
Java Platform, Standard Edition
Core Libraries

Release 17
F40864-03
October 2022

Java Platform, Standard Edition Core Libraries, Release 17

F40864-03

Copyright © 2017, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documents vii

Conventions vii

1 Java Core Libraries

2 Serialization Filtering

Addressing Deserialization Vulnerabilities 2-1

Java Serialization Filters 2-2

Filter Factories 2-3

Allow-Lists and Reject-Lists 2-4

Creating Pattern-Based Filters 2-4

Creating Custom Filters 2-6

Reading a Stream of Serialized Objects 2-6

Setting a Custom Filter for an Individual Stream 2-7

Setting a JVM-Wide Custom Filter 2-7

Setting a Custom Filter Using a Pattern 2-8

Setting a Custom Filter as a Class 2-8

Setting a Custom Filter as a Method 2-9

Creating a Filter with ObjectInputFilter Methods 2-10

Setting a Filter Factory 2-11

Setting a Filter Factory with setSerialFilterFactory 2-11

Specifying a Filter Factory in a System or Security Property 2-13

Built-in Filters 2-14

Logging Filter Actions 2-16

iii

3 Enhanced Deprecation

Deprecation in the JDK 3-1

How to Deprecate APIs 3-1

Notifications and Warnings 3-3

Running jdeprscan 3-5

4 XML Catalog API

Purpose of XML Catalog API 4-1

XML Catalog API Interfaces 4-2

Using the XML Catalog API 4-3

System Reference 4-3

Public Reference 4-5

URI Reference 4-5

Java XML Processors Support 4-7

Enable Catalog Support 4-7

Use Catalog with XML Processors 4-8

Calling Order for Resolvers 4-13

Detecting Errors 4-13

5 Creating Unmodifiable Lists, Sets, and Maps

Use Cases 5-1

Syntax 5-2

Unmodifiable List Static Factory Methods 5-2

Unmodifiable Set Static Factory Methods 5-2

Unmodifiable Map Static Factory Methods 5-3

Creating Unmodifiable Copies of Collections 5-4

Creating Unmodifiable Collections from Streams 5-5

Randomized Iteration Order 5-5

About Unmodifiable Collections 5-6

Space Efficiency 5-8

Thread Safety 5-9

6 Process API

Process API Classes and Interfaces 6-1

ProcessBuilder Class 6-2

Process Class 6-3

ProcessHandle Interface 6-3

ProcessHandle.Info Interface 6-4

iv

Creating a Process 6-4

Getting Information About a Process 6-5

Redirecting Output from a Process 6-6

Filtering Processes with Streams 6-7

Handling Processes When They Terminate with the onExit Method 6-8

Controlling Access to Sensitive Process Information 6-10

7 Preferences API

Comparing the Preferences API to Other Mechanisms 7-1

Usage Notes 7-2

Obtain Preferences Objects for an Enclosing Class 7-2

Obtain Preferences Objects for a Static Method 7-3

Atomic Updates 7-3

Determine Backing Store Status 7-4

Design FAQ 7-4

8 Java Logging Overview

Java Logging Examples 8-7

Appendix A: DTD for XMLFormatter Output 8-9

9 Java NIO

Grep NIO Example 9-4

Checksum NIO Example 9-6

Time Query NIO Example 9-7

Time Server NIO Example 9-8

Non-Blocking Time Server NIO Example 9-9

Internet Protocol and UNIX Domain Sockets NIO Example 9-11

Chmod File NIO Example 9-18

Copy File NIO Example 9-24

Disk Usage File NIO Example 9-27

User-Defined File Attributes File NIO Example 9-28

10

Java Networking

Networking System Properties 10-1

HTTP Client Properties 10-14

IPv4 and IPv6 Protocol Properties 10-17

HTTP Proxy Properties 10-18

HTTPS Proxy Properties 10-19

v

FTP Proxy Properties 10-19

SOCKS Proxy Properties 10-20

Acquiring the SOCKS User Name and Password 10-20

Other Proxy-Related Properties 10-21

UNIX Domain Sockets Properties 10-22

Other HTTP URL Stream Protocol Handler Properties 10-23

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism 10-27

Address Cache Properties 10-28

Enhanced Exception Messages 10-28

11

Pseudorandom Number Generators

Characteristics of PRNGs 11-1

Generating Pseudorandom Numbers with RandomGenerator Interface 11-2

Generating Pseudorandom Numbers in Multithreaded Applications 11-3

Dynamically Creating New Generators 11-3

Creating Stream of Generators 11-4

Choosing a PRNG Algorithm 11-4

vi

Preface

This guide provides information about the Java core libraries.

Audience
This document is for Java developers who develop applications that require functionality such
as threading, process control, I/O, monitoring and management of the Java Virtual Machine
(JVM), serialization, concurrency, and other functionality close to the JVM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
See JDK 17 Documentation.

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase17&id=homepage

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK. They
include functionality which is close to the VM and is not explicitly included in other areas,
such as security. Here you will find current information that will help you use some of the core
libraries.

Topics in this Guide

• Serialization Filtering

• Enhanced Deprecation

• XML Catalog API

• Creating Unmodifiable Lists, Sets, and Maps

• Process API

• Preferences API

• Java Logging Overview

• Java NIO

• Java Networking

• Pseudorandom Number Generators

Other Core Libraries Guides

• Internationalization Overview in Java Platform, Standard Edition Internationalization
Guide

Security Related Topics

• Serialization Filtering

• RMI:

– RMI Security Recommendations in Java Platform, Standard Edition Java Remote
Method Invocation User's Guide

– Using Custom Socket Factories with Java RMI in the Java Tutorials

• JAXP:

– JAXP Processing Limits in the Java Tutorials

– External Access Restriction Properties in the Java Tutorials

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

2
Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.

Topics:

• Addressing Deserialization Vulnerabilities

• Java Serialization Filters

• Filter Factories

• Allow-Lists and Reject-Lists

• Creating Pattern-Based Filters

• Creating Custom Filters

• Setting a Filter Factory

• Built-in Filters

• Logging Filter Actions

Addressing Deserialization Vulnerabilities
An application that accepts untrusted data and deserializes it is vulnerable to attacks. You
can create filters to screen incoming streams of serialized objects before they are
deserialized.

Inherent Dangers of Deserialization

Deserializing untrusted data, especially from an unknown, untrusted, or unauthenticated
client, is an inherently dangerous activity because the content of the incoming data stream
determines the objects that are created, the values of their fields, and the references between
them. By careful construction of the stream, an adversary can run code in arbitrary classes
with malicious intent.

For example, if object construction has side effects that change state or invoke other actions,
then those actions can compromise the integrity of application objects, library objects, and
even the Java runtime. "Gadget classes," which can perform arbitrary reflective actions such
as create classes and invoke methods on them, can be deserialized maliciously to cause a
denial of service or remote code execution.

The key to disabling deserialization attacks is to prevent instances of arbitrary classes from
being deserialized, thereby preventing the direct or indirect execution of their methods. You
can do this through serialization filters.

Java Serialization and Deserialization Overview

An object is serialized when its state is converted to a byte stream. That stream can be sent
to a file, to a database, or over a network. A Java object is serializable if its class or any of its
superclasses implements either the java.io.Serializable interface or the

2-1

java.io.Externalizable subinterface. In the JDK, serialization is used in many
areas, including Remote Method Invocation (RMI), custom RMI for interprocess
communication (IPC) protocols (such as the Spring HTTP invoker), and Java
Management Extensions (JMX).

An object is deserialized when its serialized form is converted to a copy of the object. It
is important to ensure the security of this conversion. Deserialization is code execution
because the readObject method of the class that is being deserialized can contain
custom code.

Serialization Filters

A serialization filter enables you to specify which classes are acceptable to an
application and which should be rejected. Filters also enable you to control the object
graph size and complexity during deserialization so that the object graph doesn’t
exceed reasonable limits. You can configure filters as properties or implement them
programmatically.

Note:

A serialization filter is not enabled or configured by default. Serialization
filtering doesn't occur unless you have specified the filter in a system
property or a Security Property or set it with the ObjectInputFilter
class.

Besides creating filters, you can take the following actions to help prevent
deserialization vulnerabilities:

• Do not deserialize untrusted data.

• Use SSL to encrypt and authenticate the connections between applications.

• Validate field values before assignment, for example, checking object invariants by
using the readObject method.

Note:

Built-in filters are provided for RMI. However, you should use these built-in
filters as starting points only. Configure reject-lists and/or extend the allow-list
to add additional protection for your application that uses RMI. See Built-in
Filters.

For more information about these and other strategies, see "Serialization and
Deserialization" in Secure Coding Guidelines for Java SE.

Java Serialization Filters
The Java serialization filtering mechanism screens incoming streams of serialized
objects to help improve security and robustness. Filters can validate incoming
instances of classes before they are deserialized.

As stated in JEP 290 and JEP 415, the goals of the Java serialization filtering
mechanism are to:

Chapter 2
Java Serialization Filters

2-2

https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://openjdk.java.net/jeps/290
https://openjdk.java.net/jeps/415

• Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

• Provide metrics to the filter for graph size and complexity during deserialization to
validate normal graph behaviors.

• Allow RMI-exported objects to validate the classes expected in invocations.

There are two kinds of filters:

• JVM-wide filter: Is applied to every deserialization in the JVM. However, whether and
how a JVM-wide filter validates classes in a particular deserialization depends on how it's
combined with other filters.

• Stream-specific filter: Validates classes from one specific ObjectInputStream.

You can implement a serialization filter in the following ways:

• Specify a JVM-wide, pattern-based filter with the jdk.serialFilter property: A
pattern-based filter consists of a sequence of patterns that can accept or reject the name
of specific classes, packages, or modules. It can place limits on array sizes, graph depth,
total references, and stream size. A typical use case is to add classes that have been
identified as potentially compromising the Java runtime to a reject-list. If you specify a
pattern-based filter with the jdk.serialFilter property, then you don't have to modify
your application.

• Implement a custom or pattern-based stream-specific filter with the
ObjectInputFilter API: You can implement a filter with the ObjectInputFilter API,
which you then set on an ObjectInputStream. You can create a pattern-based filter
with the ObjectInputFilter API by calling the Config.createFilter(String) method.

Note:

A serialization filter is not enabled or configured by default. Serialization filtering
doesn't occur unless you have specified the filter in a system property or a Security
Property or set it with the ObjectInputFilter class.

For every new object in the stream, the filter mechanism applies only one filter to it. However,
this filter might be a combination of filters.

In most cases, a stream-specific filter should check if a JVM-wide filter is set, especially if you
haven't specified a filter factory. If a JVM-wide filter does exist, then the stream-specific filter
should invoke it and use the JVM-wide filter’s result unless the status is UNDECIDED.

Filter Factories
A filter factory selects, chooses, or combines filters into a single filter to be used for a stream.
When you specify one, a deserialization operation uses it when it encounters a class for the
first time to determine whether to allow it. (Subsequent instances of the same class aren't
filtered.) It's implemented as a BinaryOperator<ObjectInputFilter> and specified
with the ObjectInputFilter.Config.setSerialFilterFactory method or in a
system or Security property; see Setting a Filter Factory. Whenever an
ObjectInputStream is created, the filter factory selects an ObjectInputFilter.
However, you can have a different filter created based on the characteristics of the stream
and the filter that the filter factory previously created.

Chapter 2
Filter Factories

2-3

Allow-Lists and Reject-Lists
Allow-lists and reject-lists can be implemented using pattern-based filters or custom
filters. These lists allow you to take proactive and defensive approaches to protect
your applications.

The proactive approach uses allow-lists to allow only class names that are recognized
and trusted and to reject all others. You can implement allow-lists in your code when
you develop your application, or later by defining pattern-based filters. If your
application only deals with a small set of classes then this approach can work very
well. You can implement allow-lists by specifying the names of classes, packages, or
modules that are allowed.

The defensive approach uses reject-lists to reject instances of classes that are not
trusted. Usually, reject-lists are implemented after an attack that reveals that a class is
a problem. A class name can be added to a reject-list, without a code change, by
adding it to a pattern-based filter that's specified in the jdk.serialFilter property.

Creating Pattern-Based Filters
Pattern-based filters are filters that you define without changing your application code.
You add JVM-wide filters in properties files or application-specific filters on the java
command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against the
name of a class in the stream or a resource limit. Class-based and resource limit
patterns can be combined in one filter string, with each pattern separated by a
semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

• Separate patterns by semicolons. For example:

pattern1.*;pattern2.*

• White space is significant and is considered part of the pattern.

• Put the limits first in the string. They are evaluated first regardless of where they
are in the string, so putting them first reinforces the ordering. Otherwise, patterns
are evaluated from left to right.

• A class name that matches a pattern that is preceded by ! is rejected. A class
name that matches a pattern without ! is allowed. The following filter rejects
pattern1.MyClass but allows pattern2.MyClass:

!pattern1.*;pattern2.*

• Use the wildcard symbol (*) to represent unspecified class names in a pattern as
shown in the following examples:

– To match every class name, use *
– To match every class name in mypackage, use mypackage.*

Chapter 2
Allow-Lists and Reject-Lists

2-4

– To match every class name in mypackage and its subpackages, use mypackage.**
– To match every class name that starts with text, use text*

If a class name doesn’t match any filter, then it is allowed. If you want to allow only certain
class names, then your filter must reject everything that doesn’t match. To reject all class
names other than those specified, include !* as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see JEP 290.

Pattern-Based Filter Limitations

The following are some of the limitations of pattern-based filters:

• Patterns can’t allow different sizes of arrays based on the class name.

• Patterns can’t match classes based on the supertype or interfaces of the class name.

• Patterns have no state and can’t make choices depending on the class instances
deserialized earlier in the stream.

Note:

A pattern-based filter doesn't check interfaces that are implemented by classes
being deserialized. The filter is invoked for interfaces explicitly referenced in the
stream; it isn't invoked for interfaces implemented by classes for objects being
deserialized.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A system
property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of Java,
define the jdk.serialFilter system property in the command line.

The following example shows how to limit resource usage for an individual application:

java -
Djdk.serialFilter=maxarray=100000;maxdepth=20;maxrefs=500 com.example.test.Ap
plication

Define a Pattern-Based Filter for All Applications

You can define a pattern-based, JVM-wide filter that affects every application run with a Java
runtime from $JAVA_HOME by specifying it as a Security Property. (Note that a system property
supersedes a Security Property value.) Edit the file $JAVA_HOME/conf/security/
java.security and add the pattern-based filter to the jdk.serialFilter Security
Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the pattern
might be a class name or a package with wildcard.

Chapter 2
Creating Pattern-Based Filters

2-5

http://openjdk.java.net/jeps/290

In the following example, the filter rejects one class name from a package (!
example.somepackage.SomeClass), and allows all other class names in the package:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*;

The previous example filter allows all other class names, not just those in
example.somepackage.*. To reject all other class names, add !*:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*;!
*

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the
following parameters to control the resource usage for each application:

• Maximum allowed array size. For example: maxarray=100000;
• Maximum depth of a graph. For example: maxdepth=20;
• Maximum references in a graph between objects. For example: maxrefs=500;
• Maximum number of bytes in a stream. For example: maxbytes=500000;

Creating Custom Filters
Custom filters are filters you specify in your application’s code. They are set on an
individual stream or on all streams in a process. You can implement a custom filter as
a pattern, a method, a lambda expression, or a class.

Topics

• Reading a Stream of Serialized Objects

• Setting a Custom Filter for an Individual Stream

• Setting a JVM-Wide Custom Filter

• Setting a Custom Filter Using a Pattern

• Setting a Custom Filter as a Class

• Setting a Custom Filter as a Method

• Creating a Filter with ObjectInputFilter Methods

Reading a Stream of Serialized Objects
You can set a custom filter on one ObjectInputStream, or, to apply the same filter to
every stream, set a JVM-wide filter. If an ObjectInputStream doesn’t have a filter
defined for it, the JVM-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

• For each new object in the stream and before the object is instantiated and
deserialized, the filter is called when it encounters a class for the first time.
(Subsequent instances of the same class aren't filtered.)

Chapter 2
Creating Custom Filters

2-6

• For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

• The filter can examine each class referenced in the stream, including the class of objects
to be created, supertypes of those classes, and their interfaces.

• For each array in the stream, whether it is an array of primitives, array of strings, or array
of objects, the filter is called with the array class and the array length.

• For each reference to an object already read from the stream, the filter is called so it can
check the depth, number of references, and stream length. The depth starts at 1 and
increases for each nested object and decreases when each nested call returns.

• The filter is not called for primitives or for java.lang.String instances that are
encoded concretely in the stream.

• The filter returns a status of accept, reject, or undecided.

• Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

Setting a Custom Filter for an Individual Stream
You can set a filter on an individual ObjectInputStream when the input to the stream is
untrusted and the filter has a limited set of classes or constraints to enforce. For example,
you could ensure that a stream only contains numbers, strings, and other application-
specified types.

A custom filter is set using the setObjectInputFilter method. The custom filter must be
set before objects are read from the stream.

In the following example, the setObjectInputFilter method is invoked with the
dateTimeFilter method. This filter only accepts classes from the java.time package. The
dateTimeFilter method is defined in a code sample in Setting a Custom Filter as a Method.

 LocalDateTime readDateTime(InputStream is) throws IOException {
 try (ObjectInputStream ois = new ObjectInputStream(is)) {
 ois.setObjectInputFilter(FilterClass::dateTimeFilter);
 return (LocalDateTime) ois.readObject();
 } catch (ClassNotFoundException ex) {
 IOException ioe = new StreamCorruptedException("class missing");
 ioe.initCause(ex);
 throw ioe;
 }
 }

Setting a JVM-Wide Custom Filter
You can set a JVM-wide filter that applies to every use of ObjectInputStream unless it is
overridden on a specific stream. If you can identify every type and condition that is needed by
the entire application, the filter can allow those and reject the rest. Typically, JVM-wide filters
are used to reject specific classes or packages, or to limit array sizes, graph depth, or total
graph size.

Chapter 2
Creating Custom Filters

2-7

A JVM-wide filter is set once using the methods of the
ObjectInputFilter.Config class. The filter can be an instance of a class, a
lambda expression, a method reference, or a pattern.

ObjectInputFilter filter = ...
ObjectInputFilter.Config.setSerialFilter(filter);

In the following example, the JVM-wide filter is set by using a lambda expression.

ObjectInputFilter.Config.setSerialFilter(
 info -> info.depth() > 10 ? Status.REJECTED : Status.UNDECIDED);

In the following example, the JVM-wide filter is set by using a method reference:

ObjectInputFilter.Config.setSerialFilter(FilterClass::dateTimeFilter);

Setting a Custom Filter Using a Pattern
A pattern-based custom filter, which is convenient for simple cases, can be created by
using the ObjectInputFilter.Config.createFilter method. You can create a
pattern-based filter as a system property or Security Property. Implementing a pattern-
based filter as a method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific names of classes, packages, and
modules and can place limits on array sizes, graph depth, total references, and stream
size. Patterns cannot match the names of the supertype or interfaces of the class.

In the following example, the filter allows example.File and rejects
example.Directory.

ObjectInputFilter filesOnlyFilter =
 ObjectInputFilter.Config.createFilter("example.File;!
example.Directory");

This example allows only example.File. All other class names are rejected.

ObjectInputFilter filesOnlyFilter =
 ObjectInputFilter.Config.createFilter("example.File;!*");

Setting a Custom Filter as a Class
A custom filter can be implemented as a class implementing the
java.io.ObjectInputFilter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input parameters.
However, you may implement a filter that, for example, maintains state between calls
to the checkInput method to count artifacts in the stream.

Chapter 2
Creating Custom Filters

2-8

In the following example, the FilterNumber class allows any object that is an instance of the
Number class and rejects all others.

 class FilterNumber implements ObjectInputFilter {
 public Status checkInput(FilterInfo filterInfo) {
 Class<?> clazz = filterInfo.serialClass();
 if (clazz != null) {
 return (Number.class.isAssignableFrom(clazz))
 ? ObjectInputFilter.Status.ALLOWED
 : ObjectInputFilter.Status.REJECTED;
 }
 return ObjectInputFilter.Status.UNDECIDED;
 }
 }

In the example:

• The checkInput method accepts an ObjectInputFilter.FilterInfo object. The object’s
methods provide access to the class to be checked, array size, current depth, number of
references to existing objects, and stream size read so far.

• If serialClass is not null, then the value is checked to see if the class of the object is
Number. If so, it is accepted and returns ObjectInputFilter.Status.ALLOWED. Otherwise,
it is rejected and returns ObjectInputFilter.Status.REJECTED.

• Any other combination of arguments returns ObjectInputFilter.Status.UNDECIDED.
Deserialization continues, and any remaining filters are run until the object is accepted or
rejected. If there are no other filters, the object is accepted.

Setting a Custom Filter as a Method
A custom filter can also be implemented as a method. The method reference is used instead
of an inline lambda expression.

The dateTimeFilter method that is defined in the following example is used by the code
sample in Setting a Custom Filter for an Individual Stream.

 public class FilterClass {
 static ObjectInputFilter.Status
dateTimeFilter(ObjectInputFilter.FilterInfo info) {
 Class<?> serialClass = info.serialClass();
 if (serialClass != null) {
 return serialClass.getPackageName().equals("java.time")
 ? ObjectInputFilter.Status.ALLOWED
 : ObjectInputFilter.Status.REJECTED;
 }
 return ObjectInputFilter.Status.UNDECIDED;
 }
 }

This custom filter allows only the classes found in the base module of the JDK:

 static ObjectInputFilter.Status
baseFilter(ObjectInputFilter.FilterInfo info) {

Chapter 2
Creating Custom Filters

2-9

 Class<?> serialClass = info.serialClass();
 if (serialClass != null) {
 return
serialClass.getModule().getName().equals("java.base")
 ? ObjectInputFilter.Status.ALLOWED
 : ObjectInputFilter.Status.REJECTED;
 }
 return ObjectInputFilter.Status.UNDECIDED;
 }

Creating a Filter with ObjectInputFilter Methods
The ObjectInputFilter interface includes the following static methods that enable
you to quickly create filters:

• allowFilter(Predicate<Class<?>>, ObjectInputFilter.Status)
• rejectFilter(Predicate<Class<?>>, ObjectInputFilter.Status)
• rejectUndecidedClass(ObjectInputFilter)
• merge(ObjectInputFilter, ObjectInputFilter)
The allowFilter method creates a filter based on a Predicate that takes a Class
as its argument. The created filter returns ObjectInputFilter.Status.ALLOWED if the
predicate is true. Otherwise, it returns the value of the allowFilter method’s second
argument. The following creates a filter that accepts the Integer class. All other
classes are considered undecided:

ObjectInputFilter intFilter = ObjectInputFilter.allowFilter(
 cl -> cl.equals(Integer.class),
ObjectInputFilter.Status.UNDECIDED);

The rejectFilter method is the inverse of allowFilter: It creates a filter based on
a Predicate that takes a Class as its argument. The created filter returns
ObjectInputFilter.Status.REJECTED if the predicate is true. Otherwise, it
returns the value of the rejectFilter method’s second argument. The following
creates a filter that rejects any class loaded from the application class loader:

ObjectInputFilter f = ObjectInputFilter.rejectFilter(cl ->
 cl.getClassLoader() == ClassLoader.getSystemClassLoader(),
Status.UNDECIDED);

The rejectUndecidedClass method creates a new filter based on an existing filter by
rejecting any class that the existing filter considers as undecided. The following
creates a filter based on intFilter. It accepts the Integer class but rejects all other
(undecided) classes:

ObjectInputFilter rejectUndecidedFilter =
 ObjectInputFilter.rejectUndecidedClass(intFilter);

Chapter 2
Creating Custom Filters

2-10

The merge method creates a new filter by merging two filters. The following merges the filters
intFilter and f. It accepts the Integer class but rejects any class loaded from the
application class loader:

ObjectInputFilter mergedFilter = ObjectInputFilter.merge(intFilter, f);

A merged filter follows these steps when it filters a class:

1. Return Status.REJECTED if either of its filters return Status.REJECTED.

2. Return Status.ACCEPTED if either of its filters return Status.ACCEPTED.

3. Return Status.UNDECIDED (both of its filters return Status.UNDECIDED).

The merge method is useful in filter factories. Every time a filter is set on a stream, you can
append that filter to the one that the filter factory creates with the merge method. See the
ObjectInputFilter API documentation for an example.

Note:

It's a good idea to merge the JVM-wide filter with the requested, stream-specific
filter in your filter factory. If you just return the requested filter, then you effectively
disable the JVM-wide filter, which will lead to security gaps.

Setting a Filter Factory
A filter factory is a BinaryOperator, which is a function of two operands that chooses the
filter for a stream. You can set a filter factory by calling the method
ObjectInputFilter.Config.setSerialFilterFactory or specifying it in a system or
Security property.

