
Java Platform, Standard Edition
Java Shell User’s Guide

Release 18
F47855-01
March 2022

Java Platform, Standard Edition Java Shell User’s Guide, Release 18

F47855-01

Copyright © 2017, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documents v

Conventions v

1 Introduction to JShell

Why Use JShell? 1-1

Starting and Stopping JShell 1-1

2 Snippets

Trying Out Snippets 2-1

Changing Definitions 2-2

Forward References 2-3

Exceptions 2-4

Tab Completion for Snippets 2-5

Snippet Transformation 2-6

3 Commands

Introduction to Commands 3-1

Tab Completion for Commands 3-2

Command Abbreviations 3-4

4 Editing

Shell Editing 4-1

Input Line Navigation 4-1

History Navigation 4-2

Input Line Modification 4-3

iii

Search and More 4-3

External Editor 4-4

5 External Code

Setting the Class Path 5-1

Setting Module Options 5-1

6 Feedback Modes

Setting the Feedback Mode 6-1

Defining a Feedback Mode 6-2

7 Scripts

Startup Scripts 7-1

Creating and Loading Scripts 7-3

iv

Preface

This guide provides information about using the Java Shell tool (JShell) to explore the Java
language and prototype code.

Audience
This document is intended for developers interested in using a Read-Eval-Print Loop (REPL)
tool to learn the Java language, explore new Java APIs and features, and prototype complex
code.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
See JDK 18 Documentation.

Conventions
The following conventions are used in this document:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase18&id=homepage

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

<keys> Name of a keyboard key or key combination in angle brackets (<>)
indicates that the key or key combination is pressed as part of the user
input.

Preface

vi

1
Introduction to JShell

The Java Shell tool (JShell) is an interactive tool for learning the Java programming language
and prototyping Java code. It was introduced in JDK 9. JShell is a Read-Evaluate-Print Loop
tool (REPL), which evaluates declarations, statements, and expressions as they are entered
and immediately shows the results. The tool is run from the command line.

Topics

• Why Use JShell?

• Starting and Stopping JShell

For reference information for this tool, see The jshell Command in Java Development Kit Tool
Specifications.

Why Use JShell?
Using JShell, you can enter program elements one at a time, immediately see the result, and
make adjustments as needed.

Java program development typically involves the following process:

• Write a complete program.

• Compile it and fix any errors.

• Run the program.

• Figure out what is wrong with it.

• Edit it.

• Repeat the process.

JShell helps you try out code and easily explore options as you develop your program. You
can test individual statements, try out different variations of a method, and experiment with
unfamiliar APIs within a JShell session. JShell doesn’t replace an IDE. As you develop your
program, paste code into JShell to try it out, and then paste working code from JShell into
your program editor or IDE.

Starting and Stopping JShell
JShell was introduced in JDK 9. To start JShell, enter the jshell command on the command
line.

JDK 9 or higher must be installed on your system. If your path doesn’t include the bin
directory, for example java-home/jdk-16.0.1/bin, then start the tool from within that
directory.

1-1

https://www.oracle.com/pls/topic/lookup?ctx=javase16&id=jshell_tool_reference

The following example shows the command and the response from JShell. Text that
you enter is shown in bold:

% jshell
| Welcome to JShell -- Version 17.0.1
| For an introduction type: /help intro

jshell>

The examples in this tutorial use the verbose mode. Verbose mode is recommended
as you work through this tutorial so that what you see matches the examples. When
you are more familiar with the tool, you might prefer to run in normal or a more concise
mode.

To start JShell in verbose mode, use the -v option:

% jshell -v

To exit JShell, enter /exit:

jshell> /exit
| Goodbye

Chapter 1
Starting and Stopping JShell

1-2

2
Snippets

JShell accepts Java statements; variable, method, and class definitions; imports; and
expressions. These pieces of Java code are referred to as snippets.

Topics

• Trying Out Snippets

• Changing Definitions

• Forward References

• Exceptions

• Tab Completion for Snippets

• Snippet Transformation

Trying Out Snippets
Snippets of Java code are entered into JShell and immediately evaluated. Feedback about
the results, actions performed, and any errors that occurred are shown. Use the examples in
this section to give JShell a try.

Start JShell with the verbose option to get the maximum amount of feedback available:

% jshell -v
| Welcome to JShell -- Version 16.0.1
| For an introduction type: /help intro

Enter the following sample statement at the prompt, and review the output that is shown:

jshell> int x = 45
x ==> 45
| created variable x : int

First, the result is shown. Read this as: the variable x has the value 45. Because you are in
verbose mode, a description of what occurred is also shown. Informative messages start with
a vertical bar. Notice that both the name and the type of the created variable are shown.

Note:

Terminating semicolons are automatically added to the end of a complete snippet if
not entered.

