
Java Platform, Standard Edition
Flight Recorder API Programmer’s Guide

Release 17
F40867-01
September 2021

Java Platform, Standard Edition Flight Recorder API Programmer’s Guide, Release 17

F40867-01

Copyright © 2020, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vi

Conventions vii

Part I Why Use the API?

Part II Create Events

1 Creating and Recording Your First Event

2 Event Metadata

3 Guidelines for Naming and Labeling Events

4 Categories

5 Measuring Time

6 Data Types

7 Dynamic Events

iii

8 Custom Annotations

9 Inheritance of Annotations, Settings, and Fields

Part III Configure Events and Flight Recorder

10

Enable and Disable Events

11

Event Threshold

The shouldCommit Method 11-2

12

Periodic Events

13

Printing Event Stack Trace

14

Filter Events with SettingDefinition

15

Exclude Fields from Being Persisted with the transient Keyword

16

Manually Register and Unregister an Event

17

Flight Recorder Configurations

Part IV Monitor Events with Flight Recorder Event Streaming API

iv

18

Create Event Stream in Process, Active

19

Create Event Stream in Process, Passive

20

Create Event Stream from External Process

Part V Parsing a Recording File

v

Preface

This document shows you how to use the Flight Recorder API for more
comprehensive application monitoring; you can analyze in greater detail events
generated by applications, the JVM, and the operating system. Also, you can create
your own events, record your own data, and view and parse the recordings. In
addition, this document shows you how to use the Flight Recorder event streaming
API, which enables you to consume Flight Recorder data continuously.

Audience
This document is intended for experienced Flight Recorder users who want to monitor
their applications in greater detail.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documents
• The jfr Command in the Java Development Kit Tool Specifications

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• The jdk.jfr module

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

https://docs.oracle.com/en/java/javase/14/docs/api/jdk.jfr/module-summary.html

Part I
Why Use the API?

Use the Flight Recorder API for more comprehensive application monitoring; you can analyze
in greater detail events generated by applications, the JVM, and the operating system. In
addition, you can create your own events, record your own data, and view and parse the
recordings.

For example, you might create events and recordings for the following scenarios:

• To identify slow HTTP GET requests: A client application sends a request to a web server
and it takes a long time for the request to be processed. To troubleshoot this problem,
you can create an event that triggers if the request takes more than five seconds to
process. You can also correlate these requests with JVM events, such as garbage
collection or thread contention, which might impact web server performance.

• To track slow-running SQL queries: Some SQL queries take a long time to execute in a
database server. To identify the problem, you can create an event to log all the SQL
queries, and then analyze the recordings to track the slowest-running queries.

Flight Recorder API or Java Logging API?

The Java Logging API (see the package java.util.logging) captures information such
as security failures, configuration errors, performance bottlenecks, and bugs in the
application or platform. However, compared with the Java Logging API, the Flight Recorder
API provides you with more information in the recording it generates (and in the events it
records), more information regarding the context in which an event occurs, and more control
over the timing of events.

https://docs.oracle.com/en/java/javase/14/docs/api/java.logging/java/util/logging/package-summary.html

Part II
Create Events

This section shows you how to create and record events. It contains the following topics:

• Creating and Recording Your First Event

• Event Metadata

• Guidelines for Naming and Labeling Events

• Categories

• Measuring Time

• Data Types

• Dynamic Events

• Custom Annotations

• Inheritance of Annotations, Settings, and Fields

1
Creating and Recording Your First Event

The sample HelloWorldSample.java creates an event named com.oracle.Hello.

import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

public class HelloWorldSample {

 @Name("com.oracle.Hello")
 @Label("Hello World!")
 static class Hello extends Event {
 @Label("Message")
 String message;
 }

 public static void main(String... args) {
 Hello event = new Hello();
 event.begin();
 event.message = "Hello world!";
 event.commit();
 }
}

Run HelloWorldSample with the following command:

java -XX:StartFlightRecording:filename=hw.jfr HelloWorldSample.java

It runs HelloWorldSample and creates a recording file named hw.jfr.

To view the contents of the recording file, run this command:

jfr print hw.jfr

It prints all events recorded by Flight Recorder.

If you only want to view the Hello event that you created, then run this command:

jfr print --events Hello hw.jfr

It prints output similar to the following:

com.oracle.Hello {
 startTime = 16:44:14.841
 duration = 0.0170 ms
 message = "Hello world!"

1-1

 eventThread = "main" (javaThreadId = 1)
 stackTrace = [
 HelloWorldSample.main(String[]) line: 18
 jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Method,
Object, Object[])
 jdk.internal.reflect.NativeMethodAccessorImpl.invoke(Object,
Object[]) line: 64
 jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(Object,
Object[]) line: 43
 java.lang.reflect.Method.invoke(Object, Object[]) line: 564
 ...
]
}

Chapter 1

1-2

2
Event Metadata

The example SetMetadataSample.java defines an event named com.oracle.Hello and sets
the annotations @Name, @Description, @Label, and @Category. (Note that this sample is
in the package frexamples.)

package frexamples;

import jdk.jfr.Category;
import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

public class SetMetadataSample {

 @Name("com.oracle.Hello")
 @Label("Set Metadata Example")
 @Description("Demonstrates how to set the annotations "
 + "@Name, @Description, @Label, and @Category")
 @Category({ "Demonstration", "Tutorial" })
 static class Hello extends Event {
 @Label("Message")
 String message;
 }

 public static void main(String... args) {
 Hello event = new Hello();
 event.begin();
 event.message = "Hello Event!";
 event.commit();
 }
}

Ensure that the example is in a directory named frexamples, then run SetMetadataSample
from this directory with the following commands:

java -XX:StartFlightRecording:filename=sm.jfr SetMetadataSample.java
jfr print --events Hello sm.jfr

The last command prints output similar to the following:

com.oracle.Hello {
 startTime = 23:43:48.444
 duration = 0.0177 ms
 message = "Hello Event!"

2-1

 ...
}

You can also use the jfr print command to filter events that belong to one or more
categories:

jfr print --categories Demonstration sm.jfr

The @Name annotation overrides the default name for an event type. For example, the
default name for the event created in this example would have been
frexamples.SetMetadataSample$Hello if the @Name annotation hadn't been set. See
Guidelines for Naming Events.

The @Description and @Label annotations enable to you add additional
information about an event type. Note that you shouldn't use @Label as an identifier;
use the @Name annotation instead. See Guidelines for Labeling Events

The @Category annotation enables you to associate one or more categories with an
event type. To specify one category, use a string. To specify more than one category,
use a comma-separated list of strings surrounded by braces ({}). See Categories.

Chapter 2

2-2

3
Guidelines for Naming and Labeling Events

You should name and label all of your events by setting the annotations @Name and @Label.

Guidelines for Naming Events

Use the following format for naming your events, where www.example.com is the domain of
your organization and Name is the name of your event class:

com.example.Name

When naming your event class, omit the word "Event."

By default, an event gets its name from its fully qualified class name. For example, in the
example SetMetadataSample.java (see Event Metadata), the default name of the event
Hello is frexamples.SetMetadataSample$Hello.

This works well for experimentation, but avoid omitting the @Name annotation for production
code. You might have to refactor your source code and move the event class to a different
package. If you haven't specified the event's name with the @Name annotation, then
refactoring an event class can break code or settings files that configure the event. It can also
break code that parses recording files that use the default name to identify an event.

The fully qualified class name may also contain redundant or unnecessary strings such as
jfr, internal, events, or Events that you should omit.

An event name should be short but not so short that it clashes with other organizations or
products. The name should be easy to understand for users who want to configure the event.
This is especially true if the event is part of a framework or library that is meant to be used by
others. It's usually sufficient to put all the events for a library or product in the same
namespace. For example, all the events for OpenJDK are in the jdk namespace. There are
no sub-namespaces for hotspot, gc, or compiler as this would just complicate things.
However, it's possible to divide events into categories with the @Category annotation, which
you can freely change without disruption.