Note:

You can set a filter factory exactly once, either with the method
setSerialFilterFactory, in the system property jdk.serialFilterFactory,
or in the Security Property jdk.serialFilterFactory.

Topics:

• Setting a Filter Factory with setSerialFilterFactory

• Specifying a Filter Factory in a System or Security Property

Setting a Filter Factory with setSerialFilterFactory
When you set a filter factory by calling the method
ObjectInputFilter.Config.setSerialFilterFactory, the filter factory's method
BinaryOperator<ObjectInputFilter>.apply(ObjectInputFilter t, ObjectInputFilter
u) will be invoked when an ObjectInputStream is constructed and when a stream-specific
filter is set on an ObjectInputStream. The parameter t is the current filter and u is the
requested filter. When apply is first invoked, t will be null. If a JVM-wide filter has been set,

Chapter 2
Setting a Filter Factory

2-11

then when apply is first invoked, u will be the JVM-wide filter. Otherwise, u will be null.
The apply method (which you must implement yourself) returns the filter to be used
for the stream. If apply is invoked again, then the parameter t will be this returned
filter. When you set a filter with the method
ObjectInputStream.setObjectInputFilter(ObjectInputFilter), then
parameter u will be this filter.

The following example implements a simple filter factory that prints its
ObjectInputFilter parameters every time its apply method is invoked, merges
these parameters into one combined filter, then returns this merged filter.

public class SimpleFilterFactory {

 static class MySimpleFilterFactory implements
BinaryOperator<ObjectInputFilter> {
 public ObjectInputFilter apply(
 ObjectInputFilter curr, ObjectInputFilter next) {
 System.out.println("Current filter: " + curr);
 System.out.println("Requested filter: " + next);
 return ObjectInputFilter.merge(next, curr);
 }
 }

 private static byte[] createSimpleStream(Object obj) {
 ByteArrayOutputStream boas = new ByteArrayOutputStream();
 try (ObjectOutputStream ois = new ObjectOutputStream(boas)) {
 ois.writeObject(obj);
 return boas.toByteArray();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 throw new RuntimeException();
 }

 public static void main(String[] args) throws IOException {

 // Set a filter factory

 MySimpleFilterFactory contextFilterFactory = new
MySimpleFilterFactory();

ObjectInputFilter.Config.setSerialFilterFactory(contextFilterFactory);

 // Set a stream-specific filter

 ObjectInputFilter filter1 =

ObjectInputFilter.Config.createFilter("example.*;java.base/*;!*");
 ObjectInputFilter.Config.setSerialFilter(filter1);

 // Create another filter

 ObjectInputFilter intFilter = ObjectInputFilter.allowFilter(
 cl -> cl.equals(Integer.class),

Chapter 2
Setting a Filter Factory

2-12

ObjectInputFilter.Status.UNDECIDED);

 // Create input stream

 byte[] intByteStream = createSimpleStream(42);
 InputStream is = new ByteArrayInputStream(intByteStream);
 ObjectInputStream ois = new ObjectInputStream(is);
 ois.setObjectInputFilter(intFilter);

 try {
 Object obj = ois.readObject();
 System.out.println("Read obj: " + obj);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
}

This example prints output similar to the following (line breaks have been added for clarity):

Current filter: null
Requested filter: example.*;java.base/*;!*
Current filter: example.*;java.base/*;!*
Requested filter:
 merge(
 predicate(
 SimpleFilterFactory$$Lambda$8/0x0000000800c00c60@76ed5528,
 ifTrue: ALLOWED, ifFalse: UNDECIDED),
 predicate(
 SimpleFilterFactory$$Lambda$9/0x0000000800c01800@2c7b84de,
 ifTrue: REJECTED, ifFalse: UNDECIDED))
Read obj: 42

The apply method is invoked twice: when the ObjectInputStream ois is created and
when the method setObjectInputFilter is called.

Note:

• You can set a filter on an ObjectInputStream only once. An
IllegalStateException will be thrown otherwise.

• To protect against unexpected deserializations, ensure that security experts
thoroughly review how your filter factories select and combine filters.

Specifying a Filter Factory in a System or Security Property
You can set a filter factory that applies to only one application and to only a single invocation
of Java by specifying it in the jdk.serialFilterFactory system property in the command
line:

java -Djdk.serialFilterFactory=FilterFactoryClassName YourApplication

Chapter 2
Setting a Filter Factory

2-13

The value of jdk.serialFilterFactory is the class name of the filter factory to be set
before the first deserialization. The class must be public and accessible to the
application class loader (which the method
java.lang.ClassLoader.getSystemClassLoader() returns).

You can set a JVM-wide filter factory that affects every application run with a Java
runtime from $JAVA_HOME by specifying it in a Security Property. Note that a system
property supersedes a Security Property value. Edit the file $JAVA_HOME/conf/
security/java.security and specify the filter factory's class name in the
jdk.serialFilterFactory Security Property.

Built-in Filters
The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage
Collector, and Java Management Extensions (JMX) all have filters that are included in
the JDK. You should specify your own filters for the RMI Registry and the RMI
Distributed Garbage Collector to add additional protection.

Filters for RMI Registry

Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.registry.registryFilter system property to configure reject-lists
and/or extend the allow-list to add additional protection for the RMI Registry.
To protect the whole application, add the patterns to the jdk.serialFilter
global system property to increase protection for other serialization users that
do not have their own custom filters.

The RMI Registry has a built-in allow-list filter that allows objects to be bound in the
registry. It includes instances of the java.rmi.Remote, java.lang.Number,
java.lang.reflect.Proxy, java.rmi.server.UnicastRef, java.rmi.server.UID,
java.rmi.server.RMIClientSocketFactory, and
java.rmi.server.RMIServerSocketFactory classes.

The built-in filter includes size limits:

 maxarray=1000000;maxdepth=20

Supersede the built-in filter by defining a filter using the
sun.rmi.registry.registryFilter system property with a pattern. If the filter that
you define either accepts classes passed to the filter, or rejects classes or sizes, the
built-in filter is not invoked. If your filter does not accept or reject anything, the built-
filter is invoked.

Chapter 2
Built-in Filters

2-14

Filters for RMI Distributed Garbage Collector

Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.transport.dgcFilter system property to configure reject-lists and/or
extend the allow-list to add additional protection for Distributed Garbage Collector.
To protect the whole application, add the patterns to the jdk.serialFilter global
system property to increase protection for other serialization users that do not have
their own custom filters.

The RMI Distributed Garbage Collector has a built-in allow-list filter that accepts a limited set
of classes. It includes instances of the java.rmi.server.ObjID, java.rmi.server.UID,
java.rmi.dgc.VMID, and java.rmi.dgc.Lease classes.

The built-in filter includes size limits:

maxarray=1000000;maxdepth=20

Supersede the built-in filter by defining a filter using the sun.rmi.transport.dgcFilter
system property with a pattern. If the filter accepts classes passed to the filter, or rejects
classes or sizes, the built-in filter is not invoked. If the superseding filter does not accept or
reject anything, the built-filter is invoked.

Filters for JMX

Note:

Use these built-in filters as starting points only. Edit the
com.sun.management.jmxremote.serial.filter.pattern management property to
configure reject-lists and/or extend the allow-list to add additional protection for
JMX. To protect the whole application, add the patterns to the jdk.serialFilter
global system property to increase protection for other serialization users that do
not have their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. That filter is disabled by default. To enable the filter,
define the com.sun.management.jmxremote.serial.filter.pattern management property
with a pattern.

The pattern must include the types that are allowed to be sent as parameters over RMI to the
server and all types that they depend on, plus javax.management.ObjectName and
java.rmi.MarshalledObject types. For example, to limit the allowed set of classes to Open
MBean types and the types that they depend on, add the following line to
management.properties file:

com.sun.management.jmxremote.serial.filter.pattern=java.lang.*;java.math.BigI
nteger;java.math.BigDecimal;java.util.*;javax.management.openmbean.*;javax.ma
nagement.ObjectName;java.rmi.MarshalledObject;!*

Chapter 2
Built-in Filters

2-15

Logging Filter Actions
You can turn on logging to record the initialization, rejections, and acceptances of calls
to serialization filters. Use the log output as a diagnostic tool to see what's being
deserialized, and to confirm your settings when you configure allow-lists and reject-
lists.

When logging is enabled, filter actions are logged to the java.io.serialization
logger.

To enable serialization filter logging, edit the $JDK_HOME/conf/logging.properties
file.

To log calls that are rejected, add

java.io.serialization.level = FINE

To log all filter results, add

java.io.serialization.level = FINEST

Chapter 2
Logging Filter Actions

2-16

3
Enhanced Deprecation

The semantics of what deprecation means includes whether an API may be removed in the
near future.

If you are a library maintainer, you can take advantage of the updated deprecation syntax to
inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the jdeprscan tool to find uses of
deprecated JDK API elements in your applications or libraries.

Topics

• Deprecation in the JDK

• How to Deprecate APIs

• Notifications and Warnings

• Running jdeprscan

Deprecation in the JDK
Deprecation is a notification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:

• The API is dangerous (for example, the Thread.stop method).

• There is a simple rename (for example, AWT Component.show/hide replaced by
setVisible).

• A newer, better API can be used instead.

• The API is going to be removed.

In prior releases, APIs were deprecated but rarely ever removed. Starting with JDK 9, APIs
may be marked as deprecated for removal. This indicates that the API is eligible to be
removed in the next release of the JDK platform. If your application or library consumes any
of these APIs, then you should plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated API page
in the API specification.

How to Deprecate APIs
Deprecating an API requires using two different mechanisms: the @Deprecated annotation
and the @deprecated JavaDoc tag.

The @Deprecated annotation marks an API in a way that is recorded in the class file and is
available at runtime. This allows various tools, such as javac and jdeprscan, to detect and
flag usage of deprecated APIs. The @deprecated JavaDoc tag is used in documentation of

3-1

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

deprecated APIs, for example, to describe the reason for deprecation, and to suggest
alternative APIs.

Note the capitalization: the annotation starts with an uppercase D and the JavaDoc tag
starts with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration
with @Deprecated. The annotation contains these elements:

• @Deprecated(since="<version>")
– <version> identifies the version in which the API was deprecated. This is for

informational purposes. The default is the empty string ("").

• @Deprecated(forRemoval=<boolean>)
– forRemoval=true indicates that the API is subject to removal in a future

release.

– forRemoval=false recommends that code should no longer use this API;
however, there is no current intent to remove the API. This is the default value.

For example: @Deprecated(since="9", forRemoval=true)
The @Deprecated annotation causes the JavaDoc-generated documentation to be
marked with one of the following, wherever that program element appears:

• Deprecated.

• Deprecated, for removal: This API element is subject to removal in a future
version.

The javadoc tool generates a page named deprecated-list.html containing the
list of deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @Deprecated annotation from the
java.lang.Thread class:

public class Thread implements Runnable {
 ...
 @Deprecated(since="1.2")
 public final void stop() {
 ...
 }
 ...

Semantics of Deprecation

The two elements of the @Deprecated annotation give developers the opportunity to
clarify what deprecation means for their exported APIs (which are APIs that are
provided by a library that are accessible to code outside of that library, such as
applications or other libraries).

For the JDK platform:

• @Deprecated(forRemoval=true) indicates that the API is eligible to be
removed in a future release of the JDK platform.

Chapter 3
How to Deprecate APIs

3-2

• @Deprecated(since="<version>") contains the JDK version string that indicates
when the API element was deprecated, for those deprecated in JDK 9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the
@Deprecated annotation. You should determine and communicate your policy around API
removals. For example, if you release a new library every six weeks, then you may choose to
deprecate an API for removal, but not remove it for several months to give your customers
time to migrate.

Using the @deprecated JavaDoc Tag

Use the @deprecated tag in the JavaDoc comment of any deprecated program element to
indicate that it should no longer be used (even though it may continue to work). This tag is
valid in all class, method, or field documentation comments. The @deprecated tag must be
followed by a space or a newline. In the paragraph following the @deprecated tag, explain
why the item was deprecated, and suggest what to use instead. Mark the text that refers to
new versions of the same functionality with an @link tag.

When it encounters an @deprecated tag, the javadoc tool moves the text following the
@deprecated tag to the front of the description and precedes it with a warning. For example,
this source:

 /**
 * ...
 * @deprecated This method does not properly convert bytes into
 * characters. As of JDK 1.1, the preferred way to do this is via the
 * {@code String} constructors that take a {@link
 * java.nio.charset.Charset}, charset name, or that use the platform's
 * default charset.
 * ...
 */
 @Deprecated(since="1.1")
 public String(byte ascii[], int hibyte) {
 ...

generates the following output:

@Deprecated(since="1.1")
public String(byte[] ascii,
 int hibyte)
Deprecated. This method does not properly convert bytes into characters. As
of
JDK 1.1, the preferred way to do this is via the String constructors that
take a
Charset, charset name, or that use the platform's default charset.

If you use the @deprecated JavaDoc tag without the corresponding @Deprecated
annotation, a warning is generated.

Notifications and Warnings
When an API is deprecated, developers must be notified. The deprecated API may cause
problems in your code, or, if it is eventually removed, cause failures at run time.

Chapter 3
Notifications and Warnings

3-3

The Java compiler generates warnings about deprecated APIs. There are options to
generate more information about warnings, and you can also suppress deprecation
warnings.

Compiler Deprecation Warnings

If the deprecation is forRemoval=false, the Java compiler generates an "ordinary
deprecation warning". If the deprecation is forRemoval=true, the compiler generates a
"removal warning".

The two kinds of warnings are controlled by separate -Xlint flags: -
Xlint:deprecation and -Xlint:removal. The javac -Xlint:removal option is
enabled by default, so removal warnings are shown.

The warnings can also be turned off independently (note the "–"): -Xlint:-
deprecation and -Xlint:-removal.

This is an example of an ordinary deprecation warning.

$ javac src/example/DeprecationExample.java
Note: src/example/DeprecationExample.java uses or overrides a
deprecated API.
Note: Recompile with -Xlint:deprecation for details.

Use the javac -Xlint:deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/example/DeprecationExample.java
src/example/DeprecationExample.java:12: warning: [deprecation]
getSelectedValues() in JList has been deprecated
 Object[] values = jlist.getSelectedValues();
 ^
1 warning

Here is an example of a removal warning.

public class RemovalExample {
 public static void main(String[] args) {
 System.runFinalizersOnExit(true);
 }
}
$ javac RemovalExample.java
RemovalExample.java:3: warning: [removal] runFinalizersOnExit(boolean)
in System
has been deprecated and marked for removal
 System.runFinalizersOnExit(true);
 ^
1 warning
==========

Suppressing Deprecation Warnings

The javac -Xlint options control warnings for all files compiled in a particular run of
javac. You may have identified specific locations in source code that generate

Chapter 3
Notifications and Warnings

3-4

warnings that you no longer want to see. You can use the @SuppressWarnings annotation to
suppress warnings whenever that code is compiled. Place the @SuppressWarnings annotation
at the declaration of the class, method, field, or local variable that uses a deprecated API.

The @SuppressWarnings options are:

• @SuppressWarnings("deprecation") — Suppresses only the ordinary deprecation
warnings.

• @SuppressWarnings("removal") — Suppresses only the removal warnings.

• @SuppressWarnings({"deprecation","removal"}) — Suppresses both types of
warnings.

Here’s an example of suppressing a warning.

 @SuppressWarnings("deprecation")
 Object[] values = jlist.getSelectedValues();

With the @SuppressWarnings annotation, no warnings are issued for this line, even if
warnings are enabled on the command line.

Running jdeprscan
jdeprscan is a static analysis tool that reports on an application’s use of deprecated JDK API
elements. Run jdeprscan to help identify possible issues in compiled class files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However, if you
don’t recompile with every JDK release, or if the warnings were suppressed, or if you depend
on third-party libraries that are distributed as binary artifacts, then you should run jdeprscan.

It’s important to discover dependencies on deprecated APIs before the APIs are removed
from the JDK. If the binary uses an API that is deprecated for removal in the current JDK
release, and you don’t recompile, then you won’t get any notifications. When the API is
removed in a future JDK release, then the binary will simply fail at runtime. jdeprscan lets
you detect such usage now, well before the API is removed.

For the complete syntax of how to run the tool and how to interpret the output, see The
jdeprscan Command in the Java Development Kit Tool Specifications.

Chapter 3
Running jdeprscan

3-5

4
XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduced a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS Standard
V1.1, 7 October 2005. This chapter of the Core Libraries Guide describes the API, its support
by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and the
support by the JDK XML processors makes it easier to configure your processors or the
entire environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see XML Catalogs, OASIS Standard V1.1, 7 October 2005.
The XML catalogs under the directory /etc/xml/catalog on some Linux distributions can
also be a good reference for creating a local catalog.

Purpose of XML Catalog API
The XML Catalog API and the Java XML processors provide an option for developers and
system administrators to manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a standard
designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that Java XML
processors need to retrieve to process the documents. External resources can cause a
problem for the applications or the system. The Catalog API and the Java XML processors
provide an option for developers and system administrators to manage these external
resources.

External resources can cause a problem for the application or the system in these areas:

• Availability: If a resource is remote, then XML processors must be able to connect to the
remote server hosting the resource. Even though connectivity is rarely an issue, it’s still a
factor in the stability of an application. Too many connections can be a hazard to servers
that hold the resources, and this in turn could affect your applications. See Use Catalog
with XML Processors for an example that solves this issue using the XML Catalog API.

• Performance. Although in most cases connectivity isn’t an issue, a remote fetch can
still cause a performance issue for an application. Furthermore, there may be multiple
applications on the same system attempting to resolve the same resource, and this would
be a waste of system resources.

• Security: Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

• Manageability: If a system processes a large number of XML documents, then externally
referenced documents, whether local or remote, can become a maintenance hassle.

4-1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

How XML Catalog API Addresses Problems Caused by External Resources

Application developers can create a local catalog of all external references for the
application, and let the Catalog API resolve them for the application. This not only
avoids remote connections but also makes it easier to manage these resources.

System administrators can establish a local catalog for the system and configure the
Java VM to use the catalog. Then, all of the applications on the system may share the
same catalog without any code changes to the applications, assuming that they’re
compatible with Java SE 9. To establish a catalog, you may take advantage of existing
catalogs such as those included with some Linux distributions.

XML Catalog API Interfaces
Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces

The XML Catalog API defines the following interfaces:

• The Catalog interface represents an entity catalog as defined by XML Catalogs,
OASIS Standard V1.1, 7 October 2005. A Catalog object is immutable. After it’s
created, the Catalog object can be used to find matches in a system, public, or
uri entry. A custom resolver implementation may find it useful to locate local
resources through a catalog.

• The CatalogFeatures class provides the features and properties the Catalog API
supports, including javax.xml.catalog.files, javax.xml.catalog.defer,
javax.xml.catalog.prefer, and javax.xml.catalog.resolve.

• The CatalogManager class manages the creation of XML catalogs and catalog
resolvers.

• The CatalogResolver interface is a catalog resolver that implements
SAX EntityResolver, StAX XMLResolver, DOM LS LSResourceResolver used by
schema validation, and transform URIResolver. This interface resolves external
references using catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the CatalogFeatures class. The
features are defined at the API and system levels, which means that they can be set
through the API, system properties, and JAXP properties. To set a feature through the
API, use the CatalogFeatures class.

The following code sets javax.xml.catalog.resolve to continue so that the
process continues even if no match is found by the CatalogResolver:

CatalogFeatures f = CatalogFeatures.builder().with(Feature.RESOLVE,
"continue").build();

Chapter 4
XML Catalog API Interfaces

4-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

To set this continue functionality system-wide, use the Java command line or
System.setProperty method:

System.setProperty(Feature.RESOLVE.getPropertyName(), "continue");

To set this continue functionality for the whole JVM instance, enter a line in the
jaxp.properties file:

javax.xml.catalog.resolve = "continue"

The jaxp.properties file is typically in the $JAVA_HOME/conf directory.

The resolve property, as well as the prefer and defer properties, can be set as an attribute
of the catalog or group entry in a catalog file. For example, in the following catalog, the
resolve attribute is set with the value continue. The attribute can also be set on the group
entry as follows:

<?xml version="1.0" encoding="UTF-8"?>
<catalog
 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 resolve="continue"
 xml:base="http://local/base/dtd/">
 <group resolve="continue">
 <system
 systemId="http://remote/dtd/alice/docAlice.dtd"
 uri="http://local/dtd/docAliceSys.dtd"/>
 </group>
</catalog>

Properties set in a narrower scope override those that are set in a wider one. Therefore, a
property set through the API always takes preference.

Using the XML Catalog API
Resolve DTD, entity, and alternate URI references in XML source documents using the
various entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system
entries, including system, rewriteSystem, and systemSuffix entries, are used for resolving
DTD and entity references in XML source documents, whereas uri entries are for alternate
URI references.

System Reference
Use a CatalogResolver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a CatalogResolver object to locate a local
resource.

Chapter 4
Using the XML Catalog API

4-3

Consider the following XML file:

<?xml version="1.0"?>
<!DOCTYPE catalogtest PUBLIC "-//OPENJDK//XML CATALOG DTD//1.0"
 "http://openjdk.java.net/xml/catalog/dtd/example.dtd">

<catalogtest>
 Test &example; entry
</catalogtest>

The example.dtd file defines an entity example:

<!ENTITY example "system">

However, the URI to the example.dtd file in the XML file doesn't need to exist. The
purpose is to provide a unique identifier for the CatalogResolver object to locate a
local resource. To do this, create a catalog entry file called catalog.xml with a system
entry to refer to the local resource:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system
 systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
 uri="example.dtd"/>
</catalog>

With this catalog entry file and the system entry, all you need to do is get a default
CatalogFeatures object and set the URI to the catalog entry file to create a
CatalogResolver object:

CatalogResolver cr =
 CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

catalogUri must be a valid URI. For example:

URI.create("file:///users/auser/catalog/catalog.xml")

The CatalogResolver object can now be used as a JDK XML resolver. In the following
example, it’s used as a SAX EntityResolver:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
XMLReader reader = factory.newSAXParser().getXMLReader();
reader.setEntityResolver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes
it easy for the resolver to find the match with exactly the same systemId in the
catalog's system entry.

Chapter 4
Using the XML Catalog API

4-4

If the system identifier in the XML is relative, then it may complicate the matching process
because the XML processor may have made it absolute with a specified base URI or the
source file's URI. In that situation, the systemId of the system entry would need to match the
anticipated absolute URI. An easier solution is to use the systemSuffix entry, for example:

<systemSuffix systemIdSuffix="example.dtd" uri="example.dtd"/>

The systemSuffix entry matches any reference that ends with example.dtd in an XML
source and resolves it to a local example.dtd file as specified in the uri attribute. You may
add more to the systemId to ensure that it’s unique or the correct reference. For example,
you may set the systemIdSuffix to xml/catalog/dtd/example.dtd, or rename the id in both
the XML source file and the systemSuffix entry to make it a unique match, for example
my_example.dtd.

The URI of the system entry can be absolute or relative. If the external resources have a fixed
location, then an absolute URI is more likely to guarantee uniqueness. If the external
resources are placed relative to your application or the catalog entry file, then a relative URI
may be more effective, allowing the deployment of your application without knowing where it’s
installed. Such a relative URI then is resolved using the base URI or the catalog file’s URI if
the base URI isn’t specified. In the previous example, example.dtd is assumed to have been
placed in the same directory as the catalog file.

Public Reference
Use a public entry instead of a system entry to find a desired resource.

If no system entry matches the desired resource, and the PREFER property is specified to
match public, then a public entry can do the same as a system entry. Note that public is
the default setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as "-//
OPENJDK//XML CATALOG DTD//1.0", a public entry can be written as follows in the catalog
entry file:

<public publicId="-//OPENJDK//XML CATALOG DTD//1.0" uri="example.dtd"/>

When you create and use a CatalogResolver object with this entry file, the example.dtd
resolves through the publicId property. See System Reference for an example of creating a
CatalogResolver object.

URI Reference
Use a uri entry to find a desired resource.

The URI type entries, including uri, rewriteURI, and uriSuffix, can be used in a similar
way as the system type entries.

Using URI Entries

While the XML Catalog Standard gives a preference to the system type entries for resolving
DTD references, and uri type entries for everything else, the Java XML Catalog API doesn’t

Chapter 4
Using the XML Catalog API

4-5

make that distinction. This is because the specifications for the existing Java XML
Resolvers, such as XMLResolver and LSResourceResolver, doesn’t give a preference.
The uri type entries, including uri, rewriteURI, and uriSuffix, can be used in a
similar way as the system type entries. The uri elements are defined to associate an
alternate URI reference with a URI reference. In the case of system reference, this is
the systemId property.

