Platform API that
can reduce the static size of the Java runtime on devices that have limited storage
capacity. The tools in JDK 8 support three profiles, compact1, compact2, and compact3.
For the API composition of each profile, see Detailed Profile Composition and API
Reference in the JDK 8 documentation.

In JDK 8, you use the -profile option to specify the profile when running the javac
and java commands. Starting in JDK 9, the -profile option is supported by javac
only in conjunction with the --release 8 option, and isn’t supported by java.

JDK 9 and later releases let you choose the modules that are used at compile and run
time. By specifying modules with the new --limit-modules option, you can obtain the
same APIs that are in the compact profiles. This option is supported by both the javac
and java commands, as shown in the following examples:

javac --limit-modules java.base,java.logging MyApp.java

java --limit-modules java.base,java.logging MyApp

The packages specified for each profile in Java SE 8 are exported, collectively, by the
following sets of modules:

• For the compact1 profile: java.base, java.logging, java.scripting

• For the compact2 profile: java.base, java.logging, java.scripting,
java.rmi, java.sql, java.xml

• For the compact3 profile: java.base, java.logging, java.scripting,
java.rmi, java.sql, java.xml, java.compiler, java.instrument,
java.management, java.naming, java.prefs, java.security.jgss,
java.security.sasl, java.sql.rowset, java.xml.crypto

You can use the jdeps tool to do a static analysis of the Java packages that are being
used in your source code. This gives you the set of modules that you need to execute
your application. If you had been using the compact3 profile, for example, then you
may see that you don’t need to include that entire set of modules when you build your
application. See jdeps in Java Development Kit Tool Specifications.

See JEP 200: The Modular JDK.

Use CLDR Locale Data by Default
Starting in JDK 9, the Unicode Consortium's Common Locale Data Repository (CLDR)
data is enabled as the default locale data, so that you can use standard locale data
without any further action.

In JDK 8, although CLDR locale data is bundled with the JRE, it isn’t enabled by
default.

Chapter 4
APIs Removed JDK 9

4-5

https://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/pls/topic/lookup?ctx=javase9&id=jdeps_tool_reference
http://openjdk.java.net/jeps/200

Code that uses locale-sensitive services such as date, time, and number formatting
may produce different results with the CLDR locale data. Remember that even
System.out.printf() is locale-aware.

To enable behavior compatible with JDK 8, set the system property
java.locale.providers to a value with COMPAT ahead of CLDR, for example,
java.locale.providers=COMPAT,CLDR.

See CLDR Locale Data Enabled by Default in the Java Platform, Standard Edition
Internationalization Guide and JEP 252: Use CLDR Locale Data by Default.

Chapter 4
APIs Removed JDK 9

4-6

http://openjdk.java.net/jeps/252

5
Removed Tools and Components

The following section lists tools and components that are experimental, obsolete, or no
longer used and have been removed from the JDK.

Tools and Components Removed in JDK 16
Removal of Experimental Features AOT and Graal JIT

The Java Ahead-of-Time compilation experimental tool jaotc and Java-based Graal
JIT compiler have been removed. See Removal of experimental features AOT and
Graal JIT.

Removed Root Certificates with 1024-bit Keys

The root certificates with weak 1024-bit RSA public keys have been removed from the
cacerts keystore. For details, see Remove root certificates with 1024-bit keys.

Removal of Legacy Elliptic Curves

The SunEC provider no longer supports the following elliptic curves that were
deprecated in JDK 14.

secp112r1, secp112r2, secp128r1, secp128r2, secp160k1, secp160r1,
secp160r2,
secp192k1, secp192r1, secp224k1, secp224r1, secp256k1, sect1

To continue using any of these curves, find third-party alternatives. See Remove the
legacy elliptic curves.

Deprecated Tracing Flags Are Obsolete and Must Be Replaced With Unified
Logging Equivalents

When Unified Logging was added in Java 9, several tracing flags were deprecated
and mapped to their unified logging equivalent. These flags are now obsolete and you
must explicitly replace the use of these flags with their unified logging equivalent.

Obsolete Tracing Flag Unified Logging Replacement

-XX:+TraceClassLoading -Xlog:class+load=info

-XX:+TraceClassUnloading -Xlog:class+unload=info

-XX:+TraceExceptions -Xlog:exceptions=info

See Obsolete the long term deprecated and aliased Trace flags.

5-1

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8255616
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8255616
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8243559
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8235710
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8235710
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8256718

Tools and Components Removed and Deprecated in JDK 15
Removal of Nashorn JavaScript Engine

Nashorn JavaScript script engine and APIs, and the jjs tool have been removed in
JDK 15. The engine, APIs, and tool were deprecated for removal in Java 11. See JEP
372: Remove the Nashorn JavaScript Engine.

Removal of RMI Static Stub Compiler (rmic) Tool

The RMI static stub compiler (rmic) tool has been removed. The rmic tool was
deprecated for removal in JDK 13. See Remove rmic from the set of supported tools.

Disable and Deprecate Biased Locking

The biased locking is disabled by default and all related command-line options have
been deprecated. See JEP 374: Disable and Deprecate Biased Locking.

Deprecate RMI Activation for Removal

The RMI Activation mechanism has been deprecated and may be removed in a future
version of the platform. See JEP 385: Deprecate RMI Activation for Removal.

Features and Components Removed in JDK 14
Remove the Concurrent Mark Sweep (CMS) Garbage Collector

The CMS garbage collector has been removed. See JEP 363: Remove the Concurrent
Mark Sweep (CMS) Garbage Collector.

Removal of Pack200 Tools and API

The Pack200 tools and API were deprecated in JDK 11 and have been removed in
JDK 14.

The pack200 and unpack200 tools, and Pack200 in java.util.jar.Pack200 package
have been removed .

See JEP 367: Remove the Pack200 Tools and API.