Guidelines for Labeling Events

For labels, use headline-style capitalization: Capitalize the first and last words and all nouns,
pronouns, adjectives, verbs and adverbs. Do not include ending punctuation. As with event
names, omit the word "Event." Note that you shouldn't use @Label as an identifier; use the
@Name annotation instead.

Use labels to display events in user interfaces such as a custom visualization tool. For
example, JDK Mission Control's Event Browser uses the label to display events in its Event
Types Tree.

3-1

4
Categories

With the @Category annotation, you can assign any number of categories to an event.
Categories enable you to identify similar events that should be displayed together, for
example, in a graph or a tree. Although you can assign any category to an event (a category
is just a string), it's best to first determine your categories.

If there's a chance that two or more events can happen at the same time and in the same
thread, even if their start and end times might be different, then they should belong to
different categories to prevent overlap when they're represented in a graphical user interface.

For example, suppose that you want to monitor image uploads to a web server. You create an
event named File Upload that begins when a user uploads a file and ends when an upload
completes. For advanced diagnostics about image uploads, you create more detailed events
named Image Read, Image Resize, and Image Write. During these detailed events, other
low-level events occur, for example, Socket Read during Image Read and File Write during
Image Write. In this example, the event File Upload would overlap the events Image Read,
Image Resize, and Image Write, which means that the File Upload event might hide the
detailed events in some event visualizers. The same issue might happen for Image Read and
Socket Read, and Image Write and File Write.

To prevent event overlap, make sure that events that might overlap belong to different
categories. The following diagram illustrates one categorization scheme that prevents event
overlaps and how an event visualizer could display them:

Figure 4-1 Categorizing Concurrent Events to Prevent Overlaps

Categories Events

0 1 2 3 4 5 6 7

Java Application

Upload

Image Upload

File Upload

Image Read

Socket Read Socket Read File Write

Image WriteImage Resize

Time (ms)

File Upload belongs to the category Upload. Image Read, Image Resize, and Image Write
belong to the category Image Upload. Socket Read and File Write belong to the category
Java Application.

The example CategoriesSample.java implements this categorization scheme and simulates
the creation of events as illustrated in the figure:

import jdk.jfr.Category;
import jdk.jfr.DataAmount;
import jdk.jfr.Event;
import jdk.jfr.Label;

4-1

import jdk.jfr.Name;
import jdk.jfr.Percentage;

public class CategoriesSample {

 public static final String PROGRAMMERS_GUIDE_SAMPLES =
 "Programmer's Guide Samples";
 public static final String UPLOAD = "Upload";
 public static final String IMAGE_UPLOAD = "Image Upload";
 public static final String JAVA_APPLICATION = "Java Application";

 @Name("com.oracle.FileUpload")
 @Label("File Upload")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, UPLOAD})
 private static class FileUpload extends Event { }

 @Name("com.oracle.ImageRead")
 @Label("Image Read")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, IMAGE_UPLOAD})
 private static class ImageRead extends Event {
 @DataAmount(DataAmount.BYTES)
 long bytesUploaded;
 }

 @Name("com.oracle.ImageResize")
 @Label("Image Resize")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, IMAGE_UPLOAD})
 private static class ImageResize extends Event {
 @Percentage
 double scale;
 }

 @Name("com.oracle.ImageWrite")
 @Label("Image Write")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, IMAGE_UPLOAD})
 private static class ImageWrite extends Event {
 @DataAmount(DataAmount.BYTES)
 long bytesWritten;
 }

 @Name("com.oracle.SocketRead")
 @Label("Socket Read")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, JAVA_APPLICATION})
 private static class SocketRead extends Event {
 @DataAmount(DataAmount.BYTES)
 long bytesRead;
 }

 @Name("com.oracle.FileWrite")
 @Label("File Write")
 @Category({PROGRAMMERS_GUIDE_SAMPLES, JAVA_APPLICATION})
 private static class FileWrite extends Event {
 @DataAmount(DataAmount.BYTES)
 long bytesWritten;
 }

Chapter 4

4-2

 public static void main(String... args) {
 FileUpload fu = new FileUpload();
 fu.begin();

 ImageRead ir = new ImageRead();
 ir.begin();
 ir.bytesUploaded = 2048;

 SocketRead sr1 = new SocketRead();
 sr1.begin();
 sr1.bytesRead = 1024;
 sr1.commit();

 SocketRead sr2 = new SocketRead();
 sr2.begin();
 sr2.bytesRead = 1024;
 sr2.commit();

 ir.commit();

 ImageResize irs = new ImageResize();
 irs.begin();
 irs.scale = 0.5;
 irs.commit();

 ImageWrite iw = new ImageWrite();
 iw.begin();
 iw.bytesWritten = 1024;

 FileWrite fw = new FileWrite();
 fw.begin();
 fw.bytesWritten = 1024;
 fw.commit();

 iw.commit();
 fu.commit();
 }
}

Run CategoriesSample with the following command:

java -XX:StartFlightRecording:filename=categoriessample.jfr
CategoriesSample.java

Then, open categoriessample.jfr in JDK Mission Control. From the Event Types Tree
in the Event Browser, find the events created by this sample in the category Programmer's
Guide Samples:

Chapter 4

4-3

Figure 4-2 JDK Mission Control Browser Displaying Events from
CategoriesSample

JDK Mission Control categorizes events based on their @Category attribute and lists
them by their @Label attribute.

Chapter 4

4-4

5
Measuring Time

The example MeasureTimeSample.java shows you how to measure the time of an operation
by calling the Event.begin and Event.commit methods.

import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;
public class MeasureTimeSample {

 @Name("com.oracle.MeasureDuration")
 @Label("Measure Duration")
 static class MeasureMyDuration extends Event { }

 public static void main(String... args) throws Exception {
 MeasureMyDuration event = new MeasureMyDuration();
 event.begin();
 Thread.sleep(42);
 event.commit();
 }
}

Note that the commit method ends the timing of an event without the need of an explicit call
to the end method.

Run MeasureTimeSample with the following commands:

java -XX:StartFlightRecording:filename=mt.jfr MeasureTimeSample.java
jfr print --events MeasureDuration mt.jfr

The last command prints output similar to the following:

com.oracle.MeasureDuration {
 startTime = 12:26:43.169
 duration = 45.3 ms
 ...
}

5-1

6
Data Types

The example PersistFieldTypesSample.java shows which field types you can persist in an
event, which are the following:

• java.lang.String, which may be null

• java.lang.Thread, which may be null

• java.lang.Class, which may be null

• byte

• short

• int

• long

• float

• double

• char

• boolean

Note:

Events don't support arrays.