When an expression is entered that doesn't have a named variable, a scratch variable is
created so that its value can be referenced later. The following example shows scratch values

2-1

for an expression and for the results of a method. The example also shows the
continuation prompt (...>) that is used when a snippet requires more than one line of
input to complete:

jshell> 2 + 2
$3 ==> 4
| created scratch variable $3 : int

jshell> String twice(String s) {
 ...> return s + s;
 ...> }
| created method twice(String)

jshell> twice("Ocean")
$5 ==> "OceanOcean"
| created scratch variable $5 : String

Changing Definitions
As you experiment with code, you might find that the definition of a variable, method,
or class isn’t doing what you want it to do. The definition is easily changed by entering
a new one, which overwrites the previous definition.

To change the definition of a variable, method, or class, simply enter a new definition.
For example, the twice method that was defined in Trying Out Snippets gets a new
definition in the following example:

jshell> String twice(String s) {
 ...> return "Twice:" + s;
 ...> }
| modified method twice(String)
| update overwrote method twice(String)

jshell> twice("thing")
$7 ==> "Twice:thing"
| created scratch variable $7 : String

Notice that instead of showing created method as before, the feedback shows
modified method. This message means that the definition changed, but the method
has the same signature, and therefore all existing usages continue to be valid.

You can also change definitions in incompatible ways. The following example shows x
being changed from int to String:

jshell> int x = 45
x ==> 45
| created variable x : int

jshell> String x
x ==> null
| replaced variable x : String
| update overwrote variable x : int

Chapter 2
Changing Definitions

2-2

The type of the variable x changed, and the feedback now shows replaced.

Changing the Level of Feedback

JShell was started in the verbose feedback mode, which provides a lot of commentary. You
can set the amount and format of output with the /set feedback command, for example /set
feedback concise. If you primarily use JShell by pasting from other windows, then you might
prefer a feedback mode with no prompt and only error feedback. If so, then enter the /set
feedback silent command.

Forward References
JShell accepts method definitions that reference methods, variables, or classes that aren’t yet
defined. This is done to support exploratory programming and because some forms of
programming require it.

As an example, if you want to define a method for the volume of a sphere, then you can enter
the following formula as the method volume:

jshell> double volume(double radius) {
 ...> return 4.0 / 3.0 * PI * cube(radius);
 ...> }
| created method volume(double), however, it cannot be invoked until
variable PI, and method cube(double) are declared

JShell allows the definition but warns of what is yet to be defined. The definition can be
referenced, but if execution is attempted, then it fails until all of the required elements are
defined:

jshell> double PI = 3.1415926535
PI ==> 3.1415926535
| created variable PI : double

jshell> volume(2)
| attempted to call method volume(double) which cannot be invoked until
method cube(double) is declared

jshell> double cube(double x) { return x * x * x; }
| created method cube(double)
| update modified method volume(double)

jshell> volume(2)
$5 ==> 33.510321637333334
| created scratch variable $8 : double

With all of the definitions in place, the volume method now works.

This method is now used to illustrate more about incompatible replacement. For example, to
change the precision of PI, enter the new value as shown in the following example:

jshell> BigDecimal PI = new BigDecimal("3.141592653589793238462643383")
PI ==> 3.141592653589793238462643383
| replaced variable PI : BigDecimal

Chapter 2
Forward References

2-3

| update modified method volume(double) which cannot be invoked
until this error is corrected:
| bad operand types for binary operator '*'
| first type: double
| second type: java.math.BigDecimal
| return 4.0 / 3.0 * PI * cube(radius);
| ^------------^
| update overwrote variable PI : double

The new definition of PI is type-incompatible with the definition of volume(). Because
you are in verbose mode, update information is shown for other definitions affected by
the change, which in this case describes the incompatibility. Notice that verbose mode
is the only predefined feedback mode that displays update information. In other
feedback modes, no warning is displayed until the code is executed. The purpose of
this is to prevent an overload of updates. In all predefined modes, executing the
volume() method displays the issue:

jshell> volume(2)
| attempted to call method volume(double) which cannot be invoked
until this error is corrected:
| bad operand types for binary operator '*'
| first type: double
| second type: java.math.BigDecimal
| return 4.0 / 3.0 * PI * cube(radius);
| ^------------^

Exceptions
In an exception backtrace, feedback identifies the snippet and the location within the
snippet where the exception occurred.

The location within the code entered into JShell is displayed as #ID:line-number,
where snippet ID is the number displayed by the /list command, and line-number is
the line number within the snippet. In the following example, the exception occurs in
snippet 1, which is the divide() method, on the second line of the method:

jshell> int divide(int x, int y) {
 ...> return x / y;
 ...> }
| created method divide(int,int)

jshell> divide(5, 0)
| java.lang.ArithmeticException thrown: / by zero
| at divide (#1:2)
| at (#2:1)

jshell> /list

 1 : int divide(int x, int y) {
 return x / y;
 }
 2 : divide(5, 0)

Chapter 2
Exceptions

2-4

Tab Completion for Snippets
When you enter snippets, use the Tab key to automatically complete the item. If the item can’t
be determined from what was entered, then possible options are provided.