You may therefore replace the system entry with a uri entry in the following example,
although system entries are more generally used for DTD references.

<system
 systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
 uri="example.dtd"/>

A uri entry would look like the following:

<uri name="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>

While system entries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri
entry to resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines the
CatalogResolver interface that extends Java XML Resolvers including
EntityResolver, XMLResolver, URIResolver, and LSResolver. Therefore, a
CatalogResolver object can be used by SAX, DOM, StAX, Schema Validation, as well
as XSLT Transform. The following code creates a CatalogResolver object with default
feature settings:

CatalogResolver cr =
 CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

The code then registers this CatalogResolver object on a TransformerFactory class
where a URIResolver object is expected:

TransformerFactory factory = TransformerFactory.newInstance();
factory.setURIResolver(cr);

Alternatively the code can register the CatalogResolver object on the Transformer
object:

Transformer transformer = factory.newTransformer(xslSource);
transformer.setURIResolver(cur);

Assuming the XSL source file contains an import element to import the
xslImport.xsl file into the XSL source:

<xsl:import href="pathto/xslImport.xsl"/>

Chapter 4
Using the XML Catalog API

4-6

To resolve the import reference to where the import file is actually located, a
CatalogResolver object should be set on the TransformerFactory class before creating the
Transformer object, and a uri entry such as the following must be added to the catalog entry
file:

<uri name="pathto/xslImport.xsl" uri="xslImport.xsl"/>

The discussion about absolute or relative URIs and the use of systemSuffix or uriSuffix
entries with the system reference applies to the uri entries as well.

Java XML Processors Support
Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML processors, including
SAX and DOM (javax.xml.parsers), and StAX parsers (javax.xml.stream), schema
validation (javax.xml.validation), and XML transformation (javax.xml.transform).

This means that you don’t need to create a CatalogResolver object outside an XML
processor. Catalog files can be registered directly to the Java XML processor, or specified
through system properties, or in the jaxp.properties file. The XML processors perform
the mappings through the catalogs automatically.

Enable Catalog Support
To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG feature
must be set to true, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported based on
the value of the USE_CATALOG feature. By default, USE_CATALOG is set to true for all JDK XML
Processors. The Java XML processor further checks for the availability of a catalog file, and
attempts to use the XML Catalog API only when the USE_CATALOG feature is true and a
catalog is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property, and the
jaxp.properties file. For example, if USE_CATALOG is set to true and it’s desirable to disable
the catalog support for a particular processor, then this can be done by setting the
USE_CATALOG feature to false through the processor's setFeature method. The following
code sets the USE_CATALOG feature to the specified value useCatalog for an XMLReader object:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
XMLReader reader = spf.newSAXParser().getXMLReader();
if (setUseCatalog) {
 reader.setFeature(XMLConstants.USE_CATALOG, useCatalog);
}

Chapter 4
Java XML Processors Support

4-7

On the other hand, if the entire environment must have the catalog turned off, then this
can be done by configuring the jaxp.properties file with a line:

 javax.xml.useCatalog = false;

javax.xml.catalog.files

The javax.xml.catalog.files property is defined by the XML Catalog API and
supported by the JDK XML processors, along with other catalog features. To employ
the catalog feature on a parsing, validating, or transforming process, all that’s needed
is to set the FILES property on the processor, through its system property or using the
jaxp.properties file.

Catalog URI

The catalog file reference must be a valid URI, such as file:///users/auser/
catalog/catalog.xml.

The URI reference in a system or a URI entry in the catalog file can be absolute or
relative. If they’re relative, then they are resolved using the catalog file's URI or a base
URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an
example), system and uri entries both work when using the JDK XML Processors'
native support of the CatalogFeatures class. In general, system entries are searched
first, then public entries, and if no match is found then the processor continues
searching uri entries. Because both system and uri entries are supported, it’s
recommended that you follow the custom of XML specifications when selecting
between using a system or uri entry. For example, DTDs are defined with a systemId
and therefore system entries are preferable.

Use Catalog with XML Processors
Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following
sections describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FILES property on a DocumentBuilderFactory
instance as demonstrated in the following code:

static final String CATALOG_FILE =
CatalogFeatures.Feature.FILES.getPropertyName();
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
if (catalog != null) {
 dbf.setAttribute(CATALOG_FILE, catalog);
}

Chapter 4
Java XML Processors Support

4-8

Note that catalog is a URI to a catalog file. For example, it could be something like
"file:///users/auser/catalog/catalog.xml".

It’s best to deploy resolving target files along with the catalog entry file, so that the files can
be resolved relative to the catalog file. For example, if the following is a uri entry in the
catalog file, then the XSLImport_html.xsl file will be located at /users/auser/catalog/
XSLImport_html.xsl.

<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXParser instance:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
spf.setXIncludeAware(true);
SAXParser parser = spf.newSAXParser();
parser.setProperty(CATALOG_FILE, catalog);

In the prior sample code, note the statement spf.setXIncludeAware(true). When this is
enabled, any XInclude is resolved using the catalog as well.

Given an XML file XI_simple.xml:

<simple>
 <test xmlns:xinclude="http://www.w3.org/2001/XInclude">
 <latin1>
 <firstElement/>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>
 <insideChildren/>
 <another>
 <deeper>text</deeper>
 </another>
 </latin1>
 <test2>
 <xinclude:include href="pathto/XI_test2.xml"/>
 </test2>
 </test>
</simple>

Additionally, given another XML file XI_test2.xml:

<?xml version="1.0"?>
<!-- comment before root -->
<!DOCTYPE red SYSTEM "pathto/XI_red.dtd">
<red xmlns:xinclude="http://www.w3.org/2001/XInclude">
 <blue>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>
 </blue>
</red>

Chapter 4
Java XML Processors Support

4-9

Assume another text file, XI_text.xml, contains a simple string, and the file
XI_red.dtd is as follows:

 <!ENTITY red "it is read">

In these XML files, there is an XInclude element inside an XInclude element, and a
reference to a DTD. Assuming they are located in the same folder along with the
catalog file CatalogSupport.xml, add the following catalog entries to map them:

<uri name="pathto/XI_text.xml" uri="XI_text.xml"/>
<uri name="pathto/XI_test2.xml" uri="XI_test2.xml"/>
<system systemId="pathto/XI_red.dtd" uri="XI_red.dtd"/>

When the parser.parse method is called to parse the XI_simple.xml file, it’s able to
locate the XI_test2.xml file in the XI_simple.xml file, and the XI_text.xml file and
the XI_red.dtd file in the XI_test2.xml file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the
XMLInputFactory instance before creating the XMLStreamReader object:

XMLInputFactory factory = XMLInputFactory.newInstance();
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
XMLStreamReader streamReader =
 factory.createXMLStreamReader(xml, new FileInputStream(xml));

When the XMLStreamReader streamReader object is used to parse the XML source,
external references in the source are then resolved in accordance with the specified
entries in the catalog.

Note that unlike the DocumentBuilderFactory class that has both setFeature and
setAttribute methods, the XMLInputFactory class defines only a setProperty
method. The XML Catalog API features including XMLConstants.USE_CATALOG are all
set through this setProperty method. For example, to disable USE_CATALOG on a
XMLStreamReader object, you can do the following:

factory.setProperty(XMLConstants.USE_CATALOG, false);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD import
and include, set the catalog on the SchemaFactory object:

SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
Schema schema = factory.newSchema(schemaFile);

Chapter 4
Java XML Processors Support

4-10

The XMLSchema schema document contains references to external DTD:

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "pathto/
XMLSchema.dtd" [
 ...
]>

And to xsd import:

<xs:import
 namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/pathto/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 Get access to the xml: attribute groups for xml:lang
 as declared on 'schema' and 'documentation' below
 </xs:documentation>
 </xs:annotation>
</xs:import>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

• Include these entries in the catalog set on the SchemaFactory object:

<public publicId="-//W3C//DTD XMLSCHEMA 200102//EN" uri="XMLSchema.dtd"/>
<!-- XMLSchema.dtd refers to datatypes.dtd -->
<systemSuffix systemIdSuffix="datatypes.dtd" uri="datatypes.dtd"/>
<uri name="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

• Download the source files XMLSchema.dtd, datatypes.dtd, and xml.xsd and save them
along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that you
prefer. In the prior case, instead of the uri entry, you could also use either one of the
following:

• A public entry, because the namespace attribute in the import element is treated as the
publicId element:

<public publicId="http://www.w3.org/XML/1998/namespace" uri="xml.xsd"/>

• A system entry:

<system systemId="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

Chapter 4
Java XML Processors Support

4-11

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

Note:

When experimenting with the XML Catalog API, it might be useful to ensure
that none of the URIs or system IDs used in your sample files points to any
actual resources on the internet, and especially not to the W3C server. This
lets you catch mistakes early should the catalog resolution fail, and avoids
putting a burden on W3C servers, thus freeing them from any unnecessary
connections. All the examples in this topic and other related topics about the
XML Catalog API, have an arbitrary string "pathto" added to any URI for
that purpose, so that no URI could possibly resolve to an external W3C
resource.

To use the catalog to resolve any external resources in an XML source to be validated,
set the catalog on the Validator object:

SchemaFactory schemaFactory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = schemaFactory.newSchema();
Validator validator = schema.newValidator();
validator.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
StreamSource source = new StreamSource(new File(xml));
validator.validate(source);

Use Catalog with Transform

To use the XML Catalog API in a XSLT transform process, set the catalog file on the
TransformerFactory object.

TransformerFactory factory = TransformerFactory.newInstance();
factory.setAttribute(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
Transformer transformer = factory.newTransformer(xslSource);

If the XSL source that the factory is using to create the Transformer object contains
DTD, import, and include statements similar to these:

<!DOCTYPE HTMLlat1 SYSTEM "http://openjdk.java.net/xml/catalog/dtd/
XSLDTD.dtd">
<xsl:import href="pathto/XSLImport_html.xsl"/>
<xsl:include href="pathto/XSLInclude_header.xsl"/>

Then the following catalog entries can be used to resolve these references:

<system
 systemId="http://openjdk.java.net/xml/catalog/dtd/XSLDTD.dtd"
 uri="XSLDTD.dtd"/>
<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>
<uri name="pathto/XSLInclude_header.xsl" uri="XSLInclude_header.xsl"/>

Chapter 4
Java XML Processors Support

4-12

Calling Order for Resolvers
The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the CatalogResolver interface) can be used to resolve
external references by the JDK XML processors to which a catalog file has been set.
However, if a custom resolver is also provided, then it’s always be placed ahead of the
catalog resolver. This means that a JDK XML processor first calls a custom resolver to
attempt to resolve external resources. If the resolution is successful, then the processor skips
the catalog resolver and continues. Only when there’s no custom resolver or if the resolution
by a custom resolver returns null, does the processor then call the catalog resolver.

For applications that use custom resolvers, it’s therefore safe to set an additional catalog to
resolve any resources that the custom resolvers don’t handle. For existing applications, if
changing the code isn’t feasible, then you may set a catalog through the system property or
jaxp.properties file to redirect external references to local resources knowing that such a
setting won’t interfere with existing processes that are handled by custom resolvers.

Detecting Errors
Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry files
without issuing an error, which makes it harder to detect configuration issues.

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time, setting the
RESOLVE value to strict, and checking for a CatalogException exception when no match is
found.

Table 4-1 RESOLVE Settings

RESOLVE Value CatalogResolver Behavior Description

strict (default) Throws a CatalogException if
no match is found with a
specified reference

An unmatched reference may
indicate a possible error in the
catalog or in setting the catalog.

continue Returns quietly This is useful in a production
environment where you want the
XML processors to continue
resolving any external references
not covered by the catalog.

ignore Returns quietly For processors such as SAX,
that allow skipping the external
references, the ignore value
instructs the
CatalogResolver object to
return an empty InputSource
object, thus skipping the external
reference.

Chapter 4
Calling Order for Resolvers

4-13

5
Creating Unmodifiable Lists, Sets, and Maps

Convenience static factory methods on the List, Set, and Map interfaces let you easily
create unmodifiable lists, sets, and maps.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
After you create an unmodifiable instance of a collection, it holds the same data as long as a
reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future
modifications. This adds overhead to the data that is stored in the modifiable collection. A
collection that is unmodifiable does not need this extra bookkeeping data. Because the
collection never needs to be modified, the data contained in the collection can be packed
much more densely. Unmodifiable collection instances generally consume much less memory
than modifiable collection instances that contain the same data.

Topics

• Use Cases

• Syntax

• Creating Unmodifiable Copies of Collections

• Creating Unmodifiable Collections from Streams

• Randomized Iteration Order

• About Unmodifiable Collections

• Space Efficiency

• Thread Safety

Use Cases
Whether to use an unmodifiable collection or a modifiable collection depends on the data in
the collection.

An unmodifiable collection provides space efficiency benefits and prevents the collection from
accidentally being modified, which might cause the program to work incorrectly. An
unmodifiable collection is recommended for the following cases:

• Collections that are initialized from constants that are known when the program is written

• Collections that are initialized at the beginning of a program from data that is computed or
is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program, a
modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were done
with an unmodifiable collection, a complete copy would have to be made to add or remove a
single element, which usually has unacceptable overhead.

5-1

Syntax
The API for these collections is simple, especially for small numbers of elements.

Topics

• Unmodifiable List Static Factory Methods

• Unmodifiable Set Static Factory Methods

• Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods
The List.of static factory methods provide a convenient way to create unmodifiable
lists.

A list is an ordered collection in which duplicate elements are allowed. Null values are
not allowed.

The syntax of these methods is:

List.of()
List.of(e1)
List.of(e1, e2) // fixed-argument form overloads up to 10
elements
List.of(elements...) // varargs form supports an arbitrary number of
elements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c");
stringList = Collections.unmodifiableList(stringList);

In JDK 9 and later:

List<String> stringList = List.of("a", "b", "c");

See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods
The Set.of static factory methods provide a convenient way to create unmodifiable
sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is
detected, then an IllegalArgumentException is thrown. Null values are not allowed.

Chapter 5
Syntax

5-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

The syntax of these methods is:

Set.of()
Set.of(e1)
Set.of(e1, e2) // fixed-argument form overloads up to 10 elements
Set.of(elements...) // varargs form supports an arbitrary number of
elements or an array

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Collections.unmodifiableSet(stringSet);

In JDK 9 and later:

Set<String> stringSet = Set.of("a", "b", "c");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods
The Map.of and Map.ofEntries static factory methods provide a convenient way to create
unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
IllegalArgumentException is thrown. Each key is associated with one value. Null cannot be
used for either Map keys or values.

The syntax of these methods is:

Map.of()
Map.of(k1, v1)
Map.of(k1, v1, k2, v2) // fixed-argument form overloads up to 10 key-
value pairs
Map.ofEntries(entry(k1, v1), entry(k2, v2),...)
 // varargs form supports an arbitrary number of Entry objects or an array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap.put("a", 1);
stringMap.put("b", 2);
stringMap.put("c", 3);
stringMap = Collections.unmodifiableMap(stringMap);

In JDK 9 and later:

Map<String, Integer> stringMap = Map.of("a", 1, "b", 2, "c", 3);

Chapter 5
Syntax

5-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the
Map.entry method, and pass those objects to the Map.ofEntries method. For
example:

import static java.util.Map.entry;
Map <Integer, String> friendMap = Map.ofEntries(
 entry(1, "Tom"),
 entry(2, "Dick"),
 entry(3, "Harry"),
 ...
 entry(99, "Mathilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections
Let’s consider the case where you create a collection by adding elements and
modifying it, and then at some point, you want an unmodifiable snapshot of that
collection. Create the copy using the copyOf family of methods.

For example, suppose you have some code that gathers elements from several
places:

 List<Item> list = new ArrayList<>();
 list.addAll(getItemsFromSomewhere());
 list.addAll(getItemsFromElsewhere());
 list.addAll(getItemsFromYetAnotherPlace());

It's inconvenient to create an unmodifiable collection using the List.of method.
Doing this would require creating an array of the right size, copying elements from the
list into the array, and then calling List.of(array) to create the unmodifiable
snapshot. Instead, do it in one step using the copyOf static factory method:

 List<Item> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set.copyOf
and Map.copyOf. Because the parameter of List.copyOf and Set.copyOf is
Collection, you can create an unmodifiable List that contains the elements of a
Set and an unmodifiable Set that contains the elements of a List. If you use
Set.copyOf to create a Set from a List, and the List contains duplicate elements,
an exception is not thrown. Instead, an arbitrary one of the duplicate elements is
included in the resulting Set.

If the collection you want to copy is modifiable, then the copyOf method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the
same elements as the original. If elements are added to or removed from the original
collection, that won't affect the copy.

If the original collection is already unmodifiable, then the copyOf method simply
returns a reference to the original collection. The point of making a copy is to isolate

Chapter 5
Creating Unmodifiable Copies of Collections

5-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

the returned collection from changes to the original one. But if the original collection cannot
be changed, there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that change
causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams
The Streams library includes a set of terminal operations known as Collectors. A Collector
is most often used to create a new collection that contains the elements of the stream. The
java.util.stream.Collectors class has Collectors that create new unmodifiable
collections from the elements of the streams.

If you want to guarantee that the returned collection is unmodifiable, you should use one of
the toUnmodifiable- collectors. These collectors are:

 Collectors.toUnmodifiableList()
 Collectors.toUnmodifiableSet()
 Collectors.toUnmodifiableMap(keyMapper, valueMapper)
 Collectors.toUnmodifiableMap(keyMapper, valueMapper, mergeFunction)

For example, to transform the elements of a source collection and place the results into an
unmodifiable set, you can do the following:

 Set<Item> unmodifiableSet =
 sourceCollection.stream()
 .map(...)
 .collect(Collectors.toUnmodifiableSet());

If the stream contains duplicate elements, the toUnmodifiableSet collector chooses an
arbitrary one of the duplicates to include in the resulting Set. For the
toUnmodifiableMap(keyMapper, valueMapper) collector, if the keyMapper function
produces duplicate keys, an IllegalStateException is thrown. If duplicate keys are a
possibility, use the toUnmodifiableMap(keyMapper, valueMapper,
mergeFunction) collector instead. If duplicate keys occur, the mergeFunction is called to
merge the values of each duplicate key into a single value.

The toUnmodifiable- collectors are conceptually similar to their counterparts toList,
toSet, and the corresponding two toMap methods, but they have different characteristics.
Specifically, the toList, toSet, and toMap methods make no guarantee about the
modifiablilty of the returned collection, however, the toUnmodifiable- collectors guarantee
that the result is unmodifiable.

Randomized Iteration Order
Iteration order for Set elements and Map keys is randomized and likely to be different from
one JVM run to the next. This is intentional and makes it easier to identify code that depends
on iteration order. Inadvertent dependencies on iteration order can cause problems that are
difficult to debug.

Chapter 5
Creating Unmodifiable Collections from Streams

5-5

The following example shows how the iteration order is different after jshell is
restarted.

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> /exit
| Goodbye

C:\Program Files\Java\jdk\bin>jshell

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the Set.of,
Map.of, and Map.ofEntries methods and the toUnmodifiableSet and
toUnmodifiableMap collectors. The iteration ordering of collection implementations
such as HashMap and HashSet is unchanged.

About Unmodifiable Collections
The collections returned by the convenience factory methods added in JDK 9 are
unmodifiable. Any attempt to add, set, or remove elements from these collections
causes an UnsupportedOperationException to be thrown.

However, if the contained elements are mutable, then this may cause the collection to
behave inconsistently or make its contents to appear to change.

Let’s look at an example where an unmodifiable collection contains mutable elements.
Using jshell, create two lists of String objects using the ArrayList class, where
the second list is a copy of the first. Trivial jshell output was removed.

jshell> List<String> list1 = new ArrayList<>();
jshell> list1.add("a")
jshell> list1.add("b")
jshell> list1
list1 ==> [a, b]

jshell> List<String> list2 = new ArrayList<>(list1);
list2 ==> [a, b]

Next, using the List.of method, create unmodlist1 and unmodlist2 that point to the
first lists. If you try to modify unmodlist1, then you see an exception error because
unmodlist1 is unmodifiable. Any modification attempt throws an exception.

jshell> List<List<String>> unmodlist1 = List.of(list1, list1);
unmodlist1 ==> [[a, b], [a, b]]

jshell> List<List<String>> unmodlist2 = List.of(list2, list2);
unmodlist2 ==> [[a, b], [a, b]]

jshell> unmodlist1.add(new ArrayList<String>())
| java.lang.UnsupportedOperationException thrown:

Chapter 5
About Unmodifiable Collections

5-6

| at ImmutableCollections.uoe (ImmutableCollections.java:71)
| at ImmutableCollections$AbstractImmutableList.add
(ImmutableCollections
.java:75)
| at (#8:1)

But if you modify the original list1, the contents of unmodlist1 changes, even though
unmodlist1 is unmodifiable.

jshell> list1.add("c")
jshell> list1
list1 ==> [a, b, c]
jshell> unmodlist1
ilist1 ==> [[a, b, c], [a, b, c]]

jshell> unmodlist2
ilist2 ==> [[a, b], [a, b]]

jshell> unmodlist1.equals(unmodlist2)
$14 ==> false

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views returned by
the Collections.unmodifiable... methods. (See Unmodifiable View Collections in the
Collection interface JavaDoc API documentation). However, the unmodifiable collections
are not views — these are data structures implemented by classes where any attempt to
modify the data causes an exception to be thrown.

If you create a List and pass it to the Collections.unmodifiableList method, then
you get an unmodifiable view. The underlying list is still modifiable, and modifications to it are
visible through the List that is returned, so it is not actually immutable.

To demonstrate this behavior, create a List and pass it to
Collections.unmodifiableList. If you try to add to that List directly, then an
exception is thrown.

jshell> List<String> list1 = new ArrayList<>();
jshell> list1.add("a")
jshell> list1.add("b")
jshell> list1
list1 ==> [a, b]

jshell> List<String> unmodlist1 = Collections.unmodifiableList(list1);
unmodlist1 ==> [a, b]

jshell> unmodlist1.add("c")
| Exception java.lang.UnsupportedOperationException
| at Collections$UnmodifiableCollection.add (Collections.java:1058)
| at (#8:1)

Chapter 5
About Unmodifiable Collections

5-7

Note that unmodlist1 is a view of list1. You cannot change the view directly, but you
can change the original list, which changes the view. If you change the original list1,
no error is generated, and the unmodlist1 list has been modified.

jshell> list1.add("c")
$19 ==> true
jshell> list1
list1 ==> [a, b, c]

jshell> unmodlist1
unmodlist1 ==> [a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection,
and the ability to modify it, can cause the unmodifiable view to change.

Space Efficiency
The collections returned by the convenience factory methods are more space efficient
than their modifiable equivalents.

All of the implementations of these collections are private classes hidden behind a
static factory method. When it is called, the static factory method chooses the
implementation class based on the size of the collection. The data may be stored in a
compact field-based or array-based layout.

Let’s look at the heap space consumed by two alternative implementations. First,
here’s an unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); // 3 buckets
set.add("silly");
set.add("string");
set = Collections.unmodifiableSet(set);

The set includes six objects: the unmodifiable wrapper; the HashSet, which contains a
HashMap; the table of buckets (an array); and two Node instances (one for each
element). On a typical VM, with a 12–byte header per object, the total overhead comes
to 96 bytes + 28 * 2 = 152 bytes for the set. This is a large amount of overhead
compared to the amount of data stored. Plus, access to the data unavoidably requires
multiple method calls and pointer dereferences.

Instead, we can implement the set using Set.of:

Set<String> set = Set.of("silly", "string");

Because this is a field-based implementation, the set contains one object and two
fields. The overhead is 20 bytes. The new collections consume less heap space, both
in terms of fixed overhead and on a per-element basis.

Not needing to support mutation also contributes to space savings. In addition, the
locality of reference is improved, because there are fewer objects required to hold the
data.

Chapter 5
Space Efficiency

5-8

Thread Safety
If multiple threads share a modifiable data structure, steps must be taken to ensure that
modifications made by one thread do not cause unexpected side effects for other threads.
However, because an immutable object cannot be changed, it is considered thread safe
without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure made by
one part of the program is visible to the other parts. If the other parts of the program aren't
prepared for changes to the data, then bugs, crashes, or other unexpected behavior could
occur. However, if different parts of a program share an immutable data structure, such
unexpected behavior can never happen, because the shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take precautions
when modifying that data structure. Typically, threads must hold a lock while reading from or
writing to any shared data structure. Failing to lock properly can lead to race conditions or
inconsistencies in the data structure, which can result in bugs, crashes, or other unexpected
behavior. However, if multiple threads share an immutable data structure, these problems
cannot occur, even in the absence of locking. Therefore, an immutable data structure is said
to be thread safe without requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or replaced.
However, an unmodifiable collection is only immutable if the elements contained in the
collection are immutable. To be considered thread safe, collections created using the static
factory methods and toUnmodifiable- collectors must contain only immutable elements.