The following is the PersistFieldTypesSample.java example:

import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

public class PersistFieldTypesSample {

 @Name("com.oracle.FieldTypes")
 @Label("Allowed Field Types")
 static class FieldTypes extends Event {
 @Label("Class Value")
 Class<?> classValue;

 @Label("Thread Value")
 Thread threadValue; // thread must be started

 @Label("String Value")
 String stringValue;

 @Label("Byte Value")

6-1

 byte byteValue;

 @Label("Short Value")
 short shortValue;

 @Label("Int Value")
 int intValue;

 @Label("Long Value")
 long longValue;

 @Label("Float Value")
 float floatValue;

 @Label("Double Value")
 double doubleValue;

 @Label("Character Value")
 char characterValue;

 @Label("Boolean Value")
 boolean booleanValue;
 }

 public static void main(String... args) {
 FieldTypes event = new FieldTypes();
 event.classValue = Math.class;
 event.threadValue = Thread.currentThread();
 event.stringValue = "Hello";
 event.byteValue = 42;
 event.shortValue = 4711;
 event.intValue = Integer.MAX_VALUE;
 event.longValue = Long.MAX_VALUE;
 event.doubleValue = Math.PI;
 event.floatValue = Float.NaN;
 event.characterValue = '!';
 event.booleanValue = true;
 event.commit();
 }
}

Run PersistFieldTypesSample with the following commands:

java -XX:StartFlightRecording:filename=pft.jfr
PersistFieldTypesSample.java
jfr print --events FieldTypes pft.jfr

The last command prints output similar to the following:

com.oracle.FieldTypes {
 startTime = 12:33:12.434
 classValue = java.lang.Math (classLoader = bootstrap)
 threadValue = "main" (javaThreadId = 1)
 stringValue = "Hello"

Chapter 6

6-2

 byteValue = 42
 shortValue = 4711
 intValue = 2147483647
 longValue = 9223372036854775807
 floatValue = N/A
 doubleValue = 3.141592653589793
 characterValue = !
 booleanValue = true
 ...
}

Chapter 6

6-3

7
Dynamic Events

Dynamic events enable you to define events at run time, including their annotations and
fields.

Note:

Only use dynamic events if you won't know the layout of an event until you run your
application.

The example DynamicSample.java creates a dynamic event named
com.oracle.RandomString, which includes a field whose name is a random string:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import jdk.jfr.AnnotationElement;
import jdk.jfr.Category;
import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.EventFactory;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.ValueDescriptor;

public class DynamicSample {

 private static String randomString(int n) {

 var ALPHA_NUMERIC_STRING = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 var builder = new StringBuilder();
 while (n-- != 0) {
 int character = (int) (Math.random()
 * ALPHA_NUMERIC_STRING.length());
 builder.append(ALPHA_NUMERIC_STRING.charAt(character));
 }
 return builder.toString();
 }

 public static void main(String[] args) {

 String[] category = { "Demonstration", "Tutorial" };
 var eventAnnotations = new ArrayList<AnnotationElement>();
 eventAnnotations
 .add(new AnnotationElement(
 Name.class, "com.oracle.RandomString"));

7-1

 eventAnnotations.add(new AnnotationElement(Label.class,
 "Field Named with Random String"));
 eventAnnotations.add(new AnnotationElement(Description.class,
 "Demonstrates how to create a dynamic event"));
 eventAnnotations.add(new AnnotationElement(
 Category.class, category));

 var fields = new ArrayList<ValueDescriptor>();
 var messageAnnotations = Collections
 .singletonList(new AnnotationElement(Label.class,
"Message"));
 var randomFieldName = DynamicSample.randomString(8);
 fields.add(new ValueDescriptor(String.class, randomFieldName,
 messageAnnotations));
 var numberAnnotations = Collections
 .singletonList(new AnnotationElement(Label.class,
"Number"));
 fields.add(new ValueDescriptor(
 int.class, "number", numberAnnotations));

 var f = EventFactory.create(eventAnnotations, fields);

 Event event = f.newEvent();
 event.set(0, "hello, world!");
 event.set(1, 100);
 event.commit();
 }
}

Run DynamicSample with the following commands:

java -XX:StartFlightRecording:filename=d.jfr DynamicSample.java
jfr print --events RandomString d.jfr

The last command prints output similar to the following:

com.oracle.RandomString {
 startTime = 12:56:32.782
 ZZEIUMTG = "hello, world!"
 number = 100
 ...
}

To create a dynamic event, call the static method
EventFactory.create<List<AnnotationElement>,
List<ValueDescriptor>):

var f = EventFactory.create(eventAnnotations, fields);

The first argument is a list of your event's annotations, which may include built-in
annotations such as @Name and @Description.

Chapter 7

7-2

The second argument is a list of your event's fields. Define them with the ValueDescriptor
class.

Chapter 7

7-3

8
Custom Annotations

Creating custom annotations for events is the same as creating Java annotations. The
example CustomAnnotationSample.java demonstrates this.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.MetadataDefinition;
import jdk.jfr.Name;
import jdk.jfr.Relational;

public class CustomAnnotationSample {

 @MetadataDefinition
 @Name("com.oracle.Severity")
 @Label("Severity")
 @Description("Value between 0 and 100 that indicates " +
 "severity. 100 is most severe.")
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ ElementType.TYPE })
 public @interface Severity {
 int value() default 50;
 }

 @MetadataDefinition
 @Name("com.oracle.TransactionId")
 @Label("Transaction ID")
 @Relational
 @Retention(RetentionPolicy.RUNTIME)
 @Target({ ElementType.FIELD })
 public @interface TransactionId { }

 @Name("com.oracle.TransactionBlocked")
 @Severity(80)
 @Label("Transaction Blocked")
 static class TransactionBlocked extends Event {
 @TransactionId
 @Label("Transaction")
 long transaction;

 @TransactionId
 @Label("Transaction Blocker")
 long transactionBlocker;

8-1

 }

 public static void main(String... args) {
 TransactionBlocked event = new TransactionBlocked();
 event.begin();
 event.transaction = 1;
 event.transactionBlocker = 2;
 event.commit();
 }
}

Run CustomAnnotationSample with the following command:

java -XX:StartFlightRecording:filename=ca.jfr
CustomAnnotationSample.java

To view annotations, categories, field layouts, and other information about all the
events in customannotationsample.jfr, run the following command:

jfr metadata ca.jfr

The output of the previous command includes the following:

@Name("com.oracle.Severity")
@Label("Severity")
@Description("Value between 0 and 100 that indicates severity. 100 is
most severe.")
class Severity extends java.lang.annotation.Annotation {
 int value;
}

@Name("com.oracle.TransactionId")
@Label("Transaction ID")
@Relational
class TransactionId extends java.lang.annotation.Annotation {
}
...
@Name("com.oracle.TransactionBlocked")
@Severity(80)
@Label("Transaction Blocked")
class TransactionBlocked extends jdk.jfr.Event {
 @Label("Start Time")
 @Timestamp("TICKS")
 long startTime;

 @Label("Duration")
 @Timespan("TICKS")
 long duration;

 @Label("Event Thread")
 @Description("Thread in which event was committed in")
 Thread eventThread;

Chapter 8

8-2

 @Label("Stack Trace")
 @Description("Stack Trace starting from the method the event was committed
in")
 StackTrace stackTrace;

 @TransactionId
 @Label("Transaction")
 long transaction;

 @TransactionId
 @Label("Transaction Blocker")
 long transactionBlocker;
}

To access values of custom annotations, use the EventType.getAnnotation method,
which takes one argument, the Class object that corresponds to the annotation type. For
example, the following code prints the events whose severity is greater than 50:

for (var e : RecordingFile.readAllEvents(file)) {
 EventType t = e.getEventType();
 Severity s = t.getAnnotation(Severity.class);
 if (s != null && s.getValue() > 50) {
 System.out.println(e);
 }
}

See Declaring an Annotation Type in The Java Tutorials.

Chapter 8

8-3

https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html

9
Inheritance of Annotations, Settings, and
Fields

When a class extends an event, it inherits the event's annotations, settings, and fields.
However, a class doesn't inherit private fields or annotations that lack the
@java.lang.Inherited meta-annotation.