For example, if you entered the volume method from Forward References, then you can enter
the first few letters of the method name, and then press the Tab key to complete the entry:

jshell> vol<Tab>

The input changes to the following:

jshell> volume(

If the item can be completed in more than one way, the set of possibilities is displayed:

jshell> System.c<Tab>
class clearProperty(console()
currentTimeMillis()

jshell> System.c

Any common characters are added to what you entered, and the cursor is placed at the end
of the input so that more can be entered.

When you are at a method call's open parenthesis, pressing Tab shows completion
possibilities with the parameter types:

jshell> "hello".startsWith(<Tab>
Signatures:
boolean String.startsWith(String prefix, int toffset)
boolean String.startsWith(String prefix)

<press tab again to see documentation>

jshell> "hello".startsWith(

Pressing Tab again shows a plain-text version of the documentation for the first method.

jshell> "hello".startsWith(<Tab>
boolean String.startsWith(String prefix, int toffset)
Tests if the substring of this string beginning at the specified index
starts with the
specified prefix.

Parameters:
prefix - the prefix.
toffset - where to begin looking in this string.

Returns:
true if the character sequence represented by the argument is a prefix of

Chapter 2
Tab Completion for Snippets

2-5

the substring of this
 object starting at index toffset ; false otherwise. The
result is false if toffset is
 negative or greater than the length of this String object;
otherwise the result is
 the same as the result of the expression
 this.substring(toffset).startsWith(prefix)

<press tab to see next documentation>

jshell> "hello".startsWith(

Snippet Transformation
JShell makes it easy to import a needed class when it is first referenced and convert
an expression to a variable declaration using keyboard shortcuts.

When you enter an identifier that isn’t imported yet, press Shift+Tab i (that is, hold
down shift while pressing tab, then release and press i) immediately after the identifier
to see the options that enable you to add the import to your session:

jshell> new JFrame<Shift+Tab i>
0: Do nothing
1: import: javax.swing.JFrame
Choice: 1
Imported: javax.swing.JFrame

jshell> new JFrame

Enter the number of the option you want. More than one import option could be
provided.

You can convert an expression to a variable declaration by pressing Shift+Tab v after
you enter the expression. The expression becomes the initial value of the variable
declaration, and the type of the expression becomes the type of the variable. After you
press Shift+Tab v, the cursor, which is indicated by a vertical bar (|) in the example, is
placed in the line where you need to enter the variable name:

jshell> new JFrame("Demo") <Shift+Tab v>
jshell> JFrame | = new JFrame("Demo")

Note:

The expression must be valid or the transformation request is ignored. In the
example, the import of JFrame is required before the variable
transformation.

Chapter 2
Snippet Transformation

2-6

To complete the previous example, enter the variable name frame at the cursor and press
Enter:

jshell> JFrame frame = new JFrame("Demo")
frame ==> javax.swing.JFrame[frame0,0,0,0x0,invalid,hidden, ...
tPaneCheckingEnabled=true]
| created variable frame : JFrame

jshell>

Sometimes the result type of the expression isn’t imported yet. In that case, Shift+Tab v offers
to both import and create the variable, as shown in the following example:

jshell> frame.getGraphics() <Shift+Tab v>
0: Do nothing
1: Create variable
2: import: java.awt.Graphics. Create variable
Choice: 2
Imported: java.awt.Graphics

jshell> Graphics | = frame.getGraphics()

To complete the previous example, enter the variable name gc at the cursor and press Enter:

jshell> Graphics gc = frame.getGraphics()
| created variable gc :java.awt.Graphics

jshell>

Chapter 2
Snippet Transformation

2-7

3
Commands

JShell commands are entered in a JShell session, and used to control the environment and
display information.

Topics

• Introduction to Commands

• Tab Completion for Commands

• Command Abbreviations

Introduction to Commands
JShell commands control the environment and display information within a session.

Commands are distinguished from snippets by a slash (/). For information about the current
variables, methods, and types, use the /vars, /methods, and /types commands. For a list of
entered snippets, use the /list command. The following example shows these commands
based on the examples in Trying Out Snippets:

jshell> /vars
| int x = 45
| int $3 = 4
| String $5 = "OceanOcean"

jshell> /methods
| twice (String)String

jshell> /list

 1 : System.out.println("Hi");
 2 : int x = 45;
 3 : 2 + 2
 4 : String twice(String s) {
 return s + s;
 }
 5 : twice("Ocean")

Notice that the types and values of variables and the type signature of methods are
displayed.