Tools and Components Removed in JDK 13
Removal of Old Features from javadoc Tool

The following four features have been removed from the javadoc tool:

• Support for generating API documentation using HTML 4

• Support for the old javadoc API

• Support for generating documentation using HTML frames

• Support for the --no-module-directories options

For details about removed javadoc features, see JDK-8215608 : Remove old javadoc
features.

Chapter 5
Tools and Components Removed and Deprecated in JDK 15

5-2

https://openjdk.java.net/jeps/372
https://openjdk.java.net/jeps/372
https://bugs.openjdk.java.net/browse/JDK-8225319
https://openjdk.java.net/jeps/374
https://openjdk.java.net/jeps/385
https://openjdk.java.net/jeps/363
https://openjdk.java.net/jeps/363
https://openjdk.java.net/jeps/367
https://bugs.java.com/bugdatabase/view_bug.do?xd_co_f=d31f1e56-2e52-4583-9188-1fcb8e55718d&bug_id=JDK-8215608
https://bugs.java.com/bugdatabase/view_bug.do?xd_co_f=d31f1e56-2e52-4583-9188-1fcb8e55718d&bug_id=JDK-8215608

See Removed Features and Options of JDK 13 Release Notes for list of removed tools
and components.

Tools and Components Removed in JDK 12
To know more about the tools and components that are removed in JDK 12, see
Removed Features and Options in JDK 12.

Tools and Components Removed in JDK 11
Removal of the Deployment Stack

Java deployment technologies were deprecated in JDK 9 and removed in JDK 11.

Java applet and Web Start functionality, including the Java plug-in, the Java Applet
Viewer, Java Control Panel, and Java Web Start, along with javaws tool, have been
removed in JDK 11.

See Remove Java Deployment Technologies.

Removal of Java EE and CORBA Modules

In JDK 11, the Java EE and CORBA modules were removed. These modules were
deprecated for removal in JDK 9.

The removed modules were:

• java.xml.ws: Java API for XML Web Services (JAX-WS), Web Services
Metadata for the Java Platform, and SOAP with Attachments for Java (SAAJ)

• java.xml.bind: Java Architecture for XML Binding (JAXB)

• java.xml.ws.annotation: The subset of the JSR-250 Common Annotations
defined by Java SE to support web services

• java.corba: CORBA

• java.transaction: The subset of the Java Transaction API defined by Java SE
to support CORBA Object Transaction Services

• java.activation: JavaBeans Activation Framework

• java.se.ee: Aggregator module for the six modules above

• jdk.xml.ws: Tools for JAX-WS

• jdk.xml.bind: Tools for JAXB

Existing code with references to classes in these APIs will not compile without
changes to the build. Similarly, code on the class path with references to classes
in these APIs will fail with NoDefClassFoundError or ClassNotFoundException unless
changes are made in how the application is deployed.

See JEP 320: Remove the Java EE and CORBA Modules to get more information
about possible replacements for the modules.

Chapter 5
Tools and Components Removed in JDK 12

5-3

https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#Removed
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#Removed
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8185077
http://openjdk.java.net/jeps/320

Note:

You can download JAXB and JAX-WS from Maven.

Removal of Tools and Components

Main Tools

• appletviewer
See JDK-8200146 : Remove the appletviewer launcher.

CORBA Tools

• idlj

• orbd

• servertool

• tnamesrv

In addition, the rmic (the RMI compiler) no longer supports the -idl or -iiop options.
See JDK 11 Release Notes.

Java Web Services Tools

• schemagen

• wsgen

• wsimport

• xjc

Java Deployment Tools

• javapackager

• javaws
See Removal of JavaFX from JDK.

Monitoring Tools

• jmc: In JDK 11, JMC is available as a standalone package and not bundled in the
JDK.

See Removal of JMC from JDK and Java Mission Control.

JVM-MANAGEMENT-MIB.mib

The specification for JVM monitoring and management through SNMP JVM-
MANAGEMENT-MIB.mib has been removed. See Removal of JVM-MANAGEMENT-
MIB.mib.

SNMP Agent

The jdk.snmp module has been removed. See Removal of SNMP Agent.

Chapter 5
Tools and Components Removed in JDK 11

5-4

https://bugs.java.com/view_bug.do?bug_id=JDK-8200146
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8190378
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8198527
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8202347
https://blogs.oracle.com/java-platform-group/java-mission-control-now-serving-openjdk-binaries-too
https://bugs.java.com/view_bug.do?bug_id=JDK-8206211
https://bugs.java.com/view_bug.do?bug_id=JDK-8206211
https://bugs.java.com/view_bug.do?bug_id=JDK-8071367

Oracle Desktop Specific Removals

• Oracle JDK T2K font rasterizer has been removed.

• Lucida Fonts: Oracle JDK no longer ships any fonts and relies entirely on fonts
installed on the operating system. See Removal of Lucida Fonts from Oracle JDK.

Tools and Components Removed in JDK 9 and JDK 10
This list includes tools and components that are no longer bundled with the JDK.

Removed Native-Header Generation Tool (javah)
The javah tool has been superseded by superior functionality in javac. It was removed
in JDK 10.

Since JDK 8, javac provides the ability to write native header files at the time that Java
source code is compiled, thereby eliminating the need for a separate tool.

Instead of javah, use

javac -h

Removed JavaDB
JavaDB, which was a rebranding of Apache Derby, is no longer included in the JDK.

JavaDB was bundled with JDK 7 and JDK 8. It was found in the db directory of the
JDK installation directory.

You can download and install Apache Derby from Apache Derby Downloads.

Removed the JVM TI hprof Agent
The hprof agent library has been removed.

The hprof agent was written as demonstration code for the JVM Tool Interface and
wasn’t intended to be a production tool. The useful features of the hprof agent have
been superseded by better alternatives, including some that are included in the JDK.

For creating heap dumps in the hprof format, use a diagnostic command (jcmd) or the
jmap tool:

• Diagnostic command: jcmd <pid> GC.heap_dump. See jcmd.

• jmap: jmap -dump. See jmap.