The example InheritanceSample.java demonstrates this. It defines three events:
FileAction, FileUpload, and ImageUpload.

import jdk.jfr.Category;
import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.StackTrace;

public class InheritanceSample {

 @Category("Files")
 @StackTrace(false)
 abstract static class FileAction extends Event {
 @Label("In Progress")
 boolean inProgress;
 }

 @Name("com.oracle.FileUpload")
 @Description("Uploaded file that might be a text file")
 @Label("File Upload")
 static class FileUpload extends FileAction {
 @Label("Text file")
 private boolean isText;
 }

 @Name("com.oracle.ImageUpload")
 @Label("Image Upload")
 static class ImageUpload extends FileUpload {
 }

 public static void main(String... args) {
 FileUpload fu = new FileUpload();
 fu.inProgress = true;
 fu.isText = false;
 fu.commit();

 ImageUpload iu = new ImageUpload();
 iu.inProgress = false;
 iu.commit();

9-1

 }
}

Run InheritanceSample with the following commands:

java -XX:StartFlightRecording:filename=i.jfr InheritanceSample.java
jfr print --events FileUpload,ImageUpload i.jfr

The last command prints output similar to the following:

com.oracle.FileUpload {
 startTime = 15:22:28.794
 isText = false
 inProgress = true
 ...
}

com.oracle.ImageUpload {
 startTime = 15:22:28.822
 inProgress = false
 ...
}

Abstract event classes, such as FileAction are not registered, so their metadata is
never available for inspection.

Classes don't inherit annotations that lack the @java.lang.Inherited annotation,
such as @Name and @Description.

Because the field isText is private, ImageUpload doesn't inherit it.

Chapter 9

9-2

Part III
Configure Events and Flight Recorder

This section describes how to configure events and Flight Recorder to optimize their
performance and control their behavior.

Each event has the following predefined settings:

• @Enabled: Specifies whether the event is recorded. The default value is true. See
Enable and Disable Events.

• @Threshold: Specifies the duration below which an event is not recorded. The default is
0 (no limit). See Event Threshold.

• @Period: Specifies the interval at which the event is emitted, if it is periodic. The default
value is everyChunk, which means that the periodic event will be emitted at least once in
the recording. See Periodic Events

• @StackTrace: Specifies whether the stack trace from the Event::commit() method
is recorded. The default value is true. See Printing Event Stack Trace.

Flight Recorder provides various options to filter events; see Filter Events with
SettingDefinition.

It's recommended that you specify a preconfigured configuration, which contains a collection
of settings that control how much information Flight Recorder generates; see Flight Recorder
Configurations. If you don't specify a preconfigured configuration, then Flight Recorder
records information about all events; it monitors the running system at an extremely high level
of detail and produces enormous amounts of data.

10
Enable and Disable Events

You can enable and disable events with the @Enabled annotation. The example
EnablementSample.java demonstrates this.

import jdk.jfr.Enabled;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

public class EnablementSample {

 @Name("com.oracle.WontSeeMe")
 @Label("Won't See Me")
 @Enabled(false)
 static class WontSeeMe extends Event {
 }

 @Name("com.oracle.WillSeeMe")
 @Label("Will See Me")
 @Enabled(true)
 static class WillSeeMe extends Event {
 }

 public static void main(String... args) throws Exception {
 WontSeeMe event1 = new WontSeeMe();
 event1.commit();

 WillSeeMe event2 = new WillSeeMe();
 event2.commit();
 }
}

10-1

11
Event Threshold

Setting a threshold on an event means that Flight Recorder won't record it if its duration is
less than the threshold. This enables you to limit the number of events that Flight Recorder
records. By default, events have a threshold of 0 ms. It's recommended to set a threshold if
an operation occurs frequently and outliers are of greatest concern.

The SetThresholdSample.java example creates ten events with a random duration. Flight
Recorder records only those events whose duration is greater than 50 ms.

import java.util.Random;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Threshold;

public class SetThresholdSample {

 @Name("com.oracle.RandomSleep")
 @Label("Random Sleep")
 @Threshold("50 ms")
 static class RandomSleep extends Event {
 @Label("Event number")
 int eventNumber;
 @Label("Random Value")
 int randomValue;
 }

 public static void main(String... args) throws Exception {
 Random randNum = new Random();
 for (int i = 0; i < 10; i++) {
 RandomSleep event = new RandomSleep();
 event.begin();
 event.eventNumber = i;
 event.randomValue = Math.abs(randNum.nextInt() % 100);
 System.out.println("Event #" + i + ": " + event.randomValue);
 Thread.sleep(event.randomValue);
 event.commit();
 }
 }
}

Note that the commit method ends the timing of an event without the need of an explicit call
to the end method.

Run SetThresholdSample with the following commands:

java -XX:StartFlightRecording:filename=st.jfr SetThresholdSample.java
jfr print --events RandomSleep st.jfr

11-1

The first command prints output similar to the following:

Event #0: 97
Event #1: 15
Event #2: 25
Event #3: 73
Event #4: 38
Event #5: 11
Event #6: 5
Event #7: 28
Event #8: 42
Event #9: 37

The last command prints output similar to the following:

com.oracle.RandomSleep {
 startTime = 23:17:42.050
 duration = 103.813 ms
 eventNumber = 0
 randomValue = 97
 ...
}

com.oracle.RandomSleep {
 startTime = 23:17:42.197
 duration = 77.726 ms
 eventNumber = 3
 randomValue = 73
 ...
}

The shouldCommit Method
You can reduce the overhead of expensive operations with the
Event.shouldCommit method, which only commits an event if its duration is within a
specified threshold.

The example ShouldCommit.java creates ten events with a random duration. Flight
Recorder commits only those events whose duration is greater than 20 ms.

import java.util.Random;

import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Threshold;

public class ShouldCommitSample {

 @Name("com.oracle.RandomSleep")
 @Label("Random Sleep")
 @Threshold("20 ms")
 static class RandomSleep extends Event {

Chapter 11
The shouldCommit Method

11-2

 @Label("ID")
 int id;
 @Label("Value Kind")
 String valueKind;
 }

 public static void main(String... args) throws Exception {
 Random randNum = new Random();
 for (int i = 0; i < 10; i++) {
 RandomSleep event = new RandomSleep();
 event.begin();
 event.id = i;
 int value = randNum.nextInt(40);
 System.out.println("ID " + i + ": " + value);
 Thread.sleep(value);
 event.end();
 if (event.shouldCommit()) {
 // Format message outside timing of event
 if (value < 10) {
 event.valueKind = "It was a low value of " +
 value + "!";
 } else if (value < 20) {
 event.valueKind = "It was a normal value of " +
 value + "!";
 } else {
 event.valueKind = "It was a high value of " +
 value + "!";
 }
 event.commit();
 }
 }
 }
}

Run this example with the following commands:

java -XX:StartFlightRecording:filename=shouldcommit.jfr ShouldCommit.java
jfr print --events RandomSleep shouldcommit.jfr

The first command prints output similar to the following:

ID 0: 8
ID 1: 2
ID 2: 34
ID 3: 0
ID 4: 11
ID 5: 2
ID 6: 14
ID 7: 28
ID 8: 27
ID 9: 11

Chapter 11
The shouldCommit Method

11-3

The last command prints output similar to the following:

com.oracle.RandomSleep {
 startTime = 23:27:10.642
 duration = 36.711 ms
 id = 2
 valueKind = "It was a high value of 34!"
 ...
}

com.oracle.RandomSleep {
 startTime = 23:27:10.711
 duration = 29.390 ms
 id = 7
 valueKind = "It was a high value of 28!"
 ...
}

com.oracle.RandomSleep {
 startTime = 23:27:10.741
 duration = 28.475 ms
 id = 8
 valueKind = "It was a high value of 27!"
 ...
}

Chapter 11
The shouldCommit Method

11-4

12
Periodic Events

The example PeriodicSample.java creates a periodic event named StartedThreadCount
that records the total number of threads that have been created and started every second.

import java.lang.management.ManagementFactory;
import java.lang.management.ThreadMXBean;

import jdk.jfr.Event;
import jdk.jfr.FlightRecorder;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Period;

public class PeriodicSample {

 private static ThreadMXBean tBean =
 ManagementFactory.getThreadMXBean();