JShell has a default startup script that is silently and automatically executed before JShell
starts, so that you can get to work quickly. Entries from the startup script aren't listed unless
you request them with the /list -start or /list -all command:

jshell> /list -all

 s1 : import java.io.*;

3-1

 s2 : import java.math.*;
 s3 : import java.net.*;
 s4 : import java.nio.file.*;
 s5 : import java.util.*;
 s6 : import java.util.concurrent.*;
 s7 : import java.util.function.*;
 s8 : import java.util.prefs.*;
 s9 : import java.util.regex.*;
 s10 : import java.util.stream.*;
 1 : System.out.println("Hi");
 2 : int x = 45;
 3 : 2 + 2
 4 : String twice(String s) {
 return s + s;
 }
 5 : twice("Ocean")

The default startup script consists of several common imports. You can personalize
your startup entries with the /set start command. For information about this
command, enter /help /set start. The /save -start command saves the current
startup script as a starting point for your own startup script.

Other important commands include /exit to leave JShell, /save to save your snippets,
and /open to enter snippets from a file.

Enter /help for a list of the JShell commands.

Tab Completion for Commands
Similar to snippet completion, when you enter commands and command options, use
the Tab key to automatically complete the command or option. If the completion can’t
be determined from what was entered, then possible choices are provided.

The following example shows the feedback when Tab is pressed after the leading
slash (/) for commands:

jshell> /<Tab>
/! /? /drop /edit /env /
exit /help
/history /imports /list /methods /open /
reload /reset
/save /set /types /vars

<press tab again to see synopsis>

jshell> /

Unique completions are done in-place. For example, after you enter /l and press Tab,
the line is replaced with /list:

jshell> /l<Tab>

jshell> /list

Chapter 3
Tab Completion for Commands

3-2

Tab completion also works for command options. The following example shows the use of the
Tab key to display the options for the /list command:

jshell> /list -<Tab>
-all -history -start

<press tab again to see synopsis>

jshell> /list -

Notice the message about pressing Tab again to show the command synopsis, which is a
short description of the command. Press Tab a third time to show the help documentation.
The following example shows the results of pressing Tab a second and third time:

jshell> /list -<Tab>
list the source you have typed

<press tab again to see full documentation>

jshell> /list -<Tab>
Show the snippets, prefaced with their snippet IDs.

/list
 List the currently active snippets of code that you typed or read
with /open

/list -start
 List the evaluated startup snippets

/list -all
 List all snippets including failed, overwritten, dropped, and startup

/list <name>
 List snippets with the specified name (preference for active
snippets)

/list <id>
 List the snippet with the specified snippet ID.
 One or more IDs or ID ranges may used, see '/help id'

jshell> /list -

Completion of unique arguments is done in place. For example, after you enter /list -
a<Tab>, the -all option is automatically shown:

jshell> /list -a<Tab>

jshell> /list -all

Chapter 3
Tab Completion for Commands

3-3

Snippet names can also be completed with Tab. For example, if you defined the
volume method earlier in the JShell session, then pressing Tab after you start to enter
the method name results in the full method name being displayed:

jshell> /ed v<Tab>

jshell> /ed volume

Using Tab in a file argument position of the command shows the available files:

jshell> /open <Tab>
myfile1 myfile2 definitions.jsh

<press tab again to see synopsis>

jshell> /open

Completion of unique file names is done in place:

jshell> /open d<Tab>

jshell> /open definitions.jsh

Command Abbreviations
Reduce the amount of typing you have to do by using abbreviations. Commands, /set
subcommands, command arguments, and command options can all be abbreviated,
as long as the abbreviation is unique.

The only command that begins with /l is /list, and the only /list option that begins
with -a is -all . Therefore, you can use the following abbreviations to enter the /list
-all command :

jshell> /l -a

Also, the only command that begins with /se is /set, the only /set subcommand that
begins with fe is feedback, and the only feedback mode that begins with v is verbose,
assuming no custom feedback modes that start with v exist. Therefore, you can use
the following abbreviations to set the feedback mode to verbose:

jshell> /se fe v

Notice that /s isn’t a sufficient abbreviation because /save and /set both begin with
the same letter. When in doubt, you can use Tab completion to see the options.

Chapter 3
Command Abbreviations

3-4

4
Editing

JShell supports editing input at the jshell prompt and editing in an external editor of your
choice.

Shell editing enables you to edit snippets and commands as you enter them, and to retrieve
and change previously entered snippets and commands. An external editor provides an
alternative way to edit and create snippets, which is easier when you work with multiline
snippets.

Topics

• Shell Editing

• External Editor

Shell Editing
Editing input at the command prompt makes it easy to correct your input and to retrieve and
modify previously entered commands and snippets.

Shell editing in JShell is built on JLine2, which is functionally similar to BSD editline and
GNU readline in Emacs mode. See JLine2 user information and GNU Readline
documentation.

Topics

• Input Line Navigation

• History Navigation

• Input Line Modification

• Search and More

Input Line Navigation
Shell editing is supported for editing the current line, or accessing the history through
previous sessions of JShell.