Chapter 5
Thread Safety

5-9

6
Process API

The Process API lets you start, retrieve information about, and manage native operating
system processes.

With this API, you can work with operating system processes as follows:

• Run arbitrary commands:

– Filter running processes

– Redirect output

– Connect heterogeneous commands and shells by scheduling tasks to start when
another ends

– Clean up leftover processes

• Test the running of commands:

– Run a series of tests

– Log output

• Monitor commands:

– Monitor long-running processes and restart them if they terminate

– Collect usage statistics

Topics

• Process API Classes and Interfaces

• Creating a Process

• Getting Information About a Process

• Redirecting Output from a Process

• Filtering Processes with Streams

• Handling Processes When They Terminate with the onExit Method

• Controlling Access to Sensitive Process Information

Process API Classes and Interfaces
The Process API consists of the classes and interfaces ProcessBuilder, Process,
ProcessHandle, and ProcessHandle.Info.

Topics

• ProcessBuilder Class

• Process Class

• ProcessHandle Interface

6-1

• ProcessHandle.Info Interface

ProcessBuilder Class
The ProcessBuilder class lets you create and start operating system processes.

See Creating a Process for examples on how to create and start a process. The
ProcessBuilder class manages various process attributes, which the following
table summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods

Process Attribute Description Related Methods

Command Strings that specify the
external program file to call
and its arguments, if any.

• ProcessBuilder
constructor

• command(String...
command)

Environment The environment variables
(and their values). This is
initially a copy of the system
environment of the current
process (see the
System.getEnv()
method).

• environment()

Working directory By default, the current working
directory of the current
process.

• directory()
• directory(File

directory)
Standard input source By default, a process reads

standard input from a pipe;
access this through the output
stream returned by the
Process.getOutputStr
eam method.

• redirectInput
(ProcessBuilder.R
edirect source)

Standard output and standard
error destinations

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the
Process.getInputStre
am and
Process.getErrorStre
am methods. See Redirecting
Output from a Process for an
example.

• redirectOutput(Pr
ocessBuilder.Redi
rect destination)

• redirectError(Pro
cessBuilder.Redir
ect destination)

redirectErrorStream
property

Specifies whether to send
standard output and error
output as two separate
streams (with a value of false)
or merge any error output with
standard output (with a value
of true).

• redirectErrorStre
am()

• redirectErrorStre
am(boolean
redirectErrorStre
am)

Chapter 6
Process API Classes and Interfaces

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)

Process Class
The methods in the Process class let you to control processes started by the methods
ProcessBuilder.start and Runtime.exec. The following table summarizes these
methods:

The following table summarizes the methods of the Process class.

Table 6-2 Process Class Methods

Method Type Related Methods

Wait for the process to complete. • waitfor()
• waitFor(long timeout, TimeUnit

unit)
Retrieve information about the process. • isAlive()

• pid()
• info()
• exitValue()

Retrieve input, output, and error streams. See
Handling Processes When They Terminate with
the onExit Method for an example.

• getInputStream()
• getOutputStream()
• getErrorStream()

Retrieve direct and indirect child processes. • children()
• descendants()

Destroy or terminate the process. • destroy()
• destroyForcibly()
• supportsNormalTermination()

Return a CompletableFuture instance that
will be completed when the process exits. See
Handling Processes When They Terminate with
the onExit Method for an example.

• onExit()

ProcessHandle Interface
The ProcessHandle interface lets you identify and control native processes. The Process
class is different from ProcessHandle because it lets you control processes started only by
the methods ProcessBuilder.start and Runtime.exec; however, the Process class
lets you access process input, output, and error streams.

See Filtering Processes with Streams for an example of the ProcessHandle interface. The
following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

Method Type Related Methods

Retrieve all operating system processes. • allProcesses()
Retrieve process handle. • current()

• of(long pid)
• parent()

Chapter 6
Process API Classes and Interfaces

6-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()

Table 6-3 (Cont.) ProcessHandle Interface Methods

Method Type Related Methods

Retrieve information about the process. • isAlive()
• pid()
• info()

Retrieve stream of direct and indirect child
processes.

• children()
• descendants()

Destroy process. • destroy()
• destroyForcibly()

Return a CompletableFuture instance that
will be completed when the process exits. See
Handling Processes When They Terminate with
the onExit Method for an example.

• onExit()

ProcessHandle.Info Interface
The ProcessHandle.Info interface lets you retrieve information about a process,
including processes created by the ProcessBuilder.start method and native
processes.

See Getting Information About a Process for an example of the
ProcessHandle.Info interface. The following table summarizes the methods in this
interface:

Table 6-4 ProcessHandle.Info Interface Methods

Method Description

arguments() Returns the arguments of the process as a
String array.

command() Returns the executable path name of the
process.

commandLine() Returns the command line of the process.

startInstant() Returns the start time of the process.

totalCpuDuration() Returns the process's total accumulated CPU
time.

user() Returns the user of the process.

Creating a Process
To create a process, first specify the attributes of the process, such as the command's
name and its arguments, with the ProcessBuilder class. Then, start the process
with the ProcessBuilder.start method, which returns a Process instance.

The following lines create and start a process:

 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 Process p = pb.start();

Chapter 6
Creating a Process

6-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

In the following excerpt, the setEnvTest method sets two environment variables, horse and
doc, then prints the value of these environment variables (as well as the system environment
variable HOME) with the echo command:

 public static void setEnvTest() throws IOException, InterruptedException {
 ProcessBuilder pb =
 new ProcessBuilder("/bin/sh", "-c",
"echo $horse $dog $HOME").inheritIO();
 pb.environment().put("horse", "oats");
 pb.environment().put("dog", "treats");
 pb.start().waitFor();
 }

This method prints the following (assuming that your home directory is /home/admin):

oats treats /home/admin

Getting Information About a Process
The method Process.pid returns the native process ID of the process. The method
Process.info returns a ProcessHandle.Info instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method getInfoTest starts a process and then prints information
about it:

 public static void getInfoTest() throws IOException {
 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 String na = "<not available>";
 Process p = pb.start();
 ProcessHandle.Info info = p.info();
 System.out.printf("Process ID: %s%n", p.pid());
 System.out.printf("Command name: %s%n", info.command().orElse(na));
 System.out.printf("Command line: %s%n",
info.commandLine().orElse(na));

 System.out.printf("Start time: %s%n",
 info.startInstant().map((Instant i) -> i
 .atZone(ZoneId.systemDefault()).toLocalDateTime().toString())
 .orElse(na));

 System.out.printf("Arguments: %s%n",
 info.arguments().map(
 (String[] a) -> Stream.of(a).collect(Collectors.joining("
")))
 .orElse(na));

 System.out.printf("User: %s%n", info.user().orElse(na));
 }

Chapter 6
Getting Information About a Process

6-5

This method prints output similar to the following:

Process ID: 18761
Command name: /usr/bin/echo
Command line: echo Hello World!
Start time: 2017-05-30T18:52:15.577
Arguments: <not available>
User: administrator

Note:

• The attributes of a process vary by operating system and are not
available in all implementations. In addition, information about processes
is limited by the operating system privileges of the process making the
request.

• All the methods in the interface ProcessHandle.Info return instances
of Optional<T>; always check if the returned value is empty.

Redirecting Output from a Process
By default, a process writes standard output and standard error to pipes. In your
application, you can access these pipes through the input streams returned by the
methods Process.getOutputStream and Process.getErrorStream. However,
before starting the process, you can redirect standard output and standard error to
other destinations, such as a file, with the methods redirectOutput and
redirectError.

In the following excerpt, the method redirectToFileTest redirects standard input to a
file, out.tmp, then prints this file:

 public static void redirectToFileTest() throws IOException,
InterruptedException {
 File outFile = new File("out.tmp");
 Process p = new ProcessBuilder("ls", "-la")
 .redirectOutput(outFile)
 .redirectError(Redirect.INHERIT)
 .start();
 int status = p.waitFor();
 if (status == 0) {
 p = new ProcessBuilder("cat" , outFile.toString())
 .inheritIO()
 .start();
 p.waitFor();
 }
 }

The excerpt redirects standard output to the file out.tmp. It redirects standard error to
the standard error of the invoking process; the value Redirect.INHERIT specifies
that the subprocess I/O source or destination is the same as that of the current

Chapter 6
Redirecting Output from a Process

6-6

process. The call to the inheritIO() method is equivalent to
redirectInput(Redirect.INHERIT).redirectOuput(Redirect.INHERIT).redi
rectError(Redirect.INHERIT).

Filtering Processes with Streams
The method ProcessHandle.allProcesses returns a stream of all processes visible to
the current process. You can filter the ProcessHandle instances of this stream the same
way that you filter elements from a collection.

In the following excerpt, the method filterProcessesTest prints information about all the
processes owned by the current user, sorted by the process ID of their parent's process:

public class ProcessTest {

 // ...

 public static void main(String[] args) {
 ProcessTest.filterProcessesTest();
 }

 static void filterProcessesTest() {
 Optional<String> currUser = ProcessHandle.current().info().user();
 ProcessHandle.allProcesses()
 .filter(p1 -> p1.info().user().equals(currUser))
 .sorted(ProcessTest::parentComparator)
 .forEach(ProcessTest::showProcess);
 }

 static int parentComparator(ProcessHandle p1, ProcessHandle p2) {
 long pid1 = p1.parent().map(ph -> ph.pid()).orElse(-1L);
 long pid2 = p2.parent().map(ph -> ph.pid()).orElse(-1L);
 return Long.compare(pid1, pid2);
 }

 static void showProcess(ProcessHandle ph) {
 ProcessHandle.Info info = ph.info();
 System.out.printf("pid: %d, user: %s, cmd: %s%n",
 ph.pid(), info.user().orElse("none"), info.command().orElse("none"));
 }

 // ...
}

Note that the allProcesses method is limited by native operating system access controls.
Also, because all processes are created and terminated asynchronously, there is no
guarantee that a process in the stream is alive or that no other processes may have been
created since the call to the allProcesses method.

Chapter 6
Filtering Processes with Streams

6-7

Handling Processes When They Terminate with the onExit
Method

The Process.onExit and ProcessHandle.onExit methods return a
CompletableFuture instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate,
then you can call onExit().get().

In the following excerpt, the method startProcessesTest creates three processes and
then starts them. Afterward, it calls onExit().thenAccept(onExitMethod) on each of
the processes; onExitMethod prints the process ID (PID), exit status, and output of the
process.

public class ProcessTest {

 // ...

 static public void startProcessesTest() throws IOException,
InterruptedException {
 List<ProcessBuilder> greps = new ArrayList<>();
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"java\"
*"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"Process\"
*"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"onExit\"
*"));
 ProcessTest.startSeveralProcesses (greps,
ProcessTest::printGrepResults);
 System.out.println("\nPress enter to continue ...\n");
 System.in.read();
 }

 static void startSeveralProcesses (
 List<ProcessBuilder> pBList,
 Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());
 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().thenAccept(onExitMethod);
 } catch (IOException e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }
 }
);
 }

Chapter 6
Handling Processes When They Terminate with the onExit Method

6-8

 static void printGrepResults(Process p) {
 System.out.printf("Exit %d, status %d%n%s%n%n",
 p.pid(), p.exitValue(), output(p.getInputStream()));
 }

 private static String output(InputStream inputStream) {
 String s = "";
 try (BufferedReader br = new BufferedReader(new
InputStreamReader(inputStream))) {
 s =
br.lines().collect(Collectors.joining(System.getProperty("line.separator")));
 } catch (IOException e) {
 System.err.println("Caught IOException");
 e.printStackTrace();
 }
 return s;
 }

 // ...
}

The output of the method startProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Number of processes: 3
Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status 0
ProcessTest.class:0
ProcessTest.java:16

Exit 12404, status 0
ProcessTest.class:0
ProcessTest.java:8

Exit 12403, status 0
ProcessTest.class:0
ProcessTest.java:38

This method calls the System.in.read() method to prevent the program from terminating
before all the processes have exited (and have run the method specified by the thenAccept
method).

If you want to wait for a process to terminate before proceeding with the rest of the program,
then call onExit().get():

 static void startSeveralProcesses (
 List<ProcessBuilder> pBList, Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());

Chapter 6
Handling Processes When They Terminate with the onExit Method

6-9

 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().get();
 printGrepResults(p);
 } catch (IOException|InterruptedException|ExecutionException
e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }
 }
);
 }

The ComputableFuture class contains a variety of methods that you can call to
schedule tasks when a process exits including the following:

• thenApply: Similar to thenAccept, except that it takes a lambda expression of
type Function (a lambda expression that returns a value).

• thenRun: Takes a lambda expression of type Runnable (no formal parameters or
return value).

• thenApplyAsyc: Runs the specified Function with a thread from
ForkJoinPool.commonPool().

Because ComputableFuture implements the Future interface, this class also contains
synchronous methods:

• get(long timeout, TimeUnit unit): Waits, if necessary, at most the time
specified by its arguments for the process to complete.

• isDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information
Process information may contain sensitive information such as user IDs, paths, and
arguments to commands. Control access to process information with a security
manager.

When running as a normal application, a ProcessHandle has the same operating
system privileges to information about other processes as a native application;
however, information about system processes may not be available.

If your application uses the SecurityManager class to implement a security policy,
then to enable it to access process information, the security policy must grant
RuntimePermission("manageProcess"). This permission enables native
process termination and access to the process ProcessHandle information. Note
that this permission enables code to identify and terminate processes that it did not
create.

Chapter 6
Controlling Access to Sensitive Process Information

6-10

WARNING:

The Security Manager and APIs related to it have been deprecated and are subject
to removal in a future release. There is no replacement for the Security Manager.
See JEP 411 for discussion and alternatives.

Chapter 6
Controlling Access to Sensitive Process Information

6-11

https://openjdk.java.net/jeps/411

7
Preferences API

The Preferences API enables applications to manage preference and configuration data.

Applications require preference and configuration data to adapt to the needs of different users
and environments. The java.util.prefs package provides a way for applications to store
and retrieve user and system preference and configuration data. The data is stored
persistently in an implementation-dependent backing store. There are two separate trees of
preference nodes: one for user preferences and one for system preferences.

All of the methods that modify preference data are permitted to operate asynchronously. They
may return immediately, and changes will eventually propagate to the persistent backing
store. The flush method can be used to force changes to the backing store.

The methods in the Preferences class may be invoked concurrently by multiple threads in
a single JVM without the need for external synchronization, and the results will be equivalent
to some serial execution. If this class is used concurrently by multiple JVMs that store their
preference data in the same backing store, the data store will not be corrupted, but no other
guarantees are made concerning the consistency of the preference data.

Topics:

• Comparing the Preferences API to Other Mechanisms

• Usage Notes

• Design FAQ

Comparing the Preferences API to Other Mechanisms
Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in a dynamic fashion by using the Properties API or the
Java Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed through the
java.util.Properties API. However, there are no standards as to where such files
should reside on disk, or what they should be called. Using this mechanism, it is extremely
difficult to back up a user's preference data, or transfer it from one machine to another.
Furthermore, as the number of applications increases, the possibility of file name conflicts
increases. Also, this mechanism is of no help on platforms that lack a local disk, or where it is
desirable that the data be stored in an external data store, such as an enterprise-wide LDAP
directory service.

Less frequently, developers stored user preference and configuration data in a directory
service accessed through the JNDI API. Unlike the Properties API, JNDI allows the use of
arbitrary data stores (back-end neutrality). While JNDI is extremely powerful, it is also rather
large, consisting of 5 packages and 83 classes. JNDI provides no policy as to where in the
directory name space the preference data should be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral preferences
management facility. The Preferences API does provide such a facility, combining the
simplicity of Properties with the back-end neutrality of JNDI. It provides sufficient built-in

7-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

policy to prevent name clashes, foster consistency, and encourage robustness in the
face of inaccessibility of the backing data store.

Usage Notes
The information in this section is not part of the Preferences API specification. It is
intended to provide some examples of how the Preferences API might be used.

Topics:

• Obtain Preferences Objects for an Enclosing Class

• Obtain Preferences Objects for a Static Method

• Atomic Updates

• Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class
The examples in this section show how you can obtain the system and user
Preferences objects pertaining to the enclosing class. These examples only work
inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are
provided for each of the preference values obtained. These defaults are returned if no
preference value has been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline String literals, are used for the key
names (NUM_ROWS and NUM_COLS). This reduces the likelihood of runtime bugs from
typographical errors in key names.

package com.greencorp.widget;
import java.util.prefs.*;

public class Gadget {
 // Preference keys for this package
 private static final String NUM_ROWS = "num_rows";
 private static final String NUM_COLS = "num_cols";

 void getPrefs() {
 Preferences prefs =
Preferences.userNodeForPackage(Gadget.class);

 int numRows = prefs.getInt(NUM_ROWS, 40);
 int numCols = prefs.getInt(NUM_COLS, 80);

 ...
 }

The previous example obtains per-user preferences. If a single, per-system value is
desired, replace the first line in getPrefs with the following:

Preferences prefs = Preferences.systemNodeForPackage(Gadget.class);

Chapter 7
Usage Notes

7-2

Obtain Preferences Objects for a Static Method
The examples in this section show how you can obtain the system and user Preferences
objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the
package:

static String ourNodeName = "/com/greencorp/widget";
static void getPrefs() {
 Preferences prefs = Preferences.userRoot().node(ourNodeName);

 ...
}

It is always acceptable to obtain a system preferences object once, in a static initializer, and
use it whenever system preferences are required:

static Preferences prefs = Preferences.systemRoot().node(ourNodeName);

In general, it is acceptable to do the same thing for a user preferences object, but not if the
code in question is to be used in a server, wherein multiple users are running concurrently or
serially. In such a system, userNodeForPackage and userRoot return the appropriate node for
the calling user, thus it's critical that calls to userNodeForPackage or userRoot be made from
the appropriate thread at the appropriate time. If a piece of code may eventually be used in
such a server environment, it is a good, conservative practice to obtain user preferences
objects immediately before they are used, as in the prior example.

Atomic Updates
The Preferences API does not provide database-like "transactions" wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or more
preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is to be
placed. The only way to achieve atomicity is to store both values in a single preference. Many
encodings are possible. Here's a simple one:

int x, y;
...
prefs.put(POSITION, x + "," + y);

When such a "compound preference" is read, it must be decoded. For robustness,
allowances should be made for a corrupt (unparseable) value:

static int X_DEFAULT = 50, Y_DEFAULT = 25;
void parsePrefs() {
 String position = prefs.get(POSITION, X_DEFAULT + "," + Y_DEFAULT);
 int x, y;
 try {
 int i = position.indexOf(',');

Chapter 7
Usage Notes

7-3

 x = Integer.parseInt(coordinates.substring(0, i));
 y = Integer.parseInt(position.substring(i + 1));
 } catch(Exception e) {
 // Value was corrupt, just use defaults
 x = X_DEFAULT;
 y = Y_DEFAULT;
 }
 ...
}

Determine Backing Store Status
Typical application code has no need to know whether the backing store is available. It
should almost always be available, but if it isn't, the code should continue to execute
using default values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse
to run, if the backing store is unavailable. Following is a method that determines
whether the backing store is available by attempting to modify a preference value and
flush the result to the backing store.

private static final String BACKING_STORE_AVAIL = "BackingStoreAvail";

private static boolean backingStoreAvailable() {
 Preferences prefs = Preferences.userRoot().node("<temporary>");
 try {
 boolean oldValue = prefs.getBoolean(BACKING_STORE_AVAIL,
false);
 prefs.putBoolean(BACKING_STORE_AVAIL, !oldValue);
 prefs.flush();
 } catch(BackingStoreException e) {
 return false;
 }
 return true;
}

Design FAQ
This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

• How does this Preferences API relate to the Properties API?

• How does the Preferences API relate to JNDI?

• Why do all of the get methods require the caller to pass in a default?

• How was it decided which methods should throw BackingStoreException?

• Why doesn't this API provide stronger guarantees concerning concurrent access
by multiple VMs? Similarly, why doesn't the API allow multiple Preferences
updates to be combined into a single "transaction", with all or nothing semantics?

Chapter 7
Design FAQ

7-4

• Why does this API have case-sensitive keys and node-names, while other APIs playing
in a similar space (such as the Microsoft Windows Registry and LDAP) do not?

• Why doesn't this API use the Java 2 Collections Framework?

• Why don't the put and remove methods return the old values?

• Why does the API permit, but not require, stored defaults?

• Why doesn't this API contain methods to read and write arbitrary serializable objects?

• Why is Preferences an abstract class rather than an interface?

• Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its deficiencies,
while retaining its light weight. When using Properties, the programmer must explicitly specify
a path name for each properties file, but there is no standard location or naming convention.
Properties files are "brittle", as they are hand-editable but easily corrupted by careless
editing. Support for non-string data types in properties is non-existent. Properties cannot
easily be used with a persistence mechanism other than the file system. In sum, the
Properties facility does not scale.

How does the Preferences API relate to JNDI?

Like JNDI, it provides back-end neutral access to persistent key-value data. JNDI, however,
is far more powerful, and correspondingly heavyweight. JNDI is appropriate for enterprise
applications that need its power. The Preferences API is intended as a simple, ubiquitous,
back-end neutral preferences-management facility, enabling any Java application to easily
tailor its behavior to user preferences and maintain small amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that applications
have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the
backing store throw this exception. Typical applications will have no need to call these
methods. As long as these methods are avoided, applications will be able to run even if the
backing store is unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent access by
multiple VMs? Similarly, why doesn't the API allow multiple Preferences updates to be
combined into a single "transaction", with all or nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended as a
substitute for a database. It is critical that it be possible to implement this API atop standard
preference/configuration repositories, most of which do not provide database-like guarantees
and functionality. Such repositories have proven adequate for the purposes for which this API
is intended.

Why does this API have case-sensitive keys and node-names, while other APIs playing
in a similar space (such as the Microsoft Windows Registry and LDAP) do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In particular,
they are provided by the Properties class, which this API is intended to replace. It is not

Chapter 7
Design FAQ

7-5

uncommon for people to use Properties in a fashion that demands case-sensitivity. For
example, Java package names (which are case-sensitive) are sometimes used as
keys. It is recognized that this design decision complicates the life of the systems
programmer who implements Preferences atop a backing store with case-insensitive
keys, but this is considered an acceptable price to pay, as far more programmers will
use the Preferences API than will implement it.

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose. In
the absence of generic types (see JSR-14), the API would be less convenient for
typical users. It would lack compile-time type safety, if forced to conform to the Map
API. Also, it is not anticipated that interoperability with other Map implementations will
be required (though it would be straightforward to implement an adapter class if this
assumption turned out to be wrong). The Preferences API is, by design, so similar to
Map that programmers familiar with the latter should have no difficulties using the
former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value.
Further, it would have negative performance impact if the API were implemented atop
some common back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective
administration of preferences across the enterprise, but would be overkill in a self-
administered single-user setting.

Why doesn't this API contain methods to read and write arbitrary serializable
objects?

Serialized objects are somewhat fragile: if the version of the program that reads such a
property differs from the version that wrote it, the object may not deserialize properly
(or at all). It is not impossible to store serialized objects using this API, but we do not
encourage it, and have not provided a convenience method.

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is to
say, arbitrary classes cannot also be made to serve as Preferences objects. Also, this
obviates the need for a separate class for the static methods. Interfaces cannot
contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-
dependent backing store. Typical implementations include flat files, OS-specific
registries, directory servers and SQL databases. For example, on Windows systems
the data is stored in the Windows registry.

On Linux systems, the system preferences are typically stored at java-
home/.systemPrefs in a network installation, or /etc/.java/.systemPrefs in a
local installation. If both are present, /etc/.java/.systemPrefs takes

Chapter 7
Design FAQ

7-6

precedence. The system preferences location can be overridden by setting the system
property java.util.prefs.systemRoot. The user preferences are typically stored at user-
home/.java/.userPrefs. The user preferences location can be overridden by setting the
system property java.util.prefs.userRoot.

Chapter 7
Design FAQ

7-7

8
Java Logging Overview

The Java Logging APIs, contained in the package java.util.logging, facilitate software
servicing and maintenance at customer sites by producing log reports suitable for analysis by
end users, system administrators, field service engineers, and software development teams.
The Logging APIs capture information such as security failures, configuration errors,
performance bottlenecks, and/or bugs in the application or platform.

The core package includes support for delivering plain text or XML-formatted log records to
memory, output streams, consoles, files, and sockets. In addition, the logging APIs are
capable of interacting with logging services that already exist on the host operating system.