 @Name("com.oracle.StartedThreadCount")
 @Label("Total number of started threads")
 @Period("1 s")
 static class StartedThreadCount extends Event {
 long totalStartedThreadCount;
 }

 public static void main(String[] args) throws InterruptedException {

 Runnable hook = () -> {
 StartedThreadCount event = new StartedThreadCount();
 event.totalStartedThreadCount =
 tBean.getTotalStartedThreadCount();
 event.commit();
 };

 FlightRecorder.addPeriodicEvent(StartedThreadCount.class, hook);

 for (int i = 0; i < 4; i++) {
 Thread.sleep(1500);
 Thread t = new Thread();
 t.start();
 }

 FlightRecorder.removePeriodicEvent(hook);
 }
}

12-1

Run PeriodicSample with the following commands:

java -XX:StartFlightRecording:filename=periodic.jfr PeriodicSample.java
jfr print --events StartedThreadCount periodic.jfr

The last command prints output similar to the following:

com.oracle.StartedThreadCount {
 startTime = 00:59:40.769
 totalStartedThreadCount = 12
 ...
}

com.oracle.StartedThreadCount {
 startTime = 00:59:41.816
 totalStartedThreadCount = 12
 ...
}

com.oracle.StartedThreadCount {
 startTime = 00:59:42.866
 totalStartedThreadCount = 13
 ...
}

com.oracle.StartedThreadCount {
 startTime = 00:59:43.918
 totalStartedThreadCount = 14
 ...
}

com.oracle.StartedThreadCount {
 startTime = 00:59:44.962
 totalStartedThreadCount = 14
 ...
}

To create a periodic event, follow these two steps:

1. Specify how often the event should be emitted with the @Period annotation:

@Name("com.oracle.StartedThreadCount")
@Label("Total number of started threads")
@Period("1 s")
static class StartedThreadCount extends Event {
 long totalStartedThreadCount;
}

Valid units for a period are: ns, us, ms, s, m, h, and d.

You can also specify one of the following:

• everyChunk: A periodic event will be emitted at least once in the recording.

• beginChunk: A periodic event will be emitted in the beginning of a recording.

Chapter 12

12-2

• endChunk: A periodic event will be emitted in the end of a recording.

2. Add the periodic event with the FlightRecorder.addPeriodicEvent(Class<?
extends Event>, Runnable) static method. The first argument is the name of the
periodic event's class. The second argument is a callback method that's represented by a
lambda expression that creates and commits the event:

Runnable hook = () -> {
 StartedThreadCount event = new StartedThreadCount();
 event.totalStartedThreadCount =
 tBean.getTotalStartedThreadCount();
 event.commit();
};

FlightRecorder.addPeriodicEvent(StartedThreadCount.class, hook);

The method FlightRecorder.removePeriodicEvent(Runnable) removes the lambda
expression associated with a periodic event. In most cases, you won't need this method; if
you want to disable a periodic event, you can call Recording.disable(Class<?
extends Event>). However, one reason to call removePeriodicEvent is to avoid
memory leaks. For example, suppose you have an application server where data is loaded
and unloaded. If the callback method references data that the server loads and unloads, then
it may prevent that data from being garbage collected. You can avoid this by removing the
callback method when the data is unloaded.

Chapter 12

12-3

13
Printing Event Stack Trace

The example StackTraceSample.java prints information about an event's stack trace.

StackTraceSample uses the Event Streaming API (see Monitor Events with Flight Recorder
Event Streaming API) to print stack trace information of WithStackTrace events. The sample
recursively calls the method firstFunc six times. This method creates an event named
WithStackTrace. Every time an WithStackTrace occurs, information about the event's stack
trace is printed.

import java.util.List;
import java.util.function.Consumer;

import jdk.jfr.Event;
import jdk.jfr.EventType;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.StackTrace;
import jdk.jfr.consumer.RecordedEvent;
import jdk.jfr.consumer.RecordedFrame;
import jdk.jfr.consumer.RecordedStackTrace;
import jdk.jfr.consumer.RecordingStream;

public class StackTraceSample {

 @Name("com.oracle.WithStackTrace")
 @Label("With Stack Trace")
 @StackTrace(true)
 static class WithStackTrace extends Event {
 String message;
 }

 public static void main(String... args) throws Exception {
 Consumer<RecordedEvent> myCon = x -> {
 EventType et = x.getEventType();
 System.out.println("Label: " + et.getLabel());
 System.out.println("Message: " + x.getValue("message"));
 RecordedStackTrace rst = x.getStackTrace();
 if (rst != null) {
 List<RecordedFrame> frames = rst.getFrames();
 System.out.println(
 "Number of frames: " + frames.size());
 for (RecordedFrame rf : frames) {
 System.out.println("Method, line number: "
 + rf.getMethod().getName() + ", "
 + rf.getLineNumber());
 }
 }
 System.out.println("");

13-1

 };

 try (RecordingStream rs = new RecordingStream()) {
 rs.onEvent("com.oracle.WithStackTrace", myCon);
 rs.startAsync();
 firstFunc(5);
 rs.awaitTermination();
 }
 }

 static void firstFunc(int n) {
 if (n > 0) {
 secondFunc(n - 1);
 }
 WithStackTrace event = new WithStackTrace();
 event.message = "n = " + n;
 event.commit();

 }

 static void secondFunc(int n) {
 firstFunc(n);
 }
}

The example StackTraceSample prints output similar to the following:

Label: With Stack Trace
Message: n = 0
Number of frames: 12
Method, line number: firstFunc, 97
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: main, 86

Label: With Stack Trace
Message: n = 1
Number of frames: 10
Method, line number: firstFunc, 97
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102

Chapter 13

13-2

Method, line number: firstFunc, 93
Method, line number: main, 86

Label: With Stack Trace
Message: n = 2
Number of frames: 8
Method, line number: firstFunc, 97
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: main, 86

Label: With Stack Trace
Message: n = 3
Number of frames: 6
Method, line number: firstFunc, 97
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: main, 86

Label: With Stack Trace
Message: n = 4
Number of frames: 4
Method, line number: firstFunc, 97
Method, line number: secondFunc, 102
Method, line number: firstFunc, 93
Method, line number: main, 86

Label: With Stack Trace
Message: n = 5
Number of frames: 2
Method, line number: firstFunc, 97
Method, line number: main, 86

An event's stack trace, an instance of RecordedStackTrace, consists of a list of
RecordedFrame instances. You can obtain the following information from a
RecordedFrame with these methods:

• getMethod(): Returns the method from which the event was run.

• getLineNumber(): Returns the line number from which the event was run.

• isJavaFrame(): Indicates whether the RecordedFrame is a Java frame.

• getBytecodeIndex(): Returns the bytecode index from which the event was run.

• getType(): Returs the frame type; possible values include Interpreted, JIT compiled,
and Inlined.

Chapter 13

13-3

Flight Recorder uses a default stack depth of 64 method calls, which is more than
enough for this example. You can change this with the stackdepth command-line
option:

-XX:FlightRecorderOptions:stackdepth=depth

Note that values greater than 64 could create significant overhead and reduce
performance.