For CPU profiler capabilities, use the Java Flight Recorder, which is bundled with the
JDK.

See JEP 240: Remove the JVM TI hprof Agent.

Chapter 5
Tools and Components Removed in JDK 9 and JDK 10

5-5

https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#JDK-8191522
https://db.apache.org/derby/derby_downloads.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=javase9&id=jcmd_tool_reference
https://docs.oracle.com/pls/topic/lookup?ctx=javase9&id=jmap_tool_reference
http://openjdk.java.net/jeps/240

Removed the jhat Tool
The jhat tool was an experimental, unsupported heap visualization tool added in JDK
6. Superior heap visualizers and analyzers have been available for many years.

Removed java-rmi.exe and java-rmi.cgi Launchers
The launchers java-rmi.exe from Windows and java-rmi.cgi from Linux and Solaris
have been removed.

java-rmi.cgi was in $JAVA_HOME/bin on Linux.

java-rmi.exe was in $JAVA_HOME/bin on Windows.

These launchers were added to the JDK to facilitate use of the RMI CGI proxy
mechanism, which was deprecated in JDK 8.

The alternative of using a servlet to proxy RMI over HTTP has been available, and
even preferred, for several years. See Java RMI and Object Serialization.

Removed Support for the IIOP Transport from the JMX RMIConnector
The IIOP transport support from the JMX RMI Connector along with its supporting
classes have been removed from the JDK.

In JDK 8, support for the IIOP transport was downgraded from required to optional.
This was the first step in a multirelease effort to remove support for the IIOP transport
from the JMX Remote API. In JDK 9, support for IIOP was removed completely.

Public API changes include:

• The javax.management.remote.rmi.RMIIIOPServerImpl class has been
deprecated. Upon invocation, all its methods and constructors throw
java.lang.UnsupportedOperationException with an explanatory message.

• Two classes, org.omg.stub.javax.management.rmi._RMIConnection_Stub, and
org.omg.stub.javax.management.rmi._RMIConnection_Tie, aren’t generated.

Dropped Windows 32–bit Client VM
The Windows 32–bit client VM is no longer available. Only a server VM is offered.

JDK 8 and earlier releases offered both a client JVM and a server JVM for Windows
32-bit systems. JDK 9 and later releases offer only a server JVM, which is tuned to
maximize peak operating speed.

Removed Java VisualVM
Java VisualVM is a tool that provides information about code running on a Java Virtual
Machine. The jvisualvm tool was provided with JDK 6, JDK 7, and JDK 8.

Java VisualVM is no longer bundled with the JDK, but you can get it from the VisualVM
open source project site.

Chapter 5
Tools and Components Removed in JDK 9 and JDK 10

5-6

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html#servlet
https://visualvm.github.io/
https://visualvm.github.io/

Removed native2ascii Tool
The native2ascii tool has been removed from the JDK. Because JDK 9 and later
releases support UTF-8 based properties resource bundles, the conversion tool for
UTF-8 based properties resource bundles to ISO-8859-1 is no longer needed.

See UTF-8 Properties Files in Java Platform, Standard Edition Internationalization
Guide.

Chapter 5
Tools and Components Removed in JDK 9 and JDK 10

5-7

6
Preparing For Migration

The following sections will help you successfully migrate your application:

• Download the Latest JDK

• Run Your Program Before Recompiling

• Update Third-Party Libraries

• Compile Your Application if Needed

• Run jdeps on Your Code

Download the Latest JDK
Download and install the latest JDK release from Java SE Downloads.

Run Your Program Before Recompiling
Try running your application on the latest JDK release (JDK 16). Most code and
libraries should work on JDK 16 without any changes, but there may be some libraries
that need to be upgraded.

Note:

Migrating is an iterative process. You’ll probably find it best to try running
your program (this task) first, then complete these three tasks in parallel:

• Update Third-Party Libraries

• Compile Your Application if Needed

• Run jdeps on Your Code

When you run your application, look for warnings from the JVM about obsolete VM
options. If the VM fails to start, then look for Removed GC Options.

If your application starts successfully, look carefully at your tests and ensure that the
behavior is the same as on the JDK version you have been using. For example, a few
early adopters have noticed that their dates and currencies are formatted differently.
See Use CLDR Locale Data by Default.

To make your code work on the latest JDK release, understand the new features and
changes in each of the JDK release.

• For detailed information about the new features and changes in JDK 16, see
What's New in JDK 16 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 15, see
What's New in JDK 15 - New Features and Enhancements.

6-1

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase/16-relnotes.html#NewFeature
https://www.oracle.com/java/technologies/javase/15-relnote-issues.html#NewFeature

• For detailed information about the new features and changes in JDK 14, see
What's New in JDK 14 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 13, see
What's New in JDK 13 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 12, see
What's New in JDK 12 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 11, see
What’s New in JDK 11 - New Features and Enhancements.

• For detailed information about the new features and changes in JDK 10, see
What’s New in JDK 10.

• For a comprehensive list of all of the new features of JDK 9, see What's New in
JDK 9.

For detailed information about the changes in JDK 9, see JDK 9 Release Notes.

Even if your program appears to run successfully, you should complete the rest of the
steps in this guide and review the list of issues.

Update Third-Party Libraries
For every tool and third-party library that you use, you may need to have an updated
version that supports the latest JDK release.

Check the websites for your third-party libraries and your tool vendors for a version
of each library or tool that’s designed to work on the latest JDK. If one exists, then
download and install the new version.

If you use Maven or Gradle to build your application, then make sure to upgrade to a
recent version that supports the latest JDK version.

If you use an IDE to develop your applications, then it might help in migrating the
existing code. The NetBeans, Eclipse, and IntelliJ IDEs all have versions available that
include support for the latest JDK.

You can see the status of the testing of many Free Open Source Software
(FOSS) projects with OpenJDK builds at Quality Outreach on the OpenJDK wiki.

Compile Your Application if Needed
Compiling your code with the latest JDK compiler will ease migration to future releases
since the code may depend on APIs and features, which have been identified as
problematic. However, it is not strictly necessary.