Topics

• Overview of Control Flow

• Log Levels

• Loggers

• Logging Methods

• Handlers

• Formatters

• The LogManager

• Configuration File

• Default Configuration

• Dynamic Configuration Updates

• Native Methods

• XML DTD

• Unique Message IDs

• Security

• Configuration Management

• Packaging

• Localization

• Remote Access and Serialization

• Java Logging Examples

• Appendix A: DTD for XMLFormatter Output

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized in a
hierarchical namespace and child Logger objects may inherit some logging properties from
their parents in the namespace.

8-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

These Logger objects allocate LogRecord objects which are passed to Handler
objects for publication. Both Logger and Handler objects may use logging Level
objects and (optionally) Filter objects to decide if they are interested in a particular
LogRecord object. When it is necessary to publish a LogRecord object externally, a
Handler object can (optionally) use a Formatter object to localize and format the
message before publishing it to an I/O stream.

Figure 8-1 Java Logging Control Flow

HandlerLogger Outside WorldApplication

FormatterFilterFilter

Each Logger object keeps track of a set of output Handler objects. By default all
Logger objects also send their output to their parent Logger. But Logger objects
may also be configured to ignore Handler objects higher up the tree.

Some Handler objects may direct output to other Handler objects. For example, the
MemoryHandler maintains an internal ring buffer of LogRecord objects, and on
trigger events, it publishes its LogRecord object through a target Handler. In such
cases, any formatting is done by the last Handler in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

HandlerMemoryHandlerLogger Outside WorldApplication

FormatterFilterFilterFilter

The APIs are structured so that calls on the Logger APIs can be cheap when logging
is disabled. If logging is disabled for a given log level, then the Logger can make a
cheap comparison test and return. If logging is enabled for a given log level, the
Logger is still careful to minimize costs before passing the LogRecord to the
Handler. In particular, localization and formatting (which are relatively expensive) are
deferred until the Handler requests them. For example, a MemoryHandler can
maintain a circular buffer of LogRecord objects without having to pay formatting
costs.

Log Levels

Each log message has an associated log Level object. The Level gives a rough
guide to the importance and urgency of a log message. Log Level objects
encapsulate an integer value, with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FINEST (the lowest
priority, with the lowest value) to SEVERE (the highest priority, with the highest value).

Chapter 8

8-2

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger keeps track
of a log level that it is interested in, and discards log requests that are below this level.

Logger objects are normally named entities, using dot-separated names such as java.awt.
The namespace is hierarchical and is managed by the LogManager. The namespace should
typically be aligned with the Java packaging namespace, but is not required to follow it
exactly. For example, a Logger called java.awt might handle logging requests for classes in
the java.awt package, but it might also handle logging for classes in sun.awt that support
the client-visible abstractions defined in the java.awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger
objects that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent is its
nearest extant ancestor in the logging namespace. The root logger (named "") has no parent.
Anonymous loggers are all given the root logger as their parent. Loggers may inherit various
attributes from their parents in the logger namespace. In particular, a logger may inherit:

• Logging level: If a logger's level is set to be null, then the logger will use an effective
Level that will be obtained by walking up the parent tree and using the first non-null
Level.

• Handlers: By default, a Logger will log any output messages to its parent's handlers,
and so on recursively up the tree.

• Resource bundle names: If a logger has a null resource bundle name, then it will inherit
any resource bundle name defined for its parent, and so on recursively up the tree.

Logging Methods

The Logger class provides a large set of convenience methods for generating log
messages. For convenience, there are methods for each logging level, corresponding to the
logging level name. Thus rather than calling logger.log(Level.WARNING, ...), a
developer can simply call the convenience method logger.warning(...).

There are two different styles of logging methods, to meet the needs of different communities
of users.

First, there are methods that take an explicit source class name and source method name.
These methods are intended for developers who want to be able to quickly locate the source
of any given logging message. An example of this style is:

void warning(String sourceClass, String sourceMethod, String msg);

Second, there are a set of methods that do not take explicit source class or source method
names. These are intended for developers who want easy-to-use logging and do not require
detailed source information.

void warning(String msg);

For this second set of methods, the Logging framework will make a "best effort" to determine
which class and method called into the logging framework and will add this information into
the LogRecord. However, it is important to realize that this automatically inferred information
may only be approximate. Virtual machines perform extensive optimizations when just-in-time

Chapter 8

8-3

compiling and may entirely remove stack frames, making it impossible to reliably
locate the calling class and method.

Handlers

Java SE provides the following Handler classes:

• StreamHandler: A simple handler for writing formatted records to an
OutputStream.

• ConsoleHandler: A simple handler for writing formatted records to
System.err.

• FileHandler: A handler that writes formatted log records either to a single file,
or to a set of rotating log files.

• SocketHandler: A handler that writes formatted log records to remote TCP
ports.

• MemoryHandler: A handler that buffers log records in memory.

It is fairly straightforward to develop new Handler classes. Developers requiring
specific functionality can either develop a handler from scratch or subclass one of the
provided handlers.

Formatters

Java SE also includes two standard Formatter classes:

• SimpleFormatter: Writes brief "human-readable" summaries of log records.

• XMLFormatter: Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information.
This includes:

• A hierarchical namespace of named Loggers.

• A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static
LogManager.getLogManager method. This is created during LogManager
initialization, based on a system property. This property allows container applications
(such as EJB containers) to substitute their own subclass of LogManager in place of
the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file that will
be read at startup. This logging configuration file is in standard
java.util.Properties format.

Alternatively, the logging configuration can be initialized by specifying a class that can
be used for reading initialization properties. This mechanism allows configuration data
to be read from arbitrary sources, such as LDAP and JDBC.

Chapter 8

8-4

There is a small set of global configuration information. This is specified in the description of
the LogManager class and includes a list of root-level handlers to install during startup.

The initial configuration may specify levels for particular loggers. These levels are applied to
the named logger and any loggers below it in the naming hierarchy. The levels are applied in
the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by handlers or by
subsystems doing logging. By convention, these properties should use names starting with
the name of the handler class or the name of the main Logger for the subsystem.

For example, the MemoryHandler uses a property
java.util.logging.MemoryHandler.size to determine the default size for its ring
buffer.

Default Configuration

The default logging configuration that ships with the JDK is only a default and can be
overridden by ISVs, system administrators, and end users. This file is located at java-
home/conf/logging.properties.

The default configuration makes only limited use of disk space. It doesn't flood the user with
information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending output to
the console.

Dynamic Configuration Updates

Programmers can update the logging configuration at run time in a variety of ways:

• FileHandler, MemoryHandler, and ConsoleHandler objects can all be created with
various attributes.

• New Handler objects can be added and old ones removed.

• New Logger object can be created and can be supplied with specific Handlers.

• Level objects can be set on target Handler objects.

Native Methods

There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal JNI calls
into the Java Logging APIs.

XML DTD

The XML DTD used by the XMLFormatter is specified in Appendix A: DTD for
XMLFormatter Output.

The DTD is designed with a <log> element as the top-level document. Individual log records
are then written as <record> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XMLFormatter stream with the appropriate closing </log>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Chapter 8

8-5

Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs.
Those applications or subsystems requiring unique message IDs should define their
own conventions and include the unique IDs in the message strings as appropriate.

Security

The principal security requirement is that untrusted code should not be able to change
the logging configuration. Specifically, if the logging configuration has been set up to
log a particular category of information to a particular Handler, then untrusted code
should not be able to prevent or disrupt that logging.

The security permission LoggingPermission controls updates to the logging
configuration.

Trusted applications are given the appropriate LoggingPermission so they can call
any of the logging configuration APIs. Untrusted applets are a different story. Untrusted
applets can create and use named loggers in the normal way, but they are not allowed
to change logging control settings, such as adding or removing handlers, or changing
log levels. However, untrusted applets are able to create and use their own
"anonymous" loggers, using Logger.getAnonymousLogger. These anonymous
loggers are not registered in the global namespace, and their methods are not access-
checked, allowing even untrusted code to change their logging control settings.

The logging framework does not attempt to prevent spoofing. The sources of logging
calls cannot be determined reliably, so when a LogRecord is published that claims to
be from a particular source class and source method, it may be a fabrication. Similarly,
formatters such as the XMLFormatter do not attempt to protect themselves against
nested log messages inside message strings. Thus, a spoof LogRecord might
contain a spoof set of XML inside its message string to make it look as if there was an
additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial of
service attacks. Any given logging client can flood the logging framework with
meaningless messages in an attempt to conceal some important log message.

Configuration Management

The APIs are structured so that an initial set of configuration information is read as
properties from a configuration file. The configuration information may then be
changed programatically by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be
re-read. When this happens, the configuration file values will override any changes
that have been made programatically.

Packaging

All of the logging class are in the java.* part of the namespace, in the
java.util.logging package.

Localization

Log messages may need to be localized.

Chapter 8

8-6

Each logger may have a ResourceBundle name associated with it. The corresponding
ResourceBundle can be used to map between raw message strings and localized
message strings.

Normally, formatters perform localization. As a convenience, the Formatter class provides a
formatMessage method that provides some basic localization and formatting support.

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single
address space. All calls are intended to be local. However, it is expected that some handlers
will want to forward their output to other systems. There are a variety of ways of doing this:

Some handlers (such as the SocketHandler) may write data to other systems using the
XMLFormatter. This provides a simple, standard, inter-change format that can be parsed
and processed on a variety of systems.

Some handlers may wish to pass LogRecord objects over RMI. The LogRecord class is
therefore serializable. However, there is a problem in how to deal with the LogRecord
parameters. Some parameters may not be serializable and other parameters may have been
designed to serialize much more state than is required for logging. To avoid these problems,
the LogRecord class has a custom writeObject method that converts the parameters to
strings (using Object.toString()) before writing them out.

Most of the logging classes are not intended to be serializable. Both loggers and handlers are
stateful classes that are tied into a specific virtual machine. In this respect they are analogous
to the java.io classes, which are also not serializable.

Java Logging Examples

Simple Use

The following is a small program that performs logging using the default configuration.

This program relies on the root handlers that were established by the LogManager based on
the configuration file. It creates its own Logger object and then makes calls to that Logger
object to report various events.

package com.wombat;
import java.util.logging.*;

public class Nose {
 // Obtain a suitable logger.
 private static Logger logger = Logger.getLogger("com.wombat.nose");
 public static void main(String argv[]) {
 // Log a FINE tracing message
 logger.fine("doing stuff");
 try {
 Wombat.sneeze();
 } catch (Exception ex) {
 // Log the exception
 logger.log(Level.WARNING, "trouble sneezing", ex);
 }
 logger.fine("done");

Chapter 8
Java Logging Examples

8-7

 }
}

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send
output to a specific file and to get lots of information on wombats. The pattern %t
means the system temporary directory.

public static void main(String[] args) {
 Handler fh = new FileHandler("%t/wombat.log");
 Logger.getLogger("").addHandler(fh);
 Logger.getLogger("com.wombat").setLevel(Level.FINEST);
 ...
}

Simple Use, Ignoring Global Configuration

Here's a small program that sets up its own logging Handler and ignores the global
configuration.

package com.wombat;

import java.util.logging.*;

public class Nose {
 private static Logger logger = Logger.getLogger("com.wombat.nose");
 private static FileHandler fh = new FileHandler("mylog.txt");
 public static void main(String argv[]) {
 // Send logger output to our FileHandler.
 logger.addHandler(fh);
 // Request that every detail gets logged.
 logger.setLevel(Level.ALL);
 // Log a simple INFO message.
 logger.info("doing stuff");
 try {
 Wombat.sneeze();
 } catch (Exception ex) {
 logger.log(Level.WARNING, "trouble sneezing", ex);
 }
 logger.fine("done");
 }
}

Sample XML Output

Here's a small sample of what some XMLFormatter XML output looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
 <record>
 <date>2015-02-27T09:35:44.885562Z</date>
 <millis>1425029744885</millis>

Chapter 8
Java Logging Examples

8-8

 <nanos>562000</nanos>
 <sequence>1256</sequence>
 <logger>kgh.test.fred</logger>
 <level>INFO</level>
 <class>kgh.test.XMLTest</class>
 <method>writeLog</method>
 <thread>10</thread>
 <message>Hello world!</message>
 </record>
</log>

Appendix A: DTD for XMLFormatter Output

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->

<!-- The document type is "log" which consists of a sequence
of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, nanos?, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
midnight January 1st, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Nano second adjustement to add to the time in milliseconds.
This is an optional element, added since JDK 9, which adds further
precision to the time when LogRecord was created.
 -->
<!ELEMENT nanos (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
names from java.util.logging.Level (such as "SEVERE"
or "WARNING") or an integer value such as "20". -->
<!ELEMENT level (#PCDATA)>

<!-- Fully qualified name of class that issued
logging call, e.g. "javax.marsupial.Wombat". -->
<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.

Chapter 8
Appendix A: DTD for XMLFormatter Output

8-9

It may be either an unqualified method name such as
"fred" or it may include argument type information
in parenthesis, for example "fred(int,String)". -->
<!ELEMENT method (#PCDATA)>

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>

<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
the logger's localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
provides the String value (obtained using Object.toString())
of the corresponding LogRecord parameter. -->
<!ELEMENT param (#PCDATA)>

<!-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elements are used
for Java exceptions and other java Throwables. -->
<!ELEMENT exception (message?, frame+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class's source file. -->
<!ELEMENT line (#PCDATA)>

Chapter 8
Appendix A: DTD for XMLFormatter Output

8-10

9
Java NIO

The Java NIO (New Input/Output) API defines buffers, which are containers for data, and
other structures, such as charsets, channels, and selectable channels. Charsets are
mappings between bytes and Unicode characters. Channels represent connections to entities
capable of performing I/O operations. Selectable channels are those that can be multiplexed,
which means that they can process multiple I/O operations in one channel.

Java NIO Examples

The following code examples demonstrate the Java NIO API:

• Grep NIO Example

• Checksum NIO Example

• Time Query NIO Example

• Time Server NIO Example

• Non-Blocking Time Server NIO Example

• Internet Protocol and UNIX Domain Sockets NIO Example

• File NIO examples:

– Chmod File NIO Example

– Copy File NIO Example

– Disk Usage File NIO Example

– User-Defined File Attributes File NIO Example

Buffers

They are containers for a fixed amount of data of a specific primitive type. See the java.nio
package and Table 9-1.

Table 9-1 Buffer Classes

Buffer Class Description

Buffer Base class for buffer classes.

ByteBuffer Buffer for bytes.

MappedByteBuffer Buffer for bytes that is mapped to a file.

CharBuffer Buffer for the char data type.

DoubleBuffer Buffer for the double data type.

FloatBuffer Buffer for the float data type.

IntBuffer Buffer for the int data type.

LongBuffer Buffer for the long data type.

ShortBuffer Buffer for the short data type.

9-1

Charsets

They are named mappings between sequences of 16-bit Unicode characters and
sequences of bytes. Support for charsets include decoders and encoders, which
translate between bytes and Unicode characters. See the java.nio.charset
package and Table 9-2.

Table 9-2 Charset Classes

Charset Class Description

Charset Named mapping between characters and
bytes, for example, US-ASCII and UTF-8.

CharsetDecoder Decodes bytes into characters.

CharsetEncoder Encodes characters into bytes.

CoderResult Describes the result state of an decoder or
encoder.

CodingErrorAction Describes actions to take when coding errors
are detected.

Channels

They represent an open connection to an entity such as a hardware device, a file, a
network socket, or a program component that is capable of performing one or more
distinct I/O operations, for example reading or writing. See the java.nio.channels
package and Table 9-3.

Table 9-3 Channel Interfaces and Classes

Channel Interface or Class Description

Channel Base interface for channel interfaces and
classes.

ReadableByteChannel A channel that can read bytes.

ScatteringByteChannel A channel that can read bytes into a sequence
of buffers. A scattering read operation reads, in
a single invocation, a sequence of bytes into
one or more of a given sequence of buffers.

WritableByteChannel A channel that can write bytes.

GatheringByteChannel A channel that can write bytes from a
sequence of buffers. A gathering write
operation writes, in a single invocation, a
sequence of bytes from one or more of a given
sequence of buffers.

ByteChannel A channel that can read and write bytes. It
unifies ReadableByteChannel and
WritableByteChannel.

SeekableByteChannel A byte channel that maintains a current
position and allows the position to be changed.
A seekable byte channel is connected to an
entity, typically a file, that contains a variable-
length sequence of bytes that can be read and
written.

Chapter 9

9-2

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class Description

AsynchronousChannel A channel that supports asynchronous I/O
operations.

AsynchronousByteChannel An asynchronous channel that can read and
write bytes.

NetworkChannel A channel to a network socket.

MulticastChannel A network channel that supports Internet
Protocol (IP) multicasting. IP multicasting is
the transmission of IP datagrams to members
of a group that is zero or more hosts identified
by a single destination address.

FileChannel A channel for reading, writing, mapping, and
manipulating a file. It's a
SeekableByteChannel that is connected
to a file.

SelectableChannel A channel that can be multiplexed through a
Selector.

Multiplexing is the ability to process multiple
I/O operations in one channel. A selectable
channel can be put into blocking or non-
blocking mode. In blocking mode, every I/O
operation invoked upon the channel will block
until it completes. In non-blocking mode, an I/O
operation will never block and may transfer
fewer bytes than were requested or possibly
no bytes at all.

DatagramChannel A selectable channel that can send and
receive UDP (User Datagram Protocol)
packets.

You can create datagram channels with
different protocol families:

• Create channels for Internet Protocol
sockets with the INET or INET6 protocol
families. These channels support network
communication using TCL and UDP. Their
addresses are of type
InetSocketAddress, which
encapsulates an IP address and port
number.

• Create channels for UNIX Domain sockets
with the UNIX protocol family. These
sockets support local interprocess
communication on the same host. Their
addresses are of type
UnixDomainSocketAddress, which
encapsulate a file system path name on
the local system.

Pipe.SinkChannel A channel representing the writable end of a
pipe. A Pipe is a pair of channels: A writable
sink channel and a readable source channel.

Pipe.SourceChannel A channel representing the readable end of a
pipe.

Chapter 9

9-3

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class Description

ServerSocketChannel A selectable channel for stream-oriented
listening sockets.

Like datagram channels, you can create server
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

SocketChannel A selectable channel for stream-oriented
connecting sockets.

Like datagram channels, you can create
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

AsynchronousFileChannel An asynchronous channel for reading, writing,
and manipulating a file.

AsynchronousSocketChannel An asynchronous channel for stream-oriented
connecting sockets.

AsynchronousServerSocketChannel An asynchronous channel for stream-oriented
listening sockets.

Grep NIO Example
This example searches a list of files for lines that match a given regular expression
pattern. It demonstrates NIO-mapped byte buffers, charsets, and regular expressions.

public class Grep {

 // Charset and decoder for ISO-8859-15
 private static Charset charset = Charset.forName("ISO-8859-15");
 private static CharsetDecoder decoder = charset.newDecoder();

 // Pattern used to parse lines
 private static Pattern linePattern = Pattern.compile(".*\r?\n");

 // The input pattern that we're looking for
 private static Pattern pattern;

 // Compile the pattern from the command line
 private static void compile(String pat) {
 try {
 pattern = Pattern.compile(pat);
 } catch (PatternSyntaxException x) {
 System.err.println(x.getMessage());
 System.exit(1);
 }
 }

 // Use the linePattern to break the given CharBuffer into lines,
applying
 // the input pattern to each line to see if we have a match
 private static void grep(File f, CharBuffer cb) {

Chapter 9
Grep NIO Example

9-4

 Matcher lm = linePattern.matcher(cb); // Line matcher
 Matcher pm = null; // Pattern matcher
 int lines = 0;
 while (lm.find()) {
 lines++;
 CharSequence cs = lm.group(); // The current line
 if (pm == null)
 pm = pattern.matcher(cs);
 else
 pm.reset(cs);
 if (pm.find())
 System.out.print(f + ":" + lines + ":" + cs);
 if (lm.end() == cb.limit())
 break;
 }
 }

 // Search for occurrences of the input pattern in the given file
 private static void grep(File f) throws IOException {

 // Open the file and then get a channel from the stream
 try (FileInputStream fis = new FileInputStream(f);
 FileChannel fc = fis.getChannel()) {

 // Get the file's size and then map it into memory
 int sz = (int) fc.size();
 MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ_ONLY, 0,
sz);

 // Decode the file into a char buffer
 CharBuffer cb = decoder.decode(bb);

 // Perform the search
 grep(f, cb);
 }
 }

 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Usage: java Grep pattern file...");
 return;
 }
 compile(args[0]);
 for (int i = 1; i < args.length; i++) {
 File f = new File(args[i]);
 try {
 grep(f);
 } catch (IOException x) {
 System.err.println(f + ": " + x);
 }
 }
 }
}

Chapter 9
Grep NIO Example

9-5

Checksum NIO Example
This example computes 16-bit checksums for a list of files. It uses NIO-mapped byte
buffers for speed.

public class Sum {

 // Compute a 16-bit checksum for all the remaining bytes
 // in the given byte buffer

 private static int sum(ByteBuffer bb) {
 int sum = 0;
 while (bb.hasRemaining()) {
 if ((sum & 1) != 0)
 sum = (sum >> 1) + 0x8000;
 else
 sum >>= 1;
 sum += bb.get() & 0xff;
 sum &= 0xffff;
 }
 return sum;
 }

 // Compute and print a checksum for the given file

 private static void sum(File f) throws IOException {

 // Open the file and then get a channel from the stream
 try (
 FileInputStream fis = new FileInputStream(f);
 FileChannel fc = fis.getChannel()) {

 // Get the file's size and then map it into memory
 int sz = (int) fc.size();
 MappedByteBuffer bb =
fc.map(FileChannel.MapMode.READ_ONLY, 0, sz);

 // Compute and print the checksum
 int sum = sum(bb);
 int kb = (sz + 1023) / 1024;
 String s = Integer.toString(sum);
 System.out.println(s + "\t" + kb + "\t" + f);
 }
 }

 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java Sum file...");
 return;
 }
 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 try {

Chapter 9
Checksum NIO Example

9-6

 sum(f);
 } catch (IOException e) {
 System.err.println(f + ": " + e);
 }
 }
 }
}

Time Query NIO Example
This example asks a list of hosts what time it is. It's a simple, blocking program that
demonstrates NIO socket channels (connection and reading), buffer handling, charsets, and
regular expressions.

public class TimeQuery {

 // The standard daytime port
 private static int DAYTIME_PORT = 13;

 // The port we'll actually use
 private static int port = DAYTIME_PORT;

 // Charset and decoder for US-ASCII
 private static Charset charset = Charset.forName("US-ASCII");
 private static CharsetDecoder decoder = charset.newDecoder();

 // Direct byte buffer for reading
 private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

 // Ask the given host what time it is
 private static void query(String host) throws IOException {

 try (SocketChannel sc = SocketChannel.open()) {
 InetSocketAddress isa = new InetSocketAddress(
 InetAddress.getByName(host), port);

 // Connect
 sc.connect(isa);

 // Read the time from the remote host. For simplicity we assume
 // that the time comes back to us in a single packet, so that we
 // only need to read once.
 dbuf.clear();
 sc.read(dbuf);

 // Print the remote address and the received time
 dbuf.flip();
 CharBuffer cb = decoder.decode(dbuf);
 System.out.print(isa + " : " + cb);

 }
 }

 public static void main(String[] args) {

Chapter 9
Time Query NIO Example

9-7

 if (args.length < 1) {
 System.err.println("Usage: java TimeQuery [port] host...");
 return;
 }
 int firstArg = 0;

 // If the first argument is a string of digits then we take
that
 // to be the port number
 if (Pattern.matches("[0-9]+", args[0])) {
 port = Integer.parseInt(args[0]);
 firstArg = 1;
 }

 for (int i = firstArg; i < args.length; i++) {
 String host = args[i];
 try {
 query(host);
 } catch (IOException e) {
 System.err.println(host + ": " + e);
 e.printStackTrace();
 }
 }
 }
}

Time Server NIO Example
This example listens for connections and tells callers what time it is. Is a simple,
blocking program that demonstrates NIO socket channels (accepting and writing),
buffer handling, charsets, and regular expressions.

public class TimeServer {

 // We can't use the normal daytime port (unless we're running as
root,
 // which is unlikely), so we use this one instead
 private static int PORT = 8013;

 // The port we'll actually use
 private static int port = PORT;

 // Charset and encoder for US-ASCII
 private static Charset charset = Charset.forName("US-ASCII");
 private static CharsetEncoder encoder = charset.newEncoder();

 // Direct byte buffer for writing
 private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

 // Open and bind the server-socket channel

 private static ServerSocketChannel setup() throws IOException {
 ServerSocketChannel ssc = ServerSocketChannel.open();
 InetSocketAddress isa = new InetSocketAddress(

Chapter 9
Time Server NIO Example

9-8

 InetAddress.getLocalHost(), port);
 ssc.socket().bind(isa);
 return ssc;
 }

 // Service the next request to come in on the given channel

 private static void serve(ServerSocketChannel ssc) throws IOException {
 try (SocketChannel sc = ssc.accept()) {
 String now = new Date().toString();
 System.out.println("now: " + now);
 sc.write(encoder.encode(CharBuffer.wrap(now + "\r\n")));
 System.out.println(sc.socket().getInetAddress() + " : " + now);
 }
 }

 public static void main(String[] args) {
 if (args.length > 1) {
 System.err.println("Usage: java TimeServer [port]");
 return;
 }

 // If the first argument is a string of digits then we take that
 // to be the port number
 if ((args.length == 1) && Pattern.matches("[0-9]+", args[0]))
 port = Integer.parseInt(args[0]);

 try {
 ServerSocketChannel ssc = setup();
 for (;;) {
 serve(ssc);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Non-Blocking Time Server NIO Example
This example implements a non-blocking internet time server.

public class NBTimeServer {
 private static final int DEFAULT_TIME_PORT = 8900;

 // Constructor with no arguments creates a time server on default port.
 public NBTimeServer() throws Exception {
 acceptConnections(this.DEFAULT_TIME_PORT);
 }

 // Constructor with port argument creates a time server on specified
port.
 public NBTimeServer(int port) throws Exception {
 acceptConnections(port);

Chapter 9
Non-Blocking Time Server NIO Example

9-9

 }

 // Accept connections for current time. Lazy Exception thrown.
 private static void acceptConnections(int port) throws Exception {
 // Selector for incoming time requests
 Selector acceptSelector =
SelectorProvider.provider().openSelector();

 // Create a new server socket and set to non blocking mode
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);

 // Bind the server socket to the local host and port

 InetAddress lh = InetAddress.getLocalHost();
 InetSocketAddress isa = new InetSocketAddress(lh, port);
 ssc.socket().bind(isa);

 // Register accepts on the server socket with the selector.
This
 // step tells the selector that the socket wants to be put on
the
 // ready list when accept operations occur, so allowing
multiplexed
 // non-blocking I/O to take place.
 SelectionKey acceptKey = ssc.register(acceptSelector,
 SelectionKey.OP_ACCEPT);

 int keysAdded = 0;

 // Here's where everything happens. The select method will
 // return when any operations registered above have occurred,
the
 // thread has been interrupted, etc.
 while ((keysAdded = acceptSelector.select()) > 0) {
 // Someone is ready for I/O, get the ready keys
 Set<SelectionKey> readyKeys =
acceptSelector.selectedKeys();
 Iterator<SelectionKey> i = readyKeys.iterator();

 // Walk through the ready keys collection and process date
requests.
 while (i.hasNext()) {
 SelectionKey sk = (SelectionKey) i.next();
 i.remove();
 // The key indexes into the selector so you
 // can retrieve the socket that's ready for I/O
 ServerSocketChannel nextReady = (ServerSocketChannel)
sk
 .channel();
 // Accept the date request and send back the date
string
 Socket s = nextReady.accept().socket();
 // Write the current time to the socket
 PrintWriter out = new PrintWriter(s.getOutputStream(),

Chapter 9
Non-Blocking Time Server NIO Example

9-10

true);
 Date now = new Date();
 out.println(now);
 out.close();
 }
 }
 }

 // Entry point.
 public static void main(String[] args) {
 // Parse command line arguments and
 // create a new time server (no arguments yet)
 try {
 NBTimeServer nbt = new NBTimeServer();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Internet Protocol and UNIX Domain Sockets NIO Example
This example illustrates how to intermix AF_UNIX and AF_INET/6 channels with the
SocketChannel and ServerSocketChannel classes in a non-blocking client/server
single-threaded application.