Chapter 13

13-4

14
Filter Events with SettingDefinition

The example FilteringSample.java (along with RegExpControl.java) uses a
SettingDefinition to filter which events Flight Recorder records. In this example, it
records Hello events that have a value that starts with g in its message field.

import java.io.IOException;

import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Recording;
import jdk.jfr.SettingDefinition;

public class FilteringSample {

 @Name("com.oracle.FilteredHello")
 @Label("Hello With Message Filter")
 static class FilteredHello extends Event {
 @Label("Message")
 String message;

 @Label("Message Filter")
 @Description("Filters messages with regular expressions")
 @SettingDefinition
 protected boolean messageFilter(RegExpControl control) {
 return control.matches(message);
 }
 }

 public static void main(String[] args) throws IOException {

 try (Recording r = new Recording()) {
 r.enable(FilteredHello.class).with("messageFilter", "g.*");
 r.start();
 FilteredHello greenEvent = new FilteredHello();
 FilteredHello yellowEvent = new FilteredHello();
 FilteredHello redEvent = new FilteredHello();
 greenEvent.message = "green";
 yellowEvent.message = "yellow";
 redEvent.message = "red";
 greenEvent.commit();
 yellowEvent.commit();
 redEvent.commit();
 }
 }
}

14-1

The example FilteringSample requires RegExpControl.java:

import java.util.Set;
import java.util.regex.Pattern;

import jdk.jfr.SettingControl;

public class RegExpControl extends SettingControl {

 private Pattern pattern = Pattern.compile(".*");

 @Override
 public void setValue(String value) {
 this.pattern = Pattern.compile(value);
 }

 @Override
 public String combine(Set<String> values) {
 return String.join("|", values);
 }

 @Override
 public String getValue() {
 return pattern.toString();
 }

 public boolean matches(String s) {
 return pattern.matcher(s).find();
 }
}

Compile FilteringSample.java and RegExpControl.java, then run
FilteringSample with the following commands:

java -XX:StartFlightRecording:filename=filteringsample.jfr
FilteringSample
jfr print --events FilteredHello filteringsample.jfr

The last command prints output similar to the following:

com.oracle.FilteredHello {
 startTime = 23:38:28.364
 message = "green"
 ...
}

The annotation @SettingDefinition specifies which method Flight Recorder calls
to determine whether it records a particular event. In this example, it calls
messageFilter(RegExpControl):

@SettingDefinition
protected boolean messageFilter(RegExpControl control) {

Chapter 14

14-2

 return control.matches(message);
}

This method's parameter, RegExpControl, extends the class SettingControl. In this
example, RegExpControl.java implements a regular expression setting control; the method
matches(String) returns true when its string matches the field pattern (which an
application can change with the setValue(String) method).

The methods setValue(), getValue() and combine(Set<String>) methods are
invoked when a setting value changes, which typically happens when a recording is started
or stopped. The combine(Set<String>) method is invoked to resolve what value to use
when multiple recordings are running at the same time.

Chapter 14

14-3

15
Exclude Fields from Being Persisted with the
transient Keyword

You can exclude fields from being persisted with the transient keyword. The example
ExcludeFieldsSample.java demonstrates this.

import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

public class ExcludeFieldsSample {

 @Name("com.oracle.Message")
 @Label("Message")
 static class Message extends Event {
 String messageA;
 transient String messageB;
 String messageC;
 }

 public static void main(String... args) {
 Message event = new Message();
 event.messageA = "hello";
 event.messageB = "world"; // will not be persisted.
 event.messageC = "!";
 event.commit();
 }
}

Run ExcludeFieldsSample with the following commands:

java -XX:StartFlightRecording:filename=excludefieldssample.jfr
ExcludeFieldsSample.java
jfr print --events Message excludefieldssample.jfr

The last command prints output similar to the following:

com.oracle.Message {
 startTime = 23:41:15.425
 messageA = "hello"
 messageC = "!"
 ...
}

15-1

16
Manually Register and Unregister an Event

By default, an event is automatically registered when the event class is initialized.
Alternatively, you can manually register an event with the @Registered annotation. One
reason to do this is to take control of the security context in which the event is initialized.

The difference between the @Enabled annotation and the @Registered annotation is that
when an event is unregistered, its metadata, such as the field layout, is not available for
inspection. A call to FlightRecorder::register can ensure that an event class is visible
for configuration, for example, to a Java Management Extensions (JMX) client.

The example RegistrationSample.java demonstrates this:

import jdk.jfr.Event;
import jdk.jfr.FlightRecorder;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Registered;

public class RegistrationSample {

 @Name("com.oracle.Message")
 @Label("Message")
 @Registered(false)
 static class Message extends Event {
 String message;
 }

 public static void main(String... args) {

 Message event1 = new Message();
 event1.message = "Not registered, so you won't see this";
 event1.commit();

 FlightRecorder.register(Message.class);
 Message event2 = new Message();
 event2.message = "Now registered, so you will see this!";
 event2.commit();

 FlightRecorder.unregister(Message.class);

 Message event3 = new Message();
 event3.message = "Not registered again, so you won't see this";
 event3.commit();
 }
}

16-1

17
Flight Recorder Configurations

Flight Recorder configurations control the amount of data that is recorded.

Flight Recorder uses two preconfigured configurations, default.jfc and profile.jfc.
These configurations have predefined settings for each event type. Both of these
configurations are located in <java_home>/lib/jfr. By default, Flight Recorder uses the
default.jfc configuration when you start a recording. The default.jfc configuration is
recommended for continuous recordings. It gives a good balance between data and
performance (typically, less than 1% overhead). The profile.jfc configuration records more
events and is useful while profiling an application.

In most cases, the preconfigured configurations are sufficient. However, there might be a
scenario while analyzing a recording that some events are disabled by default. To enable
these events, create a custom configuration. Use JDK Mission Control to configure the event
settings by using one of the existing configurations. Make a copy of an existing configuration
and then modify it. Don't modify the default configurations. Specify which configuration to use
with the settings command-line option when starting a recording. For example:

-
XX:StartFlightRecording:filename=recording.jfr,dumponexit=true,settings=default.
jfc

-
XX:StartFlightRecording:filename=recording.jfr,dumponexit=true,settings=mysettin
gs.jfc

17-1

Part IV
Monitor Events with Flight Recorder Event
Streaming API

The Flight Recorder event steaming API enables you to consume Flight Recorder data
continuously. This section shows you three ways you can do this:

• Create Event Stream in Process, Active: Creates an event stream at the same time a
recording is created

• Create Event Stream in Process, Passive: Creates a passive stream that listens for
events, but what gets recorded is controlled by external means

• Create Event Stream from External Process: Creates an event stream from a separate
Java process

18
Create Event Stream in Process, Active

The sample StreamEventsSample.java creates an event stream at the same time a recording
is created. An event stream is a sequence of events.

The class RecordingStream starts a recording and creates an event stream at the same
time. The sample calls Thread.sleep(1000) three times, which creates three
jdk.ThreadSleep events. The Event Streaming API prints the jdk.ThreadSleep events when
they occur:

import jdk.jfr.Configuration;
import jdk.jfr.consumer.RecordingStream;

public class StreamEventsSample {

 public static void main(String... args) throws Exception {
 Configuration c = Configuration.getConfiguration("profile");
 try (RecordingStream rs = new RecordingStream(c)) {
 rs.onEvent("jdk.ThreadSleep", System.out::println);
 System.out.println("Starting recording stream ...");
 rs.startAsync();
 for (int i = 0; i < 3; i++) {
 System.out.println("Sleeping for 1s...");
 Thread.sleep(1000);
 }
 }
 }
}

Run StreamEventsSample with the following command:

java -XX:StartFlightRecording StreamEventsSample.java

It prints output similar to the following:

Started recording 1. No limit specified, using maxsize=250MB as default.

Use jcmd 7400 JFR.dump name=1 filename=FILEPATH to copy recording data to
file.
Starting recording stream ...
Sleeping for 1s...
Sleeping for 1s...
jdk.ThreadSleep {
 startTime = 00:26:42.463
 duration = 2.14 s
 time = 1.00 s
 ...
}

18-1

Sleeping for 1s...
jdk.ThreadSleep {
 startTime = 00:26:44.602
 duration = 1.04 s
 time = 1.00 s
 ...
}

Follow these steps to create an event stream from a recording with the
RecordingStream class:

1. Optionally specify a predefined configuration ("default" or "profile") with the
Configuration class.

2. Create a RecordingStream instance with either the
Configuration.getConfiguration() or
Configuration.getConfiguration(Configuration) method.