If you need to compile your code with JDK 11 and later compilers, then take note of the
following:

• If you use the underscore character ("_") as a one-character identifier in source
code, then your code won’t compile in JDK 11 and later releases. It generates a
warning in JDK 8, and an error, starting from JDK 9.

As an example:

static Object _ = new Object();

Chapter 6
Update Third-Party Libraries

6-2

https://www.oracle.com/java/technologies/javase/14-relnote-issues.html#NewFeature
https://www.oracle.com/java/technologies/javase/13-relnote-issues.html#NewFeature
https://www.oracle.com/java/technologies/javase/12-relnote-issues.html#NewFeature
https://www.oracle.com/java/technologies/javase/jdk-11-relnote.html#NewFeature
https://www.oracle.com/java/technologies/javase/10-relnote-issues.html#NewFeature
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-C23AFD78-C777-460B-8ACE-58BE5EA681F6
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-C23AFD78-C777-460B-8ACE-58BE5EA681F6
https://www.oracle.com/java/technologies/javase/9-relnotes.html
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

This code generates the following error message from the compiler:

MyClass.java:2: error: as of release 9, '_' is a keyword, and may
not be used as a legal identifier.

• If you use the -source and -target options with javac, then check the values that
you use.

The supported -source/-target values are 16 (the default), 15, 14, 13, 12, 11,
10, 9, 8, 7, and 6 (6 is deprecated, and a warning is displayed when this value is
used).

In JDK 8, -source and -target values of 1.5/5 and earlier were deprecated, and
caused a warning. In JDK 9 and above, those values cause an error.

>javac -source 5 -target 5 Sample.java
warning: [options] bootstrap class path not set in conjunction with
-source 5
error: Source option 5 is no longer supported. Use 6 or later.
error: Target option 1.5 is no longer supported. Use 1.6 or later.

If possible, use the new --release flag instead of the -source and -target
options. See javac in Java Development Kit Tool Specifications.

The valid arguments for the --release flag follow the same policy as for -source
and -target, one plus three back.

The javac can recognize and process class files of all previous JDKs, going all the
way back to JDK 1.0.2 class files.

See JEP 182: Policy for Retiring javac -source and -target Options.

• Critical internal JDK APIs such as sun.misc.Unsafe are still accessible in JDK
11 and later, but most of the JDK’s internal APIs are not accessible at compile
time. You may get compilation errors that indicate that your application or its
libraries are dependent on internal APIs.

To identify the dependencies, run the Java Dependency Analysis tool. See
Run jdeps on Your Code. If possible, update your code to use the supported
replacement APIs.

You may use the --add-exports option as a temporary workaround to compile
source code with references to JDK internal classes.

• You may see more deprecation warnings than previously.

Run jdeps on Your Code
Run the jdeps tool on your application to see what packages and classes your
applications and libraries depend on. If you use internal APIs, then jdeps may suggest
replacements to help you to update your code.

To look for dependencies on internal JDK APIs, run jdeps with the -jdkinternals
option. For example, if you run jdeps on a class that calls sun.misc.BASE64Encoder,
you’ll see:

>jdeps -jdkinternals Sample.class
Sample.class -> JDK removed internal API

Chapter 6
Run jdeps on Your Code

6-3

https://docs.oracle.com/pls/topic/lookup?ctx=javase15&id=javac_tool_reference
http://openjdk.java.net/jeps/182

 Sample -> sun.misc.BASE64Encoder JDK internal API (JDK removed
internal API)

Warning: JDK internal APIs are unsupported and private to JDK
implementation that are
subject to be removed or changed incompatibly and could break your
application.
Please modify your code to eliminate dependency on any JDK internal
APIs.
For the most recent update on JDK internal API replacements, please
check:
https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool

JDK Internal API Suggested Replacement
---------------- ---------------------
sun.misc.BASE64Encoder Use java.util.Base64 @since 1.8

If you use Maven, there’s a jdeps plugin available.

For jdeps syntax, see jdeps in the Java Development Kit Tool Specifications.

Keep in mind that jdeps is a static analysis tool, and static analysis of code might not
provide a complete list of dependencies. If the code uses reflection to call an internal
API, then jdeps doesn’t warn you.

Chapter 6
Run jdeps on Your Code

6-4

http://www.oracle.com/pls/topic/lookup?ctx=javase15&id=jdeps_tool_reference

7
Migrating From JDK 8 to Later JDK
Releases

There were significant changes made between the JDK 8 and later JDK releases.

Every new Java SE release introduces some binary, source, and behavioral
incompatibilities with previous releases. The modularization of the Java SE Platform
that happened in JDK 9 and later brought many benefits, but also many changes.
Code that uses only official Java SE Platform APIs and supported JDK-specific APIs
should continue to work without change. Code that uses JDK-internal APIs should
continue to run but should be migrated to use the supported APIs.

Some APIs that have been made inaccessible, removed, or altered in their default
behavior. You might encounter issues when compiling or running your application. See
Removed Tools and Components and Security Updates.

The following sections describe the changes in the JDK package that you should be
aware of when migrating your JDK 8 applications to later JDK releases.

Look at the list of changes that you may encounter as you run your application.

• Illegal Reflective Access

• New Version-String Scheme

• Changes to the Installed JDK/JRE Image

• Deployment

• Changes to Garbage Collection

When your application is running successfully on the latest version of JDK, review
Next Steps, which will help you avoid problems with future releases.

Illegal Reflective Access
Some tools and libraries use reflection to access parts of the JDK that are meant for
internal use only. This is called illegal reflective access and by default is not permitted
in JDK 16 and later.

The following examples demonstrate the potential impact of the change:

• Code successfully compiled with earlier releases that directly accesses internal
APIs of the JDK will no longer work by default. For example:

System.out.println(sun.security.util.SecurityConstants.ALL_PERMISSIO
N);

The compiler will generate an IllegalAccessError, and the code will throw an
InaccessibileObjectException.