For navigating the input line, the Ctrl key and Meta key are used in key combinations. If your
keyboard doesn’t have a Meta key, then the Alt key is often mapped to provide Meta key
functionality.

For basic navigation within a line, use the right and left arrow keys or Ctrl+B for backwards
and Ctrl+F for forward. For navigation between lines in the history, use the up and down
arrow keys. Pressing the up arrow once replaces the current line with the previous command
or snippet line. Pressing the up arrow again brings you to the line previous to that. The history
contains both commands and snippet lines. If a snippet has multiple lines, then the up and
down arrows navigate through each line of a snippet.

The following table identifies the keys used and the actions taken to navigate the input line.

4-1

https://github.com/jline/jline2/wiki/Using-JLine
https://tiswww.case.edu/php/chet/readline/rltop.html
https://tiswww.case.edu/php/chet/readline/rltop.html

Keys Action

Return Enters the current line

Left arrow Moves backward one character

Right arrow Moves forward one character

Up arrow Moves up one line, backward through history

Down arrow Moves down one line, forward through history

Ctrl+A Moves to the beginning of the line

Ctrl+E Moves to the end of the line

Meta+B Moves backward one word

Meta+F Moves forward one word

History Navigation
A history of snippets and commands is maintained across JShell sessions. This history
provides you with access to items that you entered in the current and previous
sessions.

To reenter or edit prior input, navigate the history using the up, down, left, and right
arrows. Entered text is inserted at the cursor. The Delete key is used to delete text.
Press the Enter key to reenter the history line, modified or not.

The up and down arrow keys move backward and forward through the history one line
at a time, for example:

jshell> class C {
 ...> int x;
 ...> }
| created
class

jshell> /list

 1 : class C
 int x;
 }

jshell> <up arrow>

The up arrow key shows the following line:

jshell> /list

Pressing the up arrow again shows the last line of the class definition:

jshell> }

Chapter 4
Shell Editing

4-2

Pressing the down arrow returns to the /list command. Pressing Enter executes it:

jshell> /list

 1 : class C {
 int x;
 }

Ctrl+up arrow goes up by snippets. For single-line snippets, Ctrl+up arrow behaves the same
as up arrow. For multiline snippets, such as class C, Ctrl+up arrow skips the additional lines
and goes to the top of the snippet.

Input Line Modification
Input lines retrieved from the history can be modified as needed and reentered, which saves
you from having to retype a line just to make small changes.

Add text at the current cursor position simply by entering it. See Input Line Navigation for the
keys used move the cursor within a line.

The following table identifies the keys used and the actions taken to modify the input line.

Keys Action

Delete Deletes the character at or after the cursor, depending on the operating system.

Backspace Deletes the character before the cursor.

Ctrl+K Deletes the text from the cursor to the end of the line.

Meta+D Deletes the text from the cursor to the end of the word.

Ctrl+W Deletes the text from the cursor to the previous white space.

Ctrl+Y Pastes the most recently deleted text into the line.

Meta+Y After Ctrl+Y, Meta+Y cycles through previously deleted text.

Search and More
Searching the history is a feature of JShell that makes it easier to find the line you want
without going through the history one line at a time.

To start your search, press Ctrl+R. At the prompt, enter the search string. The search
proceeds backward from your most-recent entry and includes previous sessions of JShell.
The following example shows the prompt that is presented after pressing Ctrl+R:

jshell> <Ctrl+R>
((reverse-i-search)`':

Based on the example in History Navigation, entering class changes the display to show the
most-recent line with the text class:

(reverse-i-search)`class': class C {

Chapter 4
Shell Editing

4-3

The search is incremental, so this line is retrieved with just the first character c. You
can continue to search earlier in the history by pressing Ctrl+R repeatedly. Ctrl+S
moves the search forward towards the present.

You can define a keyboard macro by entering Ctrl+x (, then entering your text, and
finally entering Ctrl+x). To use your macro, enter Ctrl+x e.

The following table shows the key combinations for searching and creating macros.

Keys Action

Ctrl+R Searches backward through history

Ctrl+S Searches forwards through history

Ctrl+X (Starts a macro definition

Ctrl+X) Finishes a macro definition

Ctrl+X e Executes a macro

External Editor
An alternative to editing at the command prompt is to use an external editor. This
editor can be used to edit and create snippets, and is especially helpful for multiline
snippets. You can configure JShell to use the editor of your choice.

To edit all existing snippets at once in an editor, use /edit without an option. To edit a
specific snippet in an editor, use the /edit command with the snippet name or ID. Use
the /list command to get the snippet IDs. The following example opens an editor to
edit the snippet named volume, which was defined in Forward References:

jshell> /edit volume

You can also enter new snippets in the editor. When you save in the editor, any snippet
that is changed or new is entered into the JShell session. Feedback from the snippets
is shown in the JShell window, however, no JShell prompt is shown. You can’t enter
commands or snippets in the JShell window until the editor is closed.