This example mimics some of the capabilities of the socat command-line utility. It can create
listeners or clients and connect them to listeners and perform various different types of
binding. Run this command with the -h option to print usage information.

Special handling is only required for the different address types at initialization. For the server
side, once a listener is created and bound to an address, the code managing the selector can
handle the different address families identically.

import java.io.IOException;
import java.io.UncheckedIOException;
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

import jdk.net.ExtendedSocketOptions;
import jdk.net.UnixDomainPrincipal;

import static java.net.StandardProtocolFamily.UNIX;
import static java.net.StandardProtocolFamily.INET;
import static java.net.StandardProtocolFamily.INET6;

public class Socat {
 static void usage() {
 String ustring = """

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-11

usage: java Socat -s <baddr>...

 java Socat -c [-bind <baddr>] <daddr> N [delay]

 java Socat -h

-s means create one or more listening servers bound to addresses
<baddr>...,
then accept all incoming connections and display (counts of) received
data. If
more than one <baddr> is supplied, then multiple channels are created,
each
bound to one of the supplied addresses. All channels are non-blocking
and
managed by one Selector.

-c means create a client, connect it to <daddr> and send N (16 Kb)
buffers. The
client may optionally bind to a given address <baddr>. If a delay is
specified,
then the program pauses for the specified number of milliseconds
between each
send. After sending, the client reads until EOF and then exits.

Note: AF_UNIX client sockets do not bind to an address by default.
Therefore,
the remote address seen on the server side (and the client's local
address) is
an empty path. This is slightly different from AF_INET/6 sockets,
which, if the
user does not choose a local port, then a randomly chosen one is
assigned.

-h means print this message and exit.

<baddr> and <daddr> are addresses specified as follows:

 UNIX:{path}

 INET:{host}:port

 INET6:{host}:port

{path} is the name of a socket file surrounded by curly brackets,
{}, which can be empty when binding a server signifying a randomly
chosen local
address.

{host}:port is an internet address comprising a domain name or IPv4/v6
literal
surrounded by curly brackets, {}, which can be empty when binding
(signifying
any local address) and a port number, which can be zero when binding.
""";

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-12

 System.out.println(ustring);
 }

 static boolean isClient;
 static boolean initialized = false;
 static final int BUFSIZE = 8 * 1024;
 static int N; // Number of buffers to send
 static int DELAY = 0; // Milliseconds to delay between sends

 static List<AddressAndFamily> locals = new LinkedList<>();
 static AddressAndFamily remote;

 // family is only needed in cases where address is null.
 // It could be a Record type.

 static class AddressAndFamily {
 SocketAddress address;
 ProtocolFamily family;
 AddressAndFamily(ProtocolFamily family, SocketAddress address) {
 this.address = address;
 this.family = family;
 }
 }

 static AddressAndFamily parseAddress(String addr) throws
UnknownHostException {
 char c = addr.charAt(0);
 if (c != 'U' && c != 'I')
 throw new IllegalArgumentException("invalid address");

 String family = addr.substring(0, addr.indexOf(':')).toUpperCase();

 return switch (family) {
 case "UNIX" -> parseUnixAddress(addr);
 case "INET" -> parseInetSocketAddress(INET, addr);
 case "INET6" -> parseInetSocketAddress(INET6, addr);
 default -> throw new IllegalArgumentException();
 };
 }

 static AddressAndFamily parseUnixAddress(String token) {
 String path = getPathDomain(token);
 UnixDomainSocketAddress address;
 if (path.isEmpty())
 address = null;
 else
 address = UnixDomainSocketAddress.of(path);
 return new AddressAndFamily(UNIX, address);
 }

 static AddressAndFamily parseInetSocketAddress(StandardProtocolFamily
family, String token) throws UnknownHostException {
 String domain = getPathDomain(token);
 InetAddress address;
 if (domain.isEmpty()) {

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-13

 address = (family == StandardProtocolFamily.INET)
 ? InetAddress.getByName("0.0.0.0")
 : InetAddress.getByName("::0");
 } else {
 address = InetAddress.getByName(domain);
 }
 int cp = token.lastIndexOf(':') + 1;
 int port = Integer.parseInt(token.substring(cp));
 var isa = new InetSocketAddress(address, port);
 return new AddressAndFamily(family, isa);
 }

 // Return the token between braces, that is, a domain name or UNIX
path.

 static String getPathDomain(String s) {
 int start = s.indexOf('{') + 1;
 int end = s.indexOf('}');
 if (start == -1 || end == -1 || (start > end))
 throw new IllegalArgumentException(s);
 return s.substring(start, end);
 }

 // Return false if the program must exit.

 static void parseArgs(String[] args) throws UnknownHostException {
 if (args[0].equals("-h")) {
 usage();
 } else if (args[0].equals("-c")) {
 isClient = true;
 int nextArg;
 AddressAndFamily local = null;
 if (args[1].equals("-bind")) {
 local = parseAddress(args[2]);
 locals.add(local);
 nextArg = 3;
 } else {
 nextArg = 1;
 }
 remote = parseAddress(args[nextArg++]);
 N = Integer.parseInt(args[nextArg++]);
 if (nextArg == args.length - 1) {
 DELAY = Integer.parseInt(args[nextArg]);
 }
 initialized = true;
 } else if (args[0].equals("-s")) {
 isClient = false;
 for (int i = 1; i < args.length; i++) {
 locals.add(parseAddress(args[i]));
 }
 initialized = true;
 } else
 throw new IllegalArgumentException();
 }

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-14

 public static void main(String[] args) throws Exception {
 try {
 parseArgs(args);
 } catch (Exception e) {
 System.out.printf("\nInvalid arguments supplied. See the
following for usage information\n");
 usage();
 }
 if (!initialized)
 return;
 if (isClient) {
 doClient();
 } else {
 doServer();
 }
 }

 static Map<SocketChannel,Integer> byteCounter = new HashMap<>();

 private static void initListener(AddressAndFamily aaf, Selector
selector) {
 try {
 ProtocolFamily family = aaf.family;
 SocketAddress address = aaf.address;
 ServerSocketChannel server = ServerSocketChannel.open(family);
 server.bind(address);
 server.configureBlocking(false);
 postBind(address);
 server.register(selector, SelectionKey.OP_ACCEPT, null);
 System.out.println("Server: Listening on " +
server.getLocalAddress());
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
 }

 private static void doServer() throws IOException {
 ByteBuffer readBuf = ByteBuffer.allocate(64 * 1024);
 final Selector selector = Selector.open();
 locals.forEach(localAddress -> initListener(localAddress, selector));
 int nextConnectionId = 1;
 while (true) {
 selector.select();
 var keys = selector.selectedKeys();
 for (SelectionKey key : keys) {
 try {
 SelectableChannel c = key.channel();
 if (c instanceof ServerSocketChannel) {
 var server = (ServerSocketChannel)c;
 var ch = server.accept();
 var userid = "";
 if (server.getLocalAddress() instanceof
UnixDomainSocketAddress) {

 // An illustration of additional capability of

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-15

UNIX
 // channels; it's not required behavior.

 UnixDomainPrincipal pr =
ch.getOption(ExtendedSocketOptions.SO_PEERCRED);
 userid = "user: " + pr.user().toString() +
" group: " +
 pr.group().toString();
 }
 ch.configureBlocking(false);
 byteCounter.put(ch, 0);
 System.out.printf("Server: new
connection\n\tfrom {%s}\n", ch.getRemoteAddress());
 System.out.printf("\tConnection id: %s\n",
nextConnectionId);
 if (userid.length() > 0) {
 System.out.printf("\tpeer credentials:
%s\n", userid);
 }
 System.out.printf("\tConnection count: %d\n",
byteCounter.size());
 ch.register(selector, SelectionKey.OP_READ,
nextConnectionId++);
 } else {
 var ch = (SocketChannel) c;
 int id = (Integer)key.attachment();
 int bytes = byteCounter.get(ch);
 readBuf.clear();
 int n = ch.read(readBuf);
 if (n < 0) {
 String remote =
ch.getRemoteAddress().toString();
 System.out.printf("Server: closing
connection\n\tfrom: {%s} Id: %d\n", remote, id);
 System.out.printf("\tBytes received:
%d\n", bytes);
 byteCounter.remove(ch);
 ch.close();
 } else {
 readBuf.flip();
 bytes += n;
 byteCounter.put(ch, bytes);
 display(ch, readBuf, id);
 }
 }
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
 };
 keys.clear();
 }
 }

 private static void postBind(SocketAddress address) {
 if (address instanceof UnixDomainSocketAddress) {

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-16

 var usa = (UnixDomainSocketAddress)address;
 usa.getPath().toFile().deleteOnExit();
 }
 }

 private static void display(SocketChannel ch, ByteBuffer readBuf, int id)
 throws IOException
 {
 System.out.printf("Server: received %d bytes from: {%s} Id: %d\n",
 readBuf.remaining(), ch.getRemoteAddress(), id);
 }

 private static void doClient() throws Exception {
 SocketChannel client;
 if (locals.isEmpty())
 client = SocketChannel.open(remote.address);
 else {
 AddressAndFamily aaf = locals.get(0);
 client = SocketChannel.open(aaf.family);
 client.bind(aaf.address);
 postBind(aaf.address);
 client.connect(remote.address);
 }
 ByteBuffer sendBuf = ByteBuffer.allocate(BUFSIZE);
 for (int i=0; i<N; i++) {
 fill(sendBuf);
 client.write(sendBuf);
 Thread.sleep(DELAY);
 }
 client.shutdownOutput();
 ByteBuffer rxb = ByteBuffer.allocate(64 * 1024);
 int c;
 while ((c = client.read(rxb)) > 0) {
 rxb.flip();
 System.out.printf("Client: received %d bytes\n",
rxb.remaining());
 rxb.clear();
 }
 client.close();
 }

 private static void fill(ByteBuffer sendBuf) {

 // Because this example is for demonstration purposes, this method
 // doesn't fill the ByteBuffer sendBuf with data. Instead, it sets
the
 // limits of sendBuf to its capacity and its position to zero.
 // Consequently, when the example writes the contents of sendBuf, it
 // writes the entire contents of whatever happened to be in memory
when
 // sendBuf was allocated.

 sendBuf.limit(sendBuf.capacity());
 sendBuf.position(0);

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-17

 }
}

Example of Running the Socat Example

The following is an example of running the Socat example:

1. In a command-line shell, run Socat as follows:

$ java Socat -s UNIX:{/tmp/uds.sock}
Server: Listening on /tmp/uds.sock

2. In another command-line shell, run Socat as follows:

$ java Socat -c UNIX:{/tmp/uds.sock} 1

In the first command-line shell, you'll see output similar to the following:

Server: new connection
 from {}
 Connection id: 1
 peer credentials: user: yourusername group: yourgroup
 Connection count: 1
Server: received 8192 bytes from: {} Id: 1
Server: closing connection
 from: {} Id: 1
 Bytes received: 8192

If you don't specify a file name when you create a UNIX domain socket, then the JVM
creates a socket file and automatically binds the socket to it:

$ java Socat -s UNIX:{}
Server: Listening on /tmp/socket_837668026

This is the same as calling ServerSocketChannel.bind(null). You can change the
default directory where the JVM saves automatically generated socket files by setting
the jdk.net.unixdomain.tmpdir system property. See Networking System Properties.

Chmod File NIO Example
This example compiles a list of one or more symbolic mode expressions that can
change a set of file permissions in a manner similar to the UNIX chmod command.

The symbolic-mode-list parameter is a comma-separated list of expressions where
each expression has the following form:

who operator [permissions]

• who: One or more of the following characters: u, g, o, or a, meaning owner (user),
group, others, or all (owner, group, and others), respectively.

• operator: The character +, -, or =, signifying how to change the permissions:

Chapter 9
Chmod File NIO Example

9-18

– +: Permissions are added

– -: Permissions are removed

– =: Permissions are assigned absolutely

• permissions: A sequence of zero or more of the following:

– r: Read permission

– w: Write permission

– x: Execute permission

If permissions is omitted when permissions are assigned absolutely (with the = operator),
then the permissions are cleared for the owner, group or others as identified by who.
When permissions is omitted, then the operators + and - are ignored.

The following are examples of the symbolic-mode-list parameter:

• u=rw: Sets the owner permissions to read and write.

• ug+w: Sets the owner write and group write permissions.

• u+w,o-rwx: Sets the owner write permission and removes the others read, others write,
and others execute permissions.

• o=: Sets the others permission to none (others read, others write, and others executed
permissions are removed if set).

public class Chmod {

 public static Changer compile(String exprs) {
 // minimum is who and operator (u= for example)
 if (exprs.length() < 2)
 throw new IllegalArgumentException("Invalid mode");

 // permissions that the changer will add or remove
 final Set<PosixFilePermission> toAdd = new
HashSet<PosixFilePermission>();
 final Set<PosixFilePermission> toRemove = new
HashSet<PosixFilePermission>();

 // iterate over each of expression modes
 for (String expr: exprs.split(",")) {
 // minimum of who and operator
 if (expr.length() < 2)
 throw new IllegalArgumentException("Invalid mode");

 int pos = 0;

 // who
 boolean u = false;
 boolean g = false;
 boolean o = false;
 boolean done = false;
 for (;;) {
 switch (expr.charAt(pos)) {
 case 'u' : u = true; break;
 case 'g' : g = true; break;

Chapter 9
Chmod File NIO Example

9-19

 case 'o' : o = true; break;
 case 'a' : u = true; g = true; o = true; break;
 default : done = true;
 }
 if (done)
 break;
 pos++;
 }
 if (!u && !g && !o)
 throw new IllegalArgumentException("Invalid mode");

 // get operator and permissions
 char op = expr.charAt(pos++);
 String mask = (expr.length() == pos) ? "" :
expr.substring(pos);

 // operator
 boolean add = (op == '+');
 boolean remove = (op == '-');
 boolean assign = (op == '=');
 if (!add && !remove && !assign)
 throw new IllegalArgumentException("Invalid mode");

 // who= means remove all
 if (assign && mask.length() == 0) {
 assign = false;
 remove = true;
 mask = "rwx";
 }

 // permissions
 boolean r = false;
 boolean w = false;
 boolean x = false;
 for (int i=0; i<mask.length(); i++) {
 switch (mask.charAt(i)) {
 case 'r' : r = true; break;
 case 'w' : w = true; break;
 case 'x' : x = true; break;
 default:
 throw new IllegalArgumentException("Invalid
mode");
 }
 }

 // update permissions set
 if (add) {
 if (u) {
 if (r) toAdd.add(OWNER_READ);
 if (w) toAdd.add(OWNER_WRITE);
 if (x) toAdd.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toAdd.add(GROUP_READ);
 if (w) toAdd.add(GROUP_WRITE);

Chapter 9
Chmod File NIO Example

9-20

 if (x) toAdd.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toAdd.add(OTHERS_READ);
 if (w) toAdd.add(OTHERS_WRITE);
 if (x) toAdd.add(OTHERS_EXECUTE);
 }
 }
 if (remove) {
 if (u) {
 if (r) toRemove.add(OWNER_READ);
 if (w) toRemove.add(OWNER_WRITE);
 if (x) toRemove.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toRemove.add(GROUP_READ);
 if (w) toRemove.add(GROUP_WRITE);
 if (x) toRemove.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toRemove.add(OTHERS_READ);
 if (w) toRemove.add(OTHERS_WRITE);
 if (x) toRemove.add(OTHERS_EXECUTE);
 }
 }
 if (assign) {
 if (u) {
 if (r) toAdd.add(OWNER_READ);
 else toRemove.add(OWNER_READ);
 if (w) toAdd.add(OWNER_WRITE);
 else toRemove.add(OWNER_WRITE);
 if (x) toAdd.add(OWNER_EXECUTE);
 else toRemove.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toAdd.add(GROUP_READ);
 else toRemove.add(GROUP_READ);
 if (w) toAdd.add(GROUP_WRITE);
 else toRemove.add(GROUP_WRITE);
 if (x) toAdd.add(GROUP_EXECUTE);
 else toRemove.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toAdd.add(OTHERS_READ);
 else toRemove.add(OTHERS_READ);
 if (w) toAdd.add(OTHERS_WRITE);
 else toRemove.add(OTHERS_WRITE);
 if (x) toAdd.add(OTHERS_EXECUTE);
 else toRemove.add(OTHERS_EXECUTE);
 }
 }
 }

 // return changer
 return new Changer() {

Chapter 9
Chmod File NIO Example

9-21

 @Override
 public Set<PosixFilePermission>
change(Set<PosixFilePermission> perms) {
 perms.addAll(toAdd);
 perms.removeAll(toRemove);
 return perms;
 }
 };
 }

 /**
 * A task that <i>changes</i> a set of {@link PosixFilePermission}
elements.
 */
 public interface Changer {
 /**
 * Applies the changes to the given set of permissions.
 *
 * @param perms
 * The set of permissions to change
 *
 * @return The {@code perms} parameter
 */
 Set<PosixFilePermission> change(Set<PosixFilePermission>
perms);
 }

 /**
 * Changes the permissions of the file using the given Changer.
 */
 static void chmod(Path file, Changer changer) {
 try {
 Set<PosixFilePermission> perms = Files
 .getPosixFilePermissions(file);
 Files.setPosixFilePermissions(file, changer.change(perms));
 } catch (IOException x) {
 System.err.println(x);
 }
 }

 /**
 * Changes the permission of each file and directory visited
 */
 static class TreeVisitor implements FileVisitor<Path> {
 private final Changer changer;

 TreeVisitor(Changer changer) {
 this.changer = changer;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
 chmod(dir, changer);
 return CONTINUE;

Chapter 9
Chmod File NIO Example

9-22

 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
 chmod(file, changer);
 return CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException exc)
{
 if (exc != null)
 System.err.println("WARNING: " + exc);
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException exc) {
 System.err.println("WARNING: " + exc);
 return CONTINUE;
 }
 }

 static void usage() {
 System.err.println("java Chmod [-R] symbolic-mode-list file...");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 usage();
 int argi = 0;
 int maxDepth = 0;
 if (args[argi].equals("-R")) {
 if (args.length < 3)
 usage();
 argi++;
 maxDepth = Integer.MAX_VALUE;
 }

 // compile the symbolic mode expressions
 Changer changer = compile(args[argi++]);
 TreeVisitor visitor = new TreeVisitor(changer);

 Set<FileVisitOption> opts = Collections.emptySet();
 while (argi < args.length) {
 Path file = Paths.get(args[argi]);
 Files.walkFileTree(file, opts, maxDepth, visitor);
 argi++;
 }
 }
}

Chapter 9
Chmod File NIO Example

9-23

Copy File NIO Example
This example copies files in a similar manner to the copy command.

public class Copy {

 /**
 * Returns {@code true} if okay to overwrite a file ("cp -i")
 */
 static boolean okayToOverwrite(Path file) {
 String answer = System.console().readLine("overwrite %s (yes/
no)? ", file);
 return (answer.equalsIgnoreCase("y") ||
answer.equalsIgnoreCase("yes"));
 }

 /**
 * Copy source file to target location. If {@code prompt} is true
then
 * prompt user to overwrite target if it exists. The {@code
preserve}
 * parameter determines if file attributes should be copied/
preserved.
 */
 static void copyFile(Path source, Path target, boolean prompt,
boolean preserve) {
 CopyOption[] options = (preserve) ?
 new CopyOption[] { COPY_ATTRIBUTES, REPLACE_EXISTING } :
 new CopyOption[] { REPLACE_EXISTING };
 if (!prompt || Files.notExists(target) ||
okayToOverwrite(target)) {
 try {
 Files.copy(source, target, options);
 } catch (IOException x) {
 System.err.format("Unable to copy: %s: %s%n", source,
x);
 }
 }
 }

 /**
 * A {@code FileVisitor} that copies a file-tree ("cp -r")
 */
 static class TreeCopier implements FileVisitor<Path> {
 private final Path source;
 private final Path target;
 private final boolean prompt;
 private final boolean preserve;

 TreeCopier(Path source, Path target, boolean prompt, boolean
preserve) {
 this.source = source;
 this.target = target;

Chapter 9
Copy File NIO Example

9-24

 this.prompt = prompt;
 this.preserve = preserve;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
 // before visiting entries in a directory we copy the directory
 // (okay if directory already exists).
 CopyOption[] options = (preserve) ?
 new CopyOption[] { COPY_ATTRIBUTES } : new CopyOption[0];

 Path newdir = target.resolve(source.relativize(dir));
 try {
 Files.copy(dir, newdir, options);
 } catch (FileAlreadyExistsException x) {
 // ignore
 } catch (IOException x) {
 System.err.format("Unable to create: %s: %s%n", newdir, x);
 return SKIP_SUBTREE;
 }
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
 copyFile(file, target.resolve(source.relativize(file)),
 prompt, preserve);
 return CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException exc)
{
 // fix up modification time of directory when done
 if (exc == null && preserve) {
 Path newdir = target.resolve(source.relativize(dir));
 try {
 FileTime time = Files.getLastModifiedTime(dir);
 Files.setLastModifiedTime(newdir, time);
 } catch (IOException x) {
 System.err.format("Unable to copy all attributes to: %s:
%s%n", newdir, x);
 }
 }
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException exc) {
 if (exc instanceof FileSystemLoopException) {
 System.err.println("cycle detected: " + file);
 } else {
 System.err.format("Unable to copy: %s: %s%n", file, exc);

Chapter 9
Copy File NIO Example

9-25

 }
 return CONTINUE;
 }
 }

 static void usage() {
 System.err.println("java Copy [-ip] source... target");
 System.err.println("java Copy -r [-ip] source-dir... target");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 boolean recursive = false;
 boolean prompt = false;
 boolean preserve = false;

 // process options
 int argi = 0;
 while (argi < args.length) {
 String arg = args[argi];
 if (!arg.startsWith("-"))
 break;
 if (arg.length() < 2)
 usage();
 for (int i=1; i<arg.length(); i++) {
 char c = arg.charAt(i);
 switch (c) {
 case 'r' : recursive = true; break;
 case 'i' : prompt = true; break;
 case 'p' : preserve = true; break;
 default : usage();
 }
 }
 argi++;
 }

 // remaining arguments are the source files(s) and the target
location
 int remaining = args.length - argi;
 if (remaining < 2)
 usage();
 Path[] source = new Path[remaining-1];
 int i=0;
 while (remaining > 1) {
 source[i++] = Paths.get(args[argi++]);
 remaining--;
 }
 Path target = Paths.get(args[argi]);

 // check if target is a directory
 boolean isDir = Files.isDirectory(target);

 // copy each source file/directory to target
 for (i=0; i<source.length; i++) {
 Path dest = (isDir) ?