3. Optionally enable events that you want to include in the event stream with the
RecordingStream::enable(String) method.

4. Specify actions to perform on events in the stream. To specify an action to perform
on all events, use the onEvent(Consumer<RecordedEvent>) method. For
example, the following statement prints the name of all events in the stream to
standard output:

rs.onEvent(e ->
{ System.out.println(e.getEventType().getName()); });

Use the onEvent(String, Consumer<RecordedEvent>) to specify an action
to perform on a specific event. For example, the following statement prints events
whose name matches jdk.ThreadSleep:

rs.onEvent("jdk.ThreadSleep", System.out::println);

5. Start the event stream with either the start() or startAsync() method. This
sample calls startAsync(), which runs the stream in a background thread. If
you call the start() method, then the application will not proceed pass this
method call until the stream is closed.

Chapter 18

18-2

19
Create Event Stream in Process, Passive

The sample PassiveEventStreamSample.java starts a passive event stream with the method
EventStream.openRepository(). As with any event stream, a passive event stream
listens for events; in this example, it listens for jdk.CPULoad events. However, what gets
recorded is controlled by external means, for example, by the command-line option -
XX:StartFlightRecording, the jcmd command JFR.start, or an API (for example,
Recording::start()).

The sample PassiveEventStreamSample.java creates an event stream not with
RecordingStream but with EventStream.openRepository(). An event stream
requires a recording; this sample obtains it from the command-line option -
XX:StartFlightRecording.

import java.util.concurrent.atomic.AtomicInteger;

import jdk.jfr.consumer.EventStream;

public class PassiveEventStreamSample {

 static int NUMBER_CPULOAD_EVENTS = 3;

 public static void main(String... args) throws Exception {

 AtomicInteger timer = new AtomicInteger();

 try (EventStream es = EventStream.openRepository()) {
 es.onEvent("jdk.CPULoad", event -> {
 System.out.println("CPU Load " + event.getEndTime());
 System.out.println(" Machine total: "
 + 100 * event.getFloat("machineTotal") + "%");
 System.out.println(
 " JVM User: " + 100 * event.getFloat("jvmUser") +
 "%");
 System.out.println(
 " JVM System: " + 100 * event.getFloat("jvmSystem") +
 "%");
 System.out.println();
 if (timer.incrementAndGet() == NUMBER_CPULOAD_EVENTS) {
 System.exit(0);
 }
 });
 es.start();
 }
 }
}

19-1

Run PassiveEventStreamSample with the following command:

java -XX:StartFlightRecording PassiveEventStreamSample.java

It prints output similar to the following:

Started recording 1. No limit specified, using maxsize=250MB as default.

Use jcmd 12352 JFR.dump name=1 filename=FILEPATH to copy recording data
to file.
CPU Load 2020-01-24T05:34:36.265584686Z
 Machine total: 19.3799%
 JVM User: 5.2175264%
 JVM System: 1.8634024%

CPU Load 2020-01-24T05:34:37.310049859Z
 Machine total: 5.2533073%
 JVM User: 0.0%
 JVM System: 0.3899041%

CPU Load 2020-01-24T05:34:38.373796070Z
 Machine total: 7.242967%
 JVM User: 0.0%
 JVM System: 1.1451485%

Chapter 19

19-2

20
Create Event Stream from External Process

The sample StreamExternalEventsWithAttachAPISample.java creates an event stream
from a separate Java process, the sample SleepOneSecondIntervals.java.

SleepOneSecondIntervals repeatedly sleeps for 1 second intervals; as demonstrated in
Create Event Stream in Process, Active, every time Thread.sleep() is called, a
jdk.ThreadSleep event occurs.

public class SleepOneSecondIntervals {

 public static void main(String... args) throws Exception {
 long pid = ProcessHandle.current().pid();
 System.out.println("Process ID: " + pid);
 while(true) {
 System.out.println("Sleeping for 1s...");
 Thread.sleep(1000);
 }
 }
}

StreamExternalEventsWithAttachAPISample uses the Attach API to obtain the virtual
machine in which SleepOneSecondIntervals is running. From this virtual machine,
StreamExternalEventsWithAttachAPISample obtains the location of its Flight Recorder
repository though the jdk.jfr.repository property. It then creates an EventStream with this
repository through the EventStream::openRepository(Paths) method.

import java.nio.file.Paths;
import java.util.Optional;
import java.util.Properties;

import com.sun.tools.attach.VirtualMachine;
import com.sun.tools.attach.VirtualMachineDescriptor;

import jdk.jfr.consumer.EventStream;

public class StreamExternalEventsWithAttachAPISample {
 public static void main(String... args) throws Exception {

 Optional<VirtualMachineDescriptor> vmd =
 VirtualMachine.list().stream()
 .filter(v -> v.displayName()
 .contains("SleepOneSecondIntervals"))
 .findFirst();

 if (vmd.isEmpty()) {
 throw new RuntimeException("Cannot find VM for
SleepOneSecondIntervals");
 }

20-1

 VirtualMachine vm = VirtualMachine.attach(vmd.get());

 // Get system properties from attached VM

 Properties props = vm.getSystemProperties();
 String repository = props.getProperty("jdk.jfr.repository");
 System.out.println("jdk.jfr.repository: " + repository);

 try (EventStream es = EventStream
 .openRepository(Paths.get(repository))) {
 System.out.println("Found repository ...");
 es.onEvent("jdk.ThreadSleep", System.out::println);
 es.start();
 }
 }
}

Compile SleepOneSecondIntervals.java and
StreamExternalEventsWithAttachAPISample.java. Then run
SleepOneSecondIntervals with this command:

java -XX:StartFlightRecording SleepOneSecondIntervals

In a new command shell, run StreamExternalEventsWithAttachAPISample:

java StreamExternalEventsWithAttachAPISample

It prints output similar to the following:

jdk.jfr.repository: C:\Users\<your user
name>\AppData\Local\Temp\2019_12_08_23_32_47_5100
Found repository ...
jdk.ThreadSleep {
 startTime = 00:15:31.643
 duration = 1.04 s
 time = 1.00 s
 eventThread = "main" (javaThreadId = 1)
 stackTrace = [
 java.lang.Thread.sleep(long)
 SleepOneSecondIntervals.main(String[]) line: 8
]
}

jdk.ThreadSleep {
 startTime = 00:15:32.689
 duration = 1.05 s
 time = 1.00 s
 eventThread = "main" (javaThreadId = 1)
 stackTrace = [
 java.lang.Thread.sleep(long)
 SleepOneSecondIntervals.main(String[]) line: 8
]

Chapter 20

20-2

}
...

The sample StreamExternalEventsWithJcmdSample.java is similar to
StreamExternalEventsWithAttachAPISample except it starts Flight Recorder for
SleepOneSecondIntervals with the Attach API. With this API, the sample runs the command
jcmd <PID> JFR.start with the PID of SleepOneSecondIntervals:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.file.Paths;
import java.util.Properties;

import com.sun.tools.attach.VirtualMachine;

import jdk.jfr.consumer.EventStream;

public class StreamExternalEventsWithJcmdSample {
 public static void main(String... args) throws Exception {
 if (args[0] == null) {
 System.err.println("Requires PID of process as argument");
 System.exit(1);
 }

 String pid = args[0];

 Process p = Runtime.getRuntime().exec(
 "jcmd " + pid + " JFR.start");

 printOutput(p);

 // Wait for jcmd to start the recording
 Thread.sleep(1000);

 VirtualMachine vm = VirtualMachine.attach(pid);
 Properties props = vm.getSystemProperties();
 String repository = props.getProperty("jdk.jfr.repository");
 System.out.println("jdk.jfr.repository: " + repository);

 try (EventStream es = EventStream
 .openRepository(Paths.get(repository))) {
 System.out.println("Found repository ...");
 es.onEvent("jdk.ThreadSleep", System.out::println);
 es.start();
 }
 }

 private static void printOutput(Process proc) throws IOException {
 BufferedReader stdInput = new BufferedReader(
 new InputStreamReader(proc.getInputStream()));

 BufferedReader stdError = new BufferedReader(
 new InputStreamReader(proc.getErrorStream()));

Chapter 20

20-3

 // Read the output from the command
 System.out.println(
 "Here is the standard output of the command:\n");
 String s = null;
 while ((s = stdInput.readLine()) != null) {
 System.out.println(s);
 }

 // Read any errors from the attempted command
 System.out.println(
 "Here is the standard error of the " + "command (if
any):\n");
 while ((s = stdError.readLine()) != null) {
 System.out.println(s);
 }
 }
}

Compile SleepOneSecondIntervals.java and
StreamExternalEventsWithJcmdSample.java. Then run
SleepOneSecondIntervals with this command:

java -XX:StartFlightRecording SleepOneSecondIntervals

It prints output similar to the following:

Started recording 1. No limit specified, using maxsize=250MB as default.