If you don’t specify an editor, then the following environment variables are checked in
order: JSHELLEDITOR, VISUAL, and EDITOR. If none of those are set, then a simple
default editor is used. To set up JShell to open the editor of your choice, use the /set
editor command. The argument to the /set editor command is the command
needed to start the external editor that you want to use. The following example sets
kwrite as the editor and opens the editor with all existing snippets:

jshell> /set editor kwrite
| Editor set to: kwrite

jshell> /edit

Defining x in the external editor window and saving the change generates the following
output in the JShell window:

| created variable x of type int with initial value 6

Chapter 4
External Editor

4-4

Closing the external editor restores the JShell prompt.

jshell>

Chapter 4
External Editor

4-5

5
External Code

External classes are accessed from a JShell session through the class path. External
modules are accessed through the module path, additional modules setting, and module
exports setting.

Topics

• Setting the Class Path

• Setting Module Options

Setting the Class Path
You can use external code that is accessible through the class path in your JShell session.

Set the class path on the command line as shown in the following example:

 % jshell --class-path myOwnClassPath

Point your class path to directories or JAR files that have the packages that you want to
access. The code must be compiled into class files. Code in the default package, which is
also known as the unnamed package, can’t be accessed from JShell. After you set the class
path, these packages can be imported into your session:

jshell> import my.cool.code.*

You can also use the /env command to set the class path, as shown in the following
example:

jshell> /env --class-path myOwnClassPath
| Setting new options and restoring state.

The /env command resets the execution state, reloading any current snippets with the new
class path setting or other environment setting entered with the command.

Setting Module Options
Modules are supported in JShell. The module path can be set, additional modules to resolve
specified, and module exports given.

Module options can be provided in options to the /env command or on the command line as
shown in the following example:

 % jshell --module-path myOwnModulePath --add-modules my.module

5-1

To see current environment settings, use /env without options. The following example
includes class path information that was set in Setting the Class Path:

 jshell> /env
 | --add-modules my.module
 | --module-path myOwnModulePath
 | --class-path myOwnClassPath

For details about the options, enter the following command:

jshell> /help context

Chapter 5
Setting Module Options

5-2

6
Feedback Modes

The feedback mode determines the prompts, feedback, and other interactions within JShell.
Predefined modes with different levels of feedback are provided. Custom modes can be
created as needed.

Topics

• Setting the Feedback Mode

• Defining a Feedback Mode

Setting the Feedback Mode
A feedback mode is a named user interaction configuration. A feedback mode defines the
prompts and feedback that are used in your interaction with JShell. Predefined modes are
provided for your convenience. You can create custom modes as needed.

The predefined modes can’t be modified, but they can be used as the base of a custom
mode. The predefined modes, in descending order of verbosity are verbose, normal,
concise, and silent.

The following table shows the differences in the predefined modes.

Mode Value
Snippets

Declaration Updates Commands Prompt

verbose name ==>
value (and
description)

Yes Yes Yes jshell>

normal name ==>
value

Yes No Yes jshell>

concise name ==>
value (only
expressions)

No No No jshell>

silent No No No No ->

• The Mode column indicates the mode that is being described.

• The Value Snippets column indicates what is shown for snippets that have values, such
as expressions, assignments, and variable declarations.

• The Declaration column indicates if feedback is provided for declarations or methods,
classes, enum, interfaces, and annotation interfaces.

• The Updates column indicates if changes to other than the current snippet are shown.

• The Commands column indicates if commands give feedback indicating success.

• The Prompt column indicates the prompt that is used.

6-1

The default feedback mode is normal. Change the feedback mode by setting a
command-line option or using the /set feedback command as shown in the following
example:

jshell> /set feedback verbose
| Feedback mode: verbose

jshell> 2 + 2
$1 ==> 4
| created scratch variable $1 : int

jshell> /set feedback silent
-> 2 + 2
-> /set feedback normal
| Feedback mode: normal

jshell> 2 + 2
$3 ==> 4

jshell> /set feedback concise
jshell> 2 + 2
$4 ==> 4
jshell>

Notice that when the setting is normal or verbose, the command feedback shows you
the setting, but concise and silent modes don't. Also notice that the three different
forms of feedback for the expression 2+2 include no feedback when the mode is set to
silent.

To see the current and available feedback modes, use the /set feedback command
without options. Notice that the current mode is shown as the command that set it:

jshell> /set feedback
| /set feedback verbose
|
| Available feedback modes:
| concise
| normal
| silent
| verbose

Defining a Feedback Mode
Custom feedback modes enable you to define the prompts that you want to see and
the feedback that you want to receive for the different elements that you enter into
JShell.