Chapter 9
Copy File NIO Example

9-26

target.resolve(source[i].getFileName()) : target;

 if (recursive) {
 // follow links when copying files
 EnumSet<FileVisitOption> opts =
EnumSet.of(FileVisitOption.FOLLOW_LINKS);
 TreeCopier tc = new TreeCopier(source[i], dest, prompt,
preserve);
 Files.walkFileTree(source[i], opts, Integer.MAX_VALUE, tc);
 } else {
 // not recursive so source must not be a directory
 if (Files.isDirectory(source[i])) {
 System.err.format("%s: is a directory%n", source[i]);
 continue;
 }
 copyFile(source[i], dest, prompt, preserve);
 }
 }
 }
}

Disk Usage File NIO Example
This example prints disk space information in a similar manner to the df command.

public class DiskUsage {

 static final long K = 1024;

 static void printFileStore(FileStore store) throws IOException {
 long total = store.getTotalSpace() / K;
 long used = (store.getTotalSpace() - store.getUnallocatedSpace()) /
K;
 long avail = store.getUsableSpace() / K;

 String s = store.toString();
 if (s.length() > 20) {
 System.out.println(s);
 s = "";
 }
 System.out.format("%-20s %12d %12d %12d\n", s, total, used, avail);
 }

 public static void main(String[] args) throws IOException {
 System.out.format("%-20s %12s %12s %12s\n", "Filesystem", "kbytes",
"used", "avail");
 if (args.length == 0) {
 FileSystem fs = FileSystems.getDefault();
 for (FileStore store: fs.getFileStores()) {
 printFileStore(store);
 }
 } else {
 for (String file: args) {
 FileStore store = Files.getFileStore(Paths.get(file));

Chapter 9
Disk Usage File NIO Example

9-27

 printFileStore(store);
 }
 }
 }
}

User-Defined File Attributes File NIO Example
This example lists, sets, retrieves, and deletes user-defined file attributes.

public class Xdd {

 static void usage() {
 System.out.println("Usage: java Xdd <file>");
 System.out.println(" java Xdd -set <name>=<value>
<file>");
 System.out.println(" java Xdd -get <name> <file>");
 System.out.println(" java Xdd -del <name> <file>");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 // one or three parameters
 if (args.length != 1 && args.length != 3)
 usage();

 Path file = (args.length == 1) ? Paths.get(args[0])
 : Paths.get(args[2]);

 // check that user defined attributes are supported by the
file store
 FileStore store = Files.getFileStore(file);
 if (!store
 .supportsFileAttributeView(UserDefinedFileAttributeView.cla
ss)) {
 System.err.format(
 "UserDefinedFileAttributeView not supported on %s\n",
store);
 System.exit(-1);

 }
 UserDefinedFileAttributeView view =
Files.getFileAttributeView(file,
 UserDefinedFileAttributeView.class);

 // list user defined attributes
 if (args.length == 1) {
 System.out.println(" Size Name");
 System.out
 .println("--------
--------------------------------------");
 for (String name : view.list()) {
 System.out.format("%8d %s\n", view.size(name), name);
 }

Chapter 9
User-Defined File Attributes File NIO Example

9-28

 return;
 }

 // Add/replace a file's user defined attribute
 if (args[0].equals("-set")) {
 // name=value
 String[] s = args[1].split("=");
 if (s.length != 2)
 usage();
 String name = s[0];
 String value = s[1];
 view.write(name, Charset.defaultCharset().encode(value));
 return;
 }

 // Print out the value of a file's user defined attribute
 if (args[0].equals("-get")) {
 String name = args[1];
 int size = view.size(name);
 ByteBuffer buf = ByteBuffer.allocateDirect(size);
 view.read(name, buf);
 buf.flip();

System.out.println(Charset.defaultCharset().decode(buf).toString());
 return;
 }

 // Delete a file's user defined attribute
 if (args[0].equals("-del")) {
 view.delete(args[1]);
 return;
 }

 // option not recognized
 usage();
 }
}

Chapter 9
User-Defined File Attributes File NIO Example

9-29

10
Java Networking

The Java networking API provides classes for networking functionality, including addressing,
classes for using URLs and URIs, socket classes for connecting to servers, networking
security functionality, and more. It consists of these packages:

• java.net: Classes for implementing networking applications.

• java.net.http: Contains the API for the HTTP Client, which provides high-level client
interfaces to HTTP (versions 1.1 and 2) and low-level client interfaces to WebSocket
instances. See Java HTTP Client for more information about this API, including videos
and sample code.

• javax.net: Classes for creating sockets.

• javax.net.ssl: Secure socket classes.

• jdk.net: Platform specific socket options for the java.net and java.nio.channels
socket classes.

Networking System Properties
You can set the following networking system properties in one of three ways:

• Using the -D option of the java command

• Using the System.setProperty(String, String) method

• Specifying them in the $JAVA_HOME/conf/net.properties file. Note that you can
specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties in the Java SE API Specification for more information.

HTTP Client Properties

Some of the following properties are subject to predefined minimum and maximum values
that override any user-specified values. Note that the default value of boolean values is true if
the property exists but has no value.

10-1

https://openjdk.java.net/groups/net/httpclient/

Table 10-1 HTTP Client Properties

Property Default Value Description

jdk.httpclient.allowRes
trictedHeaders

None A comma-separated list of
normally restricted HTTP
header names that users may
set in HTTP requests or by
user code in HttpRequest
instances.

By default, the following
request headers are not
allowed to be set by user
code: connection, content-
length, expect, host, and
upgrade. You can override
this behavior with this
property.

The names are case-
insensitive and whitespace is
ignored. Note that this
property is intended for testing
and not for real-world
deployments. Protocol errors
or other undefined behavior
are likely to occur when using
this property. There may be
other headers that are
restricted from being set
depending on the context. This
includes the "Authorization"
header when the relevant
HttpClient has an
authenticator set. These
restrictions cannot be
overridden by this property.

jdk.httpclient.bufsize 16384 (16 kB) The size to use for internal
allocated buffers in bytes.

jdk.httpclient.connecti
onPoolSize

0 The maximum number of
connections to keep in the
HTTP/1.1 keep alive cache. A
value of 0 means that the
cache is unbounded.

jdk.httpclient.connecti
onWindowSize

No default value The HTTP/2 client connection
window size in bytes.

jdk.httpclient.disableR
etryConnect

false Whether automatic retry of
connection failures is disabled.
If false, then retries are
attempted (subject to the retry
limit).

jdk.httpclient.enableAl
lMethodRetry

false Whether it is permitted to
automatically retry non-
idempotent HTTP requests.

Chapter 10
Networking System Properties

10-2

Table 10-1 (Cont.) HTTP Client Properties

Property Default Value Description

jdk.httpclient.enablepu
sh

1 Whether HTTP/2 push
promise is enabled. A value of
1 enables push promise; a
value of 0 disables it.

jdk.httpclient.hpack.ma
xheadertablesize

16384 (16 kB) The HTTP/2 client maximum
HPACK header table size in
bytes.

jdk.httpclient.HttpClie
nt.log

None Enables high-level logging of
various events through the
Java Logging API (which is
contained in the package
java.util.logging).

The value contains a comma-
separated list of any of the
following items:

• errors
• requests
• headers
• frames
• ssl
• trace
• channel
You can append the frames
item with a colon-separated
list of any of the following
items:

• control
• data
• window
• all
Specifying an item adds it to
the HTTP client's log. For
example, if you specify the
following value, then the Java
Logging API logs all possible
HTTP Client events:

errors,requests,headers
,frames:control:data:wi
ndow,ssl,trace,channel
Note that you can replace
control:data:window with
all.

The name of the logger is
jdk.httpclient.HttpClie
nt, and all logging is at level
INFO.

Chapter 10
Networking System Properties

10-3

Table 10-1 (Cont.) HTTP Client Properties

Property Default Value Description

jdk.httpclient.keepaliv
e.timeout

1200 The number of seconds to
keep idle HTTP/1.1
connections alive in the keep
alive cache.

jdk.httpclient.maxframe
size

16384 (16 kB) The HTTP/2 client maximum
frame size in bytes. The server
is not permitted to send a
frame larger than this.

jdk.httpclient.maxstrea
ms

100 The maximum number of
HTTP/2 streams per
connection.

jdk.httpclient.receiveB
ufferSize

The operating system's default
value

The HTTP client socket
receive buffer size in bytes.

jdk.httpclient.redirect
s.retrylimit

5 The maximum number of
attempts to send a HTTP
request when redirected or
any failure occurs for any
reason.

jdk.httpclient.websocke
t.writeBufferSize

16384 (16 kB) The buffer size used by the
web socket implementation for
socket writes.

jdk.httpclient.windowsi
ze

16777216 (16 MB) The HTTP/2 client stream
window size in bytes.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

Table 10-2 IPv4 and IPv6 Protocol Properties

Property Default Value Description

java.net.preferIPv4Stac
k

false If IPv6 is available on the
operating system, then the
underlying native socket will
be, by default, an IPv6 socket,
which lets applications
connect to, and accept
connections from, both IPv4
and IPv6 hosts.

Set this property to true if you
want your application use
IPv4-only sockets. This implies
that it won't be possible for the
application to communicate
with IPv6-only hosts.

Chapter 10
Networking System Properties

10-4

Table 10-2 (Cont.) IPv4 and IPv6 Protocol Properties

Property Default Value Description

java.net.preferIPv6Addr
esses

false When dealing with a host
which has both IPv4 and IPv6
addresses, and if IPv6 is
available on the operating
system, the default behavior is
to prefer using IPv4 addresses
over IPv6 ones. This is to
ensure backward compatibility,
for example, for applications
that depend on the
representation of an IPv4
address (such as
192.168.1.1).

Set this property to true to
change this preference and
use IPv6 addresses over IPv4
ones where possible.

Set this property to system to
preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler and the default proxy
selector.

Table 10-3 HTTP Proxy Properties

Property Default Value Description

http.proxyHost No default value Proxy server that the HTTP
protocol handler will use.

http.proxyPort 80 Port that the HTTP protocol
handler will use.

Chapter 10
Networking System Properties

10-5

Table 10-3 (Cont.) HTTP Proxy Properties

Property Default Value Description

http.nonProxyHosts localhost|127.*|[::1] Indicates the hosts that should
be accessed without going
through the proxy. Typically, this
defines internal hosts. The value
of this property is a list of hosts,
separated by the vertical bar (|)
character. In addition, you can
use the asterisk (*) for pattern
matching. For example, the
following specifies that every
host in the exmaple.com domain
and localhost should be
accessed directly even if a proxy
server is specified:

-
Dhttp.nonProxyHosts="*.ex
ample.com|localhost"
The default value excludes all
common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality
is needed (such as payment web sites). The following proxy settings are used by the
HTTPS protocol handler and the default proxy selector.

Note:

The HTTPS protocol handler uses the same http.nonProxyHosts property
as the HTTP protocol.

Table 10-4 HTTPS Proxy Properties

Property Default Value Description

https.proxyHost No default value Proxy server that the HTTPS
protocol handler will use.

https.proxyPort 443 Port that the HTTPS protocol
handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

Chapter 10
Networking System Properties

10-6

Table 10-5 FTP Proxy Properties

System Property Default Value Description

ftp.proxyHost No default value Proxy server that the FTP
protocol handler will use.

ftp.proxyPort 80 Port that the FTP protocol
handler will use.

ftp.nonProxyHosts localhost|127.*|[::1] Similar to
http.nonProxyHosts, this
property indicates the hosts that
should be accessed without
going through the proxy.

The default value excludes all
common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP level.
Specifying a SOCKS proxy server results in all TCP connections going through that proxy
server unless other proxies are specified. The following proxy settings are used by the
SOCKS protocol handler.

Table 10-6 SOCKS Proxy Properties

Property Default Value Description

java.net.socks.username The value of the system property
user.name

See Acquiring the SOCKS User
Name and Password.

java.net.socks.password No default value See Acquiring the SOCKS User
Name and Password.

socksProxyHost No default value SOCKS proxy server that the
SOCKS protocol handler will use.

socksProxyPort 1080 Port that the SOCKS protocol
handler will use.

socksProxyVersion 5 The version of the SOCKS
protocol supported by the server.
The default is 5 indicating
SOCKS V5; alternatively 4 can
be specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered a java.net.Authenticator default instance,
then this will be queried with the protocol set to the string SOCKS5, and the prompt set to
the string SOCKS authentication.

Chapter 10
Networking System Properties

10-7

2. If the authenticator does not return a user name/password or if no authenticator is
registered, then the system checks the values of properties
java.net.socks.username and java.net.socks.password.

3. If these values don't exist, then the system property user.name is checked for a
user name. In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-7 Other Proxy-Related Properties

Property Default Value Description

java.net.useSystemProxi
es

false If true, then the operating
system's proxy settings are
used.

Note that the system
properties that explicitly set
proxies like http.proxyHost
take precedence over the
system settings even if
java.net.useSystemProxi
es is set to true.

This property is checked only
once, at startup.

jdk.http.auth.tunneling
.disabledSchemes

Basic Lists the authentication
schemes that will be disabled
when tunneling HTTPS over a
proxy with the HTTP
CONNECT method.

The value of this property is a
comma-separated list of case-
insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

Chapter 10
Networking System Properties

10-8

Table 10-7 (Cont.) Other Proxy-Related Properties

Property Default Value Description

jdk.http.auth.proxying.
disabledSchemes

No default value Lists the authentication
schemes that will be disabled
when proxying HTTP.

The value of this property is a
comma-separated list of case-
insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may
be undesirable when proxying
HTTP or HTTPS. For example,
Basic results in effectively the
cleartext transmission of the
user's password over the
physical network.

UNIX Domain Socket Temporary Directory

Calling ServerSocketChannel.bind with a null address parameter will bind the
channel's socket to an automatically assigned socket address. For UNIX domain sockets, this
means a unique path in some predefined system temporary directory. On Linux and macOS,
the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the $JAVA_HOME/conf/net.properties file

3. The system property java.io.tmpdir
On Windows, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the %JAVA_HOME%\conf\net.properties file

3. The TEMP environment variable

4. The system property java.io.tmpdir
Because UNIX domain socket addresses are limited in length to approximately 100 bytes
(depending on the platform), it is important to ensure that the temporary directory's name
together with the file name used for the socket does not exceed this limit.

Chapter 10
Networking System Properties

10-9

Note:

If a client socket is connected to a remote destination without calling bind
first, then the socket is implicitly bound. In this case, UNIX domain sockets
are unnamed (that is, their path is empty). This behavior is not affected by
any system or networking properties.

Other HTTP URL Stream Protocol Handler Properties

These properties are checked only once, at startup.

Table 10-8 Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.agent Java/<version> Defines the string sent in the
User-Agent request header in
HTTP requests. Note that the
string Java/<version> will
be appended to the one
provided in the property.
For example, if -
Dhttp.agent="foobar" is
specified, the User-Agent
header will contain foobar
Java/1.8.0 if the version of
the JVM is 1.8.0).

http.auth.digest.cnonce
Repeat

5 See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth.digest.valida
teProxy

false See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth.digest.valida
teServer

false See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

Chapter 10
Networking System Properties

10-10

Table 10-8 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.auth.ntlm.domain No default value Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the
java.net.Authenticat
or class to acquire user
names and passwords when
they are needed. However,
NTLM also needs the NT
domain name. There are three
options for specifying the
domain:

1. Do not specify it. In some
environments, the domain
is not actually required
and the application does
not have to specify it.

2. The domain name can be
encoded within the user
name by prefixing the
domain name followed by
a backslash (\) before the
user name. With this
method, existing
applications that use the
Authenticator class
do not need to be
modified, as long as users
are made aware that this
notation must be used.

3. If a domain name is not
specified as in the second
option and the system
property
http.auth.ntlm.domai
n is defined, then the
value of this property will
be used as the domain
name.

http.keepAlive true Indicates if persistent (keep-
alive) connections should be
supported. They improve
performance by allowing the
underlying socket connection
to be reused for multiple HTTP
requests. If this is set to true,
then persistent connections
will be requested with HTTP
1.1 servers.

Set this property to false to
disable the use of persistent
connections.

Chapter 10
Networking System Properties

10-11

Table 10-8 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.KeepAlive.queuedCo
nnections

10 The maximum number of
keep-alive connections to be
on the queue for clean up.

http.KeepAlive.remainin
gData

512 The maximum amount of data
in kilobytes that will be
cleaned off the underlying
socket so that it can be
reused.

http.maxConnections 5 If HTTP persistent
connections (see the
http.keepAlive property)
are enabled, then this value
determines the maximum
number of idle connections
that will be simultaneously
kept alive per destination.

jdk.http.ntlm.transpare
ntAuth

disabled Enables transparent New
Technology LAN Manager
(NTLM) HTTP authentication
on Windows.

Transparent authentication can
be used for the NTLM
scheme, where the security
credentials based on the
currently logged in user's
name and password can be
obtained directly from the
operating system, without
prompting the user.

This property has three
possible values:

• disabled: Transparent
authentication is never
used.

• allHosts: Transparent.
authentication is used for
all hosts

• trustedHosts:
Transparent
authentication is enabled
for hosts that are trusted
in Windows Internet
settings.

Note that NTLM is not a
strongly secure authentication
scheme; care should be taken
before enabling it.

Chapter 10
Networking System Properties

10-12

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties http.auth.digest.validateServer and
http.auth.digest.validateProxy modify the behavior of the HTTP digest authentication
mechanism. Digest authentication provides a limited ability for the server to authenticate itself
to the client (that is, by proving that it knows the user's password). However, not all servers
support this capability and by default the check is switched off. To enforce this check for
authentication with an origin, set http.auth.digest.validateServer to true; with a proxy
server, set http.auth.digest.validateProxy to true.

It is usually not necessary to set the system property http.auth.digest.cnonceRepeat. This
determines how many times a cnonce value is reused. This can be useful when the MD5-
sess algorithm is being used. Increasing the value reduces the computational overhead on
both the client and the server by reducing the amount of material that has to be hashed for
each HTTP request.

Address Cache Properties

The java.net package, when performing name resolution, uses an address cache for both
security and performance reasons. Any address resolution attempt, be it forward (name to IP
address) or reverse (IP address to name), will have its result cached, whether it was
successful or not, so that subsequent identical requests will not have to access the naming
service. These properties enable you to tune how the address cache operates.

Table 10-9 Address Cache Properties

Property Default Value Description

networkaddress.cache.ttl -1 Specified in the $JAVA_HOME/
conf/security/
java.security file to indicate
the caching policy for successful
name lookups from the name
service. The value is an integer
corresponding to the number of
seconds successful name
lookups will be kept in the cache.

A value of -1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

The default value is -1 (forever)
if a security manager is installed
and implementation-specific if no
security manager is installed.

Chapter 10
Networking System Properties

10-13

Table 10-9 (Cont.) Address Cache Properties

Property Default Value Description

networkaddress.cache.nega
tive.ttl

10 Specified in the $JAVA_HOME/
conf/security/
java.security file to indicate
the caching policy for
unsuccessful name lookups from
the name service.
The value is an integer
corresponding to the number of
seconds an unsuccessful name
lookup will be kept in the cache.
A value of -1 (or any negative
value) means “cache forever,”
while a value of 0 (zero) means
no caching.

HTTP Client Properties
Some of the following properties are subject to predefined minimum and maximum
values that override any user-specified values. Note that the default value of boolean
values is true if the property exists but has no value.

Chapter 10
Networking System Properties

10-14

Table 10-10 HTTP Client Properties

Property Default Value Description

jdk.httpclient.allowRestr
ictedHeaders

No default value A comma-separated list of
normally restricted HTTP header
names that users may set in
HTTP requests or by user code
in HttpRequest instances.

By default, the following request
headers are not allowed to be set
by user code: connection,
content-length, expect,
host, and upgrade. You can
override this behavior with this
property.

The names are case-insensitive
and whitespace is ignored. Note
that this property is intended for
testing and not for real-world
deployments. Protocol errors or
other undefined behavior are
likely to occur when using this
property. There may be other
headers that are restricted from
being set depending on the
context. This includes the
"Authorization" header when the
relevant HttpClient has an
authenticator set. These
restrictions cannot be overridden
by this property.

jdk.httpclient.bufsize 16384 (16 kB) The size to use for internal
allocated buffers in bytes.

jdk.httpclient.connection
PoolSize

0 The maximum number of
connections to keep in the
HTTP/1.1 keep alive cache. A
value of 0 means that the cache
is unbounded.

jdk.httpclient.connection
WindowSize

2^26 The HTTP/2 client connection
window size in bytes.

The maximum size is 2^31-1.
This value cannot be smaller
than the stream window size.

jdk.httpclient.disableRet
ryConnect

false Whether automatic retry of
connection failures is disabled. If
false, then retries are attempted
(subject to the retry limit).

jdk.httpclient.enableAllM
ethodRetry

false Whether it is permitted to
automatically retry non-
idempotent HTTP requests.

jdk.httpclient.enablepush 1 Whether HTTP/2 push promise
is enabled. A value of 1 enables
push promise; a value of 0
disables it.

Chapter 10
Networking System Properties

10-15

Table 10-10 (Cont.) HTTP Client Properties

Property Default Value Description

jdk.httpclient.hpack.maxh
eadertablesize

16384 (16 kB) The HTTP/2 client maximum
HPACK header table size in
bytes.

jdk.httpclient.HttpClient
.log

No default value Enables high-level logging of
various events through the Java
Logging API (which is contained
in the package
java.util.logging).

The value contains a comma-
separated list of any of the
following items:

• errors
• requests
• headers
• frames
• ssl
• trace
• channel
You can append the frames item
with a colon-separated list of any
of the following items:

• control
• data
• window
• all
Specifying an item adds it to the
HTTP client's log. For example, if
you specify the following value,
then the Java Logging API logs
all possible HTTP Client events:

errors,requests,headers,f
rames:control:data:window
,ssl,trace,channel
Note that you can replace
control:data:window with
all.

The name of the logger is
jdk.httpclient.HttpClient,
and all logging is at level INFO.

jdk.httpclient.keepalive.
timeout

1200 The number of seconds to keep
idle HTTP/1.1 connections alive
in the keep alive cache.

jdk.httpclient.maxframesi
ze

16384 (16 kB) The HTTP/2 client maximum
frame size in bytes. The server is
not permitted to send a frame
larger than this.

jdk.httpclient.maxstreams 100 The maximum number of
HTTP/2 streams per connection.

Chapter 10
Networking System Properties

10-16

Table 10-10 (Cont.) HTTP Client Properties

Property Default Value Description

jdk.httpclient.receiveBuf
ferSize

The operating system's default
value

The HTTP client socket receive
buffer size in bytes.

jdk.httpclient.redirects.
retrylimit

5 The maximum number of
attempts to send a HTTP request
when redirected or any failure
occurs for any reason.

jdk.httpclient.websocket.
writeBufferSize

16384 (16 kB) The buffer size used by the web
socket implementation for socket
writes.

jdk.httpclient.windowsize 16777216 (16 MB) The HTTP/2 client stream
window size in bytes.

IPv4 and IPv6 Protocol Properties
These two properties are checked only once, at startup.

Table 10-11 IPv4 and IPv6 Protocol Properties

Property Default Value Description

java.net.preferIPv4Stack false If IPv6 is available on the
operating system, then the
underlying native socket will be,
by default, an IPv6 socket, which
lets applications connect to, and
accept connections from, both
IPv4 and IPv6 hosts.