Use jcmd 5100 JFR.dump name=1 filename=FILEPATH to copy recording data
to file.
Process ID: 5100
Sleeping for 1s...
Sleeping for 1s...
Sleeping for 1s...
...

Note the PID for SleepOneSecondIntervals (in this example, it's 5100). While this
sample is running, in a new command shell, run
StreamExternalEventsWithJcmdSample with this command.

java StreamExternalEventsWithJcmdSample <PID of SleepOneSecondIntervals>

It prints output similar to StreamExternalEventsWithAttachAPISample.

Chapter 20

20-4

Part V
Parsing a Recording File

The example ParseRecordingFileSample.java describes various ways you can parse a
recording file. It starts a recording to record several Hello and Message events.

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;

import jdk.jfr.Event;
import jdk.jfr.EventType;
import jdk.jfr.Label;
import jdk.jfr.Name;
import jdk.jfr.Recording;
import jdk.jfr.consumer.EventStream;
import jdk.jfr.consumer.RecordingFile;

public class ParseRecordingFileSample {

 @Name("com.oracle.Hello")
 @Label("Hello World!")
 static class Hello extends Event {
 @Label("Greeting")
 String greeting;
 }

 @Name("com.oracle.Message")
 @Label("Message")
 static class Message extends Event {
 @Label("Text")
 String text;
 }

 public static void main(String... args) throws IOException {

 try (Recording r = new Recording()) {
 r.start();
 for (int i = 0; i < 3; i++) {
 Message messageEvent = new Message();
 messageEvent.begin();
 messageEvent.text = "message " + i;
 messageEvent.commit();

 Hello helloEvent = new Hello();
 helloEvent.begin();
 helloEvent.greeting = "hello " + i;
 helloEvent.commit();
 }
 r.stop();

 Path file = Files.createTempFile("recording", ".jfr");
 r.dump(file);

 try (var recordingFile = new RecordingFile(file)) {
 System.out.println("Reading events one by one");
 System.out.println("=========================");
 while (recordingFile.hasMoreEvents()) {
 var e = recordingFile.readEvent();
 String eventName = e.getEventType().getName();
 System.out.println("Name: " + eventName);
 }
 System.out.println();
 System.out.println("List of registered event types");
 System.out.println("==============================");
 for (EventType eventType :
recordingFile.readEventTypes())
 {
 System.out.println(eventType.getName());
 }
 }
 System.out.println();

 System.out.println("Reading all events at once");
 System.out.println("==========================");

 for (var e : RecordingFile.readAllEvents(file)) {
 String eventName = e.getEventType().getName();
 System.out.println("Name: " + eventName);
 }
 System.out.println();

 System.out.println("Reading events one by one, printing
only "
 + "com.oracle.Message events");

System.out.println("==="
 + "=========================");

 try (EventStream eventStream = EventStream.openFile(file)) {
 eventStream.onEvent("com.oracle.Message", e -> {
 System.out.println(
 "Name: " + e.getEventType().getName());
 });
 eventStream.start();
 }
 }
 }
}

Run ParseRecordingFileSample with this command:

java ParseRecordingFileSample.java

When running ParseRecordingFileSample, you don't have to start Flight Recorder with the
command-line option -XX:StartFlightRecording; the method Recording.start() starts
it. ParseRecordingFileSample prints the following:

Reading events one by one
=========================
Name: com.oracle.Message
Name: com.oracle.Hello
Name: com.oracle.Message
Name: com.oracle.Hello
Name: com.oracle.Message
Name: com.oracle.Hello

List of registered event types
==============================
jdk.ThreadStart
jdk.ThreadEnd
jdk.ThreadSleep
...
jdk.X509Validation
com.oracle.Message
com.oracle.Hello

Reading all events at once
==========================
Name: com.oracle.Message
Name: com.oracle.Hello
Name: com.oracle.Message
Name: com.oracle.Hello
Name: com.oracle.Message
Name: com.oracle.Hello

Reading events one by one, printing only com.oracle.Message events
==
Name: com.oracle.Message
Name: com.oracle.Message
Name: com.oracle.Message

Write Recording Data to a File

ParseRecordingFileSample demonstrates several ways you can parse a recording file.
However, you first need a recording file, and this sample doesn't create one at the command
line. Instead, it calls Recording.dump(Path) to write recording data to a temporary file:

Path file = Files.createTempFile("recording", ".jfr");
r.dump(file);

Note that the recording must be started but not necessarily stopped.

Read Events One by One

Use this technique for large recordings and if you need to access metadata.

The method RecordingFile.readEvent() reads the next event in the recording
while RecordingEvent.hasMoreEvents() returns true if unread events exist in
the recording file:

while (recordingFile.hasMoreEvents()) {
 var e = recordingFile.readEvent();
 String eventName = e.getEventType().getName();
 System.out.println("Name: " + eventName);
}

List Registered Event Types

The method RecordingFile.readEventTypes() returns a list of all event types in
the recording.

Read All Events at Once

Use this technique for smaller recordings that fit in memory.

The method RecordingFile.readAllEvents(Path) returns a list of all events in
the recording file. It's intended for small recording files where it's more convenient to
read all events in a single operation. It's not intended for reading large recording files.

Read Only Specific Events with Event Streaming API

To process only specific events, you could read events one by one with
RecordingFile.readEvent(), as described previously, then check the event's
name. However, if you use the event streaming API, then event objects of the same
type are reused to reduced allocation pressure.

This technique involves creating an event stream with
EventStream.openFile(Path), then calling EventStream.onEvent(String
eventName, Consumer) to register an action that will be performed if eventName
matches the event's name:

try (EventStream eventStream = EventStream.openFile(file)) {
 eventStream.onEvent("com.oracle.Message", e -> {
 System.out.println("Name: " +
 e.getEventType().getName());
 });
 eventStream.start();
}

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Why Use the API?
	Part II Create Events
	1 Creating and Recording Your First Event
	2 Event Metadata
	3 Guidelines for Naming and Labeling Events
	4 Categories
	5 Measuring Time
	6 Data Types
	7 Dynamic Events
	8 Custom Annotations
	9 Inheritance of Annotations, Settings, and Fields

	Part III Configure Events and Flight Recorder
	10 Enable and Disable Events
	11 Event Threshold
	The shouldCommit Method

	12 Periodic Events
	13 Printing Event Stack Trace
	14 Filter Events with SettingDefinition
	15 Exclude Fields from Being Persisted with the transient Keyword
	16 Manually Register and Unregister an Event
	17 Flight Recorder Configurations

	Part IV Monitor Events with Flight Recorder Event Streaming API
	18 Create Event Stream in Process, Active
	19 Create Event Stream in Process, Passive
	20 Create Event Stream from External Process

	Part V Parsing a Recording File