7-1

• Code that uses reflection to access private fields of exported java.* APIs will no
longer work by default. For example:

var ks = java.security.KeyStore.getInstance("jceks");
var f = ks.getClass().getDeclaredField("keyStoreSpi");
f.setAccessible(true);

The code will throw an InaccessibileObjectException.

• Code that uses reflection to access protected methods of exported java.* APIs
will no longer work by default. For example:

var dc = ClassLoader.class.getDeclaredMethod("defineClass",
 String.class,
 byte[].class,
 int.class,
 int.class);
dc.setAccessible(true);

The code will throw an InaccessibileObjectException.

The java launcher option --illegal-access controls relaxed strong encapsulation.
The default value of this option is --illegal-access=deny, which disables illegal
access operations.

As a temporary solution, specify either the --illegal-access=permit or --illegal-
access=warn option to continue to perform illegal access operations. To obtain detailed
information about illegal reflective-access operations, including stack traces, specify
the --illegal-access=debug option.

There are two options that enable you to break encapsulation (most internal APIs
are encapsulated) in specific ways. You could use these in combination with the
--illegal-access command-line option.

• If you need to use an internal API that has been made inaccessible, then use the
--add-exports runtime option. You can also use --add-exports at compile time to
access internal APIs.

• If you have to allow code on the class path to do deep reflection to access
nonpublic members, then use the --add-opens option.

If you want to suppress all reflective access warnings, then use the --add-exports
and --add-opens options where needed.

--add-exports
If you must use an internal API that has been made inaccessible by default, then you
can break encapsulation using the --add-exports command-line option.

The syntax of the --add-exports option is:

--add-exports <source-module>/<package>=<target-module>(,<target-
module>)*

Chapter 7
Illegal Reflective Access

7-2

where <source-module> and <target-module> are module names and <package> is
the name of a package.

The --add-exports option allows code in the target module to access types in the
named package of the source module if the target module reads the source module.

As a special case, if the <target-module> is ALL-UNNAMED, then the source package is
exported to all unnamed modules, whether they exist initially or are created later on.
For example:

--add-exports java.management/sun.management=ALL-UNNAMED

This example allows code in all unnamed modules (code on the class path) to access
the public members of public types in java.management/sun.management. If the code
on the class path attempts to do deep reflection to access nonpublic members, then
the code fails.

If an application oldApp that runs on the classpath must use the unexported
com.sun.jmx.remote.internal package of the java.management module, then the
access that it requires can be granted in this way:

--add-exports java.management/com.sun.jmx.remote.internal=ALL-UNNAMED

You can also break encapsulation with the JAR file manifest:

Add-Exports:java.management/sun.management

Use the --add-exports option carefully. You can use it to gain access to an internal
API of a library module, or even of the JDK itself, but you do so at your own risk. If that
internal API changes or is removed, then your library or application fails.

See also JEP 261.

--add-opens
If you have to allow code on the class path to do deep reflection to access nonpublic
members, then use the --add-opens runtime option.

Some libraries do deep reflection, meaning setAccessible(true), so they can access
all members, including private ones. You can grant this access using the --add-opens
option on the java command line. No warning messages are generated as a result of
using this option.

If --illegal-access=deny, and you see IllegalAccessException or
InaccessibleObjectException messages at runtime, you could use the --add-opens
runtime option, basing the arguments upon the information shown in the exception
message.

The syntax for --add-opens is:

--add-opens module/package=target-module(,target-module)*

This option allows <module> to open <package> to <target-module>, regardless of the
module declaration.

Chapter 7
Illegal Reflective Access

7-3

http://openjdk.java.net/jeps/261

As a special case, if the <target-module> is ALL-UNNAMED, then the source package is
exported to all unnamed modules, whether they exist initially or are created later on.
For example:

--add-opens java.management/sun.management=ALL-UNNAMED

This example allows all of the code on the class path to access nonpublic members of
public types in the java.management/sun.management package.

Note:

If you are using the JNI Invocation API, including, for example, a Java Web
Start JNLP file, you must include an equals sign between --add-opens and
its value.

<j2se version="10" java-vm-args="--add-opens=module/
package=ALL-UNNAMED" />

The equals sign between --add-opens and its value is optional on the
command line.

New Version-String Scheme
JDK 10 introduced some minor changes, to better accommodate the time-based
release model, to the version-string scheme introduced in JDK 9. JDK 11 and later
retains the version string format that was introduced in JDK 10.

If your code relies on the version-string format to distinguish major, minor, security, and
patch update releases, then you may need to update it.

The format of the new version-string is:

$FEATURE.$INTERIM.$UPDATE.$PATCH

A simple Java API to parse, validate, and compare version strings has been added.
See java.lang.Runtime.Version.

See Version String Format in Java Platform, Standard Edition Installation Guide .

For the changes to the version string introduced in JDK 9, see JEP 223: New Version-
String Scheme .

For the version string changes introduced in JDK 10, see JEP 322: Time-Based
Release Versioning.

Changes to the Installed JDK/JRE Image
Significant changes have been made to the JDK and JRE.

Chapter 7
New Version-String Scheme

7-4

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Runtime.Version.html
http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/322
http://openjdk.java.net/jeps/322

Changed JDK and JRE Layout
After you install the JDK, if you look at the file system, you’ll notice that the directory
layout is different from that of releases before JDK 9.

JDK 11 and Later

JDK 11 and later does not have the JRE image. See Installed Directory Structure of
JDK in Java Platform, Standard Edition Installation Guide.

JDK 9 and JDK 10

Prior releases had two types of runtime images: the JRE, which was a complete
implementation of the Java SE Platform, and the JDK, which included the entire JRE
in a jre/ directory, plus development tools and libraries.

In JDK 9 and and JDK 10, the JDK and JRE are two types of modular runtime images
containing the following directories:

• bin: contains binary executables.