Set this property to true if you
want your application use IPv4-
only sockets. This implies that it
won't be possible for the
application to communicate with
IPv6-only hosts.

Chapter 10
Networking System Properties

10-17

Table 10-11 (Cont.) IPv4 and IPv6 Protocol Properties

Property Default Value Description

java.net.preferIPv6Addres
ses

false When dealing with a host which
has both IPv4 and IPv6
addresses, and if IPv6 is
available on the operating
system, the default behavior is to
prefer using IPv4 addresses over
IPv6 ones. This is to ensure
backward compatibility, for
example, for applications that
depend on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to true to
change this preference and use
IPv6 addresses over IPv4 ones
where possible.

Set this property to system to
preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties
The following proxy settings are used by the HTTP protocol handler and the default
proxy selector.

Table 10-12 HTTP Proxy Properties

Property Default Value Description

http.proxyHost No default value Proxy server that the HTTP
protocol handler will use.

http.proxyPort 80 Port that the HTTP protocol
handler will use.

Chapter 10
Networking System Properties

10-18

Table 10-12 (Cont.) HTTP Proxy Properties

Property Default Value Description

http.nonProxyHosts localhost|127.*|[::1] Indicates the hosts that should
be accessed without going
through the proxy. Typically,
this defines internal hosts. The
value of this property is a list
of hosts, separated by the
vertical bar (|) character. In
addition, you can use the
asterisk (*) for pattern
matching. For example, the
following specifies that every
host in the exmaple.com
domain and localhost
should be accessed directly
even if a proxy server is
specified:

-
Dhttp.nonProxyHosts="*.
example.com|localhost"
The default value excludes all
common variations of the
loopback address.

HTTPS Proxy Properties
HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality is
needed (such as payment web sites). The following proxy settings are used by the HTTPS
protocol handler and the default proxy selector.

Note:

The HTTPS protocol handler uses the same http.nonProxyHosts property as the
HTTP protocol.

Table 10-13 HTTPS Proxy Properties

Property Default Value Description

https.proxyHost No default value Proxy server that the HTTPS
protocol handler will use.

https.proxyPort 443 Port that the HTTPS protocol
handler will use.

FTP Proxy Properties
The following proxy settings are used by the FTP protocol handler.

Chapter 10
Networking System Properties

10-19

Table 10-14 FTP Proxy Properties

System Property Default Value Description

ftp.proxyHost No default value Proxy server that the FTP
protocol handler will use.

ftp.proxyPort 80 Port that the FTP protocol
handler will use.

ftp.nonProxyHosts localhost|127.*|[::1] Similar to
http.nonProxyHosts, this
property indicates the hosts
that should be accessed
without going through the
proxy.

The default value excludes all
common variations of the
loopback address.

SOCKS Proxy Properties
The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP
level. Specifying a SOCKS proxy server results in all TCP connections going through
that proxy server unless other proxies are specified. The following proxy settings are
used by the SOCKS protocol handler.

Table 10-15 SOCKS Proxy Properties

Property Default Value Description

java.net.socks.username No default value See Acquiring the SOCKS
User Name and Password

java.net.socks.password No default value See Acquiring the SOCKS
User Name and Password

socksProxyHost No default value SOCKS proxy server that the
SOCKS protocol handler will
use.

socksProxyPort 1080 Port that the SOCKS protocol
handler will use.

socksProxyVersion 5 The version of the SOCKS
protocol supported by the
server. The default is 5
indicating SOCKS V5;
alternatively 4 can be
specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password
The SOCKS user name and password are acquired in the following way:

Chapter 10
Networking System Properties

10-20

1. First, if the application has registered a java.net.Authenticator default instance,
then this will be queried with the protocol set to the string SOCKS5, and the prompt set to
the string SOCKS authentication.

2. If the authenticator does not return a user name/password or if no authenticator is
registered, then the system checks the values of properties java.net.socks.username
and java.net.socks.password.

3. If these values don't exist, then the system property user.name is checked for a user
name. In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-16 Other Proxy-Related Properties

Property Default Value Description

java.net.useSystemProxies false If true, then the operating
system's proxy settings are used.

Note that the system properties
that explicitly set proxies like
http.proxyHost take
precedence over the system
settings even if
java.net.useSystemProxies
is set to true.

This property is checked only
once, at startup.

jdk.http.auth.tunneling.d
isabledSchemes

Basic Lists the authentication schemes
that will be disabled when
tunneling HTTPS over a proxy
with the HTTP CONNECT
method.

The value of this property is a
comma-separated list of case-
insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

Chapter 10
Networking System Properties

10-21

Table 10-16 (Cont.) Other Proxy-Related Properties

Property Default Value Description

jdk.http.auth.proxying.di
sabledSchemes

No default value Lists the authentication schemes
that will be disabled when
proxying HTTP.

The value of this property is a
comma-separated list of case-
insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may be
undesirable when proxying HTTP
or HTTPS. For example, Basic
results in effectively the cleartext
transmission of the user's
password over the physical
network.

UNIX Domain Sockets Properties
Calling ServerSocketChannel.bind with a null address parameter will bind the
channel's socket to an automatically assigned socket address. For UNIX domain
sockets, this means a unique path in some predefined system temporary directory.

Ues these properties to control the selection of this directory:

Table 10-17 UNIX Doman Sockets Properties

Property Default Value Description

java.io.tmpdir Dependent on the operating
system

If the temporary directory can't
be determined with the
jdk.net.unixdomain.tmpd
ir system property, then the
directory specified by the
java.io.tmpdir system
property is used.

jdk.net.unixdomain.tmpd
ir

On some platforms, (for
example, some UNIX
systems) this will have a
predefined default value. On
others, (for example,
Windows) there is no default
value.

Specifies the directory to use
for automatically bound server
socket addresses.

On Linux and macOS, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

Chapter 10
Networking System Properties

10-22

2. The same property set in the $JAVA_HOME/conf/net.properties file

3. The system property java.io.tmpdir
On Windows, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the %JAVA_HOME%\conf\net.properties file

3. The TEMP environment variable

4. The system property java.io.tmpdir
Because UNIX domain socket addresses are limited in length to approximately 100 bytes
(depending on the platform), it is important to ensure that the temporary directory's name
together with the file name used for the socket does not exceed this limit.

Note:

If a client socket is connected to a remote destination without calling bind first,
then the socket is implicitly bound. In this case, UNIX domain sockets are unnamed
(that is, their path is empty). This behavior is not affected by any system or
networking properties.

Other HTTP URL Stream Protocol Handler Properties
These properties are checked only once, at startup.

Table 10-18 Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.agent Java/<version> Defines the string sent in the
User-Agent request header in
HTTP requests. Note that the
string Java/<version> will be
appended to the one provided in
the property.
For example, if -
Dhttp.agent="example" is
specified, the User-Agent header
will contain example Java/
1.8.0 if the version of the JVM
is 1.8.0).

http.auth.digest.cnonceRe
peat

5 See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth.digest.validate
Proxy

false See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

Chapter 10
Networking System Properties

10-23

Table 10-18 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.auth.digest.validate
Server

false See System Properties That
Modify the Behavior of HTTP
Digest Authentication
Mechanism.

http.auth.ntlm.domain No default value Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the
java.net.Authenticator
class to acquire user names and
passwords when they are
needed. However, NTLM also
needs the NT domain name.
There are three options for
specifying the domain:

1. Do not specify it. In some
environments, the domain is
not actually required and the
application does not have to
specify it.

2. The domain name can be
encoded within the user
name by prefixing the
domain name followed by a
backslash (\) before the
user name. With this
method, existing
applications that use the
Authenticator class do
not need to be modified, as
long as users are made
aware that this notation must
be used.

3. If a domain name is not
specified as in the second
option and the system
property
http.auth.ntlm.domain
is defined, then the value of
this property will be used as
the domain name.

Chapter 10
Networking System Properties

10-24

Table 10-18 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.keepAlive true Indicates if persistent (keep-
alive) connections should be
supported. They improve
performance by allowing the
underlying socket connection to
be reused for multiple HTTP
requests. If this is set to true,
then persistent connections will
be requested with HTTP 1.1
servers.

Set this property to false to
disable the use of persistent
connections.

http.KeepAlive.queuedConn
ections

10 The maximum number of keep-
alive connections to be on the
queue for clean up.

http.KeepAlive.remainingD
ata

512 The maximum amount of data in
kilobytes that will be cleaned off
the underlying socket so that it
can be reused.

http.maxConnections 5 If HTTP persistent connections
(see the http.keepAlive
property) are enabled, then this
value determines the maximum
number of idle connections that
will be simultaneously kept alive
per destination.

Chapter 10
Networking System Properties

10-25

Table 10-18 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

jdk.https.negotiate.cbt never Controls the generation and
sending of TLS channel binding
tokens (CBT) when Kerberos or
the Negotiate authentication
scheme using Kerberos are
employed over HTTPS with
HttpsURLConnection.
There are three possible
settings:

• never: This is also the
default value if the property
is not set. In this case, CBTs
are never sent.

• always: CBTs are sent for
all Kerberos authentication
attempts over HTTPS.

• domain:<comma-
separated domain
list>: Each domain in the
list specifies the destination
host or hosts for which a
CBT is sent. Domains can
be:
– Single hosts like

example or
example.com

– Literal IP addresses as
specified in RFC 2732

– Hostnames that contain
wildcards like
*.example.com; this
example matches all
hosts under
example.com and its
subdomains.

The channel binding tokens
generated are of the type tls-
server-end-point as defined
in RFC 5929.

Chapter 10
Networking System Properties

10-26

Table 10-18 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

jdk.http.ntlm.transparent
Auth

No default value Enables transparent New
Technology LAN Manager
(NTLM) HTTP authentication on
Windows.

Transparent authentication can
be used for the NTLM scheme,
where the security credentials
based on the currently logged in
user's name and password can
be obtained directly from the
operating system, without
prompting the user.

If this value is not set, then
transparent authentication is
never used.

This property has three possible
values:

• disabled: Transparent
authentication is never used.

• allHosts: Transparent.
authentication is used for all
hosts

• trustedHosts: Transparent
authentication is enabled for
hosts that are trusted in
Windows Internet settings.

Note that NTLM is not a strongly
secure authentication scheme;
care should be taken before
enabling it.

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties http.auth.digest.validateServer and
http.auth.digest.validateProxy modify the behavior of the HTTP digest authentication
mechanism. Digest authentication provides a limited ability for the server to authenticate itself
to the client (that is, by proving that it knows the user's password). However, not all servers
support this capability and by default the check is switched off. To enforce this check for
authentication with an origin, set http.auth.digest.validateServer to true; with a proxy
server, set http.auth.digest.validateProxy to true.

It is usually not necessary to set the system property http.auth.digest.cnonceRepeat. This
determines how many times a cnonce value is reused. This can be useful when the MD5-
sess algorithm is being used. Increasing the value reduces the computational overhead on
both the client and the server by reducing the amount of material that has to be hashed for
each HTTP request.

Chapter 10
Networking System Properties

10-27

Address Cache Properties
The java.net package, when performing name resolution, uses an address cache for
both security and performance reasons. Any address resolution attempt, be it forward
(name to IP address) or reverse (IP address to name), will have its result cached,
whether it was successful or not, so that subsequent identical requests will not have to
access the naming service. These properties enable you to tune how the address
cache operates.

Table 10-19 Address Cache Properties

Property Default Value Description

networkaddress.cache.tt
l

-1 Specified in the $JAVA_HOME/
conf/security/
java.security file to
indicate the caching policy for
successful name lookups from
the name service. The value is
an integer corresponding to
the number of seconds
successful name lookups will
be kept in the cache.

A value of -1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

The default value is -1
(forever) if a security manager
is installed and
implementation-specific if no
security manager is installed.

networkaddress.cache.ne
gative.ttl

10 Specified in the $JAVA_HOME/
conf/security/
java.security file to
indicate the caching policy for
unsuccessful name lookups
from the name service.
The value is an integer
corresponding to the number
of seconds an unsuccessful
name lookup will be kept in the
cache. A value of -1 (or any
negative value) means “cache
forever,” while a value of 0
(zero) means no caching.

Enhanced Exception Messages
By default, for security reasons, exception messages do not include potentially
sensitive security information such as hostnames or UNIX domain socket address
paths. Use the jdk.includeInExceptions to relax this restriction for debugging and
other purposes.

Chapter 10
Networking System Properties

10-28

Table 10-20 Enhanced Exception Messages Property

Property Default Value Description

jdk.includeInExceptions No default value The value is a omma-separated
list of keywords that refer to
exception types whose
messages may be enhanced
with more detailed information.

In particular, if the value includes
the string hostInfo, then socket
addresses will be included in
exception message texts (for
example, hostnames and UNIX
domain socket address paths).

Chapter 10
Networking System Properties

10-29

11
Pseudorandom Number Generators

Random number generators included in Java SE are more accurately called pseudorandom
number generators (PRNGs). They create a series of numbers based on a deterministic
algorithm.

The most important interfaces and classes are RandomGenerator, which enables you to
generate random numbers of various primitive types given a PRNG algorithm, and
RandomGeneratorFactory, which enables you to create PRNGs based on characteristics
other than the algorithm's name.

See the java.util.random package for more detailed information about the PRNGs
implemented in Java SE.

Topics

• Characteristics of PRNGs

• Generating Pseudorandom Numbers with RandomGenerator Interface

• Generating Pseudorandom Numbers in Multithreaded Applications

– Dynamically Creating New Generators

– Creating Stream of Generators

• Choosing a PRNG Algorithm

Characteristics of PRNGs
Because PRNGs generate a sequence of values based on an algorithm instead of a
“random” physical source, this sequence will eventually restart. The number of values a
PRNG generates before it restarts is called a period.

The state cycle of a PRNG consists of the sequence of all possible values a PRNG can
generate. The state of a PRNG is the position of the last generated value in its state cycle.

In general, to generate a value, the PRNG bases it on the previously generated value.
However, some PRNGs can generate a value many values further down the sequence
without calculating any intermediate values. These are called jumpable PRNGs because they
could jump far ahead in the sequence of values, usually by a fixed distance, typically 264. A
leapable PRNG can jump even further, typically 2128 values. An arbitrarily jumpable PRNG
can jump to any value in the generated sequence of values.

The java.util.Random Class Compared to Other PRNGs

The java.util.random.RandomGeneratorFactory class enables you to create various
PRNGs, many of which are in the jdk.random package. The most significant difference
between the PRNGs in jdk.random and the java.util.Random class is that Random has
a very short period: only 248 values.

11-1

Generating Pseudorandom Numbers with
RandomGenerator Interface

The following example demonstrates the basic way to create a PRNG and use it to
generate a random number:

 RandomGenerator random1 = RandomGenerator.of("Random");
 long value1 = random1.nextLong();
 System.out.println(value1);

It uses the method RandomGenerator.of(String). The argument of this method
is the algorithm name of the PRNG. Java SE contains many PRNG classes. Unlike
Random, however, most of them are in the jdk.random package.

The RandomGenerator interface contains many methods such as nextLong(),
nextInt(), nextDouble(), and nextBoolean() to generate a random number of
various primitive data types.

The following example demonstrates how to create a PRNG using the
RandomGeneratorFactory class:

 RandomGeneratorFactory<RandomGenerator> factory2 =
 RandomGeneratorFactory.of("SecureRandom");
 RandomGenerator random2 = factory2.create();
 long value2 = random2.nextLong();
 System.out.println(value2);

To obtain a list of PRNGs implemented by Java SE, call the
RandomGeneratorFactory.all() method:

 RandomGeneratorFactory.all()
 .map(f -> f.name())
 .sorted()
 .forEach(n -> System.out.println(n));

This method returns a stream of all the available RandomGeneratorFactory
instances available.

You can use the RandomGeneratorFactory class to create PRNGs based on
characteristics other than an algorithm’s name. The following example finds the PRNG
with the longest period, and creates a RandomGeneratorFactory based on this
characteristic:

 RandomGeneratorFactory<RandomGenerator> greatest =
 RandomGeneratorFactory
 .all()
 .sorted((f, g) -> g.period().compareTo(f.period()))
 .findFirst()
 .orElse(RandomGeneratorFactory.of("Random"));
 System.out.println(greatest.name());

Chapter 11
Generating Pseudorandom Numbers with RandomGenerator Interface

11-2

 System.out.println(greatest.group());
 System.out.println(greatest.create().nextLong());

Generating Pseudorandom Numbers in Multithreaded
Applications

If multiple threads in your application are generating sequences of values using PRNGs, then
you want to ensure that there’s no chance that these sequences contain values that coincide
with each other, especially if they’re using the same PRNG algorithm. (You would want to use
the same PRNG algorithm to ensure that all your application’s pseudorandom number
sequences have the same statistical properties.) Splittable, jumpable, and leapable PRNGs
are ideal for this; they can create a stream of generators that have the same statistical
properties and are statistically independent.

There are two techniques you can use to incorporate PRNGs into your applications. You can
dynamically create a new generator when an application needs to fork a new thread.
Alternatively, you can create a stream of RandomGenerator objects based on an initial
RandomGenerator, then map each RandomGenerator object from the stream to its own
thread.

Dynamically Creating New Generators
If you’re using a PRNG that implements the RandomGenerator.SplittableGenerator
interface, then when a thread running in your application needs to fork a new thread, call the
split() method. It creates a new generator with the same properties as the original
generator. It does this by partitioning the original generator’s period into two; each partition is
for the exclusive use of either the original or new generator.

The following example uses the L128X1024MixRandom PRNG, which implements the
RandomGenerator.SplittableGenerator interface. The IntStream processes stream
represents tasks intended to be run on different threads.

 int NUM_PROCESSES = 100;

 RandomGeneratorFactory<SplittableGenerator> factory =
 RandomGeneratorFactory.of("L128X1024MixRandom");
 SplittableGenerator random = factory.create();

 IntStream processes = IntStream.rangeClosed(1, NUM_PROCESSES);

 processes.parallel().forEach(p -> {
 RandomGenerator r = random.split();
 System.out.println(p + ": " + r.nextLong());
 });

Splittable PRNGs generally have large periods to ensure that new objects resulting from a
split use different state cycles. But even if two instances "accidentally" use the same state
cycle, they are highly likely to traverse different regions of that shared state cycle.

Chapter 11
Generating Pseudorandom Numbers in Multithreaded Applications

11-3

Creating Stream of Generators
If the initial generator implements the interface
RandomGenerator.StreamableGenerator, then call the method rngs(),
jumps() (for jumpable generators), or leaps() (for leapable generators) to create a
stream of generators. Call the map() method on the stream to assign each generator
to its own thread.

When you call the jumps() method, the generator changes its state by jumping
forward a large fixed distance within its state cycle, then creates a new generator
based on the generator’s new state. The generator repeatedly jumps and creates
generators, creating a stream of generators. The leaps() method is similar; the size
of the jump is much larger.

The following example creates a jumpable generator, then creates a stream of
generators based on this initial generator by calling the jumps() method. The first
several generators in the stream (defined by NUM_TASKS) are wrapped in a Task
instance, then each Task is run in its own thread.

 int NUM_TASKS = 10;

 RandomGeneratorFactory<JumpableGenerator> factory =
 RandomGeneratorFactory.of("Xoshiro256PlusPlus");
 JumpableGenerator random = factory.create();

 class Task implements Runnable {
 private int p;
 private RandomGenerator r;
 public Task(RandomGenerator prng) {
 r = prng;
 }
 public void run() {
 System.out.println(r.nextLong());
 }
 }

 List<Thread> taskList = random
 .jumps()
 .limit(NUM_TASKS)
 .map(prng -> new Thread(new Task(prng)))
 .collect(Collectors.toList());
 taskList.stream().forEach(t -> t.start());

Choosing a PRNG Algorithm
For applications (such as physical simulation, machine learning, and games) that don't
require a cryptographically secure algorithm, the java.util.random package
provides multiple implementations of interface RandomGenerator that focus on one
or more PRNG properties, which include speed, space, period, accidental correlation,
and equidistribution.

Chapter 11
Choosing a PRNG Algorithm

11-4

Note:

As PRNG algorithms evolve, Java SE may add new PRNG algorithms and
deprecate older ones. It's recommended that you don't use deprecated algorithms;
they may be removed from a future Java SE release. Check if an algorithm has
been deprecated by calling either the RandomGenerator.isDeprecated() or
RandomGeneratorFactory.isDeprecated() method.

Cryptographically Secure

For applications that require a random number generator algorithm that is cryptographically
secure, use the SecureRandom class in the java.security package.

See The SecureRandom Class in Java Platform, Standard Edition Security Developer's
Guide for more information.

General Purpose

For applications with no special requirements, L64X128MixRandom balances speed, space,
and period well. It's suitable for both single-threaded and multithreaded applications when
used properly (a separate instance for each thread).

Single-Threaded, High Performance

For single-threaded applications, Xoroshiro128PlusPlus is small, fast, and has a sufficiently
long period.

32-Bit Applications

For applications running in a 32-bit environment and using only one or a small number of
threads, L32X64StarStarRandom or L32X64MixRandom are good choices.

Multithreaded Applications with Static Threads

For applications that use many threads that are allocated in one batch at the start of
computation, consider a jumpable generator such as Xoroshiro128PlusPlus or
Xoshiro256PlusPlus or a splittable generator such as L64X128MixRandom or
L64X256MixRandom. If your application uses only floating-point values from a uniform
distribution where no more than 32 bits of floating-point precision is required and exact
equidistribution is not required, then MRG32k3a, a classic and well-studied algorithm, may be
appropriate.

Multithreaded Applications with Dynamic Threads

For applications that create many threads dynamically, perhaps through the use of
spliterators, a splittable generator such as L64X128MixRandom or L64X256MixRandom is
recommended.

If the number of generators created dynamically may be very large (millions or more), then
using generators such as L128X128MixRandom or L128X256MixRandom will make it much
less likely that two instances use the same state cycle.

Tuples of Consecutively Generated Values

For applications that use tuples of consecutively generated values, consider a generator that
is k-equidistributed such that k is at least as large as the length of the tuples being generated.

Chapter 11
Choosing a PRNG Algorithm

11-5

For example, the generator L64X256MixRandom is shown to be 4-equidistributed,
which means that you can have a sequence of tuples that contain four values, and
these tuples will be uniformly distributed (there’s an equal chance that any 4-tuple will
appear in the sequence). It’s also shown that L64X1024MixRandom is 16-
equidistributed.

Large Permutations

For applications that generate large permutations, consider a generator whose period
is much larger than the total number of possible permutations; otherwise, it will be
impossible to generate some of the intended permutations. For example, if the goal is
to shuffle a deck of 52 cards, the number of possible permutations is 52! (52 factorial),
which is approximately 2225.58, so it may be best to use a generator whose period is
roughly 2256 or larger, such as L64X256MixRandom, L64X1024MixRandom,
L128X256MixRandom, or L128X1024MixRandom.

Chapter 11
Choosing a PRNG Algorithm

11-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Filter Factories
	Allow-Lists and Reject-Lists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Reading a Stream of Serialized Objects
	Setting a Custom Filter for an Individual Stream
	Setting a JVM-Wide Custom Filter
	Setting a Custom Filter Using a Pattern
	Setting a Custom Filter as a Class
	Setting a Custom Filter as a Method
	Creating a Filter with ObjectInputFilter Methods

	Setting a Filter Factory
	Setting a Filter Factory with setSerialFilterFactory
	Specifying a Filter Factory in a System or Security Property

	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java NIO
	Grep NIO Example
	Checksum NIO Example
	Time Query NIO Example
	Time Server NIO Example
	Non-Blocking Time Server NIO Example
	Internet Protocol and UNIX Domain Sockets NIO Example
	Chmod File NIO Example
	Copy File NIO Example
	Disk Usage File NIO Example
	User-Defined File Attributes File NIO Example

	10 Java Networking
	Networking System Properties
	HTTP Client Properties
	IPv4 and IPv6 Protocol Properties
	HTTP Proxy Properties
	HTTPS Proxy Properties
	FTP Proxy Properties
	SOCKS Proxy Properties
	Acquiring the SOCKS User Name and Password

	Other Proxy-Related Properties
	UNIX Domain Sockets Properties
	Other HTTP URL Stream Protocol Handler Properties
	System Properties That Modify the Behavior of HTTP Digest Authentication Mechanism

	Address Cache Properties
	Enhanced Exception Messages

	11 Pseudorandom Number Generators
	Characteristics of PRNGs
	Generating Pseudorandom Numbers with RandomGenerator Interface
	Generating Pseudorandom Numbers in Multithreaded Applications
	Dynamically Creating New Generators
	Creating Stream of Generators

	Choosing a PRNG Algorithm