A feedback mode has the following settings:

• Prompts: Regular and continuation

• Truncation: Maximum length of values displayed

• Format: Format of the feedback provided

Chapter 6
Defining a Feedback Mode

6-2

The predefined modes can’t be changed, but you can easily create a copy of an existing
mode, as shown in the following example:

jshell> /set mode mine normal -command
| Created new feedback mode: mine

The new mode mine is a copy of the normal mode. The -command option indicates that you
want command feedback. If you don't want commands to describe the action that occurred,
then use -quiet instead of -command.

Set Prompts

As with all /set commands, use the /set prompt command without settings to show the
current setting:

jshell> /set prompt normal
| /set prompt normal "\njshell> " " ...> "

In the feedback provided for the previous example, the first string is the regular prompt, and
the second string is the continuation prompt that is used if the snippet extends to multiple
lines. The following example shows how to switch to the new mode to try it out:

jshell> /set prompt mine "\nmy mode: " ".......: "

jshell> /set feedback mine
| Feedback mode: mine

my mode: class C {
.......: int x;
.......: }
| created class C

my mode:

The prompt strings can contain %s, which is substituted with the next snippet ID. However, if a
command is entered or the snippet results in an error, then the value that users enter at the
prompt might not be assigned that ID.

All settings have a duration of the current session; they are not reset by the /reset
command. If you want the settings to be the default for future sessions, then use the -retain
option to keep them. The following example shows how to keep your custom mode across
sessions:

my mode: /set mode mine -retain

my mode: /set feedback mine -retain
| Feedback mode: mine

my mode: /exit
| Goodbye
% jshell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro

Chapter 6
Defining a Feedback Mode

6-3

my mode:

Set Truncation

If the values are too long, then they are truncated when displayed. Use the /set
truncation command to set the maximum length shown for a value. If no settings are
entered with the command, then the current setting is displayed. The following
example shows the settings that were inherited from the normal mode:

my mode: /set truncation mine
| /set truncation mine 80
| /set truncation mine 1000 expression,varvalue

my mode: String big = IntStream.range(0,1200).mapToObj(n -> "" +
(char) ('a' + n % 26)).collect(Collectors.joining())
big ==> "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv ...
fghijklmnopqrstuvwxyzabcd"

The conditions under which a truncation setting is in effect is determined by the
optional selectors that are entered after the truncation length. Two types of selectors
(called selector kinds in the online help) are defined:

• A case selector indicates the type of snippet whose value is displayed.

• An action selector describes what happened to the snippet.

Enter /help /set truncation for details about selectors.

The setting shown in the previous example means that values are truncated to 80
characters unless the value is the value of an expression (the expression case
selector) or the value of a variable, as explicitly requested by entering just the variable
name (the varvalue case selector). The order is important; the last one entered is
used. If the order were reversed, then all of the values would be truncated to 80
characters.

The following example sets the default truncation to 100, and only shows long values if
they are explicitly requested:

my mode: /set truncation mine 100

my mode: /set truncation mine 300 varvalue

my mode: big + big
$2 ==>
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghi ...
yzabcdefghijklmnopqrstuvwxyzabcd"

my mode: big
big ==>
"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqr
stuvwxyzabcdefghijklmnopqrstu
vwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmn
opqrstuvwxyzabcdefghijkl ... jklmnopq
rstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghij
klmnopqrstuvwxyzabcd"

Chapter 6
Defining a Feedback Mode

6-4

my mode: /set mode mine -retain

To keep the new settings, retain the changes as shown at the end of the example.

Set Formats

Snippet output is another setting that you can customize. In the format inherited from the
normal mode, an import doesn't give any feedback, and the type of a value isn’t shown:

my mode: import java.beans.*

my mode: Locale.CANADA.getUnicodeLocaleAttributes()
$5 ==> []

The format of the snippet output is set with the /set format command. Enter this with the
mode name and no settings to see the current format settings:

my mode: /set format mine

Extensive help about this command is available with the /help /set format command. You
might want to bring it up to use as a reference for the remainder of this section, which
mentions the fields that are used when defining the formats.

The primary feedback displayed is determined by the display field. Other fields can be
defined to assist in defining the display field. Predefined modes other than silent define
several of these fields, as can be seen in the output from the /help /set format command.
These fields are inherited in the example mode. Display definitions for import are shown in
the following example:

my mode: /set format mine display "{pre}added import {name}{post}" import-
added

my mode: /set format mine display "{pre}re-added import {name}{post}" import-
modified,replaced

The name field is predefined as the name of the snippet. The following example shows that
feedback is now provided for imports:

my mode: import java.beans.*
| re-added import java.beans.*

The pre and post fields used in the display definition are the prefix and postfix characters for
each line of feedback output. The following example changes the vertical bar prefix to the
empty string:

my mode: /set format mine pre ""

my mode: void m() {}
created method m()

my mode: import java.beans.*

Chapter 6
Defining a Feedback Mode

6-5

re-added import java.beans.*

my mode: /set truncation mine
/set truncation mine 100
/set truncation mine 300 varvalue

Note:

The change to the prefix character affects all feedback, including command
feedback.