• conf: contains .properties, .policy, and other kinds of files intended to be
edited by developers, deployers, and end users. These files were formerly found in
the lib directory or its subdirectories.

• lib: contains dynamically linked libraries and the complete internal implementation
of the JDK.

In JDK 9 and JDK 10, there are still separate JDK and JRE downloads, but each has
the same directory structure. The JDK image contains the extra tools and libraries
that have historically been found in the JDK. There are no jdk/ versus jre/ wrapper
directories, and binaries (such as the java command) aren’t duplicated.

See JEP 220: Modular Run-Time Images.

New Class Loader Implementations
JDK 9 and later releases maintain the hierarchy of class loaders that existed since
the 1.2 release. However, the following changes have been made to implement the
module system:

• The application class loader is no longer an instance of URLClassLoader but,
rather, of an internal class. It is the default loader for classes in modules that are
neither Java SE nor JDK modules.

• The extension class loader has been renamed; it is now the platform class loader.
All classes in the Java SE Platform are guaranteed to be visible through the
platform class loader.

Just because a class is visible through the platform class loader does not mean
the class is actually defined by the platform class loader. Some classes in the Java
SE Platform are defined by the platform class loader while others are defined by
the bootstrap class loader. Applications should not depend on which class loader
defines which platform class.

The changes that were implemented in JDK 9 may impact code that creates
class loaders with null (that is, the bootstrap class loader) as the parent class
loader and assumes that all platform classes are visible to the parent. Such code

Chapter 7
Changes to the Installed JDK/JRE Image

7-5

http://openjdk.java.net/jeps/220

may need to be changed to use the platform class loader as the parent (see
ClassLoader.getPlatformClassLoader).

The platform class loader is not an instance of URLClassLoader, but, rather, of
an internal class.

• The bootstrap class loader is still built-in to the Java Virtual Machine and
represented by null in the ClassLoader API. It defines the classes in a handful
of critical modules, such as java.base. As a result, it defines far fewer classes
than in JDK 8, so applications that are deployed with -Xbootclasspath/a or that
create class loaders with null as the parent may need to change as described
previously.

Removed rt.jar and tools.jar
Class and resource files previously stored in lib/rt.jar, lib/tools.jar, lib/
dt.jar and various other internal JAR files are stored in a more efficient format in
implementation-specific files in the lib directory.

The removal of rt.jar and similar files leads to issues in these areas:

• Starting from JDK 9, ClassLoader.getSystemResource doesn’t return a URL
pointing to a JAR file (because there are no JAR files). Instead, it returns a jrt
URL, which names the modules, classes, and resources stored in a runtime image
without revealing the internal structure or format of the image.

For example:

ClassLoader.getSystemResource("java/lang/Class.class");

When run on JDK 8, this method returns a JAR URL of the form:

jar:file:/usr/local/jdk8/jre/lib/rt.jar!/java/lang/Class.class

which embeds a file URL to name the actual JAR file within the runtime image.

A modular image doesn’t contain any JAR files, so URLs of this form make no
sense. On JDK 9 and later releases, this method returns:

jrt:/java.base/java/lang/Class.class

• The java.security.CodeSource API and security policy files use URLs to
name the locations of code bases that are to be granted specific permissions. See
Policy File Syntax in Java Platform, Standard Edition Security Developer's Guide.
Components of the runtime system that require specific permissions are currently
identified in the conf/security/java.policy file by using file URLs.

• Older versions of IDEs and other development tools require the ability to
enumerate the class and resource files stored in a runtime image, and to read
their contents directly by opening and reading rt.jar and similar files. This isn’t
possible with a modular image.

Chapter 7
Changes to the Installed JDK/JRE Image

7-6

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/ClassLoader.html#getPlatformClassLoader()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/ClassLoader.html#getSystemResource(java.lang.String)
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/security/CodeSource.html

Removed Extension Mechanism
In JDK 8 and earlier, the extension mechanism made it possible for the runtime
environment to find and load extension classes without specifically naming them on
the class path. Starting from JDK 9, if you need to use the extension classes, ensure
that the JAR files are on the class path.

In JDK 9 and JDK 10, the javac compiler and java launcher will exit if
the java.ext.dirs system property is set, or if the lib/ext directory exists.
To additionally check the platform-specific systemwide directory, specify the -
XX:+CheckEndorsedAndExtDirs command-line option. This causes the same exit
behavior to occur if the directory exists and isn’t empty. The extension class loader
is retained in JDK 9 (and later releases) and is specified as the platform class loader
(see getPlatformClassLoader.) However, in JDK 11, this option is obsolete and a
warning is issued when it is used.

The following error means that your system is configured to use the extension
mechanism:

<JAVA_HOME>/lib/ext exists, extensions mechanism no longer supported;
Use -classpath instead.
.Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

You’ll see a similar error if the java.ext.dirs system property is set.

To fix this error, remove the ext/ directory or the java.ext.dirs system property.

See JEP 220: Modular Run-Time Images.

Removed Endorsed Standards Override Mechanism
The java.endorsed.dirs system property and the lib/endorsed directory are no
longer present. The javac compiler and java launcher will exit if either one is detected.

Starting from JDK 9, you can use upgradeable modules or put the JAR files on the
class path.

This mechanism was intended for application servers to override components used
in the JDK. Packages to be updated would be placed into JAR files, and the system
property java.endorsed.dirs would tell the Java runtime environment where to find
them. If a value for this property wasn’t specified, then the default of $JAVA_HOME/lib/
endorsed was used.

In JDK 8, you can use the -XX:+CheckEndorsedAndExtDirs command-line argument to
check for such directories anywhere on the system.

In JDK 9 and later releases, the javac compiler and java launcher will exit if the
java.endorsed.dirs system property is set, or if the lib/endorsed directory exists.

The following error means that your system is configured to use the endorsed
standards override mechanism:

<JAVA_HOME>/lib/endorsed is not supported. Endorsed standards and
standalone APIs

Chapter 7
Changes to the Installed JDK/JRE Image

7-7

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/ClassLoader.html#getPlatformClassLoader()
http://openjdk.java.net/jeps/220

in modular form will be supported via the concept of upgradeable
modules.
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.

You’ll see a similar error if the java.endorsed.dirs system property is set.

To fix this error, remove the lib/endorsed directory, or unset the java.endorsed.dirs
system property.

See JEP 220: Modular Run-Time Images.

Removed macOS-Specific Features
This section includes macOS-specific features that have been removed, starting in
JDK 9.

Platform-Specific Desktop Features
The java.awt.Desktop class contains replacements for the APIs in the Apple–specific
com.apple.eawt and com.apple.eio packages. The new APIs supersede the macOS
APIs and are platform-independent.

The APIs in the com.apple.eawt and com.apple.eio packages are encapsulated,
so you won’t be able to compile against them in JDK 9 or later releases. However,
they remain accessible at runtime, so existing code that is compiled to old versions
continues to run. Eventually, libraries or applications that use the internal classes in
the apple and com.apple packages and their subpackages will need to migrate to the
new API.

The com.apple.concurrent and apple.applescript packages are removed without
any replacement.

See JEP 272: Platform-Specific Desktop Features.

Removed AppleScript Engine
The AppleScript engine, a platform-specific javax.script implementation, has been
removed without any replacement in the JDK.

The AppleScript engine has been mostly unusable in recent releases. The functionality
worked only in JDK 7 or JDK 8 on systems that already had Apple's version of the
AppleScriptEngine.jar file on the system.

Windows Registry Key Changes
The Java 11 and later installer creates Windows registry keys when installing the JDK.
For JDK 16, the installer creates the following Windows registry keys:

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK”

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK\16”

Chapter 7
Changes to the Installed JDK/JRE Image

7-8

http://openjdk.java.net/jeps/220
http://openjdk.java.net/jeps/272

If two versions of the JDK are installed, then two different Windows registry keys are
created. For example, if JDK 15.0.1 is installed with JDK 16, then the installer creates
the another Windows registry key as shown:

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK”

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK\16”

• “HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\JDK\15.0.1”

Deployment
Java deployment technologies were deprecated in JDK 9 and removed in JDK 11.

Use the jlink tool introduced with JDK 9 to package and deploy dedicated runtimes
rather than relying on a pre-installed system JRE.

Removed Launch-Time JRE Version Selection
The ability to request a version of the JRE that isn’t the JRE being launched at launch
time is removed, starting in JDK 9.

Modern applications are typically deployed using Java Web Start (JNLP), native OS
packaging systems, or active installers. These technologies have their own methods to
manage the JREs needed, by finding or downloading and updating the required JRE,
as needed. This makes the launcher's launch-time JRE version selection obsolete.

In the previous releases, you could specify what JRE version (or range of versions)
to use when starting an application. Version selection was possible through both a
command-line option and manifest entry in the application's JAR file.

Starting in JDK 9, the java launcher is modified as follows:

• Emits an error message and exits if the -version: option is given on the
command line.

• Emits a warning message and continues if the JRE-Version manifest entry is
found in a JAR file.

See JEP 231: Remove Launch-Time JRE Version Selection.

Removed Support for Serialized Applets
Starting in JDK 9, the ability to deploy an applet as a serialized object isn’t supported.
With modern compression and JVM performance, there’s no benefit to deploying an
applet in this way.

The object attribute of the applet tag and the object and java object applet
parameter tags are ignored when starting applet.

Instead of serializing applets, use standard deployment strategies.

JNLP Specification Update
JNLP (Java Network Launch Protocol) has been updated to remove inconsistencies,
make code maintenance easier, and enhance security.

JNLP has been updated as follows:

Chapter 7
Deployment

7-9

http://openjdk.java.net/jeps/231

1. & instead of & in JNLP files.
The JNLP file syntax conforms to the XML specification and all JNLP files should
be able to be parsed by standard XML parsers.

JNLP files let you specify complex comparisons. Previously, this was done by
using the ampersand (&), but this isn’t supported in standard XML. If you’re using &
to create complex comparisons, then replace it with & in your JNLP file. &
is compatible with all versions of JNLP.

2. Comparing numeric version element types against nonnumeric version element
types.

Previously, when an int version element was compared with another version
element that couldn’t be parsed as an int, the version elements were compared
lexicographically by ASCII value.

Starting in JDK 9, if the element that can be parsed as an int is a shorter string
than the other element, it will be padded with leading zeros before being compared
lexicographically by ASCII value. This ensures there can be no circularity.

In the case where both version comparisons and a JNLP servlet are used, you
should use only numeric values to represent versions.

3. Component extensions with nested resources in java (or j2se) elements.
This is permitted in the specification. It was previously supported, but this support
wasn’t reflected in the specification.

4. FX XML extension.
The JNLP specification has been enhanced to add a type attribute to
application-desc element, and add the subelement param in application-desc
(as it already is in applet-desc).

This doesn’t cause problems with existing applications because the previous way
of specifying a JavaFX application is still supported.

See the JNLP specification updates at JSR-056.

Changes to Garbage Collection
This section describes changes to garbage collection starting in JDK 9.

Make G1 the Default Garbage Collector
The Garbage-First Garbage Collector (G1 GC) is the default garbage collector in JDK
9 and later releases.

A low-pause collector such as G1 GC should provide a better overall experience, for
most users, than a throughput-oriented collector such as the Parallel GC, which is the
JDK 8 default.

See Ergonomic Defaults for G1 GC and Tunable Defaults in Java Platform, Standard
Edition HotSpot Virtual Machine Garbage Collection Tuning Guide for more information
about tuning G1 GC.