To show the type when displaying values, change the result field defined by the
predefined modes:

my mode: /set format mine result "{type} {name} = {value}{post}"
added,modified,replaced-primary-ok

my mode: Locale.CANADA.getUnicodeLocaleAttributes()
Set<String> $11 = []

my mode: 2 + 2
int $12 = 4

This change makes result nonempty only when it is new or updated
(added,modified,replaced), is on the entered snippet (primary), and doesn’t have
errors (ok).

To permanently delete a retained mode, use the -retain option with the -delete
option:

my mode: /set feedback verbose -retain
| Feedback mode: verbose

jshell> /set mode mine -delete -retain

Chapter 6
Defining a Feedback Mode

6-6

7
Scripts

A JShell script is a sequence of snippets and JShell commands in a file, one snippet or
command per line.

Scripts can be a local file, or one of the following predefined scripts:

Script Name Script Contents

DEFAULT Includes commonly needed import declarations. This script is used if no
other startup script is provided.

PRINTING Defines JShell methods that redirect to the print, println, and
printf methods in PrintStream.

JAVASE Imports the core Java SE API defined by the java.se module, which
causes a noticeable delay in starting JShell due to the number of packages.

Topics

• Startup Scripts

• Creating and Loading Scripts

Startup Scripts
Startup scripts contain snippets and commands that are loaded when a JShell session is
started. The default startup script contains common import statements. You can create
custom scripts as needed.

Startup scripts are loaded each time the jshell tool is reset. Reset occurs during the initial
startup and with the /reset, /reload, and /env commands. If you do not set the script, then,
the default startup script, DEFAULT, is used. This default script defines commonly needed
import declarations.

Note:

The Java language defines that the java.lang package is automatically imported
so this package doesn’t need to be explicitly imported.

To set the startup script, use the /set start command:

jshell> /set start mystartup.jsh

jshell> /reset
| Resetting state.

7-1

As with all /set commands, the duration of the setting is the current session unless
the -retain option is used. Typically, the -retain option isn’t used when you test a
startup script setting. When the desired setting is found, use the-retain option to
preserve it:

jshell> /set start -retain

The startup script is then loaded the next time you start the jshell tool.

Remember that the startup scripts are loaded into the current session only when the
state is reset. The contents of the script is stored, not a reference to the script. The
script is read only at the time the /set start command is run. However, predefined
scripts are loaded by reference and can be updated with new releases of the JDK.

Startup scripts can also be specified with the --startup command-line flag:

% jshell --startup mystartup.jsh

For experimentation, it is useful to have print methods that don't need the System.out.
prefix. Use the predefined PRINTING script to access the print, println, and
printf methods. You can specify more than one startup script with /set start. The
following example sets the startup to load both the default imports and printing
definitions:

jshell> /set start -retain DEFAULT PRINTING

jshell> /exit
| Goodbye

% jshell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro

jshell> println("Hello World!")
Hello World!

The -retain flag is used to set these predefined scripts as the startup scripts for future
sessions of the jshell tool. Use /set start without arguments to see the details of
what is defined by these startup scripts.

To set more than one startup script on the command line, use the --startup flag for
each script:

% jshell --startup DEFAULT --startup PRINTING

Chapter 7
Startup Scripts

7-2

Creating and Loading Scripts
Use scripts to set up your JShell session with import statements and code that you want
available during the session.

Creating Scripts

A script can be created externally in an editor, or generated from items entered in JShell. Use
one of the following commands to create a script from the entries in a JShell session:

jshell> /save mysnippets.jsh

jshell> /save -history myhistory.jsh

jshell> /save -start mystartup.jsh

The first command shown in the example saves the current active snippets to
mysnippets.jsh. The second command shown saves the history of all of the snippets and
commands, both valid and invalid, to myhistory.jsh. The last command shown saves the
contents of the current startup script setting to mystartup.jsh. The file name provided can
be any valid file path and name.

Loading Scripts

Scripts can be loaded from the command line when a JShell session is started:

% jshell mysnippets.jsh

Scripts can also be loaded within a JShell session by using the /open command:

jshell> /open PRINTING

Chapter 7
Creating and Loading Scripts

7-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction to JShell
	Why Use JShell?
	Starting and Stopping JShell

	2 Snippets
	Trying Out Snippets
	Changing Definitions
	Forward References
	Exceptions
	Tab Completion for Snippets
	Snippet Transformation

	3 Commands
	Introduction to Commands
	Tab Completion for Commands
	Command Abbreviations

	4 Editing
	Shell Editing
	Input Line Navigation
	History Navigation
	Input Line Modification
	Search and More

	External Editor

	5 External Code
	Setting the Class Path
	Setting Module Options

	6 Feedback Modes
	Setting the Feedback Mode
	Defining a Feedback Mode

	7 Scripts
	Startup Scripts
	Creating and Loading Scripts