Removed GC Options
The following GC combinations will cause your application to fail to start in JDK 9 and
later releases:

Chapter 7
Changes to Garbage Collection

7-10

https://jcp.org/aboutJava/communityprocess/maintenance/jsr056/9.html

• DefNew + CMS

• ParNew + SerialOld

• Incremental CMS

The foreground mode for CMS has also been removed. The command-
line flags that were removed are -Xincgc, -XX:+CMSIncrementalMode, -
XX:+UseCMSCompactAtFullCollection, -XX:+CMSFullGCsBeforeCompaction, and -
XX:+UseCMSCollectionPassing.

The command-line flag -XX:+UseParNewGC no longer has an effect. The ParNew flag
can be used only with CMS and CMS requires ParNew. Thus, the -XX:+UseParNewGC
flag has been deprecated and is eligible for removal in a future release.

See JEP 214: Remove GC Combinations Deprecated in JDK 8.

Removed Permanent Generation

The permanent generation was removed in JDK 8, and the related VM options cause a
warning to be printed. You should remove these options from your scripts:

• -XX:MaxPermSize=size

• -XX:PermSize=size

In JDK 9 and later releases, the JVM displays a warning like this:

Java HotSpot(TM) 64-Bit Server VM warning: Ignoring option MaxPermSize;
support was removed in 8.0

Tools that are aware of the permanent generation may have to be updated.

See JEP 122: Remove the Permanent Generation and JDK 9 Release Notes -
Removed APIs, Features, and Options .

Changes to GC Log Output
Garbage collection (GC) logging uses the JVM unified logging framework, and there
are some differences between the new and the old logs. Any GC log parsers that
you’re working with will probably need to change.

You may also need to update your JVM logging options. All GC-related logging should
use the gc tag (for example, —Xlog:gc), usually in combination with other tags. The
—XX:+PrintGCDetails and -XX:+PrintGC options have been deprecated.

See Enable Logging with the JVM Unified Logging Framework in the Java
Development Kit Tool Specifications and JEP 271: Unified GC Logging.

Chapter 7
Changes to Garbage Collection

7-11

http://openjdk.java.net/jeps/214
http://openjdk.java.net/jeps/122
https://www.oracle.com/java/technologies/javase/9-removed-features.html
https://www.oracle.com/java/technologies/javase/9-removed-features.html
https://docs.oracle.com/pls/topic/lookup?ctx=javase15&id=unified_logging
http://openjdk.java.net/jeps/271

8
Next Steps

After you have your application working on JDK 16, here are some suggestions that
can help you get the most from the Java SE Platform:

• Cross-compile to an older release of the platform using the new -–release flag in
the javac tool, if required.

• Take advantage of your IDE’s suggestions for updating your code with the latest
features.

• Find out if your code is using deprecated APIs by running the static analysis tool
jdeprscan. As already mentioned in this guide, APIs can be removed from the
JDK, but only with advance notice.

• Get familiar with new features like multi-release JAR files (see jar).

8-1

https://docs.oracle.com/pls/topic/lookup?ctx=javase15&id=javac_tool_reference
https://docs.oracle.com/pls/topic/lookup?ctx=javase15&id=jdeprscan_tool_reference
https://docs.oracle.com/pls/topic/lookup?ctx=javase15&id=jar_tool_reference

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started
	2 Significant Changes in the JDK
	Significant Changes in JDK 16 Release
	Significant Changes in JDK 15 Release
	Significant Changes in JDK 14 Release
	Significant Changes in JDK 13 Release
	Significant Changes in JDK 12 Release
	Significant Changes in JDK 11 Release

	3 Security Updates
	Security Updates in JDK 16
	Security Updates in JDK 15
	Security Updates in JDK 14
	Security Updates in JDK 13
	Security Updates in JDK 11 and JDK 12
	Security Updates in JDK 9 and JDK 10
	JCE Jurisdiction Policy File Default is Unlimited
	Create PKCS12 Keystores

	4 Removed APIs
	API Removed in Java SE 16
	APIs Removed in Java SE 15
	APIs Removed in Java SE 14
	APIs Removed in Java SE 13
	APIs Removed in Java SE 12
	APIs Removed in JDK 11
	APIs Removed in JDK 10
	APIs Removed JDK 9
	Removed java.* APIs
	Removal and Future Removal of sun.misc and sun.reflect APIs
	java.awt.peer Not Accessible
	Removed com.sun.image.codec.jpeg Package
	Removed Tools Support for Compact Profiles
	Use CLDR Locale Data by Default

	5 Removed Tools and Components
	Tools and Components Removed in JDK 16
	Tools and Components Removed and Deprecated in JDK 15
	Features and Components Removed in JDK 14
	Tools and Components Removed in JDK 13
	Tools and Components Removed in JDK 12
	Tools and Components Removed in JDK 11
	Tools and Components Removed in JDK 9 and JDK 10
	Removed Native-Header Generation Tool (javah)
	Removed JavaDB
	Removed the JVM TI hprof Agent
	Removed the jhat Tool
	Removed java-rmi.exe and java-rmi.cgi Launchers
	Removed Support for the IIOP Transport from the JMX RMIConnector
	Dropped Windows 32–bit Client VM
	Removed Java VisualVM
	Removed native2ascii Tool

	6 Preparing For Migration
	Download the Latest JDK
	Run Your Program Before Recompiling
	Update Third-Party Libraries
	Compile Your Application if Needed
	Run jdeps on Your Code

	7 Migrating From JDK 8 to Later JDK Releases
	Illegal Reflective Access
	--add-exports
	--add-opens

	New Version-String Scheme
	Changes to the Installed JDK/JRE Image
	Changed JDK and JRE Layout
	New Class Loader Implementations
	Removed rt.jar and tools.jar
	Removed Extension Mechanism
	Removed Endorsed Standards Override Mechanism
	Removed macOS-Specific Features
	Platform-Specific Desktop Features
	Removed AppleScript Engine

	Windows Registry Key Changes

	Deployment
	Removed Launch-Time JRE Version Selection
	Removed Support for Serialized Applets
	JNLP Specification Update

	Changes to Garbage Collection
	Make G1 the Default Garbage Collector
	Removed GC Options
	Changes to GC Log Output

	8 Next Steps

